
 

Upscaling of reactive flows

Citation for published version (APA):
Kumar, K. (2012). Upscaling of reactive flows. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics
and Computer Science]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR735447

DOI:
10.6100/IR735447

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR735447
https://doi.org/10.6100/IR735447
https://research.tue.nl/en/publications/9353fe29-120c-4252-97aa-9bf399440395


Upscaling of Reactive Flows



Copyright c©2012 by Kundan Kumar, Eindhoven, The Netherlands.
All rights are reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission of the author.
Cover page design by Niels Willems and Neda Sepasian.
Printed by Off Page, The Netherlands.

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Kumar, Kundan

Upscaling of Reactive Flows

by Kundan Kumar. -
Eindhoven: Technische Universiteit Eindhoven, 2012.
Proefschrift. - ISBN 978-90-386-3221-6

NUR 919
Subject headings: reactive flows; homogenization; porous medium; numerical analysis;
2000 Mathematics Subject Classification: 35A35, 65L60, 65J20, 35K57, 35B27, 76S05

This work has been carried out within STW Project Nr. 07796, ”Second Generation of
Integrated Batteries”.



Upscaling of Reactive Flows

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen
op dinsdag 18 september 2012 om 14.00 uur

door

Kundan Kumar

geboren te Patna, India



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. I.S. Pop
en
prof.dr. M.A. Peletier



Contents

1 Introduction 1
1.0.1 3D all-solid-state batteries . . . . . . . . . . . . . . . . . . . . . . . . 2
1.0.2 Reactive flows in porous media . . . . . . . . . . . . . . . . . . . . . 4

1.1 General framework of reactive flows in complex media . . . . . . . . . . . 5
1.1.1 Fixed geometry versus variable geometry . . . . . . . . . . . . . . . 6
1.1.2 Examples of reaction rates . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Upscaling problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Boundary homogenization . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Thin strip homogenization . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Periodic media homogenization . . . . . . . . . . . . . . . . . . . . 14

1.3 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Numerical schemes for upscaled system . . . . . . . . . . . . . . . 16

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Numerical scheme for multiscale computations 19
2.1 The motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 The equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 The flow component . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 The reactive transport/deposition equations . . . . . . . . . . . . . 23

2.4 The numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 The weak form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 The iterative domain decomposition scheme . . . . . . . . . . . . . 27
2.4.3 The convergence proof . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Rigorous upscaling of rough boundaries 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Geometry and modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Basic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



vi Contents

3.2.3 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Upscaled equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 The boundary unfolding operator . . . . . . . . . . . . . . . . . . . 44
3.4.2 Estimates in the domain . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.3 The boundary estimates . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 Connecting the limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Limit equations: proof of Theorem 3.3.1 . . . . . . . . . . . . . . . . . . . . 56
3.6 Extensions to different rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.1 Dissolution fronts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.2 Precipitation process . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Upscaling of moving rough boundaries 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Modeling equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 The flow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.1 The inner region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.2 The outer region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.3 Matching conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 The transport equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.1 The outer solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4.2 The inner solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4.3 The matching conditions . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.4 The effective boundary condition . . . . . . . . . . . . . . . . . . . . 79

4.5 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.1 Concentration at the boundary . . . . . . . . . . . . . . . . . . . . . 81
4.5.2 Error at the boundary . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3 Mass balance: full vs upscaled . . . . . . . . . . . . . . . . . . . . . 82
4.5.4 Deposition profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Reactive flow in a thin strip 85
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 The dimensionless form . . . . . . . . . . . . . . . . . . . . . . . . . 90



Contents vii

5.3 Upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 The case Pe = O(ε−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3.2 The case Pe = O(ε−α) . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 Hyperbolic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.2 Simple Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.3 Upscaled Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.4 2-D Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.5 Numerical Computations . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.6 Fixed geometry versus variable geometry . . . . . . . . . . . . . . . 106

5.5 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Homogenization of a pore-scale model 117
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 Basic geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.2 The micro scale model . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.3 The macro scale model . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 The weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.1 Uniform estimates for the microscopic solutions . . . . . . . . . . . 127
6.3.2 Extension results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Two-scale convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.4.1 The macroscopic equation . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4.2 Uniqueness of the macroscopic model . . . . . . . . . . . . . . . . . 141

7 Numerical analysis of an upscaled model: conformal formulation 143
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.1 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . 147
7.2.2 Weak formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.3 Semi-discrete scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.1 The a priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Fully discrete system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.4.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.4.4 Limit equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.6 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



viii Contents

8 Numerical analysis of an upscaled model: mixed schemes 181
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2 The mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.4 Continuous mixed variational formulation . . . . . . . . . . . . . . . . . . 187
8.5 Semi-discrete mixed variational formulation . . . . . . . . . . . . . . . . . 189

8.5.1 The a priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.5.2 Enhanced compactness . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.5.3 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
8.5.4 The limit equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.6 The mixed finite element formulation . . . . . . . . . . . . . . . . . . . . . 202
8.6.1 The a priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.6.2 Strong convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.6.3 The limit equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.7 Numerical computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A Dispersion for fixed geometry case 217

B Existence of solution for semi discrete scheme (8.5.2) 223

Bibliography 225

Index 237

Summary 239

Acknowledgements 241

Curriculum vitae 245



Chapter 1

Introduction

This thesis deals with the mathematical models which involve more than one spatial
scale. In nature, many complex processes involve hierarchically organized structures
exhibiting different scales. For instance, in material science, biology and the environ-
mental sciences, we encounter this hierarchy with the scales ranging from molecular
ones (biological applications) to field scales (reservoir simulations for oil extraction). To
understand the modeled real-life processes, we need to perform computations at the
larger scale (macroscale). Two related issues are encountered in this:

• To perform macroscale computations starting from full scale smaller scale (mi-
croscale) calculations is often very complex and out of reach.

• A certain form of the macroscopic law is presumed involving certain material spe-
cific parameters to be determined from experiments.

The first issue outlines the limitations of a direct numerical approach starting from the
microscale. The second issue bypasses the first issue but raises another problem: how do
we justify or preferably, derive the macroscopic laws? The upscaling approach answers
this question by making transition from one scale to the next. This linkage of observ-
able macroscale parameters with the microscopic description provides a way to derive
the law as well as determine the dependence of these parameters on the microscopic
processes. Apart from the computational advantage accrued from using macroscopic
models, one may also obtain the error estimates through the upscaling procedure. The
latter provides information about the quality of upscaling. Moreover, depending upon
the requirements, one may also improve the averaged equations albeit at some compu-
tational costs.

The class of problems involving bridging scales is incredibly large and we address an
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important subclass of problems here. We will deal with the situations when both the
scales involve continuum equations. Even within this smaller set, we restrict ourselves
to physical processes dealing with flow and transport. The connection between the two
continuum processes involving flow is best exemplified by taking soil as an example.
The Darcy equation gives velocity field as proportional to the pressure gradient with
the proportionality constant named as permeability. At the same time, the flow is given
by Stokes equation or Navier-Stokes equation for a given geometry at the microscale.
In forming this link between these two equations, we obtain not only the derivation of
the macroscale equation but also the information about the permeability constant and
its dependence on the geometry of the microstructure [18].

We mention some of the relevant applications that are at the heart of our considerations.

1.0.1 3D all-solid-state batteries

One of the central applications of this work is in the manufacturing of a 3D solid state
battery. As indicated by its name, the constituents of this battery (anode, cathode and
electrodes) are all solid. The intended practical implementation is in the manufacturing
of autonomous devices. These devices have very promising and futuristic applications.
For instance, an autonomous medical pill, after ingested, will release the intended drug
at a certain rate on its own. Naturally, these kinds of applications should minimize any
chance of leakage of the constituent material which explains the choice of solid elec-
trolytes instead of more common liquid counterparts. Now we explain what stands
for 3D in this battery. The idea was first mooted in [110] and is motivated by high ca-
pacity design of energy storage devices such as capacitors. The energy capacity of the
capacitor is dependent, among other characteristics, on the surface area. To enhance the
surface area, instead of using planar surface, trenches are made. A similar strategy for
the batteries yields (estimated) three orders of magnitude higher than the capacitors. A
proof of concept for the successful implementation was discussed in the PhD thesis of
Jos Oudenhoven [112] (see also [113, 114]). A schematic picture is shown in Figure 1.1.

Important challenges however remain in the deposition process. The deposition of the
different layers should be uniform across the battery (e.g., to avoid short-circuit). For the
trenches with high aspect ratio (desirable for higher energy capacity as the effective area
increases) the uniform deposition problem may be aggravated (see Figure 1.2). Next,
the size (2D cross-section) of the trenches is typically 10µm× 30µm and the substrate
(the base material on which deposition takes place) size of the order of 10cm× 10cm,
hence a direct numerical simulation is computationally very demanding as the mesh
size should be small enough to resolve the trench scale. Furthermore, the layers de-
posited successively may have thickness comparable to that of the trench itself leading
to the clogging of the trench.
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Figure 1.1: A schematic of the 3D battery: trenches in a silicon substrate are etched to enhance
the effective surface area. The different colors of deposition represent variety of layers corre-
sponding to different constituents such as cathode, anode or electrode. The effective surface area
enhancement leads to higher energy capacity compared to the planar counterpart. The copyright
of the picture remains with [110] (Advanced Materials, 19(24):4564-4567, 2007).

Mathematics can play important roles in dealing with the above challenges. The mod-
eling and the numerical computations of the deposition process can predict the deposi-
tion profile in the trench. To tackle the problem of direct numerical approach, alternative
ways can be found to compute the solutions efficiently. The modeling of this process can
take into account the geometry changes since one can no longer ignore these changes.
To take into account the changes in the geometry, we should model the processes by so-
called free boundary problems because the change in the geometry itself is part of the
solution. Having information about the deposition profile for a given geometry then
would lead us to investigate the design question: what should be an optimal configura-
tion of the microstructure?

In this work, we will discuss the modeling issues, a model that predicts the deposi-
tion profile, both including and excluding the geometry changes. Also, we will use the
upscaling arguments to provide a simplified way of computing approximate solutions.
Specifically, the chapters 2, 3, and 4 focus on these issues.
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Figure 1.2: Experimental results for deposition in thin trenches: the deposition is quite non-
uniform; at the top the thickness is approximately 400 nm while at the bottom there is negligible
deposition. Uniform deposition of the layer thicknesses yields better battery performance.

1.0.2 Reactive flows in porous media

In a porous medium (soil being a familiar example), solid grains are surrounded by
void spaces (the pores). The totality of the grains form the solid matrix (porous skele-
ton). Fluids (like water and oil) or gasses may flow through the pores of the medium
transporting solutes and ions. By reactions, we mean the process of these ions com-
bining among each other in the pore space or reacting on the grain boundaries. For
example, consider the flow of common salt which consists of sodium and chloride ions.
These ions combine to form the precipitate (crystals) on the grain boundaries. The na-
ture abounds with the applications of reactive flows in porous media. The spreading of
contaminants in the ground water flow, biological applications such as tissue and bone
formation, pharmaceutical applications or the operation of the solid state batteries are
all examples where the concepts from porous media are used to understand the proper-
ties.

Generally, the porous media consist of heterogeneities with a wide variation in the prop-
erties of porosity (void/solid matrix ratio) and the connectivity of the void spaces. Due
to the high number of grains, the resulting medium is extremely complex. The solu-
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tion in such situations, if it takes into account the detailed microstructure of the pore
space, is usually prohibitive from the computational point of view and quite often un-
necessary. Therefore, one tries to study the average properties, for example the effective
permeability or the average concentration of solute or ions. These average properties
are understood at a so-called Darcy scale where one does not distinguish between the
grains and the pore space. However, we need to make this transition from the pore
scale model to the Darcy scale (also called macroscale). This is achieved by employing
homogenization or upscaling techniques. Naturally, these average properties depend
on the microstructure and these techniques establish this linkage. More detailed discus-
sions on the properties of porous media are outside the scope of this work and there are
excellent textbooks dealing with this vast subject. We refer to [17] for more details on
the porous media and the various topics associated with these.

In this thesis, we show how the upscaling approach is used to derive macroscopic model
for a specific model describing a particular class of reactions, namely the precipitation
and dissolution processes. In doing so, we make drastic simplifications regarding the
geometry. It is often assumed that the geometry consists of periodic array of solid grains
with surrounding connected pore space. Moreover, in another problem that will be con-
sidered in this thesis, the representative pore space is taken to be a thin strip. These sim-
plifications, however drastic they are, bring out many useful insights having practical
applications. These have been treated in chapters 5, 6, 7, and 8.

This chapter is organized as follows. In Section 1.1, we describe a general framework for
the reactive flow model and the relevant issues. Subsequently, in Section 1.2, we state
the upscaling problems that have been treated in this thesis. The analysis of the numer-
ical schemes considered here are introduced in Section 1.3. We conclude by outlining
this thesis in Section 1.4.

1.1 General framework of reactive flows in complex me-
dia

In this section we provide a general framework that all the problems treated in this
thesis fit into. The reactive flow model has equations for: the flow part and the trans-
port with reactions. The flow is usually described using the Navier-Stokes equation or
for simplicity, Stokes equation. The transport part is often modeled by the convection-
diffusion equation with reactions at the boundary. Let us consider a flow carrying the
ions or solutes which are dissolved in the fluid. When the concentration of these dis-
solved species is low enough, the flow remains unaffected by the changes in the concen-
tration of the solutes. This allows us to decouple the flow from the transport problem.
Thus, one solves the flow equations first and then uses this flow term (in the convection
term) in the convection-diffusion equation modeling transport.
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There is another interesting aspect of the reactive flow modeling. The reactions may
lead to changes in the geometry itself, for example the deposition process in the man-
ufacturing of the battery. As a general guideline, the resulting free boundary problems
involving the geometry changes are difficult to tackle using rigorous mathematical argu-
ments. The simpler counterpart, where one ignores these geometry changes and takes
a simplified description of the reactions by a variable defined on the boundary, is more
convenient to deal with. In the general framework that we present, we will demonstrate
how different choices for the reaction term lead to different models each one tailored to
specific applications.

1.1.1 Fixed geometry versus variable geometry

To explain the two concepts, we consider a smooth and bounded domain Ω ⊂ R2 with
boundary ∂Ω. For the discussion here, let us assume that the flow is given (even for the
situation when the flow is time dependent). For any reactions (except for self-reactions
such as aggregation), one needs at least two types of ions, however, under certain com-
patibility conditions [44,45], it suffices to consider only one type of ions. Let (0, T) be the
time of observation and u denote the concentration of the ions. The transport equation
reads as follows

∂tu− D∆u +∇ · (qu) = 0 in Ω× (0, T). (1.1.1)

Here, D denotes the diffusion coefficient, q is the flow field assumed to be known. Let
us assume that the initial conditions are given and smooth. In the equation above, to
focus on the issue of fixed versus variable geometry, we have assumed that there are no
reactions taking place in Ω.

To complete the model above, we need boundary conditions. Let Γ ⊂ ∂Ω be the part of
the boundary where the reactions take place. On ∂Ω \ Γ we assume u to be prescribed.
It is at Γ that we have two modeling choices which are illustrated in Figure 1.3:

Fixed geometry case: The geometry remains fixed and the precipitate concentration v
is described by an equation defined on Γ (Figure 1.3, left).

Variable geometry case: The geometry changes are explicitly taken into account; the
deposition thickness is denoted by d and we prescribe the movement of Γ as well as
the equation describing d (Figure 1.3, right). The deposition thickness d is the signed
distance function from initial boundary (Γ(t = 0)) and for the reaction rates that are
considered here, we ensure that d ≥ 0.
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Fixed geometry

On Γ × (0, T), the following boundary condition and equation hold:

−ν · ∇u = ∂tv, (1.1.2)

∂tv = f (u, v), (1.1.3)

where v is the precipitate concentration,ν denotes the outward normal to Γ and f stands
for the reaction term. The first equation (1.1.2) is simply mass balance while (1.1.3)
describes the reaction term. This together with (1.1.1) completes the system and when
solved together gives the solution pair (u, v).

Variable geometry

In the variable geometry case, the density of ions in the solid is different from the bulk.
Let ρ be the density of ions in the solid phase (the deposition or the precipitate). The
corresponding boundary condition and equations in this case are:

−ν · ∇u = vn(ρ− u) on Γ(t)× (0, T), (1.1.4)

ρ∂td = f (u,ρd) on Γ(t)× (0, T), (1.1.5)

vn = f (u,ρd), (1.1.6)

where vn stands for the normal velocity of Γ and f represents the reaction term. The
time-dependence of Γ has been explicitly shown. Consequently, Ω is also a function of
time.

The forms for the equations suggest that v may be identified with ρd. Indeed, formal
arguments suggest that the results for the fixed geometry case are a special case of vari-
able geometry case and may be obtained as a formal limit of ρ↗ ∞ with ρd→ v.

What are the respective advantages of these two modeling choices? First, the fixed ge-
ometry model yields a simpler description. One does not have to track these geometry
changes and computing the solutions is less complex. Secondly, the fixed geometry
cases are more amenable to rigorous mathematical arguments. Having said this, the
fixed geometry case is a simplification and may not always be the appropriate choice.
For instance, if the reaction rates are also functions of geometric features such as curva-
ture, the fixed geometry case fails to model the phenomenon while it is easily handled
by the variable geometry case. For the reaction rates considered in this thesis, the rig-
orous mathematical arguments are still open for the variable geometry case. One has
to resort to formal justifications to derive equations in this case. We will, therefore, re-
sort to the simpler description (fixed case) whenever we present rigorous mathematical
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Figure 1.3: The fixed (left) and the variable geometry (right) descriptions for the reactive flow in
a domain Ω. For the variable geometry, the time dependence of Ω(t) and Γ(t) are emphasized.
For the fixed geometry case, variables are defined on Γ which describe the reaction product.

proofs while we handle the variable geometry situation by formal arguments. As we
will see in Chapter 5, depending on the value of ρ, one may incur significant errors by
considering fixed models instead of the more appropriate variable geometry case.

1.1.2 Examples of reaction rates

The term f , representing the reaction rate, may have different forms. We present some
examples relevant to the present work.

First order kinetics

Naturally, one of the simplest choices for the reaction rates is linear, that is,

f (u, v) = ku. (1.1.7)

This assumption is, for example, used in chemical vapor deposition (CVD) processes.
Often the reaction mechanisms for non-elementary reactions are not known for a com-
plicated process such as CVD and one resorts to simplest description in order to mini-
mize the number of parameters to fit.
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Nonlinear but Lipschitz rates

One of the frequently used reaction rates is of the following type:

f (u, v) = r(u)− g(v), (1.1.8)

where r and g are locally Lipschitz functions and take positive values. These reaction
rates are considered, for example, in modeling the reactive flows in porous media [62].
Also, similar models are used in biological contexts in the diffusion of receptors in a
cell [89] or in the description of sulphate attack for sewer pipes [53].

Other choices such as Langmuir types are also used to model the chemical reaction
rates. For this type, the right hand side of (1.1.8) is replaced by u

C+u where C is a given
constant.

Non-Lipschitz and multi-valued reaction rates

For the most part of the thesis, we are concerned with the reaction rates which model
the precipitation-dissolution process. Under certain conditions, the ions precipitate at
the grain boundaries and form the crystal and hence become immobile. The reverse
reaction of dissolution is also possible. The rate laws for these reactions have a certain
non-linear and multi-valued structure. We consider the following reactions:

f (u, v) = r(u)− w, (1.1.9)

w ∈ H(v), (1.1.10)

where r denotes the precipitation process and w models the dissolution process. The
precipitation rate r is locally Lipschitz. The interesting aspect is the description of the
dissolution rate. It is assumed constant (1, by scaling) at some (x, t) ∈ Γ × (0, T) where
the precipitate is present, i.e. if v(x, t) > 0. In the absence of the precipitate, the overall
rate (precipitate minus dissolution) is either zero, if the solute present there is insuffi-
cient to produce a net precipitation gain, or positive. This can be summarized as

w ∈ H(v), where H(v) =





0 if v < 0,
[0, 1] if v = 0,
1 if v > 0.

(1.1.11)

In a related context, [23] discusses the following precipitation dissolution model used
in the context of nuclear waste disposal,

f (u, v) = r(u)(1− sign+(v)) (1.1.12)
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where sign+(v) is defined as

sign+(v) =
{

1 if v > 0,
0 if v ≤ 0.

(1.1.13)

The detailed discussions on issues such as existence and uniqueness concerning this
rate are given in this thesis (also see [41, 47, 117]).

Other applications of diffusive-reactive processes in different contexts include, for in-
stance, in concrete formation [131], in biological applications [70]. Other examples deal-
ing with similar processes are dealt with in algae modeling, [77] and image process-
ing [78].

1.2 Upscaling problems

In this section, we state the type of problems that will be treated in this thesis. These
problems relate to upscaling and usually contain two or more scales. For instance, in
the discussion above, we referred to the deposition problem related to the formation of
battery or the different scales in porous media. For the deposition problem, the trench
size (microscale) and the substrate size (macroscale) give rise to these scales. One tries
to obtain an effective equation by averaging over the smaller scale thus defining equa-
tions only on the macroscale with some information carried over from the microscale.
We classify this averaging process depending upon the geometries that are considered.
Again, we emphasize that the description of the problem on the smaller scale (mi-
croscale) may involve fixed geometry description or the variable geometry description.
We will come back to these choices in the discussions below.

1.2.1 Boundary homogenization

In this class of problems, the original problem is defined in a domain with oscillating
boundary. Figure 1.4 illustrates this situation where the domain is denoted by Ωε and
the oscillating boundary by Γε. The boundary Γε consists of oscillations with both pe-
riod and amplitude ε. Let us consider the transport problem defined in the domain Ωε

with reactive boundary conditions on Γε. We denote the ε−dependent problem by Pε
with the solution pair represented by (uε, vε). An intuitive definition of the relevant
upscaling problem is as follows:

Problem 1.2.1 Derive a Problem P in a simple domain Ω with flat boundary or more generally
smooth boundary Γ so that the solution (u, v) approximates the original solution pair (uε, vε).
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Of course, we need to make the various notions precise: defining an appropriate norm
to express the approximation; defining a suitable Ω and Γ . Figure 1.4 provides a picto-
rial representation for such Ω and Γ .

Imagine that we are able to obtain such a good approximation. How does this help
us? Let us say, we would like to solve the problem numerically. To solve the problem
in the original domain, one needs to resolve the oscillations in the boundary. This im-
plies that the mesh size should be smaller than the size of oscillations. This makes the
problem computationally quite expensive. The upscaling process provides an approxi-
mation to the original solution by defining the approximate problem in a domain with
flat boundaries. This means that one needs to take into account the corrections due to
this simplification, which is incorporated in modified boundary conditions. For the re-
active boundary conditions at the oscillating boundaries, the flux needs to be corrected
if we are to simplify the boundary to a flat one. Also, the upscaling process should use
some information from the original geometry. We justify this upscaling process in a rig-
orous manner.

As remarked before, the oscillating boundary may change with time due to deposition
processes. This implies that the geometry may change with time and since the change in
the geometry is unknown, we have a free (evolving) boundary problem. The problem
is to find an upscaled equation defined in a simple domain with flat boundaries for this
free boundary problem posed in a complex domain with oscillatory boundaries. Figure
1.5 is a schematic for this free and moving boundary problem.

For the flow problem, the ideas from boundary homogenization have been applied
to find the coupling conditions between the porous medium and the free flow region
[66–68]. For the transport problem, [3, 29, 55, 56, 100] deal with the boundary homoge-
nization.

Our contributions in this respect are following: In the fixed geometry case, we con-
sider a model for reactions described by a non-linear, non-Lipschitz ODE at the oscil-
lating boundary coupled with a parabolic PDE in domain; and we use periodic unfold-
ing techniques for deriving effective boundary conditions. The derivation sustains the
mathematical rigor and has been presented in Chapter 3. Next, in Chapter 4 we treat the
moving geometry case using formal asymptotic techniques. We have considered both
the flow and the transport problems simultaneously and the derivation has been done
for the non-linear reaction terms. There is novelty both in the derivation part and the
upscaled model which exhibits new aspects arising out of geometry changes.
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Upscaled boundary

Figure 1.4: Ωε is the domain considered here. The inlet boundary Γi, the outlet boundary Γo and
the reactive boundary Γε are part of the boundary ∂Ωε. The boundary Γε consists of a periodic
function. Note that the geometry remains fixed in time for a given ε.

Figure 1.5: Schematic for the domain Ωε : channel with rough boundary Γε. Initially, the
boundary Γε ⊂ ∂Ωε consists of a periodic function of period and amplitude ε. Note that the
geometry may change in time due to reactions taking place.

1.2.2 Thin strip homogenization

A 2D thin strip, as has already been stated before, may be considered as a simplified
representation of the pore scale geometry. Also, the rectangular trenches with high as-
pect ratio may be also considered as a thin strip. Let us again consider a fluid flowing
through this thin strip and transporting dissolved ions. Reactions can take place at the
pore walls, with the resulting component being attached to or detached from the pore
walls. As before, two situations can be identified in this case: the reaction product
forming a very thin layer that does not influence the pore space (fixed geometry); al-
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Figure 1.6: Ω(t) is the domain (thin strip) considered here. The boundary Γg as well as the
domain Ω are functions of time. The flow profile is also time dependent. Schematic for the
geometry for the upscaling of reactive flow in a thin strip.

ternatively, the thickness of the deposited layer is not negligible when compared to the
pore thickness. In the second case, the reactions can lead to variations in the pore space,
and hence in the flow domain. The interface separating this domain from the the solid
part is a free boundary having an unknown, time dependent location. The schematic
for the processes involving variable geometry is shown in Figure 1.6.
The ratio of thickness to length of the strip defines a small quantity ε. Let us denote the
thin strip solution by (uε, dε, qε) with ε emphasizing the dependence of the solutions on
the parameter ε. The upscaling problem has the following informal objective:

Problem 1.2.2 Define a 1D problem so that the solutions (u, d, q) approximate the original
solution pair (uε, dε, qε) solving the transport and flow problems in 2D thin strip.

The details of the solution for the thin strip are computationally expensive, especially
when there are many of such thin strips e.g. in pore-network modeling of porous
medium [124, 125]. The attempt is then to find an average equation. However, to ap-
proximate the average of 2D strip, the upscaled equations should be very good to re-
duce the cumulative error. The simplest way to obtain such a dimensional reduction is
simply integrating along y axis, nonetheless in the given case, there is a product term
qε∇uε for which the average is not the product of average. Moreover, the strength of
convective strength to diffusion is characterized by a non-dimensional Péclet number.
When the Péclet number is low or moderate, that is, the diffusion is dominant or of
equal strength to convection, one expects a non-significant variation of concentration
along y axis. However, for high Péclet number, implying relatively stronger strength
of convection, a curious phenomenon takes place where the net spreading of solutes is
enhanced by the convective strength. This is known as Taylor dispersion, first observed
by British fluid mechanist Sir G. I. Taylor [132] (see [4, 31, 46, 93–95] for both formal and
rigorous derivation of this effect and [105] for the case when the Péclet number is of
moderate order).
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For the case when Péclet number is in Taylor dispersion regime, with the geometry
changing due to reactions, the derivation of the upscaled equation has not been studied
so far. In Chapter 5, we study this phenomenon and derive similar effects for the case
when the geometry changes are taken into account. Since the geometry changes are in-
volved, we resort to formal arguments to derive the effective equations. The upscaled
equations have novel terms containing effects of geometry changes and the numerical
experiments show the effectiveness of our upscaled model compared to the simpler,
intuitive models.

1.2.3 Periodic media homogenization

We proceed to discuss the geometric setting where the complex media is supposed to
be periodic. This may be considered as a simplified representation of porous media.
Figure 1.7 shows how one visualizes this complex medium as a tessellation of periodic
cell. For simplicity, assume that there are two scales involved in the problem. The
microscale problem pertains to the one defined in the unit cell. The macroscale consists
of the domain formed by the scaling and translation of this unit cell. The scaling factor
is referred to as ε.

~ν

P

G

ΓY

Ω

x1

x2

Zoom Zoom

Figure 1.7: The schematic showing the macroscale. The magnification of a small part of this
macroscale yields a periodic structure. One period of this structure is taken as the unit cell.

A general problem is to derive rigorously macroscopic laws from the microscopic equa-
tions describing the reactive flows. To this aim, homogenization procedure is applied to
rigorously derive upscaled equation from well-posed microscopic (pore-scale) models.
For instance, [36,60–62] deal with the homogenization of fluid flows involving reactions
and diffusion of solutes. There is a vast literature on the homogenization technique and
we mention in particular 2-scale convergence approach developed in [2] and further ex-
tended in [101].

In terms of applications, reactive flows in a porous medium have a wide range ranging
from spreading of polluting chemicals leading to ground water contamination (see [128]
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and references therein) to biological applications such as tissue and bone formation, or
pharmaceutical applications [91] or technological applications such as operation of solid
batteries.

In this thesis, we restrict to a specific model. This model describes the transport of ions
by fluid flow in a porous medium while undergoing precipitation and dissolution re-
actions. At the solid grain boundaries, the ions attach themselves to the crystal grains,
however, the reverse process of dissolution may also take place in which the ions detach
themselves from the crystal grains and get dissolved in the fluid. For the present work
we assume that the reactions taking place do not lead to the change in the geometry
at the pore-scale. This is justified for the case when the layer where the attachment-
detachment reactions take place is negligible.

The problem that we deal with in this work is then stated as:

Problem 1.2.3 For the specific model describing the precipitation-dissolution process, rigor-
ously derive the effective macroscopic equations.

From the application perspective, the homogenization of this model closes the issue of
rigorous transition from the pore scale model [47] to the macroscale model proposed in
[73]. Furthermore, the techniques used here are applicable to a larger class of problems
dealing with reactions at the boundary. From the mathematical perspective, there are
two key challenges: overcoming the low regularity of the microscale solutions and the
multi-valued description of the dissolution term. This has been treated in Chapter 6.

1.3 Numerical schemes

As we have already emphasized, a direct numerical approach for the problems involv-
ing multiple scales is computationally expensive. However, in situations when we need
the full solution or to compare the upscaled equations, we are required to solve the full
problem. Referring to the deposition problem in the battery, to understand the process
(e.g. the layer conformality) at the trench scale (microscale), we need solutions at both the
trench and reactor scales (macroscale). However, due to the huge difference in the sizes
of these scales, straightforward numerical computations are very challenging. To over-
come this difficulty, we consider a multiscale approach by introducing an intermediate
scale (mesoscale). Using the ideas of domain decomposition, we provide an iterative
coupling conditions for these three different scales. A direct numerical computation has
allowed us to compare the simulations with the experimental results. The fitting of the
profiles have led to the determination of physical parameters such as diffusion and re-
action rate. For more details on this work, we refer to [112], Ch. 9.
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In Chapter 2, we have provided a numerical algorithm that treats the question of con-
vergence of domain decomposition based techniques applied to the deposition on a pat-
terned surface. We have performed the time-discretization of the continuum equations
and provided an iterative method at each time-step.
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Figure 1.8: Comparison of experimental deposition profile with the simulation for the trench of
cross-sectional size 30µm× 30µm.

1.3.1 Numerical schemes for upscaled system

Solving the upscaled equations requires appropriate numerical methods. We are moti-
vated by analyzing such methods for solving the reactive flows for an upscaled model.
In this respect, two widely used schemes are conformal and the non-conformal (mixed
variational) formulations. The former is simpler but suffers from the lack of local con-
servation of mass property as opposed to the latter which preserves the same in addi-
tion to providing an explicit calculation for the flux. Again for the reaction rates, the
precipitation-dissolution processes are considered. As it can be recalled, the physics of
these processes dictates that the reaction terms are non-linear, non-Lipschitz and possi-
bly multi-valued.

To deal with the multi-valued term, we consider a regularization of this term and con-
sider the sequence of regularized equations. The compactness arguments are used for
obtaining convergence. The a priori estimates required for such arguments need to be
independent of the discretization parameters as well as the regularization parameter.
Even then, these a priori estimates fail to provide the strong convergence for obtaining
the limit. To solve the above issues, we let the regularization parameter δ depend on the
time discretization parameter τ in such a way that as τ ↘ 0, it is ensured that δ ↘ 0.
Thus, obtaining the limit of discretized scheme automatically yields, by virtue of the
regularization parameter also vanishing, the original equation. Moreover, the transla-
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tion estimates are employed to retrieve stronger convergence.

Our contributions in the numerical analysis of the upscaled equations include consider-
ing a non-linear, non-Lipschitz ODE coupled with parabolic PDE. We consider both the
semi-discrete and the fully discrete cases. The usual problem of lack of stronger com-
pactness has been tackled by the translation estimates. The application of such estimates
has to be tuned to the numerical discretization and by dealing with different kinds such
as time-discrete and fully discrete situations; we have exhibited a variety of ways to use
these estimates. The numerical analysis also yields the alternative proof of existence
for different formulations of the upscaled model. The convergence analysis of appro-
priate numerical schemes for the problem considered here is a stepping stone towards
the pursuit for an eventual plan of coupled flow and transport problems (for example,
Richards’ equation coupled with precipitation-dissolution reaction models) [13, 96].

1.4 Outline of the thesis

Having given a brief description of the kind of problems that have been considered in
this thesis, we proceed to provide a chapter wise description.

In Chapter 2, we provide a numerical scheme for multiscale computations for the model
describing the chemical vapor deposition process on a trenched Si substrate. To under-
stand the process (e.g. the layer conformality) at the trench scale (microscale), we need
solutions at both the trench and reactor scales (macroscale). The multiscale approach
considered here introduces an intermediate scale to deal with the huge difference in the
sizes of the scales involved. We start with time-continuous model describing the trans-
port processes and then perform time discretization. At each time step, using the ideas
of domain decomposition inspired from [87], we provide iterative coupling conditions
for these three different scales. Using weak formulation for the time-discrete equations,
we prove the convergence of this iterative scheme at each time-step. The approach also
provides an alternative proof for the existence of the solutions for the time-discrete for-
mulation [21].

In Chapter 3 we consider reactive flows in a channel which has oscillating horizontal
bed with period ε (see Figure 1.4). The ions/solutes are being transported by the con-
vection and diffusion processes and react at the oscillating boundaries. The reactions
rates are assumed to be non-linear. We define the upscaled problem in a domain with
flat boundaries, thus greatly simplifying the geometry. Assuming that the reaction rates
are defined on a fixed geometry, we provide a rigorous derivation of this upscaling pro-
cess. The framework is quite general and provides us a way of performing upscaling
for different description of reaction rates.

Chapter 4 focusses on the flow and transport of chemically reactive substances (pre-
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cursors) in a channel over substrates having complex geometry (see Figure 1.5). In
particular, these substrates are in the form of trenches forming oscillating boundaries.
The precursors react at the boundaries and get deposited. The deposited layers lead to
changes in the geometry and are explicitly taken into account. Consequently, the sys-
tem forms a free boundary problem. Using formal asymptotic techniques, we obtain
the upscaled equations for the system where these equations are defined on a domain
with flat boundaries. Numerical experiments show the effectiveness of the upscaling
process [76].

Chapter 5 considers a pore-scale model for reactive flow in a thin 2D strip, where the
convective transport dominates the diffusion (refer to Figure 1.6). Reactions take place
at the lateral boundaries of the strip (the walls), where the reaction product can deposit
in a layer with a non-negligible thickness compared to the width of the strip. This leads
to a free boundary problem, in which the moving interface between the fluid and the de-
posited (solid) layer is explicitly taken into account. Using asymptotic expansion meth-
ods, we derive an upscaled, one-dimensional model by averaging in the transversal
direction. This chapter derives Taylor dispersion type models for the variable geometry
case. Numerical computations are presented to compare the outcome of the effective
(upscaled) model with the transversally averaged, two-dimensional solution.

Chapter 6 discusses the homogenization approach to derive the upscaled equations for
reactive flows in a periodic medium (refer to Figure 1.7). We define a sequence of micro-
scopic solutions uε and obtain the upscaled equations as the limit of ε ↘ 0. We adopt
the 2-scale framework to achieve this. The challenges are in dealing with the low regu-
larity of microscopic solutions and particular non-linearities in the reaction term. This
chapter closes the gap of the rigorous transition from the pore scale model given in [47]
to the heuristically proposed macroscopic model in [73].

Chapter 7 contains the numerical analysis of an upscaled (core scale) model describing
the transport, precipitation and dissolution of solutes in a porous medium. We consider
the weak formulation for the upscaled equation and provide rigorous stability and con-
vergence results for both the semi-discrete (time discretization) and the fully discrete
scheme. In doing so, compactness arguments are employed.

In Chapter 8 we deal with the numerical analysis of an upscaled model describing the
transport, precipitation and dissolution of solutes in a porous medium. We consider
the mixed variational formulation for the model and provide the numerical discretiza-
tions for both the time-discrete form and fully discrete form. We analyse the numerical
schemes and prove the convergence to the continuous formulation. Apart from the
proof for the convergence, this also yields an existence proof for the mixed variational
formulation. Numerical experiments are performed to study the convergence behav-
ior [81].



Chapter 2

Numerical scheme for multiscale
computations

We consider the chemical vapor deposition process on a trenched Si-substrate. To un-
derstand the process (e.g. the layer conformality) at the trench scale (microscale), we need
solutions at both the trench and reactor scales (macroscale). Due to huge difference in the
sizes of these scales, straightforward numerical computations are very challenging. To
overcome this difficulty, we consider a multiscale approach by introducing an interme-
diate scale (mesoscale). We start with time-continuous model describing the transport
processes and then perform time discretization. At each time step, using the ideas of
domain decomposition inspired from [87], we provide an iterative coupling conditions
for these three different scales. Using weak formulation for the time-discrete equations,
we prove the convergence of this iterative scheme at each time-step. The approach also
provides an alternative proof for the existence of the solutions for the time-discrete for-
mulation.

2.1 The motivation

This work is motivated by the chemical vapor deposition (CVD) processes involved in
the manufacturing of the 3-D all-solid-state batteries. In this process, a carrier gas flows
through a tube with rectangular cross-section (the reactor). A Silicon (Si) substrate is
placed at the bottom of the reactor. The carrier gas transports a small amount of reac-

This chapter is a collaborative work with Jeroen Bogers, Peter Notten, Jos Oudenhoven, Sorin Pop and
has been submitted to Journal of Computational and Applied Mathematics (also in ACOMEN Conference
Proceedings, Liege 2011).
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tive substances, the precursors. These precursors react at the substrate, which becomes
the lower part of the reactor boundary, where a solid layer is produced [110, 113, 114].
This leads to an overall transport process with reactions at the boundary. The details on
the mathematical models are provided in Section 2.3.

To increase the energy storage capacity of the batteries, the geometries of the Si substrate
is made complex. To increase the surface area, trenches are etched in the Si-substrate,
which has therefore a rough surface instead of being flat. The typical size of a trench
is in the order of micrometers (∼ 10 µm), whereas the substrate size is in the order
∼ 30 cm. This evidently indicates the existence of two distinct scales in the problem, the
trench scale (referred as the microscale) and the reactor scale (the macroscale).

For a thorough understanding of the CVD process, in particular the conformality of the
deposited layers, one needs an accurate computation of the solution at the trench scale.
However, this requires computing the solution at the reactor scale as well. The scale
difference (an order of ∼ 104) makes a direct numerical simulation computationally
demanding because of the very fine mesh required for resolving the trench scale. Alter-
natively, we zoom-in a small region of the reactor near the region of interest, the sub-
strate. This introduces an intermediate scale, henceforth referred to as mesoscale. Next
we zoom-in a small region of the mesoscale where the trenches (the microscale) can be
identified. These three domains are thus formed as a result of successive zooming-in
so that the trenches are resolved only at the microscale, and the mesoscale is used only
for exchanging the information from the macroscale to the microscale. To compute the
solution at each scale, coupling conditions between the different scales are needed. In
doing so, we use ideas from the domain decomposition method.

Our aim here is providing a numerical scheme allowing to compute the detailed so-
lutions at each scale. The focus being on the numerics for the transport equations, we
consider a simple flow model, allowing a complete decoupling from the transport equa-
tions. Moreover, the flow is computed only at the macroscale and projected further at
the mesoscale. However, the transport equations describing the concentration of the
reactants (precursor) are defined in all the three scales. The coupling between different
scales is through the boundary conditions providing the continuity of the concentration
and of the normal fluxes. To achieve this we first perform the time discretization of the
model. Then, at each time-step, an iterative non-overlapping domain decomposition
algorithm [87] is considered. The iteration involves a linear combination of the normal
fluxes and the concentrations at the separating boundaries, allowing a decoupling of
the models at the different scales. For the iterative scheme, rigorous convergence re-
sults are obtained by compactness arguments. This approach allows a comparison of
the numerical results with the experimental results, and to identify parameters such as
the diffusion coefficient and the reaction rate constants for the deposition process. This
can hence be used to predict the deposition at alternative conditions and also for differ-
ent geometries.
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Below we briefly describe the geometry in Section 2.2 and provide the mathematical
model in Section 2.3. In Section 2.4, we give the definitions of the weak solutions
for both the time-continuous and the time-discrete equations. Next, the iterative non-
overlapping domain decomposition algorithm is considered. This is followed by the
proof of convergence of this iterative numerical method.

2.2 The mathematical model

In this section we give a simplified mathematical model for the motivating application.
This model describes the reactive flow inside a reactor, with reactions taking place on
the substrate being a part of the boundary. Before giving the equations we give some
details regarding the geometry of the system, justifying the multi-scale approach. The
scales introduced above (macro-, meso- and microscale) are involving three domains,
Ω1, Ω2 and Ω3. Their boundaries are denoted by respectively ∂Ω j, j = 1, 2, 3. Each
boundary ∂Ω j, includes a part Γ jR where reactions (depositions) take place. For the
other parts of boundaries, let us first consider the microscale. We define Γ2 = ∂Ω3 \ Γ3R,
where the the variables in Ω2 and Ω3 are coupled. For the mesoscale, we define two
parts of ∂Ω2, namely, Γ1 and Γ2. These provide the coupling with Ω3, respectively Ω1.
In other words, Γ2 = ∂Ω3 ∩ ∂Ω2 (the interface between the micro- and the mesoscale),
while Γ1 = ∂Ω1 ∩ ∂Ω2 (the interface between the macro- and the mesoscale). Figure 2.1
displays these regions and the nomenclatures.

2.3 The equations

The mathematical model consists of two components: the flow and the reactive trans-
port. The reactive substance (precursor) is transported to the substrate through a com-
bined effect of convective flow and the molecular diffusion. The flow velocity of the
carrier gas is described by the Navier-Stokes system, while the reactive transport pro-
cesses are described by the linear convection-diffusion equation.

2.3.1 The flow component

The focus here is on the numerics for the reactive transport component. For the flow
we consider a simplified setting, allowing a decoupling from the transport part. For in-
stance, thermal effects are disregarded. Next, as suggested by the numerical evidence,
the flow is absent in the trenches and therefore the flow is considered only at the macro-
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Figure 2.1: Schematic for the multiscale computation method.

and the mesoscale, where no roughness is encountered at the boundary. Further simpli-
fications include that the flow is laminar and incompressible, and no gravity effects are
taken into account. It is also assumed that the concentration of the precursor is much
smaller than the one of the carrier gas and hence, therefore the flow is not affected by the
adsorption of the precursors. Finally, we only consider a steady-state, hence the flow
problem needs to be solved once (in the beginning). Under the above assumptions, the
flow component of the model reads

Continuity: ∇ · q = 0,

Momentum: ρq∇ · q = ∇ ·
(
µ(∇q +∇qT)− 2

3µ(∇ · q)I
)
−∇P,

(2.3.1)

in the simple domain Ω1 ∪Ω2 ∪ Γ1, where q is the gas velocity and P its pressure. For
the boundary conditions, we provide a parabolic inlet for the velocity (at Γi) and use
no-slip boundary conditions at the side walls. We prescribe pressure at the outlet Γo).

q = qd on Γd; P = P0 on Γo; and q = 0 on Γ2 ∪ Γ1R ∪ Γ2R ∪ Γn,

for instance, in 2D, the choice of parabolic inlet profile gives qd = Q(`2 − y2)e1, where
Q is a positive constant and e1 is a unit vector along x− direction.



2.3 The equations 23

2.3.2 The reactive transport/deposition equations

For the CVD model we restrict to the basic equations, including the convective transport
and the molecular diffusion, neglect the reactions taking place in the gas phase and
consider the situation when the precursor has only one species. Inside the domain Ωi its
concentration is denoted by ui, where i = 1, 2, 3 is indexing the scale. For the boundary
conditions we assume that the deposition takes place only on the bottom plate (the
substrate). For simplicity, we assume a first order kinetics.

The macroscale equations

With T > 0 standing for the maximal time, at the reactor scale the precursor is modeled
by the linear convection-diffusion equation

∂tu1 − ∆u1 + q · ∇u1 = 0 in Ω1 × (0, T] (2.3.2)

coupled with the reactive boundary conditions

−ν · ∇u1 = CRu1 on Γ1R × (0, T], (2.3.3)

where CR is the (positive) reaction constant. The macroscale equations are coupled with
the micro scale ones at Γ1 ⊂ ∂Ω1. The boundary ∂Ω1 = Γd ∪ Γn ∪ Γo ∪ Γ1R ∪ Γ1 and
the boundary part Γd has non-zero measure where Dirichlet boundary conditions are
prescribed, and for Γn ∈ Γo homogeneous Neuman boundary conditions (−ν · ∇u3 = 0)
are taken.

The mesoscale equations

At the mesoscale we use the same equation for the precursor

∂tu2 − ∆u2 + q · ∇u2 = 0 in Ω2 × (0, T] (2.3.4)

and the reactive boundary conditions

−ν · ∇u2 = CRu2 on Γ2R × (0, T]. (2.3.5)

Coupling conditions are imposed along Γ2 ∪ Γ1, as explained in the next section.
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The microscale equations

The geometrical dimensions of the microscale are comparable to the mean free path
length of the gas particles. This means that the diffusion is no longer Fickian, but in-
volves the Knudsen diffusion coefficient, a parameter that can be determined by com-
paring with experimental results. Further, we ignore the convective term for the trans-
port in the trench as the velocity is negligible. Also, the flux at the mesoscale automat-
ically takes into account the flux due to convection. The deposition process inside the
trench is described by the following equations:

∂tu3 = DT∆u3 in Ω3 × (0, T] (2.3.6)

where DT is the diffusion coefficient, outside the trench we use the Fickian diffusion
while inside the trench we use different diffusion coefficient. For the boundary condi-
tions we prescribe

−ν · ∇u3 = CRu3 on Γ3R × (0, T] (2.3.7)

where Γ3R is the surface on which reactions take place. The remaining boundary part
∂Ω3 \ Γ3R is involved in the coupling with the mesoscale, as explained below.

Note that we have the same structure for the equations defined in the macroscale as well
as the mesoscale. Moreover, the ratio of microscale to macroscale is of the order 104 and
a two step domain decomposition algorithm would require very small discretization to
allow coupling with the microscale boundaries. To overcome this discretization restric-
tion, we propose a three-stage numerical scheme to compute the solution.

The coupling conditions

The different scales are coupled by the boundary conditions at non-reactive surfaces.
We provide coupling conditions that are natural for this setting of the problem, namely,
the flux continuity and the continuity of the concentrations. Specifically, after having
fixed the normal ν to Γ1 and into Ω1 we have the following coupling conditions:

ν ·
(
−∇u2 + qu2

)
= ν ·

(
−∇u1 + qu1

)
on Γ1 (2.3.8)

and
u1 = u2 on Γ1. (2.3.9)

Similar coupling conditions are imposed at the interface Γ2 between the microscale and
mesoscale.

u2 = u3 and ν ·
(
−∇u2 + qu2

)
= −DTν · ∇u3 on Γ2. (2.3.10)
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Having specified the boundary conditions, the model is closed by the initial conditions:

u1(0, ·) = u0
1, u2(0, ·) = u0

2, u3(0, ·) = u0
3. (2.3.11)

For more general coupling conditions (transmission problems), we refer to [27] and [65].

2.4 The numerical scheme

In this section we analyze the numerical scheme for solving the reactive transport model
component, posed in the three sub-domains of the reactor. The scheme is based on the
time Euler implicit time stepping. We start by defining the concept of weak solution
for both the continuous and the time discrete cases. Then, for the resulting sequence of
time discrete problems we give an iterative domain decomposition scheme, and prove
its convergence based on compactness arguments.

2.4.1 The weak form

We start with the concept of weak solution for the coupled model in (2.3.2)-(2.3.11),
involving standard notations in the functional analysis. In particular, H1(Ωi) is the
Sobolev space of functions defined on Ωi and having L2 weak derivatives. By H1

0,ΓD
(Ωi)

we mean the functions in H1(Ωi) having a vanishing trace on ΓD, and H−1(Ωi) is its
dual. Further, L2(0, T; X) is the Bochner space of functions valued in X, and (·, ·)U

denotes the inner product in L2(U) (with U a bounded domain) or the duality pairing
between H1

0,ΓD
and its dual. Finally we define the spaces

Vi = {ui ∈ L2(0, T; H1
0,ΓD

(Ωi) | ∂tui ∈ L2(0, T; H−1(Ωi))}, i = 1, 2, or 3.

Also, let ΩT
i := Ωi × (0, T), Γ T

iR = ΓiR × (0, T) and assume that u0
i ∈ H1

0,ΓD
(Ωi) for

all i. Furthermore, for q we assume that q ∈ H(div; Ω1 ∪Ω2)
⋂

L∞(Ω1 ∪Ω2). Adopt-
ing the standard definition of H(div; Ω), it consists of vector valued functions having
divergence in L2(Ω).

Definition 2.4.1 A weak solution of (2.3.2)-(2.3.11) is a triple (u1, u2, u3) ∈ V1 × V2 × V3

satisfying the initial conditions ui(0, ·) = u0
i (i = 1, 2, or 3), the boundary conditions

u1 = u2 at Γ1, u2 = u3 at Γ2,
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and

(∂tu1,φ1)ΩT
1
+ (∇u1,∇φ1)ΩT

1
+ (q∇u1,φ1)ΩT

1
+ (CRu1,φ1)Γ T

1R

+(∂tu2,φ2)ΩT
2
+ (∇u2,∇φ2)ΩT

2
+ (q∇u2,φ2)ΩT

2
+ (CRu2,φ2)Γ T

2R
(2.4.1)

+ (∂tu3,φ3)ΩT
3
+ (DT∇u3,∇φ3)ΩT

3
+ (CRu3,φ3)Γ T

3R
= 0

for allφi ∈ L2(0, T; H1
0,ΓD

(Ωi)) such thatφ1 = φ2 at Γ1 andφ2 = φ3 at Γ2.

In this section the equalities at the non-reactive interfaces Γ1 and Γ2 should be interpreted
in the sense of traces. Next we consider the Euler implicit time discretization of (2.4.1).
To this aim we take N ∈ N and define4t = T/N. With tk = k4t and uk

i approximating
ui(tk) (i = 1, 2, or 3; k = 1, . . . , N), the time discrete solution triple at t = tk is defined
by

Definition 2.4.2 Given uk−1
i ∈ H1

0,ΓD
(Ωi) we seek for uk

i ∈ H1
0,ΓD

(Ωi) satisfying

uk
1 = uk

2 at Γ1, uk
2 = uk

3 at Γ2,

and

1
4t

(uk
1 − uk−1

1 ,φ1) + (∇uk
1,∇φ1) + (q∇uk−1

1 ,φ1) + (CRuk
1,φ1)Γ1R

+
1
4t

(uk
2 − uk−1

2 ,φ2) + (∇uk
2,∇φ2) + (q∇uk−1

2 ,φ2) + (CRuk
2,φ2)Γ2R

(2.4.2)

+
1
4t

(uk
3 − uk−1

3 ,φ3) + (DT∇uk
3,∇φ3) + (CRuk

3,φ3)Γ3R
= 0

for allφi ∈ H1
0,ΓD

(Ωi) , such that thatφ1 = φ2 on Γ1 andφ2 = φ3 on Γ2.

Note that in either the continuous case or the time discrete one, the equations posed in
each subdomain are coupled by imposing explicitly the continuity of the concentrations
at the non-reactive surfaces Γ1 ∪ Γ2. The flux continuity instead is a consequence of the
fact that the test functionsφi are also equal along these surfaces. In this way, the bound-
ary terms along Γ1 ∪ Γ2 can only vanish if the outwards normal components of the fluxes
cancel each other.

The equations (2.4.2) form a system of linear elliptic partial differential equations. Stan-
dard elliptic theory tells us that for a given uk−1

i ∈ H1
0,ΓD

(Ωi), we obtain uk
i ∈ H2

0,ΓD
(Ωi).

We will use this fact below in the iterative scheme proposed here.
The numerical iterative scheme considered here also provides proof for the existence for
the time-discrete formulation. Moreover, one can treat more complicated reaction rates
(for example, Lipschitz reaction rates) by considering Euler explicit time stepping in the
reaction term. For numerical reasons, we formulate the original problem in the three
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(non-overlapping) domains. This allows separating the computations at the trench scale
from those at the reactor scale without requiring any correlation between the meshes
employed at the different scales. Having introduced the weak solutions above, we now
consider a numerical scheme to compute the solution at each time step and investigate
its convergence. To simplify the presentation we fix a time step tk and define

vi := uk
i , i = 1, 2, 3,

so that all the estimates are obtained in terms of vi.

2.4.2 The iterative domain decomposition scheme

Here we describe the iterative scheme used for solving the time-discrete problem (2.4.2).
The scheme is inspired from [87, 88]. To understand its background, we consider first
consider the strong form of the equation and define the quantities (ν1 is the normal to
Γ1 and into Ω1 ν2 is normal to Γ2 and into Ω2)

g21 := ν1 · (−∇v2) + λv2 and g12 := ν1 · ∇v1 + λv1 on Γ1, (2.4.3)

g23 := ν2 · ∇v2 + λv2 and g32 := −ν2 · DT∇v3 + λv3 on Γ2, (2.4.4)

where λ > 0 is a positive constant. For the convergence proof, it suffices to have λ > 0
however, its value influences the speed of convergence [20]. Note that the gi j terms
depend on the time step k and define (decoupling) boundary conditions at the non-
reacting interfaces. To ensure that the solving the decoupled problems are providing a
solution of the originally coupled one, additional conditions will be given later.
Based on the above we let n ∈ N denote the iteration index and construct the nth as the
solution of
Problem Pn: Given vn−1

i ∈ H1
0,ΓD

(Ωi) and gn−1
ji ∈ H1/2

Γ1/Γ2
(i, j = 1, 2, 3), find vn

i ∈
H1

0,ΓD
(Ωi) and gn

i j(i, j = 1, 2, 3) such that

1
4t

(vn
1 ,φ1)Ω1

+ (∇vn
1 ,∇φ1)Ω1

+ (CRvn
1 ,φ1)Γ1R

+ (gn
12,φ1)Γ1

=
1
4t

(uk−1
1 ,φ1)Ω1

− (q∇uk−1
1 ,φ1)Ω1

, (2.4.5)

1
4t

(vn
2 ,φ2)Ω2

+ (∇vn
2 ,∇φ2)Ω2

+ (CRvn
2 ,φ2)Γ2R

+ (gn
21,φ2)Γ1

+ (gn
23,φ2)Γ2

=
1
4t

(uk−1
2 ,φ2)Ω2

− (q∇uk−1
2 ,φ2)Ω2

, (2.4.6)
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1
4t

(vn
3 ,φ3)Ω3

+ (DT∇vn
3 ,∇φ3)Ω3

+ (CRvn
3 ,φ3)Γ3R

+ (gn
32,φ3)Γ2

=
1
4t

(uk−1
3 ,φ3)Ω3

.

(2.4.7)

for allφi ∈ H1
0,ΓD

(Ωi) , such thatφ1 = φ2 on Γ1 andφ2 = φ3 on Γ2, and

gn
i j := 2λvn−1

j − gn−1
ji . (2.4.8)

The iterative scheme requires a starting triple (v0
1, v0

2, v0
3). Since the problem under con-

sideration is, in fact, an evolution one, a good option is v0
i = uk−1

i . However, this choice
is not required for the convergence proof below. Further, g0

i j = −ν · ∇v0
i + λv0

i for i 6=
3; and g0

32 = −ν · DT∇v0
3 + λv0

3. For the notation, we remind that k is the time-step
and n stands for the iteration index. Thus vn

i stands for uk,n
i , the n-th iterate at time step

t = tk. Note that at each iterative step n, the equations are decoupled by the boundary
conditions obtained from the previous iterative step.

Remark 2.1 As stated earlier, it is reasonable to assume that uk−1
i ∈ H2

0,ΓD
(Ωi) which

implies that for the starting triple, v0
i = uk−1

i , we have g0
i j ∈ H1/2

Γ1/Γ2
. With the boundary

conditions decoupled for the Problem Pn, the standard elliptic theory provides existence
and uniqueness of the solution triple vn

i . The results below are obtained assuming that
uk−1

i ∈ H2
0,ΓD

(Ωi).

Remark 2.2 Note that the explicit discretization of the convective term requires CFL
condition to be satisfied for stability reasons. This may seem restrictive especially in
view of spatial discretization of Ω2 being much smaller compared to the macroscale
discretization. However, note that with the parabolic inlet profile of the fluid velocity,
q itself is much smaller in Ω2, in fact of the order of |Ω2|. Thus, the CFL restriction is
quite reasonable with

4t ≤ max{ h2

Q|Ω2|
,

h1

Q
}

where h1 and h2 refer to the sizes of spatial discretization of Ω1, respectively Ω2.
Before giving a rigorous convergence proof, we give a formal justification of the iterative
scheme. Assuming that vn

i → vi and gn
i j → gi j, passing to the limit in the updates (2.4.8)

gives
gi j = 2λv j − g ji .

In other words, at Γ1 we have

g12 = 2λv2 − g21, and g21 = 2λv1 − g12,

implying v2 = v1. Once the continuity is established, the following simple calculation
establishes the equality of normal component of diffusive fluxes at Γ1

ν1 · ∇v1 −ν1 · ∇v2 + λ(v1 + v2) = g12 + g21 = 2λv1 = λ(v1 + v2).
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The justification of the coupling conditions at Γ2 is completely similar.
In the formal definition of gi j above, we have only included the normal diffusive flux.
This is because equality of normal component of diffusive flux together with the conti-
nuity of concentration also implies the equality of normal flux. Clearly,

ν1 · (−∇u2 + qu2) = ν1 · (−∇u1 + qu1) on Γ1

and similarly for Γ2.

2.4.3 The convergence proof

We follow the ideas in [87] and the main ideas of the proof are obtaining a priori esti-
mates for vn

i and using compactness arguments to show the H1 convergence in space.
Application of compact embeddings and trace inequalities lead to establishing conver-
gence on the boundaries. It is afterwards of no particular difficulty to prove that the
limits satisfy the time-discrete formulation (2.4.2).
We have the following theorem:

Theorem 2.4.1 As n→ ∞, the solutions vn
i satisfying (2.4.5)-(2.4.7) converge weakly to vi in

H1(Ωi) norm satisfying (2.4.2).

A priori estimates

To prepare the proof of Theorem 2.4.1, we define the following

en
i := vn

i − vn−1
i (i = 1, 2, 3), (2.4.9)

en
1,Γ1

:= gn
12 − gn−1

12 , en
2,Γ1

= gn
21 − gn−1

21 , (2.4.10)

en
3,Γ2

:= gn
32 − gn−1

32 , en
4,Γ2

= gn
23 − gn−1

32 , (2.4.11)

en
Γ1

:=
[
(en

1,Γ1
)2 + (en

2,Γ2
)2]1/2, en

Γ2
:=
[
(en

3,Γ2
)2 + (en

4,Γ2
)2]1/2. (2.4.12)

With these definitions in mind, we have the following Lemma.

Lemma 2.3 A constant C > 0 depending on the starting triple (v0
1, v0

2, v0
3) exists such that the

boundary errors introduced in (2.4.9) satisfy:

N

∑
n=1

(
‖en

1‖2
Γ1
+ ‖en

2‖2
Γ1
+ ‖en

2‖2
Γ2
+ ‖en

3‖2
Γ2

)
≤ C. (2.4.13)
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Proof. Subtracting (2.4.5) for vn−1
1 from the one for vn

1 gives

1
4t

(vn
1 − vn−1

1 ,φ1)Ω1
+ (∇vn

1 −∇vn−1
1 ,∇φ1)Ω1

+ CR(v
n
1 − vn−1

1 ,φ1)Γ1R

+λ(vn
1 − vn−1

1 ,φ1)Γ1
− (gn

12 − gn−1
12 ,φ1)Γ1

= 0. (2.4.14)

Taking in the aboveφ1 = en
1 leads to

1
4t
‖en

1‖2
Ω1

+ ‖∇en
1‖2

Ω1
+ CR‖en

1‖2
Γ1R

+ λ(en
1 , en

1)Γ1
= (en

1,Γ1
, en

1)Γ1
. (2.4.15)

In a similar manner one gets

1
4t
‖en

2‖2
Ω2

+ ‖∇en
2‖2

Ω2
+ CR‖en

2‖2
Γ2R

+ λ(en
2 , en

2)Γ1
+ λ(en

2 , en
2)Γ2

= (en
2,Γ1

, en
2)Γ1

+ (en
3,Γ2

, en
3)Γ2

,

(2.4.16)

and

1
4t
‖en

3‖2
Ω3

+ ‖DT∇en
3‖2

Ω3
+ CR‖en

3‖2
Γ3R

+ λ(en
3 , en

3)Γ2
= (en

4,Γ2
, en

3)Γ2
. (2.4.17)

Recalling the notations in (2.4.10)-(2.4.12), we have

(en+1
Γ1

)2 = (gn+1
12 − gn

12)
2 + (gn+1

21 − gn
21)

2

= (2λ(vn
2 − vn−1

2 )− gn
21 + gn−1

21 )2 + (2λ(vn
1 − vn−1

1 )− gn
12 + gn−1

12 )2

= (2λ(vn
2 − vn−1

2 )− en
2,Γ1

)2 + (2λ(vn
1 − vn−1

1 )− en
1,Γ1

)

= (en
1,Γ1

)2 + (en
2,Γ1

)2 + 4λ(λ(vn
1 − vn−1

1 )− en
1,Γ1

)(vn
1 − vn−1

1 )

+ 4λ(λ(vn
2 − vn−1

2 )− en
2,Γ1

)(vn
2 − vn−1

2 ).

By (2.4.12) this gives

(en+1
Γ1

)2 − (en
Γ1
)2 = 4λ(λen

1 − en
1,Γ1

, en
1)Γ1

+ 4λ(λen
2 − en

2,Γ1
, en

2)Γ1
.

Similarly,

(en+1
Γ2

)2 − (en
Γ2
)2 = 4λ(λen

2 − en
3,Γ2

, en
2)Γ2

+ 4λ(λen
3 − en

4,Γ2
, en

3)Γ2
.

With the above, adding (2.4.15) - (2.4.17) gives

1
4t
‖en

1‖2
Ω1

+ ‖∇en
1‖2

Ω1
+ CR(‖en

1‖2
Γ1R

+ ‖en
2‖2

Γ2R
+ ‖en

3‖2
Γ3R
) +

1
4t
‖en

2‖2
Ω2

+ ‖∇en
2‖2

Ω2

+
1
4t
‖en

3‖2
Ω3

+ ‖∇en
3‖2

Ω3
+

1
4λ

(
‖en+1

Γ1
‖2
Γ1
− ‖en

Γ1
‖2
Γ1

)
+

1
4λ

(
‖en+1

Γ1
‖2
Γ2
− ‖en

Γ2
‖2
Γ2

)
= 0.
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Summing the above over n = 1 · · ·N leads to

‖eN+1
Γ1
‖2 + ‖eN+1

Γ2
‖2 + 4λ

N

∑
n=1

(
‖∇en

1‖2 + ‖∇en
2‖2 + ‖∇en

3‖2
)

+
4λ
4t

N

∑
n=1

(
‖en

1‖2
Ω1

+ ‖en
2‖2

Ω2
+ ‖en

3‖2
Ω3

)
(2.4.18)

+ CR(‖en
1‖2

Γ1R
+ ‖en

2‖2
Γ2R

+ ‖en
3‖2

Γ3R
) = ‖e0

Γ1
‖2
Γ1
+ ‖e0

Γ2
‖2
Γ2

.

By the trace theorem, one has ‖e0
Γ1
‖Γ1

+ ‖e0
Γ2
‖2
Γ2
≤ C ∑

3
i=1 ‖v0

i ‖H2(Ω1)
(C depends only on

the domain). Another application of trace theorem in view of the above inequality gives

N

∑
n=1

(
‖en

1‖2
Γ1
+ ‖en

2‖2
Γ1
+ ‖en

2‖2
Γ2
+ ‖en

3‖2
Γ2

)
≤ C, (2.4.19)

which concludes the proof.
Lemma 2.3 implies that the series on the left of (2.4.13) is finite, therefore the (error)
terms are converging to 0. However, this is not sufficient to prove the desired conver-
gence result.

Lemma 2.4 With the solution triple (vn
1 , vn

2 , vn
3) solving Problem Pn (n ≥ 1), one has

3

∑
i=1
‖vN

i ‖2
H1(Ωi)

+
N

∑
n=1

(
‖vn+1

1 − vn
2‖2

Γ1
+ ‖vn+1

2 − vn
1‖2

Γ1
+ ‖vn+1

1 − vn
3‖2

Γ2
+ ‖vn+1

3 − vn
2‖2

Γ2

)
≤ C

(2.4.20)

with C independent of N and depends on the initial data.

Proof. We start by observing that

gn+1
12 − gn−1

12 = 2λvn
2 − 2λvn−1

1 , gn+1
21 − gn−1

21 = 2λvn
1 − 2λvn−1

2 ,

gn+1
23 − gn−1

23 = 2λvn
3 − 2λvn−1

2 , gn+1
32 − gn−1

32 = 2λvn
2 − 2λvn−1

3 .

Further, we have the elementary identities

(vn+1
i − vn−1

i , vn+1
i ) = 1

2‖v
n+1
i ‖2 + 1

2‖v
n+1
i − vn−1

i ‖2 − 1
2‖v

n−1
i ‖2,

(∇(vn+1
i − vn−1

i ),∇vn+1
i ) = 1

2‖∇vn+1
i ‖2 + 1

2‖∇(v
n+1
i − vn−1

i )‖2 − 1
2‖∇vn−1

i ‖2,

(vn+1
i + vn−1

i − 2vn
j , vn+1

i ) = 1
2‖v

n+1
i ‖2 + 1

2‖v
n−1
i ‖2 − ‖vn

j ‖2

+ ‖vn+1
i − vn

j ‖2 − 1
2‖v

n+1
i − vn−1

i ‖2.

We now proceed as in Lemma 2.3 and subtract (2.4.5)-(2.4.7) for vn−1
i from the one for

vn+1
i , test the resulting with φ = vn+1

i , and double the resulting and summing it over
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n = 1, · · · , N to obtain

1
4t ∑

3
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Ω1

+ ‖vn
i ‖2

Ω1

)
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Using (2.4.19) in the above yields

∑
3
i=1
(
‖vN

i ‖2
Ωi

+ ‖∇vN
i ‖2

Ωi

)

+∑
N
n=1

(
‖vn+1

1 − vn
2‖2

Γ1
+ ‖vn+1

2 − vn
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Γ1
+ ‖vn+1

1 − vn
3‖2

Γ2
+ ‖vn+1

3 − vn
2‖2

Γ2

)
≤ C

(2.4.21)

with C independent of N and depending only on the initial data.

Proof of Theorem 2.4.1

Proof. Lemma 2.4 provides enough compactness to pass to the limit. Note that (2.4.21)
implies that there exists a subsequence again denoted by vn

i such that

vn
i → vi weakly in H1(Ωi)

and hence, strongly in L2(Ωi). Further, to establish the continuity of the concentration
at the boundaries, let us take for instance,

‖v1 − v2‖Γ1
≤ ‖v1 − vn+1

1 ‖Γ1
+ ‖vn+1

2 − v2‖Γ1
+ ‖vn+1

1 − vn+1
2 ‖Γ1

whereby the last term on the right hand side vanishes because of estimate (2.4.21). The
vanishing of the first two terms are consequence of weak convergence in H1 leading to
L2 strong convergence at the boundaries. Similarly, v2 = v3 at the boundary Γ2.
From the preceding discussions, we conclude that the triple (v1, v2, v3) ≡ (uk

1, uk
2, uk

3)

satisfies

1
4t

(uk
1 − uk−1

1 ,φ1)Ω1
+ (∇uk

1,∇φ1)Ω1
− (q∇uk−1

1 ,φ1)Ω1
(2.4.22)

+(CRuk
1,φ1)Γ1R

+
1
4t

(uk
2 − uk−1

2 ,φ2)Ω2
+ (∇uk

2,∇φ2)Ω2
− (q∇uk−1

2 ,φ2)Ω2

+(CRuk
2,φ2)Γ2R

+
1
4t

(uk
3 − uk−1

3 ,φ3)Ω3
+ (DT∇uk

3,∇φ3)Ω3
+ (CRuk

3,φ3)Γ3R
= 0

for allφi ∈ H1(Ωi) such thatφ1 = φ2 at Γ1 andφ2 = φ3 at Γ2.



Chapter 3

Rigorous upscaling of rough
boundaries

We consider a reactive flow in a channel which has a periodically oscillating boundary
with both period and amplitude ε. The ions are being transported by the convection
and diffusion processes. These ions can react at the oscillating boundaries and get at-
tached to form the crystal (precipitation) and become immobile. The reverse process
of dissolution is also possible. The model involves non-linear and multi-valued rates.
We provide a rigorous justification for the upscaling process in which we define an up-
scaled problem defined in a simpler domain with flat boundaries. To this aim, we use
periodic unfolding techniques combined with translation estimates. Numerical exper-
iments confirm the theoretical predictions and illustrate a practical application of this
upscaling process.

3.1 Introduction

We consider the reactive flow through a channel having oscillating boundaries. The
flow carries the ions/solutes which are transported through the channel by a combined
process of diffusion and convection. The modeling of the process therefore consists of
transport and flow problems. The ions in the bulk react at the oscillating surfaces and
form crystals (hence become immobile). The opposite process of dissolution, the ions
dissolving in the bulk phase is also possible. We assume that the thickness of the crystal
deposited is small enough so that we ignore the change in the geometry that is due to

This chapter is a collaborative work with Sorin Pop and Mark van Helvoort.
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the chemistry.

As the original problem is defined in a domain with oscillating boundary, solving it
numerically requires resolving these oscillations at sufficient resolution. This implies
that the mesh size should be much smaller than the size of oscillations. This makes the
problem computationally expensive. Alternatively, one can consider an upscaled model
providing an approximation to the original model in a domain with flat boundaries. Of
course, this requires taking into account some corrections due to this simplification,
which are incorporated in modified boundary conditions. In particular, the flux at the
oscillating boundaries needs to be corrected if we are to simplify the boundary to a flat
one. Also, the upscaling process should contain some information from the original ge-
ometry. In this work, we justify this upscaling process in a rigorous manner.

We make a specific choice for the reaction rate in this work, describing the crystal pre-
cipitation and dissolution processes. The rate description is defined at the boundary
and hence on a lower dimensional manifold. Moreover, this rate is the net result of two
opposing processes: precipitation and dissolution. The precipitation term is described
by a non-linear term while the dissolution term is described by the Heaviside graph
resulting in a multi-valued character. These kind of models are well established in liter-
ature; for details we refer to [44, 45, 47, 104, 105]. This specific choice of the reaction rate
poses mathematical difficulties and in particular the multi-valued nature of the dissolu-
tion term defined at the boundary limits the regularity of the solution.

Homogenization techniques are widely applied for reactive flows. Compactness and
2-scale convergence arguments are successfully employed for perforated domains like
porous media, see [2, 60–62, 89, 101–103]. Upscaling of rough boundaries however re-
quire slightly different approaches and extensive work has been done in this respect.
The elliptic equations defined in domains with rough boundaries have been treated
in [3, 9–11, 29, 54, 100]. Also, we refer to [55] for upscaling when geometry changes are
taken into account.

Our contributions in this respect are two-fold: first, we consider a model for reactions
described by a non-linear, non-Lipschitz ODE at the oscillating boundary coupled with
a parabolic PDE in domain; and secondly, we use periodic unfolding techniques for
deriving effective boundary conditions. This technique has been systematically intro-
duced by [35] (see also [24] for similar ideas) and has been applied for homogenization
problems, in particular for periodic homogenization. A relevant reference to this work
is [37] where homogeneous boundary conditions are treated for a related but different
geometry. The use of periodic unfolding provides a natural framework to deal with up-
scaling problems by mapping the integrals from ε−dependent geometries to fixed ge-
ometries thereby making the use of compactness properties in a fairly evident manner.
In this work, we use the periodic unfolding technique to obtain the upscaled problem
for the oscillating boundary case. Specifically, we consider the boundary, oscillating
with amplitude and period ε. We consider the limit of the problem as ε↘ 0 and define
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this limit to be the upscaled problem. As a technical note, the idea is as follows: the sys-
tem of equations provides a priori estimates in the original domain and at the oscillating
boundary. The latter estimates are used to obtain those for the unfolded sequences of
the traces. In addition to this, the non-linearities in the reaction rate requires stronger
compactness which is achieved by considering translation estimates.

This chapter is structured as follows. We present a brief introduction of the model in
Section 3.2 followed by the definition of upscaled problem in Section 3.3. The a pri-
ori estimates are stated in Section 3.4 and the derivation of the upscaled equations is
completed in Section 3.5. Note that even though the details of the proof are presented
for a particular rate, the techniques presented in this work can be used to treat other
cases. We comment on this in Section 3.6. The numerical computations are discussed in
Section 3.7.

3.2 Geometry and modeling

First we describe the setting of the geometry in which the physical processes are ob-
served. This will be followed by a brief recall of the model describing the convective
and diffusive transport of solutes in the fluid. The present context falls into the general
framework of reactive flows in porous media. For the particular description of disso-
lution and precipitation, we refer to [43–45] for an upscaled (core scale) model. Here
we adopt the pore scale counterpart discussed in [47]. The rigorous homogenization
procedure from the pore scale model to the core scale model one is proved in [74] (see
Chapter 6).

3.2.1 Basic geometry

Let Ω := (0, 1)× (0, 1) be the homogenized domain with flat boundaries. The domain
with ε−dependent oscillating boundary is defined as follows. Let h : R 7→ [−1, 0] be a
given smooth 1− periodic function and define

hε(x) = εh
( x
ε

)
.

Then Ωε ⊂ R2 with Ωε is the open, bounded set

Ωε :=
{
(x, y) ∈ R2 : x ∈ (0, 1) y ∈ (hε(x), 1)

}
.
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Figure 3.1: Ωε is the domain considered here. The boundary Γε consists of a periodic function.
Note that the geometry remains fixed in time for a given ε. Schematic for the geometry for the
homogenization of crystal precipitation-dissolution model in a channel with rough boundary.

With ∂Ωε being the boundary of Ωε, the oscillating boundary Γε(⊂ ∂Ωε) is defined as:

Γε :=
{
(x, y) : x ∈ (0, 1), y = εh

( x
ε

)}
.

Since Γε is periodic, we scale one period and define Γ

Γ := {(z, y) : z ∈ (0, 1), y = h (z)} .

The inlet and outlet boundaries of Ωε are defined as

Γi := {(x, y) : x = 0, hε(0) ≤ y ≤ 1}
Γo := {(x, y) : x = 1, hε(0) ≤ y ≤ 1}.

This particular scaling for Γε ensures that its H1 Lebesgue measure remains bounded
and is of order O(1). Note that, by construction, we have Ω ⊂ Ωε since hε ≤ 0. We take
Ω ⊂ Ωε to avoid extension arguments. See Figure 3.1 for a sketch of the geometry.

Let T be a given time; we define

ΩT := Ω× (0, T), ΩεT := Ωε × (0, T), ΓεT := Γε × (0, T).

As announced before, the solutes in the channel diffuse, are transported by the flow,
and react at the oscillating boundary. To fix the ideas, we assume that the flow is mod-
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eled by the Stokes system, where qε denotes the flow velocity and Pε its pressure,
{

∆qε = ∇Pε in ΩεT ,
∇ · qε = 0 in ΩεT .

(3.2.1)

Without loss of generality, we have normalized the dynamic viscosity to be 1. For the
boundary conditions, we pose a parabolic profile at the inlet,

qε(y) = Q(y− hε(0))(1− y)e1 at Γi ,

where Q > 0 is a positive constant and e1 is the unit vector in x−direction. For the
outlet, we prescribe the pressure. For the other boundaries, including Γε, we impose
no-slip boundary conditions. The specific model for qε considered here is not essential
and the results remain valid for other situations.

Next, we consider the model for the transport of solutes which is described by the linear
convection-diffusion equation. Under assumed compatibility conditions [44,45,73] (e.g.
electrical neutrality) it is sufficient to consider only one type of ions. Let uε denote the
concentration of the ions and vε the crystal concentration, the transport equation reads

∂tu
ε +∇ · (qεuε −∇uε) = 0, in ΩεT , (3.2.2)

and for the reactive boundary condition, we have by the conservation of mass,

−ν · ∇uε = ∂tv
ε on ΓεT . (3.2.3)

For the crystal concentration, the rate of change is the net result of two opposing pro-
cesses, precipitation and dissolution. This is given by

∂tv
ε = (r(uε)− wε) on ΓεT , (3.2.4)

where r(·) is the precipitation rate while w denotes the rate of dissolution. We assume
the following structure for the precipitation rate r(uε)

A1. r : R→ [0, ∞) is locally Lipschitz .

A2. There exists a unique u∗ ≥ 0, such that

r(uε) =
{

0 for uε ≤ u∗,
strictly increasing for uε ≥ u∗ with r(∞) = ∞.

All the equations are considered in dimensionless form. The diffusion constant has
been scaled to 1, with the extension to positive definite tensor being straightforward.
The dissolution process takes place only when the crystal precipitate is present (i.e. if
v(t, x) > 0) and it is a surface process hence proceeds with a constant rate. We normalize
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this rate to 1. In the absence of precipitate, the overall rate (precipitation minus dissolu-
tion) is either zero or positive depending upon the amount of solute present. Further, the
absence of net gain in the crystal concentration under insufficient amount of solutes is
related to the time-scale of observation. The derivation of the precipitation-dissolution
is based on chemical kinetics and the ideas of solubility product for the crystals. For
further discussions and derivation of this model, we refer to [45, 73]. A similar model
leading to the dissolution fronts is given in [23].

To summarize the discussion above, the dissolution rate is

w ∈ H(v), where H(v) =





0, if v < 0,
[0, 1] if v = 0,

1 if v > 0.
(3.2.5)

Remark 3.1 Since the precipitation rate r is monotonically increasing, under the setting
above, a unique u∗ exists for which r(u∗) = 1. If u = u∗ for all t and x, then the system
is in equilibrium: no precipitation or dissolution occurs, since the precipitation rate is
balanced by the dissolution rate regardless of the presence of absence of crystals.

The system (3.2.2) is complemented by the following initial and boundary conditions,




uε(0, ·) = uI , in Ωε,
vε(0, ·) = vI , on Γε,

uε = 0 on Γ T
D .

(3.2.6)

Note that (3.2.4) describes reaction of ions under both equilibrium and non-equilibrium
conditions. The model (3.2.2) is a simplified setting for the model considered in [41, 44,
45, 47] and we refer to the cited literatures for more details.

We emphasize here the fact that no changes in the Ωε are encountered due to the disso-
lution or precipitation. In other words, the precipitate layer is very thin, so it does not
change the boundary Γε. Alternatively, where such changes are taken into account are
discussed in [104] (see also [75]).

3.2.2 Weak formulation

Since the reaction term has a multi-valued description, we do not expect sufficient reg-
ularity for the existence of strong solutions except for in particular instances. To rectify
this, we define appropriate weak solutions for the system of equations considered here.
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Let (·, ·) denote the L2 inner product or duality pairing of H1, H−1. Also, we define
H1

0 (Ω
ε) the space with w ∈ H1 with homogeneous Dirichlet boundary condition on

∂Ωε \ Γε. The dual of H1
0 (Ω

ε) is the function space H−1(Ωε).
We consider the following function spaces, where we follow the usual notations from
functional analysis.

Uε := {u ∈ L2(0, T; H1
0 (Ω

ε)) : ∂tu ∈ L2(0, T; H−1(Ωε))},
Vε := H1(0, T; L2(ΓεG)),

Wε := {w ∈ L∞(ΓεT) : 0 ≤ w ≤ 1}.

We assume that the initial conditions (uI , vI) ∈ (H1
0 (Ω

ε), H1(Γε)). The definition of a
weak solution is given as follows.

Definition 3.2.1 A triple (uε, vε, wε) ∈ Uε × Vε ×Wε is called a weak solution of (3.2.2)-
(3.2.6) if uε(0, ·) = uI , vε(0, ·) = vI and

(∂tu
ε,φ)

Ω
εT + (∇uε,∇φ)

Ω
εT − (qεuε,∇φ)

Ω
εT = −(∂tv

ε,φ)
Γ
εT ,

(∂tv
ε,θ)

Γ
εT = (r(uε)− wε,θ)

Γ
εT , (3.2.7)

wε ∈ H(vε) a.e. in ΓεT ,

for all (φ,θ) ∈ L2(0, T; H1
0 (Ω

ε))× L2(ΓεT).

Remark 3.2 The existence of weak solutions of (3.2.2)-(3.2.6) has been proved in [47]
by approximation arguments. The approximating solutions were constructed by reg-
ularizing the Heaviside function which models the dissolution process. For solutions
(uε, vε, wε) constructed in this way, the dissolution rate wε satisfies

wε =





1 if vε > 0,
min(r(uε), 1) if vε = 0,

0 if vε < 0.
(3.2.8)

3.2.3 Known results

The results derived for the pore scale model in [41, 47] remain valid in the present con-
text. Below we cite some of the results that will be used later.

Theorem 3.2.1 Under assumptions (A.1) and (A.2) on the reaction rates r(uε), there exists a
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weak solution in the sense of Definition 3.2.1. In addition, the solution satisfies

0 ≤ uε, vε ≤ M, (3.2.9)

‖uε‖2
L∞(0,T;L2(Ωε))

+ ‖∇uε‖2
L2(ΩεT)

+ ‖∂tu
ε‖2

L2(0,T;H−1(Ωε))

+ ‖vε‖2
L∞(0,T;L2(Γε))

+ ‖∂tv
ε‖2

L2(ΓεT)
≤ C, (3.2.10)

where M is a given constant depending on the initial conditions and the constant C > 0 is
independent of uε, vε, wε and ε.

To continue with the analysis, the above estimates are not enough to guarantee unique-
ness. In the wake of nonlinearities and discontinuities present in the reaction rate de-
fined on a lower dimensional manifold, the L2 stability with respect to initial data is out
of reach, however, a L1 contraction is achieved. Indeed, in [108] the following contrac-
tion result with respect to the initial values has been proven.

Theorem 3.2.2 Assume (A.1) and (A.2) and consider two weak solutions (u(i)ε, v(i)ε, w(i)ε) ∈
Uε,Vε,Wε, i = 1, 2 of (3.2.7) with initial values (u(i)

I , v(i)
I , i = 1, 2) respectively. Then for

any t ∈ (0, T] we have
∫

Ω
ε

|u(1)ε(t, x)− u(2)ε(t, x)|dx +
∫

Γ
ε

|v(1)ε(t, x)− v(2)ε(t, x)|dx

≤
∫

Ω
ε

|u(1)
I (x)− u(2)

I (x)|dx +
∫

Γ
ε

|v(1)
I (x)− v(2)

I (x)|dx.

Note that Theorem 6.3.1 provides, in particular, the uniqueness of the solution.

In addition to the analysis of the model presented above, numerical treatment of this
model has also been carried out. For example, in [41], a semi-discrete numerical scheme
is presented for the pore scale model and the convergence is proved. For the core
scale model, both the semi-discrete and fully discrete numerical schemes have been
analyzed [80].

The rigorous derivation of the macro scale model from the pore scale model in the clas-
sical homogenization context is carried out in [74]. There the domain is considered to be
covered by a translation of a scaled unit cell (with scaling parameterε, see [2,60–62,101])
and homogenization techniques are employed to derive upscaled equations as the limit
of ε ↘ 0. For the simpler geometry of a thin strip, the 1D upscaled model is rigor-
ously justified in [47]. The present context is different as the only oscillating part is the
boundary of domain Ωε.
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3.3 Upscaled equations

The flow equations are decoupled from the transport equation for ions. Hence, we can
homogenize the velocity field separately. Here we assume that the velocity field qε is
given, satisfies L∞ bounds and

‖qε − q‖L2(Ω) ↘ 0 as ε↘ 0. (3.3.1)

For the specific case of Stokes equation, in [66–68] it is proved that the homogenized
equation is the Stokes equation with Dirichlet boundary condition for the leading order
term.

∇ · q = 0, in Ω× (0, T), (3.3.2)

∆q = ∇P in Ω× (0, T),

q = 0 on {y = 0} ∪ {y = 1},
q = Qy(1− y)e1 on {x = 0}.

In fact, the cited references go beyond leading order terms. For the first order term,
slip boundary conditions are derived. However, for our present purposes, the Dirich-
let boundary condition suffices since for the concentration term we restrict only to the
leading order approximation. With the simple geometry Ω considered here, and under
the parabolic inlet boundary conditions, we can solve the above equations exactly. It is
straightforward to check that the unique solution of the above equations is

q = Qy(1− y)e1.

The interesting aspect here is the derivation of the upscaled equation for the reaction
terms. Indeed, the main result of this chapter is the derivation of the following result.
The homogenized variables u, v, w satisfy the following system of equations.

∂tu− ∆u + q∇u = 0 in Ω× (0, T) (3.3.3)

−ν · ∇u =
∫

Γ

∂tvds on (0, 1)× (0, T) (3.3.4)

∂tv = r(u)− w on (0, 1)× Γ × (0, T) (3.3.5)

w ∈ H(v). (3.3.6)

Note that the above equations are defined in domains where the boundaries are flat.
Further, the information about the geometry of the oscillating boundary Γε in the origi-
nal domain is incorporated through terms defined on Γ−which is scaled from a unit pe-
riod of Γε. Performing computations on domains with flat boundaries is much cheaper
compared to smaller mesh sizes required for resolving the oscillations at Γε. This is the
essential advantage of this upscaling. The results are also consistent with intuitive ar-
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guments. For the rough boundary to be replaced by the flat one, we need to correct for
the flux. The above upscaling results show that this flux correction, in the leading order,
is obtained by simply accounting for the entire length of the rough boundary.
Our aim is proving the convergence of the upscaling procedure. We start by defining
the concept for solution for (3.3.3)-(3.3.6).

Definition 3.3.1 A triple (u, v, w) ∈ L2(0, T; L2(Ω))× L2(0, T; L2((0, 1)× Γ))× L∞((0, T)×
(0, 1)× Γ) is called a weak solution of (3.3.3)-(3.3.6) if u(0, ·) = uI , v(0, ·) = vI and

−(u, ∂tφ)ΩT + (∇u,∇φ)
Ω

T − (qu,∇φ)
Ω

T + (∂tv,φ)(0,1)×Γ×(0,T) = (uI ,φ(0, x))Ω,

(∂tv,θ)(0,1)×Γ − (r(u)− w,θ)(0,1)×Γ×(0,T) = 0, (3.3.7)

w ∈ H(v) a.e.,

for allφ ∈ H1((0, T)×Ω),φ(T, x) = 0;φ = 0 on ΓD and θ ∈ L2(0, T; L2((0, 1)× Γ)).

The main result of this paper is:

Theorem 3.3.1 Along any sequence ε ↘ 0, the solution triple (uε, vε, wε) in the sense of
Definition 3.2.1 converges to (u, v, w), the solution introduced in Definition 3.3.1.

In what follows, we prove the above Theorem 3.3.1. We have taken a restricted class
of test function for φ (compare this with φ in Definition 3.2.1) which helps in dealing
with the low regularity of ∂tu

ε. The estimates for Ωε are easily carried over to the esti-
mates for Ω and the trace theorem also provides a compactness for the traces defined
at the boundary Γε. However, Γε depends on ε and therefore the estimates are defined
in a ε−dependent domain. We use the unfolding operator to map the estimates and
integrals from ε−dependent domains to a fixed domain. Also, the non-linearities need
strong convergence for which we use translation estimates. Further, we connect the lim-
its from the unfolded sequence defined at the boundary to the limits obtained from the
estimates in Ω.

3.4 A priori estimates

In this section, we begin with estimate dealing with translation in time. Next, we deal
with the periodic unfolding operator defined for the boundaries. This is followed by
the a priori estimates both for the domain and the boundary. Let us begin with the
following lemma.
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Lemma 3.3 Let t ∈ [0, T], η > 0, and (uε, vε, wε) be a weak solution of (3.2.7) in the sense of
Definition 3.2.1. Then the following estimate is uniform in η,

T−η∫

0

∫

Ω
ε

|uε(t + η, x)− uε(t, x)|2dxdt ≤ Cη
1
2 . (3.4.1)

Proof. Consider (3.2.7)1 and by a shift in time co-ordinate we obtain

T−η∫

0

(∂t(u
ε(t + η, x)− uε(t, x)),φ) dt +

T−η∫

0

∫

Ω
ε

(∇uε(t + η, x)−∇uε(t, x))∇φdxdt

−
T−η∫

0

∫

Ω
ε

qε(uε(t + η, x)− uε(t, x))∇φdxdt = −
T−η∫

0

∫

Γ
ε

∂t(v
ε(t + η, x)− vε(t, x))φdxdt

and choose forφ =

t+η∫

t

uε(s, x)ds ∈ H1(0, T; H1
0 (Ω

ε)) to obtain

T−η∫

0

∫

Ω
ε

|uε(t + η, x)− uε(t, x)|2dxdt = −
∫

Ω
ε

(uε(η, x)− uε(0, x))




η∫

0

uε(s, x)ds


 dx

+
∫

Ω
ε

(uε(T, x)− uε(T− η, x))




T∫

T−η
uε(s, x)ds


 dx

+
∫

Ω
ε

∣∣∣∣∣∣

T∫

T−η
∇uε(s, x)ds

∣∣∣∣∣∣

2

dxdt−
∫

Ω
ε

∣∣∣∣∣∣

η∫

0

∇uε(s, x)ds

∣∣∣∣∣∣

2

dxdt

−
T−η∫

0

∫

Ω
ε

qε(uε(t + η, x)− uε(t, x))


∇

t+η∫

t

uε(s, x)ds


 dxdt

+

T−η∫

0

∫

Γ
ε

∂t(v
ε(t + η, x)− vε(t, x))




t+η∫

t

uε(s, x)ds


 dxdt.

We treat each term on the right separately. Let us denote the successive terms by Ii , i =
1, . . . , 6. Using L∞ estimate for uε we have for both I1 and I2

|I1| ≤ Cη, |I2| ≤ Cη.

For I3, we use Cauchy Schwarz and the estimates on the gradient in Theorem 3.2.1 to
obtain

|I3| ≤ Cη.
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Because of its sign, I4 need not be treated. Next, for I5 we have using L∞ estimates for
uε, qε and Cauchy Schwarz for the gradient term,

|I5| ≤ Cη
1
2 .

Furthermore, by triangle inequality and the L2(0, T; L2(Γε)) estimates of ∂tv
ε, we have

|I6| ≤ C‖∂tv
ε‖L2(ΓεT)η ≤ Cη

where we have again used the L∞ estimate for uε. Collecting the above computations
leads to the assertion.

3.4.1 The boundary unfolding operator

We start with introducing the unfolding operator and describe some of its properties.
For more details for the properties and the proofs, we refer to [35] for unfolding opera-
tors in general, and to [37] for the boundary unfolding operator.

Following [37], we define the boundary unfolding operator as:

Definition 3.4.1 Letφε : (0, 1)× Γ 7→ Γε be defined as (x, (z, h(z))) 7→
(
ε
⌊ x
ε

⌋
+εz,εh (z)

)
.

The unfolding operator Tε maps a function u : Γε → R to the function u ◦φε : (0, 1)× Γ → R.

Note that the unfolding operator is defined here only for the boundary and not for the
whole domain. For the unfolding operator defined in the fully periodic context (classical
homogenization), we refer to [24, 35] and to [89] for an application of this technique
relevant to the present context . Below, we list some simple but useful propositions.

Proposition 3.4.1 Tε is linear.

Proposition 3.4.2 Let u,v be functions Γε → R. Then Tε (uv) = TεuTεv.

The proofs for Proposition 3.4.1 and Proposition 3.4.2 are straightforward and therefore
omitted.

Proposition 3.4.3 For u ∈ L1 (Γε), it holds that
∫

(0,1)×Γ

Tεu(x, (z, h(z)))dxds =
∫

Γ
ε

u (x) dx.



3.4 A priori estimates 45

Proof. A straightforward computation, which is similar in ideas for both fully periodic
and the boundary periodic contexts, provides the result:

∫

(0,1)×Γ

Tεu(x, z, h(z))dxds =
∫

(0,1)×Γ

u
(
ε
(⌊ x
ε

⌋
+ z
)

,εh(z)
)

dxds

=ε

1
ε
−1

∑
k=0

∫

Γ

u (εk +εz,εh(z)) ds

=

1
ε
−1

∑
k=0

(k+1)ε∫

kε

u
(

x,εh
( x
ε

))
ds (by periodicity of h)

=
∫

Γ
ε

udsε,

where ds is the differential along the curve Γ and dsε the differential along Γε.
Based on the above result, we obtain the following:

Proposition 3.4.4 Let u ∈ L2 (Γε). Then Tεu ∈ L2 ((0, 1)× Γ ) and Tε is a linear isometry
between L2 (Γε) and L2 ((0, 1)× Γ ).

Proof. Suppose that u ∈ L2 (Γε). Then |u|2 ∈ L1 (Γε). Using propositions 3.4.2 and
3.4.3 we find

∫

(0,1)×Γ

|Tεu|2 dx =
∫

(0,1)×Γ

Tε |u|2 dx =
∫

Γ
ε

|u|2dx < ∞.

Also ‖Tεu‖L2((0,1)×Γ ) = ‖u‖L2(Γε) and together with Proposition 3.4.1, this implies that Tε

is a linear isometry between L2 (Γε) and L2 ((0, 1)× Γ ).
The above linear isometry is an important result as it provides a way to connect the
unfolded sequence defined on a fixed domain with the original variables defined on an
ε−dependent domain. This makes it possible to use the estimates obtained for Γε for
the unfolded sequence directly.

3.4.2 Estimates in the domain

We proceed with the a priori estimates both for Ω and Γε. Since we have taken Ω ⊂ Ωε,
the estimate gets carried over and we obtain the following estimate from Theorem 3.2.1:

‖∇uε‖2
L2(0,T;L2(Ω)) + ‖∂tv

ε‖2
L2(0,T;L2(Γε)) + ‖v

ε‖2
L2(0,T;L2(Γε)) ≤ C. (3.4.2)
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The above estimate is valid in fact for the restriction of uε to Ω, which is also further
denoted by uε to simplify the writing. We have:

Lemma 3.4 As ε↘ 0,

∇uε ⇀ ∇u0 weakly in L2(0, T; Ω). (3.4.3)

uε →u0 strongly in L2(0, T; ∂Ω). (3.4.4)

Proof. The first part of the lemma follows from the uniform bounds of ∇uε as in
(3.4.2). To prove (3.4.4), we note that ∂tu

ε ∈ L2(0, T; H∗(Ω)) where H∗ is the dual
of H1

0,∂Ω(Ω) with H1
0,∂Ω(Ω) referring to the space of H1 functions with homogeneous

Dirichlet boundary conditions on ∂Ω. Note the difference with previously introduced
H1

0 (Ω
ε) or H1

0 (Ω) where homogeneous Dirichlet boundary conditions are taken only
on ∂Ωε \ Γε respectively ∂Ω \ Γ . With uε ∈ L2(0, T; H1

0 (Ω)) and ∂tu
ε ∈ L2(0, T; H∗(Ω)),

we conclude that uε converges strongly in L2(0, T; L2(Ω)).
Now consider the integral Iε

Iε :=
∫ T

0
‖uε(t)− u0(t)‖2

L2(∂Ω)
dt. (3.4.5)

Following the proof of the trace theorem (see [50], chapter 5.5), we have

Iε ≤
∫ T

0
C‖uε − u0‖L2(Ω)

(
‖uε − u0‖L2(Ω) + ‖∇(u

ε − u0)‖L2(Ω)

)
dt.

Using Cauchy Schwarz, the bounds on the gradients, and the semi-continuity of the
norms, we obtain

Iε ≤ C‖uε − u0‖L2(ΩT)

from which the assertion follows.
The original equations are defined in Ωε and by construction also in Ω as Ω ⊂ Ωε. We
now prove that the contributions for the integrals in Ωε \Ω are negligible as ε ↘ 0.
We achieve this by decomposing the integrals defined on Ωε. Note that by decompos-
ing the integrals in domains Ω and Ωε \Ω we have the property that the measure of
Ωε \Ω becomes negligible as ε → 0. Also, the test functions are defined independent
of ε, which we will use here. We start with the following direct consequence of the
dominated convergence theorem.

Proposition 3.4.5 For any function f ∈ L1(Ω), with E ⊂ Ω, it holds that
∫

E

| f | ↘ 0 as

meas(E)↘ 0.
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The following lemma shows that the contributions of the integrals in the set Ωε \Ω are
negligible.

Lemma 3.5 Forφ ∈ H1((0, T)×Ω), the following result holds

lim
ε↘0





T∫

0

∫

Ω
ε\Ω

(−uε∂tφ+∇uε∇φ+ qεuε∇φ) dxdt





= 0

Proof. Let us denote the integrals by Ii , i = 1, 2, 3 respectively and we proceed by
estimating them separately:

|I1| ≤ ‖uε‖L2(0,T;L2(Ωε\Ω))‖∂tφ‖L2(0,T;L2(Ωε\Ω)

≤ ‖uε‖L2(0,T;L2(Ωε))‖∂tφ‖L2(0,T;L2(Ωε\Ω) ≤ C‖∂tφ‖L2(0,T;L2(Ωε\Ω)

and with ∂tφ ∈ L2(0, T; L2(Ωε)) we have |∂tφ|2 ∈ L2(0, T; L1(Ωε)) and thus, by above
Proposition 3.4.5 we conclude I1 ↘ 0 as ε↘ 0. Similarly,

|I2| ≤ ‖∇uε‖L2(0,T;L2(Ωε\Ω))‖∇φ‖L2(0,T;L2(Ωε\Ω))

≤ ‖∇uε‖L2(0,T;L2(Ωε))‖φ‖L2(0,T;L2(Ωε\Ω)) ≤ C‖φ‖L2(0,T;L2(Ωε\Ω))

and again using above Proposition 3.4.5, we conclude I2 vanishes in the limit ε ↘ 0.
The calculations for I3 are completely similar.

3.4.3 The boundary estimates

The estimates in Theorem 3.2.1 provide estimates for (uε, vε, wε) at Γε:

‖vε‖2
L∞(0,T;L2(Γε))

+ ‖∂tv
ε‖2

L2(ΓεT)
+ ‖wε‖2

L2(ΓεT)
≤ C.

The unfolding operator defined at the boundary maps these estimates to a domain that
does not depend on ε. In terms of the unfolded sequence and using the L2 isometry, we
rewrite the estimate above.

‖Tεvε‖2
L∞(0,T;L2((0,1)×Γ)) + ‖∂tT

εvε‖2
L2((0,1)×Γ×(0,T)) + ‖T

εwε‖2
L2((0,1)×Γ×(0,T) ≤ C. (3.4.6)

The bounds above immediately imply the following convergence result:

Lemma 3.6 There exists (u, v, w) ∈ L2(0, T; L2((0, 1)× Γ)) such that
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∂tv ∈ L2(0, T; L2((0, 1)× Γ)) and it holds

Tεvε ⇀ v weakly in L2(0, T; L2((0, 1)× Γ))

Tεwε ⇀ w weakly in L2(0, T; L2((0, 1)× Γ))

Tεuε ⇀ u weakly in L2(0, T; L2((0, 1)× Γ))

Tε∂tv
ε ⇀ ∂tv weakly in L2(0, T; L2((0, 1)× Γ)).

The domain of definition of limit objects is (0, 1)× Γ in space. The unfolded sequences
Tεuε, Tεvε, etc. are all defined on (0, 1)× Γ .
Note that we have only weak convergence for Tεvε and Tεuε and for passing to the
limit in the non-linear terms, this is not sufficient. We therefore need to improve the
convergence. We start with the following:

Proposition 3.4.6 It holds that

‖uε‖2
L2(0,T;H

1
2 (Γε))

≤ C. (3.4.7)

Proof. In view of (3.2.6)3, the Poincaré inequality and the trace estimate give

‖uε‖2
L2(0,T;H

1
2 (Γε))

≤ C‖∇uε‖2
L2(0,T;L2(Ωε))

.

Also, it is to be noted that the boundary is uniformly Lipschitz continuous, as

|hε(x)− hε(y)| ≤ ε|h( x
ε
)− h(

y
ε
)| ≤ Lh|x− y|,

where Lh is the Lipschitz constant of h. Further, note that C is independent of ε (see [22]
for a discussion on this issue and also [86] P.121). Combining this with the estimates in
Theorem 3.2.1 gives the assertion.
We will use translation estimates to improve the convergence of Tεvε and Tεuε from
weak to strong. Accordingly we make some preparations which will be used in the
following.
Let IC be a bounded interval in R and hC : IC 7→ R; hC is a Lipschitz function. Consider
h̃C : R 7→ R a smooth extension of hC such that h̃C has compact support. We define the
corresponding curves ΓC and Γ̃C

ΓC := {(z, hC(z)) | z ∈ IC},
Γ̃C := {(z, h̃C(z)) | z ∈ R}.

The above setting facilitates in defining the smooth extension f̃ : Γ̃C 7→ R for any given
function f : ΓC 7→ R, f ∈ H

1
2 (ΓC). Let us assume that the extension f̃ has compact
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support. Next, let f̄ : R 7→ R be defined as

f̄ (z) := f̃ (z, h̃C(z)).

Now for any given real number η > 0, we define the translation

4η f̄ (·) := f̄ (·+ η)− f̄ (·).

By an abuse of notation, we will often use4η f in the above sense.

For a given function f ∈ H
1
2 (ΓC), we have the following lemma.

Lemma 3.7 Given f ∈ H
1
2 (ΓC) the following translation estimate holds

‖4η f ‖L2(Γ̃C)
≤ C|η| 1

2 .

Proof. The proof is straightforward in the Fourier space. Let f̃ be the extension of f as
above with compact support. For any f ∈ H

1
2 (ΓC) we have

‖ f ‖
H

1
2 (Γ̃C)
≤ C‖ f̃ ‖

H
1
2 (R)
≤ C.

Let f̂ denote the Fourier transform of f̃ . For the H
1
2 (R) semi-norm, we have the follow-

ing equivalent characterization in Fourier space

‖ f̃ ‖
H

1
2 (R)

=
∫

R
|ω|| f̂ |2dω < C, (3.4.8)

for any f̃ ∈ H
1
2 (R) with its H

1
2 norm uniformly bounded. Using the L2 isometry of the

Fourier transform
∫

Γ̃C

∣∣4η f
∣∣2ds ≤ C

∫

R

∣∣4η f̃
∣∣2dx = C

∫

R

∣∣(1− eiωη)2 f̂ (ω)
∣∣2dω.

The right hand side can be re-written as

∫

R
(1− eiωh)2| f̂ (ω)|2dω =

∫

R

(1− eiωη)2

|ηω| |ηω|| f̂ (ω)|2dω ≤ C|η|
∫

R
|ω|| f̂ (ω)|2dω

(3.4.9)

and as noted above, the last term on the right hand side is bounded because f̃ ∈ H
1
2 (R).

It is straightforward to check that

(1− eiωη)2

|ωη| ≤ C.
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This leads to
∫

Γ̃C

∣∣4η f
∣∣2ds ≤ C|η| (3.4.10)

where C depends on the H
1
2 norm.

Before using the translation estimate, we prove the following.

Proposition 3.4.7 Given uε : Γε 7→ R. The translation with respect to x commutes with the
unfolding operator:

4ηx
(Tεuε)(x, (z, h(z))) = Tε(4ηx

uε)(x, (z, h(z))). (3.4.11)

Proof. Note that,

4ηx
Tεuε := Tεuε(x + ηx, (z, h(z)))− Tεuε(x, (z, h(z))) (3.4.12)

= uε
(
ε
⌊ x
ε

⌋
+ kε+εz,εh(z)

)
− uε

(
ε
⌊ x
ε

⌋
+εz,εh(z)

)
(by definition)

(3.4.13)

where k = b ηx+x
ε
c − b ηx

ε
c. For the right hand side,

Tε4ηx
uε = Tε (uε(x + ηx, hε(x + ηx))− uε(x, hε(x)))

= Tεuε(x + ηx, hε(x + ηx))− Tεuε(x, hε(x))
= uε

(
ε
⌊ x+ηx

ε

⌋
+εz,εh(z)

)
− uε

(
ε
⌊ x
ε

⌋
+εz,εh(z)

)

= uε
(
ε
⌊ x
ε

⌋
+ kε+εz,εh(z)

)
− uε

(
ε
⌊ x
ε

⌋
+εz,εh(z)

)
.

Using (3.4.13) proves the proposition.
From Proposition 3.4.7 we obtain the estimate

‖4ηx
Tεuε‖L2((0,T)×(0,1)×Γ) = ‖T

ε(4ηx
uε)‖L2((0,T)×(0,1)×Γ) = ‖4ηx

uε‖L2(ΓεT). (3.4.14)

We use (3.4.14) to obtain the result below.

Lemma 3.8 Along a sequence ε↘ 0, there exists u ∈ L2((0, T)× (0, 1)× Γ) such that

Tεuε → u strongly in L2 ((0, T)× (0, 1)× Γ ) .

Proof. For a.e. t ∈ (0, T),

4ηz
Tεuε = Tεuε(x, (z + ηz, h(z + ηz)))− Tεuε(x, (z, h(z)))

= uε(εb x
ε
c+εz +εηz,εh(z + ηz))− uε(εb x

ε
c+εz,εh(z))

(3.4.15)
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in terms of translation for uε. Denote the right hand side by Iηz
. Note that this is nothing

but a translation along the curve Γ and hence, we can use Lemma 3.7 to obtain

‖Iηz
‖L2((0,T)×(0,1)×Γ ≤ C|ηz|

1
2 .

Next, we consider the translation along x. We note that

‖4ηx
Tεuε‖ = ‖4ηx

Tεuε‖ = ‖4ηx
uε‖L2(Γε).

We use (3.4.14) together with the Lemma 3.7 to obtain

‖4ηx
uε‖L2(ΓεT) ≤ C|ηx|

1
2 .

Hence, we have the translations in x and z directions controlled which implies

(‖4ηx
‖, ‖4ηz

‖)↘ (0, 0), along a sequence (|ηx|, |ηz|)↘ (0, 0).

To obtain the strong convergence, one has to deal with time. Let ηt > 0 be a real number
with ηt ∈ (0, T). We have by the L2−isometry of the boundary unfolding operator

T−ηt∫

0

∫

Γ×(0,1)

|Tεuε(t + ηt, x, (z, h(z)))− Tεuε(t, x, (z, h(z)))|2 dsdxdt

=

T−ηt∫

0

∫

Γ
ε

|uε(t + ηt, x)− uε(t, x)|2 dxdt.

Denote the left side by I and the translation operator by 4ηt
. The trace theorem (see

[50], chapter 5.5) gives

I ≤ C
T−ηt∫

0

‖4ηt
uε(t, ·)‖L2(Ωε)

(
‖4ηt

uε(t, ·)‖L2(Ωε) + ‖4ηt
(∇uε(t, ·))‖L2(Ωε)

)
dt,

where the right side can be estimated by using Cauchy Schwarz inequality

I ≤ C




T−ηt∫

0

‖4ηt
uε(t, ·)‖2

L2(Ωε)
dt




1
2



T−ηt∫

0

‖4ηt
(∇uε(t, ·))‖2

L2(Ωε)
dt




1
2

+C
T−ηt∫

0

‖4ηt
uε(t, ·)‖2

L2(Ωε)
dt.
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Using the L2(0, T; L2(Ωε)) bounds on the gradient, the above inequality reduces to

I ≤ C




T−ηt∫

0

‖4ηt
uε(t, ·)‖2

L2(Ωε)
dt




1
2

+ C
T−ηt∫

0

‖4ηt
uε(t, ·)‖2

L2(Ωε)
dt.

Now we use Lemma 3.3 to obtain

I ≤ C
(
η

1
4
t + η

1
2
t

)

and with ηt ↘ 0, we conclude that the translations in time are controlled.

By Riesz-Kolmogorov compactness criterion, we conclude that Tεuε converges strongly
in L2((0, T)× (0, 1)× Γ).
With the strong convergence of Tεuε established, we proceed to treat the non-linear
terms on the boundary.

Lemma 3.9 The following convergence result holds:

Tεr (uε)→ r(u) strongly in L2 ((0, T)× (0, 1)× Γ ) .

Proof. Since r is Lipschitz, Proposition 3.4.4 gives

‖Tεr (uε) ‖2
L2((0,T)×(0,1)×Γ ) = ‖r (uε) ‖2

L2(ΓεT) ≤ C‖uε‖2
L2(ΓεT) ≤ C.

Now because of Lemma 3.8

‖Tεr (uε)− r(u)‖L2((0,T)×(0,1)×Γ ) = ‖r (Tεuε)− r(u)‖L2((0,T)×(0,1)×Γ )
≤ Lr‖Tεuε − u‖L2((0,T)×(0,1)×Γ ),

again vanishing as ε↘ 0.

Next, we improve the convergence of Tεvε.

Lemma 3.10 It holds that

Tεvε → v strongly in L2 ((0, T)× (0, 1)× Γ ) .

Proof. The idea is again based on translation. First, we note that wε ∈ H(vε) satisfies

wε =





1 if vε > 0,
min(r(uε), 1) if vε = 0,
0 if vε < 0.
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and with this we conclude that wε is monotonically increasing with respect to vε. We
re-write the equation (3.2.7)2 by a change of co-ordinates,

∂tT
εvε = Tεr(uε)− Tεwε in the sense of distributions.

Our approach is close to that used in [102]. Since, ∂tv
ε is in L2, the translation of Tεvε in

time is controlled. To obtain equi-continuity with respect to translations in space, one
needs to compare solutions from different cells and also within one cell which means
we need to control these translations with respect to x and z. The strong convergence of
r(uε) to r(u) in L2(0, T; L2(Γ × (0, 1))) and the monotonicity of wε are essentially used
to achieve this.

First, we consider the translation in x. To this aim, let ηx be a positive real number and

Qηx
:= {(x, z) ∈ (0, 1)× (0, 1) | dist ((x, z), ∂((0, 1)× (0, 1))) < ηx}.

Then,

1
2

d
dt‖4ηx

Tεvε‖2
L2(Qηx

)
=
∫

Qηx

(
4ηx

Tεvε
) (
4ηx

Tεr(uε)−4ηx
Tεwε

)
dxdz.

Using the monotonicity of Tεwε with respect to Tεvε, one has

(
4ηx

Tεvε
) (
4ηx

Tεwε
)
≥ 0, (3.4.16)

implying

1
2

d
dt‖4ηx

Tεvε‖2
L2(Γ×Ωηx

)
≤

∫

Γ×Ωηx

(
4ηx

Tεvε
) (
4ηx

Tεr(uε)
)

dxdz

≤ 1
2‖4ηx

Tεvε‖2
L2(Ωηx

)
+ 1

2‖4ηx
Tεr(uε)‖2

L2(Ωηx
)

by using Young’s inequality for the last step. As |ηx| ↘ 0, due to strong convergence
of Tεr(uε), the second term goes to 0 uniformly with respect to ηx (IV.26 in [25]). Using
Gronwall’s lemma we conclude that

‖4ηx
Tεvε‖2

L2(Ωηx
)
→ 0 as |ηx| → 0

uniformly. For the translation with respect to z, we can proceed in a similar manner. We
omit the details and observe that both these translations vanish uniformly; yielding the
strong convergence of Tεvε and hence for Tεvε in L2(0, T; L2(Γ × (0, 1))) .
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The only term that remains to be considered is wε. Specifically, we have to identify its
limit w with H(v). For this, we have the following result.

Lemma 3.11 For w = limε↘0 Tεwε we have w ∈ H(v) where v = limε↘0 Tεvε.

Proof. We use the arguments from [47]. Since Tεvε → v strongly in L2(0, T; L2((0, 1)×
Γ)) we have Tεvε → v pointwise a.e. We have only two situations, either v(t, x, z) > 0 or
v(t, x, z) = 0. In the first case and with µ := v(t, x, z)/2 > 0, the pointwise convergence
implies the existence of a εµ > 0 such that Tεvε > µ for all ε ≤ εµ . Then for any ε ≤ εµ
we have Tεwε = 1 implying w = 1.
For the case when v = 0; consider the set S = {(t, x, z) : v(t, x, z) = 0}. Now in the
interior of the set S, ∂tv = 0. Next, from the weak convergence of ∂tv

ε, wε, r(uε), we
have the following limit equation

(∂tv,θ)
Ω

T×Γ =
∫

Ω
T×Γ

(r(u)− w)θ ∀ θ ∈ C∞((0, T); (0, 1)× (Γ)).

Hence, for the interior of the set S, we obtain w = r(u). Furthermore, the bounds
0 ≤ Tεwε ≤ 1 with weak- convergence of Tεwε to w imply the same bounds on w and
hence w = r(u) with 0 ≤ r(u) ≤ 1.

3.4.4 Connecting the limits

In Lemma 3.4 we have obtained u0 as the limit of uε restricted to Ω. Since u0 ∈ L2(0, T; H1(Ω)),
we have the trace of u0 defined at ∂Ω. Next, we considered trace of uε defined on Γε and
constructed the periodically unfolding sequence Tεuε defined at (0, T)× Γ × (0, 1). We
also proved in Lemma 3.8 that Tεuε converges strongly to u in L2((0, T) × (0, 1) × Γ).
Naturally, we would like to connect these two limits and show that the trace of u0 coin-
cides with u. We prove this in the following Lemma.

Lemma 3.12 It holds that

∥∥u (t, x, (z, h(z)))− u0 (t, x, y = 0)
∥∥

L1(0,T;L1((0,1)×Γ)) = 0, (3.4.17)

implying that the trace of u0 and u (obtained as limit of Tεuε) coincide a.e..

Proof. The choice of L1 norm simplifies the computations. Let

I :=
T∫

0

1∫

0

∫

Γ

∣∣u (t, x, z)− u0 (t, x, y = 0)
∣∣dsdxdt.
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By using the triangle inequality we obtain

I ≤
T∫

0

1∫

0

∫

Γ

∣∣u (t, x, (z, h(z)))− Tεuε (t, x, (z, h(z)))
∣∣dsdxdt

+

T∫

0

1∫

0

∫

Γ

∣∣uε(t,ε
⌊ x
ε

⌋
+εz,εh(z)− uε(t,ε

⌊ x
ε

⌋
+εz, 0)

∣∣dsdxdt

+

T∫

0

1∫

0

∫

Γ

∣∣uε(t,ε
⌊ x
ε

⌋
+εz, 0)− uε(t, x, 0)

∣∣dsdxdt

+

T∫

0

1∫

0

∫

Γ

∣∣uε (t, x, y = 0)− u0 (t, x, y = 0)
∣∣dsdxdt.

Now we will show that each of the term on the right hand side tends to zero. Let us
denote the corresponding terms on the right hand side by Ii , i = 1, . . . , 4 . For the first
term, I1, we have

I1 =
∥∥u (t, x, (z, h(z)))− Tεuε (t, x, h(z))

∥∥
L1((0,T)×(0,1)×Γ ) → 0

since Tεuε → u in L2 ((0, T)× (0, 1)× Γ ).
For I2, using Cauchy-Schwarz inequality gives

I2 =

T∫

0

1∫

0

∫

Γ

∣∣
εh(z)∫

0

∂ξuε
∣∣ ≤

T∫

0

1∫

0

∫

Γ


ε|h| 1

2

εh∫

0

|∂zuε|2



1
2

≤ Cε
1
2 ‖∂zuε‖L2(ΩεT) ≤ C

√
ε‖∇uε‖L2(ΩεT).

The last term is bounded by Cε
1
2 because uε in L2(0, T; H1(Ωε)). This implies that I2 ↘

0 as ε↘ 0.

The next term, I3, is a translation for uε in the x direction and the translation is bounded
by ε and hence using Lemma 3.7, we obtain I3 ≤ C|ε| 1

2 which tends to 0 as ε↘ 0.
For the last term I4, we find

I4 =
∥∥uε (t, x, y = 0)− u0 (t, x, y = 0)

∥∥
L1((0,T)×(0,1)×Γ )

= |Γ |
∥∥uε (t, x, y = 0)− u0 (t, x, y = 0)

∥∥
L1((0,T)×(0,1))

and the last term goes to 0 since, as proved in Lemma 3.4, uε → u0 strongly in L2((0, T)×
∂Ω). This concludes the proof.
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3.5 Limit equations: proof of Theorem 3.3.1
In this section, we establish the limit equations and hence prove Theorem 3.3.1. Since we
have already established that the trace of u0 is equal to u, the limit of Tεuε, for notational
convenience we denote both the limits u0 and u by u. From the weak formulation,
(3.2.7)1, choose forφ ∈ H1((0, T)×Ω), s.t. φ(T, x) = 0 to rewrite

−
T∫

0

∫

Ω

uε(∂tφ)dxdt +
T∫

0

∫

Ω

∇uε∇φdxdt +
T∫

0

∫

Ω

qεuε∇φdxdt +
T∫

0

∫

Γ
ε

(∂tv
ε)φdxdt

= −
T∫

0

∫

Ω
ε\Ω

uε(∂tφ)dxdt +
∫

Ω

uIφ(x, 0)dxdt +
∫

Ω
ε\Ω

uIφ(x, 0)dxdt

−
T∫

0

∫

Ω
ε\Ω

(∇uε∇φ+ qεuε∇φ) dxdt.

On the left side, the first three terms go to desired limit; the limits of the first two terms
follow from Lemma 3.4. For the third term, use (3.3.1) and the strong convergence of uε

to get the limit. For the boundary term, we obtain

lim
ε↘0

T∫

0

∫

Γ
ε

(∂tv
ε)φdxdt =

T∫

0

∫

(0,1)×Γ

(∂tv)φdxdsdt

using the weak convergence of Tε∂tv
ε as shown in Lemma 3.6. In the right hand side,

all the integrals on Ωε \Ω vanish in the limit thanks to Lemma 3.5 giving us the desired
limiting equation.
Next, we consider the equation (3.2.7)2

T∫

0

∫

Γ
ε

(∂tv
ε)θdxdt =

T∫

0

∫

Γ
ε

(r(uε)− wε)θdxdt

for all θ ∈ L2(0, T; Γε). A change of co-ordinates provides

T∫

0

∫

(0,1)×Γ

(∂tT
εvε)(Tεθ)dxdsdt =

T∫

0

∫

(0,1)×Γ

(Tεr(uε)− Tεwε) (Tεθ)dxdsdt.

Lemma 3.9 provides the strong convergence of Tεrε; the weak convergence of Tεwε fol-
lows from Lemma 3.6 leading to

T∫

0

∫

(0,1)×Γ

(∂tv)θdxdsdt =
T∫

0

∫

(0,1)×Γ

(r(u)− w)θdxdsdt
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for all θ ∈ L2(0, T; L2((0, 1) × Γ)). Finally, thanks to Lemma 3.11, we have w ∈ H(v)
which completes the proof of Theorem 3.3.1.

3.6 Extensions to different rates

In this work, we have focussed on the proof for the crystal precipitation dissolution
model involving a non-Lipschitz, possibly multi-valued rate. However, the techniques
can be used to treat different reaction rates. In what follows, we provide two more
examples of non-linear rates and comment upon the scheme of the proof. We spare the
full details.

3.6.1 Model 1

We consider the following model

∂tu
ε − ∆uε + qε∇uε = 0, in ΩεT (3.6.1)

∂tv
ε = r(uε)− g(vε), on ΓεT (3.6.2)

and let us assume that r has the same structure given earlier. For g, we assume Lips-
chitz continuity and that it takes positive values. Such rates are considered for example
in modeling the reactive flows in porous medium [62], in biological contexts in the dif-
fusion of receptors in a cell [89], or in the description of sulphate attack for sewer pipes
[53]. The extension to more number of species living on the boundary or inside the do-
main is analogous. For the model, the derivation of a priori estimates follows standard
techniques. Since the reaction terms are Lipschitz, we obtain for ∂tu

ε ∈ L2(0, T; L2(Ωε))

(see e.g. [89]). We directly give the results and comment upon the particularities.

Theorem 3.6.1 As ε ↘ 0, the pair (uε, vε) converges to (u, v) and the limits satisfy the fol-
lowing equation defined in ΩT

(∂tu,φ)
Ω

T + (∇u,∇φ)
Ω

T − (qu,∇φ)
Ω

T = −(∂tv,φ)(0,1)×Γ×(0,T),

(∂tv,θ)(0,T)×(0,1)×Γ = (r(u)− g(v),θ)(0,1)×Γ×(0,T) (3.6.3)

for all (φ,θ) ∈ L2(0, T; H1
0,ΓD

(Ω))× L2(0, T× (0, 1)× Γ).

Remark 3.13 Compared to the proof of Theorem 3.3.1, the only difference is in obtain-
ing the strong convergence of Tεvε. We sketch briefly the steps involved in the proof for
this strong convergence. We adopt the same framework as in the proof for Lemma 3.10
and re-do some of the steps of the proof for the translation in x. Let ηx be a positive real
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number and Qηx
be an arbitrary compact subset of (0, 1)× (0, 1) as defined before. We

have,

1
2

d
dt‖4ηx

(Tεvε)‖2
L2(Qηx

)
=
∫

Qηx

4ηx
(Tεvε)

(
4ηx

(Tεr(uε))−4ηx
(Tεg(vε))

)
dxdz

which leads to using Cauchy Schwarz and Young’s inequality,

1
2

d
dt‖4ηx

Tεvε‖2
L2(Γ×Ωηx

)
≤ ( 1

2 + Lg)‖4ηx
Tεvε(x)‖2

L2(Ωηx
)
+ 1

2‖4ηx
Tεr(uε)‖2

L2(Ωηx
)

where Lg is the Lipschitz constant of g. For the rest, the arguments remain the same.
Note that as |ηx| ↘ 0, the strong convergence of Tεr(uε), implies that the second term
goes to 0 uniformly with respect to ηx (IV.26 in [25]). Using Gronwall’s lemma we
conclude that the translations go to 0 as |ηx| ↘ 0. Similarly, the translation with re-
spect to z is similarly treated which together establish the strong convergence of Tεvε in
L2(0, T; L2(Γ × (0, 1))) .

Remark 3.14 For the 2-scale convergence framework of periodic homogenization, the
Lipschitz rate at the boundary is treated by the periodic unfolding techniques in [89].
There it is proved that Tεvε is a Cauchy sequence. Further, it is to be noted that the
above proof also works if g is not Lipschitz but is only monotonic and bounded as is the
case for the precipitation dissolution model considered here.

3.6.2 Model 2

We discuss another model with non-linear reaction rates that can be treated analogously.

∂tu
ε − ∆uε + qε∇uε = 0, (3.6.4)

∂tv
ε = r(uε)(1− sign+(vε)) (3.6.5)

where sign+(vε) is defined as

sign+(vε) =
{

1 vε > 0,
0 vε ≤ 0.

(3.6.6)

and let us assume that r has the same structure given earlier. The model is considered
in [23] describing the stiff dissolution rates in the context of the safe disposal of nuclear
waste. In the cited reference, this problem is posed on core scale in a porous medium
and analyzed numerically using the finite volume method. Here, we assume that the
reactions take place at the rough boundaries and we are concerned with the upscal-
ing of these rough boundary. The a priori estimates are again derived from standard
techniques and we simply state the final result.
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Theorem 3.6.2 As ε ↘ 0, the pair (uε, vε) converges to (u, v) and the limits satisfy the fol-
lowing equation defined in ΩT

(∂tu,φ)
Ω

T + (∇u,∇φ)
Ω

T − (qu,∇φ)
Ω

T = −(∂tv,φ)(0,1)×Γ×(0,T),

(∂tv,θ)(0,T)×(0,1)×Γ = (r(u)− sign+(v)r(u),θ)(0,1)×Γ×(0,T) (3.6.7)

for all (φ,θ) ∈ L2(0, T; H1
0,ΓD

(Ω))× L2((0, T)× (0, 1)× Γ).

Remark 3.15 Once again the steps in the proof are analogous and we skip them. Note
that once we have proved the strong convergence of Tεrε and Tεvε, we are able to pass
to the limit as this implies, Tεvε → v pointwise a.e. with v bounded. The proof for
strong convergence of Tεrε is same as in the above case. We remark on the difference in
the proof for the strong convergence of Tεvε. Adopting the same framework as in the
proof for Lemma 3.10. Let Qηx

be an arbitrary compact subset of (0, 1)× (0, 1) and let
ηx ∈ (0, dist(Qηx

, ∂((0, 1)× (0, 1)))). We have,

1
2

d
dt‖4ηx

Tεvε‖2
L2(Qηx

)
=
∫

Qηx

(
4ηx

Tεvε
)
4ηx

(
Tεrε(1− Tεsign+(vε))

)
dxdz.

Note that the right hand side can be rewritten as

4ηx

(
Tεrε(1− Tεsign+(vε))

)
= 4ηx

Tε(rε)(1− Tεsign+(vε))

+Tεr(uε)4ηx
(1− Tεsign+(vε))

and by the monotonicity (monotonically decreasing) of 1− Tεsign+(vε) and positivity
of r, we have

Tεr(uε)4ηx
(1− Tεsign+(vε))4ηx

Tεvε ≤ 0.

Using Cauchy Schwarz and Young’s inequality, this gives

d
dt‖4ηx

Tεvε‖2
L2(Γ×Ωηx

)
≤ ‖4ηx

Tεvε‖2
L2(Ωηx

)
+ ‖4ηx

Tεr(uε)‖2
L2(Ωηx

)
.

Following the argument that as |ηx| ↘ 0, the strong convergence of Tεr(uε) implies that
the second term goes to 0 uniformly with respect to ηx (IV.26 in [25]). Using Gronwall’s
lemma then concludes the proof.

3.7 Numerical simulations

To study the approximation of the upscaled equations to the original equations, we
make the following choices for the geometry. To construct Ωε, we make the following
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choice for Γε:

Γε = {(x, y) : x ∈ (0, 1) y = −1.1ε+ε sin(π/2 + 2π
x
ε
)}

which makes sure that Ω ⊂ Ωε and we conduct the numerical experiments for different
ε. For the flow, we solve the Stokes equation for Ωε domain with parabolic inlet pro-
file and for Ω we have the exact solution q = 6y(1 − y)e1. For the choice of reaction
rates, we choose for precipitation,r(u) = [u]+, and for dissolution rate, we choose the
regularized Heaviside function

Hδ(v
ε) :=





1, vε > δ,
vε
δ

, 0 ≤ vε ≤ δ,
0, vε < 0

(3.7.1)

and we choose for δ = 0.01. The choice of this regularized Heaviside function has been
already investigated for numerical analysis and we refer to [41] for the details.
For the computations, we use finite element method with BDF time stepping for solving
the equations as implemented in the COMSOL Multiphysics package [64].

We choose the following initial conditions:

uε(x, y, t = 0) = 1, in Ωε, vε(x, t = 0) = 0.2 on Γε;

and for u, v also we choose

u(x, y, t = 0) = 1, in Ω, v(x, t = 0) = 0.2 on y = 0, x ∈ (0, 1).

Note that for this choice of vε, v we have r(uε)− Hδ(v
ε) = r(u)− Hδ(v) = 0 and hence

∂tv
ε = ∂tv = 0 leading to the equilibrium situation. According to different boundary

conditions imposed at x = 0, we consider the following situations.

3.7.1 Dissolution fronts

We perturb the equilibrium at x = 0 by imposing the boundary condition uε = u = 0.
Due to this the dissolution starts taking place as ∂tv

ε, ∂tv < 0 at x = 0. This gives rise to
the dissolution fronts and these fronts proceed to the right as time progresses. We study
this case for different choices of ε.

Concentration at the boundary

We compute the full solution for different ε and plot uε and u at the boundary Γε and
y = 0 boundary of Ω respectively at t = 0.5. The plot is shown in Figure 3.2. Due to
the oscillations in the boundary the maximum error takes place at the boundary itself.
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We compute the concentration at the oscillating boundary for given ε and then plot it
against the upscaled concentration u at y = 0. Because of the oscillating boundary, the
concentration has an oscillating profile while the upscaled concentration has a mono-
tonic profile; however, as ε decreases, uε converges to u.

For vε, the corresponding plot is shown in Figure 3.3. For small ε we see that the up-
scaled profile provides a good approximation for the full solution. Further, as ε de-
creases, the vε converges to v.

Error at the boundary

Next, we consider the L2(Γ1), Γ1 := {(x, 0)|x ∈ (0, 1)} error at the boundary at t = 0.5.
Specifically, we assume that the error is of order εαu ,

Eu
ε := ‖uε − u‖L2(Γ1)

≤ Cεαu .

To estimateαu, we compute the error for various values of ε and determine the ratio

αu(i) =
log(error(i))− log(error(i− 1))

log(ε(i))− log(ε(i− 1))
, i = 2, . . . , 6.

In Table 3.1 we give the values of the error as well as the convergence rateαu computed
from the preceding formula. The convergence order is close to 1.
Similarly, for vε we assume the convergence orderαv and compute

Ev
ε := ‖vε − v‖L2(Γ1)

≤ Cεαv .

The results are tabulated in Table 3.2. As it is seen below, the convergence order is better
than 1.

We now compare the average concentration at the boundary. We define

ū(x) :=
1
ε

∫ εb x
ε
c+ ε

2

εb x
ε
c− ε

2

uεds

Observe that ū provides information regarding the average concentration into one pe-
riodic unit for ε model. We compare this with the upscaled equation in Figure 3.4. The
agreement is very good for small ε which indicates the quality of upscaling.
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Figure 3.2: Concentration profiles for dissolution process at the boundary for different ε at
t = 0.5.
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Figure 3.3: Precipitate concentration profiles for dissolution process at the boundary for different
ε at t = 0.5.

ε 0.1000 0.0800 0.0500 0.0400 0.0200 0.0100
error 0.1118 0.0844 0.0516 0.0453 0.0218 0.0106
αu 0.9195 0.9746 1.1003 0.9588 0.9754

Table 3.1: Table for L2 error for the concentrations.
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ε 0.1000 0.0800 0.0500 0.0400 0.0200 0.0100
error 0.0268 0.0206 0.0125 0.0114 0.0061 0.0030
αv 1.3000 1.3725 1.4783 1.3403 1.2582

Table 3.2: Table for L2 error for the precipitate concentration.

3.7.2 Precipitation process

Next, we again choose the same initial condition as above and we study the precipita-
tion process by imposing the boundary condition

uε = u = 2, at x = 0

and with this choice, note that ∂tv
ε, ∂tv > 0 and hence the precipitation process starts

taking place. This leads to an increase in vε, v as time progresses and for uε, u a steady
state is achieved. We show the solutions for different ε and we compute the full solu-
tion for ε = 0.1, 0.02 and plot uε and u at the boundary Γε and y = 0 boundary of Ω
respectively at t = 1. The corresponding plots for uε and vε are shown in Figure 3.5, re-
spectively in 3.6. Again, due to the oscillations in the boundary, we have the boundary
layer and the maximum error takes place at the boundary itself. We compute the con-
centration at the oscillating boundary for given ε and then plot it against the upscaled
concentration u at y = 0. Because of the oscillating boundary, the concentration has an
oscillating profile while the upscaled concentration has a monotonic profile; however,
as ε decreases, uε, vε converges to u, v.

3.8 Conclusions

We have rigorously derived the upscaled model for the crystal precipitation dissolution
model defined in a domain with oscillating boundary characterized by period and am-
plitudeε. The upscaled model is obtained as the limit of sequenceε↘ 0. The derivation
uses the homogenization arguments where we use the periodic unfolding techniques
to use the desired compactness arguments. The non-linear reaction rates in particular
the multi-valued dissolution rates require stronger convergence properties for passing
to the limit which is achieved by considering translation estimates. Even though the
derivation here has been specific to the precipitation-dissolution model, similar tech-
niques may be used for a different kinds of reaction rates. We have given some specific
examples of such rates. Moreover, we have provided numerical computations to show
the convergence. We see that the upscaled solutions approximate the full solution very
well and hence provide a convincing argument for the usefulness of upscaling tech-
niques.
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Figure 3.4: Average concentration ū for dissolution process for different ε at t = 0.5.
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Figure 3.5: Concentration profiles at the boundary for different ε at t = 1 (precipitation).
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Figure 3.6: Precipitate concentration at the boundary for different ε at t = 1 (precipitation).



Chapter 4

Upscaling of moving rough
boundaries

We consider the flow and transport of chemically reactive substances (precursors) in a
channel over substrates having complex geometry. In particular, these substrates are in
the form of trenches forming oscillating boundaries. The precursors react at the bound-
aries and get deposited. The deposited layers lead to changes in the geometry and are
explicitly taken into account. Consequently, the system forms a free boundary problem.
Using formal asymptotic techniques, we obtain the upscaled equations for the system
where these equations are defined on a domain with flat boundaries. This provides a
huge gain in computational time. Numerical experiments show the effectiveness of the
upscaling process.

4.1 Introduction

This work deals with the upscaling of processes which are defined in a domain having
oscillating (rough) boundaries. The aim is to approximate the model by one defined
in a simpler domain with flat (non-oscillating) boundaries. The work presented here is
motivated by reactive flow models where the reactive substances are transported by a
carrier fluid (gas or liquid).

The reactions take place at the rough boundaries, and the reaction products are im-
mobile species which get attached to or detached from the surface. Examples of these

This chapter is a collaborative work with Tycho van Noorden and Sorin Pop and has been accepted for
publication in Discrete and Dynamical Systems Series S.
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processes are crystal precipitation and dissolution processes [105] and chemical vapor
deposition processes [56]. The formation of reaction products at the boundary leads to
changes in the thickness of the solid layer with time. There are two options: one is to
ignore the geometry change and take a fixed geometry model and describe the deposi-
tion/dissolution process by an equation defined at the boundary and the other option
is to take the changes in the geometry explicitly into account in which the thickness of
the solid layer provides information about the amount of deposition/dissolution. We
follow the second approach here. This implies that the geometry may change with time
and since the change in the geometry is unknown, we have a free (evolving) boundary
problem. The problem is to find an upscaled equation defined in a simple domain with
flat boundaries for this free boundary problem posed in a complex domain with oscil-
latory boundaries.

A motivation for this work is the process of making 3-D batteries through the process
of chemical vapor deposition (CVD) where a part of the domain consists of trenches
(rough surface) instead of being flat to enhance the surface area hence increasing the
capacity of the battery [110, 113, 114]. The sizes of these trenches may vary and are in
the order of micrometers (typical size ∼ 10 µm) and the substrate size is in the order
of centimeters (typical size ∼ 30 cm). In the trenches, the thickness of different lay-
ers of deposition (of electrodes/anode/cathode) may not be negligible compared to the
size of trenches. In this situation, it is important to take into account the thickness of
the deposited layer and consider a model for describing the deposition process for the
time-dependent geometry.

We use upscaling arguments, in particular a formal (matched) asymptotic approach,
to provide a rational derivation of this approximation. The presence of free boundary
makes the rigorous arguments difficult and here we restrict to formal asymptotic argu-
ments. One important aspect of this upscaling approach is that the system of equations
defined inside the domain remains unchanged and only the boundary conditions are
modified. Naturally, such an upscaling leads to computational efficiency as the fine
scales need not be resolved. Further, for small enough oscillations, one takes advan-
tage of the scale separation and obtains better approximation. Hence, the finer these
oscillations are, the better approximation can be achieved. Also, the upscaled domain
is fixed in time and the movement of the boundary of the original domain leads to a
time-dependent boundary condition for the upscaled equations.

In this work we provide the upscaling for both the transport and the flow problems
defined in a domain with moving and oscillating boundaries. As we apply only formal
arguments, non-linear reactions rates have been considered. Further, in the work pre-
sented here, for the sake of exposition, we have considered only one species, however,
an extension to multi-species and multi-component is straightforward. Also, more gen-
eral diffusion terms may be dealt with the similar techniques considered here.

There exists extensive amounts of work dealing with both the formal and the rigor-
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ous upscaling of rough boundaries. Most of the work however refers to the situation
when the geometry remains fixed. Relevant to the work presented here are [56] for the
transport problem and [66–68] for flow problem respectively. In the former, the formal
approach is used for diffusion equation while the latter papers deal with rigorous treat-
ment to the upscaling of Stokes equation in the fixed geometry situation. The difference
with [56] is that the cited work deals with the fixed geometry situation and also the
flow is absent. Although our techniques are inspired from [56], however, there are some
differences in the way of our derivation. In an another related work, [54], rigorous treat-
ment for the upscaling in the absence of flow and linear reaction rates when the geome-
try changes are explicitly taken into account. Our results are consistent with the results
in the mentioned literature. Because of the formal approach employed here, we are able
to take into account both the flow and the transport problem together and also much
more general reaction rates are considered. For other related work on upscaling of reac-
tive flows/transport involving oscillating boundaries we refer to [3,9,11,29,55,75,100].
These kind of problems find applications in making 3-D solid state batteries, flow in
rough pipes, semiconductor industries, bio-film growth in porous medium and describ-
ing the evaporation processes in plants or through soil [13, 45–47, 57, 96, 104, 107].

The article is organized as follows. We start with the description of the geometry and
the formulation of the problem in Section 4.2. In Sections 4.3 and 4.4 we treat the flow
problem and transport problem. In Section 4.5, we provide numerical computations
where we compare the upscaled equations with the original equations.

4.2 Modeling equations

We describe the setting of the problem and start with the precise description of the ge-
ometry considered here. To define the model, we consider the flow carrying reactive
substances (precursors). The flow passes over the substrate and the precursor is de-
posited on the substrate making it a transport process with reactions at the boundary.
To take into account the thickness of the deposited layer, we provide a model that de-
scribes the deposition process for the time-dependent geometry. The model consists of
two components, one the flow component and the other the transport component. For
the flow, we take for simplicity of computations, the Stokes equation and the transport
part is described by a linear convection-diffusion equation. The boundary conditions
for both the transport and flow equations are posed on a time-dependent boundary and
we also prescribe a law for describing the movement of the geometry.
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Figure 4.1: Schematic for the domain Ωε : channel with rough boundary Γε. Initially, the
boundary Γε ⊂ ∂Ωε consists of a periodic function εh( x

ε
). Note that the geometry may change

in time due to reactions taking place.

4.2.1 Geometry

Let Ωε denote the domain having rough boundaries denoted by Γε. We define a system
of equations describing the flow and transport processes in Ωε with reactive bound-
ary conditions defined on Γε. The question that we are concerned with is defining the
appropriate system of equations in the simpler domain Ω with flat (non-oscillating)
boundary such that the solutions in a simpler domain Ω approximate those in Ωε. We
proceed to give the precise definitions of these geometries. A schematic of the geometry
is presented in Figure 4.1.

First, the homogenized domain with flat boundaries is denoted by Ω := (0, 1)2. Let h be
a given smooth function that is 1- periodic. Let us define hε(x, t) using the periodicity
of h such that

hε(x, 0) := εh(
x
ε
).

We use the above to define Ωε

Ωε(t) :=
{
(x, y) ∈ R2 | x ∈ (0, 1) y ∈ (hε(x, t), 1)

}

where hε(x, 0) is as defined above and hence is a smooth function. Let ∂Ωε denote the
boundary of Ωε.
The oscillating boundary Γε(⊂ ∂Ωε) is defined as:

Γε(t) := {(x, y) | x ∈ (0, 1), y = hε (x, t)} .

We remark that the hε is not a priori known except for t = 0 and depends on the un-
known solution of the transport equation. Hence, this defines a free-boundary problem.
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The inlet and the outlet boundaries are correspondingly defined as

Γi(t) := {(x, y) | x = 0, y = hε (0, t)}
Γo(t) := {(x, y) | x = 1, y = hε (1, t)} .

This particular scaling for the boundary ensures that the Lebesgue measure of Γε re-
mains bounded and of order O(1). Notice that we emphasize the time-dependence
of the definition of Ωε, Γε as opposed to the homogenized domain Ω which is time-
independent.

4.2.2 The model

We start with the modeling for the processes taking place in the geometry described
above. For the sake of simplicity, we write all the equations in dimensionless form (see
[105] for the dimensional model and non-dimensionalization). As described above, be-
cause of the reactions taking place at the boundaries, the thickness of the layer attached
to the boundary may change with time. The thickness of this layer is hε(x, t)− hε(x, 0).
The growth of the layers lead to variation in the domain, and implicitly to a change in
the flow, an effect that is taken into account.

For the reactants in the domain, the different processes are diffusion, transport by the
fluid flow, and reactions taking place at the boundaries of the domain. The flow problem
is modeled by the Stokes equations,

µ∆qε = ∇pε in Ωε(t), (4.2.1)

∇ · qε = 0 in Ωε(t), (4.2.2)

where pε is the pressure field, qε is the flow field and µ is the dynamic viscosity. At the
inlet, we take a parabolic velocity profile normal to the inlet,

qε(0, y, t) = Q(y− 1)(h(0, t)− y)e1,

where Q > 0 is a normalisation factor related to the total flow in the x-direction and e1

is the unit vector along the x-axis. For the outlet we prescribe the pressure pε = 0. At
other boundaries, we assume no-flow boundary conditions, in particular qε = 0 at Γε.
For the ease of presentation, without loss of generality, let us assume µ = 1.

For the transport equation, for the sake of presentation, we consider only one species
here, with its concentration denoted by uε. The convection-diffusion equation and the
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boundary conditions describing the transport process of the reactant are

∂tu
ε = ∇ · (∇uε − qεuε), in Ωε(t)

uε = ub, on Γi(t), (4.2.3)

∂xuε = 0, on Γo(t),

where ub is a given non-negative concentration. The diffusion coefficient is taken as 1.
For simplicity, we assume homogeneous Neumann boundary conditions on the remain-
ing boundary, that is, on ∂Ωε \ (Γε ∪ Γi ∪ Γo).

The reactions take place only at the interface between the fluid and the solid, that is,
Γε(t). The corresponding mathematical model involves the outer normal νε(t) to Γε(t),

νε(t) = (∂xhε,−1)T/

√
1 + (∂xhε)2. (4.2.4)

At Γε(t), mass conservation yields

νε · (∇uε − qεuε) = vn(ρ− uε), (4.2.5)

where ρ is the molar density of the reactant in the solid phase (the adsorbed substance,
or the deposited layer) and vn is the outward normal velocity of the interface. Fur-
thermore, the normal velocity of the interface vn is proportional to the reaction rate
f = f (uε, hε),

ρvn = − f (uε, hε). (4.2.6)

Here f is a given function assumed to be sufficiently smooth. Similar results can be
derived formally even for non-Lipschitz rates like Freundlich isotherms or multi-valued
reaction rates as encountered for dissolution processes [75].
The velocity of a point Gε(t) = (x(t), hε(x(t), t)) on Γε(t) is given by

∂tG
ε(t) = (x′(t), ∂xhε(x(t), t)x′(t) + ∂th

ε(x(t), t)).

Then the normal velocity vn becomes

vn = νε · ∂tG
ε(t) = − ∂th

ε

√
1 + (∂xhε)2

, (4.2.7)

and (4.2.6) transforms into

ρ∂th
ε = f (uε, hε)

√
1 + (∂xhε)2. (4.2.8)

Further, we assume ρ to be of O(1/ε) so that the movement in the boundary is of order
ε thereby retaining the roughness as the reactions change the geometry.
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4.3 The flow problem

We use here formal matched asymptotics to derive the upscaled equations. The proce-
dure consists of considering the solutions in different regions, one close to Γε (the inner
solution) and far from it (the outer solution). We later derive the matching conditions at
an intermediate scale. Using the matching conditions, we obtain the upscaled boundary
conditions.

4.3.1 The inner region

Close to Γε we assume qε = qε(x, y, t), pε = pε(x, y, t) and for the expansions we
assume

qε = q0(x,
x
ε

,
y
ε

, t) +εq1(x,
x
ε

,
y
ε

, t) + · · · , (4.3.1)

pε = p0(x,
x
ε

,
y
ε

, t) +εp1(x,
x
ε

,
y
ε

, t) + · · · , (4.3.2)

hε = εh0(x,
x
ε

, t) +εh1(x,
x
ε

, t) + · · · . (4.3.3)

In the expansions we assume that the thickness of the deposition layer remains of the
order O(ε) to retain roughness. Define: ξ := x

ε
, η := y

ε
. Following the periodicity in the

geometry of oscillations, we assume periodicity of the inner variables in the ξ coordi-
nate. This implies

qi(x,ξ + 1, η, t) = qi(x,ξ , η, t),

pi(x,ξ + 1, η, t) = pi(x,ξ , η, t),

hi(x,ξ + 1, t) = hi(x,ξ , t).

Denoting by e1 and e2 the unit vectors in the x- and y-directions respectively, we start
with the gradient terms. For i = 1, 2

∇qε(i) = (∂x +
1
ε

∂ξ)q
ε(i)e1 +

1
ε

∂ηqε(i)e2

= (∂xq(i)0 +ε∂xq(i)1 +
1
ε

∂ξq(i)0 + ∂ξq(i)1 )e1 + (
1
ε

∂ηq(i)0 + ∂ηq(i)1 )e2 + O(ε).

This implies for i = 1, 2

∆q(i) = ∂xxq(i)0 + 2ε−1
∂xξq(i)0 + 2∂xξq(i)1 + ∂ξξq(i)2 + ∂ηηq(i)2

+ε−2
∂ξξq(i)0 +ε−1

∂ξξq(i)1 +ε−2
∂ηηq(i)0 +ε−1

∂ηηq(i)1 + O(ε).
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Similarly,

∇pε = (∂x +ε
−1

∂ξ)pεe1 +ε
−1

∂ηpεe2

=
(

∂x p0 +ε∂x p1 +ε
−1

∂ξ p0 + ∂ξ p1

)
e1 +

(
ε−1

∂ηp0 + ∂ηp1

)
e2 + O(ε). (4.3.4)

We proceed by inserting these expansions in the equations. For the continuity equation,
we have

(∂x +ε
−1

∂ξ)q
ε(1) +ε−1

∂ηqε(2) = 0,

implying

∂xq(1)0 +ε∂xq(1)1 +ε−1
∂ξ(q

(1)
0 +εq(1)1 ) +ε−1

∂ηq(2)0 + ∂ηq(2)1 = O(ε).

Equating the terms of similar order, for ε−1 terms we get

∂ξq(1)0 + ∂ηq(2)0 = 0, (4.3.5)

and for ε0 terms we have

∂xq(1)0 + ∂ξq(1)1 + ∂ηq(2)1 = 0. (4.3.6)

We proceed with the Stokes equation. Plugging in the expansions for ∆qε and ∇pε, we
obtain after cascading the different orders of ε

∂ξξq(1)0 + ∂ηηq(1)0 = 0, (4.3.7)

∂ξξq(2)0 + ∂ηηq(2)0 = 0, (4.3.8)

2∂xξq(1)0 + ∂ξξq(1)1 + ∂ηηq(1)1 = ∂ξ p0, (4.3.9)

2∂xξq(2)0 + ∂ξξq(2)1 + ∂ηηq(2)1 = ∂ηp0. (4.3.10)

With the expansion for hε we have for the leading order term for the normal of Γε(t)

ν0(x,ξ , t) =
1√

1 +
(
∂ξh0(x, x

ε
, t)
)2

(
∂ξh0(x, x

ε
, t)

−1

)
.

For the boundary conditions, the no-slip boundary condition leads to q0 = q1 = 0 on Γε(t).
Since there is no forcing term combined with the periodicity in ξ and homogeneous
Dirichlet data at a part of the boundary, we conclude q0 = 0.
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4.3.2 The outer region
For the outer region, we assume

qε := qε(x,
x
ε

, y, t), pε := Pε(x,
x
ε

, y, t).

The usual formal asymptotic expansions give,

qε = Q0(x,ξ , y, t) +εQ1(x,ξ , y, t) + · · · ,

Pε = P0(x,ξ , y, t) +εP1(x,ξ , y, t) + · · · .

Furthermore, we assume that Qi and Pi are periodic in ξ with period 1. For the continu-
ity equation, we have

∂xQ(1)
0 +ε∂xQ(1)

1 +ε−1
∂ξQ(1)

0 + ∂ξQ(1)
1 + ∂yQ(2)

0 +ε∂yQ(2)
1 = O(ε). (4.3.11)

Upon ordering with different orders of ε we obtain

∂ξQ(1)
0 = 0, (4.3.12)

∂xQ(1)
0 + ∂yQ(2)

0 + ∂ξQ(1)
1 = 0. (4.3.13)

From (4.3.12) we conclude,

Q(1)
0 = Q(1)

0 (x, y, t). (4.3.14)

For the Stokes equation, we first write down separately ∆qε,∇Pε for convenience. For
i = 1, 2, we have

∆Qε(i) = (∂x +ε
−1

∂ξ)(∂xQε(i) +ε−1
∂ξQε(i)) + ∂yyQε(i)

which upon expansion and rearrangement gives

∆Qε(i) = ε−2
∂ξξQ(i)

0 +ε−1(2∂xξQ(i)
0 + ∂ξξQ(i)

1 ) + (∂xxQ(i)
0 + ∂yyQ(i)

0 + ∂ξξQ(i)
2 )

+ 2∂xξQi
1 + O(ε).

Similarly,

∇Pε = (∂xP0 +
1
ε

∂ξP0 + ∂ξP1)e1 + (∂yP0)e2 + O(ε).

Plugging these expansions into the Stokes equation and separating the different orders
of ε we obtain

∂ξξQ(1)
0 = 0, (4.3.15)

2∂xξQ(1)
0 + ∂ξξQ(1)

1 = ∂ξP0, (4.3.16)

2∂xξQ1
1 + ∂xxQ(1)

0 + ∂yyQ(1)
0 + ∂ξξQ(1)

2 = ∂xP0 + ∂ξP1 (4.3.17)
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For the e2 direction, for the Stokes equation the different terms of different orders of ε
provide

∂ξξQ(2)
0 = 0, (4.3.18)

2∂xξQ(2)
0 + ∂ξξQ(2)

1 = 0, (4.3.19)

2∂xξQ2
1 + ∂xxQ(2)

0 + ∂yyQ(2)
0 + ∂ξξQ(2)

2 = ∂yP0. (4.3.20)

From (4.3.18) and the periodicity in ξ we obtain that Q(2)
0 is independent of ξ and using

this in (4.3.19) we conclude
Q(2)

1 = Q(2)
1 (x, y, t).

Differentiating (4.3.13) w.r.t. ξ and using (4.3.14) we obtain

∂ξξQ(1)
1 = 0

and using periodicity in ξ direction,

Q(1)
1 = Q(1)

1 (x, y, t). (4.3.21)

Using above in (4.3.16) we get

∂ξP0 = 0 which means P0 = P0(x, y, t). (4.3.22)

Integrating (4.3.17) over ξ and using periodicity result in

∂xxQ(1)
0 + ∂yyQ(1)

0 = ∂xP0. (4.3.23)

We integrate (4.3.20) overξ from 0 to 1 and use the fact that Q(2)
0 and P0 are independent

of ξ and we get

∂xxQ(2)
0 + ∂yyQ(2)

0 = ∂yP0. (4.3.24)

Note that Q(1)
0 , Q(2)

0 , Q(1)
1 , and Q(2)

1 are ξ-independent. This means that they satisfy the
original Stokes model.

4.3.3 Matching conditions

Here we couple the inner solutions and the outer solutions. We use the asymptotic
expansion, for the flow vector,

qε(x,ξ , y, t) = Q0(x, y, t) +εQ1(x, y, t) + O(ε2)
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and Taylor’s expansion at y = εη to obtain

qε(x,εη, t) = Q0(x, 0, t) +εη∂yQ0(x, 0, t) +εQ1(x, 0, t) + O(ε2).

For the inner solution we have the asymptotic expansion

qε(x,ξ , η, t) = q0(x,ξ , η, t) +εq1(x,ξ , η, t) + O(ε2).

Therefore, by matching, we conclude

lim
η→∞ q0(x,ξ , η, t)−Q0(x, 0, t) = 0

lim
η→∞ q1 − (∂yQ0)η−Q1 = 0

and further using the above,

lim
η→∞ ∂ηq1(x,ξ , η, t)− ∂yQ0 = 0.

Now we are in a position to provide the leading order approximation and the first order
approximation. For the leading order approximation Q0 we simply have

Q0 = 0 at y = 0.

Remark 4.1 To obtain the next order approximation, let us define Qe := Q0 +εQ1. From
the matching condition we have

Q0 = 0, εQ1 = εα∂yQ0,

where

α(i) := lim
η→∞ q(i)1

∂yQ(i)
0

− η.

This provides us the effective boundary condition

Qe = εα(t)∂yQe at y = 0.

Notice that the factor α depends on the geometry which changes with time. However,
here time only acts as a parameter and the free boundary does not appear explicitly. The
computation requires the information about the geometry and we need to provide the
law for the movement of the boundary of the cell, which we describe in the next section.
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4.4 The transport equation

We consider the convection-diffusion equation (4.2.3) with boundary conditions (4.2.5),
(4.2.6) and the movement of the boundary defined in (4.2.8). As before, we decompose
the solution in the two regions, one close to Γε (the inner solution) and away from it (the
outer solution). For the sake of brevity, ∆xy := ∂xx + ∂yy and∇xy := ∂xe1 + ∂ye2. Denote
the inner and outer solutions respectively by uε and Uε and assume for the variables

• Inner solution (close to Γε): uε := uε(x, x
ε

, y
ε

, t)

• Outer solution (away from Γε): Uε := U(x, x
ε

, y, t).

We make the following asymptotic ansatz:

uε = u0 +εu1 +ε
2u2 + · · · ,

Uε = U0 +εU1 +ε
2U2 + · · · ,

hε = εh0 +ε
2h1 + · · · .

4.4.1 The outer solution

We start with the outer solution. For the different terms in (4.2.3) we have (as before
with ξ = x/ε; η = y/ε)

∆Uε = ε−2
∂ξξU0 +ε

−1
∂ξξU1 + ∆xyU0 + ∂ξξU2 + 2ε−1

∂xξU0 + · · · ,

Qε∇Uε = ε−1Q(1)
0 ∂ξU0 + Q0 · ∇x,yU0 + · · · .

Inserting the asymptotic expansion in the transport equation (4.2.3), we obtain for the
lowest order term, that is, the ε−2 term:

∂ξξU0 = 0

which combined with periodicity in ξ implies,

U0 = U0(x, y, t).

Similar treatment for ε−1 term gives,

∂ξξU1 = 0,
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and imposing periodicity with respect to ξ makes it independent of ξ , that is,

U1 = U1(x, y, t).

The ε0 term provides

∂tU0 + Q0∇xyU0 + Q(1)
0 ∂ξU1 − ∆xyU0 − 2∂xξU1 − ∂ξξU2 = 0. (4.4.1)

Now integrate over ξ from 0 to 1 and noting that U0, Q0, U1 are independent of ξ and
periodicity of U2 with respect to ξ implies no contribution from that term, we obtain

∂tU0 + Q0∇xyU0 − ∆xyU0 = 0. (4.4.2)

4.4.2 The inner solution

Using the above asymptotic ansatz, we obtain

∆uε = ε−2∆ξηu0 +ε
−1∆ξηu1 + 2ε−1

∂xξu0 + 2∂xξu1 + ∂xxu0 + ∆ξηu2 + · · · ,

qε · ∇uε = ε−1q(1)0 ∂ξu0 + q(1)0 ∂xu0 + q(1)0 ∂ξu1 + q(2)1 ∂ηu0 + q(1)1 ∂ξu0 +ε
−1q(2)0 ∂ηu0 + q(2)0 ∂ηu1 + · · · .

Using the above asymptotic expansions in the equation (4.2.3) for the inner region and
rearranging the terms and using q0 = 0

ε−2∆ξηu0 +ε
−1∆ξηu1 +

(
∂tu0 − ∂xxu0 − ∆ξηu2 + q(1)1 ∂ξu0 + q(2)1 ∂ηu0

)
= O(ε). (4.4.3)

We separate the terms according to the different orders of ε; for the ε−2 term, we have

∆ξηu0 = 0. (4.4.4)

Proceeding further with ε−1 terms,

2∂xξu1 + ∆ξηu1 = 0 (4.4.5)

and the corresponding ε0 terms provide

∂tu0 − ∂xxu0 − ∆ξηu2 − 2∂xξu1 + q(2)1 ∂ηu0 + q(1)1 ∂ξu0 = 0. (4.4.6)

For the boundary condition (4.2.5) we get

−ν0 · ∇ξηu0 = 0, (4.4.7)
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and
−ν0 · ∇ξηu1 = f (u0, h0)(1−

u0

ρ
). (4.4.8)

Using (4.4.4), the boundary condition (4.4.7), the periodicity in ξ and that U0 does not
depend on ξ , we conclude

u0 = u0(x, t).

For the leading order term of the normal of the oscillating boundary we have

ν0(x,ξ , t) =
1√

1 + ∂ξh0(x,ξ , t)2
[∂ξh0(x,ξ , t), −1]T .

Notice that the normal is dependent on time because of the change in geometry being
taken into account. For any time t we denote by ΓL and Γ(T) respectively the lower and
upper parts of the boundaries of the inner region,

ΓL := {(ξ , η) | 0 < ξ < 1, | , η = h0(ξ)}, Γ(T) := {(ξ , η) | 0 < ξ < 1, η = T}.
(4.4.9)

Integrating (4.4.5) over the inner region, since by the periodicity with respect to ξ , the
contributions from the u0 term and the lateral terms cancel (corresponding to the sides
ξ = 0 and ξ = 1) and we get

∫

ΓL

ν0 · ∇u1 = −
∫

Γ(T)
ν0 · ∇u1 for all T > max(h0). (4.4.10)

We will see that the above equation provides the effective boundary condition.

4.4.3 The matching conditions

As before, we couple the inner solutions and the outer solutions by deriving the match-
ing conditions. We have for Uε, the asymptotic expansion

Uε(x,ξ , y, t) = U0(x, y, t) +εU1(x, y, t) + O(ε2)

and Taylor’s expansion at y = εη to obtain

Uε(x,εη) = U0(x, 0) +εη∂yU0(x, 0) +εU1(x, 0) + O(ε2).

For the inner solution we have the asymptotic expansion

uε(x,ξ , η) = u0(x,ξ , η) +εu1(x,ξ , η) + O(ε2).
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Therefore, by matching, we conclude

lim
η→∞ u0 = U0, (4.4.11)

lim
η→∞ u1 − η∂yU0 + U1 = 0. (4.4.12)

and further using (4.4.12) above,

lim
η→∞ ∂ηu1 = ∂yU0. (4.4.13)

We use the matching conditions for deriving the effective boundary condition below.

4.4.4 The effective boundary condition
Using the matching condition (4.4.13), we obtain

lim
T→∞

∫

Γ(T)
ν0 · ∇u1 =

∂U0

∂y
. (4.4.14)

Use the boundary condition at ΓL to obtain
∫

ΓL

ν0 · ∇u1 =
∫

ΓL

f (u0, h0)(1−
u0

ρ
) . (4.4.15)

The fact that u0 = u0(x, t) and the matching condition (4.4.11) imply u0 = U0. This
leads to

∫

ΓL

ν0 · ∇u1 =
∫

ΓL

f (U0, h0)(1−
U0

ρ
). (4.4.16)

The equations (4.4.15) and (4.4.16) together with (4.4.10) provide us the effective bound-
ary condition

∂U0

∂y
=
∫

ΓL

f (U0, h0)(1−
U0

ρ
).

Note that ΓL is a function of time t and using parametrization of the boundary, we have

∫

ΓL

f (U0, h0)(1−
U0

ρ
) = f (U0, h0)(1−

U0

ρ
)
∫ 1

0

√
1 + (∂ξh0)

2dξ .

For the movement of the boundary, using (4.2.8) for the leading order term h0 and using
the assumption that ρ is of order O(1/ε), we have

∂th0 = f (U0, h0)
√

1 + (∂ξh0)
2.
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Recalling that Ω = (0, 1)2 and the definition of ΓL in (4.4.9), the upscaled equations
become,

∆Q0 = ∇P in Ω, (4.4.17)

∇ ·Q0 = 0 in Ω, (4.4.18)

∂tU0 − ∆U0 + Q0 · ∇U0 = 0 in Ω, (4.4.19)

Q0 = 0 at y = 0, (4.4.20)

∂U0

∂y
=
∫ 1

0
f (U0, h0)(1−

U0

ρ
)
√

1 + (∂ξh0)
2dξ at y = 0, (4.4.21)

∂th0 = f (U0, h0)
√

1 + (∂ξh0)
2 for t > 0, x ∈ (0, 1),ξ ∈ (0, 1).

(4.4.22)

4.5 Numerical simulations

To study the approximation of the upscaled equations to the original equations, we
make the following choices for the geometry. Initially, Γε(t = 0) is defined as follows:

Γε = {(x, y) : x ∈ (0, 1) y = ε sin(2π
x
ε
)}

and we conduct the numerical experiments for different ε. We choose a linear rate for
the reaction, specifically,

f (u, h) = ku,

and choose ρ = 50 so that 1
ρ

is of order ε. This ensures that the deposition profile retains
the roughness of the boundary. Furthermore, for the equations, we choose the following
parameters:

k = 0.5; q(0, y, t) = 10(y− h(0, t))(1− y)e1.

For the computations for (4.2.1)-(4.2.3), we use finite element method with BDF time
stepping for solving the equations. Since, the geometry changes with time, we use the
Arbitrary Lagrangian Eulerian (ALE) method to solve the problem on a moving do-
main. This method is a generalization of Eulerian and Lagrangian descriptions of the
free boundaries. We use ALE method as implemented in the COMSOL Multiphysics
package [64], with Laplacian smoothing [42]. For more details on ALE method we refer
to [42].

For the upscaled equations (4.4.19) with the boundary condition (4.4.21), we use finite
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difference with implicit in time for the diffusion and convection term and explicit time
stepping for the reaction term. Note that for the upscaled geometry, we have an ex-
plicit solution for Stokes equation (4.4.17),(4.4.18) under the given conditions, namely,
the parabolic inlet profile and no-slip boundary conditions on the lateral flat boundaries
(4.4.20);

Q0 = 10y(1− y)e1.

Also, for (4.4.22) we use time-explicit discretization. For the sake of convenience, as the
geometry is simple, we implement the scheme in Matlab [90].

For the numerical simulations, we consider the following situations.

4.5.1 Concentration at the boundary

We compute the full solution for ε = 0.1, 0.04, 0.02 and plot uε and u at the boundary
Γε and y = 0 boundary of Ω respectively at t = 0.5. The plot is shown in Figure 4.2.
Due to the oscillations in the boundary, we have the boundary layer and the maximum
error takes place at the boundary itself. We compute the concentration at the oscillating
boundary for given ε and then plot it against the upscaled concentration u at y = 0. Be-
cause of the oscillating boundary, the concentration has an oscillating profile while the
upscaled concentration has a monotonic profile; however, as ε decreases, uε converges
to u.

4.5.2 Error at the boundary

Next, we consider the L2(0, 1) error at the boundary at t = 0.5. Specifically, we propose
the following convergence rate for the error

‖uε − u‖L2(0,1) ≤ Cεα .

Numerical experiments show the following results:

Where we compute

α(i) =
log(error(i))− log(error(i− 1))

log(ε(i))− log(ε(i− 1))
, i = 2, . . . , 5.
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In Table 4.1 we give the values of the error as well as the convergence rate α computed
from the preceding formula. The convergence rate is close to ε and this is expected as
for linear reaction rates, H1 convergence in Ω is of the order

√
εwhich suggests that we

expect a better rate than
√
ε for L2 at the boundary.

4.5.3 Mass balance: full vs upscaled

Further, we compare the mass balance for the full model with the upscaled model. We
define

ū(x) :=
1
ε

∫ εb x
ε
c+ ε

2

εb x
ε
c− ε

2

uεds

Observe that ū provides information regarding the average concentration (and hence
the flux) into one periodic unit for εmodel. We compare this with the upscaled equation
in Figure 4.3. We note that as ε decreases, the mass balance for the ε model tends to the
upscaled one. The agreement is very good for small ε which indicates the quality of
upscaling. Also, the mass balance suggests that in one periodic unit, the net amount of
flux in the upscaled model approximates very well to the ε model which means that by
defining a cell problem with this flux provides how to compute the deposition profile.

4.5.4 Deposition profile

The upscaled model also provides information about the deposition profile. The solu-
tion to (4.4.22) gives h0 which after suitable rescaling is compared to hε. The deposition
profile for the upscaled equation approximates that of the ε model and the error is of ε
order. The corresponding plot is shown in Figure 4.4.

4.6 Conclusions

We have used formal asymptotic arguments to derive the upscaled equations. The
model defined in a geometry with oscillating boundary is approximated by a model
defined in a simpler geometry with flat boundaries. Also, the geometry changes due to
the reactions taking place at the oscillating boundary have been incorporated. In the up-
scaled model, the geometry changes lead to time-dependent boundary condition. For
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Figure 4.2: Concentration profiles at the boundary for different ε at t = 0.5.

ε 0.1000 0.0800 0.0600 0.0400 0.0200
error 0.0880 0.0770 0.0604 0.0415 0.0242
α 0.5984 0.8440 0.9256 0.7781

Table 4.1: Table for L2 error for the concentrations.
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Figure 4.3: Mass balance for different ε at t = 0.5. The average concentration is ū.
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Figure 4.4: The deposition profiles for both the upscaled model and the original ε model for
ε = 0.02. In broken line is the original model while the solid represents the upscaled model.

the flow problem, we derived upscaled equations for both the leading order and the
next order approximations. For the leading order, the no-flow boundary condition at
the oscillating boundary is approximated by homogeneous Dirichlet boundary condi-
tion; however, in the first order effect, the upscaled boundary condition is of slip-type
with the slip parameter α implicitly dependent on time t because of the changes in ge-
ometry.

For the transport equation, the approximation model retains the equation inside the
domain but with a modified boundary condition. This boundary condition takes into
account the geometry of the ε−dependent model. For the numerical experiments, we
compute the solutions for different ε and then compare the approximate solution. As ε
decreases, we see that the upscaled model approximates the original model pretty well.
For the concentration at the boundary, for the original problem, the profile is oscillating
while for the upscaled model, the profile is monotonic. However, as ε decreases, the
approximations for the concentrations at the boundary are excellent. Further, we have
investigated the convergence of L2 error for the concentrations at the boundary and we
find that the order is ε. Also, the upscaling process provides a good approximation for
the deposition profile.

The quality of upscaling as evidenced by the numerical experiments provides a con-
vincing argument for using these upscaling techniques instead of solving the original
problem in a complex geometry.



Chapter 5

Reactive flow in a thin strip

We consider a pore-scale model for reactive flow in a thin 2D strip, where the convective
transport dominates the diffusion. Reactions take place at the lateral boundaries of the
strip (the walls), where the reaction product can deposit in a layer with a non-negligible
thickness compared to the width of the strip. This leads to a free boundary problem, in
which the moving interface between the fluid and the deposited (solid) layer is explic-
itly taken into account. Using asymptotic expansion methods, we derive an upscaled,
one-dimensional model by averaging in the transversal direction. The result is con-
sistent with (Taylor dispersion) models obtained previously for a constant geometry.
Finally, numerical computations are presented to compare the outcome of the effective
(upscaled) model with the transversally averaged, two dimensional solution.

5.1 Introduction

We consider a pore-scale model for reactive flows in porous media. A fluid flowing
through the void space of the medium (the pores) transports some dissolved ions. Re-
actions can take place at the pore walls, with the resulting component being attached
to or detached from the pore walls. Two situations can be identified in this case. In the
first situation, we assume that the reaction product forms a very thin layer that does not
influence the pore space and the pore-scale models are written in a fixed geometry. Al-
ternatively, one assumes that the thickness of the deposited layer is not negligible when
compared to the pore thickness, particularly when thin pores are considered. Then the
reactions can lead to variations in the pore space, and hence in the flow domain. The

This chapter is a collaborative work with Tycho van Noorden and Sorin Pop and it has been published in
SIAM Multiscale Model. Simul. 9(1):2958, 2011.
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interface separating this domain from the the solid part is a free boundary having an
unknown, time dependent location. In this chapter, we consider the case with variable
pore space.

The scenario described above is generic. It can be encountered, for example, in crys-
tal precipitation and dissolution (see e.g. [45,47,104–106]), atomic layer deposition [84],
chemical vapor deposition [75] and etching in a heterogenous surface [134, 135], con-
crete carbonation [98, 99] and cement hydration [30] , or biological applications such as
biofilm growth [107] and thrombosis [136].

In practice one is often not interested in the detailed solution on microscale, but only
in the description of the average behavior of the system. In such situation, upscaled
models are very useful as they describe average behavior with relatively low computa-
tional efforts. Considering the 2D strip as a representative pore-scale geometry, by the
upscaled or effective model, we mean the set of equations defined in 1-D, the solution of
which describes the average behavior of the thin strip. These effective equations clearly
depend upon the choice of microscopic model. Moreover, the effective model also de-
pends on the ratio of the time scales for the diffusion and the convective transport,
referred to as Péclet number Pe. For the case of moderate or small Pe, when diffusion
dominates or is in balance with the transport, the situation is well-understood in both
fixed and variable geometry framework (see e.g. [36,45,47,48,58,61,63,101,104–106,125]
and references therein). The present work builds on the the results in [105], where a
model for crystal dissolution and precipitation involving free boundaries is considered
in a thin strip, but for moderate Pe.

Here we consider the case of high Peclét number, Pe >> 1. Then the convective
transport dominates the diffusion and it is observed that the net diffusion is enhanced
by the transport term itself, leading to Taylor dispersion [132]. In the fixed geome-
try case the Taylor dispersion mechanism is investigated in [12, 19, 129]. In the same
context, reactive flow under dominating convective transport or reaction is studied
in [4,31,32,46,93,95,126,137], presenting either a formal derivation of dispersion models,
or rigorous convergence proofs for the upscaling procedure. In a similar context, in [94]
an upscaled model of hyperbolic type is derived, sustained by rigorous mathematical
arguments. In this chapter, we derive upscaled equations for the convection-diffusion-
reaction system for the thin strip taking into account the changes in the geometry of the
microscale in the transport dominated regime. Because of the changes in the geometry,
the flow profile does not remain constant, which is in contrast to the Taylor dispersion
models for the fixed geometry case [46]. As in [46, 105], we employ the asymptotic
expansion method to derive the upscaled flow and concentration equations, and in par-
ticular the Taylor dispersion terms. It is worth noting that restricting only to the leading
order terms leads to an upscaled model of hyperbolic type, and dispersion terms are
lost. Therefore we also take into account the first order correctors, and avoid making a
specific choice of the integration constants, like in the anisotropic singular perturbation
approach (see [129] and [46]). The advantage of such an upscaling is evidenced by the
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numerical experiments. Figure 5.1 shows the comparison of the present upscaled model
named ’Upscaled’ with the other simpler macroscopic models and clearly the upscaled
model derived here provides more accurate description of the average behavior given
by the name 2-D Average. We discuss the details of these numerical experiments and
other macroscopic equations in Section 5.4.

The chapter is organized as follows. The modeling details are provided in Section 5.2,
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Figure 5.1: Concentration profile using different upscaled models

followed by the derivation of the effective model in the case of a variable geometry in
Section 5.3. Section 5.4 provides numerical experiments including comparisons with
other upscaled equations, whereas the Appendix A gives a derivation, using a different
approach, of the upscaled model for the fixed geometry case.

5.2 The mathematical model

We start with the modeling for the two dimensional thin strip of length L [m] and width
` [m]. The thin strip is represented by

Y := (0, L)× (−`, `).

The boundary of the strip consists of three parts: the solid part defined by

Γs := (0, L)× {±`},

the inflow part defined by

Γi := {0} × (−`, `),
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and the outflow defined by

Γo := {L} × (−`, `).

As described above, because of the reactions (attachment/detachment) taking place at
the solid boundaries of the strip, the thickness of the layer attached to the boundary may
change with time. The thickness of this layer is denoted by d(x, t) [m]. For simplicity,
we assume that initially the layer thickness on both the upper and the lower part of Γs

is equal. This implies symmetry with respect to the x- axis. note that for d = `, the thin
strip will be blocked leading to clogging. Separate models are required to treat this case.
Thus, throughout this chapter, to rule out clogging we assume that d(x, t) < `.
Because of the growth of the layers, the pore structure changes, leading to a change in
the flow. We include this effect of change in flow due to the changes in geometry. The

Γg(t)

flow q

d(x, t)
−ν

Ω(t)

y = l

y = −l

x

y

x = 0 x = L

y = 0

Figure 5.2: Reactive flow in 2D thin strip (Pore Geometry), y = 0 is the line of symmetry.

region occupied by the fluid is represented by

Ω(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ L, −(`− d(x, t)) ≤ y ≤ (`− d(x, t))}.

The boundary of Ω(t) contains three parts: the lateral boundary Γg(t) denoting the
interface between the fluid phase and the deposited layer, defined by

Γg(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ L, y ∈ {−(`− d(x, t)), (`− d(x, t))}},

Γi f (t) , the inflow boundary at x = 0 for the flow of the fluid phase ,

Γi f (t) := {(x, y) ∈ R2 | x = 0, −(`− d(0, t)) ≤ y ≤ (`− d(0, t))},

and Γo f (t) the outflow boundary at x = L for the fluid phase,

Γo f (t) := {(x, y) ∈ R2 | x = L, −(`− d(L, t)) ≤ y ≤ (`− d(L, t))}.
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note that Γi f ⊂ Γi, Γo f ⊂ Γo, but Γg and Γs need not to have common points. A sketch of
the geometry is shown in Figure 5.2.
For the solutes in the thin strip, the different processes are diffusion, transport by the
fluid flow, and reactions taking place at the boundaries of the strip. We denote the con-
centration of the solute by u [mol/m3]. The convection-diffusion equation describing
the transport process of the solute concentration is

∂tu = ∇ · (D∇u− qu),

u = ub, on Γi(t), (5.2.1)

∂xu = 0, on Γo(t),

where, ub [mol/m3] is a non-negative constant. D [m2/s] is the diffusion coefficient and
q [m/s] is the flow field.
We assume that reactions such as precipitation and dissolution take place only at the
interface between the fluid and the solid, that is, Γg(t). The corresponding mathematical
description involves the outer normal ν. At the lower part of Γg(t) this is

ν = (∂xd,−1)T/

√
1 + (∂xd)2. (5.2.2)

At the lower part of Γg(t), mass conservation yields

ν · (D∇u− qu) = vn(ρ− u), (5.2.3)

where ρ [mol/m3] is the molar density of the solute in the solid phase (the adsorbed
substance, or the precipitate) and vn is the outward normal velocity of the interface.
Furthermore, the normal velocity of the interface vn [m/s] is proportional to the reaction
rate f = f (u,ρd),

ρvn = − f (u,ρd). (5.2.4)

Here f is a given function assumed to be sufficiently smooth. Similar results can be de-
rived formally even for non-Lipschitz rates like Freundlich isotherms or multi-valued
reaction rates as encountered for dissolution processes. Such rates are used in the nu-
merical computations presented in Section 5.4.
The velocity of a point G(t) = (x(t),−`+ d(x(t), t)) on the lower part of the boundary
Γg(t) is given by

G′(t) = (x′(t), ∂xd(x(t), t)x′(t) + ∂td(x(t), t)).

Then the normal velocity vn becomes

vn = ν · G′(t) = − ∂td√
1 + (∂xd)2

, (5.2.5)
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and (5.2.4) transforms into

ρ∂td = f (u,ρd)
√

1 + (∂xd)2. (5.2.6)

The flow problem is modeled by the Stokes equations,

µ∆q = ∇p, (5.2.7)

∇ · q = 0, (5.2.8)

where p [Pa] is the pressure field and µ [Pa-s] is the dynamic viscosity. At the inlet, we
take a parabolic velocity profile normal to the inlet,

q(0, y, t) = Q((`− d(0, t))2 − y2)e1,

where Q > 0 is a normalisation factor related to the total flow in the x-direction and e1

is the unit vector along the x-axis. For the outlet we prescribe the pressure p = 0.

5.2.1 The dimensionless form

Before seeking for an effective model, we bring (5.2.1)-(5.2.8) to a non-dimensional form.
We introduce therefore the reference time tre f := T, coordinates (xre f , yre f ) := (L, `),
velocity qre f := Q, pressure pre f , and concentration ure f . The reference time is the char-
acteristic convective transport time, satisfying

T =
L
Q

.

We consider the case of thin strips, characterized by the ratio of its width to the length,
ε := `/L, and are interested in the limiting case ε ↘ 0. By an abuse of notation we
define the dimensionless independent variables and parameters

x := x/L, y := y/`, t := t/T, ρ = ρ/ure f ,

and the ε-dependent dimensionless quantities

uε := u/ure f , dε := d/`, qε := q/qre f ,

Pε := p/pre f , D :=
DT
ε−αL2 , µ :=

µLqre f

`2 pre f
.

Remark 5.1 To understand the particular scaling in the dimensionless D we note that
the original diffusion coefficient D, and the length scale L define a diffusion time scale
TD := L2/D. Here we are interested in the convection dominated regime, thus TD >>

T. The ratio of these times is commonly defined as the Péclet number, for which we
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assume
Pe =

TD

T
= ε−α

for some α > 0. We only consider the case 0 < α < 2, which corresponds to the
Taylor dispersion regime. note that applying this strategy for the experiments carried
out by G.I. Taylor [132], the exponent α is close to 1.6 and to 1.9 (see also [46]). The
case α < 0 corresponds to a diffusion dominated flow, and there will be no gradient
in the concentration in the vertical direction. The case α = 0 has been treated in [105].
Whenever α ≥ 2, the gradient of the concentration along the width becomes too large
and other upscaling approaches should be considered.

Remark 5.2 The chemical processes such as adsorption, desorption, deposition, or pre-
cipitation and dissolution, define a characteristic reaction time scale, TR. This can be
interpreted as the time needed to deposit a layer of thickness `. Then one can define the
Damköhler number as the ratio of TR and T. Here we are interested in the regime of a
moderate Damköhler number, thus when TR ≈ T.

In view of the scaling, the derivatives become

∂x 7→
1
L

∂x, ∂y 7→
1
εL

∂y, ∂t 7→
1
T

∂t,

and the geometry is scaled as:

Ωε(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, −(1− dε(x, t)) ≤ y ≤ (1− dε(x, t))}.

The boundaries of Ωε(t) are then defined by the lateral boundary Γεg(t):

Γεg(t) := {(x, y) ∈ R2 | 0 ≤ x ≤ 1, y ∈ {−(1− dε(x, t)), (1− dε(x, t))}},

the inlet boundary Γεi f (t),

Γεi f (t) := {(x, y) ∈ R2 | x = 0, −(1− dε(0, t)) ≤ y ≤ (1− dε(0, t))},

and the outflow boundary Γεo f (t),

Γεo f (t) := {(x, y) ∈ R2 | x = 1, −(1− dε(1, t)) ≤ y ≤ (1− dε(1, t))}.

We use ε as a superscript to emphasize the dependence of the respective variable on ε.
Following (5.2.2), the dimensionless unit normal νε becomes

νε = (ε∂xdε,−1)T/

√
1 + (ε∂xdε)2.
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By (5.2.3), (5.2.4) and (5.2.5), the boundary condition on the lower part of Γεg(t) is trans-
formed into

εαD
(
−ε2

∂xdε∂xuε + ∂yuε
)
= ε2

∂td
ε(ρ− uε), on Γεg(t),

where we have used the no-slip boundary condition for the velocity field at Γεg(t). In
this way, the dimensionless system of equations take the form

∂tu
ε −εαD

(
∂xxuε +

1
ε2 ∂yyuε

)
+ ∂xq(1)εuε +ε−1

∂yq(2)εuε = 0, in Ωε(t), (5.2.9)

∂xq(1)ε +ε−1
∂yq(2)ε = 0, in Ωε(t), (5.2.10)

ε2µ∂xxqε +µ∂yyqε =
(

∂xPε,
1
ε

∂yPε
)T

, in Ωε(t), (5.2.11)

∂td
ε =

√
1 + (ε∂xdε)2 f (uε,ρdε), on Γεg(t) (5.2.12)

εαD
(
−ε2

∂xdε∂xuε + ∂yuε
)
= ε2

∂td
ε(ρ− uε), on Γεg(t), (5.2.13)

qε = 0, on Γεg(t), (5.2.14)

uε(x, y, 0) = u0, in Ωε(0), (5.2.15)

dε(x, 0) = d0(x) in (0, L). (5.2.16)

Remark 5.3 The well-posedness of the above model is in itself a non-trivial research
subject. Nevertheless, this is beyond the scope of the present contribution. Here we
note that the equations are based on physical laws such as the convection-diffusion
equation, Stokes equation and the conservation of mass. This is a natural approach
for the modeling of the advection-diffusion-reactive flows. For smooth reaction rates,
assuming that initially the free boundary is smooth, one may expect sufficient regularity
of the solution, including the free boundary. In this case one can prove the existence and
uniqueness of solution. For a one-dimensional situation, this has been proved in [106].
The delicate part in the rigorous analysis of this model is the regularity of free boundary
and remains open for future considerations.

5.3 Upscaling

To obtain the upscaled equations, we use an asymptotic expansion for pressure, velocity,
concentration and the location of the free boundary. We define the effective quantities to
describe the average behavior of the concentration and the free boundary variable. As
it will be seen below, the leading order terms of the expansion solve an upscaled equa-
tion of hyperbolic type. As the numerical experiments confirm, this hyperbolic model
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does not describe the average behavior in a satisfactory manner, because of (Taylor) dis-
persion effects leading to an enhanced diffusion. To improve the hyperbolic model, we
combine the leading order term and the first order term to define the effective quanti-
ties. Higher order terms are ignored in the expansion. The upscaled equation thereby
obtained is of parabolic type and exhibits features of Taylor dispersion. The average
of the flow profile satisfies a Darcy-type equation with an explicit dependence of the
permeability on the width of the strip.

5.3.1 The case Pe = O(ε−1)

For the sake of presentation, the calculations below are performed for the case α =

1. The general situation, when 0 < α < 2 is analogous and leads to similar results,
provided at the end of Section 5.3.2.
We make the upscaling ansatz:

Pε = P0 +εP1 + O(ε2),

qε(1) = q(1)0 +εq(1)1 + O(ε2),

qε(2) = q(2)0 +εq(2)1 + O(ε2), (5.3.1)

dε = d0 +εd1 + O(ε2),

uε = u0 +εu1 + O(ε2).

We start with the flow problem. Substituting into the Stokes law (5.2.10), (5.2.11) the
expansion for Pε, qε(i) i = 1, 2; where qε(i) = (qε(1), qε(2))T , we obtain

∂x(q
(1)
0 +εq(1)1 ) +ε−1

∂y(q
(2)
0 +εq(2)1 ) = O(ε2),

ε2µ∂xx(q
(1)
0 +εq(1)1 ) + ∂yy(q

(1)
0 +εq(1)1 ) = ∂x(P0 +εP1) + O(ε2),

ε2µ∂xx(q
(2)
0 +εq(2)1 ) + ∂yy(q

(2)
0 +εq(2)1 ) = ε−1

∂y(P0 +εP1) + O(ε2),

We proceed by equating terms of similar order in the equations above. For the ε−1 order
term in Ωε(t), we get

• ε−1 terms

∂yq(2)0 = 0, (5.3.2)

∂yP0 = 0. (5.3.3)
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At y = dε − 1,

qε = 0,

and together with (5.3.2)

q(2)0 ≡ 0. (5.3.4)

Also (5.3.3) implies

P0 = P0(x, t). (5.3.5)

Further, in Ωε(t) we have

• ε0 terms

∂xq(1)0 + ∂yq(2)1 = 0 (5.3.6)

µ∂yyq(2)0 = ∂yP1, (5.3.7)

µ∂yyq(1)0 = ∂xP0. (5.3.8)

• ε1 terms

µ∂yyq(1)1 = ∂xP1. (5.3.9)

Using (5.3.4) and (5.3.7), we conclude P1 = P1(x, t). Combining (5.3.8) and (5.3.9), we
obtain

µ∂yy(q
(1)
0 +εq(1)1 ) = ∂x(P0 +εP1). (5.3.10)

However, the boundary conditions need a careful treatment. To take into account the
terms up to first order, we start with defining the effective quantity describing the free
boundary variable de with

de = d0 +εd1. (5.3.11)

Note that with this definition dε = de + O(ε2). Other effective quantities are defined
below (see (5.3.14)).

Since we are primarily interested in effects that are up to first order in ε, we define the
boundary conditions at y = de − 1. Note that rewriting the boundary conditions at
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de − 1 introduces an error of the order O(ε2). Using the ansatz expansion (5.3.1) and
Taylor expansion around de − 1 provides

0 = qε(x, dε − 1, t) = q0(x, dε − 1, t) +εq1(x, dε − 1, t) + O(ε2),

= q0(x, d0 +εd1 − 1, t) +εq1(x, d0 +εd1 − 1, t) + O(ε2),

= q0(x, de − 1, t) +εq1(x, de − 1, t) + O(ε2). (5.3.12)

Using the boundary condition (5.3.12) at de − 1 and the symmetry condition at y = 0,
(5.3.10) gives

q(1)0 +εq(1)1 = (y2 − (1− de)
2)

∂x(P0 +εP1)

2µ
+ O(ε2). (5.3.13)

The O(ε2) terms are due to the approximation of the boundary condition (5.3.12).
Similar to de, we define the effective quantities

ue(x, t) := u0 +εū1,

q̄e(x, t) :=
∫ 0

de−1
q(1)e (x, y, t)dy, (5.3.14)

Pe(x, t) := P0 +εP1,

where

qe := q0 +εq1 and ū1 :=
1

1− de

∫ 0

de−1
u1(x, y, t)dy.

The definition of ue assumes that u0 = u0(x, t), which will be justified below. Moreover,
as will be shown below q(2)e does not play any role in the upscaled equations, therefore
we define q̄e in terms of q(1)e only. Neglecting higher order terms, (5.3.13) and (5.3.14)
give

q(1)e = (y2 − (1− de)
2)

∂xPe

2µ
.

Integrating q(1)e from the above expression for y over (de − 1, 0) provides,

q̄e :=
∫ 0

de−1
q(1)e dy = −(1− de)

3 ∂xPe

3µ
, (5.3.15)

which may be interpreted as Darcy law for the thin strip case with variable geometry.
Note that the permeability reported in literature [17] is proportional to (1 − de)

2 but
since we integrate the velocity over the thickness of the strip, here we get it propor-
tional to (1− de)

3.

We consider the convection diffusion equation and first average it along the transverse
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direction, and substitute the expansion for variables. Averaging (5.2.9) along the trans-
verse direction gives

∫ 0

dε−1
∂tu

ε −εD(∂xxuε +
1
ε2 ∂yyuε) + ∂x(q

(1)εuε) + ∂y(q
(2)εuε) = 0. (5.3.16)

Exchanging the derivative and the integral in the first two terms gives

∂t

∫ 0

dε−1
uεdy + ∂td

εuε|(y=dε−1) −εD∂x

∫ 0

dε−1
∂xuεdy− (εD∂xdε∂xuε +

D
ε

∂yuε)|(y=dε−1)

+ ∂x

∫ 0

dε−1
q(1)εuεdy

+ (∂xdεq(1)εuε)|(y=dε−1) + q(2)εuε|0(y=dε−1) = 0. (5.3.17)

To simplify the expression above, we use the boundary condition (5.2.13) for the third
term. The last two terms vanish; the last but one term does not contribute due to no-slip
boundary condition whereas the last term is 0 due to both the symmetry condition at
y = 0 and the no-slip boundary condition at y = dε − 1. This leads to

∂t

∫ 0

dε−1
uεdy + ∂td

ερ−εD∂x

∫ 0

dε−1
∂xuεdy + ∂x

∫ 0

dε−1
q(1)εuεdy = 0. (5.3.18)

Substituting the ansatz (5.3.1) in (5.3.18), and retaining the terms up to O(ε), we obtain

∂t

∫ 0

de−1
(u0 +εu1)dy + ∂t(d0 +εd1)ρ−εD∂x

∫ 0

de−1
(∂xu0 +ε∂xu1)dy

+ ∂x

∫ 0

de−1
q(1)0 u0 +ε(q

(1)
0 u1 + q(1)1 u0)dy = O(ε2).

(5.3.19)

Observe that by retaining only two terms of the expansion, in each term of the ex-
pression (5.3.18), the remainder introduces an error of the order O(ε2). Also, changing
the domain of integration from dε − 1 to de − 1 introduces an error of the order O(ε2).
Adding ε2q(1)1 u1 term in the (5.3.19) we obtain up to O(ε2)

∂x

∫ 0

de−1

(
q(1)0 +εq(1)1

)
u0 +ε

(
q(1)0 +εq(1)1

)
u1dy = ∂x

∫ 0

de−1
(q(1)e u0 +εqeu1)dy

= ∂x

{
ue q̄e −εū1 q̄e +ε

∫ 0

de−1
qeu1dy

}

(5.3.20)

The above equation contains the unknown term u1. For computing it, the leading order
term u0 is needed. The ε−1 and ε0 terms for the convection diffusion equation using the
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ansatz expansion (5.3.1) provide

∂yyu0 = ∂yq(2)0 u0, (5.3.21)

∂tu0 − D∂yyu1 + ∂x(q
(1)
0 u0) + ∂y(q

(2)
1 u0) = 0, (5.3.22)

and using (5.3.21) together with symmetry condition at y = 0, we conclude u0 ≡
u0(x, t). Simplifying (5.3.22) using (5.3.6), we obtain

∂tu0 − D∂yyu1 + q(1)0 ∂xu0 = 0. (5.3.23)

As for the flow, we now treat the boundary condition for the convection diffusion equa-
tion. Using (5.2.13) and a Taylor expansion around y = de − 1, we have

0 =
{

D(−ε2
∂xdε∂xuε + ∂yuε)−ε∂td

ε(ρ− uε)
}
|(x,dε−1,t)

=
{

D(−ε2
∂xdε∂xuε + ∂yuε)−ε∂td

ε(ρ− uε)
}
|(x,de−1,t) + O(ε2)

=
{

D(−ε2
∂xd0∂xu0 + ∂yu0 +ε∂yu1)−ε∂td0(ρ− u0)

}
|(x,de−1,t) + O(ε2).

Since u0 = u0(x, t), we conclude

D∂yu1 − ∂td0(ρ− u0)|y=de−1 = O(ε). (5.3.24)

Integrating (5.3.23) over y from de− 1 to 0 and use the symmetry condition at y = 0 and
boundary condition at y = de − 1 to get the compatibility condition

(1− de)∂tu0 + ∂td0(ρ− u0) +
∫ 0

de−1
q(1)0 ∂xu0dy = O(ε). (5.3.25)

The above equation provides the leading order solution for the convection-diffusion
equation. However, as remarked earlier, to improve the upscaled model we also include
the first order term. To do so, we multiply (5.3.23) by 1− de and subtract from (5.3.25)
and then integrating twice, first from 0 to y and then from de− 1 to y using the symmetry
conditions at y = 0,

∂td0
(ρ− u0)y2

2
+ (1− de)Du1 + (

(1− de)
3 y2

6
− (1− de)y4

12
)

∂xP0

2µ
∂xu0 + C(x, t) = O(ε),

(5.3.26)
where C(x, t) is a constant of integration. Disregarding O(ε) terms, u1 is given by

u1 =
−C

D(1− de)
+

Ξ(y)
D(1− de)

+ O(ε),
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where Ξ(y) is defined as

Ξ(y) = −∂td0(ρ− u0)
y2

2
−
{
(1− de)

3 y2

6
− (1− de)y4

12

}
∂xP0∂xu0

2µ
. (5.3.27)

Straightforwardly

∫ 0

de−1
Ξ(y)dy =

(1− de)
3

180

{
−30∂td0(ρ− u0)− 7

(1− de)
3

2µ
∂xP0∂xu0

}
, (5.3.28)

and hence

ū1 =
1

1− de

{
−C
D

+
(1− de)

2

180D

{
−30∂td0(ρ− u0)− 7(1− de)

3 ∂xP0∂xu0

2µ

}}
+ O(ε),

(5.3.29)
where ū1 is defined in (5.3.14). The last term in (5.3.20) becomes

∫ 0

de−1
q(1)e u1dy =

∫ 0

de−1
(y2 − (1− de)

2)
∂xPe

2µ

{ −C
D(1− de)

+
Ξ(y)

D(1− de)

}
dy + O(ε).(5.3.30)

Clearly

∫ 0

de−1
(y2 − (1− de)

2)Ξ(y)dy =
(1− de)

5

630

{
42∂td0(ρ− u0) + 11(1− de)

3 ∂xP0

2µ
∂xu0

}
.

(5.3.31)

Using (5.3.28),(5.3.30) , (5.3.31), and (5.3.20) give

∂x

{
ue q̄e −εū1 q̄e +ε

∫ 0

de−1
q(1)e u1dy

}

= ∂x(ue q̄e)

− ε

1− de
∂x

{
−∂xPe

3µ
(1− de)

3

{
−C
D

+
(1− de)

2

180D

{
−30∂td0(ρ− u0)− 7(1− de)

3
∂xu0

∂xP0

2µ

}}}

+ε∂x

{
C
D

∂xPe

3µ
(1− de)

2 +
(1− de)

4

630D
∂xPe

2µ

{
42∂td0(ρ− u0) + 11(1− de)

3
∂xu0

∂xP0

2µ

}}
+ O(ε)

= ∂x

{
ue q̄e +ε

∂xPe

Dµ

{
− 1

45
(1− de)

4
∂td0(ρ− u0) + (− 4

945
)(1− de)

7 ∂xPe

2µ
∂xu0

}}
+ O(ε).
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Hence, the averaged equation reads

∂t

∫ 0

de−1
(u0 +εu1)dy + ∂t(d0 +εd1)ρ−εD∂x

∫ 0

de−1
(∂xu0 +ε∂xu1)u1dy

+∂x

∫ 0

de−1
q(1)0 u0 +ε(q

(1)
0 u1 + q(1)1 u0)dy = O(ε2). (5.3.32)

Recalling (5.3.14), this translates into

∂t((1− de)ue) + ∂t(deρ)−εD∂x((1− de)∂xue)

+ ∂x

{
ue q̄e +ε

∂xPe

Dµ

{
− 1

45
∂td0(ρ− u0)(1− de)

4 − 4
945

(1− de)
7
∂xu0

∂xPe

2µ

}}
= O(ε2).

For de formally by using Taylor expansion of f (uε, dε) around (ue, de)

∂tρde = f (uε,ρdε)

= f (u0 +εū1,ρ(d0 +εd1)) +ε(u1|y=de−1 − ū1)∂1 f (u0 +εū1,ρ(d0 +εd1)) + O(ε2)

= f (ue,ρde) +ε(u1|y=de−1 − ū1)∂1 f (ue,ρde) + O(ε2). (5.3.33)

By (5.3.26) and (5.3.29) we have

u1|y=de−1 − ū1 = (1− de)

{
− 1

3D
(ρ− ue)∂tde +

1
15D

εq̄e∂xue

}
+ O(ε),

where we have used the Darcy law (5.3.15). Hence the upscaled equation for ∂tde be-
comes

∂t(ρde) = f (ue,ρde) +ε(1− de)

{
− 1

3D
(ρ− ue)∂tde +

1
15D

q̄e∂xue

}
∂1 f (ue,ρde) + O(ε2).

(5.3.34)

For convenience, we write at one place, the upscaled equations, equations (5.3.15),(5.3.32)
and (5.3.34),

q̄e = −(1− de)
3 ∂x Pe

3µ + O(ε2),

∂t((1− de)ue + deρ) = ∂x

{
−ue q̄e +ε(1− de)D(1 + 2q̄2

e

105D2 )∂xue −ε q̄e
15D ∂tde(ρ− ue)(1− de)

}

+O(ε2),
∂t(ρde) = f (ue,ρde) +ε(1− de)

{
− 1

3D (ρ− ue)∂tde +
1

15D q̄e∂xue
}

∂1 f (ue,ρde)

+O(ε2).

To eliminate the pressure from the first equation, we take a small slice of the half-strip
of length δx, denoted by

Y = {(v, w) | x1 ≤ v ≤ x1 + δx, |w| ≤ (1− de)}.
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The continuity equation and the divergence theorem give

0 =
∫

Y
∇ · qε =

∫ 1−de

−(1−de)
q(1)e |x=x1+δxdy−

∫ 1−de

−(1−de)
q(1)e |x=x1

dy + O(ε2),

where we have used the no-slip boundary condition to make the boundary terms on the
lateral surface equal to 0. Dividing by δx, and then taking the limit δx→ 0, we obtain

∂x q̄e = O(ε2).

Hence the upscaled system of equations after neglecting O(ε2) terms from the effective
equations for q̄e, ue, de become

∂x q̄e = 0,

∂t((1− de)ue + deρ) = ∂x

{
−ue q̄e +ε(1− de)D(1 +

2q̄2
e

105D2 )∂xue −ε
q̄e

15D
∂tde(ρ− ue)(1− de)

}
,

∂t(ρde) = f (ue,ρde) +ε(1− de)

{
− 1

3D
(ρ− ue)∂tde +

1
15D

q̄e∂xue

}
∂1 f (ue,ρde).

Remark 5.4 To compare the upscaled model for the variable geometry with that in the
fixed geometry case, we refer to [46], where the following system is derived (also see
the Appendix A for an alternative approach)

∂t(ue + ve) = ∂x

{
−ue q̄e +εD(1 +

2q̄2
e

105D2 )∂xue −ε
1

15
q̄e

D
f (ue, ve)

}

(1 +ε
1

3D
∂1 f (ue, ve))∂tve = f (ue, ve) +ε

q̄e

15D
∂xue∂1 f (ue, ve).

Following the ideas in [105], where in the case Pe = O(1) the fixed geometry case is
obtained as the limit of a variable geometry model, we assume that de ↘ 0(ρ → ∞)

whereas ρde → ve. Then the upscaled equations for the variable geometry case reduce
to that of the fixed geometry case.

5.3.2 The case Pe = O(ε−α)

In Section 5.3.1, we have only considered the case α = 1. This choice was made strictly
for the ease of presentation. However, other scalings may be required for different ap-
plications. For example, bringing the experiments carried out by Taylor [132] to a di-
mensionless model leads to either α = 1.6, or α = 1.9 (see [46]). Nevertheless, the
asymptotic expansion procedure in the previous section can be extended to the case
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α ∈ (0, 2), but with a slightly different expansion:

Pε = P0 +εP1 + O(ε2),

qε(1) = q(1)0 +εq(1)1 + O(ε2),

qε(2) = q(2)0 +εq(2)1 + O(ε2),

dε = d0 +ε
2−αd1 + O(ε2(2−α)),

uε = u0 +ε
2−αu1 + O(ε2(2−α)).

For α ≥ 2 we enter into the turbulent mixing regime, and the approach considered in
this chapter fails.

Following the steps outlined in the Section 5.3.1, analogous to (5.3.19) we obtain

∂t

∫ 0

dε−1
(u0 +ε

2−αu1)dy + ∂t(d0 +ε
2−αd1)ρ−εαD∂x

∫ 0

dε−1
(∂xu0 +ε

2−α
∂xu1)dy

+∂x

∫ 0

dε−1
q(1)0 u0 + (ε2−αq(1)0 u1 +εq(1)1 u0)dy = +O(ε3−α).

(5.3.35)

and the last term in the above can be expressed similarly to (5.3.20)

∂x

∫ 0

de−1

(
q(1)0 +εq(1)1

)
u0 +ε

2−α
(

q(1)0 +εq(1)1

)
u1dy = ∂x

{
ue q̄e −ε2−α ū1 q̄e +ε

2−α
∫ 0

de−1
q(1)e u1dy

}
.

(5.3.36)

Defining the effective quantities as

de := d0 +ε
2−αd1,

ue := u0 +ε
2−α〈u1〉,

q̄e =
∫ 0

de−1
q(1)e (x, y, t)dy,

Pe := P0 +εP1,

where,

qe := q0 +εq1, and 〈u1〉 =
1

1− de

∫ 0

de−1
u1(x, y, t)dy,

the upscaled equations are

∂x q̄e = 0,

q̄e = −
(1− de)

3

3µ
∂xPe.
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∂t((1− de)ue + deρ) = ∂x {−ue q̄e}

+ ∂x

{
εα(1− de)D(1 +ε2(1−α) 2q̄2

e

105D2 )∂xue

}

+ ∂x

{
−ε2−α q̄e

15D
∂tde(ρ− ue)(1− de)

}
,

∂t(ρde) = f (ue,ρde)

+ε2−α(1− de)

{
− 1

3D
(ρ− ue)∂tde +

1
15D

q̄e∂xue

}
∂1 f (ue,ρde)

It is again to be observed that Darcy equation is retrieved by upscaling of the flow field
and for the simple geometry of the strip, we obtain an explicit characteristic dependence

of the permeability on the geometry, namely (1−de)
3

3 .

The traveling wave solution approach for the upscaled equations in the case of moderate
Peclét number has been studied in [105]. For the fixed geometry situation, a detailed
analysis has been carried out in [45]. The analysis for the present, variable geometry
model is a subject of future consideration.

5.4 Numerical validation

For the numerical experiments, we consider the case of crystal precipitation and disso-
lution. For this case, the reaction rate function f (u, v) is given by

f (u, v) = k(rp − rd),

where rp and rd denote respectively the precipitation and dissolution rates. Here we
take rp = r(u) = u, whereas for rd we follow [45] and choose rd = 1

2 H̃(v), with H̃(·)
denoting the Heaviside graph. Since the reaction rate in this form is multivalued, we
use a regularized form H(·) defined as,

H(v) =





0, v < 0,
v
δ

, 0 < v < δ,

1, v > 0,

where, for instance, δ = o(ε).

For comparison purposes, different macroscopic equations can be considered.
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5.4.1 Hyperbolic Model

The first one is obtained by asymptotic expansion as carried out in the previous section,
but considering only the leading order term. This involves a hyperbolic equation for
the solute,

∂x q̄e = 0, (Hyperbolic)

∂t((1− de)ue + deρ) = ∂x {−q̄eue} , (5.4.1)

∂t(ρde) = k(r(ue)− H(ρde)).

We will refer this model as ”Hyperbolic” for the numerical computations.

It is relevant to mention here that the Hyperbolic model is named only to indicate that
the diffusion term is absent. This is different from the hyperbolic model some authors
have used to denote the upscaled model containing mixed second order derivative term,
see e.g. [94].

5.4.2 Simple Averaging

Next, a straightforward upscaling by transverse averaging provides an effective model
that does not include the dispersion term, but only the original parabolic terms. Fur-
thermore, for the chemical reactions we obtain a straightforward model. This effective
model will be named in what follows as ”Simple Averaging”.

∂x q̄e = 0, (Simple Averaging)

∂t((1− de)ue + deρ) = ∂x {−ue q̄e +ε(1− de)D∂xue} , (5.4.2)

∂t(ρde) = k(r(ue)− H(ρde)).

5.4.3 Upscaled Model

Finally, we use the upscaled model derived for the variable geometry case:

∂x q̄e = 0, (Upscaled)

∂t((1− de)ue + deρ) = ∂x

{
−ue q̄e +ε(1− de)D(1 +

2q̄2
e

105D2 )∂xue −ε
q̄e

15D
∂tde(ρ− ue)(1− de)

}
,

(5.4.3)

∂t(ρde) = k(r(ue)− H(ρde)) +ε(1− de)

{
− 1

3D
(ρ− ue)∂tde +

1
15D

q̄e∂xue

}
k.
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Henceforth, for the numerical computations, we name it as ” Upscaled”.

5.4.4 2-D Average

To compare the upscaled equations with the average of the solution of microscopic
equations, we first compute the full solution of the system of equations (5.2.9) - (5.2.14)
with the given initial data. To obtain the 2-D average, we compute

ū =
1

2(1− dε)

∫ (1−dε)

−(1−dε)
uεdy. (5.4.4)

The above computed quantity ū is referred to as the 2-D average concentration. This
together with the free boundary variable dε constitute ”2-D Average”.

5.4.5 Numerical Computations

For computations on the microscale model equations (5.2.9)-(5.2.14), we use the Arbi-
trary Lagrangian Eulerian (ALE) method. This method can be used to solve the partial
differential equations on a moving domain and is a generalization of Eulerian and La-
grangian descriptions of the free boundaries. We use the ALE method as implemented
in the COMSOL Multiphysics package [64], with Laplacian smoothing [42]. We refer
to [42] for more details and survey of the ALE methods.

The computations are carried out for different values of D and ε. The solution of the full
2D model (microscopic model equations (5.2.9)-(5.2.14)) is approximated by a BDF time
stepping combined with a finite element method (FEM). Further, the (numerical) solu-
tions of the different upscaled models namely ”Hyperbolic (5.4.1), Simple Averaging
(5.4.2), Upscaled (5.4.3)” described above (the concentration ue and the free boundary
variable de) are compared at certain times with the transversal average of the concentra-
tion ū (5.4.4), as well as the free boundary variable dε for the 2D strip.
The numerical computations for the 2D strip are assuming an initial equilibrium situ-
ation, meaning that no precipitation or dissolution is encountered. In the specific sit-
uation considered here, the equilibrium is achieved for u = 0.5 when rp = 1

2 H(v),
meaning that the precipitation and the dissolution rates are equal. This situation is per-
turbed by imposing the concentration 0 at the inlet. We also assume that initially the
system includes a deposition layer of thickness dI at the lateral boundaries. The inlet
flow profile is assumed parabolic, and the total water flux into the system is 2ε(1− dI)q̄e.
Since the fluid flowing in has a low concentration of solute, dissolution will take place
at the lateral boundary beginning from the inlet boundary side. Also, the strip becomes
wider as the dissolution proceeds. Starting with a width 2ε(1 − dI), after having dis-
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solved the entire precipitate the strip becomes 2ε wide.

For the numerical experiments, we take the following values: q̄e = 1; L = 1; k =

1;ρ = 1, whereas the initial solute concentration and layer thickness are u(x, 0) =

0.5 and d(x, 0) = dI = 0.2.
We consider four situations. First we show that all three upscaled models agree well
when ε tends to 0. Second, we fix ε, q̄e and D and vary α, which basically means vary-
ing the diffusion εαD. This provides information regarding the differences in results of
different upscaled models with respect to variations in the value of α. Accordingly, it
can be used to make informed choices for the upscaled equations for given parameters
of α, ε, q̄e and D. Next, we fix D, q̄e, α, and vary ε to study the comparisons of the
upscaled models with the 2D strip. Finally, we provide the comparison with the fixed
geometry and the variable geometry upscaled equations and show that the choice of the
appropriate upscaled models is dictated essentially by ρ.

Figure 5.3: Time snapshots showing the dissolution process taking place in the thin strip at
different times, the top figure is at t = 0.02 and the bottom one is at t = 1. The parameter
values are ε = 0.1 D = 0.3, α = 1.5, q̄e = 1 d(x, 0) = 0.2. Note that the dissolution
process starts at the left end and the width of the strip increases gradually as the dissolution front
is moving to the right. The initial thickness of the strip is 0.08 and the final thickness after the
dissolution process has finished, is 0.1.

Figure 5.3 is the snapshot for different times for the dissolution process taking place in
a thin half-strip. Close to the beginning, at t = 0.02, the strip has almost uniform con-
centration in the strip and the dissolution process starts taking place from the left end
(x = 0, y = d− ε), and this process continues until the entire precipitate is dissolved.
At y = 0 symmetry conditions are used; therefore no changes in the geometry are en-
countered there.
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Figures 5.4 and 5.5 illustrate the convergence of the different upscaled models Simple
Averaging (5.4.2) and Upscaled (5.4.3) to the hyperbolic model (5.4.1) as ε→ 0. Letting
ε decrease, it is easy to check formally that all upscaled models reduce to the hyperbolic
model.

Further, the numerical results forα = 1 andα = 1.5 are compared in Figure 5.6 (present-
ing the concentration profiles) and 5.7, where the free boundary variable d is presented.
As can be clearly observed, the effective model derived in Section 5.3.2 performs better
than the simple averaging or the hyperbolic model.

For ε = 0.01, the 2D averaged concentration profile is compared to the effective con-
centrations in Figure 5.8. Similarly, in Figure 5.7 the corresponding free boundaries d
are compared. Again, the effective model derived here outperforms the other upscaled
models.

5.4.6 Fixed geometry versus variable geometry

When the changes in the geometry on the pore scale are ignored, we refer it as the fixed
geometry case. The upscaling for the fixed geometry as mentioned in remark above
leads to the following system of equations.

∂t(ue + ve) = ∂x

{
−ue q̄e +εD(1 +

2q̄2
e

105D2 )∂xue −ε
1

15
q̄e

D
f (ue, ve)

}
(Fixed Geometry)

∂tve = f (ue, ve) +ε(−
1

3D
∂tve +

1
15D

q̄e∂xue)∂1 f (ue, ve). (5.4.5)

To understand when it becomes important to take into account the variable geometry,
we compare the solutions of Upscaled (5.4.3) model (for α = 1) with the solutions of
(5.4.5) for different values of ρ (density of salt in the crystal). In Figures 5.9 and Figure
5.10 the concentration, respectively the free boundary for the upscaled models in the
fixed geometry, respectively variable geometry are compared. We see that as ρ = 10, the
solutions do not differ much whereas for ρ = 1 case clearly indicates that the changes
in the geometry can not be ignored and must be taken into account. We see that as
ρ increases the difference between the two models reduce. This is consistent with the
observation that in the limit ρ ↘ ∞, the variable geometry case reduces to the fixed
geometry case. This comparison provides us useful criterion to decide if the changes in
the pore geometry can be ignored.
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5.5 Conclusion and outlook

In this chapter, we have derived an upscaled model for the reactive flow in a thin strip,
in the case of a dominating convective transport. For simplicity, the model is presented
in the case of a simple, two dimensional domain (a strip), but takes into account the
changes in the microscale geometry that are due to the reactions taking place at the
lateral boundaries (the pore walls). The effective model involves a dispersion term that
is similar to the Taylor dispersion, whereas the transport is enhanced by reactions.

In deriving the effective equations we use formal asymptotic methods. The theoretical
derivation is sustained by numerical computations, which are carried out in different
cases. In all cases the results provided by the upscaled model derived here are compared
with the ones obtained by other, simpler upscaled models, and with the (transversal)
average of the solution to the full problem. Specifically, the following situations are
considered:

• ε, the ratio of the width of the strip and its length, is moderate or small.

• Pe, the ratio of the diffusive time scale and of the convective one, is of order ε−1,
or larger (e.g. ε−1.5).

• ρ, the ratio of the density of an element in the adsorbed substance, and the solute
density is moderate, or high.

The following conclusions can be drawn:

• The effective model derived here provides results in excellent agreement with the
averaged, solutions of the original problem.

• If ε is moderately small, the present upscaling outperforms other (simpler) mod-
els; if ε becomes very small, all models provide similar results. Therefore the
present approach is recommended in intermediate regimes.

• The upscaling strategy works for Pe = O(ε−α), whenever α ∈ (0, 2). The present
model clearly outperforms simpler effective models asα is increasing.

• Taking into account the changes in the pore geometry is justified especially for
moderate values of ρ. In this case, any quantity of adsorbed material leads changes
in the void space that cannot be neglected. As ρ increases, the differences between
the effective solutions obtained in variable, respectively fixed geometries, are van-
ishing.

The particular pore structure considered here, a thin strip, may be seen as a represen-
tative but simplified pore geometry of a porous medium. However, applying a similar
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upscaling procedure as here, but for a realistic porous media remains a challenging
task. Furthermore, giving mathematically rigorous estimates of the errors involved in
this upscaling process remains an open question.
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Figure 5.4: Convergence of concentration profiles using different upscaled models for varying
ε = 0.1, 0.01, 0.001, 0.0001, D = 0.5, α = 1, q̄ = 1. The nomenclature refers to: Simple
Averaging (5.4.2), Upscaled (5.4.3), Hyperbolic (5.4.1).
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Figure 5.5: Convergence of free boundary location d profiles using different upscaled models for
varying ε = 0.1, 0.0001, D = 0.5, α = 1, q̄e = 1
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Figure 5.6: Comparison of concentration profiles using different upscaled models for varyingα,
D = 0.3, ε = 0.1, q̄e = 1.
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Figure 5.7: Comparison of free boundary variable d using different upscaled models for varying
α, D = 0.3, ε = 0.1, q̄e = 1.The nomenclature in the legend stands for: 2-D Average (5.4.4),
Simple Averaging (5.4.2), Upscaled (5.4.3), Hyperbolic (5.4.1).
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Figure 5.8: Comparison of concentration profile and the free boundary variable d using different
upscaled models for ε = 0.01 , D = 0.3, α = 1.5, q̄e = 1; to compare with ε = 0.1, see
Figure 5.6(b) and Figure 5.7(b)
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Figure 5.9: Comparison of concentration profiles using upscaled models for variable geometry
and fixed geometry, D = 0.3, α = 1, q̄e = 1
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Figure 5.10: Comparison of ρd for variable geometry and v for the fixed geometry, D =
0.3, α = 1, q̄e = 1





Chapter 6

Homogenization of a pore-scale
model

This chapter discusses the homogenization approach to derive the upscaled equations
for reactive flows in a periodic medium. We define a sequence of microscopic solu-
tions uε and obtain the upscaled equations as the limit of ε ↘ 0. We adopt the 2-scale
framework to achieve this. The challenges are in dealing with the low regularity of
microscopic solutions and particular non-linearities in the reaction term. This chapter
closes the gap of the rigorous transition from the pore scale model given in [47] to the
heuristically proposed macroscopic model in [73].

6.1 Introduction

In this chapter, we employ rigorous homogenization techniques to derive an effective
model for dissolution and precipitation in a complex (porous) medium. At the micro
scale, the medium consists of periodically repeating solid grains surrounded by voids
(the pores). The pore space is completely filled by a fluid (e.g. water), which is flowing
around the grains and by this transporting solutes, e.g. ions of species that are dissolved
in the fluid. The solutes may further diffuse in the fluid, whereas at the the grain sur-
face, they may precipitate and form a thin layer of an immobile species (salt) attached
to the grain boundary. The reverse process of dissolution is also possible.

This chapter considers the micro (pore) scale model in [47], where the existence and

This chapter is a collaborative work with Maria Neuss-Radu and Sorin Pop.
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uniqueness of a solution are proved. Using homogenization techniques, here we give
a rigorous derivation of the macro (core) scale counterpart. For the resulting upscaled
model existence and uniqueness is obtained. One important assumption is that the layer
of the species attached to the grain boundaries (the precipitate) is very thin when com-
pared to the pore thickness, so eventual changes in the the geometry at the pore-scale
can be neglected, allowing to decouple the equations modelling the flow from those
describing the chemical processes. This assumption is justified whenever the density
of the deposited layer is very large when compared to the typical density of the solute
(see [75, 104, 105]). These papers consider the alternative approach, where the precipi-
tate layer induces non-negligible changes in the pores, leading to a model involving free
boundaries at the micro scale.

The precipitation process, which is encountered at the boundary of the grains is mod-
eled by a rate function that is monotone and Lipschitz continuous with respect to the
solute concentrations, this being consistent with the mass action kinetics. For the disso-
lution, at sites on the grain boundary where precipitate is present, it will be dissolved at
a constant rate. A special situation is encountered when no precipitate is present at one
site, when certainly no dissolution is possible. However, precipitation (thus an effec-
tive gain in the immobile species) is only possible when the corresponding rate exceeds
a certain threshold value (the solubility product), when the fluid is ”oversaturated”.
In the ”undersaturated” regime, encountered when the precipitation rate is below the
solubility product, no effective gain in the precipitate is possible. This can be seen as
an instantaneous dissolution of any precipitate formed in the undersaturated regime,
so the effective result of these processes encountered at the smallest time scale is null.
In other words, the precipitation rate is in balance with the dissolution rate. The two
regimes, oversaturation and undersaturation, are separated by the solubility product,
which is an equilibrium value. In this case neither precipitation, nor dissolution is en-
countered. Note that the undersaturated regime is encountered for any value of the
precipitation rate that is below the solubility product. This means that at sites where no
precipitate is present, the dissolution rate should take a value between 0 (no dissolution)
and the equilibrium one (the solubility product). To model this situation, we define the
dissolution rate as a member of a multi-valued graph (a scaled Heaviside graph).

The macro (core) scale model for the present problem has been proposed in [73] and
further discussed in [43–45]. Its pore scale counterpart has been analyzed in [47], where
the core scale model has been derived rigorously by a transversal averaging procedure.
In a similar context, but for the case when free boundaries are encountered at the pore
scale due to dissolution and precipitation, upscaled models are derived formally in [105]
for moderate Peclét numbers and in [75] for the dominated transport regime, leading
to a Taylor dispersion type model (see also [107] for a similar work related to biofilm
growth).

Here we use the 2-scale convergence concept developed in [2, 103] and extended fur-
ther in [101] to include model components defined on lower dimensional manifolds
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(the grain boundaries) to derive an upscaled equation that has the same structure as the
model proposed in [73]. Besides, we provide the information regarding dependence of
the diffusion coefficients of macroscopic equations based on coefficients of the micro-
scopic equations.

We mention [60, 61] for pioneering works on rigorous homogenization of reactive flow
models, including the derivation of upscaled models from well-posed microscopic (pore-
scale) models. Since then, many publications have considered similar problems, like
[36, 89, 101]. There has been extensive work dealing with homogenization of reactive
flows in porous media and we mention some of them e.g. [5, 6, 10]. The 2-scale con-
vergence approach has been extended to include the mechanics of the porous media
and finds application in several fields including the biological, mechanical etc. A recent
work dealing with combining the reactive flow with the mechanics of cells is [69]. Of
particular relevance to the present work is the work of [89] where non-linear reaction
terms on the surface are treated using the techniques of periodic unfolding.

The major challenge in the present work is in dealing with the dissolution rates, which is
a member of a the multi-valued graph. For a proper interpretation of this rate, we first
consider a regularized version. Following [47], this allows to identify the dissolution
rate in a unique way, as the limit of the regularized solution. However, the resulting
is a dissolution rate that is non-Lipschitz and may even become discontinuous. This
brings two difficulties in obtaining the rigorous results. First, for passing to the limit in
the sequence of micro (pore) scale solutions one usually extends these solutions, which
are defined in a perforated domain (the void space of the porous medium), to the en-
tire domain, including the perforations (the solid grains). Further, usually shows that
the extension preserves the uniform energy estimates for the original solution. The es-
timates for the spatial derivatives are obtained directly, from the construction of the
extension. The time derivative instead needs more attention. Commonly the estimates
in this case are obtained by deriving the convection-diffusion-reaction equation with
respect to time. Due to the particular dissolution rate, such an approach is not allowed
in the present situation. Here we show that the extension satisfies uniform estimates in
the space where the solution is sought, and not a better one. In the present context, this
seems to be the optimal result. Second, one has to find a proper convergence concept
that is associated with the two-scale convergence for the equations on the boundary.
In this chapter we follow the ideas in [102] and [89], where the concept of strong two-
scale convergence is introduced, based on unfolding/localization operators [24, 35]. In
particular, for the immobile species (the precipitate) we use translation estimates for ob-
taining compactness results and implicitly the strong convergence. These results allow
us to identify the limit of the (pore scale) dissolution rate.
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Y

ΓG = ∂Y

Y0

Z = Y
⋃
Y0

⋃
∂Y

Figure 6.1: Left: the porous medium Ω consisting of ε-scaled perforated cells distributed peri-
odically; the total void space is Ωε. Right: a reference cell containing the pore Y and the solid
grain Y0 separated by the interface ΓG. Note that the geometry remains fixed in time for a given
ε.

6.2 The mathematical model

We start with specifying the domain where the physical processes are taking place, and
then introduce the model briefly. More details can be found in [47].

6.2.1 Basic geometry

The porous medium is a bounded and connected domain Ω ⊂ Rd, which includes
periodically distributed grains . Its boundary ∂Ω is assumed Lipschitz. We use the
following notations

• ΓD - subset of ∂Ω where homogenous Dirichlet conditions are imposed.

• ΓN - subset of ∂Ω where homogenous Neumann conditions are imposed.

• ΓD
⋃
ΓN = ∂Ω with ΓD ∩ ΓN = ∅.

• Z := [0, 1]d - the standard cell (unit cube).

• Y0 - an open subset of Z with Ȳ0 ⊂ Z representing the solid grain.

• Y := Z \ Ȳ0 - the pore space.

• ΓG := ∂Y0 - the (piecewise smooth) boundary of Y0 (the grain boundary).
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We further assume that the Γ ∩ ∂Z = ∅, so the closure of grain is completely included in
Z.

Let k = (k1, . . . , kd) be a multi-index of integers and {e1, . . . , ed} be the canonical basis
for Rd. The translation with k of a subset Π of Z is defined by

Πk = Π+
d

∑
i=1

kiei .

Further, we let 1 >> ε > 0 be a small number obtained as the ratio of the typical size
of a pore (the reference micro scale length), and the typical size of the medium (the
macro-scale length). Then the ε scaling of a subset Π of Z is defined by

Πε = {εy | y ∈ Π}.

We assume that for a given set of multi-indices Iε we have

Ω̄ =
⋃
{εZk : k ∈ Iε},

where the translation is preceding the scaling. Then the flow domain (the total pore
space) Ωε and the total grain boundary ΓεG are defined as

Ωε =
⋃
{εYk : k ∈ Iε}, and ΓεG =

⋃
{εΓ k

G : k ∈ Iε}.

The model under consideration is an evolution one. With T > 0 denoting a maximal
time, for any t ∈ (0, T] we define

Qt = (0, t]×Q,

where Q is one of the sets Ω, Ωε, ΓG, or ΓεG.

6.2.2 The micro scale model

The micro-scale mathematical model contains two components: the flow, and the chem-
istry. For the flow we consider the Stokes model

{
ε24qε = ∇Pε,
∇ · qε = 0,

(6.2.1)

for all x ∈ Ωε. In the above, qε stands for the fluid velocity, Pε denotes the pressure
inside the fluid. With a proper scaling, when bringing the model to a dimensionless
form the dynamic viscosity becomes ε2 (see e.g. [60], p. 45). We complement Stokes
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equations by assigning no-slip boundary conditions at the grain boundary and suitable
inflow and outflow boundary conditions at the outer boundary ∂Ω,

qε = 0, on ΓεG , and qε = qD , on ΓD ∪ ΓN , (6.2.2)

where qD is such that ν · qD = 0 on ΓN and
∫

ΓD

ν · qD = 0.

As mentioned above, we assume that the chemical processes neither change the pore
scale geometry, nor the fluid properties. Therefore the flow component does not depend
on the other components of the model, and can be completely decoupled. This means
one can solve first the Stokes system (6.2.1) with the given boundary conditions (6.2.2)
to obtain the fluid velocity qε, and required a priori estimates. We further assume that
qε is essentially bounded uniformly w.r.t. ε, i.e.

‖qε‖∞,Ω ≤ Mq < ∞ (6.2.3)

for some constant Mq > 0. For the Stokes model with homogeneous Dirichlet boundary
conditions, the essential boundedness of qε holds if, for example, the domain is polyg-
onal (see [71, 82]). Here we assume that this estimate is uniform in ε.

For the chemistry two components are encountered. First, two solute (mobile) species
are transported by the fluid. In the fluid, these species are diffusing, but no reactions
are taking place there. The corresponding model is therefore a convection-diffusion
equation in the void space, and for the time interval (0, T). The chemical processes are
encountered instead at the grain surface; these involve the mobile species, and the reac-
tion result is an (immobile) species on the grain boundary. The resulting is an ordinary
differential equation defined on the grain boundary, and again for t ∈ (0, T). Finally,
the partial differential equation and the ordinary one are coupled through the boundary
conditions, which leads to the following system:





∂tu
ε +∇ · (qεuε − D∇uε) = 0, in ΩεT ,

−Dν · ∇uε = εn∂tv
ε, on ΓεT

G ,
∂tv

ε = k(r(uε)− wε), on ΓεT
G ,

wε ∈ H(vε), on ΓεT
G .

(6.2.4)

Here uε denotes the concentration of solutes (ions) in the fluid; vε denotes precipitate
concentration (crystal concentration) at the solid grains and wε describes the dissolution
rate. Note that uε is defined in the pore space Ωε and vε is defined on the boundaries
of solid grains, ΓεG. The unknowns are uε, vε, wε, and qε . The physical constant D is a
(given) diffusion coefficient, assumed constant. Further, k is a dimensionless reaction
rate constant, which we assume constant and of moderate order w.r.t. ε. In physical
sense, this means that the precipitation sites are homogeneous. The extension to the
non-homogeneous case does not pose any major difficulties. Finally, n is a constant
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denoting the valence of the solute. Note that only one immobile species is taken into
account. This is justified if the two species are having the same diffusion coefficient
(see [47, 73] for details).

Clearly, (6.2.4)2 relates the change in the precipitate to the normal flux of the ions at the
boundaries, assuming the no-slip boundary condition for qε. Also observe the appear-
ance of ε in the boundary flux. As will be seen below, this allows to control the growth
of the precipitate when passing to the limit in the homogenization step. We refer to [60]
for a justification of this choice based on the geometry of the pores, and to [47] for an
equivalent interpretation.

We proceed now by explaining the rates r(uε) and wε in the last two equations of (6.2.4).
Here r : R → [0, ∞) denotes the precipitation rate and wε denotes the dissolution rate.
Furthermore, H(·) denotes the Heaviside graph,

H(u) =





0, if u < 0,
[0, 1], if u = 0,
1, if u > 0.

For the precipitation rate we assume the following

The function r satisfies

r : R→ [0, ∞) is locally Lipschitz in R. (A.1)

There exists a unique u∗ ≥ 0, such that

r(uε) =
{

0 for uε ≤ u∗,
strictly increasing for uε ≥ u∗ with r(∞) = ∞.

(A.2)

An example where these assumptions are fulfilled is given in [73], where a model based
on mass-action kinetics is considered. Note that a value u∗ > 0 exists such that

r(u∗) = 1.

With the proper scaling, this value is an equilibrium concentration: if uε = u∗, neither
precipitation, nor dissolution is encountered (the solubility product). Finally, for the
dissolution rate one has

wε ∈ H(vε).

Observe the fact that at sites where precipitate is absent (thus vε = 0), a value has to
be specified for the dissolution rate. As explained in [47, 73, 109], in this case the rate
wε depends also on the solute concentration. Specifically, for u∗ introduced above, for
uε > u∗ we take wε = 1. This is interpreted as an oversaturated regime, meaning that the
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overall precipitation/dissolution rate is strictly positive and a net gain in the precipitate
results. Whenever uε ≤ u∗, thus r(uε) ≤ 1, the solute concentration is insufficient for an
effective gain in precipitate (the undersaturated regime). In this case dissolution should
be avoided, implying that ∂tv

ε = 0. To achieve this, we take wε = r(uε) (a value between
0 and 1, by scaling) and the overall rate becomes 0. This can be summarized as

wε =





0, if vε < 0,
min{r(uε), 1}, if vε = 0,
1, if vε > 0.

(6.2.5)

Note that in the above relation, wε is a discontinuous function of vε. In what follows, we
will work with the above formulation of wε. The system (6.2.4) is complemented by the
following initial and boundary conditions,





uε(0, ·) = uI in Ωε,
vε(0, ·) = vI on ΓεG ,
uε = 0, on Γ T

D .
(6.2.6)

6.2.3 The macro scale model

The equations (6.2.1) and (6.2.4) together with the initial and boundary conditions are
giving the model at the pore scale. For completeness we provide the corresponding
model at the macro-scale, which will be derived below by rigorous homogenization.
Recalling that the flow is not affected by the chemistry, this component of the model can
be homogenized separately. The result is a pair (q, P) approximating the micro scale
(qε, Pε). As shown in [1, 62, 92, 130], q and P satisfy the Darcy law

∇ · q = 0, q = −K∇P, (6.2.7)

for x ∈ Ω, where K is the permeability tensor given by

ki j =
1
|Y|

∫

Y

χ
j
i (y)dy,

for all i, j = 1, . . . , d. Here by χ j
i we mean the i-th component of χ j = (χ

j
1, · · · , χ j

d),
obtained from the cell problems

(PD
j )





−∆yχ
j(y) = ∇yΠ

j(y) + e j, in Y

∇y · χ j(y) = 0, in Y

χ j(y) = 0, on ΓG

χ j, Π j are Z− periodic.
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Concerning the chemistry, the homogenized model reads





∂t

(
u + n |ΓG |

|Y| v
)

= ∇ · (S∇u− qu) ,

∂tv = k(r(u)− w),
w ∈ H(v),

(6.2.8)

for x ∈ Ω and t ∈ (0, T], where the matrix S is defined as

(S)i, j = D


δi j +

1
|Y|

∫

Y

∂y j
widy


 ,

and wi solves the cell problem

(PC
j )





−∆wi = 0 in Y,

ν · ∇wi = ν · ei on ΓG

wi is Z periodic.

Here u and v are the upscaled concentrations for the solute, respectively the precipi-
tate, and w is the upscaled dissolution rate, while by ν we mean the unit normal to ΓG

pointing into the grain Y0. The equations are complemented by the boundary and initial
conditions retained from (6.2.6)





u(0, ·) = uI in ΩT ,
v(0, ·, ·) = vI on ΩT × ΓG ,
u = 0, on Γ T

D .
(6.2.9)

6.3 The weak formulation

When defining the a weak solution we use common notations in the functional analysis:
with Q being either Ω, Ωε, ΓD, ΓG or ΓεG, we denote by Lp(Q) (p ≥ 1) the p–integrable
functions on Q (in the sense of Lebesgue). The space H1

0,ΓD
(Q) restricts the space H1(Q)

of functions having all first order partial derivatives in L2 to those elements vanishing
on ΓD (in the sense of traces). (·, ·)Q stands for the scalar product in L2(Q), or the du-
ality pairing between H1

0,ΓD
(Q) and H−1(Q) – the dual of H1

0,ΓD
(Q). The corresponding

norm is denoted by ‖ · ‖Q, or simply ‖ · ‖ (where self understood). By L∞(Q) we mean
functions that are essentially bounded on Q, and the essential supremum is denoted
by ‖u‖∞,Q. Further, for a Banach space V we denote by L2(0, T; V) the corresponding
Bochner space equipped with the standard inner product (where applicable) and norm.
Besides, by χI we mean the characteristic function of the set I. Since the reaction rate
constant k is immaterial in the derivation, in what follows, we simply take k = 1.
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Before stating the definition of a weak solution, we introduce the function spaces

Uε := {u ∈ L2(0, T; H1
0,ΓD

(Ωε)) : ∂tu ∈ L2(0, T; H−1(Ωε))},
Vε := H1(0, T; L2(ΓεG)),

Wε := {w ∈ L∞(ΓεT
G ) : 0 ≤ w ≤ 1}.

Then a weak solution is introduced in

Definition 6.3.1 A triple (uε, vε, wε) ∈ Uε × Vε ×Wε is called a weak solution of (6.2.4)-
(6.2.6) if uε(0, ·) = uI , vε(0, ·) = vI and

(∂tu
ε,φ)

Ω
εT + D(∇uε,∇φ)

Ω
εT − (quε,∇φ)

Ω
εT = −εn(∂tv

ε,φ)
Γ
εT
G

,
(∂tv

ε,θ)
Γ

T
G

= (r(uε)− wε,θ)
Γ
εT
G

,
wε ∈ H(vε) a.e. in ΓεT

G ,
(6.3.1)

for all (φ,θ) ∈ L2(0, T; H1
0,ΓD

(Ωε))× L2(ΓεT
G ).

For the functions appearing as boundary and initial conditions we assume the following

uI ∈ H1
0,ΓD

(Ω), vI ∈ H1(Ω) ∩ L∞(Ω), and 0 ≤ uI , vI ≤ M0 almost everywhere, (A.3)

for an ε-independent constant M0 > 0. For simplicity we considered homogeneous con-
ditions on ΓD, but the extension to non-homogeneous ones can be carried out without
major difficulties. Note that the initial and boundary conditions are compatible, and
that the initial conditions are defined for the entire domain Ω.

The existence of weak solutions of (6.2.4)-(6.2.6) has been studied in [47]. There, a weak
solution was obtained by regularization arguments, where the Heaviside graph mod-
elling the dissolution process is approximated by a continuous function. For the solu-
tion (uε, vε, wε) constructed in this way, the dissolution rate wε satisfies (6.2.5). Further-
more, its uniqueness is obtained from the following contraction result with respect to
the initial values, see [109]:

Theorem 6.3.1 Assume (A.1) and (A.2) and let (u(i)ε , v(i)ε , w(i)ε) ∈ Uε,Vε,Wε, i = 1, 2 be
two solutions in the sense of Definition 6.3.1, obtained for the initial values u(i)

I , v(i)
I (i = 1, 2)

respectively. Then for any t ∈ (0, T] it holds
∫

Ω
ε

|u(1)ε(t, x)− u(2)ε(t, x)|dx +εn
∫

Γ
ε
G

|v(1)ε(t, s)− v(2)ε(t, s)|ds

≤ |u(1)
I (x)− u(2)

I (x)|dx +εn
∫

Γ
ε
G

|v(1)
I (s)− v(2)

I (s)|ds (6.3.2)
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6.3.1 Uniform estimates for the microscopic solutions

For the rigorous derivation of the effective model we extend the micro scale solute con-
centration uε, defined in the pore space Ωε, to the entire domain Ω. This requires a-
priori estimates that are uniform w.r.t. ε. Such estimates are obtained in [47], without
considering particularly the homogenization problem. As mentioned there, the esti-
mates are ε-uniform in the case of a periodically perforated medium, this being the case
considered here. From [47, 109] one has:

Theorem 6.3.2 Assume (A.1) and (A.2), there exists a unique weak solution of (6.2.4). In
addition, this solution satisfies

0 ≤ uε, vε ≤ M, 0 ≤ wε ≤ 1, (6.3.3)

‖uε‖2
L∞(0,T;L2(Ωε))

+ ‖∇uε‖2
L2(ΩεT)

+ ‖∂tu
ε‖2

L2(0,T;H−1(Ωε))

+ε‖vε‖2
L∞(0,T;L2(ΓεG))

+ε‖∂tv
ε‖2

L2(ΓεT
G )
≤ C, (6.3.4)

where the constants C > 0 and M > 0 are independent of ε.

The estimates above allow extending uε inside the solid grain, but are insufficient for
the extension of ∂tu

ε. In [61, 101], additional estimates are obtained by differentiating
the model with respect to time. Because of the possible jump in the reaction rate, this
approach does not work here.

Here we follow the explicit extension procedure in [61,101], and show that the estimates
available here are sufficient for obtaining a well-defined extension that satisfies uniform
estimates. To do so we proceed by analyzing ∂tu

ε.

Estimates on ∂tu
ε

The estimates on ∂tu
ε are obtained through time translations. In this sense, given a

function g : [0, T] 7→ X (X being a Banach space), we extend it by its initial value on the
interval [−h, 0) and define

4hg(t) :=
g(t)− g(t− h)

h
,

for all t ≥ 0, where g(s) = g(0) whenever s < 0. Below we show that 4huε is
bounded uniformly with respect to h in L1(Ωε) norm. Note that this does not imply
∂tu

ε ∈ L1((−h, T)×Ωε), since L1 is not reflexive. However, as we will show below, this
uniform estimate is still sufficient to construct an extension of uε to Ω having sufficient
regularity in time. We start with the following lemma.
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Lemma 6.1 Let t ∈ [0, T], h > 0, and (uε, vε, wε) be a weak solution of (6.2.4). Then the
following estimate is uniform in h,

∫

Ω
ε

|4huε(t, x)|dx +ε
∫

Γ
ε
G

|4hvε(t, x)| ≤
∫

Ω
ε

|4huε(h, x)|dx +ε
∫

Γ
ε
G

|4hvε(h, x)|dx.

Assuming compatibility on the initial data, we obtain for any t ≥ 0
∫

Ω
ε

|4huε(t, x)|dx +ε
∫

Γ
ε
G

|4hvε(t, x)| ≤ C.

Proof. We follow the L1 contraction proof of Theorem 6.3.1 in [109] and define Tδ , Sδ :
R→ R

Tδ(x) :=





−x− δ
2 , if x < −δ,

x2

2δ , if x ∈ [−δ, δ],
x− δ

2 if x > δ,
and Sδ(x) =





−1, if x < −δ,
x
δ

, if x ∈ [−δ, δ],
1, if x > δ.

Here δ > 0 is a parameter than can be taken arbitrarily small. Clearly, Sδ = T ′δ . Note
that Tδ is a regularized approximation of the absolute value, whereas Sδ is the regular-
ized sign function.

Taking h > 0 and t ∈ (h, T] arbitrary, with (φ,θ) ∈ H1
0,ΓD

(Ωε) × L2(ΓεG) and χI being
the characteristic function of the time interval I, we test in (6.3.1) first with χ(h,t)(φ,θ),
and then with χ(0,t−h)(φ,θ) (both lying in L2(0, T; H1

0,ΓD
(Ωε))× L2(ΓεT

G )). Subtracting the
resulting gives

t∫

h

(∂τ∆huε,φ)Ωεdτ + D
t∫

h

(∇∆huε,∇φ)Ωεdτ

−
t∫

h

(q∆huε,∇φ)Ωεdτ +εn
t∫

h

(∂t∆hvε,φ)ΓεG , dτ = 0,

ε

t∫

h

(∂τ∆hvε,θ)ΓεG dτ −εk
t∫

h

(∆hr(uε)− ∆hwε,θ)ΓεG dτ = 0,

wε ∈ H(vε) a.e. in ΓεG .
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Withφ := Sδ(4huε) and θ := εSδ(4hvε), (6.3.6) becomes

t∫

h

(4h∂tu
ε, Sδ(4huε))Ωε +ε(4h∂tv

ε, Sδ(4hvε))ΓεG dt

+D
t∫

h

(∇4huε,∇Sδ(4huε))Ωεdt−
t∫

h

(q4huε,∇Sδ(4huε))Ωεdt (6.3.5)

+εk
t∫

h

(4hr(uε)−4h Hδ(v
ε), Sδ(4huε)− Sδ(4hvε))ΓεG dt = 0.

Denoting the terms above by I i
δ , i = 1, . . . , 5, we proceed by analyzing them separately.

I1
δ gives

I1
δ =

t∫

h

∫

Ω
ε

∂τTδ(4huε(τ , x))dxdτ =
∫

Ω
ε

Tδ(4huε(t, x))dx−
∫

Ω
ε

Tδ((4huI(x)))dx. (6.3.6)

Recall that 0 ≤ Tδ(s)| ≤ |s|+δ/2 and uε(t) ∈ L2(Ωε), using the dominated convergence
theorem,

lim
δ↘0
I1
δ =

∫

Ω
ε

|4hu(t, x)|dx. (6.3.7)

In a similar manner,

lim
δ↘0
I2
δ = ε

∫

Γ
ε
G

|4hv(t, x)|. (6.3.8)

Next, since Sδ ′ ≥ 0 a.e. on R, one gets

I3
δ =

D
2

t∫

h

∫

Ω
ε

Sδ
′(4huε)|∇4huε|2dxdt ≥ 0. (6.3.9)

Furthermore, for I4
δ , since q has zero divergence, using the no-slip boundary conditions

together with the vanishing trace of uε on ΓD one obtains

I4
δ =

t∫

h

∫

Ω
ε

∇ · (qTδ(4hu)) =
t∫

0

∫

∂Ω
ε

ν · (qTδ(4hu)) = 0. (6.3.10)
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With f (uε(t, x), vε(t, x)) = r(uε(t, x))− H(vε(t, x)), I5
δ becomes

I5
δ = ε

t∫

h

∫

Γ
ε
G

( f (uε(t, x), v(t, x))− f (uε(t− h, x), v(t− h, x))) (Sδ(4huε)− Sδ(4hvε))dxdt.

(6.3.11)

Due to the a priori estimates on uε and vε and since Sδ is bounded, the integration
argument in I5

δ is uniformly dominated in L1(ΓεT
G ). Therefore, for obtaining uniform

estimates for |4hu(t, x)|, it is sufficient to prove that

lim
δ↘0

( f (uε(t, x), vε(t, x))− f (uε(t− h, x), vε(t− h, x))) (Sδ(4huε)− Sδ(4hvε)) ≥ 0

a.e. on Γε,T
G . This depends on the sign of the difference quotients4huε and4hvε. With-

out loss of generality we only consider the case when4huε ≥ 0, the proof for4huε < 0
being similar.

Given a pair (t, x) ∈ Γε,T
G , we note that if4huε > 0 and4hvε > 0 one has

lim
δ↘0

(Sδ(4huε)− Sδ(4hvε))→ 0.

The situation is similar if 4huε ≥ 0 and 4hvε ≤ 0. Then we use the monotonicity of f
with respect to uε and vε (see also Lemma 1 in [109]) to obtain

f (uε(t, x), vε(t, x))− f (uε(t− h, x), vε(t− h, x)) ≥ 0.

Since Sδ(4huε) ≥ 0 ≥ Sδ(4hvε), we have

lim
δ↘0

( f (uε(t, x), vε(t, x))− f (uε(t− h, x), vε(t− h, x))) (Sδ(4huε)− Sδ(4hvε)) ≥ 0.

Using the above into (6.3.5) gives
∫

Ω
ε

|4huε(t, x)|dx +ε
∫

Γ
ε
G

|4hvε(t, x)| ≤
∫

Ω
ε

|4huε(h, x)|dx +ε
∫

Γ
ε
G

|4hvε(h, x)|dx

uniformly in h. If the initial and boundary conditions are assumed compatible (e.g.
initial data uI ∈ W1,α ,α > 1), (6.3.1) also holds for negative time arguments, and the
estimate can be extended for t ∈ [0, h).

∫

Ω
ε

|4huε|dx +ε
∫

Γ
ε
G

|4hvε| ≤ C, (6.3.12)

which proves the lemma.
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6.3.2 Extension results

As it has been defined in Section 6.2.1, Z and Y0 denote the unit cell and the grain part
respectively and Y represents the pore space. Let U denote the neighbourhood of ∂Y0.
First we list the results and then proceed for the proof. In the following we make use of
function m : (0, T) 7→ R

m(t) :=
1
|Y|

∫

Y

u(y)dy.

Lemma 6.2 m is well-defined for a.e. t. Furthermore, ∂tm exists and ∂tm ∈ L∞(0, T).

Lemma 6.3 Let u ∈ L2(0, T; H1(Y)), ∂tu ∈ L2(0, T; H−1(Y)) and u satisfies (6.3.12) for
domain Y. Then there exists an extension ũ ∈ L2(0, T; H1(Z)) of u ∈ L2(0, T; H1(Y)) such
that

‖ũ‖L2(0,T;H1(Z)) ≤ c‖u‖L2(0,T;H1(Y))

and

‖∂tũ‖L2(0,T;H−1(Z)) ≤ ‖∂tu‖L2(0,T;H−1(Y)).

Lemma 6.4 Let uε ∈ L2(0, T; H1(Ωε)), ∂tu
ε ∈ L2(0, T; H1(Ωε)) and uε satisfies (6.3.12).

Then there exists an extension ũ ∈ L2(0, T; H1(Ω)) of uε ∈ L2(0, T; H−1(Ωε)) such that

‖ũ‖L2(0,T;H1(Ω)) ≤ ‖u
ε‖L2(0,T;H1(Ωε))

and

‖∂tũ
ε‖L2(0,T;H−1(Ω)) ≤ ‖∂tu

ε‖L2(0,T;H−1(Ωε)).

Now we proceed for the proof. We construct the usual H1 extension ũ of u and use the
improved regularity of ∂tu to make sure that the extension ∂tũ ∈ L2(0, T; H−1(Z)). For
smooth enough ∂Y0, we construct diffeomorphism

Φ : ∂Y0 × (−δ, δ) 7→ U

(y, λ) 7→ x.

We construct an extension of u by reflection:

u∗(x, t) = u∗(φ(y, λ)) =
{

u(φ(y, λ)) λ ≥ 0
u(φ(y,−λ)) λ < 0
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and extend u∗ further into Z in any smooth manner. Define smooth function ψ : Z 7→
[0, 1] with compact support in Y0 and ψ ≡ 1 in Y0 \U. With m as defined above in 6.2,
we define the extension ũ as follows

ũ := (1−ψ)(u∗ −m) + m.

Proof. (Lemma 6.2) To prove Lemma 6.2 recall that for a.e. t, m(t) is well-defined and
m ∈ L∞(0, T) since u ∈ L∞(0, T; L2(Y)). For a.e. t

∣∣∣∣
m(t + h)−m(t)

h

∣∣∣∣ =
1
|Y|

∣∣∣∣∣∣

∫

Y

u(t + h)− u(t)
h

∣∣∣∣∣∣

≤ 1
|Y|

∫

Y

∣∣∣∣
u(t + h)− u(t)

h

∣∣∣∣ ≤ C

using Lemma 6.1.with C independent of h and dependent on the initial data. Taking
limit h ↘ 0 and using Riesz-Frechet-Kolmogorov compactness criterion, we conclude
that the sequence4hm converges to ∂tm ∈ L∞(0, T).

Proof. (Lemma 6.3) We need to make sure that ũ ∈ L2(0, T; H1(Z)). For a.e. t ∈ (0, T),
we have

‖ũ‖2
L2(Y0)

=
∫

Y0

|(1−ψ)(u∗ −m) + m|2dy

=
∫

Y0∩U

|(1−ψ)u∗ +ψm|2dy +
∫

Y0\U

m2dy

≤ C‖u‖2
L2(Y)

since
∫

Y0∩U


 1
|Y|

∫

Y

u




2

≤
∫

Y0∩U

1
|Y|



∫

Y

u2


 ≤ |Y0|

|Y| ‖u‖
2
L2(Y).
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For the derivative we compute

‖∇ũ‖L2(Y0)
=
∫

Y0

|∇((1−ψ)(u∗ −m))|2dy

≤ C



∫

Y0∩U

|u∗ −m|2|∇(1−ψ)|2dy +
∫

Y0∩U

|1−ψ|2|∇u∗|2dy




≤ C



∫

Y0∩U

|u∗ −m|2dy +
∫

Y0∩U

|∇u∗|2dy




≤ C
∫

Y0∩U

‖∇u∗‖2dy

≤ C‖∇u‖2
L2(Y)

where we have used the Poincare inequality for
∫

Y0∩U

|u∗ −m|2. With ∂tm obtained from

Lemma 6.2, we define the extension ∂tũ

∂tũ := (1−ψ)(∂tu
∗ − ∂tm) + ∂tm,

As ∂tu
∗ ∈ L2(0, T; H−1(Z) and ∂tm ∈ L∞(0, T), the definition above is well defined and

∂tũ ∈ L2(0, T; H−1(Z)). Also for a.e. t,

‖∂tũ‖H−1(Z) = sup
ξ∈H1(Z),‖ξ‖=1 |〈∂tũ,ξ〉| = ∂tm + sup

ξ∈H1(Z),‖ξ‖=1 |〈(1−ψ)∂tu
∗,ξ〉| .

Hence,

‖∂tũ‖H−1(Z) ≤ C‖∂tu‖H−1(Y),

which implies Lemma 6.3.
Proof. (Lemma 6.4) To prove the first part of Lemma 6.4 we use a simple scaling
argument,

‖ũε‖H1(Ω) = ∑εZk⊂Ω

∫

εZk

{
|ũε(x)|2 + |∇ũε(x)|2dx

}

= ∑εZk⊂Ω

∫

Zk

{
|ũε(εy)|2 +ε−2|∇yũε(εy)|2

}
dy

≤ C ∑εZk⊂Ω

∫

Yk

{
|uε(εy)|2 +ε−2|∇yuε(εy)|2

}
dy

= C ∑εZk⊂Ω

∫

εYk

{
|uε(x)|2 + |∇yuε(x)|2

}
dx

= C‖uε‖H1(Ωε).
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By a simple scaling argument similar to that used above completes the proof for Lemma
6.4.

6.4 Two-scale convergence

First we note down the definitions of two-scale convergence and a lemma that would
found to be useful later. Following definitions are standard (e.g. [2, 101]).

Definition 6.4.1 A sequence uε ∈ L2(Ωε) is said to converge two-scale to a limit u ∈ L2(Ω×
Z) iff

lim
ε↘0

∫

Ω
ε

uε(x)φ(x,
x
ε
)dx =

∫

Ω

∫

Z

u(x, y)φ(x, y)dxdy

for allφ ∈ D(Ω; C∞
per(Z)).

Definition 6.4.2 A sequence vε ∈ L2(ΓεG) is said to converge two-scale to a limit v ∈ L2(Ω×
ΓG)) iff

lim
ε↘0

ε

∫

Γ
ε
G

vε(x)φ(x,
x
ε
)dx =

∫

Ω

∫

ΓG

v(x, y)φ(x, y)dxdy

for allφ ∈ D(Ω; C∞
per(ΓG)).

We state the Oscillation Lemma for the lower dimensional manifold (see [101] Lemma
1.3.2)

Lemma 6.5 For any function f ∈ C0(Ω̄; C0
per(Γ)) holds

lim
ε↘0

ε

∫

Γ
ε
G

f
(

x,
x
ε

)
dx =

∫

Ω

∫

ΓG

f (x, y)dxdy.

Next, we consider the estimates (6.3.4). Using the extension theorem and denoting ũε

by uε for the ease of presentation; compactness arguments provide us the following:

Lemma 6.6 There exists a limit u such that up to a subsequence

(i). uε ⇀ u weakly in L2(0, T; H1(Ω)),

(ii). ∂tu
ε ⇀ ∂tu weakly in L2(0, T; H−1(Ω)),
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(iii). uε → u in C0(0, T; H−s(Ω)) ∩ L2(0, T; Hs(Ω)), s ∈ (0, 1).

Since uε converges weakly to u in L2(0, T; H1(Ω)), and with ∂tu
ε ∈ L2(0, T; H−1(Ω))

implies the strong convergence in L2(0, T; L2(Ω)); the compactness arguments ( [2,101])
imply the two-scale convergence to the same u and there exists functions
u ∈ L2(0, T; H1(Ω)), u1 ∈ L2(0, T; L2(Ω; H1

per(Z)) such that up to a subsequence

Lemma 6.7 It holds that

(i). uε two-scale converges to u.

(ii). ∇uε two-scale converges to ∇xu +∇yu1.

Furthermore, for vε, wε and ∂tv
ε:

Lemma 6.8 Up to a subsequence

(i). vε two-scale converges to v.

(ii). ∂tv
ε two-scale converges to ∂tv.

(iii). wε two-scale converges to w.

6.4.1 The macroscopic equation

Up to now we have obtained the existence of a limit triple (u, v, w) for the sequence
(uε, vε, wε). Here we proceed by identifying this limit as the solution of the upscaled
system of equations (6.2.8), with the initial and boundary conditions (6.2.9). To be pre-
cise, with matrix S defined as

(S)i, j = |Y|δi j +
∫

Y

∂y j
wi ;

and wi solving the cell problem

−4wi = 0 in Y, ∇ · wi = ei ·ν on ∂Y,

we have the following definition for the weak solution of the upscaled equations (6.2.8)-
(6.2.9).

Definition 6.4.3 The triple (u, v, w) with u ∈ L2(0, T; H1(Ω)); ∂tu ∈ L2(0, T; H−1(Ω)),
v ∈ L∞(0, T; L2(Ω× ΓG)), w ∈ L∞(0, T; L2(Ω× ΓG)) is called a weak solution of (6.2.8) and
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(6.2.9) if (u(0), v(0)) = (uI , vI) and if

(∂tu,φ)
Ω

T + D(S∇u,∇φ)
Ω

T = −(qu,∇φ)
Ω

T − (∂tv,φ)
Ω

T×ΓG

(∂tv,θ)L2(ΩT×ΓG)
= (r(u)− w,θ)L2(ΩT×ΓG)

(6.4.1)

w ∈ H(v)

for all (φ,θ) ∈ (L2(0, T, H1
0,ΓD

(Ω)), L2(0, T; L2(Ω× ΓG)).

The main result is as follows:

Theorem 6.4.1 As ε ↘ 0, the sequence of solutions (uε, vε, wε) of the microscopic problem
(6.3.1) converges to the weak solution (u, v, w) in the sense of Definition 6.4.3.

In view of two-scale convergence results, the derivation of limit problem for (6.3.1)1 is
straightforward. We defer the derivation of the limit problem and the cell problem to the
end of this section. We begin by considering (6.3.1)2 which contains the nonlinearities.
Passing to the limit as ε ↘ 0 for the left hand side is straightforward ; we deal with the
right hand side which contains the non-linear terms. Specifically, we consider the term

ε

T∫

0

∫

Γ
ε
G

(r(uε)− wε)
(
φ0(t, x) +εφ1(t, x,

x
ε
)
)

dxdt.

Note that

uε → u in C0(0, T; H−s(Ω)) ∩ L2(0, T; Hs(Ω)), s ∈ (0, 1).

By a slight modification in the proof of Lemma 3 of [61] there exists a constant C > 0,
independent of ε, such that

ε‖uε − u‖2
Γ
ε
G
≤ C(‖uε − u‖2

Ω +ε2‖∇uε −∇u‖2
Ω),

and hence we obtain (see [89], Lemma 4.2)

ε‖uε − u‖2
Γ
εT
G
≤ C‖uε − u‖2

L2(0,T;Hs(Ωε))
≤ C‖uε − u‖2

L2(0,T;Hs(Ω))
.

This gives using the Lipschitz continuity of r

ε‖r(uε)− r(u)‖2
L2(0,T;L2(ΓεG))

≤ Cε‖uε − u‖2
Γ
εT
G

≤ C‖uε − u‖2
L2(0,T;Hs(Ωε))

≤ C‖uε − u‖2
L2(0,T;Hs(Ω))

↘ 0
(6.4.2)
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because of the interpolation inequality. To correspond to the definition of two-scale
convergence we estimate

∣∣∣∣∣∣∣

∫

Γ
ε
G

εr(uε)φ(x,
x
ε
)−

∫

Ω

∫

ΓG

r(u)φ(x, y)

∣∣∣∣∣∣∣
≤

∫

Γ
ε
G

∣∣∣ε(r(uε)− r(u))φ(x,
x
ε
)
∣∣∣+

∣∣∣∣∣∣∣

∫

Γ
ε
G

εr(u)φ(x,
x
ε
)−

∫

Ω

∫

ΓG

r(u)φ(x, y)

∣∣∣∣∣∣∣

and using (6.4.2) first term on the right vanishes and the second term tends to 0 because
of the Oscillation Lemma 6.5 thereby implying r(uε) converges 2-scale to r(u).
Even though wε converges two-scale to w, however this does not provide explicit form
for the function w. To obtain this identification first we need to consider the convergence
of vε to v in more details. We follow the ideas in [24, 35] and use the unfolding operator
to establish the strong two-scale convergence for vε.

Definition 6.4.4 For a given ε > 0, we define an unfolding operator Tε mapping measurable
functions on (0, T)× ΓεG to measurable functions on (0, T)×Ω× ΓG by

Tε f (t, x, y) = f (t,ε[
x
ε
] +εy), y ∈ ΓG , (t, x) ∈ (0, T)×Ω.

We extend Tε from ΓG to
⋃

k(ΓG + k) periodically.

Basically, the two-scale convergence on ΓεG becomes weak convergence of unfolded func-
tions on ΓG ×Ω and the strong two-scale convergence is equivalent to the strong con-
vergence of unfolded functions on ΓG ×Ω. We establish first the strong convergence
of the unfolded sequenceTεvε. This is stated in the following lemmas. Following [89],
denote L2

per(ΓG) the space of functions f such that f ∈ L2(ΓG) and then is periodically
extended to

⋃
k(ΓG + k).

Lemma 6.9 If Tεvε → v∗ weakly in L2(0, T; L2(Ω); L2
per(ΓG)) and vε converges two-scale to

v then v∗ = v a.e. on (0, T)×Ω× ΓG.

Proof. See Lemma 4.6, [89] ( see also [24]).

Lemma 6.10 Tεvε converges strongly in L2(0, T; L2(Ω); L2
per(ΓG)).

Proof. We will be using the translation estimates and Riesz-Frechet-Kolmogorov the-
orem (e.g. see (IV.26 in [25] and its converse)) to prove the strong convergence. Notice
that by virtue of ∂tv

ε uniformly bounded in L2(ΓεT
G ), the translations in time are already

controlled. What we need is to control the translations in space. In doing so, let us
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recall (6.2.5), and conclude that wε is monotonically increasing with respect to vε. This
also implies that Tεwε is monotone with respect to Tεvε. With the change in variable
x 7→ ε[ x

ε
] +εy,y ∈ ΓG the equation (6.3.1)2 reads

∂tT
εvε = Tεr(uε)− Tεwε

in the sense of distributions.

Our approach is close to that used in [102]. Note that, with respect to x, Tεvε are step
functions and to obtain equicontinuity with respect to translations in L2, one needs to
compare solutions from different cells and we need to control these translations with
respect to x. The strong convergence of r(uε) to r(u) in L2(0, T; ΓG) and the monotonicity
of Tεwε are essentially used to achieve this. The control of translation with respect to
y is similar. Here, we show the calculations for x−translation. Let Ωh be an arbitrary
compact subset of Ω and let h ∈ (0, dist(Ωh, ∂Ω)). We compute

d
dt
‖Tεvε(t, x + h, y)− Tεvε(t, x, y)‖2

L2(ΓG×Ωh)
=

∫

ΓG×Ωh

{Tεvε(t, x + h, y)− Tεvε(t, x, y)} . . .

{Tεr(uε(t, x + h, y))− Tεwε(t, x + h, y)− Tεr(uε(t, x, y)) + Tεwε(t, x, y)} dxdy.
(6.4.3)

The monotonicity of Tεwε with respect to Tεvε has the property,

{Tεvε(t, x + h, y)− Tεvε(t, x, y)} {Tεwε(t, x + h, y)− Tεwε(t, x, y)} ≥ 0. (6.4.4)

Using (6.4.4) in (6.4.3), the right hand side is estimated as

d
dt
‖Tεvε(t, x + h, y)− Tεvε(t, x, y)‖2

L2(ΓG×Ωh)

≤
∫

ΓG×Ωh

{Tεvε(t, x + h, y)− Tεvε(t, x, y)} {Tεr(uε(t, x + h, y))− Tεr(uε(t, x, y))} dxdy

≤ 1
2
‖Tεvε(t, x + h, y)− Tεvε(t, x, y)‖2

L2(ΓG×Ωh)

+ 1
2‖T

εr(uε(t, x + h, y))− Tεr(uε(t, x, y)‖2
L2(ΓG×Ωh)

.

Now integrate in time and notice that as h ↘ 0, due to strong convergence of Tεr(uε)
the second term goes to 0 uniformly with respect to h (IV.26 in [25]). Using Gronwall’s
lemma we conclude that

‖Tεvε(t, x + h, y)− Tεvε(t, x, y)‖2
L2(Γ T

G×Ωh)
→ 0 as h↘ 0
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uniformly and hence establishing the strong convergence of Tεvε in L2(0, T; L2(Ω); L2
per(ΓG))

(IV.26 in [25] and its converse).

Remark 6.11 Note that wε may have discontinuities with respect to t, x which makes
dealing with Tεwε a delicate task. In the present situation, we are rescued by the fact
that Tεwε is monotone with respect to Tεvε and hence, the property (6.4.4) has a good
sign which we use in (6.4.3). An alternative approach would be to formulate the bound-
ary conditions as a variational inequality and then use the monotonicity arguments e.g.
in [62].
Next, we prove that w ∈ H(v). Recall that from above discussions, we have the follow-
ing information:

Tεvε → v strongly in L2(0, T; L2(Ω); L2
per(ΓG)),

Tεwε → w weakly in L2(0, T; L2(Ω); L2
per(ΓG)),

Tεwε ∈ H(Tεvε).

Since Tεvε → v strongly in L2(0, T; L2(Ω); L2
per(ΓG)) we have Tεvε → v a.e. We have

only two situations, either v(t, x, y) > 0 or v(t, x, y) = 0. In the first case and with
µ := v(t, x, y)/2 > 0, the pointwise convergence implies the existence of a εµ > 0 such
that Tεvε > µ for all ε ≤ εµ . Then for any ε ≤ εµ we have Tεwε = 1 implying w = 1.
For the case when v = 0, we consider the following situations:

(a) u > u∗

From the pointwise convergence of Tεuε, there exists an ε∗ such that for ε ≤ ε∗,
we have uε > u∗. This gives, using monotonicity of r, r(Tεuε) > 1 and recall the
definition (6.2.5) to obtain Tεwε = 1. This implies that Tεwε → 1 pointwise a.e.

(b) u ∈ [0, u∗)
Again the pointwise convergence of Tεuε implies that for small enough ε, uε ∈
(0, u∗). In this case, r(Tεuε) < 1 leading to Tεwε = r(Tεuε) using (6.2.5). With
strong convergence of r, we get Tεwε converges to r(u) pointwise a.e..

(c) u = u∗

Using similar arguments as above, r(u) = 1 and for sufficiently small ε, r(Tεuε)→
1 pointwise a.e.. Hence, Tεwε = min(r(Tεuε), 1)→ 1 pointwise a.e..

Collecting the above cases, Tεwε converges pointwise a.e. to w̃ where

w̃ =





1, v > 0,
min(r(u), 1), v = 0,

0, v < 0.
(6.4.5)

Next, both Tεwε and w̃ are essentially bounded which implies that along a sequence
ε ↘ 0, Tεwε → w̃ strongly in L2(ΩT , L2

per(ΓG)) but weakly∗ to w. By the uniqueness of
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limit, one has w = w̃ a.e. implying that w has the structure of (6.2.5). This completes the
identification of w. The above discussions are summarized in the following:

Lemma 6.12 The two-scale limit functions v, w satisfy

(∂tv,θ)
Ω

T×ΓG
=

∫

Ω
T×ΓG

(r(u)− w)θ for all θ ∈ C∞(ΩT , C∞
per(ΓG)),

w ∈ H(v).

With the above Lemma providing us the limit equations for (6.3.1)2,3, we proceed to
complete the proof of Theorem 6.4.1.

Proof. Proof of Theorem 6.4.1

Now we pass to the limit in (6.3.1)1 to obtain the limiting equation and the cell problem.
We rewrite the weak formulation (6.3.1)1 to obtain

(∂tu
ε, χεφ)

Ω
T + D(∇uε, χε∇φ)

Ω
T − (qεχεuε,∇φ)

Ω
T = −εn(∂tv

ε,φ)
Γ
εT
G

, (6.4.6)

for allφ ∈ L2(0, T; H1
0,ΓD

(Ω)), where χε is the characteristic function for Ωε.
Choose for the test functionφ = φ0(t, x) +εφ1(t, x, x

ε
) withφ0 ∈ C∞

0 (0, T; C∞
0 (Ω)) and

φ1 ∈ C∞
0 (0, T; C∞

per(Ω)).

∫

Ω
T

∂tu
εχ(

x
ε
)
(
φ0(t, x) +εφ1(t, x,

x
ε
)
)
+

D
∫

Ω
T

∇xuε(t, x) · χ( x
ε
)
(
∇xφ0(t, x) +ε∇xφ1(t, x,

x
ε
)
)
+∇yφ1(t, x,

x
ε
)+

εn
T∫

0

∫

Γ
ε
G

(
∂tv

ε,φ0(t, x) +φ1(t, x,
x
ε
)
)
= 0

With ε↘ 0 and using Theorem 6.6, Lemma 6.7, Lemma 6.12, we obtain

|Y|
∫

Ω
T

∂tuφ0 + D
T∫

0

∫

Ω×Y

(
∇xu(t, x) +∇yu1(t, x, y)

) (
∂xφ0(t, x) +∇yφ1(t, x, y)

)
+

T∫

0

∫

Ω

qu∇φ+

T∫

0

∫

Ω×ΓG

(r(u)− H(v))φ0 = 0.

Here, to pass to the limit in term containing qε, we have used the strong convergence of
qε to q as proved in [62].
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Next, settingφ0 ≡ 0 we obtain

T∫

0

∫

Ω×Y

(
∇xu(t, x) +∇yu1

)
· ∇yφ1(t, x, y) = 0, for allφ1 ∈ C∞

0 (0, T; C∞
per(Ω)),

which is a weak form for the cell problem. Further,

D
T∫

0

∫

Ω×Y

(
∇xu(t, x) +∇yu1

)
∇xφ0 = D

T∫

0

∫

Ω

S∇xφ0∇xu,

where

(S)i, j = |Y|δi j +
∫

Y

∂y j
wi ; −4wi = 0 in Y, ∇ · wi = ei ·ν on ∂Y.

Collecting the above results in combination with Lemma 6.12, we conclude that (u, v, w)

is a weak solution as introduced in Definition 6.4.3. This completes the proof of Theorem
6.4.1.

6.4.2 Uniqueness of the macroscopic model

Theorem 6.4.2 Uniqueness: (6.2.8)-(6.2.9) has unique solution.

Proof. We follow the ideas from [45] and [47]. Here we only provide the sketch of the
proof. Assume (u1, v1, w1) and (u2, v2, w2) both solve the weak formulation (6.4.1). We
proceed as usual by defining:

U := u1 − u2, V := v1 − v2, W := w1 − w2.

We have the resulting equations as:

(∂tU,φ) + (D∇U,∇φ) + (∇ · (qU),φ) =
|ΓG|
|Y| (r(u1)− r(u2)− w1 + w2,φ), (6.4.7)

(∂tV,θ) = (r(u1)− r(u2)−W,θ), (6.4.8)

W ∈ H(v1)− H(v2), (6.4.9)

for all (φ,θ) ∈ (L2(0, T, H1
0,ΓD

(Ω)), L2(0, T; L2(Ω)).

Using (6.4.8) and choose θ = V, using Young’s inequality, Lipschitz continuity of r and
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monotonicity of W we obtain

‖V(t)‖2 ≤ L2
r

t∫

0

‖U(τ)‖2dτ +
t∫

0

‖V(τ)‖2dτ ,

and using Gronwall’s lemma we obtain

‖V(t)‖2 ≤ exp(t)L2
t∫

0

‖U(τ)‖2dτ ,

t∫

0

‖V(τ)‖2dτ ≤ (exp(t)− 1)L2
t∫

0

‖U(τ)‖2dτ .

Use for the test function φ =

s∫

t

U(τ , x)dτ in (6.4.7) and doing straightforward compu-

tations, we obtain [47]

s∫

0

‖U(t)‖2dt + S
∫

Ω

∣∣∣∣∣∣

t∫

0

‖∇U(τ)‖dτ

∣∣∣∣∣∣

2

dx ≤ CM2
q

s∫

0

∫

Ω

∣∣∣∣∣∣

t∫

0

‖∇U(τ)‖dτ

∣∣∣∣∣∣

2

dxdt

and using Gronwall’s lemma gives,

∫

Ω

t∫

0

‖∇U(τ)‖2dτdx = 0

and consequently,

s∫

0

‖U(t)‖2dt = 0,

for small enough s. Combining this with the estimates for ‖V(t)‖ establishes unique-
ness.

Remark 6.13

Alternatively, one can use L-1 contraction to show the uniqueness. One can follow the
proof as given in [109]; in the given situation, the proof follows the same line.



Chapter 7

Numerical analysis of an
upscaled model: conformal
formulation

In this chapter we discuss the numerical analysis of an upscaled (core scale) model de-
scribing the transport, precipitation and dissolution of solutes in a porous medium.
The particularity lies in the modeling of the reaction term, especially the dissolution
term, which has a multivalued character. We consider the weak formulation for the
upscaled equation and provide rigorous stability and convergence results for both the
semi-discrete (time discretization) and the fully discrete scheme. In doing so, compact-
ness arguments are employed.

7.1 Introduction

In this chapter we consider a model for the reactive flow in a porous medium, where
the ions/solutes are being transported through the combined process of convection and
diffusion. Such models are encountered in many real-life applications, like the spread-
ing of chemical and the resulting ground water contamination (see [128] and references
therein), biological applications such as tissue and bone formation, pharmaceutical ap-
plications [91], or the operation of solid state batteries. Of particular interest are the
reactive processes, where precipitation and dissolution fronts develop as a result of re-

This chapter is a collaborative work with Sorin Pop and Florin Radu and it has been submitted to Nu-
merische Mathematik.
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actions (see [97, 115, 118] and references therein). In a related context, [23] discusses the
presence of stiff dissolution fronts involving the applications in the nuclear waste dis-
posal.

Here we concentrate on a macroscale (upscaled) model, meaning that the model is de-
fined at the Darcy scale. Therefore no distinction is made between the solid grains and
the pore space, and the equations are defined everywhere in the domain of interest. The
interesting aspect of the flow is the description of reactions taking place which have a
particular structure. These reactions model the precipitation and dissolution processes
taking place due to the interactions of ions (cations and anions). The reactions lead to
the formation of crystal which are immobile species. Since, the model is considered at
macroscale, both the crystals and the ions are defined everywhere. We take the model
which was first proposed in [73] and then followed in a series of papers [43–45]. In [47],
the corresponding pore scale model was presented. Further, the upscaled model is de-
rived rigorously in a simplified situation of a 2D strip. For a similar situation, but now
involving free boundaries at the pore scale, formal upscaling has been discussed in [75]
and [104].

Our main goal here is to provide the convergence of a conforming FEM discretization
for an upscaled model for dissolution and precipitation in porous media, involving a
multi-valued dissolution rate. Before discussing the details, we briefly review some of
the numerical work that is related to the present context. Conformal FEM schemes for
reactive porous media flow models are discussed in [14, 15], where non-Lipschitz, but
Hölder continuous rates are considered. Similarly, for Hölder continuous rates (includ-
ing equilibrium and non-equilibrium cases) mixed FEM methods are analyzed rigor-
ously in [120, 123], whereas [121] provides error estimates for the coupled system de-
scribing unsaturated flow and reactive transport. In all these cases, the continuity of the
reaction rates allows obtaining error estimates. Further, for continuously differentiable
rates, the convergence of (adaptive) finite volume discretizations is studied in [72, 111];
see also [28] for the convergence of a finite volume discretization of a copper-leaching
model. In a similar framework, discontinuous Galerkin methods are discussed in [127]
and upwind mixed FEM are considered in [38, 39]; combined finite volume-mixed hy-
brid finite elements are employed in [52, 59].

The primary motivation for the work here is to develop and analyse the appropriate
numerical schemes to compute the solutions of macroscale equations. In the treatment
here, we assume the flow to be given. Our primary focus is therefore to deal with
the convection-diffusion-reaction equation where the non-linearities are in the reaction
term. To avoid dealing with the inclusions as the dissolution rate is multi-valued, we
use approximation schemes and consider both the semi-discrete and the fully discrete
numerical schemes along these approximations (regularization). The resulting discrete
equations are non-linear and the solutions depend on the regularization parameter. We
prove their convergence to the time-continuous macroscale equations via a limiting
procedure using compactness arguments. Whereas in the case of semi-discrete case,
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we use translation estimates to improve the convergence needed to deal with the non-
linearities, in the fully-discrete case, we use the properties of Lagrange interpolation op-
erator (see [34]) to achieve the required convergence. Of particular relevance to the work
presented here is [41] where a semi-discrete numerical scheme for pore scale model is
considered and the convergence is proved. Here, we consider both semi-discrete and
fully discrete cases and for the latter we use finite element method to treat the spatial
discretization. As a by-product of the convergence proof, we also obtain an alternative
proof for existence of solutions for the macroscale equations. The present work should
be considered as a first step towards an eventual plan to consider both the flow and the
reactions coupled together (for example, Richards’ equation coupled with precipitation-
dissolution reaction models).

The chapter is structured as follows. We begin with a brief description of the model
in Section 7.2 where we also define the weak formulation of the model. We proceed to
define the time-discrete formulation in Section 7.3 where the numerical scheme is ana-
lyzed and the convergence is proved. Next, in Section 7.4, we consider the fully discrete
formulation and treat the convergence issue. The numerical experiments are shown in
Section 7.5 followed by the conclusions and discussions in Section 7.6.

7.2 The model

We present here a brief description of the precipitation-dissolution model under consid-
eration here. We refer to [43,44,73] for the details of the model. It is relevant to mention
that despite the simplification of the model under consideration, we retain the essence
and thereby the interesting mathematical character of the model. Let Ω ⊂ R2 be the
domain occupied by the porous medium, and assume Ω be open, connected, bounded
and polygonal with Lipschitz boundary Γ . Further, let T > 0 be a fixed but arbitrarily
chosen time, and define

ΩT = (0, T]×Ω, and Γ T = (0, T]× Γ .

While the reactions take place between the cations and anions, for the model considered
here, we study only one mobile species (cation, though the choice is immaterial). This
makes sense if the boundary and initial data are compatible (see [43], or [44]). Then,
denoting by v the concentration of the (immobile) precipitate, and by u the cation con-
centration, the model reduces to





∂t(u + v) +∇ · (qu−∇u) = 0, in ΩT ,
u = 0, on Γ T ,
u = uI , in Ω, for t = 0,

(7.2.1)
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for the ion transport, and




∂tv = (r(u)− w), on ΩT ,
w ∈ H(v), on ΩT ,
v = vI , on Ω, for t = 0,

(7.2.2)

for the precipitate. The rate of change in the precipitate concentration is the net process
of precipitation and dissolution. Here q stands for the Darcy fluid velocity. We assume
that q is a known, divergence free velocity

∇ · q = 0 in Ω.

For the ease of presentation we restrict to homogeneous Dirichlet boundary conditions.
The initial data uI and vI are assumed non–negative and essentially bounded. More-
over, for simplicity we assume that both uI , vI ∈ H1

0 (Ω), the space of H1 functions
defined on Ω and having a vanishing trace on Γ .

All quantities and variables in the above are assumed dimensionless. The diffusion is
assumed 1, the extension to a positive definite diffusion tensor being straightforward.
Further, we assume that the Damköhler number is scaled to 1, as well as an eventual
factor in the time derivative of v in (7.2.2)1, appearing in the transition (homogenization)
from the pore scale to the core scale. For the precipitation rate r we assume

(A1) r(·) : R→ [0, ∞) is locally Lipschitz continuous in R.

(A2) There exists a unique u∗ ≥ 0, such that

r(u) =
{

0 for u ≤ u∗,
strictly increasing for u ≥ u∗ with r(∞) = ∞.

(7.2.3)

The dissolution rate has a particular structure. It is assumed constant (1, by scaling) at
some (t, x) ∈ ΩT where the precipitate is present, i.e. if v(t, x) > 0. In the absence of
the precipitate, the overall rate (precipitate minus dissolution) is either zero if the solute
present there is insufficient to produce a net precipitation gain, or positive in case the
solute exceeds certain threshold value. In the presence of the precipitate, the dissolution
strength is constant as it is a surface process. Further, the absence of net precipitation
gain under insufficient amount of solutes being present, is related to the time-scale of
observation. The derivation of the precipitation-dissolution is based on chemical ki-
netics and the ideas of solubility product for the crystals. For further discussions and
derivation of this model, we refer to [45, 73]. For the dissolution process, the rate law
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can be summarized as

w ∈ H(v), where H(v) =





0, if v < 0,
[0, 1], if v = 0,

1, if v > 0.
(7.2.4)

Remark 7.1 Since the precipitation rate r is monotonically increasing, under the setting
above, a unique u∗ exists for which r(u∗) = 1. Then u∗ can be interpreted as an equilib-
rium value: within an open set A ⊂ ΩT where u = u∗, no precipitation or dissolution
occurs, and the precipitation rate is balanced by the dissolution rate regardless of the
presence or absence of crystals. Then, as follows from [47, 73, 109],

w = 1 a.e. in A.

Remark 7.2 The upscaled model under discussion, proposed originally in [73] (see also
[43–45]), and can be obtained by homogenization techniques, starting from the pore
scale counterpart in [47].
We emphasize on the particularity of the present model, which is in the description of
the dissolution and precipitation processes, involving a multi–valued dissolution rate.
Clearly, classical solutions do not exist, except for some particular cases. Therefore we
resort to defining appropriate weak solutions. We treat here the conformal weak for-
mulation which one formally obtains by multiplying the equations, e.g. (7.2.1), (7.2.2)
by smooth test functions and using partial integration, if necessary. We give a formal
definition in Section 7.2.2.

7.2.1 Notations and assumptions

We adopt the following standard notations from the functional analysis. By (·, ·) we
mean L2(Ω) inner product or the duality pairing between H1

0 and H−1; the L2(ΩT) in-
ner product is denoted by (·, ·)

Ω
T . Further, ‖ · ‖ stands for the norms induced by L2

inner product, L2(0, T; X) denotes the usual Bochner spaces for a given Banach space
X. For other norms, we explicitly state it. Furthermore, C denotes the generic constant
and the value of which might change from line to line and is independent of unknown
variables or the discretization parameters. Let Lr denote the Lipschitz constant of r and
‖q‖L∞(Ω) ≤ Mq where Mq is known.

We assume Ω ⊂ R2 to be an open bounded and polygonal subset and define the follow-
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ing sets

U := {u ∈ L2((0, T); H1
0 (Ω)) : ∂tu ∈ L2((0, T); H−1(Ω))},

V := {v ∈ H1((0, T); L2(Ω))},
W := {w ∈ L∞(ΩT) : 0 ≤ w ≤ 1}.

Since, Ω is polygonal, it has a regular decomposition into triangles and the errors due
to nonpolygonal domains are avoided. Let Th be a regular decomposition of Ω ⊂ R2

into closed triangles; h stands for the mesh-size. For the fully discrete situation, we will
use the discrete subspace Uh ⊂ H1

0 (Ω) defined as

Uh := {θ ∈ C(Ω̄) | θ ∈ P1(T), T ∈ Th, and θ = 0 on ∂Ω},

where P1(T) is the space of first order polynomials in two variables, defined on a tri-
angle T. In other words, Uh denotes the space of piecewise linear functions. Recall that
Uh ⊂ H1

0 (Ω) (see [33], p. 64). We also define the following projection:

Ph : L2(Ω) 7→ Uh, (Phθ−θ,ψh) = 0, (7.2.5)

for all ψh ∈ Uh. Note that Ph satisfies ( [33], p. 138)

‖Phθ−θ‖ ≤ Ch‖∇θ‖, (7.2.6)

for all θ ∈ H1
0 (Ω), for some C > 0 not depending on θ.

Moreover, let qh be the discrete approximation of q and we assume ∇ · qh = 0 with

‖q− qh‖ ↘ 0

uniformly as h ↘ 0. Further, we assume that qh also obeys the maximum principle so
that ‖qh‖L∞(Ω) ≤ Mq.

7.2.2 Weak formulation

We start with defining the conformal weak formulation for (7.2.1)-(7.2.2).

Definition 7.2.1 A triple (u, v, w) ∈ U × V ×W is a weak solution of (7.2.1) and (7.2.2) if
(u|t=0, v|t=0) = (uI , vI), and for all (φ,θ) ∈ (L2(0, T, H1

0 (Ω)), L2(0, T; L2(Ω))

(∂tu + ∂tv,φ)
Ω

T + (∇u,∇φ)
Ω

T + (qu,∇φ)
Ω

T = 0,
(∂tv,θ)

Ω
T − (r(u)− w,θ)ΩT = 0,

w ∈ H(v), a.e. in ΩT .
(7.2.7)
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The existence of a solution will be proved in Theorems 7.3.1 and 7.4.1 below. Alter-
natively, one can obtain the existence as an outcome of the rigorous homogenization
procedure, starting from the model at the pore scale. The uniqueness follows by stan-
dard contraction arguments. In what follows we propose numerical schemes for the
above weak formulation and perform their analysis, namely proving the convergence
of these discretized equations to the macroscale equations (7.2.7). First, we start with
time-discrete formulation which we refer to as semi-discrete scheme. Consideration of
this case provides a good understanding of the mathematical issues encountered in the
convergence proofs and prepares for considering the fully-discrete case where we dis-
cretize in both space and time. The proofs in the latter case follow the same line of
arguments as in the semi-discrete case and in some cases, the results can be directly
borrowed. However, there are important differences and we comment on these as we
proceed for the proofs.
As it has been remarked before, the study of numerical schemes and the convergence
of these schemes to the macroscale equations provide us with an alternative proof for
existence of solutions. We begin with the time-discrete formulation.

7.3 Semi-discrete scheme

Before defining the time-discretization, let us note the presence of a multi-valued rate
in (7.2.7)3, which impedes obtaining a priori estimates. Therefore we consider a regu-
larized approximation of the original model (and pass later to the limit). We make sure
that the estimates are independent of the regularization parameter, which is essential
for passing to the limit. With δ > 0, define the regularized Heaviside function

Hδ(v) =





0, if v < 0,
v
δ

, if 0 ≤ v ≤ δ,
1, if v > δ.

(7.3.1)

We start with defining the time-discrete scheme which we refer to Pn
δ with subscript

stressing the dependence of solution on the regularization parameter δ. We then pro-
ceed to prove the convergence of the sequence of solutions of Pn

δ , passing to a subse-
quence, if necessary. Our steps for the proof of convergence follow the usual procedure.
First, we obtain the a priori estimates which are independent of the discretization pa-
rameters and then define a time-continuous approximation for the solution. The esti-
mates for these approximations then pave the way for using convergence results. In
the wake of non-linearities involved, we need to improve the convergence, which we
obtain by translation estimates in the semi-discrete situation.

Next, with N ∈ N, τ = T
N and tn = nτ , n = 1, . . . , N, we consider a uniform time

stepping that is implicit in u and explicit in v. Starting with u0
δ = uI , v0

δ = vI , with
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n ∈ {1, . . . , N}, the approximation (un
δ , vn

δ ) of (u(tn), v(tn)) solves
Problem Pn

δ : Given (un−1
δ , vn−1

δ ) ∈
(

H1
0 (Ω)× L2(Ω)

)
, find (un

δ , vn
δ ) ∈

(
H1

0 (Ω)× ∈ L2(Ω)
)

such that
(

un
δ−un−1

δ

τ
,φ
)
+ (∇un

δ ,∇φ)− (qun
δ ,∇φ) +

(
vn
δ−vn−1

δ

τ
,φ
)
= 0(

vn
δ−vn−1

δ

τ
,θ
)
=
(

r(un
δ )− Hδ(v

n−1
δ ),θ

) (7.3.2)

for allφ ∈ H1
0 (Ω),θ ∈ L2(Ω). For completeness, we define

wn
δ := Hδ(v

n
δ ).

For stability reasons, we choose δ = O(τ
1
2 ) (see [41] for detailed arguments).

This is a system of elliptic equations for un
δ , vn

δ given un−1
δ ∈ H1

0 (Ω), vn−1
δ ∈ L2(Ω). Note

that the first equation is decoupled from the second equation since it can be written in
the form

(
un
δ − un−1

δ

τ
,φ

)
+ (∇un

δ ,∇φ)− (qun
δ ,∇φ) +

(
r(un

δ )− Hδ(v
n−1
δ ),φ

)
= 0.

With reaction term r being Lipschitz and monotonic; standard monotonicity arguments
can be used to show the existence and uniqueness of un

δ given un−1
δ [83]. After un

δ is
computed, for the second equation, computing vn

δ is straightforward as it is an explicit
discretization in time. We summarize the above result:

Lemma 7.3 Problem Pn
δ has a unique solution pair (un

δ , vn
δ ).

For the continuous formulation, (7.2.7), u, v are positive and essentially bounded. We
proceed to establish that this property is also respected by the time-discrete formulation.
With Mu := max{‖uI‖L∞ , u∗}, Mv := ‖vI‖L∞ , we note that r(Mu) ≥ 1. Let us first prove
the positivity of the solution pair (un

δ , vn
δ ).

Lemma 7.4 If un−1
δ , vn−1

δ ≥ 0 then un
δ , vn

δ ≥ 0.

Proof. We start with the estimate for vn
δ . In (7.3.2)2, for θ = [vn−1

δ ]−, with [·]− denoting
the non-positive part, we get

‖[vn
δ ]−‖2 = (vn−1

δ , [vn
δ ]−) + τ(r(u

n
δ )− Hδ(v

n−1
δ ), [vn

δ ]−).
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By assumption vn−1
δ ≥ 0, δ = O(τ

1
2 ) and r(un

δ ) ≥ 0, we are left to consider

vn−1
δ − τHδ(v

n−1
δ ) ≥ vn−1

δ (1− τ/δ) ≥ 0.

Hence ‖[vn
δ ]−‖2 ≤ 0 implying vn

δ ≥ 0.
Next we prove that un

δ is nonnegative. Forφ = [un
δ ]− in (7.3.2)2

‖[un
δ ]−‖2 + τ‖∇[un

δ ]−‖2 − τ(qun
δ ,∇[un

δ ]−) + (vn
δ − vn−1

δ , [un
δ ]−) ≤ (un−1

δ , [un
δ ]−).

The first two terms are nonnegative, whereas the third term vanishes:

(qun
δ ,∇[un

δ ]−) =
1
2
(q,∇[un

δ ]
2
−) =

1
2
(ν · q, [un

δ ]
2
−)Γ −

1
2
(∇ · q, [un

δ ]
2
−) = 0

by the boundary conditions for un
δ on Γ and ∇ · q = 0 in Ω. Further using (7.3.2)2 we

have

(vn
δ − vn−1

δ , [un
δ ]−) = τ(r(un

δ )− Hδ(v
n−1
δ ), [un

δ ]−) = −τ(Hδ(v
n−1
δ ), [un

δ ]−) ≥ 0

where we have used the positivity of r(un−1
δ ) and non-negativity of Hδ. Now by as-

sumption un−1
δ ≥ 0, we obtain un

δ ≥ 0.
The next lemma provides the pointwise bound for the concentration un

δ for any n. The
following lemma and a simple induction argument give this bound.

Lemma 7.5 If un−1
δ ≤ Mu then un

δ ≤ Mu.

Proof. Test (7.3.2)1 withφ = [un
δ −Mu]+ (the non-negative part of un

δ −Mu) to obtain

‖[un
δ −Mu]+‖2 + τ‖∇[un

δ −Mu]+‖2 − τ(qun
δ ,∇[un

δ −Mu]+)

+(vn
δ − vn−1

δ , [un
δ −Mu]+) ≤ (un−1

δ −Mu, [un
δ −Mu]+).

(7.3.3)

Again the third term vanishes using the arguments in the previous proof. Also

(un−1
δ −Mu, [un

δ −Mu]+) ≤ 0 as un−1
δ −Mu ≤ 0.

Furthermore,

(vn
δ − vn−1

δ , [un
δ −Mu]+) = (r(un

δ )−Hδ(v
n−1
δ ), [un

δ −Mu]+) ≥ 0 since r(un
δ )−Hδ(v

n−1
δ ) ≥ 0

for un
δ ≤ Mu.

For the concentration of the crystal vn
δ , the situation is a bit different but expected as is

evident from its ODE nature. Indeed, we have the following lemma:

Lemma 7.6 Let C = Lr Mu
Mv

and assume that vn−1
δ ≤ MveC(n−1)τ , then vn

δ ≤ MveCnτ .
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Proof. We use θ := [vn
δ −MveCnτ ]+ in (7.3.2)2 to obtain

‖[vn
δ −MveCnτ ]+‖2 =

(
vn−1
δ −MveC(n−1)τ , [vn

δ −MveCnτ ]+

)

+ Mv

(
eC(n−1)τ − eCnτ , [vn

δ −MveCnτ ]+

)
(7.3.4)

τ
(

r(un
δ )− Hδ(v

n−1
δ ), [vn

δ −MveCnτ ]+

)
.

Since, r(un
δ ) is Lipschitz and Hδ(·) is positive, we obtain

τ
(

r(un
δ )− Hδ(v

n−1
δ ), [vn

δ −MveCnτ ]+

)
≤ τ(CMv, [vn

δ −MveCnτ ]+),

and
Mv

(
eC(n−1)τ − eCnτ , [vn

δ −MveCnτ ]+

)
≤ Mv

(
1− eCτ , [vn

δ −MveCnτ ]+

)
.

Here, we have used eC(n−1)τ ≥ 1. Next,

τ
(

CMv, [vn
δ −MveCnτ ]+

)
+ Mv

(
1− eCτ , [vn

δ −MveCnτ ]+

)

≤ Mv

(
Cτ + 1− eCτ , [vn

δ −MveCnτ ]+

)
≤ 0

since 1 + x− ex ≤ 0 for x ≥ 0.
By assumption on vn−1

δ ,
(

vn−1
δ −MveC(n−1)τ , [vn

δ −MveCnτ ]+

)
≤ 0 and using above in

(7.3.4), we conclude
‖[vn

δ −MveCnτ ]+‖2 ≤ 0

leading to the assertion.
As nτ ≤ T, we conclude that the estimates shown above are independent of δ and τ .

7.3.1 The a priori estimates

With the pointwise bounds for the Problem Pn
δ already established, we proceed to obtain

energy estimates. These estimates will be used later for compactness arguments. These
are similar to estimates for parabolic equations but here restricted to discrete time steps.
We have the following lemma:
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Lemma 7.7 The following estimates hold

‖vn
δ‖ ≤ ‖vI‖+ Cr(Mu), (7.3.5)

‖vn
δ − vn−1

δ ‖ ≤ Cτ , (7.3.6)

τ
N

∑
n=1
‖∇un

δ‖2 ≤ C, (7.3.7)

N

∑
n=1
‖un

δ − un−1
δ ‖2 ≤ Cτ , (7.3.8)

N

∑
n=1
‖∇(un

δ − un−1
δ )‖2 ≤ C, (7.3.9)

where C is independent of τ and δ.

Proof. To prove (7.3.5) we choose the test functionφ = vn
δ in (7.3.2)1 to obtain

(vn
δ − vn−1

δ , vn
δ ) = τ(r(un

δ )− Hδ(v
n−1
δ ), vn

δ ),

which leads to using Cauchy-Schwarz inequality and Hδ , vn
δ ≥ 0

‖vn
δ‖2 ≤ ‖vn

δ‖(‖vn−1
δ ‖+ Cτr(Mu)).

The above equation can be re-written as

‖vn
δ‖ − ‖vn−1

δ ‖ ≤ Cτr(Mu)

which we sum over n to arrive at the assertion (7.3.5).
To prove (7.3.6), we consider (7.3.2)2 and use θ = vn

δ − vn−1
δ to obtain

‖vn
δ − vn−1

δ ‖2 = τ(r(un
δ )− Hδ(v

n
δ ), vn

δ − vn−1
δ )

≤ τ2 1
2
(r(Mu))

2 +
1
2
τ2 +

1
2
‖vn
δ − vn−1

δ ‖2,

leading to (7.3.6).
For (7.3.7), choosingφ = un

δ in (7.3.2)1 gives

(un
δ − un−1

δ , un
δ ) + τ‖∇un

δ‖2 + τ(qun
δ ,∇un

δ ) + (vn
δ − vn−1

δ , un
δ ) = 0.

We rewrite the left hand side to get

1
2

(
‖un

δ‖2 − ‖un−1
δ ‖2 + ‖un

δ − un−1
δ ‖2

)
+ τ‖∇un

δ‖2 ≤ ‖vn
δ − vn−1

δ ‖‖un
δ‖ ≤ Cτ .
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Summing over n we obtain

1
2
‖uN

δ ‖2 +
1
2

N

∑
n=1
‖un

δ − un−1
δ ‖2 + τ

N

∑
n=1
‖∇un

δ‖2 ≤ 1
2
‖uI‖2 + C ≤ C.

leading to (7.3.7).
We proceed further to prove (7.3.8) and (7.3.9). We choose for the test function φ =

un
δ − un−1

δ in (7.3.2)1 to obtain

‖un
δ − un−1

δ ‖2 + τ(∇un
δ ,∇(un

δ − un−1
δ )) + τ(qun

δ ,∇(un
δ − un−1

δ )) + (vn
δ − vn−1

δ , un
δ − un−1

δ ) = 0.

Treating the terms on the left hand side separately

τ(∇un
δ ,∇(un

δ − un−1
δ )) = τ

1
2

(
‖∇un

δ‖2 − ‖∇un−1
δ ‖2 + ‖∇(un

δ − un−1
δ )‖2

)
,

τ
∣∣∣(∇ · (qun

δ ), (u
n
δ − un−1

δ ))
∣∣∣ ≤

τ2 M2
q‖∇un

δ‖2

2
+

1
2
‖un

δ − un−1
δ ‖2,

∣∣∣(vn
δ − vn−1

δ , un
δ − un−1

δ )
∣∣∣ ≤

(
‖vn
δ − vn−1

δ ‖2 +
1
4
‖un

δ − un−1
δ ‖2

)
≤ τ2CM2

u +
1
4
‖un

δ − un−1
δ ‖2,

where for the last line we have used (7.3.6). Using above, we obtain by summing over
n = 1, . . . , N

1
4

N

∑
n=1
‖un

δ − un−1
δ ‖2 + τ‖∇uN

δ ‖2 +
N

∑
n=1
τ‖∇(un

δ − un−1
δ )‖2 ≤ Cτ + CM2

qτ + τ‖∇uI‖2 ≤ Cτ .

7.3.2 Convergence

We consider the sequence of time discrete (un
δ , vn

δ , wn
δ ) solving problem Pn

δ , and construct
a time continuous approximation by taking linear interpolation. We define,

Uτ (t) := un
δ

(t− tn−1)

τ
+ un−1

δ

(tn − t)
τ

,

Vτ (t) := vn
δ

(t− tn−1)

τ
+ vn−1

δ

(tn − t)
τ

,

Wτ (t) := Hδ(V
τ (t)).

We will use compactness arguments for time-continuous triples (Uτ , Vτ , Wτ ) to identify
the limit points and the system that these limit points satisfy. Note that this triple de-
pends on δ however, for notational convenience we have suppressed the subscript. Us-
ing the estimates obtained in (7.3.5)-(7.3.9), we obtain similar estimates for (Uτ , Vτ , Wτ ).
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Lemma 7.8 We have the following estimates:

0 ≤ Uτ ≤ Mu, 0 ≤ Vτ ≤ MveCT , 0 ≤Wτ ≤ 1 (7.3.10)

‖Uτ‖2 + ‖Vτ‖2 ≤ C, (7.3.11)

‖∂tU
τ‖2 + ‖∇Uτ‖2 + ‖∂tV

τ‖2 ≤ C, (7.3.12)

where C is a constant independent of τ , δ.

Proof. Clearly, (7.3.10), (7.3.11) follow from L∞ estimates for un
δ , vn

δ .
We proceed with the gradient estimates. We rewrite the interpolation scheme,

Uτ = un−1
δ +

t− tn−1

τ
(un
δ − un−1

δ )

from which we obtain

∇Uτ = ∇un−1
δ +

t− tn−1

τ
(∇un

δ −∇un−1
δ ).

Computing the L2(Ω) norm and using the elementary inequality,

‖∇Uτ‖2 ≤ 2‖∇un−1
δ ‖2 + 2

(t− tn−1)
2

τ2 ‖∇(un
δ − un−1

δ )‖2,

and integrating over t and since un−1
δ , un

δ are constant in (tn−1, tn) we obtain

∫ T
0 ‖∇Uτ‖2dt ≤ ∑

N
n=1 2

∫ tn
tn−1
‖∇un−1

δ ‖2dt + 2 ∑
N
n=1

∫ tn
tn−1

(t−tn−1)
2

τ
2 ‖∇(un

δ − un−1
δ )‖2dt,

≤ ∑
N
n=1 2τ‖∇un−1

δ ‖2 + ∑
N
n=1

2τ
3 ‖∇(u

n
δ − un−1

δ )‖2,

and stability estimates (7.3.7), (7.3.9) imply

‖∇Uτ‖2
L2(ΩT)

≤ C.

To estimate ‖∂tV
τ‖L2(ΩT) we note that whenever t ∈ (tn−1, tn]

∂tV
τ =

vn
δ − vn−1

δ

τ

implying

∫ T
0 ‖∂tV

τ‖2dt = ∑
N
n=1

∫ tn
tn−1
‖ vn

δ−vn−1
δ

τ
‖2dt ≤ ∑

N
n=1 τ‖ vn

δ−vn−1
δ

τ
‖2 ≤ CNτ ≤ CT ≤ C,

where we have used the estimate (7.3.6). To prove the estimate (7.3.12) is similar as
above. Again, for ‖∂tU

τ‖2
L2(0,T;L2(Ω))

term, we note that whenever t ∈ (tn−1, tn]

∂tU
τ =

un
δ − un−1

δ

τ
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of which square of L2 norm upon integrating over t yields

∫ T
0 ‖∂tU

τ‖2dt = ∑
N
n=1

∫ tn
tn−1
‖ un

δ−un−1
δ

τ
‖2dt ≤ ∑

N
n=1 τ‖ un

δ−un−1
δ

τ
‖2 ≤ CNτ ≤ CT ≤ C,

where we have used the estimate (7.3.8). This proves the lemma.
The next lemma provides the convergence results based on the estimates obtained above.

Lemma 7.9 The estimates obtained are uniform in τ and δ and furthermore we have (Uτ , Vτ , Wτ ) ∈
U × V × L∞(Ω). Clearly, τ ↘ 0 with δ = O(τ

1
2 ) implies that both δ, τ

δ
↘ 0. The compact-

ness arguments from the bounds established in Lemma 7.8 lead to the following convergence
results

(i). Uτ ⇀ u weakly in L2((0, T); H1
0 (Ω)),

(ii). ∂tU
τ ⇀ ∂tu weakly in L2((0, T); H−1(Ω)),

(iii). Vτ ⇀ v weakly in L2((0, T); L2(Ω)),

(iv). ∂tV
τ ⇀ ∂tv weakly in L2((0, T); L2(Ω)),

(v). Wτ ⇀ w weakly-star in L∞(Ω).

The compactness results above only provides the existence of these limit points and
it remains to be shown that these points satisfy the weak formulation in the sense of
Definition 7.2.1. In what follows, we proceed to prove the same.
Notice that the weak convergence for Uτ in L2((0, T); H1

0 (Ω)) together with ∂tU
τ ⇀ ∂tu

weakly in L2((0, T); H−1(Ω)) imply

Uτ → u strongly in L2((0, T); L2(Ω)) (7.3.13)

The lemma above provides only a weak convergence for Vτ and in the wake of nonlin-
earities, to facilitate getting the limit equations, we improve the convergence for Vτ and
show that under H1 regularity of the initial datum, we obtain strong convergence. This
is achieved by the translation estimates.
Fixing a t ∈ (tn−1, tn](0 < n ≤ N) we define4ξ as the translation operator

4ξ f (y, t) = f (y, t)− f (y +ξ , t).

We have the following lemma that provides the required translation estimate.

Lemma 7.10 If vI ∈ H1(Ω) then the following estimate holds

∥∥∥4ξvN
δ

∥∥∥
2
+

N

∑
n=1

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2
≤ C ‖4ξvI‖2 + Cτ

N

∑
n=1
‖4ξun

δ‖2 (7.3.14)
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Proof. For θ = 4ξvn
δ in (7.3.2)2, we get

(
4ξvn

δ −4ξvn−1
δ ,4ξvn

δ

)
= τ (4ξr(un

δ ),4ξvn
δ )− τ

(
4ξHδ(v

n−1
δ ),4ξvn

δ

)
.

We rewrite the last term in the above identity,
(
4ξHδ(v

n−1
δ ),4ξvn

δ

)
=
(
4ξHδ(v

n−1
δ ),4ξvn−1

δ

)
+
(
4ξHδ(v

n−1
δ ),4ξ(vn

δ − vn−1
δ )

)
.

The monotonicity of Hδ implies that the first term on the right hand side is positive, that
is, (

4ξHδ(v
n−1
δ ),4ξvn−1

δ

)
≥ 0.

For the left hand side, we use the identity

(
4ξvn

δ −4ξvn−1
δ ,4ξvn

δ

)
=

1
2

(
‖4ξvn

δ‖2 −
∥∥∥4ξvn−1

δ

∥∥∥
2
+
∥∥∥4ξ(vn

δ − vn−1
δ )

∥∥∥
2
)

.

Using the above identity and Cauchy-Schwarz for the first term on the right hand side,
we have

1
2

(
‖4ξvn

δ‖2 −
∥∥∥4ξvn−1

δ

∥∥∥
2
+
∥∥∥4ξ(vn

δ − vn−1
δ )

∥∥∥
2
)
≤ τLr ‖4ξun

δ‖ ‖4ξvn
δ‖

+τ
(
4ξHδ(v

n−1
δ ),4ξ(vn

δ − vn−1
δ )

)

≤ Lr
τ
2 ‖4ξun

δ‖2
+ τ

2 ‖4ξvn
δ‖2

+ τ2
∥∥∥4ξHδ(v

n−1
δ )

∥∥∥
2
+ 1

4

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2

which gives further

1
2

(
‖4ξvn

δ‖2 −
∥∥∥4ξvn−1

δ

∥∥∥
2
+
∥∥∥4ξ(vn

δ − vn−1
δ )

∥∥∥
2
)
≤ 1

2 Lrτ ‖4ξun
δ‖2

+ 1
2τ ‖4ξvn

δ‖2

+ τ
2

δ
2 ‖4ξvn−1

δ ‖2 + 1
4‖4ξ(v

n
δ − vn−1

δ )‖2.
(7.3.15)

Summing over n = 1, . . . , N

∥∥∥4ξvN
δ

∥∥∥
2
+ 1

2 ∑
N
n=1

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2
≤ ‖4ξvI‖2 + Lrτ ∑

N
n=1 ‖4ξun

δ‖2

+τ ∑
N
n=1 ‖4ξvn

δ‖2
+ ∑

N
n=1

2τ2

δ
2 ‖4ξvn−1

δ ‖2.
(7.3.16)

Choose for δ = O(
√
τ) and using Gronwall’s lemma we obtain (since we can re-do the

steps for any chosen k ≤ N, k ∈ Z+)

sup
k=1,...,N

∥∥∥4ξvk
δ

∥∥∥
2
≤ Cτ

N

∑
n=1
‖4ξun

δ‖2
+ ‖4ξvI‖2 . (7.3.17)

Using the translation estimate in above Lemma 7.10, we now show the strong conver-
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gence of Vτ .

Lemma 7.11 It holds that

Vτ → v strongly in L2(0, T; L2(Ω)). (7.3.18)

Proof. We use the translation in space and time to prove this strong convergence. First,
let Ω′ denote an arbitrary compact subset of Ω andξ ∈ (0, dist(Γ , Ω′)). It is well known
that the strong convergence is tantamount to proving that ( Prop. 9.3, p.267, [25])

I :=
∫

Ω
′T
|Vτ (t + ht, x +ξ)−Vτ (t, x)|2dxdt↘ 0 as |(ht,ξ)

′| ↘ 0.

Since ∂tV
τ is bounded uniformly in L2(0, T; L2(Ω)), the estimates for the translation

with respect to time is easily obtained. We now consider the translation with respect to
space. We have using the definition of Vτ ,

4ξVτ =
tn − t
τ
4ξvn−1

δ +
t− tn−1

τ
4ξvn

δ .

We define the piecewise constant interpolation Ūn for un
δ so that

Ūn = un
δ , t ∈ [tn−1, tn). (7.3.19)

Squaring and integrating the left hand side over Ω′ × (0, T), we obtain

∫ T

0

∫

Ω
′
|4ξVτ |2 ≤

N

∑
n=1
‖4ξvn

δ‖2

and using (7.3.17) and replacing un
δ by Ūn, the right hand side is estimated as

∫

Ω
′
|4ξVτ (t, x)dx|2 ≤ CTτ

N

∑
n=1
‖4ξŪn‖2

+ CT ‖4ξvI‖2 .

We exploit a general result (for example, see [85]) which connects the convergence of
piecewise linear interpolations with that of the piecewise constant interpolations. This
ensures that the strong convergence of affine interpolation Uτ in L2(0, T; L2(Ω)) im-
plies strong convergence for piece-wise constant interpolation Ūn. Having this strong
convergence for Ūn implies that the space translation is controlled, namely

τ
N

∑
n=1
‖4ξŪn‖2 ↘ 0 as |ξ | ↘ 0.

Since the initial conditions are in H1(Ω), ‖4ξvI‖2 ↘ 0 as |ξ | ↘ 0. With this, I ↘
0 as |ξ | ↘ 0 which leads to the strong convergence of Vτ .
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With the strong convergence established for Vτ , our preparation is complete to show
that the limits points (u, v, w) obtained in Lemma 7.9 satisfy the weak formulation
(7.2.7). This is considered in the following theorem.

Theorem 7.3.1 The limit triple (u, v, w) satisfy the weak formulation stated in Definition 7.2.1.

Proof. By the weak convergence, the estimates in Lemma 7.8 carry over for the limit
triple (u, v, w). Moreover,

∫ T
0 (∂tU

τ ,φ)dt +
∫ T

0 (∇Uτ ,∇φ)dt +
∫ T

0 (q · ∇Uτ ,φ)dt +
∫ T

0 (∂tV
τ ,φ)dt

= ∑
N
n=1

∫ tn
tn−1

((∇Uτ −∇un
δ ),∇φ)dt + ∑

N
n=1

∫ tn
tn−1

(q · (∇Uτ −∇un
δ ),φ)dt,

for all φ ∈ L2(0, T; H1
0 ). By Lemma 7.9, the left hand side converges to the desired

limit. We are thus required to show that the right hand side vanishes. Denote the inte-
grals of the right hand side by I1 and I2 and we obtain

|I1| ≤
(

N

∑
n=1
τC‖∇un

δ −∇un−1
δ ‖2

) 1
2 (∫ T

0
‖∇φ‖2dt

) 1
2

→ 0

since ∑
N
n=1 τ‖∇un

δ −∇un−1
δ ‖2 ↘ 0 because of estimate (7.3.9). Similarly,

|I2| ≤ (
N

∑
n=1
τMq‖∇(un

δ − un−1
δ )‖2)

1
2

(∫ T

0
‖φ‖2dt

) 1
2

and due to (7.3.9), |I2| vanishes as well.
For the limiting equation for Vτ , we have using (7.3.2)2

∫ T
0 (∂tV

τ ,θ)dt =
∫ T

0 (r(Uτ )−Wτ )dt + ∑
N
n=1

∫ tn
tn−1

(r(un
δ )− r(Uτ ),θ)dt

+∑
N
n=1

∫ tn
tn−1

(Wτ − Hδ(v
n−1
δ ),θ)dt.

We would retrieve the desired limiting equations once we prove that the last two inte-
grals on the right hand side vanish. Let us denote the last two integrals by I3 and I4

respectively. We have

|I3| ≤
(

N

∑
n=1
τL2

r‖un
δ − un−1

δ ‖2

) 1
2 (∫ T

0
‖θ‖2dt

) 1
2

and using (7.3.8), we obtain I3 ↘ 0.
For I4, use the definition of Wτ and Lipschitz continuity of Hδ in order to obtain

|I4| ≤
N

∑
n=1

∫ tn

tn−1

1
δ
‖vn
δ − vn−1

δ ‖‖θ‖dt ≤
N

∑
n=1

Cτ
τ

δ
‖θ‖dt
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by using (7.3.5) and further using Cauchy Schwarz and τ/δ ↘ 0 (by the construction of
δ) we obtain I4 ↘ 0.
Next, we need to prove w = H(v). Since we have Vτ strongly converging, we also
obtain Vτ → v pointwise a.e.. Further,

(Wτ ,θ) = (w,θ)

and by definition, Wτ = Hδ(V
τ ); and

(Hδ(V
τ ),θ) = (w,θ).

By construction, as τ ↘ 0, δ ↘ 0. Now, for any given (t, x) ∈ Ω, either v > 0 or v = 0.
For the case when v > 0, we have Wτ = 1 and hence w = 1. For the case when v = 0,
since ∂tv ∈ L2(Ω), ∂tv = 0 leading to w = r(u) with 0 ≤ w ≤ 1 and hence we can
establish the required result.

7.4 Fully discrete system

We consider the fully discrete system (discretized in both space and time) and show the
convergence of the numerical method. In particular, we consider the finite element dis-
cretization in space and for the time we retain the discretization as in the semi-discrete
case. The steps for the proof of convergence are similar to the semi-discrete situation
and where ever the proof is based on the time-discrete case treated above, we suppress
the details of the proof. Further, to simplify notation, henceforth, we suppress the sub-
script δ.
To obtain the fully discrete formulation for the weak solution of (7.2.1)–(7.2.2), we take
Euler’s implicit discretization for the diffusion and reaction terms. Next, with N ∈
N, τ = T

N and tn = nτ , n = 1, . . . , N, we consider a uniform time stepping that is im-
plicit in u and explicit in v. For the space discretization, we have Ω discretized in the
2− dimensional simplices (triangles) Th with mesh-size h. We have assumed Ω to be
polygonal as has been stated in Section 7.2.1. Further, we give definitions, in Section
7.2.1, of function spaces that will be used here. Starting with u0

h = uI , v0
h = vI , with

n ∈ {1, . . . , N}, the approximation (un
h , vn

h) of (u(tn), v(tn)) at Th solves
Problem Pn

h : Given (un−1
h , vn−1

h , wn−1
h ) ∈ Uh × Uh × L∞(Ω), find (un

h , vn
h , wn

h) ∈ Uh ×
Uh × L∞(Ω) such that

(un
h − un−1

h ,φh) + τ(∇un
h ,∇φh)− (qhun

h ,∇φh) + (vn
h − vn−1

h ,φh) = 0,

(vn
h − vn−1

h ,θh) = τ(r(un
h),θh)− τ(Hδ(v

n−1
h ),θh) (7.4.1)
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for allφh,θh ∈ Uh.
To complete the solution we define

wn
h := Hδ(v

n−1
h ).

Note that the solutions for Pn
h are defined in a finite dimensional vector space. In what

follows we analyse the fully discrete case.

7.4.1 Existence and uniqueness

The discretization above in (7.4.1) provides a sequence of elliptic equations for un
h , vn

h

given un−1
h , vn−1

h ∈ Uh. For stability reasons, we choose δ = O(τ
1
2 ).

The first task here is to obtain the existence and uniqueness for problem Pn
h . Since Pn

h

is defined on a finite dimensional space, the proof for existence and uniqueness is not
difficult, as for example it follows from [133]. However, we present here a fixed point
argument based on linearization techniques (see [116]). It also provides a numerical
method in addition to providing the existence and uniqueness. We use this method to
perform numerical computations, hence we find it relevant to present this argument.
We assume that un−1

h and vn−1
h are given with their corresponding H1

0 (Ω) and L2(Ω)

norms uniformly bounded. To construct the iteration scheme, we decouple the ion-
transport equation and rewrite (7.4.1)1 using (7.4.1)2

(un
h − un−1

h ,φh) + τ(∇un
h ,∇φh)− τ(qhun

h ,∇φh) + τ(r(u
n
h)− Hδ(v

n−1
h ),φh) = 0 (7.4.2)

for allφh ∈ Uh.
We make some preparation for applying the fixed point iteration. We define the norm

|||u|||2 := ‖u‖2 +
2τ

2 + τLr
‖∇u‖2

so that we can obtain the contraction. Recall that Lr is the Lipschitz constant of the
precipitation term r(·). Further, we define the closed set

K := {u ∈ Uh, |||u||| ≤ C}.

Assuming un−1
h ∈ K, we define the mapping T

ui−1 7→ ui = T ui−1

where ui solves

(ui ,φh) + τ(∇ui ,∇φh)− τ(qhui ,∇φh) + τLr(ui ,φh) = τLr(ui−1,φh)− τ(r(ui−1),φh)

+ (un−1
h ,φh) + τ(Hδ(v

n−1
h ),φh)

(7.4.3)
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for all φh ∈ Uh. A good initial value for the iteration is u0 = un−1
h . We have suppressed

the superscript n in the iteration for the sake of presentation. In the iterative scheme
considered here, we note that the fixed point satisfies (7.4.2) as the terms involving Lr

gets canceled in the case of convergence. The problem of proving existence and unique-
ness of solution of problem Pn

h is, thus, tantamount to proving that of the fixed point of
(7.4.3). Such constructions are common and we refer to [41] and the references therein
for another application.
Next, we define

ei := ui − ui−1.

We have the following result for the mapping T .

Lemma 7.12 It holds that T maps ui−1 ∈ K to ui = T ui−1 ∈ K and is a contraction with
respect to the ||| · ||| norm.

Proof. Note that standard Lax-Milgram arguments provide that T maps K into H1.
Next, we show that it is a contraction and hence maps K to itself. Using (7.4.3) and
subtract the equation for ui−1 to obtain

(ei ,φh) + τ(∇ei ,∇φh)− τ(qhei ,∇φh) + τLr(ei ,φh) = τLr(ei−1,φh)

− τ(r(ui−1)− r(ui−2),φh). (7.4.4)

Choosing forφh = ei, we obtain

(1 + τLr)‖ei‖2 + τ‖∇ei‖2 − τ(qhei ,∇ei) = τ(Lrei−1 − r(ui−1) + r(ui−2), ei) (7.4.5)

and since r is Lipschitz continuous, we use mean value theorem to obtain

(1 + τLr)‖ei‖2 + τ‖∇ei‖2 − τ(qhei ,∇φ) = τ(Lrei−1 − r′(ξ)ei−1, ei) (7.4.6)

for some ξ ∈ (ui−1, ui−2). Further, note that the contribution due to convection term
vanishes, using the divergence free qh we have

(qhei ,∇ei) =
1
2

∫

Ω
∇ · (qhe2

i )dx =
1
2

∫

∂Ω
ν · qhe2

i ds = 0

because of boundary condition for ei.
Next, with 0 ≤ Lr − r′(ξ) ≤ Lr, the right hand side of (7.4.6) can be estimated as

(1 + τLr)‖ei‖2 + τ‖∇ei‖2 ≤ τLr‖ei−1‖‖ei‖ ≤
1
2
τLr

(
‖ei‖2 + ‖ei−1‖2

)

which gives,

(1 +
1
2
τLr)‖ei‖2 + τ‖∇ei‖2 ≤ 1

2
τLr‖ei−1‖2
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or rewriting

‖ei‖2 +
τ

1 + 1
2τLr

‖∇ei‖2 ≤ 1
2

τLr

1 + 1
2τLr

‖ei−1‖2 ≤ γ|||ei−1|||2

with γ = τLr
2+τLr

and using τLr > 0 we obtain γ < 1. Hence, the map T

ui−1 7→ ui = T ui−1

is a contraction and therefore has a unique fixed point by Banach fixed point theorem.

Using the above lemma, we immediately obtain that ui converges to the fixed point of
(7.4.2) as i ↗ ∞. Clearly, the limit is un

h ; after obtaining it, computing vn
h is straightfor-

ward as it is an explicit discretization in time. In other words,

Lemma 7.13 Problem Pn
h has a unique solution triple (un

h , vn
h , wn

h).

Remark 7.14 The numerical scheme presented here has a linear convergence rate with
respect to H1 norm as opposed to say Newton’s iteration which is quadratic. This is
compensated by the fact that the convergence is guaranteed for any choice of parame-
ters. The error converges to 0 as the iteration index approaches ∞. In practice, however,
only 3-4 iterations are needed. Also, in L2 norm, one expects a faster convergence since,
as τ decreases the factor γ tends to 0 and the norm defined for the mapping T is inde-
pendent of τ for L2 part of the norm.
We have not investigated the stability in time of this iteration process. For computing
the solution, at each time step, by performing this iterative scheme, we accumulate the
error. It can be shown that the error accumulated in time vanishes as τ tends to 0. Since
our focus is to show the existence and uniqueness of the solution for the discrete prob-
lem Pn

h we do not investigate this aspect. For a discussion on this issue, we refer to [41],
Lemma 3.6.

7.4.2 A priori estimates

We start with the a priori estimates for Problem Pn
h . These are similar to estimates for

parabolic equations but here restricted to discrete time steps. We have the following
lemma:
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Lemma 7.15 The following estimates hold

sup
k=1,...,N

‖uk
h‖2 ≤ C, (7.4.7)

τ
N

∑
n=1
‖∇un

h‖2 ≤ C, (7.4.8)

‖vn
h − vn−1

h ‖ ≤ Cτ , (7.4.9)

sup
k=1,...,N

‖vk
h‖ ≤ C, (7.4.10)

N

∑
n=1
‖un

h − un−1
h ‖2 ≤ Cτ , (7.4.11)

N

∑
n=1
‖∇(un

h − un−1
h )‖2 ≤ C, (7.4.12)

where C is independent of τ and δ.

Proof. These a priori estimates are similar to the estimates as derived in the proof
of Lemma 7.7. However, the technique used for obtaining the maximum principle in
the continuous case, does not apply here due to inadmissibility of the test function. We
therefore, derive the estimates in the following manner: Consider (7.4.1)1 and choose
φh = un

h to obtain

(un
h − un−1

h , un
h) + τ(∇un

h ,∇un
h)− τ(qhun

h ,∇un
h) + (vn

h − vn−1
h , un

h) = 0, (7.4.13)

and use (7.4.1)2 to replace the last term on the left hand side,

(un
h − un−1

h , un
h) + τ(∇un

h ,∇un
h) + τ(r(u

n
h), un

h) = τ(qhun
h ,∇un

h)− τ(Hδ(v
n−1
h ), un

h).
(7.4.14)

Using the identity for the left hand side

(un
h − un−1

h , un
h) =

1
2

(
‖un

h‖2 − ‖un−1
h ‖2 + ‖un

h − un−1
h ‖2

)

and for the right hand side, use Cauchy-Schwarz to obtain

1
2

(
‖un

h‖2 − ‖un−1
h ‖2 + ‖un

h − un−1
h ‖2

)
+

1
2
τ‖∇un

h‖2 + τLr‖un
h‖2

≤ 1
2
τMq‖un

h‖2 + Cτ +
1
2
τ‖un

h‖2, (7.4.15)
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and sum over n = 1, . . . , N to get

1
2
‖uN

h ‖2 +
1
2

N

∑
n=1
‖un

h − un−1
h ‖2 +

1
2
τ

N

∑
n=1
‖∇un

h‖2 + Lrτ
N

∑
n=1
‖un

h‖2 ≤ Cτ
N

∑
n=1
‖un

h‖2 + C.

(7.4.16)

Using Gronwall’s lemma provides

sup
k=1,...,N

‖uk
h‖2 ≤ C

which is (7.4.7). Use this in above to obtain

τ
N

∑
n=1
‖∇un

h‖2 ≤ C

which is (7.4.8). We proceed further to prove (7.4.9) and (7.4.10). Choose for θ = vn
h −

vn−1
h in (7.4.1)2 and applying Cauchy-Schwarz inequality for the right hand side,

∥∥∥vn
h − vn−1

h

∥∥∥
2
≤ τ ‖r(un

h)‖
∥∥∥vn

h − vn−1
h

∥∥∥+ τ
∥∥∥Hδ(v

n−1
h )

∥∥∥
∥∥∥vn

h − vn−1
h

∥∥∥

which implies using bound (7.4.7) for un
h ,

∥∥∥vn
h − vn−1

h

∥∥∥ ≤ Cτ

which is (7.4.9).

Next to prove (7.4.10), choose θ = vn
h in (7.4.1)2 to obtain

(vn
h − vn−1

h , vn
h) = τ(r(un

h), vn
h)− τ(Hδ(v

n−1
h ), vn

h). (7.4.17)

The left hand side can be rewritten as

(vn
h − vn−1

h , vn
h) =

1
2

(
‖vn

h‖2 − ‖vn−1
h ‖2 + ‖vn

h − vn−1
h ‖2

)
.

We rewrite the last term on the right hand side
(

Hδ(v
n−1
h ), vn

h

)
=
(

Hδ(v
n−1
h ), vn−1

h

)
−
(

Hδ(v
n−1
h ), vn−1

h − vn
h

)
.

Substituting these in (7.4.10),

‖vn
h‖2−

∥∥∥vn−1
h

∥∥∥
2
+
∥∥∥vn

h − vn−1
h

∥∥∥
2
= 2τ (r(un

h), vn
h)− 2

(
Hδ(v

n−1
h ), vn−1

h

)
+ 2

(
Hδ(v

n−1
h ), vn−1

h − vn
h

)
.
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Since H(·) is monotone, (Hδ(v
n−1
h ), vn−1

h ) ≥ 0 and further use Cauchy-Schwarz inequal-
ity to get

‖vn
h‖2 −

∥∥∥vn−1
h

∥∥∥
2
+
∥∥∥vn

h − vn−1
h

∥∥∥
2
≤ 2τC ‖un

h‖ ‖vn
h‖+ 2τ

(
Hδ(v

n−1
h ), vn

h − vn−1
h

)
.

Now use Young’s inequality for the terms on the right hand side to obtain

‖vn
h‖2 −

∥∥∥vn−1
h

∥∥∥
2
+

1
2

∥∥∥vn
h − vn−1

h

∥∥∥
2
≤ Cτ ‖vn

h‖2
+ Cτ ‖un

h‖2
+ 2τ2 ‖Hδ‖2 .

Summing over n = 1, . . . , N gives

∥∥∥vN
h

∥∥∥
2
+ 1

2 ∑
N
n=1

∥∥∥vn
h − vn−1

h

∥∥∥
2
≤ ‖vI‖2 + Cτ ∑

N
n=1 ‖vn

h‖2
+ Cτ ∑

N
n=1 ‖un

h‖2
+ ∑

N
n=1 2τ2 ‖Hδ‖2

≤ τ ∑
N
n=1 ‖vn

δ‖2
+ C + Cτ

where we have used bounds on un
h and on initial data. Now use Gronwall’s lemma to

conclude (7.4.10).

The estimates (7.4.11) and (7.4.12) follow from the steps in the proof of (7.3.8) and (7.3.9).
We omit the details.

7.4.3 Convergence

As in the semi-discrete case, we consider the sequence of time discrete (un
h , vn

h , wn
h) solv-

ing problem Pn
h , and construct a time continuous approximation by taking linear inter-

polation. We define,

Uτ
h (t) := un

h
(t− tn−1)

τ
+ un−1

h
(tn − t)
τ

,

Vτ
h (t) := vn

h
(t− tn−1)

τ
+ vn−1

h
(tn − t)
τ

,

Wτ
h (t) := Hδ(V

τ
h (t)).

We will use compactness arguments for time-continuous triples (Uτ
h , Vτ

h , Wτ
h ) to iden-

tify the limit points and the system that these limit points satisfy. Using the estimates
obtained in (7.4.9)-(7.4.12), we obtain similar estimates for (Uτ

h , Vτ
h , Wτ

h ).

Lemma 7.16 We have the following estimates:

‖Uτ
h ‖2 + ‖Vτ

h ‖2 ≤ C, (7.4.18)

‖∂tU
τ
h ‖2 + ‖∇Uτ

h ‖2 + ‖∂tV
τ
h ‖2 ≤ C, (7.4.19)

0 ≤Wτ
h ≤ 1 (7.4.20)
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where the norms are taken with respect to L2(0, T; L2(Ω)) and C is a constant independent of
τ , δ.

Proof. Estimate (7.4.18) follows from the L2 estimate for uk
h and vk

h. For instance,

‖Uτ
h ‖2

L2(0,T;L2(Ω))
≤ 2τ

N

∑
n=1
‖un

h‖2 + 2τ
N

∑
n=1
‖un−1

h ‖2 ≤ CNτ ≤ C

using (7.4.7). Similarly the estimate for Vτ
h follows from (7.4.10). The other estimates

follow the steps in semi-discrete case. We omit the details.
The estimates above provide us with the convergence results. We state this in the next
lemma.

Lemma 7.17 The estimates obtained are uniform in discretization parameters (τ , h) and reg-
ularization parameter δ and furthermore we have (Uτ

h , Vτ
h , Wτ

h ) ∈ U × V × L∞(Ω). Clearly,
τ ↘ 0 with δ = O(

√
τ), implies that both δ, τ

δ
↘ 0. The compactness arguments from the

Lemma 7.16 lead to the following convergence results. As (h, τ)↘ 0, it holds that

(i). Uτ
h ⇀ u weakly in L2((0, T); H1

0 (Ω)),

(ii). ∂tU
τ
h ⇀ ∂tu weakly in L2((0, T); L2(Ω)),

(iii). Vτ
h ⇀ v weakly in L2((0, T); L2(Ω)),

(iv). ∂tV
τ
h ⇀ ∂tv weakly in L2((0, T); L2(Ω)),

(v). Wτ
h ⇀ w weakly-star in L∞(Ω).

Once again, it remains to be proved that the limit points are the desired functions that
satisfy the weak formulation in the sense of Definition 7.2.1. In this respect, to identify
the limit object for the dissolution term, we need the strong convergence of Vτ

h . Here,
the translation estimates can not be applied straightforwardly as the test functions after
translation may leave the space Uh. This is due to the fact that the translations are not
remaining within the same triangle. To prove the strong convergence, we use the ideas
from [34] . In this context, we use the higher regularity of vI to improve the convergence.
We start with the following proposition that we are going to use later.

Proposition 7.4.1 Let Π be the interpolation operator that maps H1(Ω) ∩ C(Ω̄) to the space
Uh. Let g : R 7→ R be a Lipschitz function with Lipschitz constant Lg, and let f : Ω 7→ R
defined by f = g(u). Then for any u ∈ Uh it holds that

‖∇Π f ‖ ≤ Lg‖∇u‖. (7.4.21)
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Proof. We follow the computations of [34] (Page 469) and only provide a brief sketch
and cite the results directly (also see [49]). Following the notations of [34], let AT

i =

(xi , yi) denote the vertices of the triangle T with i = 1, 2, or 3. Note that f is an H1

function. Since Π f is piecewise linear,

Π f =
3

∑
i=1

(aT
i x + bT

i y + cT
i )Π f (AT

i ),

with
aT

i =
1

2|T| (y j − yk),

bT
i =

1
2|T| (xk − x j),

cT
i =

1
2|T| (x j yk − xk y j)

with cyclic permutation of the indices i, j, k and |T| representing the area of the triangle.
The equation (2.5), page 469 of [34] reads for the given context here,

‖∇Π f ‖2 = ∑
T∈Th

1
4|T| {(AT

k AT
i , AT

k AT
j )| f (AT

i )− f (AT
j )|2} (7.4.22)

where AT
k AT

i is a vector connecting vertex i to k of triangle T. This provides using the
Lipschitz continuity of g,

‖∇Π f ‖2 ≤ L2
g ∑

T∈Th

1
4|T| {(AT

k AT
i , AT

k AT
j )|u(AT

i )− u(AT
j )|2}

= L2
g‖∇u‖2 (7.4.23)

establishing the proposition.

Remark 7.18 It is important to note that the constant of the bound is indeed Lg, the
Lipschitz constant. We need this fact below in the proof of the next Lemma.

Lemma 7.19 If vI ∈ H1(Ω), it holds that as (τ , h)↘ 0

Vτ
h → v strongly in L2(0, T; L2(Ω)). (7.4.24)

Proof. From (7.4.1)2 we have

(vn
h − vn−1

h ,θh) = τ(r(un
h)− Hδ(v

n−1
h ),θh)
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for all θh ∈ Uh which provides

vn
h = τΠr(un

h)− Π(vn−1
h − τHδ(v

n−1
h ))

as vn
h and vn−1

h are in P1. Next, note that (vn−1
h − τHδ(v

n−1
h )) is a Lipschitz function of

vn−1
h with Lipschitz constant 1− τ

δ
. Hence, using the above Proposition 7.4.1, we have

‖∇Π(vn−1
h − τHδ(v

n−1
h ))‖ ≤ (1− τ

δ
)‖∇vn−1

h ‖ ≤ ‖∇vn−1
h ‖

as we choose δ = O(
√
τ). This gives,

‖∇vn
h‖ − ‖∇vn−1

h ‖ ≤ τLr‖∇un
h‖

by first considering pointwise gradients and then taking the L2(Ω) norm. Summing
over n = 1, . . . , k we obtain

‖∇vk
h‖ ≤ ‖∇vI‖+

k

∑
n=1
τLr‖∇un

h‖

which implies that (since, this holds for any k ∈ Z+, k ≤ N)

sup
k
‖∇vk

h‖ ≤ C. (7.4.25)

Using the definition of Vτ
h , we have

∇Vτ
h = ∇un

h +
t− tn−1

τ
∇un−1

h

and taking L2 norm on both sides,

‖∇Vτ
h ‖2 ≤ 2‖∇vn

h‖2 + 2‖∇vn−1
h ‖2.

Integrate in time and use preceding bound (7.4.25) to conclude

∫ T

0

∫

Ω
|∇Vτ

h |2dxdt ≤ C.

The estimate above provides a weak convergence of Vτ
h in L2(0, T; H1(Ω)) and combin-

ing with ∂tV
τ
h ∈ L2(0, T; L2(Ω)) provides strong convergence of Vτ

h in L2(0, T; L2(Ω)).
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7.4.4 Limit equations

In what follows, we show that these limits satisfy the weak formulation (7.2.7). This is
considered in the following theorem.

Theorem 7.4.1 The limit triple (u, v, w) satisfy the weak formulation (7.2.7).

Proof. By the weak convergence, the estimates in Lemma 7.16 carry over for the limit
triple (u, v, w). By 7.4.1, for (Uτ

h , Vτ
h ) we have

∫ T
0 (∂tU

τ
h ,φ)dt +

∫ T
0 (∇Uτ

h ,∇φ)dt +
∫ T

0 (qh · ∇Uτ
h ,φ)dt +

∫ T
0 (∂tV

τ
h ,φ)dt

= ∑
N
n=1

∫ tn
tn−1

(∂tV
τ
h ,φ−φh) + ∑

N
n=1

∫ tn
tn−1

(∂tU
τ
h ,φ−φh)dt + ∑

N
n=1

∫ tn
tn−1

(∇Uτ
h ,∇(φ−φh))dt

+∑
N
n=1

∫ tn
tn−1

((∇Uτ
h −∇un

h),∇φh)dt− ∑
N
n=1

∫ tn
tn−1

(qhUτ
h , (∇φ−∇φh))dt

−∑
N
n=1

∫ tn
tn−1

(qh(U
τ
h − un

h),∇φh)dt,
(7.4.26)

for all φ ∈ L2(0, T; H1
0 (Ω)), where φh = Phφ is the projection of φ defined in (7.2.5).

We proceed by showing that the terms on the right are vanishing as the discretization
parameters h and τ are approaching 0. To this aim we first taken test functions that
are H2 in space, i.e. φ ∈ L2(0, T; H2

0 (Ω)). As will be seen below, this extra regularity
allows us to control terms involving ∇(φ −φh). By this we prove that (u, v) satisfy
(7.2.7)1, but only for test functions having a better regularity in space. Once this is
established, density arguments ensure that the equality is satisfied also for test functions
in L2(0, T; H1

0 (Ω)).

By Lemma 7.17, all terms on the left hand side converge to the desired limits. This is
obvious except for the third term where a simple argument takes us through:

∫ T

0
(qh · ∇Uτ

h ,φ)dt =
∫ T

0
(q · ∇Uτ

h ,φ)dt +
∫ T

0
((qh − q) · ∇Uτ

h ,φ)dt. (7.4.27)

The first term on the right hand side of (7.4.27) passes to the desired limit. We show
that the second term vanishes in the limit. Note that qh − q ∈ L∞(Ω) and hence, (qh −
q)∇Uτ

h has a weak limit. Now chooseφ ∈ L2(0, T; C∞
c (Ω)) so thatφ ∈ L∞(Ω) and use

the strong convergence of qh in L2 (uniform with respect to h) to conclude that the weak
limit is indeed 0.

We are thus required to show that the right hand side of (7.4.26) vanishes in the limit.
We treat each term on the right hand side separately. Denote the successive terms in
r.h.s. by Ii with i = 1, . . . , 6. We have

|I1| ≤
(∫ T

0
‖∂tV

n
h ‖2dt

) 1
2
(

N

∑
n=1

∫ tn

tn−1

‖φ−φh‖2dt

) 1
2

≤ Ch‖∇φ‖L2(0,T;L2(Ω)) ↘ 0
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as h↘ 0.
For I2 we have the similar argument as in the case of I1. Next,

|I3| ≤
(∫ T

0
‖∇Uτ

h ‖2dt
) 1

2
(

N

∑
n=1

∫ tn

tn−1

‖∇(φ−φh)‖2dt

) 1
2

≤ Ch‖φ‖L2(0,T;H2
0 (Ω))

and hence, I3 ↘ 0 as h↘ 0. Here we use the fact thatφ ∈ L2(0, T; H2
0 (Ω)), and hence,

‖∇(φ−φh)‖ ≤ Ch‖φ‖H2
0 (Ω).

For I4, we obtain

|I4| ≤
(

N

∑
n=1
τ‖∇un

h −∇un−1
h ‖2

) 1
2
(

N

∑
n=1
τ‖∇φh‖2

) 1
2

→ 0

since ∑
N
n=1 τ‖∇un

h −∇un−1
h ‖2 ↘ 0 because of estimate (7.4.12).

To continue,

|I5| ≤
(∫ T

0
‖qhUτ

h ‖2dt
) 1

2
(

N

∑
n=1

∫ tn

tn−1

‖∇(φ−φh)‖2dt

) 1
2

≤ Ch‖φ‖L2(0,T;H2
0 (Ω))

leading to I5 vanishing in the limit. For I6 we have

|I6| ≤ Mq

(
N

∑
n=1
τ‖un

h − un−1
h ‖2dt

) 1
2
(

N

∑
n=1
τ‖∇φh‖2dt

) 1
2

↘ 0

because of (7.4.11).
Concerning the second equation in (7.2.7), by (7.4.1)2 we have

∫ T
0 (∂tV

τ ,θ)dt− ∫ T
0 (r(Uτ )−Wτ

h ,θ)dt = ∑
N
n=1

∫ tn
tn−1

(∂tV
τ
h ,θ−θh)dt

+∑
N
n=1

∫ tn
tn−1

(r(un
h)− r(Uτ ),θh)dt + ∑

N
n=1

∫ tn
tn−1

(r(Uτ
h ),θh −θ)dt

+∑
N
n=1

∫ tn
tn−1

(Wτ
h − Hδ(v

n−1
h ),θh)dt

+∑
N
n=1

∫ tn
tn−1

(Wτ
h ,θ−θh)dt.

for all θ ∈ L2(0, T; H1
0 (Ω)), and with θh = Phθ. Recall that (see [33])

‖θ−θh‖ ≤ Ch‖∇θ‖. (7.4.28)

We would retrieve the desired limiting equations once we prove that the integrals on
the right hand side vanish. Let us denote the successive integrals by Ii , i = 1, . . . , 5
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respectively. For I1 we get

|I1| ≤
(∫ T

0
‖∂tV

τ
h ‖2dt

) 1
2
(

N

∑
n=1

∫ tn

tn−1

‖(θ−θh)‖2dt

) 1
2

≤ Ch‖θ‖L2(0,T;H1
0 (Ω))

which vanishes in the limit as h↘ 0. Next, we consider

|I2| ≤
(

N

∑
n=1
τL2

r‖un
h − un−1

h ‖2

) 1
2
(

N

∑
n=1
τ‖θh‖2

) 1
2

and using the estimate (7.4.11), we obtain I2 ↘ 0.
For I3,

|I3| ≤ Lr

(∫ T

0
‖Uτ

h ‖2dt
) 1

2
(

N

∑
n=1

∫ tn

tn−1

‖(θ−θh)‖2dt

) 1
2

≤ Ch‖θ‖L2(0,T;H1
0 (Ω)) ↘ 0

as h↘ 0.
Further, for I4, we use the definition of Wτ and Lipschitz continuity of Hδ to obtain

|I4| ≤
N

∑
n=1
τ

1
δ
‖vn

h − vn−1
h ‖‖θh‖ ≤

N

∑
n=1
τC
τ

δ
‖θh‖

by using (7.4.8) and further using τ/δ ↘ 0 by the construction of δ we obtain I4 ↘ 0.
Finally, we treat I5

|I5| ≤ C

(
N

∑
n=1

∫ tn

tn−1

‖θ−θh‖2dt

) 1
2

≤ Ch‖∇θ‖L2(0,T;L2(Ω)) ↘ 0 as h↘ 0

because of (7.4.28).
Next, we need to prove w = H(v). Since we have Vτ

h strongly converging, we also
obtain Vτ

h → v pointwise a.e.. Further,

(Wτ
h ,θ) = (w,θ)

and by definition, Wτ
h = Hδ(V

τ
h ); and further,

(Hδ(V
τ
h ),θ) = (w,θ).

As τ ↘ 0, by construction δ ↘ 0. Now, for any given (t, x) ∈ Ω, either v > 0 or v = 0.
For the case when v > 0, we have Wτ

h = 1 and hence w = 1. For the case when v = 0,
since ∂tv ∈ L2(Ω), ∂tv = 0 leading to w = r(u) with 0 ≤ w ≤ 1.
Note that the limit triple (u, v, w) indeed satisfies (7.2.7), but for test functions having
a better regularity in space: φ ∈ L2(0, T; H2

0 (Ω)) and θ ∈ L2(0, T; H1
0 (Ω)). In view of
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the regularity of u and v, density arguments can be employed to show that the limit
equations also hold for φ ∈ L2(0, T; H1

0 (Ω)) and θ ∈ L2(0, T; L2(Ω)), which completes
the proof.

7.5 Numerical experiments

For the numerical experiments, we study different situations. For simplicity and vali-
dation exercise, let us consider a 1D situation where we study the concentration profile
and the dissolution fronts,

Ω = (0, L)

with L = 1 and we choose the following parameters

D = 1e− 2, r(u) = ku, k = 1, q = 1;

and the boundary conditions are

u = 1, at x = 0, and
∂u
∂x

= 0, at x = 1.

For initial condition, we make the following choices

uI = 1, vI = 0.2, x ∈ [0, 1].

Note that for this initial and boundary conditions, initially, H(vI) = 1 as vI > 0 and

r(uI)− H(vI) = uI − H(vI) = 0.

Hence, in the beginning, it is an equilibrium situation where the dissolution and pre-
cipitation processes balance each other. However, this equilibrium is disturbed at x = 0
because of boundary condition (u = 0). This leads to the initiation of dissolution and
this process moves forward as t increases. Note also that the dissolution process takes
some time before v becomes 0 at x = 0. We call this time as ts. The computation of ts

follows from a simple calculation. For x = 0,

∫ 0

vI

∂tvdt =
∫ ts

0
u− H(v)dt = −ts

which gives,
ts = vI = 0.2.

Computations are performed for t ∈ (0, 1) and the discretization in space is obtained
on a regular grid of size h = 1e− 3. Further, we choose standard first order upwinding
for the transport term. For the time discretization, we choose τ = 1e − 3 and we use
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Figure 7.5.1: The profiles for the concentration u and the crystal precipitate v for different
times, t = 0, 0.2, 0.4, 0.6, 0.8, 1. Note that initially u = 1 and v = 0.2 and as t increases, the
dissolution front moves forward. For the concentration profile, the effect of reactions is clearly
visible.

regularized Heaviside function (7.3.1) for the dissolution rate for the 1D problem. For
the regularization parameter δ, we choose δ = 0.1(τ0.5).
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Figure 7.5.2: The free boundary location, xs. Note the starting time ts = 0.2 for the beginning
of the dissolution front. Also, the slope of the free boundary is equal to Qv.
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Figure 7.5.3: The profiles for the crystal precipitate v for different times, t = 0 and t = 0.5.
Note that initially v = 0.2 and as t increases, no changes take place in the profile of v. This is an
equilibrium situation where the dissolution rates and the precipitation rates annul each other.
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Figure 7.5.4: The profiles for the crystal precipitate v for different times, t = 0 and t = 0.2.
Note that initially v = 0.2 in Ωv and as t increases, dissolution process starts taking place
because of the boundary condition imposed at x = 0 (u = 0). The net dissolution process then
starts taking place and further, we observe that the left hand side experiences more erosion than
the right hand side due to the boundary condition effect at x = 0.

The concentration profiles u(x, t) and the dissolution fronts v(x, t) corresponding to
different times have been shown in Figure 7.5.1. As expected, the dissolution fronts
propagate forward almost in a parallel manner and also there is a correspondence with
the concentration profile. The 1D case has been studied in literature [47]. There are two
quantities that may be of interest here. One is the speed of the dissolution front Qv given
by (see Proposition 1.2 of [45])

Qv = q
u∗

u∗ + vI
≈ 0.833.

Secondly, the starting time for dissolution process ts = 0.2 as computed above. These
two information are contained in considering the free boundary location xs which is
defined as

xs(t) := { sup
x∈(0,L)

x, s.t. v(x, t) = 0}.
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In Figure 7.5.2, we plot xs(t) and we notice the time ts, the time when the dissolution
starts at x = 0 and the slope of the plot which provides us information about the speed
of the free boundary. Numerically, we obtain for the ts = 0.199 and for the Qv = 0.8464.
We see that the matching is excellent. This provides us a validation exercise of the
numerical scheme considered here.

For the second situation, we consider a 2D problem. For Ω we choose

Ω = (0, 1)× (0, 1).

We choose the following parameters

D = 1, r(u) = ku, k = 1, q = 0.01y(1− y)e1;

that is, we use a linear reaction rate and for the convection, we have used parabolic
profile. With the iterative scheme (7.4.3) in Section 7.4.1, the nonlinear reaction rates
are also straightforward to compute, however, we stick to linear rates for simplicity of
exposition. We choose small convection so that the changes in the concentrations are
slow enough for the time scale of our observation (T = 1). For choosing the initial
conditions, let us define,

Ωv ⊂ Ω; Ωv := {(x, y); 0.4 ≤ x ≤ 0.6, 0.4 ≤ y ≤ 0.6},

that is, there is a small square Ωv contained in the square domain Ω. Further, we choose,
at t = 0, uI = 1 and for v

vI = 1, (x, y) ∈ Ωv; vI = 0 (x, y) ∈ Ω \Ωv.

At x = 0 we choose u = 1 and note that for this choice, r(u) = 1 at t = 0 and for Ωv,
H(v) = 1 as v > 0. Further, for Ω \Ωv, we put v = 0 which means that

H(v) = min(r(u), 1) = 1.

Hence, ∂tv = u− H(v) = 0 implying that this is an equilibrium situation. For the com-
putations, we choose a uniform space discretization with h = 1e− 2 and for time step-
ping τ = 1e− 3. For the convection term, we use standard upwinding. For diffusion,
convection and reaction, we use implicit in time. We plot the precipitate concentration
v in Figure 7.5.3 for two different times t = 0 and t = 0.5. As it is clearly seen, v does
not change with time.

Next, we consider the case when we perturb the equilibrium by prescribing the bound-
ary condition u = 0 at x = 0. This leads to the beginning of the dissolution process
taking place and the concentration of v decreases in Ωv. We have included the concen-
tration profile and the crystal concentration at different times. Notice that the dissolu-
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tion process proceeds much faster at the left side than on the right side.
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Figure 7.5.5: The profiles for the concentration u at t = 0.2. Note that initially u = 1 and
as t increases, u starts decreasing because of the homogeneous Dirichlet boundary condition at
x = 0. Clearly, u = v = 0 is the equilibrium situation and we see that the effect of reduction is
more prominent on the left side compared to the right side.

7.6 Conclusions and discussions

We have considered both semi-discrete and fully discrete schemes for the macroscale
equations. For the fully discrete case, we consider the linear finite elements on the trian-
gular meshes. These schemes have been analyzed for their convergence and the proof
relies on a priori estimates and the compactness arguments. To deal with the multi-
valued dissolution rate, we consider these numerical schemes along a regularizing se-
quence. For the a priori estimates, we make sure that the estimates remain independent
of the discretization as well as the regularization parameters. The proofs for the semi-
discrete and the fully discrete cases follow similar strategy, however, there are some
important differences. Whereas the semi-discrete case retains the maximum principle,
we have to rely on different estimates in the fully discrete case. Also, the translation
estimates to obtain the strong convergence are easily applicable for the semi-discrete
situation, the same is not true for the fully discrete case. For the choice of basis func-
tions taken here, that is, piecewise linear elements on a triangle, the usual method of
obtaining pointwise estimates does not work in fully discrete case thereby not neces-
sarily having the maximum principle. Next, instead of using the discrete analogue of
translation estimates, the properties of Lagrangian interpolation operator on a triangle
are used to obtain the strong convergence needed to deal with the nonlinearities.

The numerical experiments have been carried out which present several interesting as-
pects of the model. In 1D model, we have shown the dissolution fronts propagating
forward. Further, we have plotted the free boundary location and shown its evolution.
We find an excellent agreement with the theoretical predictions. For the 2D model, we
have shown that the model indeed maintains the equilibrium in the absence of crystal
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(v = 0) when the precipitation concentration is not sufficient. Further, for the case when
the crystals are present and dissolution process starts taking place due to the boundary
effect, we clearly see the evolution of dissolution processes taking place.





Chapter 8

Numerical analysis of an
upscaled model: mixed schemes

This chapter deals with the numerical analysis of an upscaled model describing the
reactive flow in a porous medium. The solutes are transported by advection and dif-
fusion and undergo precipitation and dissolution. The reaction term and, in particular,
the dissolution term has a particular, multi-valued character, which leads to stiff dis-
solution fronts. We consider the Euler implicit method for the temporal discretization
and the mixed finite element for the discretization in space. More precisely, we use
the lowest order Raviart-Thomas elements. As an intermediate step we consider also
a semi-discrete mixed variational formulation (continuous in space). We analyse the
numerical schemes and prove the convergence to the continuous formulation. Apart
from the proof for the convergence, this also yields an existence proof for the solution
of the model in mixed variational formulation. Numerical experiments are performed
to study the convergence behavior.

8.1 Introduction

In this chapter, we consider an upscaled model defined on a Darcy scale. This implies
that the solid grains and the pore space are not distinguished and the equations are de-
fined everywhere. Consequently, the crystals formed as a result of reactions among ions
and the ions themselves are defined everywhere in the domain. Such models fall in the

This chapter is a collaborative work with Sorin Pop and Florin Radu and it has been submitted to SIAM
Journal of Numerical Analysis.
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general category of reactive porous media flow models. For Darcy-scale models related
directly to precipitation and dissolution processes we refer to [23, 97, 115, 118] (see also
the references therein). Here we adopt the ideas proposed first in [73], and extended in a
series of papers [43–45]. These papers are referring to Darcy scale models; the porescale
counterpart is considered in [47], where distinction is made for the domains delineating
the pore space and the solid grains. The transition from the porescale model to the up-
scaled model is obtained, for instance, via homogenization arguments. For a simplified
situation of a 2D strip, the rigorous arguments are provided in [47]; see also [4, 94] for
the upscaling procedure in transport dominated flow regimes. For a similar situation,
but tracking the geometry changes due to the reactions leading to the free boundary
problems, the formal arguments are presented in [75] and [105].

We are motivated by analyzing appropriate numerical methods for solving the reactive
flows for an upscaled model. Considering the mixed variational formulation is an at-
tractive proposition as it preserves the mass locally. Our main goal here is to provide
the convergence of a mixed finite element discretization for such a model for disso-
lution and precipitation in porous media, involving a multi-valued dissolution rate.
Before discussing the details and specifics, we briefly review some of the relevant nu-
merical work. For continuously differentiable rates the convergence of (adaptive) fi-
nite volume discretizations is studied in [72, 111]; see also [28] for the convergence of
a finite volume discretization of a copper-leaching model. In a similar framework, dis-
continuous Galerkin methods are discussed in [127] and upwind mixed FEM are con-
sidered in [38, 39]; combined finite volume-mixed hybrid finite elements are employed
in [52, 59]. Non-Lipschitz, but Hölder continuous rates are considered using conformal
FEM schemes in [14, 15]. Similarly, for Hölder continuous rates (including equilibrium
and non-equilibrium cases) mixed FEM methods are analyzed rigorously in [120, 123],
whereas [121] provides error estimates for the coupled system describing unsaturated
flow and reactive transport. In all these cases, the continuity of the reaction rates al-
lows obtaining error estimates. A characteristic mixed-finite element method for the
advection dominated transport has been treated in [8] and characteristic FEM scheme
for contaminant transport giving rise to possibly non-Lipschitz reaction rates are treated
in [40] where the convergence and the error estimates have been provided. A parabolic
problem coupled with linear ODEs at the boundary have been treated in [7] using char-
acteristic MFEM method. Conformal schemes both for the semi-discrete and fully dis-
crete (FEM) cases for the upscaled model under consideration have been treated in [80].

The main difficulty here is due to the particular description of the dissolution rate in-
volving differential inclusions. To deal with this, we consider a regularization of this
term and the corresponding sequence of regularized equations. The regularization pa-
rameter δ is dependent on the time discretization parameter τ in such a way that as
τ ↘ 0, it is ensured that δ ↘ 0. Thus, obtaining the limit of discretized scheme au-
tomatically yields, by virtue of the regularization parameter also vanishing, the origi-
nal equation. In proving the convergence results, the compactness arguments are em-
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ployed. These arguments rely on a priori estimates providing weak convergence. How-
ever, strong convergence is needed to deal with the non-linear terms in the reaction
rates. Translation estimates are used to achieve this.

We consider both the semi-discrete and the fully discrete cases with the proof for the lat-
ter case following closely the ideas of semi-discrete case. However, there are important
differences particularly in the way the translation estimates are obtained. Whereas in
the semi-discrete case, we use the dual problem for obtaining the translation estimates;
in the fully discrete case, we use the properties of discrete H1

0 norm following the finite
volume framework [51]. The convergence analysis of appropriate numerical schemes
for the problem considered here is a stepping stone for coupled flow and reactive trans-
port problem (for example, Richards’ equation coupled with precipitation-dissolution
reaction models).

The chapter is structured as follows. We begin with a brief description of the model in
Section 8.2 followed by Section 8.3 which deals with the notations used in this work. We
proceed to define the mixed variational formulation in Section 8.4 where we prove the
uniqueness of the solution with the existence coming from the convergence proof. Next,
in sections 8.5 and 8.6 the time-discrete, respectively fully discrete numerical schemes
are considered and the proofs for the convergence are provided. The numerical experi-
ments are shown in Section 8.7 followed by the conclusions and discussions in Section
8.8.

8.2 The mathematical model

We consider a Darcy scale model that describes the reactive transport of the ions/solutes
in a porous medium. The solutes are subjected to convective transport and in addition
they undergo diffusion and reactions in the bulk. Below we provide a brief description
and the assumptions of the model; we refer to [43], or [44] for more details.

Let Ω ⊂ R2 be the domain occupied by the porous medium, and assume Ω be open,
connected, bounded and with Lipschitz boundary Γ . Further, let T > 0 be a fixed but
arbitrarily chosen time, and define

ΩT = (0, T]×Ω, and Γ T = (0, T]× Γ .

At the outset, we assume that the fluid velocity q is known, divergence free and essen-
tially bounded

∇ · q = 0 in Ω.

Usually, two or more different types of ions react to produce precipitate (an immobile
species). A simplified model will be considered here where we include only one mobile
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species. This makes sense if the boundary and initial data are compatible (see [43],
or [44]). Then, denoting by v the concentration of the (immobile) precipitate, and by u
the cation concentration, the model reduces to





∂t(u + v) +∇ · (qu−∇u) = 0, in ΩT ,
u = 0, on Γ T ,
u = uI , in Ω, for t = 0,

(8.2.1)

for the ion transport, and




∂tv = (r(u)− w), on ΩT ,
w ∈ H(v), on ΩT ,
v = vI , on Ω, for t = 0,

(8.2.2)

for the precipitate. For the ease of presentation we restrict to homogeneous Dirichlet
boundary conditions. The assumptions for the initial conditions will be given below. In
the system considered above, we assume all the quantities and variables as dimension-
less. To simplify the exposition, the diffusion is assumed 1, the extension to a positive
definite diffusion tensor being straightforward. Further, we assume that the Damköhler
number is scaled to 1, as well as an eventual factor in the time derivative of v in (8.2.2)1,
appearing in the transition form the pore scale to the core scale.

The assumptions on the precipitation rate r are

(A.r1) r(·) : R→ [0, ∞) is Lipschitz in R with the constant Lr.

(A.r2) There exists a unique u∗ ≥ 0, such that

r(u) =
{

0 for u ≤ u∗,
strictly increasing for u ≥ u∗ with r(∞) = ∞.

(8.2.3)

The interesting part is the structure of the dissolution rate. We interpret it as a pro-
cess encountered strictly at the surface of the precipitate layer, so the rate is assumed
constant (1, by scaling) at some (t, x) ∈ ΩT where the precipitate is present, i.e. if
v(t, x) > 0. In the absence of the precipitate, the overall rate (precipitate minus dissolu-
tion) is either zero, if the solute present there is insufficient to produce a net precipitation
gain, or positive. This can be summarized as

w ∈ H(v), where H(v) =





0, if v < 0,
[0, 1], if v = 0,

1, if v > 0.
(8.2.4)
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In the setting above, a unique u∗ exists for which r(u∗) = 1. If u = u∗ for all t and x,
then the system is in equilibrium: no precipitation or dissolution occurs, since the pre-
cipitation rate is balanced by the dissolution rate regardless of the presence of absence
of crystals (see [80], Section 5 for some illustrations). Then, as follows from [47, 73, 109],
for a.e. (t, x) ∈ ΩT where v = 0, the dissolution rate satisfies

w =

{
r(u) if u < u∗,

1 if u ≥ u∗.
(8.2.5)

Since, we will work with the model in the mixed formulation, we define the flux as

Q = −∇u + qu. (8.2.6)

Except for some particular situations, one cannot expect the existence of classical solu-
tions to (8.2.1)-(8.2.2). To rectify this, we resort to defining appropriate weak solutions
which implies satisfying the equations in some average sense. Formally, these solu-
tions are obtained by multiplying by smooth functions and using partial integration
wherever required thereby reducing the regularity of solutions otherwise needed in the
strong form. In this work, we write the equations in a mixed variational form which
means that we separate the equation for the flux Q and retain the local mass conserva-
tion property (see [120–122] for similar problems).

8.3 Notations

We adopt the following notations from the functional analysis. In particular, by H1
0 (Ω)

we mean the space of functions in H1(Ω) and having a vanishing trace on Γ and H−1 is
its dual. By (·, ·) we mean L2 inner product or the duality pairing between H1

0 and H−1.
Further, ‖ · ‖ stands for the norms induced by L2 inner product. For other norms, we
explicitly state it. The functions in H(div; Ω) are vector valued having a L2 divergence.
Furthermore, C denotes a generic constant and the value of which might change from
line to line and is independent of unknown variables or the discretization parameters.

Having introduced these notations we can state the assumptions on the initial condi-
tions:

(A.I1) The initial data uI and vI are non–negative and essentially bounded.

(A.I2) uI , vI ∈ H1
0 (Ω).

We have taken the initial conditions in H1
0 to avoid technicalities. Alternatively, one can

approximate the initial conditions by taking the convolutions with smooth functions.
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The H1
0 regularity for vI is used for obtaining strong convergence results, for which L2

regularity is not sufficient.

We furthermore assume that Ω is polygonal. Therefore it admits regular decomposi-
tions into simplices and the errors due to nonpolygonal domains are avoided. The spa-
tial discretization will be defined on such a regular decomposition Th into 2D simplices
(triangles); h stands for the mesh-size. We provide the exposition for 2D but extending
the results to 3D is similar.

We define the following sets

V := {v | v ∈ H1((0, T); L2(Ω))},
S := {Q | Q ∈ L2((0, T); H(div; Ω))},
W := {w ∈ L∞(ΩT) | 0 ≤ w ≤ 1}.

In addition, for the fully discrete situation, we use the following discrete subspaces
Vh ⊂ L2(Ω) and Sh ⊂ H(div; Ω) defined as follows

Vh := {u ∈ L2(Ω) | u is constant on each element T ∈ Th}
Sh := {Q ∈ H(div; Ω) | Q|T = a + bx for all T ∈ Th}.

In other words, Vh denotes the space of piecewise constant functions, while Sh is the
RT0 space. Clearly from the above definitions, ∇ ·Q ∈ Vh for any Q ∈ Sh.

We also define the following usual projections:

Ph : L2(Ω) 7→ Vh, 〈Phv− v, vh〉 = 0

for all vh ∈ Vh. Similarly, the projection Πh is defined on (H1(Ω))d such that

Πh : (H1(Ω))d 7→ Sh, 〈∇ · (ΠhQ−Q), vh〉 = 0

for all vh ∈ Vh. Following [119], p.237 (also see [26]), this operator can be extended to
H(div; Ω) and also for the above operators there holds

‖v− Phv‖ ≤ Ch‖v‖H1(Ω) (8.3.1)

and further,
‖Q− ΠhQ‖ ≤ Ch‖Q‖H1(Ω)

‖∇ ·Q−∇ · (ΠhQ)‖ ≤ Ch‖Q‖H2(Ω).
(8.3.2)

For the spatial discretization we will work with the approximation qh of the Darcy ve-
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locity q, defined on the given mesh Th. For this approximation we assume that there
exists a Mq > 0 s.t. ‖qh‖L∞ ≤ Mq (uniformly in h; the same estimate being valid for q),
and as h↘ 0

‖qh − q‖L2(Ω)2 ↘ 0. (8.3.3)

Having stated the assumptions, we proceed by introducing the mixed variational for-
mulation and analyzing the convergence of its discretization.

8.4 Continuous mixed variational formulation

A weak solution of (8.2.1)–(8.2.2) written in mixed form is defined as follows.

Definition 8.4.1 A quadruple (u, Q, v, w) ∈ (V ×S ×V ×W with u|t=0 = uI , v|t=0 = vI is
a mixed weak solution of (8.2.1)–(8.2.2) if w ∈ H(v) a.e. and for all t ∈ (0, T) and (φ,θ,ψ) ∈
H1(Ω)× L2(Ω)× H(div; Ω) we have

(∂tu,φ) + (∇ ·Q,φ) + (∂tv,φ) = 0,
(∂tv,θ)− (r(u)− w,θ) = 0,

(Q,ψ)− (u,∇ ·ψ)− (qu,ψ) = 0.
(8.4.1)

The proof for the existence of solution for (8.4.1) is obtained by the convergence of the
numerical schemes considered below. Therefore, we give the proof for the uniqueness
of a solution. The following lemma shows the uniqueness without further details on w.
As mentioned in (8.2.5) the inclusion w ∈ H(v) can be made more precise.

Lemma 8.1 The mixed weak formulation (8.4.1) has at most one solution.

Proof. Assume there exist two solution quadruples (u1, Q1, v1, w1) and (u2, Q2, v2, w2),
and define

u := u1 − u2, Q := Q1 −Q2, v := v1 − v2, w := w1 − w2.

Clearly, at t = 0 we have u(0, x) = 0 and v(0, x) = 0 for all x.
Subtracting (8.4.1)2 for u2, v2 and w2 from the equation for u1, v1 and w1 and taking (for
t ≤ T arbitrary)θ = χ(0,t)v, using monotonicity of H and the Lipschitz continuity of r(·)
leads to

‖v(t, ·)‖2 =
∫ t

0

∫

Ω
(r(u1)− r(u2))v(s, x)dxds−

∫ t

0

∫

Ω
(H(v1)− H(v2))v(s, x)dxds

≤ 1
2

∫ t

0
L2

r‖u(s, ·)‖2ds +
1
2

∫ t

0
‖v(s, ·)‖2ds.
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Then Gronwall’s lemma gives

‖v(t, ·)‖2 ≤ Cet
∫ t

0
‖u(s, ·)‖2ds ≤ C

∫ t

0
‖u(s, ·)‖2ds. (8.4.2)

Next, we choose forφ = χ(0,t)u(t, x) in the difference between the two equalities (8.4.1)1

to get

‖u(t, ·)‖2 +

(∫ t

0
∇ ·Q(s, ·)ds, u(t, ·)

)
+ (v(t, ·), u(t, ·)) = 0. (8.4.3)

Similarly, choosingψ =
∫ t

0
Q(s)ds in (8.4.1)3 (written for a.e. t) yields

∫

Ω

(
Q(t, x)

∫ t

0
Q(s, x)ds

)
dx−

∫

Ω
u(t, x)

(∫ t

0
∇ ·Q(s, x)ds

)
dx

−
∫

Ω
qu(t, x)

(∫ t

0
Q(s, x)ds

)
dx = 0.

(8.4.4)

Combining (8.4.3) and (8.4.4) we have

‖u(t, ·)‖2 +
∫

Ω
v(t, x)u(t, x)dx +

∫

Ω
Q(t, x)

∫ t

0
Q(s, x)dsdx =

∫

Ω
qu(t, x)

∫ t

0
Qdsdx

≤ 1
4
‖u(t, ·)‖2 + M2

q

∥∥∥∥
∫ t

0
Q(s, ·)ds

∥∥∥∥
2

,

which implies,

‖u(t, ·)‖2 + (Q(t, ·),
∫ t

0
Q(s, ·)ds) ≤ 1

2
‖u(t, ·)‖2 + M2

q

∥∥∥∥
∫ t

0
Qds

∥∥∥∥
2

+ ‖v(t, ·)‖2.

Using (8.4.2) we obtain

1
2
‖u(t, ·)‖2 + (Q(t, ·),

∫ t

0
Q(s, ·)ds) ≤ C

∫ t

0
‖u(s, ·)‖2ds + M2

q

∥∥∥∥
∫ t

0
Q(s, ·)ds

∥∥∥∥
2

. (8.4.5)

Defining,

E(t) :=
1
2

∫ t

0
‖u(s, ·)‖2ds +

1
2

∥∥∥∥
∫ t

0
Q(s)ds

∥∥∥∥
2

we have E ≥ 0 and E(0) = 0 because of initial conditions.Then (8.4.5) rewrites

dE
dt
≤ CE.
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This immediately gives E(t) = 0 for all t implying

∫ t

0
‖u(s, ·)‖2ds = 0, and

∫ t

0
Q(s)ds = 0

for all t. Hence u = 0, Q = 0 and using this in (8.4.2) we conclude v = 0.

8.5 Semi-discrete mixed variational formulation

As announced, to avoid dealing with inclusion in the description of dissolution rate,
the numerical scheme relies on the regularization of the Heaviside graph. With this
aim, with δ > 0 we define

Hδ(z) :=





1, z > δ,
z
δ

, 0 ≤ z ≤ δ,
0, z < 0.

(8.5.1)

Next, with N ∈ N, τ = T
N and tn = nτ , n = 1, . . . , N, we consider a first order time

discretization with uniform time stepping, which is implicit in u and explicit in v. At
each time step tn we use (un−1

δ , vn−1
δ ) ∈

(
L2(Ω), L2(Ω)

)
detemined at tn−1 to find the

next approximation (un
δ , Qn

δ , vn
δ , wn). The procedure is initiated with u0 = uI , v0 = vI .

Specifically, we look for (un
δ , vn

δ , Qn
δ ) ∈ H1(Ω), L2(Ω), H(div; Ω) satisfying the time dis-

crete
Problem Pmv f ,n

δ : Given (un−1
δ , vn−1

δ ) ∈
(

L2(Ω), L2(Ω)
)

, find (un
δ , Qn

δ , vn
δ , wn

δ )

∈
(

L2(Ω), H(div; Ω), L2(Ω), L∞(Ω)
)

such that

(un
δ − un−1

δ ,φ) + τ(∇ ·Qn
δ ,φ) + (vn

δ − vn−1
δ ,φ) = 0,

(vn
δ − vn−1

δ ,θ)− τ(r(un
δ ),θ)− τ(Hδ(v

n−1
δ ),θ) = 0, (8.5.2)

(Qn
δ ,ψ)− (un

δ ,∇ ·ψ)− (qun
δ ,ψ) = 0

for all (φ,θ,ψ) ∈
(

H1(Ω), L2(Ω), H(div; Ω)
)

. For completeness we define

wn
δ = Hδ(v

n
δ ).

This is a system of elliptic equations for un
δ , Qn

δ , vn
δ given un−1

δ ∈ H1
0,ΓD

(Ω), vn−1
δ ∈ L2(Ω).

For stability reasons, we choose δ = O(τ
1
2 ) (see [41, 80] for detailed arguments) which

implies that τ
δ

goes to 0 as τ ↘ 0. This in turn allows us to consider the solutions
along the sequence of regularized Heaviside function with the regularization parameter
δ automatically vanishing in the limit of τ ↘ 0.
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The existence of a solution for Problem Pmv f ,n
δ will result from the convergence of the

fully discrete scheme, which is proved in the Appendix B by keeping τ and δ fixed, and
passing to the limit h ↘ 0. Note that it suffices to compute un

δ , as vn
δ can be obtained

straightforwardly. For now, we prove the uniqueness of the solution.

Lemma 8.2 Problem Pmv f ,n
δ has at most one solution triple (un

δ , Qn
δ , vn

δ ).

Proof. Since wn
δ = Hδ(v

n
δ ), it has no influence on the existence or uniqueness of the

solution. Therefore, we consider only the triples (un
δ , Qn

δ , vn
δ ). Assume that for the same

(un−1
δ , vn−1

δ ) there are two solution triples (un
δ,i , Qn

δ,i , vn
δ,i), i = 1, 2 providing a solution to

Problem Pmv f ,n
δ . Define

un
δ := un

δ,1 − un
δ,2, Qδ

n := Qn
δ,1 −Qn

δ,2, vn
δ := vn

δ,1 − vn
δ,2.

We follow the usual approach and consider the equations for the difference above. Tak-
ing θ = vn

δ in (8.5.2)2 gives

‖vn
δ‖2 = τ(r(un

δ,1)− r(un
δ,2), vn

δ ) ≤ τLr‖uδ‖‖v‖

as the Hδ terms cancel because of explicit discretization. This gives,

‖vn
δ‖ ≤ Cτ‖un

δ‖. (8.5.3)

Further, withφ = un
δ ,θ = un

δ ,ψ = τQn
δ , from (8.5.2) we obtain

‖un
δ‖2 + τ‖Qn

δ‖2 + τ(r(un
δ,1)− r(un

δ,2), un
δ ) = τ(qun

δ , Qδ
n).

Since r is monotone, the Cauchy inequality and boundedness of q give

‖un
δ‖2 +

1
2
τ‖Qn

δ‖2 ≤ τ 1
2

M2
q‖un

δ‖2.

For τ < 2
M2

q
, we obtain

‖un
δ‖ = 0 and thereby ‖Qn

δ‖ = 0.

Together with (8.5.3) we conclude un
δ = vn

δ = 0 and Qn
δ = 0.

8.5.1 The a priori estimates

We start with the following stability estimates.
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Lemma 8.3 It holds that

sup
k=1,...,N

∥∥∥uk
δ

∥∥∥ ≤ C, (8.5.4)

∥∥∥vn
δ − vn−1

δ

∥∥∥ ≤ Cτ , (8.5.5)

sup
k=1,...,N

∥∥∥vk
δ

∥∥∥ ≤ C, (8.5.6)

sup
k=1,...,N

∥∥∥Qk
δ

∥∥∥ ≤ C, (8.5.7)

N

∑
n=1

∥∥∥un
δ − un−1

δ

∥∥∥
2
≤ Cτ , (8.5.8)

N

∑
n=1

∥∥∥Qn
δ −Qn−1

δ

∥∥∥
2
≤ C, (8.5.9)

N

∑
n=1
τ ‖∇ ·Qn

δ‖2 ≤ C, (8.5.10)

N

∑
n=1
τ
∥∥∥∇ · (Qn

δ −Qn−1
δ )

∥∥∥
2
≤ C. (8.5.11)

Proof. We start by showing (8.5.4). To this aim we chose

φ = un
δ , ψ = τQn

δ , θ = un
δ

as test functions in (8.5.2), and add the resulting to obtain

(un
δ − un−1

δ , un
δ ) + τ ‖Qn

δ‖2 − τ(qun
δ , Qn

δ ) + τ(r(u
n
δ ), un

δ ) = τ(Hδ(v
n−1
δ ), un

δ ). (8.5.12)

Using the equality

(un
δ − un−1

δ , un
δ ) =

1
2

(
‖un

δ‖2 − ‖un−1
δ ‖2 + ‖un − un−1

δ ‖2
)

since q and Hδ are bounded and r(un
δ )u

n
δ ≥ 0, by Young’s inequality we get

‖un
δ‖2 −

∥∥∥un−1
δ

∥∥∥
2
+
∥∥∥un

δ − un−1
δ

∥∥∥
2
+ 2τ ‖Qn

δ‖2
+ 2τ(r(un

δ ), un
δ )

= 2τ(qun
δ , Qn

δ ) + 2τ(Hδ(v
n−1
δ ), un

δ ) ≤ τ ‖Qn
δ‖2

+ Cτ ‖un
δ‖2

+ Cτ + Cτ ‖un
δ‖2 .

Summing over n = 1, . . . , k (where k ∈ {, 1, . . . , N} is arbitrary) gives

∥∥∥uk
δ

∥∥∥
2
+

k

∑
n=1

∥∥∥un
δ − un−1

δ

∥∥∥
2
+ τ

k

∑
n=1
‖Qn

δ‖2 ≤ ‖uI‖2 + C + Cτ
k

∑
n=1
‖un

δ‖2 , (8.5.13)

and (8.5.4) follows from the discrete Gronwall lemma.
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For (8.5.5) we choose for θ = vn
δ − vn−1

δ in (8.5.2)2 and apply the Cauchy Schwarz in-
equality for the right hand side,

∥∥∥vn
δ − vn−1

δ

∥∥∥
2
≤ τ ‖r(un

δ )‖
∥∥∥vn

δ − vn−1
δ

∥∥∥+ τ
∥∥∥Hδ(v

n−1
δ )

∥∥∥
∥∥∥vn

δ − vn−1
δ

∥∥∥ .

Using (8.5.4), the boundedness of Hδ and the Lipschitz continuity of r this implies
∥∥∥vn

δ − vn−1
δ

∥∥∥ ≤ Cτ .

To prove (8.5.6), choose θ = vn
δ in (8.5.2)2 to obtain

(vn
δ − vn−1

δ , vn
δ ) = τ(r(un

δ ), vn
δ )− τ(Hδ(v

n−1
δ ), vn

δ ).

The left hand side can be rewritten as

(vn
δ − vn−1

δ , vn
δ ) =

1
2

(
‖vn
δ‖2 − ‖vn−1

δ ‖2 + ‖vn
δ − vn−1

δ ‖2
)

.

We write the last term on the right hand side as
(

Hδ(v
n−1
δ ), vn

δ

)
=
(

Hδ(v
n−1
δ ), vn−1

δ

)
−
(

Hδ(v
n−1
δ ), vn−1

δ − vn
δ

)
.

and substitute it in above to obtain

‖vn
δ‖2−

∥∥∥vn−1
δ

∥∥∥
2
+
∥∥∥vn

δ − vn−1
δ

∥∥∥
2
= 2τ (r(un

δ ), vn
δ )−

(
Hδ(v

n−1
δ ), vn−1

δ

)
+
(

Hδ(v
n−1
δ ), vn−1

δ − vn
δ

)
.

Since H(·) is monotone, (Hδ(v
n−1
δ ), vn−1

δ ) ≥ 0, now the Cauchy Schwarz inequality
gives

‖vn
δ‖2 −

∥∥∥vn−1
δ

∥∥∥
2
+
∥∥∥vn

δ − vn−1
δ

∥∥∥
2
≤ 2τC ‖un

δ‖ ‖vn
δ‖+ 2τ

(
Hδ(v

n−1
δ ), vn

δ − vn−1
δ

)
.

By Young’s inequality this leads to

‖vn
δ‖2 −

∥∥∥vn−1
δ

∥∥∥
2
+

1
2

∥∥∥vn
δ − vn−1

δ

∥∥∥
2
≤ τ ‖vn

δ‖2
+ Cτ ‖un

δ‖2
+ 2τ2 ‖Hδ‖2 .

Summing over n = 1, . . . , k (with k ∈ {1, . . . , N} arbitrary) this gives

∥∥∥vk
δ

∥∥∥
2
+ ∑

k
n=1

∥∥∥vn
δ − vn−1

δ

∥∥∥
2
≤ ‖vI‖2 + τ ∑

k
n=1 ‖vn

δ‖2
+ Cτ ∑

k
n=1 ‖un

δ‖2
+ ∑

k
n=1 4τ2 ‖Hδ‖2

≤ τ ∑
k
n=1 ‖vn

δ‖2
+ C + Cτ

where we have used the estimates proved before and the bounds on initial data. Now
(8.5.6) follows from the Discrete Gronwall Lemma.
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We proceed with the estimate (8.5.7). To this aim, we need to specify the initial flux:
Q0
δ = −∇uI + quI ∈ (L2(Ω))d. Withφ = un

δ − un−1
δ , (8.5.2)1 gives

∥∥∥un
δ − un−1

δ

∥∥∥
2
+ τ

(
∇ ·Qn

δ , un
δ − un−1

δ

)
+
(

vn
δ − vn−1

δ , un
δ − un−1

δ

)
= 0. (8.5.14)

Now takeψ = τQn
δ to get

τ (Qn
δ , Qn

δ )− τ (un
δ ,∇ ·Qn

δ )− τ (qun
δ , Qn

δ ) = 0, (8.5.15)

and next chooseψ = τQn
δ for the equation corresponding to (n− 1)-th time step

τ
(

Qn−1
δ , Qn

δ

)
− τ

(
un−1
δ ,∇ ·Qn

δ

)
− τ

(
qun−1

δ , Qn
δ

)
= 0. (8.5.16)

Subtract (8.5.16) from (8.5.15) to obtain

τ
(

Qn
δ −Qn−1

δ , Qn
δ

)
− τ

(
un
δ − un−1

δ ,∇ ·Qn
δ

)
− τ

(
q(un

δ − un−1
δ ), Qn

δ

)
= 0.

Further, use (8.5.14) in above to obtain

∥∥∥un
δ − un−1

δ

∥∥∥
2
+ τ

(
Qn
δ −Qn−1

δ , Qn
δ

)
= τ

(
q(un

δ − un−1
δ ), Qn

δ

)
− (vn

δ − vn−1
δ , un

δ − un−1
δ ).

(8.5.17)

As before, we can rewrite
(

Qn
δ −Qn−1

δ , Qn
δ

)
as

(
Qn
δ −Qn−1

δ , Qn
δ

)
=

1
2

(
‖Qn

δ‖2 − ‖Qn−1
δ ‖2 + ‖Qn

δ −Qn−1
δ ‖2

)
.

Substituting the above in (8.5.17) we obtain

2
∥∥∥un

δ − un−1
δ

∥∥∥
2
+ τ ‖Qn

δ‖2 − τ
∥∥∥Qn−1

δ

∥∥∥
2
+ τ

∥∥∥Qn
δ −Qn−1

δ

∥∥∥
2

= 2τ(q(un
δ − un−1

δ ), Qn
δ )− 2(vn

δ − vn−1
δ , un

δ − un−1
δ )

The right hand side can be estimated using Young’s inequality in a straightforward
manner

2
∥∥∥un

δ − un−1
δ

∥∥∥
2
+ τ ‖Qn

δ‖2 − τ
∥∥∥Qn−1

δ

∥∥∥
2
+ τ

∥∥∥Qn
δ −Qn−1

δ

∥∥∥
2

≤
∥∥∥un

δ − un−1
δ

∥∥∥
2
+ M2

qτ
2 ‖Qn

δ‖2
+ 2

∥∥∥vn
δ − vn−1

δ

∥∥∥
2

.

Summing over n = 1, . . . , k (k ∈ {1, . . . , N} arbitrary) we obtain

k

∑
n=1

∥∥∥un
δ − un−1

δ

∥∥∥
2
+ τ

∥∥∥Qk
δ

∥∥∥
2
+ τ

k

∑
n=1

∥∥∥Qn
δ −Qn−1

δ

∥∥∥
2
≤ Cτ + Cτ2

k

∑
n=1
‖Qn

δ‖2
+ τ ‖QI‖2 .

(8.5.18)
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The estimate (8.5.7) follows now by the Discrete Gronwall lemma. Moreover, from
(8.5.18) we also get (8.5.8) and (8.5.9).

Finally, to prove (8.5.10) we take φ = ∇ ·Qn
δ in (8.5.2)1 and use Young’s inequality for

the right hand side to obtain

τ2 ‖∇ ·Qn
δ‖2 ≤

∥∥∥un
δ − un−1

δ

∥∥∥
2
+
∥∥∥vn

δ − vn−1
δ

∥∥∥
2
+

1
2
τ2 ‖∇ ·Qn

δ‖2 ,

Summing over n = 1 . . . , N and using (8.5.5) and (8.5.8) gives (8.5.10).

Finally, to prove the estimate (8.5.11), we simply use the Triangle inequality in (8.5.10).

8.5.2 Enhanced compactness

As will be seen below, the above estimates are not sufficient to retrieve the desired lim-
iting equations. To complete the proof of convergence, stronger compactness properties
are needed. These are obtained by translation estimates. To this aim, we define the
translation in space

4ξ f (·) := f (·)− f (·+ξ), ξ ∈ R2.

Further, with ξ ∈ R2 we consider Ωξ ⊂ Ω such that

Ωξ := {x ∈ Ω | dist(x, Γ) > |ξ |}.

In this way, the translations4ξ f (x) with x ∈ Ω are well-defined.
For reasons of brevity, the norms and the inner products for the translations should be
understood with respect to Ωξ unless explicitly stated otherwise. First, we consider the
translation for un

δ .

Lemma 8.4 It holds that
N

∑
n=1
τ ‖4ξun

δ‖2 ≤ C|ξ |.

Proof. For (8.5.2)3 we have after translation in space

(4ξQn
δ ,ψ)− (4ξun

δ ,∇ ·ψ)− (4ξ(qun
δ ),ψ) = 0.

We construct an appropriate test function to obtain the estimate above. Take ηn such
that { −4ηn = 4ξun

δ in Ω,
ηn = 0 on ∂Ω,
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and chooseψ = ∇ηn (note thatψ ∈ H(div; Ω)) to obtain

(4ξQn
δ ,∇ηn) + (4ξun

δ ,4ξun
δ )− (4ξ(qun

δ ),∇ηn) = 0. (8.5.19)

Note that ηn satisfies ‖4ηn‖ = ‖4ξun
δ‖, and therefore

‖ηn‖H2(Ω) ≤ C(Ω) ‖4ξun
δ‖ .

This implies that translations of ∇ηn are controlled,

‖∇(4ξηn)‖L2(Ω) ≤ C|ξ | ‖∇ · (∇ηn)‖ ≤ C(Ω)|ξ | ‖4ξun
δ‖ . (8.5.20)

Recalling (8.5.4), this gives

‖∇(4ξηn‖L2(Ω) ≤ C(Ω)|ξ | ‖4ξun
δ‖ ≤ C|ξ |. (8.5.21)

Thus we have the following estimate

τ ∑
N
n=1 ‖4ξun

δ‖2
= τ ∑

N
n=1 (qun

δ ,∇(4ξηn)) + τ ∑
N
n=1 (Q

n
δ ,∇(4ξηn))

≤ τ ∑
N
n=1 ‖Qn

δ‖ ‖∇(4ξηn)‖+ τ ∑
N
n=1 ‖q‖L∞(Ω) ‖un

δ‖ ‖∇(4ξηn)‖
(8.5.22)

The conclusion follows by (8.5.4), (8.5.7), the Young inequality and (8.5.21).

The translation estimates for vn
δ are bounded by those for un

δ . This is the essence of the
next lemma.

Lemma 8.5 The following estimates hold true

sup
k=1,...N

∥∥∥4ξvk
δ

∥∥∥
2
+

N

∑
n=1

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2
≤ C

∥∥∥4ξvI
∥∥∥

2
+ Cτ

N

∑
n=1
‖4ξun

δ‖2 , (8.5.23)

N

∑
n=1
‖4ξvn

δ‖2 ≤ C|ξ |. (8.5.24)

Proof. With θ = 4ξvn
δ in (8.5.2)2, we get

(
4ξvn

δ −4ξvn−1
δ ,4ξvn

δ

)
= τ (4ξr(un

δ ),4ξvn
δ )− τ

(
4ξHδ(v

n−1
δ ),4ξvn

δ

)

The last term in the above rewrites as
(
4ξHδ(v

n−1
δ ),4ξvn

δ

)
=
(
4ξHδ(v

n−1
δ ),4ξvn−1

δ

)
+
(
4ξHδ(v

n−1
δ ),4ξ(vn

δ − vn−1
δ )

)
.

The monotonicity of Hδ implies that the first term on the right hand side is positive
(
4ξHδ(v

n−1
δ ),4ξvn

δ

)
≥ 0.
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For the left hand side, we use the identity

(
4ξvn−1

δ ,4ξvn
δ

)
=

1
2

(
‖4ξvn

δ‖2 −
∥∥∥4ξvn−1

δ

∥∥∥
2
+
∥∥∥4ξ(vn

δ − vn−1
δ )

∥∥∥
2
)

,

which, together with the Cauchy-Schwarz inequality for the first term on the right hand
side gives

1
2

(
‖4ξvn

δ‖2 −
∥∥∥4ξvn−1

δ

∥∥∥
2
+
∥∥∥4ξ(vn

δ − vn−1
δ )

∥∥∥
2
)

≤ τLr ‖4ξun
δ‖ ‖4ξvn

δ‖+ τ
(
4ξHδ(v

n−1
δ ),4ξ(vn

δ − vn−1
δ )

)

≤ Lr
τ
2 ‖4ξun

δ‖2
+ τ

2 ‖4ξvn
δ‖2

+ τ2
∥∥∥4ξHδ(v

n−1
δ )

∥∥∥
2
+ 1

4

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2

≤ 1
2 Lrτ ‖4ξun

δ‖2
+ 1

2τ ‖4ξvn
δ‖2

+ τ
2

δ
2 ‖4ξvn−1

δ ‖2 + 1
4‖4ξ(v

n
δ − vn−1

δ )‖2.

Summing over n = 1, . . . , k (k ∈ {1, . . . , N}) yields

∥∥∥4ξvk
δ

∥∥∥
2
+

1
2

k

∑
n=1

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2

≤
∥∥∥4ξvI

∥∥∥
2
+ Lrτ

k

∑
n=1
‖4ξun

δ‖2
+ τ

k

∑
n=1
‖4ξvn

δ‖2
+

k

∑
n=1

2τ2

δ2 ‖4ξvn−1
δ ‖2.

(8.5.25)

Using Lemma 8.4 and Gronwall’s lemma we obtain

sup
k=1,...,N

∥∥∥4ξvk
δ

∥∥∥
2
≤ Cτ

N

∑
n=1
‖4ξun

δ‖2
+ ‖4ξvI‖2 . (8.5.26)

The estimate (8.5.23) follows from the above and from (8.5.25), whereas (8.5.24) is a
direct consequence of Lemma 8.4 and the assumptions on vI .

From the above we also get

Lemma 8.6 The following estimate holds:

N

∑
n=1

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2
≤ Cτ . (8.5.27)

Proof. Testing in (8.5.2)2 with θ = vn
δ − vn−1

δ gives

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2
= τ(4ξr(un

δ )− Hδ(v
n−1
δ ),4ξ(vn

δ − vn−1
δ ))

≤ τ2‖4ξr(un
δ )‖2 + 1

2‖4ξ(v
n
δ − vn−1

δ )‖2 + τ2‖Hδ(v
n−1
δ )‖2.

(8.5.28)
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Using the Lipschitz property of r and the estimates above we obtain

∥∥∥4ξ(vn
δ − vn−1

δ )
∥∥∥

2
≤ τ2C,

and the conclusion follows by summing over n = 1, . . . , N.

8.5.3 Convergence

For proving the convergence of the time discretization scheme, we consider the se-
quence of time discrete quadruples {(un

δ , Qn
δ , vn

δ , wn
δ ), n = 0, . . . , N} solving Problem

Pmv f ,n
δ , and construct a time continuous approximation by linear interpolation. In this

sense, for t ∈ [tn−1, tn] (n = 1, . . . , N) we define

Uτ (t) := un
δ

(t− tn−1)

τ
+ un−1

δ

(tn − t)
τ

,

Vτ (t) := vn
δ

(t− tn−1)

τ
+ vn−1

δ

(tn − t)
τ

,

Qτ (t) := Qn
δ

(t− tn−1)

τ
+ Qn−1

δ

(tn − t)
τ

,

Wτ (t) := Hδ(V
τ (t)).

(8.5.29)

The estimates in Lemma 8.3 can be translated directly to (Uτ , Qτ , Vτ , Wτ ):

Lemma 8.7 A constant C > 0 exists s.t. for any τ and δ = O(
√
τ) the following L2(0, T; L2(Ω))

estimates hold

‖Uτ‖2 + ‖Vτ‖2 + ‖Qτ‖2 ≤ C, (8.5.30)

‖∂tU
τ‖+ ‖∂tV

τ‖2 + ‖∇ ·Qτ‖2 ≤ C. (8.5.31)

Proof. (8.5.30) follows easily from (8.5.4). For instance,

‖Uτ‖2 ≤ 2‖un
δ‖2 + 2‖un−1

δ ‖2 ≤ C

and similarly other estimates follow. To estimate ‖∂tV
τ‖2

L2(0,T;L2(Ω))
we note that, when-

ever t ∈ (tn−1, tn],

∂tV
τ =

vn
δ − vn−1

δ

τ

implying

∫ T

0
‖∂tV

τ‖2dt =
N

∑
n=1

∫ tn

tn−1

‖vn
δ − vn−1

δ

τ
‖2

L2(Ω)
dt ≤

N

∑
n=1
τ‖vn

δ − vn−1
δ

τ
‖2

L2(Ω)
≤ CτN ≤ C,
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where we have used the estimate (8.5.4).

The proof for ∂tU
τ is the same as above and uses the estimate (8.5.8). The only remaining

part in (8.5.31) is to show that ∇ ·Qτ ∈ L2(0, T; L2(Ω)). To see this note that

∇ ·Qτ = ∇ ·Qn−1
δ +

t− tn−1

τ
∇ · (Qn

δ −Qn−1
δ ).

Squaring both sides and using the elementary inequality

‖∇ ·Qτ‖2
L2(Ω)

≤ 2‖∇ ·Qn−1
δ ‖2 + 2

(t− tn−1)
2

τ2 ‖∇ · (Qn
δ −Qn−1

δ )‖2,

integrating over t from 0 to T, since ∇ ·Qn−1
δ and ∇ ·Qn

δ are constant in (tn−1, tn) gives

∫ T
0 ‖∇ ·Qτ‖2dt ≤ 2τ ∑

N
n=1 ‖∇ ·Qn−1

δ ‖2 + 2 ∑
N
n=1

∫ tn
tn−1

(t−tn−1)
2

τ
2 ‖∇ · (Qn

δ −Qn−1
δ )‖2dt

≤ 2τ ∑
N
n=1 ‖∇ ·Qn−1

δ ‖2 + 2 ∑
N
n=1

2τ
3 ‖∇ · (Q

n
δ −Qn−1

δ )‖2.

Now use (8.5.10)–(8.5.11) to obtain

∫ T

0
‖∇ ·Qτ‖2 ≤ C.

Note that the estimates above are uniform in τ , if δ = O(
√
τ) and we have (Uτ , Qτ , Vτ , Wτ ) ∈

V × S × V × L∞(ΩT). Moreover, we have

Lemma 8.8 A quadruple (u, Q, v, w) ∈ V × S × V × L∞(ΩT) exists s.t. along a sequence
τ ↘ 0 (and with δ = O(τ

1
2 )) we have

(i). Uτ ⇀ u weakly in L2((0, T); L2(Ω)),

(ii). ∂tU
τ ⇀ ∂tu weakly in L2((0, T); L2(Ω)),

(iii). Qτ ⇀ Q weakly in L2((0, T); L2(Ω)d),

(iv). ∇ ·Qτ ⇀ ∇ ·Q weakly in L2((0, T); L2(Ω)),

(v). Vτ ⇀ v weakly in L2((0, T); L2(Ω)),

(vi). ∂tV
τ ⇀ ∂tv weakly in L2((0, T); L2(Ω)),

(vii). Wτ ⇀ w weakly-star in L∞(Ω).

In the above only weak convergence of Uτ in L2(0, T; L2(Ω)) is obtained, which is not
sufficient for passing to the limit for non-linear term r(Uτ ). To obtain strong conver-
gence, we use translation estimates as derived in Lemma 8.4.
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Lemma 8.9 It holds that

Uτ → u strongly in L2((0, T); L2(Ω)).

Proof. In view of ∂tU
τ ∈ L2(0, T; L2(Ω)), the translation in time is already controlled.

What we need is to control the translation in space. Due to [25] (Prop. 9.3, p.267), we
need to prove that

Iξ :=
∫ T

0

∫

Ω
|4ξUτ |2 → 0 as |ξ | ↘ 0.

The definition of Uτ immediately implies that

|Iξ | ≤
N

∑
n=1
τ
(

2‖4ξun
δ‖2 + 2‖4ξun−1

δ ‖2
)

.

Using Lemma 8.4 we find that
|Iξ | ≤ C|ξ |

where C is independent of τ and δ, implying the strong convergence.

To identify w with H(v) we further need the strong convergence of Vτ . This ia a conse-
quence of lemmas 8.5 and 8.9.

Lemma 8.10 For Vτ , it holds that

Vτ → v strongly in L2((0, T); L2(Ω)).

Proof. Once again, we use the translation estimate and note that the regularity of ∂tV
τ

ensures the control of the translation in time. What remains is to prove the following
estimate

Iξ :=
∫ T

0

∫

Ωξ

|4ξVτ |2 → 0 as |ξ | ↘ 0.

Using the definition of Vτ we have

Iξ ≤
N

∑
n=1
τ
(

2‖4ξvn
δ‖2 + 2‖4ξvn−1

δ ‖2
)

.

Thanks to Lemma 8.5 we have
Iξ ≤ C|ξ |

where C is independent of τ and δ, thus establishing the strong convergence.
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8.5.4 The limit equations

Once the strong convergence is obtained, the following theorem provides the existence
of the weak solution in the mixed variational formulation.

Theorem 8.5.1 The limit quadruple (u, Q, v, w) is a solution in the sense of Definition 8.4.1.

Proof. By the weak convergence, the estimates in Lemma 8.7 carry over for the
limit quadruple (u, Q, v, w). Moreover, the time continuous approximation in (8.5.29)
satisfies

(∂tU
τ ,φ) + (∇ ·Qτ ,φ) + (∂tV

τ ,φ) = (∇ · (Qτ −Qn
δ ),φ) , (8.5.32)

(∂tV
τ ,θ)− (r(Uτ )−Wτ ,θ) =

(
Hδ(V

τ )− Hδ(v
n−1
δ ,θ

)
+ (r(un

δ )− r(Uτ ),θ)

(8.5.33)

(Qτ ,ψ)− (Uτ ,∇ ·ψ)− (qUτ ,ψ) = (Qτ −Qn
δ ,ψ)− (Uτ − un

δ ,∇ ·ψ)− (q(Uτ − un
δ ),ψ)

(8.5.34)

for all (φ,θ,ψ) ∈ L2(0, T; H1
0 (Ω)),V , S). Note that, in fact, (8.5.32) also holds for

φ ∈ V . Here we choose a better space to identify the limit, where we prove that the
term on the right is vanishing along a sequence τ ↘ 0. By density arguments, the limit
will hold forφ ∈ V .

Consider first (8.5.32) and note that by Lemma 8.8, the left hand side converges to the de-
sired limit. It only remains to show that the right hand side, denoted by I1, vanishes as
τ ↘ 0. Integrating by parts, which is allowed due to the choice ofφ ∈ L2(0, T; H1

0 (Ω)),
one has

|I1| ≤
(

N

∑
n=1
τC‖Qn

δ −Qn−1
δ ‖2

) 1
2 (∫ T

0
‖∇φ‖2

) 1
2

.

Due to the estimate (8.5.9), ∑
N
n=1 τ‖Qn

δ −Qn−1
δ ‖2 → 0.

Next, we consider (8.5.33). First we prove that the last two integrals on the right hand
side vanish, denoted by I2 and I3 vanish. For I2 we use the Lipschitz continuity of Hδ

and the definition of Vτ to obtain

|I2| ≤
(

N

∑
n=1

τ

δ2 ‖v
n
δ − vn−1

δ ‖2

) 1
2 (∫ T

0
‖θ‖2

) 1
2

.

Using (8.5.5) we have

|I2| ≤ C
τ

δ

(∫ T

0
‖θ‖2

) 1
2

.

By the choice of δ, τ
δ
↘ 0 as τ ↘ 0, implying that I2 vanishes in the limit.
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For I3 we use the Lipschitz continuity of r and (8.5.8) to get

|I3| ≤
(

N

∑
n=1
τLr‖un

δ − un−1
δ ‖2

) 1
2 (∫ T

0
‖ψ‖2

) 1
2

→ 0.

For the first term on the left in (8.5.32), the limit is straightforward. For the limit of the
second term, with strong convergence of Uτ and weak-* convergence of Wτ we get

lim
τ↘0

(r(Uτ )−Wτ ,θ) = (r(u)− w,θ) ,

leading to the limiting equation

(∂tv,θ) = (r(u)− w,θ) for all θ ∈ V . (8.5.35)

Now we consider (8.5.34) and denote the corresponding integrals on the right hand side
respectively by I4, I5, and I6. By the definition of Qτ and (8.5.9), as τ ↘ 0 we obtain

|I4| ≤
(

N

∑
n=1
τ‖Qn

δ −Qn−1
δ ‖2

) 1
2 (∫ T

0
‖ψ‖2

) 1
2

→ 0.

Similarly, for I5 and I5, using (8.5.8)

|I4| ≤
(

N

∑
n=1
τ‖un

δ − un−1
δ ‖2

) 1
2 (∫ T

0
‖ψ‖2

) 1
2

→ 0, and

|I5| ≤
(

N

∑
n=1
τM2

q‖un
δ − un−1

δ ‖2

) 1
2 (∫ T

0
‖ψ‖2

) 1
2

→ 0.

With this the limit equation takes the form

(Q,ψ)− (u,∇ ·ψ)− (qu,ψ) = 0. (8.5.36)

To conclude the proof what remains is to show that w = H(v). Since we have Vτ

strongly converging, we also obtain Vτ → v pointwise a.e. and further, as τ ↘ 0,
by construction δ ↘ 0. For the set R+ := {(t, x) : v(t, x) > 0}, let us assume µ :=
v(t, x, z)/2 > 0. Then the pointwise convergence implies the existence of a εµ > 0 such
that Vτ > µ for all ε ≤ εµ . Then for any ε ≤ εµ we have Wτ = 1 implying w = 1. A
similar conclusion also holds for R− where R− := {(t, x) : v(t, x) < 0}.
For the case when v = 0; consider the set R0 := {(t, x, z) : v(t, x, z) = 0}. Now in the
interior of the set R0, ∂tv = 0. Next, from the weak convergence of ∂tV

τ , Wτ , r(Uτ ), we
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have the following limit equation

(∂tv,θ) = (r(u)− w,θ) .

Hence, for the interior of the set R0, we obtain w = r(u). Furthermore, the bounds
0 ≤ Wτ ≤ 1 with weak- convergence of Wτ

h to w imply the same bounds on w and
hence w = r(u) with 0 ≤ r(u) ≤ 1.

8.6 The mixed finite element formulation

Following the semi-discrete scheme, we now consider the fully discrete system (dis-
cretized in both space and time) and show the convergence of the numerical method. In
particular, we consider the mixed finite element discretization in space and for the time
we retain the discretization as in the semi-discrete case. The steps for the proof of con-
vergence are similar to the semi-discrete situation and where ever the proof is similar to
time-discrete case treated above, we suppress the details. Further, to simplify notation,
henceforth, we suppress the subscript δ.

The fully discrete formulation for the weak solution of (8.2.1)–(8.2.2) builds on the time
discretization in (8.5.2), and consider a uniform time stepping that is implicit in u and
explicit in v. For the space discretization, we have Ω decomposed in 2− dimensional
simplices (triangles) denoted by Th and having the mesh-size h. We assume Ω to be
polygonal as has been stated in Section 8.3. The function spaces used here are already
introduced in Section 8.3.

Starting with u0
h = uI , v0

h = vI , with n ∈ {1, . . . , N}, the approximation (un
h , vn

h , Qn
h , wn

h)

of (u(tn), v(tn), Q(tn), w(tn)) at t = tn solves :

Problem Pn
h : Given (un−1

h , vn−1
h ) ∈ (Vh,Vh) find (un

h , vn
h , Qn

h , wn
h) ∈ (Vh,Vh, Sh, L∞(Ω))

satisfying

(un
h − un−1

h ,φ) + τ(∇ ·Qn
h ,φ) + (vn

h − vn−1
h ,φ) = 0,

(vn
h − vn

h ,θ)− τ(r(un
h),θ)− τ(Hδ(v

n−1
h ),θ) = 0, (8.6.1)

(Qn
h ,ψ)− (un

h ,∇ ·ψ)− (qhun
h ,ψ) = 0,

for all (φ,θ,ψ) ∈ Vh ×Vh × Sh. For completion, we define

wn
h = Hδ(v

n
h).

For stability reasons, as before, we choose δ = O(τ
1
2 ) (see [41, 80] for detailed argu-

ments).

The fully discrete scheme (8.6.1) seeks solution on a finite dimensional vector space for
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any given discretization parameters. From (8.6.1)1 and (8.6.1)2, we eliminate vn
h , which

is computed after having obtained (un
h , Qn

h) satisfying for all (φ,ψ) ∈ (Vh, Sh)

(un
h − un−1

h ,φ) + τ(∇ ·Qn
h ,φ) + τ(r(un

h)− Hδ(v
n−1
h ),φ) = 0,

(Qn
h ,ψ)− (un

h ,∇ ·ψ)− (qhun
h ,ψ) = 0.

(8.6.2)

In the above formulation, the nonlinearities only involve un
h ; the Hδ is known, from the

previous time step and is in L∞.

The existence follows from [121], Theorem 4.3, which treats a more general case. Its
proof is based on [133] (Lemma 1.4, p.140). Following the ideas in Section 8.5, one can
prove that (8.6.2) has a unique solution pair (un

h , Qn
h). This also determines vn

h and wn
h

uniquely. We summarize the above result

Lemma 8.11 Problem Pn
h has a unique solution pair (un

h , Qn
h , vn

h , wn
h).

8.6.1 The a priori estimates

We proceed with the energy estimates which are analogous to the semi-discrete case.
We simply state the results as their proof follows as in the semi-discrete case.

Lemma 8.12 The following estimates hold

sup
k=1,...,N

∥∥∥uk
h

∥∥∥ ≤ C, (8.6.3)

∥∥∥vn
h − vn−1

h

∥∥∥ ≤ Cτ , (8.6.4)

sup
k=1,...,N

∥∥∥vk
h

∥∥∥ ≤ C, (8.6.5)

sup
k=1,...,N

∥∥∥Qk
h

∥∥∥ ≤ C, (8.6.6)

N

∑
n=1

∥∥∥un
h − un−1

h

∥∥∥
2
≤ Cτ , (8.6.7)

N

∑
n=1

∥∥∥Qn
h −Qn−1

h

∥∥∥
2
≤ C, (8.6.8)

N

∑
n=1
τ ‖∇ ·Qn

h‖2 ≤ C, (8.6.9)

N

∑
n=1
τ
∥∥∥∇ · (Qn

h −Qn−1
h )

∥∥∥
2
≤ C. (8.6.10)



204 Numerical analysis of an upscaled model: mixed schemes

We continue with the steps analogous to the semi-discrete situation. As in (8.5.29) we
consider the time-continuous approximation by the piecewise linear interpolations of
the time discrete solutions. With t ∈ [tn−1, tn], define

Zτh(t) :=
(t− tn−1)

τ
zn

h +
(tn − t)
τ

zn−1
h , (8.6.11)

(8.6.12)

where zn
h , zn−1

h are the time-discrete solutions from which we construct the correspond-
ing time-continuous approximation Zτh . The symbol z may be replaced here by either
u, v, or Q, and the same holds for Z. As before, the estimates in Lemma 8.12 carry over
for the time-continuous approximation (the proof is omitted) and we obtain

Lemma 8.13 The time-continuous approximations satisfy the following estimates

‖∂tU
τ
h ‖2

+ ‖∇ ·Qτ
h‖2

+ ‖Uτ
h ‖2

+ ‖Vτ
h ‖2

+ ‖Qτ
h‖2 ≤ C, (8.6.13)

0 ≤Wτ
h ≤ 1. (8.6.14)

Here the norms are taken with respect to L2(0, T; L2(Ω)). The estimates are uniform in
τ and δ and furthermore we have (Uτ

h , Qτ
h , Vτ

h , Wτ
h ) ∈ V × S × V × L∞(Ω). Clearly, if

τ ↘ 0 with δ = O(τ
1
2 ) implies that both δ, τ

δ
↘ 0. The compactness arguments from

the Lemma 8.13 lead to the following convergence result:

Lemma 8.14 Along a sequence τ ↘ 0, it holds that

(i). Uτ
h ⇀ u weakly in L2((0, T); L2(Ω)),

(ii). ∂tU
τ
h ⇀ ∂tu weakly in L2((0, T); H−1(Ω)),

(iii). Qτ
h ⇀ Q weakly in L2((0, T); L2(Ω)d),

(iv). ∇ ·Qτ
h ⇀ χ weakly in L2((0, T); L2(Ω)),

(v). Vτ
h ⇀ v weakly in L2((0, T); L2(Ω)),

(vi). ∂tV
τ
h ⇀ ∂tv weakly in L2((0, T); L2(Ω)),

(vii). Wτ
h ⇀ w weakly-star in L∞(Ω).

As in the semi-discrete case, identification of the above limit χ with ∇ ·Q is obtained
via smooth test functions. Note that the above lemma only provides weak convergence
for Uτ

h , Vτ
h ; in the wake of nonlinearities, the strong convergence is needed. However,

the techniques from the semi-discrete case can not be applied directly. This is because
the translation of a function that is piecewise constant on the given mesh need not be
piecewise constant on that mesh. We therefore adopt the finite volume framework in
[51] in order to overcome this difficulty.
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8.6.2 Strong convergence

In what follows, we establish the required strong convergence of Uτ
h followed by that

of Vτ
h . We provide the notations used below in the framework of finite volumes. Let

E denote the set of edges of the simplices Th. Also, we have that E = Eint ∪ Eext with
Eext = E

⋂
∂Ω and Eint = E \ Eext. We adopt the following notation:

|T| − the area of T ∈ Th,
xi − the centre of the circumcircle of T,
li j − the edge between Ti and Tj,
di j − the distance from xi to li j,

σi j −
|li j |
di j

,

(8.6.15)

In analogy with the spatially continuous case, we define the following discrete inner
product for any un

h , vn
h ∈ Vh

(un
h , vn

h)h := ∑
Ti∈Th

|Ti|un
h,iv

n
h,i , (un

h , vn
h)1,h := ∑

li j∈E
|σi j|(un

h,i − un
h, j)(v

n
h,i − vn

h, j). (8.6.16)

The discrete inner product gives rise to discrete H1
0 norm, which is

‖un
h‖1,h = ∑

li j∈E
|σi j|(un

h,i − un
h, j)

2. (8.6.17)

In [51], the following discrete Poincare inequality is proved

‖un
h‖ ≤ C‖un

h‖1,h, (8.6.18)

with C independent of h or un
h . Based on Lemma 4 in [51], below we show that the

translations are controlled by the discrete ‖ · ‖1,h norm.

Lemma 8.15 Let Ω be an open bounded set of R2 and let Th be an admissible mesh. For a given
u defined in Ω and extended to ū by 0 outside Ω we have

‖4ξ ū‖2
L2(R2)

≤ ‖u‖2
1,h|ξ |(|ξ |+ Csize(Th)), for all ¸ ∈ R2. (8.6.19)

This shows that for a sequence {un
h} having the discrete H1

0 norm uniformly bounded,
the L2− norm of the translations 4ξun

h vanishes uniformly with respect to h as η ↘ 0.
This is an essential step in proving the strong L2− convergence for hn

h . Here we only
need to show that un

h has bounded discrete H1
0 norm

Lemma 8.16 For the sequence un
h , the following inequality holds uniformly with respect to h,

‖un
h‖1,h ≤ C(‖Qn

h‖+ ‖un
h‖). (8.6.20)
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Proof. The approach is inspired from the semi-discrete situation and is adapted to the
present context by defining appropriate test function. Define

|Ti| f n
h (Ti) := ∑

ei j

|li j|
di j

(un
h,i − un

h, j) (8.6.21)

and note that by the definition of ‖ · ‖2
1,h ,

( f n
h , un

h) = ∑
i

Ti f n
h (Ti)u

n
h(Ti) = ∑

ei j

li j

di j
|un

h,i − un
h, j|2 = ‖un

h‖2
1,h. (8.6.22)

Further, by using Cauchy-Schwarz we obtain

‖ f n
h ‖2

L2(Ω)
= ∑

i
|Ti|| f n

h (Ti)|2 ≤∑
ei j

|li j|
di j

(un
i − un

j )
2 1
|Ti| ∑ei j

|li j|
di j

which implies that

‖ f n
h ‖ ≤ ‖un

h‖1,h. (8.6.23)

Note that f n
h ∈ L2(Ω) and hence, there existsψh ∈ Sh which satisfies

∇ ·ψh = f n
h in Ω, (8.6.24)

ψh = 0 on ∂Ω. (8.6.25)

By (8.6.23), it also holds that

‖ψh‖L2(Ω) ≤ C‖ f n
h ‖L2(Ω) ≤ C‖un

h‖1,h. (8.6.26)

Now choose for the test functionψ = ψh in (8.6.1)3

(Qn
h ,ψh)− (un

h ,∇ ·ψh)− (qhun
h ,ψh) = 0.

Note that by (8.6.22)
(un

h ,∇ ·ψh) = (un
h , f n

h ) = ‖un
h‖2

1,h.

This implies that

‖un
h‖2

1,h = (un
h ,∇ ·ψh) = (Qn

h ,ψh)− (qhun
h ,ψh)

≤ ‖Qn
h‖‖ψh‖+ Mq‖un

h‖‖ψh‖ ≤ C‖Qn
h‖‖un

h‖1,h + CMq‖un
h‖‖un

h‖1,h

and the conclusion follows.

In view of the above lemma, obtaining the relative compactness in L2 is straightforward.
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Lemma 8.17 Along a sequence (τ , h) converging to (0, 0) (and with δ = O(
√
τ)), Uτ

h con-
verges strongly in L2(0, T; L2(Ω)).

Proof. Since, ∂tU
τ
h is in L2, the translation with respect to time is already controlled.

What remains is to consider the translation with respect to space. Take (8.6.20) and sum
over n = 1, . . . , N to obtain

τ
N

∑
n=1
‖un

h‖2
1,h ≤ Cτ

N

∑
n=1

(‖Qn
h‖2 + ‖un

h‖2) ≤ C (8.6.27)

and using (8.6.3) and (8.6.6) gives

τ
N

∑
n=1
‖un

h‖2
1,h ≤ C.

Now use Lemma 8.15 to control the translations by the ‖ · ‖1,h norm (after extending un
h

by 0 outside Ω; for simplicity retain the same notation)

τ
N

∑
n=1
‖un

h(·+ξ)− un
h‖2

L2(R2)
≤ C|ξ |(|ξ |+ size(Th)),

which, in turn, provides similar estimate for Uτ
h

τ
N

∑
n=1
‖Uτ

h (·+ξ)−Uτ
h ‖2

L2(R2)
≤ C|ξ |(|ξ |+ size(Th)).

The Kolomogorov compactness theorem proves the assertion.

The strong convergence of Uτ
h gives the strong convergence of Vτ

h .

Lemma 8.18 Along a sequence (τ , h) converging to (0, 0), Vτ
h converges strongly to v in

L2(0, T; L2(Ω)).

Proof. As before, the translations with respect to time are already controlled by virtue
of ∂tV

τ
h ∈ L2. We now consider the case for the translation with respect to space. Since

both un
h , vn

h are piecewise constants in each simplex T, we have for every x ∈ T

vn
h(x) = vn−1

h (x) + τ
(

r(un
h(x))− τHδ(v

n−1
h (x))

)

vn
h(x +ξ) = vn−1

h (x +ξ) + τ
(

r(un
h(x +ξ))− τHδ(v

n−1
h (x +ξ))

)

so that for any x ∈ Ωξ we have

4ξ(vn
h − vn−1

h ) = τ4ξr(un
h)− τ4ξHδ(v

n−1
h )
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Multiplying by4ξvn−1
h and rewriting the left hand side, we have

1
2

{
|4ξvn

h |2 − |4ξvn−1
h |2 + |4ξ(vn

h − vn−1
h )|2

}
(8.6.28)

≤ τLr|4ξun
h ||4ξvn

h | − τ (4ξHδ(v
n
h − 1))4ξvn

h .

The term involving the4ξHδ can be rewritten as

(
4ξHδ(v

n−1
h )

)
4ξvn

h =
(
4ξHδ(v

n−1
h )

)
4ξvn−1

h +
(
4ξHδ(v

n−1
h )

) (
4ξ(vn

h − vn−1
h )

)

and due to monotonicity of Hδ, we have
(
4ξHδ(v

n−1
h )

)
4ξvn−1

h ≥ 0.

Using above in (8.6.28) gives

1
2

{
|4ξvn

h |2 − |4ξvn−1
h |2 + |4ξ(vn

h − vn−1
h )|2

}

≤ τL2
r |4ξun

h |2 +
1
4
|4ξvn

h |2 +
1
4
|4ξ(vn

h − vn−1
h |2 + τ2

δ2 |4ξvn−1
h |2.

Integrating over Ωξ and summing over n = 1, · · · , k for any k ∈ {1, . . . , N} gives

1
2
‖4ξvk

h‖2 +
1
4

k

∑
n=1
‖4ξ(vn

h − vn−1
h )‖2

≤ ‖4ξvI,h‖2 + τ
k

∑
n=1

L2
r‖4ξun

h‖2 +
1
4
τ

k

∑
n=1
‖4ξvn

h‖2 +
k

∑
n=1

τ2

δ2 ‖4ξvn−1
h ‖2,

where the norms are taken with respect to Ωξ . Choosing δ = O(τ
1
2 ) leads to

1
2
‖4ξvk

h‖2 +
1
4

k

∑
n=1
‖4ξ(vn

h − vn−1
h )‖2 ≤ ‖4ξvI,h‖2 + τ

k

∑
n=1

L2
r‖4ξun

h‖2 + Cτ
k

∑
n=1
‖4ξvn

h‖2.

Applying the Gronwall lemma provides

sup
k=1,...,N

‖4ξvk
h‖2 ≤ C‖4ξvI,h‖2 + Cτ

N

∑
n=1
‖4ξun

h‖2.

The strong convergence of Uτ
h in L2(0, T; L2(Ω)) implies that the last term vanishes in

the limit of ξ ↘ 0 (see the proof of Lemma 8.17).

To estimate the translations for the initial condition we consider vI,h as the finite volume
approximation of vI defined (formally) by

−∆vI,h = −∆vI , in Ω,
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with homogenous Dirichlet boundary conditions. This implies

‖v‖1,h ≤ C‖∇vI‖ ≤ C.

Since the translations are approaching 0 if ‖vI,h‖1,h ≤ C (uniformly in h), ‖4ξvI,h‖ → 0
as ξ ↘ 0. From the above we conclude that ‖4ξvk

h‖2 → 0 as |ξ | goes to 0.

Finally, note that the definition of Vτ
h implies the rough estimate

∫ T

0
‖4ξVτ

h ‖2dt ≤ 2τ
N

∑
n=1
‖4ξvn

h‖2 + 2τ
N

∑
n=1
‖4ξvn−1

h ‖2,

and the right hand side vanishes uniformly in h as ξ ↘ 0, hence Vτ
h converges strongly.

8.6.3 The limit equations

Up to now we obtained the convergence of the fully discrete triples (Uτ
h , Vτ

h , Qτ
h) along

a sequence (τ , h) approaching (0, 0) with δ = O(
√
τ). Clearly, the (L∞ weakly∗) con-

vergence extends to the sequence Wτ
h = Hδ(V

τ
h ). In what follows, we identify the limit

discussed in the preceding section as the weak formulation (8.4.1).

Theorem 8.6.1 The limit quadruple (u, Q, v, w) is a weak solution in the sense of Definition
8.4.1.

Proof. By the weak convergence, the estimates in Lemma 8.13 carry over for the limit
triple (u, Q, v). By (8.6.1)1 we have

∫ T

0
(∂tU

τ
h ,φ)dt +

∫ T

0
(∇ ·Qτ

h ,φ)dt +
∫ T

0
(∂tV

τ
h ,φ)dt

=
N

∑
n=1

∫ tn

tn−1

(∂tU
τ
h ,φ−φh)dt +

N

∑
n=1

∫ tn

tn−1

(∇ ·Qτ
h −∇ ·Qn

h ,φ)dt

+
N

∑
n=1

∫ tn

tn−1

(∇ ·Qτ
h ,φ−φh)dt +

N

∑
n=1

∫ tn

tn−1

(∇ ·Qτ
h −∇ ·Qn

h ,φh −φ)dt

+
N

∑
n=1

∫ tn

tn−1

(∂tV
τ
h ,φ−φh)dt.

(8.6.29)

for all φ ∈ L2(0, T; H1
0 (Ω)), and where φh is the projection φh = Pφ introduced in

Section 8.3. Note that we assume again an H1 regularity in space for the test function
φ. We use this to control the terms involving ‖φ−φh‖ by using the property (8.3.1). A
usual density argument lets the result hold for allφ ∈ V .

The left hand side gives the desired limit terms; it only remains to show that the right
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hand side vanishes in the limit. Denote the successive integrals on the right by Ii , i =
1, . . . , 5. We deal with each term separately.

For I1 we use (8.6.13) to obtain that as h↘ 0

|I1| ≤ ‖∂tU
τ
h ‖L2(0,T;L2(Ω))

(
N
∑

n=1
τ‖φ−φh‖2

L2(Ω)

) 1
2

≤ Ch‖∇φ‖L2(0,T;L2(Ω)) ↘ 0.

Similarly, by (8.6.8), for I2 one gets

|I2| ≤
(

N
∑

n=1
τ‖Qn

h −Qn−1
h ‖2

) 1
2
(

N
∑

n=1
τ‖∇φ‖2

L2(Ω)

) 1
2

≤ Cτ .

Clearly I2 vanishes in the limit of τ ↘ 0. Next, for I3, we have

|I3| ≤ ‖∇ ·Qτ
h‖L2(0,T;L2(Ω))

(
N
∑

n=1
τ‖φ−φh‖2

) 1
2

≤ Ch‖∇φ‖L2(0,T;L2(Ω))

using (8.6.13). Hence, I3 goes to 0 as h↘ 0. Proceeding in the similar way, for I4

|I4| ≤
(

N
∑

n=1
τ‖∇ ·Qn

h −∇ ·Qn−1
h ‖2

) 1
2
(

N
∑

n=1
τ‖φ−φh‖2

L2(Ω)

) 1
2

≤ Ch‖∇φ‖L2(0,T;L2(Ω))

by using (8.6.10) implying that I4 vanishes in the limit.

In the same manner, for I5 we use the bounds for ∂tV
τ
h and obtain

|I4| ≤ ‖∂tV
τ
h ‖L2(0,T;L2(Ω))

(
N
∑

n=1
τ‖φ−φh‖2

L2(Ω)

) 1
2

≤ Ch‖∇φ‖L2(0,T;L2(Ω)).

Next we consider (8.6.1)2, which we rewrite as

T∫
0
(∂tV

τ
h ,θ)dt−

T∫
0
(r(Uτ

h )−Wτ
h ,θ) dt

=
T∫
0
(∂tV

τ
h ,θ−θh) dt +

N
∑

n=1

tn∫
tn−1

(
Hδ(V

τ
h )− Hδ(v

n−1
h ),θ

)
dt

+
N
∑

n=1

tn∫
tn−1

(
Hδ(v

n−1
h ),θ−θh

)
dt +

N
∑

n=1

tn∫
tn−1

(r(un
h)− r(Uτ

h ),θ) dt

+
N
∑

n=1

tn∫
tn−1

(r(un
h),θh −θ) dt.

for θ ∈ L2(0, T; H1
0 (Ω)) and θh is the Ph projection of θ. A better regularity of θ is

again chosen for identifying the limits and controlling the errors due to the projections.
We would retrieve the desired limiting equations once we prove that the integrals on
the right hand side vanish. Let us denote the successive integrals by Ii , i = 1, . . . , 5
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respectively. For I1 we get by using (8.6.13) and recalling the projection estimate (8.3.1)

|I1| ≤
(∫ T

0
‖∂tV

τ
h ‖2dt

) 1
2
(

N

∑
n=1

∫ tn

tn−1

‖(θ−θh)‖2dt

) 1
2

≤ Ch‖θ‖L2(0,T;H1
0 (Ω))

which vanishes in the limit as h ↘ 0. For I2, we use the definition of Wτ and Lipschitz
continuity of Hδ to obtain

|I2| ≤
N

∑
n=1
τ

1
δ
‖vn

h − vn−1
h ‖‖θh‖ ≤

N

∑
n=1
τC
τ

δ
‖θh‖

by using (8.6.4) and further using τ/δ ↘ 0 by the construction of δ we obtain I2 ↘ 0.
Next, we consider I3

|I3| ≤ C

(
N

∑
n=1

∫ tn

tn−1

‖θ−θh‖2dt

) 1
2

≤ Ch‖∇θ‖L2(0,T;L2(Ω)) ↘ 0 as h↘ 0

because of (8.3.1). To continue,

|I4| ≤
(

N

∑
n=1
τL2

r‖un
h − un−1

h ‖2

) 1
2
(

N

∑
n=1
τ‖θh‖2

) 1
2

and using the estimate (8.6.7), we obtain I4 ↘ 0.
For I5, as h↘ 0,

|I5| ≤ Lr

(
N

∑
n=1
τ‖un

h‖2dt

) 1
2
(

N

∑
n=1

∫ tn

tn−1

‖(θ−θh)‖2dt

) 1
2

≤ Ch‖θ‖L2(0,T;H1
0 (Ω)) ↘ 0.

Let us consider the next equation, that is, (8.6.1)3. We have by realigning the terms,

T∫

0

(Qτ
h ,ψ)dt−

T∫

0

(Uτ
h ,∇ ·ψ)dt−

T∫

0

(qhUτ
h ,ψ)dt

=
N

∑
n=1

tn∫

tn−1

(Qτ
h −Qn

h ,ψ)dt +
N

∑
n=1

tn∫

tn−1

(Qn
h ,ψ−ψh)dt

+
N

∑
n=1

tn∫

tn−1

(un
h −Uτ

h ,∇ ·ψ)dt +
N

∑
n=1

tn∫

tn−1

(Un
h ,∇ · (ψh −ψ))dt

+
N

∑
n=1

tn∫

tn−1

(qh(u
n
h −Uτ

h ),ψ)dt +
N

∑
n=1

tn∫

tn−1

(qhun
h ,ψh −ψ)dt

(8.6.30)
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for allψ ∈ L2(0, T; H2(Ω)) and whereψh is chosen as the Πh projection ofψ. As before
the left hand side converges to the desired limits. This is obvious except for the third
term where we use the L∞ and strong convergence of qh. Indeed,

∫ T

0
(qhUτ

h ,ψ)dt =
∫ T

0
(qUτ

h ,ψ)dt +
∫ T

0
((qh − q)Uτ

h ,ψ)dt (8.6.31)

and the first term on the right hand side passes to the desired limit. We show that the
second term vanishes in the limit. Note that qh − q ∈ (L∞(Ω))2 and hence, (qh − q)Uτ

h

has a weak limit. Now choose ψ ∈ L2(0, T; (C∞
c (Ω))d), d = 2 so that ψ ∈ (L∞(Ω))2.

Now
‖(qh − q)Uτ

h ‖(L1(Ω))2 ≤ ‖qh − q‖(L2(Ω))2‖Uτ
h ‖(L2(Ω))2

and use the strong convergence of qh in L2 (uniform with respect to h) to conclude that
the weak limit is indeed 0.

Now we show that the right hand side of (8.6.30) indeed vanishes in the limit. Let us
denote the integrals by Ii , i = 1, . . . , 6. The successive terms will be treated as before.
We begin with I1

|I1| ≤ ‖ψ‖L2(0,T;H1(Ω))

(
N

∑
n=1
τ‖Qn

h −Qn−1
h ‖2

) 1
2

≤ Cτ

using bounds given in (8.6.8). Thus, I1 goes to 0 in the limit. For I2, recalling the bound
(8.6.6) and the projection estimate (8.3.2)

|I2| ≤
(

N

∑
n=1
τ‖Qn

h‖2

) 1
2
(

N

∑
n=1
τ‖ψ−ψh‖L2(Ω)

) 1
2

≤ Ch‖ψ‖L2(0,T;H(div,Ω)) ↘ 0

as h↘ 0.
Let us deal with the next term using (8.6.7),

|I3| ≤
(

N

∑
n=1
‖un

h − un−1
h ‖2

) 1
2




T∫

0

‖∇ ·ψ‖2dt




1
2

≤ Cτ

which vanishes in the limit τ ↘ 0. For I4, we have

|I4| ≤
(

N

∑
n=1
τ‖un

h‖2

) 1
2
(

N

∑
n=1
τ‖∇ · (ψ−ψh)‖2

) 1
2

and further by using (8.6.7) and (8.3.2),

|I4| ≤ Ch‖ψ‖L2(0,T;H1(Ω))
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which tends to 0 as h↘ 0. To proceed,

|I5| ≤ Mq

(
N

∑
n=1
τ‖un

h − un−1
h ‖2

) 1
2

‖ψ‖L2(0,T;L2(Ω)) ≤ Cτ

with similar conclusion. Finally,

|I6| ≤ Mq

(
N

∑
n=1
τ‖un

h‖2

) 1
2
(

N

∑
n=1
τ‖(ψ−ψh)‖2

) 1
2

with vanishing limit due to the projection estimate (8.3.2) and by (8.6.3).

The identification of w with H(v) is identical to the semi-discrete case.

Note that the limit quadruple (u, Q, v, w) indeed satisfies (8.4.1), but for test functions
having a better regularity in space: φ ∈ L2(0, T; H1

0 (Ω)), θ ∈ L2(0, T; H1
0 (Ω)) and ψ ∈

L2(0, T; H2(Ω)). In view of the regularity of u, v, Q, density arguments can be employed
to show that the limit equations also hold forφ ∈ L2(0, T; L2(Ω)),θ ∈ L2(0, T; L2(Ω)),ψ ∈
L2(0, T; H(div, Ω)), which completes the proof.

8.7 Numerical computations

We consider a test problem similar to (8.2.1)–(8.2.2), but including a right hand side
in the first equation (see [79] where we first announced part of these results). This is
chosen in such a way that the problem has an exact solution, which is used then to
test the convergence of the mixed finite element scheme. Specifically, for T = 1 and
Ω = (0, 5)× (0, 1), and with r(u) = [u]2+ (where [u]+ := max{0, u}), we consider the
problem 




∂t(u + v) +∇ · (qu−∇u) = f , in ΩT ,
∂tv = (r(u)− w), on ΩT ,

w ∈ H(v), on ΩT .

Here q = (1, 0) is a constant velocity, whereas

f (t, x, y) =
1
2

ex−t−5
(

1− ex−t−5
)− 3

2

(
1− 1

2
ex−t−5

)
−
{

0, if x < t,
ex−t−5, if x ≥ t,

and the boundary and initial conditions are such that

u(t, x, y) =
(

1− ex−t−5
) 1

2
and v(t, x, y) =

{
0, if x < t,
ex−t−1

e5 if x ≥ t,

providing w(t, x, y) =

{
1, if x < t,
1− ex−t−5 if x ≥ t,
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form a solution triple.

We consider the mixed finite element discretization of the problem above, based on the
time stepping in Section 8.6 and the lowest order Raviart-Thomas elements RT0. The
numerical scheme was implemented in the software package ug [16]. The simulations
are carried out for a constant mesh diameter h and time step τ , satisfying τ = h. Further,
we take δ =

√
h as regularizing parameter. We start with h = 0.2, and refine the mesh

(and correspondingly τ and δ) four times successively by halving h up to h = 0.0125.
We compute the errors for u and v in the L2 norms,

Eh
u = ‖u−Uτ‖L2(ΩT), respectively Eh

v = ‖v−Vτ‖L2(ΩT).

These are presented in Table 8.1. Although theoretically no error estimates could be
given due to the particular character of the dissolution rate, Table 8.1 also includes an
estimate of the convergence order, based on the reduction factor between two successive
calculations:

α = log2(Eh
u/E

h
2
u ), and β = log2(Eh

v/E
h
2
v ).

For this simple test case, the method converges linearly.

h ‖u−Uτ‖ α ‖v−Vτ‖ β

0.2 1.1700e-01 1.8409e-01
0.1 6.414e-02 0.87 9.927e-02 0.89
0.05 3.396e-02 0.91 5.317e-02 0.90

0.025 1.726e-02 0.98 2.785e-02 0.93
0.0125 8.42e-03 1.03 1.420e-02 0.97

Table 8.1: Convergence results for the mixed discretization, with explicit for v; h = τ and
δ =
√
τ .

A natural question is to investigate the case when we take the implicit discretization for
v. This leads to a set of coupled nonlinear equation for the triple (un

h , Qn
h , vn

h). Newton’s
iteration is used to solve the resulting system (see [120, 127] where Newton method is
applied to similar problems). We consider this case for the numerical experiments and
the results are tabulated in Table 8.2. We see that for the test problem, we obtain a linear
convergence rate.

8.8 Conclusions

We have considered the semi-discrete and fully discrete numerical methods for the up-
scaled equations. These equations describe the transport and reactions of the solutes.
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h ‖u−Uτ‖ α ‖v−Vτ‖ β

0.2 1.031e-01 1.593e-01
0.1 5.925e-02 0.79 9.023e-02 0.82
0.05 3.247e-02 0.87 5.031e-02 0.84

0.025 1.686e-02 0.95 2.703e-02 0.90
0.0125 8.313e-03 1.02 1.3980e-02 0.95

Table 8.2: Convergence results for the mixed discretization, with implicit for v ; h = τ and
δ =
√
τ .

The numerical methods are based on mixed variational formulation where we have a
separate equation for the flux. These numerical methods retain the local mass conserva-
tion property. The reaction terms are nonlinear and the dissolution term is multi-valued
described by Heaviside graph. To avoid dealing with the inclusions, we use the regu-
larized Heaviside function with the regularization parameter δ dependent on the time
step τ . This implies that in the limit of vanishing discretization parameters automati-
cally yields δ ↘ 0. For the fully discrete situation, we have used Mixed finite element
method. The convergence analysis of both formulations have been proved using the
compactness arguments, in particular the translation estimates. The proof for the fully
discrete situation mirrors the proof for the semi-discrete situation however, there are
important differences especially dealing with the translation estimates where we use
discrete H1

0 norm to obtain compactness.

The work is complemented by the numerical experiments where we study a test case
where we compare the numerical solution to the exact solution. The study provides us
convergence rates for the problem studied here.





Appendix A

Dispersion for fixed geometry
case

For the case of thin strip, in Chapter 5, we have discussed the upscaling problem for the
situation when the geometry changes are taken into account. Here we give a derivation
of the upscaled equations for the case when the pore-scale geometry does not change
as a result of reactions taking place. The derivation differs slightly from the one in [46]
where the same situation is considered. While the cited work uses anisotropic singular
perturbation technique [129] to obtain the upscaled equations, here the formal homog-
enization techniques have been used. As will be seen below, the results agree well.
The two dimensional bounded domain representing the strip is given by:

Ωε := {(x, y) ∈ R|0 < x < 1,−ε ≤ y ≤ ε}

The boundaries of Ωε are then defined by the lateral boundary Γε given by:

Γε := {(x, y)|0 ≤ x ≤ 1, y ∈ {−ε,ε}},

the inlet boundary Γi,

Γi := {(x, y)|x = 0,−ε ≤ y ≤ ε},

and the outflow boundary Γo,

Γo := {(x, y)|x = 1,−ε ≤ y ≤ ε}.
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For modeling the crystal precipitation/dissolution, we consider the following dimen-
sionless system of equations that describe the flow of the solutes in a fixed geometry.

uεt = ∇ · (εD∇uε − qεuε), in Ωε

ε2µ∆qε = ∇pε, in Ωε

∇ · qε = 0, in Ωε

vεt = ε f (uε, vε) on Γε,

−νε ·εD∇uε = vεt on Γε,

qε = 0, on Γε,

uε = ubi
, on Γi ,

qε = qbi
, on Γi ,

ν · ∇uε = 0, on Γo,

qε = qb0
, on Γo,

uε(x, y, 0) = u0(x, y),

vε(x, 0) = v0(x).

Recall that the pore geometry is fixed and so, to take into account the thickness of the
deposition, another variable v is needed to account for the reactant/product on the lat-
eral boundaries. After rescaling x := x; y = y/ε, we obtain considering only equations
which are relevant to the present discussion:

uεt +∇ · (qεuε) = εD(∂xxuε +ε−2
∂yyuε), in Ωε

(A.0.1)

ε2µ(∂xxq(1)ε +ε−2
∂yyq(1)ε, ∂xxq(2)ε,ε−2

∂yyq(2)ε)T = (∂x pε,ε−1
∂y pε)T , in Ωε (A.0.2)

∂xq(1)ε +ε−1
∂yq(2)ε = 0, in Ωε (A.0.3)

vεt = f (uε, vε) on Γε, (A.0.4)

−νε ·εD(∂xuε,ε−1
∂yuε) = εvεt on Γε, (A.0.5)

qε = 0, on Γε. (A.0.6)

Since, the geometry is assumed to be fixed, we can solve the Stokes equation (A.0.2)-
(A.0.3) with the no-slip boundary condition (A.0.6), if we assume a parabolic inlet flow
profile (Poiseuille flow)

q(1)ε(y) = Q(1− y2), q(2)ε = 0,
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where Q > 0 is a given constant, depending upon the pressure gradient.
We assume the following asymptotic expansion for uε and vε

uε = u0 +εu1 + O(ε2),

vε = v0 +εv1 + O(ε2).

Using the expansion above in the convection-diffusion equation (A.0.1) with boundary
condition(A.0.5), we obtain

∂tu0 +ε∂tu1 = εD∂xxu0 +ε
−1D∂yyu0 +ε

2D∂xxu1 + D∂yyu1

−Q(1− y2)∂x(u0 +εu1) + O(ε2), in Ωε, (A.0.7)

D(∂yu0 +ε∂yu1) = ε∂tv0 +ε
2
∂tv1 + O(ε3) on Γε, (A.0.8)

• ε−1 term:

D∂yyu0 = 0,

D∂yu0 = 0, at y = {−1, 1},

and hence, we conclude

u0(x, y, t) = u0(x, t).

• ε0 term:

∂tu0 − D∂yyu1 + Q(1− y2)∂xu0 = 0, (A.0.9)

−D∂yu1 = ∂tv0, at y = 1, (A.0.10)

∂yu1 = 0, at y = 0. (A.0.11)

Integrating the first equation from y = 0 to 1, and using the boundary conditions,
(A.0.10) and (A.0.11) gives

∂tu0 + ∂tv0 +
2
3

Q∂xu0 = 0. (A.0.12)

To obtain an expression for u1, we eliminate ∂tu0 from equation (A.0.9). Subtracting
(A.0.12) from (A.0.9), gives

−D∂yyu1 + Q(
1
3
− y2)∂xu0 − ∂tv0 = 0. (A.0.13)
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Successively integrating (A.0.13) with respect to y, we get for u1(x, y, t) as

u1(x, y, t) =
Q
D
(

y2

6
− y4

12
+ C0(x, t))∂xu0 +

1
D
(
−y2

2
+ C1(x, t))∂tv0, (A.0.14)

where C0, C1 are constants of integration. As will be seen later, there is no need for
specifying the expressions for C0, C1, since their effects get canceled in the averaging
process.

• ε1 term:

∂tu1 − D(∂xxu0 + ∂yyu2) + Q(1− y2)∂xu1 = 0, (A.0.15)

−D∂yu2 = ∂tv1. (A.0.16)

Integrating (A.0.15) from y = 0 to y = 1 we obtain

∂t

∫ 1

0
u1 − D∂xxu0 + k∂tv1 + Q

∫ 1

0
(1− y2)∂xu1dy = 0. (A.0.17)

Define

ū1 =
∫ 1

0
u1dy,

and with this definition (A.0.17) becomes

∂tū1 − D∂xxu0 + ∂tv1 + Q∂xū1 = Q
∫ 1

0
y2

∂xu1dy. (A.0.18)

Adding (A.0.18) and (A.0.12) gives

∂t(u0 +εū1)−εD∂xxu0 + ∂t(v0 +εv1) +
2
3

Q∂x(u0 +εū1) = εQ
(∫ 1

0
y2

∂xū1dy− 1
3

∫ 1

0
∂xū1dy

)
,

(A.0.19)

Define:

ue = u0 +εū1,

ve = v0 +εv1.

With this definition, (A.0.19) becomes

∂t(ue + ve)−εD∂xxue +
2
3

Q∂xue = −ε2D∂xxū1 +εQ
∫ 1

0
(y2 − 1

3
)∂xū1. (A.0.20)
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To compute the
∫ 1

0 (y2− 1
3 )∂xū1, we can use the expression for u1 as obtained in equation

(A.0.14). Basically, we need to compute the following integrals

∫ 1

0
(y2 − 1

3
)(

y2

6
− y4

12
+ C0)dy =

8
945

,

and

∫ 1

0
(y2 − 1

3
)(C1 −

y2

2
)dy =

−2
45

.

Here, it is to be noted that the precise expressions for C0, C1 are of no consequence. Sub-
stituting the value of

∫ 1
0 (y2 − 1

3 )∂xū1, using the integrals computed above, in equation
(A.0.20),

∂t(ue + ve)−εD∂xxue +
2Q
3

∂xue = −ε2D∂xxū1 +
8ε

945
Q2

D
∂xxu0 −

εQ
D

2
45

∂xtv0. (A.0.21)

Hence, the upscaled equation takes the form,

∂t(ue + ve)−εD∂xxue +
2Q
3

∂xue = −ε2D∂xxū1

+
8ε

945
Q2

D
∂xxu0 +ε

2 8
945

Q2

D
∂xxū1

−ε2 8
945

Q2

D
∂xxū1 −

εQ
D

2
45

∂xtv0

−ε2 Q
D

2
45

∂xtv1 +ε
2 Q

D
2

45
∂xtv1.

This can be then rewritten up to an error of order O(ε2) as

∂t(ue + ve)−εD∂xxue +
2Q
3

∂xue = −ε2D∂xxū1

+
8ε

945
Q2

D
(∂xx(u0 +εū1))

−ε2 8
945

Q2

D
∂xxu1 −ε

Q
D

2
45

(∂xt(v0 +εv1))

+ε2 Q
D

2
45

∂xtv1.

For ve, we can have, formally, by using Taylor expansion of f (uε, vε) around (ue, ve),

∂tve = f (uε, vε) = f (u0 +εū1, v0 +εv1) +ε(u1|y=1 − ū1)∂1 f (u0 +εū1, v0 +εv1)) + O(ε2)

= f (ue, ve) +ε(u1|y=1 − ū1)∂1 f (ue, ve) + O(ε2). (A.0.22)
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And from the expression for u1 using equation (A.0.14), we have

u1(y = 1)− ū1 =
Q
D
(

1
12

+ C0 −
7

180
− C0)∂xu0 + ∂tv0

1
D
(C1 −

1
2
− C1 +

1
6
)

=
Q
D

2
45

∂xu0 −
1
3

1
D

∂tv0. (A.0.23)

Once again, we note that the values of C0, C1 are immaterial. Equations (A.0.22) and
(A.0.23) give us the final expression for ve,

∂tve = f (ue, ve) +ε

{
Q
D

2
45

∂xu0 −
1
3

1
D

∂tv0

}
∂1 f (ue, ve).

To summarize, we obtain the set of effective equations for the fixed geometry case up to
O(ε2),

∂t(ue + ve) = ∂x

{
−ue q̄e +εD(1 +

2q̄2
e

105D2 )∂xue −ε
1

15
q̄e

D
f (ue, ve)

}

∂tve = f (ue, ve) +ε(−
1

3D
∂tve +

1
15D

q̄e∂xue)∂1 f (ue, ve).



Appendix B

Existence of solution for semi
discrete scheme (8.5.2)

In Chapter 8, we have already obtained the existence of fully discrete scheme (8.6.1), Pn
h .

What remains to show is the existence of the solution for semi-discrete (8.5.2), that is,
Problem Pmv f ,n

δ . We show this in this Appendix. The symbols refer to the Chapter 8.

In this respect we keep τ and δ fixed and let h ↘ 0 in the fully discrete problem (8.6.1),
Pn

h . The limit will solve Problem Pmv f ,n
δ . All the steps are similar to the fully discrete

case discussed before in the Section 8.6, Chapter 8, therefore, we only give the outline
of the proof. Along a sequence h↘ 0, Lemma 8.12 provides the following convergence
results:

(i). un
h ⇀ un

δ weakly in L2(Ω),

(ii). Qn
h ⇀ Qn

δ weakly in L2(Ω)d,

(iii). ∇ ·Qn
h ⇀ χ weakly in L2(Ω),

(iv). vn
h ⇀ vn

δ weakly in L2(Ω).

As before, identification of χ with ∇ ·Qn
δ takes place via standard arguments. Further,

Lemma 8.16 with the estimates (8.6.3) and (8.6.6) gives

‖un
h‖1,h ≤ C
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and after extending un
h by 0, Lemma 8.15 implies

‖4ξun
h‖L2(R2) ≤ C|ξ |(|ξ |+ size(Th)).

Since the right hand side vanishes uniformly as |ξ | ↘ 0, the use of Kolmogorov com-
pactness theorem yields strong convergence of un

h to un
δ . Now one can use the projection

properties and pass h ↘ 0 to show that the limit solves Pmv f ,n
δ . Note that having v dis-

cretized explicitly in (8.6.1)2, no nonlinearities in vn
h are involved and therefore there is

no need for strong convergence for vn
h .
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[65] W. Jäger and N. Kutev. Discontinuous solutions of the nonlinear transmission
problem for quasilinear elliptic equations. Preprint der IWR Universität Heidelberg.

http://www.comsol.com


230 Bibliography
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[98] A. Muntean and M. Böhm. Interface conditions for fast-reaction fronts in wet
porous mineral materials: the case of concrete carbonation. J. Engrg. Math.,
65(1):89–100, 2009.
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Summary

Upscaling of Reactive Flows

The thesis deals with the upscaling of reactive flows in complex geometry. The reactions
which may include deposition or dissolution take place at a part of the boundary and
depending on the size of the reaction domain, the changes in the pore structure that are
due to the deposition process may or may not be neglected. In mathematical terms, the
models are defined in a fixed, respectively variable geometry, when the deposition layer
generates a free boundary at the pore scale. Specifically, for the chemical vapor deposi-
tion (CVD) process on a trenched geometry, we have developed mathematical models
for both situations. For the multi-scale computations, numerical methods inspired from
domain decomposition ideas have been proposed and the convergence of the scheme
has been proved.

Computing the full solution in a domain with oscillating boundary requires a lot of
computational effort, as one has to achieve an accuracy that agrees with the scale of os-
cillations. To approximate these solutions, one defines equations in a simpler domain,
where flat boundaries but modified boundary conditions approximate the rough one.
The two situations mentioned before were considered: the fixed geometry case, and the
time dependent geometry at the microscale (free boundaries). We have derived an ap-
proximating (effective) model where a flat boundary is replacing the oscillatory bound-
ary, but defining an effective boundary condition. In the fixed geometry case, we pro-
vide rigorous mathematical proofs for the upscaling procedure. The second case, when
we take into account the geometry changes at the microscale, is more involved, and
we use formal asymptotic methods to derive these boundary conditions. Our contribu-
tions in this respect are in dealing with non-Lipschitz reactive terms on the boundary in
the fixed geometry case and the formal asymptotic approach for the moving boundary.
Both add to the present literature.

Next, to understand the flow in a domain with variable geometry, we have considered
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a thin strip with reactions taking place at the lateral boundaries of the strip under dom-
inant transport conditions. Reactions take place at the lateral boundaries of the strip
(the walls), where the reaction product can deposit in a layer with a non-negligible
thickness compared to the width of the strip. This leads to a free boundary problem,
in which the moving interface between the fluid and the deposited (solid) layer is ex-
plicitly taken into account. Using asymptotic expansion methods, we derive an up-
scaled, one-dimensional model by averaging in the transversal direction. The upscaled
equations are similar to the Taylor dispersion and we have performed numerical sim-
ulations to compare the upscaled equations with other simpler upscaled equations and
the transversally averaged, two-dimensional solution. The derivation introduces new
terms originating from the changing geometry. The numerical computations also pro-
vide an insight into the regimes where such an upscaling is useful.

We have further studied the rigorous homogenization process for the reactive flows for
a periodic array of cells and proved the validity of upscaled equations. These reactive
flows model the precipitation and dissolution processes in a porous medium. We define
a sequence of microscopic solutions uε and obtain the upscaled equations as the limit of
ε ↘ 0. We adopt the 2-scale framework to achieve this. The challenges are in dealing
with the low regularity of microscopic solutions and particular non-linearities in the re-
action term. This rigorous derivation closes the gap of the rigorous transition from a
given pore scale model to the heuristically proposed macroscopic model.

In addition, numerical methods to compute the solution for an upscaled model have
been proposed. The upscaled model describes the reactive flow in a porous medium.
The reaction term, especially, the dissolution term has a particular, multi-valued charac-
ter, which leads to stiff dissolution fronts. We have considered both the conformal and
mixed schemes for the analysis including both the semi-discrete (time-discretization)
and the fully discrete (both in space and time) cases. The fully discrete schemes corre-
spond to the finite element method and the mixed finite element method for conformal,
respectively mixed schemes. The numerical schemes have been analyzed and the con-
vergence to the continuous formulation has been proved. Apart from the proof for the
convergence, this also yields an existence proof for the solution of the upscaled model.
Numerical experiments are performed to study the convergence behavior. The chal-
lenges are in dealing with the specific non-linearities of the reaction term. We deal with
them by using the translation estimates which are adapted to the specific numerical
scheme.

The applications are in the development of all-solid state rechargeable batteries having
a high storage capacity. Such devices have a complex 3D geometry for the electrodes
to enhance the surface area. The challenges are in the development of the appropriate
technologies for the formation of these electrodes. In particular we focus on chemical
vapor deposition processes (CVD), with the aim of getting a deeper understanding of
the reactions taking place in a complex geometry. Other applications include flows in
porous media, bio-film growth etc.
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which improved the work. I have been fortunate enough to have discussions with him
in several conferences and it has been a great learning experience. The extended com-
mittee is completed by two distinguished personalities: Prof. Hans van Duijn and Prof.
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