

Self organizing distributed state estimators

Citation for published version (APA):
Sijs, J., & Papp, Z. (2012). Self organizing distributed state estimators. In F. Hu, & Q. Hao (Eds.), Intelligent
sensor networks : the integration of sensor networks, signal processing and machine learning (pp. 484-510).
CRC Press. https://doi.org/10.1201/b14300-26

DOI:
10.1201/b14300-26

Document status and date:
Published: 01/01/2012

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1201/b14300-26
https://doi.org/10.1201/b14300-26
https://research.tue.nl/en/publications/0824bc6d-8768-4078-8877-b48ee92d3d89

Self organizing distributed state-estimators

Joris Sijs and Zoltan Papp

March 10, 2012

Distributed solutions for signal processing techniques are important for es-
tablishing large-scale monitoring and control applications. They enable the de-
ployment of scalable sensor networks for particular application areas. Typically,
such networks consists of a large number of vulnerable components connected
via unreliable communication links and are sometimes deployed in harsh envi-
ronment. Therefore, dependability of sensor network is a challenging problem.
An efficient and cost effective answer to this challenge is provided by employing
runtime reconfiguration techniques that assure the integrity of the desired signal
processing functionalities. Runtime reconfigurability has thorough impact both
on system design, implementation, testing/validation and deployment. The pre-
sented research focuses on the widespreaded signal processing method known as
state estimation with Kalman filtering in particular. To that extent, a number
of distributed state estimation solutions that are suitable for networked systems
in general are overviewed, after which robustness of the system is improved
according to various runtime reconfiguration techniques.

1 Introduction

Many people in our society manage their daily activities based on knowledge
and information about, for example, weather conditions, traffic jams, pollu-
tion levels, oil reservoirs and energy consumptions. Sensor measurements are
the main source of information when monitoring these surrounding processes.
Moreover, a trend is to increase the amount of sensors, as they have become
smaller, cheaper and easier to use, so that large-area processes can be monitored
with a higher accuracies. To that end, sensors are embedded in a communication
network creating a so called sensor network, which typically consists of sensor
nodes linked via a particular network topology (Figure 1). Each sensor node
combines multiple sensors, a central processing unit (CPU) and a (wireless)
communication radio on a circuit board. Sensor networks have three attractive
properties for system design: they require low maintenance, create “on-the-fly”
(ad-hoc) communication networks and can maintain large amounts of sensors.

Nowadays, sensor nodes are commercial off-the-shelve products and give sys-
tem designers new opportunities for acquiring measurements. Although they
make sensor measurements available in large quantities, solutions for processing

1

mesh topology star topology sensor nodes

Figure 1: Sensor nodes in a mesh and star network topology with some examples
of nodes: Tmote-Sky (top-left), G-node (bottom-left) and Waspmote (right).

these measurements automatically are hampered by limitations in the available
resources, such as energy, communication and computation.

Energy plays an important role in remotely located processes. Such processes
are typically observed by severely energy-limited sensor nodes (e.g. powered by
battery or energy scavenging) that are not easily accessible and thus should
have a long lifetime. Some applications even deploy sensor nodes in the asphalt
of a road to monitor traffic, or in the forest to collect information on habitats.
See, for example, the applications described in [44, 57] and recent surveys on
sensor networks in [27, 1, 9, 37]. To limit energy consumption, one often aims
to minimize the usage of communication and computational resources in sensor
nodes. However, there are other reasons why these latter two resources should
be used wisely.

Limited communication mainly results from upper bounds on the network
capacity, as it was established in the Shannon-Hartley theorem for communica-
tion channels presented in [50]. It shows that the environment in which nodes
communicate influences the amount of data that can be exchanged without
errors. In addition, communication is affected by package loss as well, which oc-
curs due to message collision (i.e. simultaneous use of the same communication
channel by multiple transmitters). Hence, a suitable strategy for exchanging
data is of importance to cope with the dynamic availability of communication
resources.

Computational demand is related to the algorithms performed in sensor net-
works for processing the measurements. The established centralized solutions,
where measurements are processed by a single node, fail for large-scale networks
even when communication is not an issue: with an increasing amount of sensor
nodes the computational load of a centralized solution will grow polynomially,
up to a point that it is no longer feasible or highly inefficient. To that extent,
non-centralized solutions are explored that aim to make use of local CPUs that
are already present in each node.

A straightforward consequence of the resource limitation, the scale and the
often hostile embedding environment is that fault-tolerance and/or graceful

2

degradation are critical requirements for large-scale distributed systems. This
means that the sensor network should be able to cope with situations that
emerge from common operational events, such as node failures, sensor degra-
dation and power loss. Building in redundancy to cover the anticipated failure
modes may result in complex, prohibitively expensive implementations. Instead,
dynamical system architectures are to be realized via runtime reconfiguration,
as it realizes a networked system that can follow the changes in the internal and
external operational conditions and assure optimal use of available resources.

Limitations of the above resources are important design parameters. De-
pending on the sensor network application at hand, suitable trade-offs must be
made to enable a feasible and practical deployment. One of these trade-offs
is the local processing - communication trade-off. This encourages the local
processing of the sensor measurements rather then communicating them, since
exchanging one bit typically consumes much more energy than processing one
bit. Hence, centralized methods for processing measurements are unpractical,
due to their significant impact on the communication requirements. To solve
this issue, distributed signal processing methods are increasingly studied. Such
methods seek for a more efficient use of the spatially distributed computation
and sensing resources according to the network topology. The signal processing
method addressed in this chapter is state estimation.

Well studied state estimation methods are the Kalman filter (KF) for lin-
ear processes, with extensions known as the extended KF and unscented KF for
nonlinear processes, see, e.g., [29, 48, 26]. Apart from their centralized solutions,
some distributed implementation are found in [14, 13, 46, 42, 33, 53, 54, 47, 16].
Typically, these distributed solutions perform a state estimation algorithm lo-
cally in each node and thereby, compute a local estimate of the global state
vector. Note that these distributed solutions can thus be regarded as a net-
work of state-estimators. However, they were not designed to cope with the
unforeseen operational events that will be present in the system, nor address
deliberate reconfigurations of a sensor network during operation1.

Therefore, the contribution of this chapter is to integrate solutions on dis-
tributed Kalman filtering with a framework of self organization. To that extent,
each node not only employs a state estimator locally but additionally performs a
management procedure that supports the network of state-estimators to estab-
lish self organization. The outline of this chapter is as follows. First we address
the used notation, followed by a problem description in Section 3. Section 4
then presents several existing solutions on distributed Kalman filtering, with its
required resources in Section 5, for which a supportive management procedure is
designed in Section 6. The proposed network of self organizing state-estimators
is further analyzed in Section 7 in an illustrative example, while concluding
remarks are summarized in Section 8.

1For example, a reduction of the sampling time of nodes that run out of battery power, so
to save energy and increase their lifetime.

3

2 Notation and preliminaries

R, R+, Z and Z+ define the set of real numbers, non-negative real numbers,
integer numbers and non-negative integer numbers, respectively. For any C ⊂ R,
let ZC := Z ∩ C. The notation 0 is used to denote either zero, the null-vector
or the null-matrix of appropriate dimensions. The transpose, inverse (when it
exists) and determinant of a matrix A ∈ Rn×n are denoted as A>, A−1 and |A|,
respectively. Further, {A}qr ∈ R denotes the element in the q-th row and r-th
column of A. Given that A,B ∈ Rn×n are positive definite, denoted with A � 0
and B � 0, then A � B denotes A − B � 0. A � 0 denotes that A is positive
semi-definite. For any A � 0, A

1
2 denotes its Cholesky decomposition and A−

1
2

denotes (A
1
2)−1. The Gaussian function (Gaussian in short) of vectors x, µ ∈ Rn

and matrix Σ ∈ Rn×n is denoted as G(x, µ,Σ), for which Σ � 0 holds. Any
Gaussian function G(x, µ,Σ) can be illustrated by its corresponding ellipsoidal
sub-level-set Eµ,Σ := {x ∈ Rn|(µ − x)>Σ−1(µ − x) ≤ 1}. See, Figure 2 for a
graphical explanation of a sub-level-set.

{x}1

{x}2

u
2
() 1(

) (x-)T
u

-1(x-) <1u

Figure 2: An illustrative interpretation of the sub-level-set Eµ,Σ.

3 Problem formulation

Let us consider a linear process that is observed by a sensor network with the
following description.

Networked system The network consists of N sensor nodes, in which a node
i ∈ N is identified by a unique number within N := Z[1,N]. The set
Ni ⊆ N is defined as the collection of all nodes j ∈ N that have a direct
network connection with node i, i.e., node i exchanges data with node j.

Process Each node i ∈ N observes a perturbed, dynamical process according
to its local sampling time τi ∈ R>0. Therefore, the discrete-time process
model of node i, at the ki-th sampling instant, yields

x[ki] = Aτix[ki−1] + w[ki−1],

yi[ki] = Cix[ki] + vi[ki].
(1)

The state vector and local measurement are denoted as x ∈ Rn and
yi ∈ Rmi , respectively, while process-noise w∈Rn and measurement-noise
vi∈Rmi follow the Gaussian distributions p(w[ki]) := G(w[ki], 0, Qτi) and
p(vi[ki]) := G(vi[ki], 0, Vi), for some Qτi ∈ Rn×n and Vi ∈ Rmi×mi . A

4

method to compute the model parameters Aτi and Qτi from the corre-
sponding continuous-time process model ẋ = Fx+ w is the following:

A(τi) := eFτi and Qτi := Bτicov
(
w(t−τi)

)
B>τi ,

with B(τi) :=

∫ τi

0

eFηdη.

The goal of the sensor network is to compute a local estimate of the global
state x in each node i. Note that the process model is linear and both noises
are Gaussian distributed. As such, it is appropriate to assume that the local es-
timate is Gaussian distributed as well, i.e., pi(x[ki]) := G(x[ki], x̂i[ki], Pi[ki]) for
some mean x̂i[ki] ∈ Rn and error-covariance Pi[ki] ∈ Rn×n. This further implies
that one can adopt a distributed KF solution in the sensor network for state
estimation, e.g., [13, 46, 42, 33, 53, 54, 47, 16]. Such solutions typically compute
a local estimate of x in each node i based on yi and on the data exchanged by
its neighboring nodes j ∈ Ni. Existing methods on distributed Kalman filtering
present an a priori solution on what data should be exchanged, at what time
and with which nodes. Hence, for a given sensor network, a matched (static) es-
timation procedure is derived per node under predefined conditions. Such static
estimation procedures are infeasible when deploying large-scale networked sys-
tems. Broken communication links, newly added nodes to an existing network,
node failures and depleted batteries are just a few examples of operational events
likely to occur in large-scale sensor networks. Solutions should thus be in place
that enables the (data processing) sensor network to cope with these configu-
ration changes by reconfiguring its own operation in runtime. These topics are
often addressed by methods that establish a self organizing network, in which a
feasible solution for unforeseen system changes is sought for during the operation
of a network rather than during its design time.

node

Modified Kalman filter

Management layer

Communication (1 and 2 way)

Figure 3: A network of Kalman filters with supporting management layer to
realize the self-organizing property of the network.

Therefore, this chapter investigates a self-organization sensor network with
the purpose of estimating the state vector of large-area processes. More specif-
ically, the problem addressed is to integrate state-of-art results in distributed
Kalman filtering with applicable solutions for establishing a self-organizing net-
worked system. The (modified) Kalman filtering algorithms performed in the
different nodes interact with each other via a management layer “wrapped
around” the KF. The management layer is responsible for parametrization and

5

topology control, thus assuring coherent operational conditions for its corre-
sponding estimator. Note that this warrants a two-way interaction between the
modified KF and the management layer. Let us present the state-of-art in dis-
tributed Kalman filtering, next, before addressing the solutions that establish a
self-organizing networked system.

4 Distributed Kalman filtering

The linear process model of (1) is characterized by Gaussian noise distributions.
A well known state estimator for linear processes with Gaussian noise distribu-
tions is the KF, formally introduced in [29]. Since many distributed implemen-
tations of the KF make use of its original algorithm, let us define the Kalman
filtering function fkf : Rn×Rn×n×Rn×n×Rn×n×Rm×Rm×n×Rm×m → Rn×Rn×n.
Different nodes will employ this function. Therefore, let us present a general-
ized characterization of fkf independent of the node index i. To that end, let
y[k] ∈ Rm denote a measurement sampled at the synchronous sampling instants
k ∈ Z+ with a sampling time of τ ∈ R>0 according to the following description:

y[k] = Cx[k] + v[k], p(v[k]) = G(v[k], 0, V). (2)

Then, a characterization of the Kalman filtering function, which computes up-
dated values of the state estimates x̂[k] and P [k] based on y[k] in (2), yields

(x̂[k], P [k]) =fkf(x̂[k−1], P [k−1], Aτ , Qτ , y[k], C, V), (3)

with M = AτP [k−1]A>τ +Qτ ;

K = MC>(CMC> + V)−1;

x̂[k] = Aτ x̂[k−1] +K(y[k]− CAτ x̂[k−1]);

P [k] = (In −KC)M.

(4)

The KF is a successful and well studied state-estimator. See, for example, some
assessments presented in [2, 18, 59]. Its success is based on three aspects:

• Measurements are included iteratively;

• The estimation error x − x̂ is asymptotically unbiased and attains the
minimal quadratic value of the error-covariance P ;

• The Kalman filtering algorithm is computationally tractable.

Therefore, when distributed solutions for state estimation became apparent, the
Kalman filtering strategy was often the starting point for any novel distributed
state-estimator. Moreover, many of the ideas explored in distributed Kalman
filtering are easily extendable towards distributed state estimation in general.
A summary of these ideas is given in the next sections, as it facilitates in the
decision on how to compute a node’s local estimate pi(x).

6

The overview on distributed Kalman filtering distinguishes two different ap-
proaches. In the first approach nodes exchange their local measurement, while
in the second approach nodes share their local estimate (possibly additional to
exchanging local measurements). This second approach was proposed in recent
solutions on distributed Kalman filtering, as it further improves the estimation
results in the network. For clarity of exposition, solutions are initially presented
with synchronized sampling instants k ∈ Z+, i.e., each node i has the same
sampling instant τ ∈ R+. After that, modifications are given to accommodate
asynchronous sampling instants ki ∈ Z+ and local sampling times τi ∈ R+.

4.1 Exchange local measurements

4.1.1 Synchronized sampling instants

First solutions on distributed KFs proposed to share local measurements. See,
for example, the methods presented in [22, 55, 21, 13]. Local measurements
are often assumed to be independent (uncorrelated). Therefore, they are easily
merged with any existing estimate in a particular node. To reduce complexity
even further, most methods do not exchange the actual measurement but rewrite
yi, Ci and Vi into an information form, i.e.,

zi[k] := C>i V
−1
i yi[k] and Zi[k] := C>i V

−1
i Ci, ∀i ∈ N . (5)

Established terms for zi[k] ∈ Rn and Zi[k] ∈ Rn×n are the information vector
and information matrix, respectively. They are used in an alternative KF algo-
rithm with equivalent estimation results but different computational complexity,
known as the Information filter. To that extent, let us introduce the Information
filtering function fif : Rn× Rn×n× Rn×n× Rn×n× Rm× Rm×m → Rn× Rn×n,
for z[k] := C>V −1y[k] and Z[k] := C>V −1C as the information form of the
generalized measurement y[k] expressed in (2), i.e.,

(x̂[k], P [k]) =fif(x̂[k−1], P [k−1], Aτ , Qτ , z[k], Z[k]), (6)

with M = AτP [k−1]A>τ +Qτ ;

P [k] = (M−1 + Z[k])−1;

x̂[k] = P [k](M−1Aτ x̂[k−1] + z[k]).

(7)

Notice that a node i can choose between fkf and fif for computing a lo-
cal estimate of x. This choice depends on the format in which nodes share
their local measurement information, i.e., the normal form (yi, Ci, Vi) or the
information form (zi, Zi), as well as the computational requirements of fkf and
fif. In addition, note that when the original KF is employed by a node i,
i.e., (x̂i[k], Pi[k]) = fkf(x̂i[k−1], Pi[k−1], Aτ , Qτ , ȳi[k], C̄i, V̄i), then ȳi[k] is con-
structed by stacking yi[k] with the received yj [k] column wise2, for all j ∈ Ni.
However, the distributed KF proposed in [13] showed that the administration
required to construct ȳi, C̄i and V̄i can be simplified into an addition when local

2The parameters C̄i and V̄i can be constructed similar to ȳi.

7

measurements are exchanged in their information form instead. This implies
that each node i performs the following function, which is also schematically
depicted in Figure 4, i.e.,

(x̂i[k], Pi[k]) = fif(x̂i[k−1], Pi[k−1], Aτ , Qτ , z̄i[k], Z̄i[k]),

with z̄i[k] =zi[k] +
∑
j∈Ni

zj [k] and Z̄i[k] = Zi[k] +
∑
j∈Ni

Zj [k]. (8)

Information

filter

zi, Zi Send to

nodes j Ni

Received from

nodes j Ni

yi

zj, Zj

Information

form

zi, Zi
+

xi,Pi

Figure 4: Schematic set-up of a node’s local algorithm for estimating the state x
according to a distributed KF where local measurements are exchanged in their
information form.

This simple, yet effective, distributed KF triggered many novel extensions.
For example, to reduce communication requirements by quantization of the
measurement values, as presented in [47], or to estimate only a part of global
state vector x in a node i, e.g., [40, 32]. However, a drawback when exchanging
measurements is that node i receives localized data from the neighboring nodes
j ∈ Ni. Hence, only a part of the measurements produced by the sensor network
is used for computing x̂i and Pi. A solution to exploit more measurement
information, as it is proposed in [42, 33], is to attain a consensus on local
measurements. This means that, before fif is performed, each node i first
employs a distributed consensus algorithm on zi[k] and Zi[k], for all i ∈ N .
Some popular consensus algorithms are found in [24, 61, 62, 58]. However,
they require that neighboring nodes exchange data multiple times in between
two sampling instants. Due to this demanding requirement, distributed KFs
with a consensus on local measurements are not very popular. Other extension
of the distributed KF presented in (8) take into account that the sampling
instants of individual nodes can differ throughout the network. As this is also
the case for the considered network, let us discuss the extension for asynchronous
measurements, next.

4.1.2 Asynchronous sampling instants

The assumed sensor network of Section 3 has different sampling instants per
node. This means that the ki-th sample of node i, which corresponds to its
local sampling instant tki ∈ R+, will probably not be equal to the time t ∈ R+

at which a neighboring node j ∈ Ni sends
(
zj(t), Zj(t)

)
. To address this issue,

let us assume that node i received
(
zj(t), Zj(t)

)
at time instant t ∈ R(tki−1,tki].

8

Then, this received measurement information is first “predicted” towards the
local sampling instant tki , so that it can be used when node i runs its local
estimation function fif. The results of [23] characterize such a prediction, for
all j ∈ Ni and t ∈ R(tki−1,tki] as follows:

zj [ki|t] :=
(
A−>tki−t

)
zj(t) +

(
Φ>Σ−1A−>tki−t

)
x̂i(t)

− Φ(ΦPi +Q−1
tki−t

+ ΦZj)−1A−>tki−t
(
x̂i(t)− zj(t)

)
,

Zj [ki|t] :=ΦZj
+ ΦPi

(
Φ>Pi

+Q−1
tki−t

)
ΦPi
− Φ

(
Φ +Q−1

tki−t
)−1

Φ>,

(9)

in which ΦPi := A−>tki−t
P−1
i (t)A−1

tki−t
, ΦZj := A−>tki−t

Z−1
j (t)A−1

tki−t
and Φ := ΦPi +

ΦZj
. Further, note that a node j ∈ Ni may have send multiple data packages in

between tki−1 and tki with local measurement information, for example, when
node j has a smaller sampling time than node i.

The (predicted) measurement of (9) in information form can directly be
used by an Information filter. This means that the values of x̂i[ki] and Pi[ki]
are updated at the local sampling instant tki of node i according to an algorithm
that is similar to the one presented in (8), i.e.,

(x̂i[ki], Pi[ki]) = fif(x̂i[ki−1], Pi[ki−1], Aτi , Qτi , z̄[ki], Z̄[ki]),

with z̄[ki] = zi[ki] +
∑
j∈Ni

zj [ki|t], ∀t ∈ R(tki−1,tki],

Z̄[ki] = Zi[ki] +
∑
j∈Ni

Zj [ki|t], ∀t ∈ R(tki−1,tki].

(10)

Note that the above information filter assumes that local measurement are
exchanged in the information form. A solution when nodes exchange local mea-
surements in their normal form, i.e., (yi, Ci, Vi), is to employ the Kalman filter-
ing function fkf for each time instant t ∈ R(tki−1,tki] at which a new measure-
ment is received. Such a procedure could reduce the computational demands
of a node, since the prediction formulas of (9) are complex. Nonetheless, in-
corporation of local measurements yj(t) that are not sampled at the predefined
sampling instants tki requires much attention from the management layer of
the individual node i. A more natural solution to this problem is obtained in
distributed KFs that exchange local estimates instead of local measurements,
which are presented, next.

4.2 Exchange local estimates

4.2.1 Synchronous sampling instants

The main advantage of exchanging local estimates is that measurement infor-
mation spreads through the entire network, even under the condition that nodes
exchange data only once per sampling instant. However, since local estimation
results are exchanged, note that nodes require a method that can merge multiple
estimates of the same state x into a single estimate. Various solutions of such

9

methods are found in literature. However, before addressing these methods, let
us start by presenting the generalized estimation algorithm performed by each
node i that corresponds to this type of distributed KF solutions.

Typically, solutions of distributed KF that exchange local estimates first
merge the local measurement yi[k] with the previous local estimate pi(x[k−1])
via a Kalman filter and thereby, compute the updated estimate pi(x[k]). This
updated local estimate is then shared with neighboring nodes, due to which
node i will receive the local estimate of nodes j ∈ Ni. It will be shown that
not every solution requires to share both the locally estimated mean as well as
its corresponding error-covariance. Therefore, let us introduce set of received
means at node i as Xi ⊂ Rn and a corresponding set of received error-covariances
as Pi ⊂ Rn×n, i.e.,

Xi[k] := {x̂j [k] ∈ Rn|j ∈ Ni} , (11)

Pi[k] :=
{
Pj [k] ∈ Rn×n|j ∈ Ni

}
. (12)

The above information of the local estimation results at neighboring nodes,
together with the node’s own local estimate, i.e., x̂i[k] and Pi[k], will be used
as input to a merging function. More precisely, let us introduce this merging
function Ω : Rn×Rn×n×Rn×Rn×n → Rn×Rn×n, which results in the merged
Gaussian estimate pi+(x[k]) := G(x[k], x̂i+ [k], Pi+ [k]), as follows:

(x̂i+ [k], Pi+ [k]) = Ω(x̂i[k], Pi[k],Xi[k],Pi[k]). (13)

Then, the generalized local algorithm performed by a node i ∈ N for estimating
the state, which is also depicted in the schematic set-up of Figure 5, yields

(x̂i[k], Pi[k]) = fkf(x̂i+ [k−1], Pi+ [k−1], Aτ , Qτ , yi[k], Ci, Vi);

share (x̂i[k], Pi[k]) with all j ∈ Ni;
collect (x̂j [k], Pj [k]) for all j ∈ Ni;

(x̂i+ [k], Pi+ [k]) = Ω(x̂i[k], Pi[k],Xi[k],Pi[k]).

(14)

Kalman

filter

yi

Merge

estimates

Send to

nodes j Ni

Received from

nodes j Ni

xi,Pi

xj,Pj xi ,Pi + +

Figure 5: Schematic set-up of a node’s local algorithm for estimating the state
x according to a distributed KF where local estimates are exchanged.

Note that a suitable strategy for the merging function Ω(·, ·, ·, ·) is yet to
be determined. Literature indicates that one can choose between three types
of strategies, i.e., consensus, fusion and a combination of the two. A detailed
account on these three strategies is presented next, by starting with consensus.

10

Consensus strategies aim to reduce conflicting results of the locally estimated
means x̂i, for all i ∈ N . Such an objective makes sense, as x̂i in the different
nodes i of the network is a local representative of the same global state x. Many
distributed algorithms for attaining a consensus (or the average) were proposed,
which all aim to diminish the difference x̂i[k]− x̂j [k], for any two i, j ∈ N . See,
for example, the distributed consensus methods proposed in [24, 61, 62, 58].
The general idea is to perform a weighted averaging cycle in each node i on the
local and neighboring means. To that extent, let Wij ∈ Rn×n, for all j ∈ Ni,
denote some weighting matrices. Then, a consensus merging function Ω(·, ·, ·, ·)
is typically characterized as follows:

(x̂i+ [k], Pi+ [k]) = Ω(x̂i[k], Pi[k],Xi[k],Pi[k]),

with x̂i+ [k] =
(
In −

∑
x̂j [k]∈Xi[k]

Wij

)
x̂i[k] +

∑
x̂j [k]∈Xi[k]

Wij x̂j [k],

Pi+ [k] = Pi[k].

(15)

Note that the above consensus merging function is limited to the means and
that the error-covariance of a node is not updated, due to which Pi[k] can be
the empty set. Further, most research on consensus methods concentrates on
finding suitable values for the weights Wij , for all j ∈ Ni. Some typical examples
of scalar weights were proposed in [24, 62], where di :=]Ni (number of elements
within the set Ni) and ε < min{d1, . . . , dN}, i.e.,

Nearest neighboring weights Wij := (1− di)−1
, ∀j ∈ Ni;

Maximum degree weights Wij := (1− ε)−1
, ∀j ∈ Ni;

Metropolis weights Wij := (1 + max{di, dj})−1
, ∀j ∈ Ni.

An analysis on the effects of these weights, when they are employed by the
consensus function in (15), was presented in [24, 62]. Therein, it was shown that
employing nearest neighboring weights in (15) results in a bias on limk→∞ x̂i+ [k].
This is prevented by employing maximum degree weights or metropolis weights.
However, maximum degree weights require global information to establish ε in
every node, which reduces its applicability in sensor networks.

Employing a consensus strategies for merging the local estimates of neigh-
boring nodes is very popular in distributed KFs. As a result, many extension of
the above solution are found in literature. A common extension is to perform
the averaging cycle not only on the means x̂i[k] and x̂j [k], as characterized in
(15), but also on the error-covariances Pi[k] and Pj [k] of neighboring nodes.
See, for example, the distributed KF proposed in [45] and a related solution
presented in [7]. It is worth to point out that an in depth study on distributed
KFs with a consensus on local estimates is presented in [5]. Therein, it is shown
that minimization of the estimation error by jointly optimizing the Kalman gain
K of fkf and the weights Wij of Ω is a non-convex problem. Hence, choosing
the value of the Kalman gain K affects the weights Wij , for all j ∈ Ni, which
raised new challenges. A solution for joint optimization on K and Wij was

11

introduced in [43] as the distributed consensus information filter. However, a
drawback of any consensus method is that the local error-covariance Pi[k] is
not taken into account when deriving the weights Wij , for all j ∈ Ni. The
error-covariance is an important variable that represents a model for the esti-
mation error cov(x[k] − xi[k]). Therefore, merging two local estimates pi(x[k])
and pj(x[k]) in line with their individual error-covariance, implies that one can
choose the value of Wij such that the result after merging, i.e., pi+(x[k]), is
mainly based on the on the local estimate with the least estimation error. This
idea is in fact the fundamental difference between a consensus approach and a
fusion strategy. In fusion, both error-covariances Pi[k] and Pj [k] are explicitly
taken into account when merging pi(x[k]) and pj(x[k]), as it is indicated in the
next alternative merging function based on fusion.

Fusion-consensus strategies is a label for characterizing some initial fusion
solutions that are based on the fusion strategy covariance intersection, which
was introduced in [25]. Fusion strategies typically define an algorithm to merge
two prior estimates pi(x[k]) and pj(x[k]) into a single, “fused” estimate. Some
fundamental fusion methods presented in [55, 4] require that correlation of the
two prior estimates is available. In (self-organizing) sensor networks one cannot
impose such a requirement, as it amounts to keeping track of shared data be-
tween all nodes in the network. Therefore, this overview considers fusion meth-
ods that can cope with unknown correlations. A popular fusion method for
unknown correlations is covariance intersection. The reason that this method
is referred to as a fusion-consensus strategy, is because the fusion formula of
covariance intersection is similar to the averaging cycle of (15) in consensus
approaches. The method characterizes the fused estimate as a convex combi-
nation of the two prior ones. As an example, let us assume that node i has
only one neighboring node j. Then employment of covariance intersection to
characterize Ω(·, ·, ·, ·) of (14) as a fusion function, for some Wij ∈ R[0,1], yields

Pi+ [k] = ((1−Wij)P
−1
i [k] +WijP

−1
j [k])−1,

x̂i+ [k] = Pi+ [k]((1−Wij)P
−1
i [k]x̂i[k] +WijP

−1
j [k]x̂−1

j [k]).

Note that the above formulas indicate that the error-covariance Pi[k] and Pj [k]
are explicitly taken into account when merging x̂i[k] and x̂j [k]. Moreover,
even the weight Wij is typically based on these error-covariances, e.g., Wij =
tr(Pj [k])(tr(Pj [k])+tr(Pi(l−1)))

−1 with some other examples found in [19, 41, 15].
As a result, the updated estimate pi+(x[k]) computed by the merging function
Ω will be closer to the prior estimate pi(x[k]) or pj(x[k]) that is “the most ac-
curate one”, i.e., with a smaller error-covariance. An illustrative example of
this property will be given later on. For now, let us continue with the merging
function in case node i has more than one neighboring node. Fusion of mul-
tiple estimates can be conducted recursively according to the order of arrival
at a node. Therefore, the merging function Ω(·, ·, ·, ·) based on fusion method

12

covariance intersection has the following characterization:

(x̂i+ [k], Pi+ [k]) = Ω(x̂i[k], Pi[k],Xi[k],Pi[k]),

with: for each received estimate (x̂j [k], Pj [k]), do

Σi =
(
(1−Wij)P

−1
i [k] +WijP

−1
j [k]

)−1
;

x̂i[k] = Σi
(
(1−Wij)P

−1
i [k]x̂i[k] +WijP

−1
j [k]x̂−1

j [k]
)
;

Pi[k] = Σi;

end for

x̂i+ [k] = x̂i[k], Pi+ [k] = Pi[k].

(16)

Although covariance intersection takes the exchanged error-covariances into ac-
count when merging multiple estimates, it still introduces conservatism. In-
tuitively, one would expect that pi+(x[k]) is more accurate than pi(x[k]) and
pj(x[k]), for all j ∈ Ni, as prior estimates of neighboring nodes are merged. A
formalization of this intuition is that Pi+ [k] � Pi[k] and Pi+ [k] � Pj [k] should
hold for all j ∈ Ni. One can prove that covariance intersection does not satisfy
this property, due to which an alternative fusion method is presented, next.

Fusion strategies aim to improve the accuracy after fusion, for which the
basic fusion problem is the same as previously mentioned, i.e., merge two prior
estimates pi(x[k]) and pj(x[k]) into a single, “fused” estimate pi+(x[k]), when
correlations are unknown. Some existing fusion methods are found in [63, 52, 51].
In this survey the ellipsoidal intersection fusion method of [52, 51] is presented,
since it results in algebraic expressions of the fusion formulas. In brief, ellipsoidal
intersection derives an explicit characterization of the (unknown) correlation a
priori to deriving algebraic fusion formulas that are based on the independent
parts of pi(x[k]) and pj(x[k]). This characterization of the correlation, for any
two prior estimate pi(x[k]) and pj(x[k]), is represented by the mutual covariance
Γij ∈ Rn×n and the mutual mean γij ∈ Rn. Before algebraic expressions of these
variables are given, let us first present the resulting merging function Ω(·, ·, ·, ·)
when ellipsoidal intersection is employed in this function for fusion, i.e.,

(x̂i+ [k], Pi+ [k]) = Ω(x̂i[k], Pi[k],Xi[k],Pi[k]),

with: for each received estimate (x̂j [k], Pj [k]), do

Σi = (P−1
i [k] + P−1

j [k]− Γ−1
ij)−1;

x̂i[k] = Σi
(
P−1
i [k]x̂i[k] + P−1

j [k]x̂−1
j [k]− Γ−1

ij γij
)
;

Pi[k] = Σi;

end for

x̂i+ [k] = x̂i[k], Pi+ [k] = Pi[k].

(17)

The mutual mean γij and mutual covariance Γij are found by a singular value
decomposition, which is denoted as (S,D, S−1) = svd(Σ) for a positive definite
Σ ∈ Rn×n, a diagonal D ∈ Rn×n and a rotation matrix S ∈ Rn×n. As such, let

13

us introduce the matrices Di, Dj , Si, Sj ∈ Rn×n via the singular value decompo-

sitions (Si, Di, S
−1
i) = svd(Pi[k]) and (Sj , Dj , S

−1
j) = svd(D

− 1
2

i S−1
i Pj [k]SiD

− 1
2

i).
Then, an algebraic expression of γij and Γij , for some ς ∈ R+ while {A}qr ∈ R
denotes the element of a matrix A on the q-th row and r-th column, yields

DΓij
=diagq∈Z[1,n]

(
max[1, {Dj}qq]

)
,

Γij =SiD
1
2
i SjDΓij

S−1
j D

1
2
i S
−1
i ,

γij =
(
P−1
i + P−1

j − 2Γ−1 + 2ςIn
)−1×(

(P−1
j − Γ−1 + ςIn)x̂i + (P−1

i − Γ−1 + ςIn)x̂j
)
.

A suitable value of ς follows: ς = 0 if |1 − {Dj}qq| > 10ε, for all q ∈ Z[1,n]

and some ε ∈ R>0, while ς = ε otherwise. The design parameter ε supports a
numerically stable result of ellipsoidal intersection.

This completes the three alternatives that can be employed by the merging
function Ω(·, ·, ·, ·). Before is continued with an extension of this merging func-
tion towards asynchronous sampling instants, let us first present an illustrative
comparison of the two fundamentally different approaches. An illustration of
this comparison is depicted in Figure 6, which is established when pi(x[k]) and
pj(x[k]) are either the result of a fusion or a consensus approach. The consensus
result is computed with the averaging cycle of (15) and Wij = 0.1. Recall that
only the means x̂i[k] and x̂j [k] are synchronized and not their error-covariances.
The fusion result is computed with ellipsoidal intersection of (17). Let us fur-
ther point out that Figure 6 is not included to decide which method is better.
It is merely an example to illustrate the goal of consensus (reduce conflicting
results) with respect to the goal of fusion (reduce uncertainty).

−1 0 1 2 3−2

−1

0

1

2

3

consensus

p (x)i

p (x)j

p (x)i+

−1 0 1 2 3−2

−1

0

1

2

3

fusion

p (x)i

p (x)j

p (x)i+

Figure 6: A comparison of consensus versus fusion. Note that PDFs are repre-
sented as ellipsoidal sub-level-set, i.e., G(θ, µ,Σ) → Eµ,Σ. A graphical charac-
terization of such a sub-level-set is found in Figure 2, though let us point out
that a larger covariance Σ implies a larger area-size of Eµ,Σ.

14

4.2.2 Asynchronous sampling instants

The assumed networked system of Section 3 has different sampling instants per
node. This implies that the ki-th sample of node i, which corresponds to the
sampling instant tki ∈ R+, will probably not be equal to the time t ∈ R+ at
which a neighboring node j ∈ Ni sends (x̂j(t), Pj(t)). Compared to exchanging
measurements, asynchronous sampling instants can be addressed more easily
for distributed KF solutions that exchange local estimates. More precisely, the
received variables (x̂j(t), Pj(t)) should be predicted from time t towards the
sampling instant tki , i.e.,

x̂j [ki|t] := Atki−tx̂j(t), ∀j ∈ Ni, t ∈ R(tki−1,tki],

Pj [ki|t] := Atki−tPj(t)A
>
tki−t

+Qtki−t, ∀j ∈ Ni, t ∈ R(tki−1,tki].
(18)

Then, solutions of distributed Kalman filtering that are in line with the set-up
depicted in (14) can cope with asynchronous sampling instants by re-defining
Xi[ki] and Pi[ki] as the collection of the above predicted means x̂j [ki|t] and
error-covariances Pj [ki|t], for all j ∈ Ni.

This completes the overview on distributed Kalman filtering, in which nodes
can adopt a strategy that exchanges local measurements or local estimates.
Next, existing self-organization methods are presented, though an analysis of
the required resources for estimation is studied first.

5 Required resources

The distributed KFs presented in the previous section are typically proposed
for static sensor networks. However, the focus of this chapter is to extent those
methods for sensor networks that have to deal with changes in the networked
system. To cope with these changes, nodes must be able to adapt the con-
ditions of their local estimation algorithm, or even choose a local algorithm
that is based on a different type of distributed KF. In order to carry out these
reconfiguration processes certain design decisions should be made in runtime
depending on the available resources (e.g. how to reassign the KF tasks in case
of node failures, what type of KF algorithms are feasible to run under given
communication constraints, etc.) Therefore, this section presents a summary
of the required resources for the different distributed KF strategies. Important
resources in sensor networks are communication and computation. Let us start
by addressing the communication demand of a node i. Section 4 indicates that
there are three different types of data packages that a node can exchange, i.e.,
the local measurement yi ∈ Rmi in normal form or information form, and the
local estimate of x ∈ Rn. The resulting communication demands of node i that
correspond to these different data packages are listed in Table 1.

Next, let us indicate the computational demand of a node i by presenting the
algorithm’s complexity of the different functionalities that can be chosen to com-
pute pi(x). This complexity involves the number of floating points operations

15

Table 1: The communication demand in the amount of elements (floating points)
that is exchanged by each node depending on the data that is shared.

exchanged data communication demand

(yi, Ci, Vi) m2
i + 2mi + n

(zi, Zi) n2 + n
(x̂i, Pi) n2 + n

depending on the size of local measurements yi ∈ Rmi and state vector x ∈ Rn.
To that extent, the following properties on the computational complexities of
basic matrix computations are used:

• The summation/subtraction of A ∈ Rq×r with B ∈ Rq×r requires O(qr)
operations;

• The product of A ∈ Rq×r times B ∈ Rr×p requires O(qrp) operations;

• The inverse of A ∈ Rq×q invertible matrix requires O(q3) operations;

• The singular value decomposition of A ∈ Rq×q requires O(12q3) opera-
tions;

Then, the resulting computational complexity of the Kalman filtering functions
fkf and fif and of the three merging functions Ω, i.e., characterized by a con-
sensus, fusion-consensus and fusion strategy, are listed in Table 2.

Table 2: The computational demand in the amount of floating points operations
depending on the employed functionality, where Mi := mi +

∑
j∈Ni

mj .

functionality computational demand

fkf ≈ O(4n3 + 3Min
2 + 2nM2

i +M3
i)

fif ≈ O(3n3 +Min
2 + nM2

i)
Ω consensus of (15) ≈ O(3n+Mi + 1)

Ω fusion-consensus of (16) ≈ O(3n3 + 9n2)
Ω fusion of (17) ≈ O(31n3 + 7n2)

The next section makes use of the above tables to decide what type of
data should be exchanged between neighboring nodes and which functionali-
ties should be followed in the local estimation algorithm of a node.

6 Self-organizing solutions

The design challenge of any embedded system is to realize given functionalities,
in this case the ones of the local estimation algorithm, on a given hardware

16

platform while satisfying a set of non-functional requirements, such as response
times, dependability, power efficiency, etc. Model-based design has been proven
to be a successful methodology for supporting the system design process. Model-
based methodologies use multiple models to capture the relevant properties of
the design (when the required functionalities are mapped onto a given hardware
configuration), e.g., a model of the required functionalities, temporal behav-
ior, power consumption and hardware configuration. These models can then
by used for various purposes, such as automatic code generation, architecture
design, protocol optimization, system evolution and so on. Important for the
design process are the interactions between the different models, which can be
expressed as constraints, dependencies, etc. In this section a model-based de-
sign methodology is followed to assure dependability for state estimation in a
sensor network via runtime reconfiguration.

To illustrate the model guided design process for distributed signal process-
ing let us consider an example. Two fundamental models for system design
are emphasized here: the task model (capturing the required functionalities)
and the physical model (capturing the hardware configuration of the imple-
mentation). For the sake of simplicity a particular hardware configuration and
communication topology is assumed; the question to answer is how the required
functionalities can be realized on the given configuration, as shown in Figure. 7.

The task model in this figure is represented as directed graph wherein the sig-
nal processing components (tasks) are represented by the vertices of the graph,
while their data exchange (interactions) are represented by the edges. Both the
tasks as well as the interactions are characterized by a set of properties, which
typically reflect non-functional requirements or constraints. These properties
are used to determine system level characteristics and thus the feasibility of
certain design decisions can be tested (see details later). The tasks run on a
connected set of processors, represented by the physical model of the system.
The components of the physical model are the computing nodes, i.e., consist-
ing of processor, memory, communication and perhaps other resources, and the
communication links. During the system design the following steps are car-
ried out (typically it is a iterative process with refinement cycles [3] - but the
iterations are not considered here):

• Select the algorithms for the processing realized by the tasks;

• Compose the task model;

• Select the hardware components for the physical model;

• Select a communication topology;

• Establish the mapping between the task model and the physical model.

The design process involves a particular mapping that defines the assign-
ment of a task Tr to a processor Pq, i.e., it determines which task runs on
which node. 3 Obviously the memory and execution time requirements define

3We assume that nodes are equipped with a multitasking runtime environment, conse-
quently multiple tasks can be assigned to a single node.

17

Figure 7: Modeling of signal processing and implementation.

constraints when assigning the tasks to nodes. Further, data exchange between
tasks makes the assignment problem more challenging in distributed configura-
tions, as a task assignment also defines the use of communication links - and the
communication links have limited capabilities (indicated by the attached prop-
erty set in Figure 7). After every refinement cycle, according to the steps listed
above, the feasibility of a resulting design should be checked. For example, an
assignment of T3 to P3 and T4 to P1 may yield an unfeasible design if the inter-
action d34 imposes too demanding requirements on the communication link c13,
i.e., high data exchange rate or large data size. On the other hand, assigning
both T3 and T4 to P3 may violate the processing capability constraint on P3.
Changing the hardware configuration and/or using less demanding algorithms
(and eventually accepting the resulting lower performance) for implementing T3

or T4 could be a way out.
Note that the design process results in a sequence of decisions, which lead

to a feasible system design. Traditionally the design process is “offline” (design
time), i.e., it is completed before the implementation and deployment of the sys-
tem itself. The task model, the hardware configuration and their characteristics
are assumed to be known during this design time and the design uncertainties
are assumed to be low. Under these conditions a model-based optimization can
be carried out, delivering an optimal architecture ready for implementation.
Unfortunately these assumptions are overly optimistic in a wide spectrum of
application cases.

18

(Wireless) sensor networks deployed for monitoring large-scale dynamical
processes are especially vulnerable. Sensor deterioration, node failure, unreli-
able communication, depleted batteries, etc., are not exceptions but common
events in normal operation. These events result in changes in the system config-
uration, as it is captured by the physical model, due to which implementations
relying on static designs may fail to deliver according to the specifications. A
possible work-around is to build redundancy into the system and thereby, to
implement fault-tolerance. In this case the top-level functionalities remain in-
tact until a certain level of “damage” is reached. This approach usually leads
to complex and expensive implementations - unacceptable for the majority of
applications. The components are “under-utilized” in nominal operation, while
power consumption is increased due to the built-in redundancy. The other
approach is to accept the fact that maintaining a static configuration is not fea-
sible and make the system such that it “follows” those changes and “adjusts”
its internals to assure an implementation of the assigned functionalities as far
as it is feasible. The resulting behavior typically manifests “graceful degrada-
tion” property, i.e., until damage reaches a certain level the set of functionalities
and their quality can be kept; beyond that level the system loses non-critical
functionalities and/or the quality of running functionalities is reduced due to a
shortage of resources. Realizing this latter approach has significant impact both
on system design and on the runtime operation of the system. Conceptually the
system design process is not completely finished in design time, instead a set
of design alternatives are provided for execution. During operation - depending
on the health state of the configuration and the conditions of the embedding
environment - a selection is made automatically to assure an optimal use of
available resources, i.e., providing the highest level of the functionalities under
the given circumstances. In the next section typical solutions for implementing
this latter approach are overviewed.

6.1 Approaches to runtime adaptivity

Evolution of large-scale networked embedded systems in general and (wireless)
sensor networks in particular poses a number of technical challenges on the
design, implementation, testing, deployment and operation processes [30]. Con-
sidering the reconfiguration as a “vehicle” to implement such evolution, the
reconfiguration of the functionalities on the available hardware can be carried
out at four different stages of the system’s life-cycle:

(i) design time - configuration redesign, new code base, etc.,

(ii) load time - new functionalities are implemented via code update,

(iii) initialization time - during system (or component) startup the optimal
design alternative is selected and parameterized depending on a “snapshot”
of the context,

(iv) runtime - reconfiguration is performed while the system is in use.

19

Here only the runtime reconfiguration variant of the evolution is considered with
special emphasis on the needs of distributed Kalman filtering.

In case of runtime reconfiguration the reconfiguration process is triggered
by observation of changes in the embedding environment of the system or in
the system itself, e.g., realizing node failure or a low battery status. The “tra-
jectory” for reconfiguration is not predefined but is a result of an optimization
process attempting to maximize the “usefulness” of the system as defined by a
performance criterion. The concept of the reconfiguration process is illustrated
in Figure 8.

Figure 8: The reconfiguration process.

The process relies on the model-based approach as introduced above. The
relevant models of the system, such as the task model, physical model, tempo-
ral model, etc., are formalized and stored in an efficiently accessible way in a
database represented by the models block. The constraints block represents
the dependencies in the models and between models. During operation of the
signal processing systems the MONITOR collects information about several
aspects of the operation. Goals of the operation may change depending on, for
example, different user needs. Changes in the observed phenomenon may cause
that the models assumed in design time have become invalid. Similarly, inter-
nal changes in the system configuration should be recognized, such as broken
communication and sensor failure. The MONITOR functionality checks if the
observed changes result in violating certain constraints of the systems or a sig-
nificant drop in performance. If the MONITOR concludes that under current
circumstances the system cannot perform as requested, then the reconfiguration
process is initiated. The central component is the REASONER, which based
on the models, constraints and the actual findings, determines a new configu-

20

ration that satisfies all constraints and provides an acceptable performance. It
should be emphasized the REASONER may not carry out pure logical reason-
ing but also other types of search and optimization functions depending on the
representation used to describe the models, goals and so on. The new configura-
tion is passed to the RECONFIGURATOR functionality to plan and execute
the sequence of operations for “transforming” the old into the new configuration
in runtime.4

Note that the reconfiguration process of Figure 8 runs on the same embedded
monitoring system that is used for signal processing. An efficient implementa-
tion of this runtime reconfiguration should address three challenges:

• Representation: What are the right formalisms to describe the models and
their interaction? To what extent should the models be made part of the
running code? What is an efficient model representation in runtime?

• Monitoring: How can we collect coherent information about the health
state of the system, even in case of failures? How can we deduct the
potentially disruptive situations, i.e., which should trigger reconfiguration
actions, from the raw observation set?

• Reasoning: What are the efficient algorithms, which are matching with
the model representation, to resolve the conflicts rising from changes in the
environment and/or in the system configuration? What are the chances
for a distributed solution of the reasoning process?

There are no ultimate answers to these questions. The application domains
have crucial impact on the optimal representation and reasoning, as well as
on the resources that are required to run the reconfiguration process itself.
Consequently, a thorough analysis of the application in hand, its typical failure
modes, the dependability requirements and other relevant aspects of the system
in its environment jointly identify the proper selection of techniques for setting
up a suitable runtime reconfiguration process.

The research area of runtime reconfigurable systems design is quickly evolv-
ing. Established domains as self-adaptive software systems [8] and dynamically
reconfigurable hardware systems [20, 6] provide fundamental contributions. In
the following a few characteristic approaches are briefly addressed. A reconfig-
uration methodology based on model integrated computing (MIC) was intro-
duced in [31]. Therein, the designer describes all relevant aspects of the system
as formal models. A meta-modeling layer supports the definition of these rele-
vant aspects that are to be modeled and generates the necessary model editors,
i.e., carries out model analysis, verification, etc. The program synthesis level

4The operations for “transforming” the configuration act on the program modules imple-
menting the task graph and on a “switchboard” realizing the flexible connections among the
tasks. Consequently, the program modules should implement a “standard” API, which allows
for a function independent, unified configuration interface to software components. This way
parameter changes in the signal processing functions and in the connections between these
functions can be carried out irrespective to the actual functions involved in the processing.

21

consists of a set of model interpreters, which according to the supplied mod-
els and constraints generate program code. The reconfiguration is triggered by
changes in the models or constraints, which initiates a new model interpretation
cycle. Though MIC provides a flexible way to describe and implement reconfig-
urable systems, the model interpretation is a computationally demanding step
and may seriously limit the applicability in real-time cases. Alternatively, a
model-oriented architecture with related tools for runtime reconfigurable sys-
tems was presented in [39]. This approach uses variability, context, reasoning
and architecture models to capture the design space. In runtime the interactions
among the event processor, goal-based reasoner, aspect model weaver and the
configuration checker/manager components will carry out the reconfiguration.
The approach is well suited for coping with high number of artifacts but the
real-time aspect is not well-developed. A formalization of the reconfiguration
as a constraint satisfaction problem was proposed in [56, 34, 38]. The design
space is (at least partially) represented and its design constraints are explic-
itly stated. These methodologies implement a “constraint guided” design space
exploration to find feasible solutions under the observed circumstances. In par-
allel a suitable performance criterion is calculated to guide the reconfiguration
process to optimal solution. The method described in [56] is also capable of
hardware/software task migration and morphing. Different reconfiguration so-
lutions were developed for service oriented architectures (SOAs). For example,
the reconfiguration method introduced in [28] extends the “traditional” discover
- match - coordinate SOA scheme with a hierarchical service overlay mechanism.
This service overlay implements a composition functionality that can dynam-
ically “weave” the required services from the available service primitives. In
[35] a solution is proposed that follows an object centric paradigm to compose
the compound services. By modeling the service constraints, an underlying
constraints satisfaction mechanism implements the dynamic service configura-
tion. A different approach was presented in [60], which describes a model-based
solution to validate at runtime that the sensor network functionalities are per-
formed correctly, despite of changes in the operational conditions. It models
the application logic, the network topology and the test specification, which are
then used to generate diagnostic code automatically. Though the solution does
not address the REASONING functionality of Figure 8, it delivers low false
negative detection rates, i.e., it covers the MONITOR functionality effectively.

6.2 Implementation of runtime reconfiguration

The runtime reconfiguration brings in an extra aspect of complexity, which is
“woven” into the functional architecture of the system and thus makes the test-
ing and validation extremely challenging. To keep the development efforts on
a reasonable level both design and implementation support is needed. Many of
the runtime reconfiguration approaches cited propose an architectural method-
ology, design tool set and runtime support, e.g., [17, 31, 30, 56, 28, 60, 34, 35].
A common feature of these efforts is to support the system developer with appli-
cation independent reconfiguration functionalities, which can be parameterized

22

according to the concrete needs of the application at hand. They also attempt
to “separate concerns” when feasible, i.e., try to make the design of the func-
tional architecture and the reconfiguration process as independent as possible,
while still maintaining clear interactions between them. Typically, the corre-
sponding reconfiguration functionalities manifest themselves in an additional
software layer between the “nominal” real-time executive layer, such as TinyOS
[36] or Contiki [12], and the application layer. See Figure 9 for more details.
The (application independent) monitoring and reconfiguration functionalities
in this figure receive the application specific information from “outside” in the
form of models. Conceptually they are “interpreters”. As such, they realize a
virtual machine dedicated to a certain type of computational model, e.g., rule
based inference, finite sate machine, constraint satisfaction, and so on. They
read-in the application specific “program”, which is represented by the reconfig-
uration rules component in Fig. 9, and interpret its code in the context of the
data received from the MONITOR function. For example, if the reconfigura-
tion process is based on a rule-based representation of the application specific
knowledge5, then the REASONER implements a forward changing (data driven)
inference engine [49], in which using the actual configuration and the data re-
ceived from MONITOR as fact base. The inference process results in derived
events and actions, which define the reconfiguration commands issued for the
application layer. The application program is characterized by (multi-aspect)
models, requirements and constraints that are created by the designer according
to, for example, [60]. For efficiency reasons the models created by a designer
are rarely used directly by the reconfiguration process. Instead, after thorough
compile-time checking, these models are translated to a “machine friendly” for-
mat to enable resource-aware access and transformations. The models can also
be used for automatic code generation and synthesis to create the application
code if the appropriate tools are available [31]. The monitoring functionality
of Figure 9 (equivalent to the one in Figure 8) defines the set of observations
that a reconfiguration process should take into consideration. Typically, this
monitoring should cover the operational characteristics of an application, e.g.,
sensor noise level and estimator variance, combined with the health state of
its execution platform, e.g. battery energy level and quality of communication
channels. The reconfiguration rules then define the “knowledge base” of the
reasoner/reconfigurator, which is also depicted in Figure 9, i.e., they determine
how the recognized changes in operational conditions are handled. Note that
reconfiguration rules do not necessarily refer to rule-based knowledge base but
that the format and content of the “rules” is determined by a reasoning proce-
dure, e.g., constraint satisfaction, graph matching, first-order logic, etc. Further
note that the application layer of Figure 9 uses a number of reconfigurable com-
ponents (c1 ... cn) to implement the required application level functionality.
These components should implement a unified application programming inter-
face (API), so that the middleware layer is able to retrieve information for its
monitoring purposes and for executing its reconfiguration commands.

5This type of formalism will be used in the case study later in the chapter.

23

Figure 9: Middleware for runtime reconfiguration.

It should be emphasized that in certain applications the reconfiguration
decisions could rely on system-wide information, In these cases the monitor-
ing and reconfiguration activities inherently involve communication, resource
scheduling, etc. This adds an extra layer of complexity to the systems, e.g.,
implementing distributed snap-shot algorithms, leader election and distributed
reasoning/planning, that may demand resources beyond the capabilities of the
nodes. A work-around is to give up the fully distributed implementation of the
reconfiguration and assign the most demanding functionalities to (dedicated)
powerful nodes, as proposed in [31, 34, 56]). The monitoring information is
then forwarded to the reconfiguration node(s) where a new configuration is de-
termined. The reconfiguration commands are transferred back to the nodes for
synchronized execution.

In the next section the role of runtime reconfiguration will be demonstrated.
It follows from the inherent network topology properties assumed in distributed
state estimation that reconfiguration decisions are based on the information from
local and neighboring nodes. As such, a distributed implementation of runtime
reconfiguration is feasible, even on nodes of moderate computing capabilities.

7 Case study on a diffusion process

The results of the presented self-organizing sensor network for state estimation
are demonstrated and evaluated in a spatio-temporal 2D diffusion process. The
goal of the sensor network is to follow the contaminant’s distribution profile
in time (i.e. the concentration distribution in space and time of a particular

24

chemical compound) in the presence of wind. To that extent, let us consider an
area of 1200 × 1200 meters containing a contaminant source. As time passes,
the contaminant spreads across the area due to diffusion and wind. To simulate
the spread, let us divide the area into a grid with a grid-size of 100 meters.
The center of each grid-box is defined as a grid-point. Then, the spread of the
contaminant is represented by the concentration level ρ(q) ∈ R+ at the q-th grid-
point q ∈ [1, 144]. This concentration level ρ(q) depends on the corresponding
levels at neighboring grid-points, which are denoted as qn for north, qs for south,
qe for east and qw for west. See Figure 10 for a graphical representation of these
grid-points relative to the q-th grid-point. Further, the continuous-time process
model of ρ(q), for some a, an, as, ae, aw ∈ R, yields

ρ̇(q) = aρ(q) + anρ
(qn) + asρ

(qs) + aeρ
(qe) + awρ

(qw) + u(q), ∀q ∈ Z[1,144].

The variable u(q) ∈ R+ in (7) parameterizes the production of chemical matter
by a source at grid-point q and follows u(18) = 75, u(29) = 75, u(30) = 100,
u(31) = 100 and u(42) = 175 for all time t ∈ R+, while u(q) = 0 for all other
q ∈ Z[1,144]. The remaining parameters are chosen to establish a northern the

wind direction, i.e., a = −12
800 , an = 1

800 , as = 2
800 , ae = 7

800 and aw = 2
800 .

source

q

qn

qs

qeqw

O
(q)

node

north

south

eastwest
O(1)

200 400 600 800 1000

200

400

600

800

1000

Figure 10: The monitored area is divided into a grid. Each grid-point q has
four neighbors qn, qs, qe and qw, i.e., one to the north, south, east and west of
grid-point q, respectively. The chemical matter produced by the source spreads
through the area due to diffusion and wind.

A sensor network is deployed in the area to reconstruct the concentration
levels at each grid-point based on the local measurements taken by each node.

Communication The network consists of 18 sensor nodes that are randomly
distributed across the area, see also Figure 10. It is assumed that the
sensor nodes communicate only with their direct neighbors, i.e. nodes
with a 1-hop distance, and that their position is available.

Process Neither the wind direction nor values of the contaminant source are
available to the nodes. Therefore, the process model that is used by the

25

local estimation algorithms of the different nodes is a simplified diffusion
process in continuous-time, i.e.,

ρ̇(q) = αρ(q) + αnρ
(qn) + αsρ

(qs) + αeρ
(qe) + αwρ

(qw) + w(q),

with α= −12
800 , αn= 3

800 , αs= 3
800 , αe= 3

800 and αw = 3
800 . The unknown

source and model uncertainties are represented by process-noise w(q) ∈
R, for all q ∈ Z[1,144]. A suitable characterization of this noise, i.e., to

cover unknown source values u(q) in between −150 and 150, is given by
the continuous-time PDF p(w(q)(t)) = G(w(q)(t), 0, 2 ·103). Further, the
state is defined as the collection of all concentration levels, i.e., x :=(
ρ(1) ρ(2) · · · ρ(144)

)>
. The model parameters Aτi and Qτi of the discrete-

time process model in (1) are characterized with the initial sampling time
of τi = 10 seconds, for all nodes i ∈ N . To determine the other process
model parameters, i.e., Ci and Vi, it is assumed that each sensor node
i measures the concentration level at its corresponding grid-point, i.e.,
yi[ki] = ρ(q)[ki] + vi, for some q ∈ Z[1,144] and p(vi[ki]) = G(vi[ki], 0, 0.5),
for all i ∈ Z[1,18]. The real concentration levels at the three time instants
t = 140, t = 240 and t = 340 are illustrated in Figure 11.

300
600

900
300

600

900

0

10

20

30

300
600

900
300

600

900

0

10

20

30

t = 240 secondst = 140 seconds

Figure 11: The simulated concentration levels at the different grid-points for
two instances of the time t ∈ R+.

The objective of the sensor network is to determine the contaminant dis-
tribution by estimating the state x in multiple nodes of the network. This is
carried out in two types of sensor networks, a hierarchical network and a fully
distributed one. In each configuration unforseen events occur indicating node
break-down and batteries depleting below critical energy level. The nodes must
adapt their local state estimating functionalities to recover from lost neighbors
and/or to reduce their energy consumption so that batteries do not get depleted.
Let us start this analysis with the hierarchical network.

7.1 A hierarchical sensor network

In a hierarchical sensor network nodes are given specific tasks prior to its deploy-
ment. Basically, the network consists of multiple subnetworks, as it is illustrated

26

in Figure 12(a). In each subnetwork nodes exchange their local measurements
with the center node of that particular subnetwork (denoted with dashed lines).
The center node computes a local estimate based on these received measure-
ments via fkf, after which this estimate is shared with the center nodes of other
subnetworks (denoted with the solid lines). The received estimates are then
fused with the local estimate according to the merging function fme and the
fusion method ellipsoidal intersection of (17).

300 600 900

900

600

300

1
23

4

5
6

7

89
10

11
12 13 14

15
16 17 18

(a) Initial topology

300 600 900

900

600

300

1
23

4

5
6

7
89

10
11

12 13 14
15

16 17 18

(b) Topology after 250 seconds

Figure 12: Network topology in a hierarchical network.

Two events will occur in this network, followed by the corresponding ac-
tion as it is implemented in the reconfiguration process of each node. The
reconfiguration is local: operational events are monitored locally and the re-
configuration actions influence only the node issued the request for action. A
rule-based representation formalism is used to define the “knowledge base” of
the reconfiguration functionality. As such, the REASONER component of the
middleware implements a forward chaining rule interpreter, i.e., if event then
action ([49, 10, 11]). For clarity of the illustrative example, we do not attempt
a rigorously formal description of the knowledge base but only the “style” of
the rule-based representation is shown.

• At t = 150 seconds nodes 1, 3 and 8 will cross their critical energy level;
If the critical energy level is crossed, then lower the node’s local sampling
time from 10 seconds to 20 seconds.

• At t = 250 seconds node 5 will break down. To detect whether a state
estimating nodes brakes down, nodes within each subnetwork exchange
acknowledgements or heartbeat messages are used to indicate normal op-
erational mode;
If the acknowledgement of the state estimating node is not received, then
check the energy levels of all other nodes in the corresponding subnetwork.
The node with the largest energy level takes over the responsibility for esti-
mating the state, according to an algorithm that is similar to the node that
broke down. Also, re-establish the connection with the other subnetworks.

27

As an example, the rule set below shows the handling of the #2 event

Rule_2a:

IF NEIGHBOR(?x) & TIMEDOUT(?x) & ?x.function = centerfun

THEN set(go_for_newcenter,TRUE)

Rule_2b:

IF go_for_newcenter & NEIGHBOR(?x) &

!TIMEDOUT(?x) & max(?x.power) = self.power

THEN exec(assign,centerfun), exec(broadcast,centerfun_msg)

Figure 12(a) depicts the network topology prior to the event that node 5
brakes down, while Figure 12(b) illustrates this topology after the event (as-
suming that the battery of node 2 has the highest energy level). This figure in-
dicates that node 2 has become responsible for estimating the state and thereby,
replaces node 5 that broke down at t = 250 seconds. Further, Figure 13 depicts
a particular estimation error, for which the estimation error of single node i
is defined as ∆i :=

(
x − x̂i)

>(x − x̂i). More specifically, the figure presents
the difference in the estimation error of a network not effected by operational
event with the estimation error in a network that is effected by the previously
presented operational event. The reason that the figure depicts the results of
node 7, is because this node affected by both events.

0 100 200 300 400
0

20

40

60

time [sec]

∆ ∆7 7
−

ideal reconf

Figure 13: The difference in the estimation error of node 7 for a network that is
not effected by operational events (∆ideal

7) with the estimation error in a network
that is effected by the previously presented operational event (∆reconf

7).

Before Figure 13 is analyzed, let us denote the hierarchical network in the
presence of the above mentioned operational events as the reconf-case and the
hierarchical network in the absence of operational event as the ideal-case. Then
the figure indicates that the results of the reconf-case and the ideal-case are
equivalent until the two operational events occur, which is expected as both
network cases are similar until 150 seconds. After that time, the estimation
error of node 7 in the reconf-case increases with respect to the ideal-case. This
is due to the fact that nodes 1, 3 and 8 double their local sampling times from

28

t = 150 on and thus, node 7 will receive twice as less measurement information
from nodes 1 and 3. This leads to an increase in estimation error of node
7 compared to the ideal-case. Further, note that this error decreases when
local measurement information from nodes 1 and 3 is received, i.e., at the time
instants 170, 190, 210, ..., 370, 390. At these instances node 7 receives two
more local measurements, i.e., y1 and y3, which is not the case at the other
sampling instants as nodes 1 and 3 doubled their local sampling time. After
the second operational event, i.e., node 5 breaks down at t = 250, the difference
in the estimation error of node 7 for the reconf-case with respect to the ideal-
case decreases (on average). This behavior can be explained from the fact that
node 2 has become a direct neighbor of node 7, while this node 2 was indirect
neighbor via node 5 prior to t = 250. Since node 2 is closer to the contaminant
source, node 7 obtains an improved estimation result when node 2 is its direct
neighbor rather than an indirect one.

7.2 A distributed sensor network

The distributed sensor networks reflects an ad-hoc networked system. This
means that the nodes establish a mesh-network-topology, as it is depicted in
Figure 14(a). Since there is no hierarchy in this network, each node estimates
the local state by performing the distributed KF of (14): the local measurement
is processed by fkf to compute a local estimate of the state, which are then
shared with neighboring nodes as input to the merging function Ω employing
the state fusion method ellipsoidal intersection of (17).

300 600 900

900

600

300

1
2

3

4

5

6

7

89

10
11

12 13
14

15

16
17 18

(a) Initial topology

300 600 900

900

600

300

1
23

4

5
6

7
89

10
11

12 13 14
15

16 17 18

(b) Topology after 250 seconds

Figure 14: Network topology in a distributed network.

Two events will occur in this network, followed by the corresponding action
as it is implemented in the management layer of each node.

• At t = 150 seconds nodes 1, 3 and 8 will cross their critical energy level;
If the critical energy level is crossed, then lower the node’s local sampling
time from 10 seconds to 20 seconds.

29

• At t = 250 seconds nodes 5 and 11 will break down. Nodes detect that
another node has broken down, since no new local estimates are received
from that node;
If a nodes brakes down and the network has lost its connectivity, then
establish a network connection with other nodes until this connectivity is
re-established. In case this means to increase the communication range to
larger distances, decrease the sampling time accordingly.

Figure 14(a) depicts the network topology prior to the event that nodes 5
and 11 brake down, while Figure 14(b) illustrates the topology and after the
event. This figure indicates that the sensor network establishes connectivity,
also after the event of a node braking down. However, the nodes 6 and 15 will
have to exchange data with nodes that are far away. Therefore, these node will
lower their local sampling time to 20 seconds. Further, Figure 15 depicts the
same estimation error as Figure 13, only then for a distributed network. This
means that the figure presents the difference in the estimation error of a network
not effected by operational event with the estimation error in a network that
is effected by the previously presented operational event. The reason that the
figure depicts the results of node 7, is because this node affected by both events.

0 100 200 300 400
0

30

60

90

time [sec]

∆ ∆7 7
−

ideal reconf

Figure 15: The difference in the estimation error of node 7 for a network that is
not effected by operational events (∆ideal

7) with the estimation error in a network
that is effected by the previously presented operational event (∆reconf

7)

Before Figure 15 is analyzed, let us denote the distributed network in the
presence of the above mentioned operational events as the reconf-case and the
distributed network in the absence of operational event as the ideal-case. Then,
the figure indicates a similar behavior compared to the hierarchical network that
was previously discussed, i.e., the results of the reconf-case and the ideal-case
are equivalent until the first operational event occurs, after which the error of
the reconf-case increases with respect to the ideal-case. Also, the estimation re-
sults of node 7 have an “up-down” type of behavior, which is due to the action
undertaken by nodes 1 and 3 to double their local sampling times. As such,
node 7 receives an updated estimate from nodes 1 and 3 after every other of its

30

local sampling instants. The difference between the estimation error of node 7
in the reconf-case increases even further with respect to the ideal-case after the
second operational event, i.e., nodes 5 and 11 break down at t = 250.

Both the illustrative case studies of a hierarchical and a distributed sensor
network indicate that the state is estimated by multiple nodes in the network,
even in the presence of unforeseen operational events. As such, adopting a
self-organizing method in large-scale and ad-hoc sensor networks improves the
robustness of state estimation within the network.

8 Conclusions

Ad-hoc sensor networks typically consist of a large number of vulnerable compo-
nents connected via unreliable communication links and are sometimes deployed
in harsh environment. Therefore, dependability of networked system is a chal-
lenging problem. This chapter presented an efficient and cost effective answer
to this challenge by employing runtime reconfiguration techniques additional
to a particular signal processing method (Kalman filtering). More precisely, a
distributed Kalman filtering strategy was presented in a self-organizing sensor
networks. This means that each node computes a local estimate of the global
state based on its local measurement and on the data exchanged by neighboring
nodes. The self-organizing property was implemented via a runtime reconfigura-
tion process, so to have a sensor network that is robust to external and internal
system changes, e.g., nodes that are removed or added to an existing network
during operation.

Firstly, a brief overview of existing solutions for distributed Kalman filtering
was presented. The corresponding algorithms were described with equivalent
input and output variables. As a result, nodes could choose which of the al-
gorithms is currently best suitable for estimating the state vector, while taking
into account the available communication and computational resources. This
further enabled nodes to select what information is to be shared with other
nodes, i.e., local measurements or local estimates, and how the received infor-
mation is merged with the local estimate. Secondly, the system architecture was
addressed, such that challenging design issues could be separated from the actual
implementation of a (self-organizing) distributed Kalman filter. To that extent,
an overview of typical reconfiguration approaches was given with an emphasize
on the interactions between the signal processing and hardware/communication
aspects of system design. After that, the self-organizing property of the pro-
posed distributed Kalman filter was assessed in a diffusion process for two types
of sensor networks, i.e., a hierarchical network and a fully distributed one. In
both cases, the network was able to cope with unforeseen events and situations.
Or differently, employing runtime reconfiguration in the nodes of the sensor net-
work implements a kind of self-awareness with the ability to create corrective
actions and thus assuring that data processing functionalities are never used
beyond their scope of validity.

31

References

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
Sensor Networks: a survey. Elsevier, Computer Networks, 38:393–422,
2002.

[2] B. D. O. Anderson and J. B. Moore. Optimal filtering. Prentice-Hall, 1979.

[3] A.T. Bahill and B. Gissing. Re-evaluating systems engineering concepts us-
ing systems thinking. Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 28(4):516 –527, nov 1998.

[4] Y. Bar-Shalom and L. Campo. The effect of the common process noise
on the two-sensor fused-track covariance. IEEE Trans. on Aerospace and
Electronic Systems, AES-22(6):803–805, 1986.

[5] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. Distributed Kalman
filtering based on consensus strategies. IEEE journal in selected areas in
communications, 26(4):622–633, 2008.

[6] Ewerson Luiz de Souza Carvalho, Ney Laert Vilar Calazans, and Fer-
nando Gehm Moraes. Dynamic task mapping for mpsocs. IEEE Des.
Test, 27:26–35, September 2010.

[7] D. W. Casbeer and R. Beard. Distributed information filtering using con-
sensus filters. In Proc. of the American Control Conf., pages 1882 – 1887,
St. Louis, USA, 2009.

[8] Betty H. C. Cheng, Rogrio de Lemos, Holger Giese, Paola Inverardi, Jeff
Magee, Jesper Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bo-
jan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony
Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai,
Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Miran-
dola, Hausi A. Mller, Sooyong Park, Mary Shaw, Matthias Tichy, Mas-
simo Tivoli, Danny Weyns, and Jon Whittle. Software engineering for
self-adaptive systems: A research roadmap. In Betty H. C. Cheng, Rogrio
de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software
Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in
Computer Science, pages 1–26. Springer, 2009.

[9] C. Y. Chong and S. P. Kumar. Sensor networks: Evolution, opportunities
and challenges. In Proc. of the IEEE, volume 91, pages 1247–1256, 2003.

[10] David Chu, Lucian Popa, Arsalan Tavakoli, Joseph M. Hellerstein, Philip
Levis, Scott Shenker, and Ion Stoica. The design and implementation of a
declarative sensor network system. In SenSys’07, pages 175–188, 2007.

[11] Adriaan de Jong, Matthias Woehrle, and Koen Langendoen. Momi: model-
based diagnosis middleware for sensor networks. In Proceedings of the 4th

32

International Workshop on Middleware Tools, Services and Run-Time Sup-
port for Sensor Networks, MidSens ’09, pages 19–24, New York, NY, USA,
2009. ACM.

[12] Adam Dunkels, Bjrn Grnvall, and Thiemo Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In Proceedings
of the First IEEE Workshop on Embedded Networked Sensors (Emnets-I),
Tampa, Florida, USA, November 2004.

[13] H.F. Durant-Whyte, B.Y.S. Rao, and H. Hu. Towards a fully decentralized
architecture for multi-sensor data fusion. In 1990 IEEE Int. Conf. on
Robotics and Automation, pages 1331–1336, Cincinnati, USA, 1990.

[14] S.C. Felter. An overview of decentralized Kalman filters. In IEEE 1990
Southern Tier Technical Conf., pages 79–87, Birmingham, USA, 1990.

[15] D. Franken and A. Hupper. Improved fast covariance intersection for dis-
tributed data fusion. In Proc. of the 8-th Int. Conf. on Information Fusion,
pages WbA23:1–7, Philidalphia, PA, USA, 2005.

[16] F. Garin and L. Schenato. Networked Control Systems, volume 406 of
Lecture Notes in Control and Information Sciences, chapter A survey on
distributed estimation and control applications using linear consensus al-
gorithms, pages 75–107. Springer, 2011.

[17] J.C. Georgas, A. van der Hoek, and R.N. Taylor. Using architectural models
to manage and visualize runtime adaptation. Computer, 42(10):52 –60, oct.
2009.

[18] M. S. Grewal and A. P. Andrews. Kalman filtering: theory and practise.
Rootledge, 1993.

[19] U. D. Hanebeck, K. Briechle, and J. Horn. A tight bound for the joint
covariance of two random vectors with unknown but constrained cross-
correlation. In Proc. of the IEEE Conf. on Multisensor Fusion and Inte-
gration for Intelligent Systems, pages 85–90, Baden-Baden, Germany, 2001.

[20] R. Hartenstein. A decade of reconfigurable computing: a visionary retro-
spective. In Design, Automation and Test in Europe, 2001. Conference and
Exhibition 2001. Proceedings, pages 642 –649, 2001.

[21] H.R. Hashmipour, S Roy, and A.J. Laub. Decentralized structures for
parallel Kalman filtering. IEEE Trans. on Automatic Control, 33(1):88–
93, 1988.

[22] M.F. Hassan, G. Salut, M.G. Sigh, and A. Titli. A decentralized algorithm
for the global Kalman filter. IEEE Trans. on Automatic Control, 23(2):262–
267, 1978.

33

[23] Vesa Hasu and Heikki Koivo. Decentralized kalman filter in wireless sen-
sor networks - case studies. In Khaled Elleithy, Tarek Sobh, Ausif Mah-
mood, Magued Iskander, and Mohammad (eds) Karim, editors, Advances
in Computer, Information, and Systems Sciences, and Engineering: Proc.
of IETA 2005, TeNe 2005 and EIAE 2005, pages 61–68, The Netherlands,
2006. Springer.

[24] A. Jadbabaie, J. Lin, and A. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Trans. on Automatic
Control, 48(6):988–1001, 2003.

[25] S. J. Julier and J. K. Uhlmann. A non-divergent estimation algorithm in
the presence of uknown correlations. In Proc. of the American Control
Conf., pages 2369–2373, Piscataway, USA, 1997.

[26] Simon J. Julier and Jeffrey K. Uhlmann. A new extension of the kalman
filter to nonlinear systems. In Prceedings of AeroSense: The 11-th Interna-
tional Symposium on Aerospace/Defense Sensing, Simulation and Controls,
pages 182–193, Orlando, Florida, 1997.

[27] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges:
Mobile networking for “smart dust”. In Proc. of the 5-th ACM/IEEE Int.
Conf. on Mobile Computing and Networking, pages 271 – 278, Seattle, USA,
1999.

[28] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. Seamless service
composition (sesco) in pervasive environments. In Proceedings of the First
ACM International Workshop on Multimedia Service Composition, MSC
’05, pages 11–20, New York, NY, USA, 2005. ACM.

[29] R.E. Kalman. A new approach to linear filtering and prediction problems.
Trans. of the ASME Journal of Basic Engineering, 82(D):35–42, 1960.

[30] G. Karsai, F. Massacci, L.J. Osterweil, and I. Schieferdecker. Evolving
embedded systems. Computer, 43(5):34 –40, may 2010.

[31] G. Karsai and J. Sztipanovits. A model-based approach to self-adaptive
software. Intelligent Systems and their Applications, IEEE, 14(3):46 –53,
may/jun 1999.

[32] U.A. Khan and J.M.F. Moura. Distributed Kalman filters in sensor net-
works: Bipartite fusion graphs. In IEEE 14-th Workshop on Statistical
Signal Processing, pages 700–704, Madison, USA, 2007.

[33] S. Kirti and A. Scaglione. Scalable distributed Kalman filtering through
consensus. In Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, pages 2725 – 2728, Las Vegas, USA, 2008.

34

[34] Sachin Kogekar, Sandeep Neema, Brandon Eames, Xenofon Koutsoukos,
Akos Ledeczi, and Miklos Maroti. Constraint-guided dynamic reconfigura-
tion in sensor networks. In Proceedings of the 3rd international symposium
on Information processing in sensor networks, IPSN ’04, pages 379–387,
New York, NY, USA, 2004. ACM.

[35] Xenofon D Koutsoukos, Manish Kushwaha, Isaac Amundson, Sandeep
Neema, and Janos Sztipanovits. OASiS: A service-oriented architecture
for ambient-aware sensor networks, volume 4888 LNCS, pages 125–149.
2007.

[36] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo,
David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. Tinyos:
An operating system for sensor networks. In in Ambient Intelligence.
Springer Verlag, 2004.

[37] F. L. Lewis. Wireless sensor networks. In Smart environments: Tech-
nologies, protocols, applications (Chapter 2), Lecture Notes in Computer
Science. Wiley, New York, 2005.

[38] Pragnesh J. Modi, Hyuckchul Jung, Milind Tambe, Wei-Min Shen, and
Shriniwas Kulkarni. A dynamic distributed constraint satisfaction approach
to resource allocation. In Proceedings of the 7th International Conference
on Principles and Practice of Constraint Programming, CP ’01, pages 685–
700, London, UK, UK, 2001. Springer-Verlag.

[39] Brice Morin, Olivier Barais, Jean-Marc Jzquel, Franck Fleurey, and Arnor
Solberg. Models at runtime to support dynamic adaptation. IEEE Com-
puter, pages 46–53, October 2009.

[40] A.G.O. Mutambara and Duranth-Whyte H.F. Fully decentralized estima-
tion and control for a modular wheeled mobile robot. Int. Journal of Robotic
Research, 19(6):582–596, 2000.

[41] W. Niehsen. Information fusion based on fast covariance intersection filter-
ing. In Proc. of the 5-th Int. Conf. on Information Fusion, pages 901–905,
Annapolis, USA, 2002.

[42] R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In Proc.
of the 46-th IEEE Conf. on Decision and Control, pages 5492 – 5498, New
Orleans, USA, 2007.

[43] R. Olfati-Saber. Kalman-Consensus filter: Optimality, stability, and per-
formance. In Proc. of the 48-th IEEE Conf. on Decision and Control, pages
7036 – 7042, Shanghai, China, 2009.

[44] Z. Papp, J. Sijs, and M. Lagioia. Sensor network for real-time vehicle track-
ing on road networks. In Proc. of the 5-th Int. Conf. on Intelligent Sensors,
Sensor Networks and Information Processing, pages 85 – 90, Melbourne,
Australia, 2009.

35

[45] W. Ren, R. Beard, and D. Kingston. Multi-agent Kalman consensus with
relative uncertainty. In Proc. of the American Control Conf., pages 1865 –
1870, Portland, USA, 2005.

[46] A. Ribeiro, G. B. Giannakis, and S. I. Roumeliotis. SOI-KF: Distributed
Kalman filtering with low-cost communications using the sign of innova-
tions. IEEE Trans. on Signal Processing, 54(12):4782 – 4795, 2006.

[47] A. Ribeiro, I. D. Schizas, S. I. Roumeliotis, and G. B. Giannakis. Kalman
filtering in wireless sensor networks: Reducing communication cost in state-
estimation problems. IEEE Control Systems Magazine, 4:66–86, 2010.

[48] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman filter:
Particle filter for tracking applications. 2002.

[49] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[50] C. E. Shannon and W. Weaver. The mathematical theory of communication.
The University of Illinois Press, Urbana, Illinois, 1949.

[51] J. Sijs and M. Lazar. Distributed Kalman filtering with global covariance.
In Proc. of the American Control Conf., pages 4840 – 4845, San Francisco,
USA, 2011.

[52] J. Sijs and M. Lazar. State fusion with unknown correlation: Ellipsoidal
intersection. Automatica (in press), 2012.

[53] J. Sijs, M. Lazar, P.P.J. Van de Bosch, and Z. Papp. An overview of non-
centralized Kalman filters. In Proc. of the IEEE Int. Conf. on Control
Applications, pages 739–744, San Antonio, USA, 2008.

[54] A. Speranzon, C. Fischione, K.H. Johansson, and A. Sangiovanni-
Vincentelli. A distributed minimum variance estimator for sensor networks.
IEEE Journal on Selected Areas in Communications, 26(4):609–621, 2008.

[55] J.L. Speyer. Computation and transmission requirements for a decentral-
ized Linear-Quadratic-Gaussian control problem. IEEE Trans. on Auto-
matic Control, 24(2):266–269, 1979.

[56] Thilo Streichert, Dirk Koch, Christian Haubelt, and Jrgen Teich. Model-
ing and design of fault-tolerant and self-adaptive reconfigurable networked
embedded systems. EURASIP JOURNAL ON EMBEDDED SYSTEMS,
page 15, 2006.

[57] Robert Szewczyk, Eric Osterweil, Joseph Polastre, Michael Hamilton, Alan
Mainwaring, and Deborah Estrin. Habitat monitoring with sensor net-
works. ACM Communications, 47:34–40, 2004.

[58] A. Tahbaz Salehi and A. Jadbabaie. Consensus over ergodic stationary
graph processes. IEEE Trans. on Automatic Control, 55:225–230, 2010.

36

[59] Greg Welch and Gary Bishop. An introduction to the kalman filter, 1995.

[60] Yafeng Wu, Krasimira Kapitanova, Jingyuan Li, John A. Stankovic,
Sang H. Son, and Kamin Whitehouse. Run time assurance of application-
level requirements in wireless sensor networks. In Proceedings of the 9th
ACM/IEEE International Conference on Information Processing in Sensor
Networks, IPSN ’10, pages 197–208, New York, NY, USA, 2010. ACM.

[61] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging. Sys-
tems and Control Letters, 53(1):65–78, 2004.

[62] L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion
based on average consensus. In Proc. of the 4-th Int. Symp. on Information
processing in sensor networks, pages 63 – 70, Los Angelos, California, USA,
2005.

[63] Y. Zhuo and J. Li. Data fusion of unknown correlations using internal
ellipsoidal approximations. In Proc. of the 17-th IFAC World Congress,
pages 2856–2860, Seoul, Korea, 2008.

37

