

Teaching programming for secondary school : a pedagogical
content knowledge based approach
Citation for published version (APA):
Saeli, M. (2012). Teaching programming for secondary school : a pedagogical content knowledge based
approach. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Eindhoven School of Education]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR724491

DOI:
10.6100/IR724491

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR724491
https://doi.org/10.6100/IR724491
https://research.tue.nl/en/publications/5430843a-bcdd-450e-896b-53fb45992f69

Teaching Programming for Secondary School:
a Pedagogical Content Knowledge Based

Approach

proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven,

op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn,
voor een commissie aangewezen door het College voor Promoties

in het openbaar te verdedigen
op donderdag 2 februari 2012 om 16.00 uur

door

Mara Saeli

geboren te Messina, Italië

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. W.M.G. Jochems
en
prof.dr. G. Zwaneveld

Copromotor:
dr. J. Perrenet

This research was financially supported by Eindhoven School of Education and the
Interuniversitaire Commissie Lerarenopleiding, The Netherlands.

This thesis was prepared with the LATEX documentation system.
Cover Image: Mara Meo c©
Cover Design: Mara Meo
Printed by: Printserivce TU/e
A catalogue record is available from the Eindhoven University of Technology Library.

Teaching Programming for Secondary School: a Pedagogical Content Knowledge
Based Approach / by Mara Saeli. – Eindhoven : Technische Universiteit Eindhoven,
2012
ISBN: 978-90-386-3084-7

Copyright c© 2012 by M. Saeli.

iii

You don’t understand
Stanislav Kovalenko

iv

v

Aknowledgment

I would like to thank you all, but some specific thanks...

A first thank is reserved to Prof. Wim Jochems and Prof. Bert Zwaneveld:
to have assured everything was actually scientifically good and to provide me
with the right framework to professionally grow. I would like also to thank
Prof. Wim Jochems to dig problems out and to insist I would not quit the
PhD in my most difficult period in Eindhoven.
I would like to thank dr. Jacob Perrenet, my supervisor, who has given me
the right support to become an independent researcher and with whom I have
had numerous interesting discussions.
I would like to thank Mary Beth Key (again) who, thanks to her charming
and convincing way, she let me apply to the interview that lead to this, sur-
prisingly, phd position (4 years, the Netherlands again!!!).
A special thank is devoted to my room-colleagues, Lesley and Migchiel, for
never giving up in offering iets uit de automaat, to accept and at times en-
courage personalization and ergonomization of the kantoor-ruimte (e.g. giant
balls, inflatable couches, big cushions), and to provide unexpected entertain-
ment.
Thanks to Martina, for never giving up in talking in Dutch to me, though I
made no sense when attempting to reply back in her native language. She
kept on nodding all this time and managed to laugh with incredible timing.

All my friends who made my stay in Eindhoven really special. Among
them: Lesley and the alternative working place (bouncing balls included), let-
ting me experience the Netherlands from the inside and to always be a source
of limitless suggestions and tips; Lorenzo i 5ini, le foto e le serate Eindhove-
nesi piene di sorprese e le piccole avventure; Agnese per aver affrontato con
tanto coraggio i miei multipli esperimenti culinari; Ciccio e i suoi frullati, ma
soprattutto per avere fornito innumerevoli fonti di risate e di scoppientante

vi

materiale musicale per riempire le lunghe ore di digitalizzazione; Alessandro
per darmi l’opportunita’ di condividere la passione per gli aspetti nutrizion-
ali e la cinofilia; Mamoun, to let me experience the design vegetables and to
bring back memoirs as the inebriation of the first drive on a scooter; Jovana
to have shared with me so many Georges and nice chats; Dario per le tue
infinite traduzioni dei testi piu’ impossibili, e per avere infuso il coraggio di
contattare lui, il mitico Leo RatDad; Pina per la tua pentola gigante, le buste,
i lasciti e soprattutto per le sveglie mattidine seguite dalle bussate; and thanks
to Simon, to have introduced me to a new dimension of music, to have let me
discover different approaches and for the multiple creatures.
Lana, I would like to thank you to be always there in the highest peaks of
stress and to keep an eye on my little achievements.
Sushi, thank you to be so calming and entertaining.

Last but not least, i miei genitori, Angelo e Angela, e mia sorella Gaia.
Devo a loro un supporto incondizionale, per darmi coraggio nei momenti di
luna calante, per sopportare i miei sfoghi e per far si che i miei progetti si
realizzassero. A loro e alla famiglia di Bruxelles, Gina e Gaetano Irato, devo
la prontezza ad atterrare ad Eindhoven quando si sono presentate situazioni
di emergenza. And Simon Shelley, my husband, to have had the patience to
listen and to provide the fuel for the necessary creativity to distract my mind
from this work. To have inspired me for the cover and to have provided intel-
lectual, scientific and linguistic support to the extreme... and for the terrific
amounts of white tea and delicacies.

vii

Contents

1 Introduction 1
1.1 Background to the study . 1
1.2 Theoretical background . 8
1.3 Definition of the problem and research questions 9
1.4 Structure of the dissertation . 11

2 Literature Review 15
2.1 Introduction . 16
2.2 Programming Education . 17
2.3 Pedagogical Content Knowledge 18
2.4 Methods and Aims . 20
2.5 PCK of programming . 21
2.6 Conclusions and Implications 29

3 Protraying PCK 31
3.1 Introduction . 32
3.2 Method . 33
3.3 Results . 38
3.4 Conclusions and discussion . 46

4 Measuring the PCK of Textbooks 53
4.1 Introduction . 54
4.2 Methods . 61
4.3 Results . 69
4.4 Conclusions and Implication . 73

5 Measuring Teachers’ PCK 77
5.1 Introduction . 78
5.2 Methods . 84

viii Contents

5.3 Results . 92
5.4 Conclusions and Discussion . 101

6 Conclusions 109
6.1 Overview of the research . 109
6.2 Summary of the outcomes . 111
6.3 Critical reflections . 117
6.4 Practical Implications . 122
6.5 Suggestions for further research 123

References 127

Appendices 137
Appendix A - Sub-Domain Software 137
Appendix B - The OTPA . 139
Appendix C - PCK about Algorithms 143

Summary 147

Samenvatting 153

Curriculum Vitae 159

List of Pubblications 161

Eindhoven School of Education 163

1

Chapter 1

Introduction

1.1 Background to the study

New generation students, as well as other citizens, are placed in a society in
which computers play an almost ubiquitous role. Students need to learn the
world of computers, because even if their major interest resides in other dis-
ciplines, such as economics, arts or literature, they will most probably need
to use computers and computer programs (Stephenson, Gal-Ezer, Haberman,
& Verno, 2005). Computer Science (CS) is a relatively young discipline and
still its definition is considered by some to be under construction. McGuffee
(McGuffee, 2000) explored the different definitions proposed for this discipline
in terms of its goal, such as the ones that follow. Dijkstra pointed out that
“...the core challenge for computer science is hence a conceptual one: what
(abstract) mechanism we can conceive without getting lost in complexities of
our own making” (Dijkstra, 1987); while Long and colleagues argued that the
role of CS is “the study and application of languages and methods for making
precise and understandable descriptions of things” (Long et al., 1997). This
discipline has also been defined, as a result of a task force effort to outline
suggestions for a curriculum for computer science for secondary school, to be
as “an integrated field of study that draws its foundations from mathematics,
science and engineering” (Roberts, Shackelford, LeBlanc, & Denning, 1999)
implying that whenever these three disciplines intersect you have computer
science. A previous definition by the same task force (Comer et al., 1989)

2 Chapter 1: Introduction

states that CS is “the systematic study of algorithmic processes - their theory,
analysis, design, efficiency, implementation, and application - that describes
and transform information”. Interestingly the task force included in its first
definition the concept of ‘information’, abandoned then in their second defi-
nition. A recent definition (Baeten, 2009) defines CS as the study of discrete
behaviour of interacting information processing agents. Information is consid-
ered by many as the core concept of CS, in terms of information transformation
and processing. In other words, CS seems to still struggle for a clear definition
that can describe it. This situation might suggest that teachers, students,
headmasters, curriculum authors and others might have troubles in picturing
this discipline. In the past most people would think that only computer enthu-
siasts were able to deal with computers. Nowadays, the advent of new ’smart’
mobile phones and music players changed people’s attitude and understating
of computers, and educators’ attitude for their use in classroom. An example
is Abelson’s note:

“If your phone is going to be an influential force in your life, then
you should be able to shape it to suit your needs whether or not
you have a degree in computer science or electrical engineering.”
Description label posted at the MIT museum (MIT Museum - Hal
Abelson, 2010)

This is just an example of the reasons we need to teach CS in schools. Other
reasons are: learning to recognize when, how and why CS can be used to ad-
dress and solve general problems (develop methods/instruments for concrete
problems), viewing the possibilities and limits of CS, and understand the social
and ethical aspects of users interacting with IT tools (Van Diepen, Perrenet,
& Zwaneveld, 2011).

CS is a relatively young discipline, and Computer Science Education (CSE) is
a new subject in the secondary school curriculum as well as in teacher educa-
tion, in an international perspective as well as in the Dutch situation. Issues
with young disciplines are different, as for example lack of agreement on its
name or its content. This discipline is at times named as Computer Science,
Computing, Informatics, IT (Information Technology) or ITC (Information,
Technology and Communication). To underline the interchangeability of some
of these terms, in this book both the therms Computer Science and Informatics
are used. Also, it is not rare to find courses named as CS, but offering teach-
ing on the use of computers, as for example use of Word, Excel or Powerpoint

1.1: Background to the study 3

(called Computer Literacy). Other problems regard the content to teach, as
for example what topics or aspects of this discipline should be taught, or which
approach is more suitable than other to facilitate students’ learning.

This thesis, being the research based in the Netherlands, deals with the teach-
ing and learning of CS at secondary school in the context of the Dutch sce-
nario. In the Netherlands CS was introduced in secondary school very re-
cently (1998/1999) and is not immune to problems relative to young disci-
plines. Among the problems outlined, as it will be further analysed, there
is the relatively weak position CS covers in secondary education curriculum,
where the subject is offered on an elective basis and is not centrally examined,
as almost all other secondary school disciplines in the Netherlands. For this
reason teachers have almost full freedom to choose which topics and targets
to teach. On one hand this is an advantage for teachers, which gives them
the opportunity to experiment and explore the subject with their students,
on the other hand it gives little control on teaching quality. Another problem
of this subject in the Netherlands is the lack of teachers with CS background
(Schmidt, 2007b). Most CS Dutch teachers are licensed teachers from other
disciplines (e.g. mathematics, physics, art) re-trained to teach CS, or they
just teach CS with no special training. Only recently (2006) official Master’s
in CS teaching are offered in different universities, with the requirement that
student teachers have completed at least a bachelor’s in CS. More details on
the Dutch scenario will follow.

The focus of this book is on the different aspects relative to the teaching at
secondary school of one of the CS topics: programming, a topic of interna-
tional interest. Particularly it is analysed the content and the quality of CS
Dutch textbooks, to verify whether they can support teachers’ needs, and
Dutch teachers’ knowledge is assessed, to sketch the actual situation and pro-
pose possible improvements.

A brief introduction to the Dutch education system, Dutch CS curriculum and
the Dutch educational situation of CSE follows. Next, this chapter provides
an overview of the theoretical framework, definition of the problem, research
questions and the structure of the dissertation.

4 Chapter 1: Introduction

1.1.1 The Dutch education system

The Netherlands is a country where the teaching of CS for secondary school
has been recently introduced (Grgurina, 2008), in the school year 1998/1999.
At the moment CS is an elective course and is examined only at school level,
while almost all other disciplines are centrally examined.

Dutch secondary education (Eurydice, 2007) follows on from eight years of
compulsory primary education with pupils aging in average 12. There are
three kinds of secondary education:

• pre-vocational secondary education (VMBO) which takes four years;

• senior general secondary education (HAVO) which takes five years;

• and pre-university education (VWO) which takes six years.

In the lower years, the emphasis of CSE is on acquiring and applying knowl-
edge and skills, and delivering an integrated curriculum, in other words: com-
puting literacy. Teaching is based on learning objectives which specify the
knowledge and skills pupils must acquire. The aims of the upper years of
HAVO and VWO are to provide a broad general education and to ensure co-
hesion between the various subjects and harmonization with the methods used
in higher education.

All pupils entering the 4th year (HAVO and VWO) or the 5th year (VWO)
have to choose one of the following four subject combinations:

• culture and society, with emphasis on language and history;

• economics and society, with emphasis on mathematics, economics and
history;

• science and health, focusing on mathematics, biology and chemistry;

1.1: Background to the study 5

• science and technology, with emphasis on science and mathematics.

The common component to these four themes are: Dutch, English and math-
ematics (Eurydice, 2007). In addition to these compulsory subjects, there are
some optional courses available to all students, one of these being CS.

1.1.2 Computer Science in the Dutch curriculum

CS is one of the elective courses for all mentioned subject combinations offered
in the optional component, and for it are devoted 240 study hours for senior
secondary education students, and 280 study hours for pre-university educa-
tion students. Students’ requirement to access such course is to have reached
computer literacy, which consists in familiarity with common software (e.g.
Word, Excel, Power Point, etc). Computer literacy in the Netherlands is
taught in the lower grades. The curriculum for CS is divided into four themes
(Schmidt, 2007a):

Theme A: Computer Science in perspective : CS is examined on its
possible uses and scopes, as for example CS in society, science and tech-
nology, education and career perspectives, and from a personal perspec-
tive. Students are expected to reach a general overview of CS.

Theme B: Basic concepts and skills : for this theme students are ought
to acquire adequate knowledge and skills pertaining to hardware, soft-
ware, organization, as well as to data, and information and communica-
tion.

Theme C: Systems and their structures concerns general information is-
sues, various types of data processing systems, and the situations where
these are normally used.

Theme D: Application in context is devoted to practice. Students are
introduced to system development and project management, including

6 Chapter 1: Introduction

their social aspects, information issues the development of IT applica-
tions at all kinds of institutions, enterprises and application areas.

These four domains are divided in 53 sub-domains, but the level of depth and
understanding that students are supposed to achieve is not specified. A gen-
eral guideline is that for HAVO students the emphasis should be placed on
practical work, while for VWO students the approach should be more abstract
and theoretical.

Dutch teachers are granted quite much freedom in following the guidelines for
the curriculum, being the level of depth and understanding not really explic-
itly stated. Also, the subject has no central level examination (while all the
major disciplines have), but only at school level. The school exam covers all
the topics in the four themes.

1.1.3 Dutch secondary CS teachers

When CS was first introduced at secondary school level in 1999, one of the
major concerns was the lack of trained teachers who could teach this subject in
an adequate manner and at an adequate level. A solution was offered with the
introduction of the so called CODI-traject (Consortium for Retraining Teach-
ers towards Computer Science Education; in Dutch: Consortium Omscholing
Docenten Informatica), a training program equivalent to a first year of a bach-
elor program, with content matter from CS and pedagogy of CS. In the period
between 1998 and 2005 teachers wishing to teach CS, with the prerequisite
to be computer literate at a sound level and only if licensed teacher in any
discipline, could attend this two year course (roughly 45 ECTS) comprising
the subjects listed in Table 1.1 (Grgurina, 2008).

From 2006 the first official Master programs of Computer Science Education
were offered by five universities. To attend such course, prospective teachers
are expected to have completed at least a Bachelor’s degree in Computer
Science, guaranteeing a solid disciplinary background.

1.1: Background to the study 7

Course ECTS

Orientation on Informatics 3.5
Computer Architecture and Operating Systems 0.7
Visual programming with Java 5.7
Information Systems: Modeling and Specifying 5
Databases 0.7
Telematics 3.5
Software Engineering 5
Human-Machine Interaction 1.4
Programming Paradigms and Methods of Infor-
mation System Development

1.4

Didactics of Informatics 5.7
Informatics Projects 2.8
Practical Teaching Assignment 10

TOTAL 45.4

Table 1.1: CODI program

1.1.4 Dutch scenario

At the moment the Netherlands counts on a total of 550 secondary schools
around 350 CS teachers, most of whom did not receive a formal teacher train-
ing in CS, but attended the in-service CODI course (Schmidt, 2007b). There
is also an unknown number of CS teachers who have not attend the CODI
course, neither have a CS degree. The common scenario is that there is only
one CS teacher per school (in case a school offers CS). Considering the total
amount of secondary schools, it means that only around the 65% of schools
provide a CS curriculum. The majority (67%) of these teachers in 2007 was 50
years old, or more, meaning towards the end of their career by far. Also the
number of new prospective teachers registering at the Master program is not
enough, around 10 new students per year in the whole country, to counterpart
the national needs (Schmidt, 2008). And from the students completing the
training is not certain whether they will all start a career as teachers.

Concluding, the situation of CS at secondary level in the Netherlands presents
some weak points such as: a curriculum that does not describe the level of
depth and understanding students are expected to attain, a lack of a national
examination for this subject to guarantee its quality, a large number of Dutch
CS teachers without a formal CS education (e.g. Bachelor’s degree) and, in

8 Chapter 1: Introduction

the near future, an insufficient number of CS teachers to cover the national
needs. Taking into consideration the situation described, actions for improve-
ment are sought, such as improving the state of the subject in the curriculum,
having the subject examined at central level, better formulated learning ob-
jectives, high quality learning materials, tailor made actions to support CS
Dutch teachers’ needs (Van Diepen et al., 2011).

1.2 Theoretical background

One of the ways of improving the teaching of a certain topic is to improve
teachers’ special knowledge of the content of that topic, which Lee Shulman
(1986, 1987) defines as Pedagogical Content Knowledge (PCK). PCK is that
expertise that allows teachers to represent, in an effective way, the subject to
their students (Shulman, 1986) and is defined as:

The ways of representing and formulating the subject that make
it comprehensible to others (Shulman, 1986, p. 9).

There is a difference between knowing a topic (content knowledge) and being
able to teach it. In a more detailed description, when a CS teacher has devel-
oped PCK it means that s/he knows ‘why to teach CS’, ‘what CS topics should
be taught’, ‘how CS could be taught’ and ‘the difficulties students encounter
while learning CS’ (Grossman & Howey, 1989; Grossman, 1990). This means
that PCK is not just merely reformulating a subject, but taking into accounts
also other aspects, such as extracurricular knowledge, students’ difficulties or
other factors influencing the teaching of a topic. Teachers need strong dis-
ciplinary background (content knowledge) to assure a full understanding of
the subject. To be able to recognize different students’ difficulties, miscon-
ceptions and learning needs specific to CS, the teacher will also need strong
pedagogical knowledge. Also, because the teacher needs to find different forms
of reformulation and representation teachers also need several years of teach-
ing experience to be sure s/he’ll gather sufficient knowledge about possible
scenarios. Summarizing, PCK is that special amalgam of deep content knowl-
edge and deep pedagogical knowledge, which results in a specialized knowledge
around a subject that grows with the years of teaching experience, because:

1.3: Definition of the problem and research questions 9

there are no single most powerful forms of representation, the
teacher must have at hand a veritable armamentarium of alter-
native forms of representation, some of which derive from research
whereas others originate in the wisdom of practice. Pedagogical
content knowledge also includes an understanding of what makes
the learning of specific topics easy or difficult: the conceptions
and preconceptions that students of different ages and backgrounds
bring with them to the learning of those most frequently taught
topics and lessons. If those preconceptions are misconceptions,
which they so often are, teachers need knowledge of the strate-
gies most likely to be fruitful in reorganizing the understanding of
learners, because those learners are unlikely to appear before them
as blank slates (Shulman, 1986, p. 9)

The importance of this construct has been immediately recognized and ex-
plored in several disciplines, such as mathematics, science, chemistry, physics,
language and also in computer science. (Carpenter, Fennema, Peterson, &
Carey, 1988; Loughran, Gunstone, Berry, Milroy, & Mulhall, 2000; Van Driel,
Verloop, & Vos, 1998; Grossman & Howey, 1989; Woollard, 2005). Knowledge
of the PCK of a subject has several practical advantages, such as allowing
scholars to improve teacher training courses, assess the quality of a subject,
assess teachers’ performance and help those who need support, improve and
assess teaching material, and provide guidelines for curriculum and textbook
authors. To be able to benefit from the knowledge of this construct in a
subject, the first efforts should be deployed to portray such knowledge.

1.3 Definition of the problem and research questions

As introduced earlier, the Netherlands is facing big problems in delivering CS
at secondary level. From a survey conducted by Schmidt (Schmidt, 2007b),
mostly Dutch CS teachers have weak disciplinary background and quality
monitoring of the subject is not achievable, because the subject is not cen-
trally examined. Problems are so complex that Informatics education is at
a crossroad, facing what Van Diepen and colleagues call the Dutch dilemma
(Van Diepen et al., 2011). Dutch CS risks disappearing from the school cur-
riculum, because no clear solutions to solve these problems are available, de-
spite the efforts made. The approach proposed in this book is an attempt to
specify the PCK of CSE, or at least part of it. The concept of PCK is then

10 Chapter 1: Introduction

used as a framework to assess the Dutch situation and provide local solutions.
One reason to choose PCK is that a deep and broad PCK is important and
necessary for effective teaching (An, Kulm, & Wu, 2004; Magnusson, Krajcik,
& Borko, 1999). Another reason to study the PCK of a subject is to enable
teacher training centers to improve their programs (Lapidot & Hazzan, 2003)
or help improving the quality of textbooks, in order to provide help to those
teachers who are missing a solid CS background. By providing better teaching
material and by improving teacher trainer courses it is aimed to offer possible
tailor made solutions to the problems described before.

In order to be able to use PCK as a framework to improve a subject, PCK

should be first described. As aforementioned, CS is a relatively young disci-
pline, and CSE is a new subject in the secondary school curriculum as well as
in teacher education, in an international perspective as well as in the Dutch
situation, therefore its PCK is merely undefined and only vaguely described.
The first aim of the research described in this book is to understand to what
extent the PCK of CS has already been explored, by analysing the literature.
The second aim is to bridge the gap evidenced in the literature by portraying
the PCK of this young discipline, by inviting experienced teachers with solid
disciplinary background take part into this research. From the scenario de-
scribed above, it is assumed that there are hardly any teachers with developed
PCK of CS in the Netherlands, due to the lack of disciplinary background or
to the lack of teaching experience, so the need to also include teachers from
abroad. Because most Dutch teachers are assumed to have low PCK, inter-
est is also focused on how teaching material can support teachers’ developing
PCK. Teaching material is the focus of the third study of this book, where
knowledge of PCK of CS is used to analyze Dutch textbooks and to evaluate
to what extent they can support teachers’ developing PCK of CS. It is not
implied that textbooks might have PCK, being this construct specific only to
teachers, rather it is investigated whether textbooks authors represents the
different aspects of PCK in the text. The last aim of this book is to assess
Dutch teachers’ PCK in order to portray the current scenario and compare
it with the results of Schmidt’s survey (Schmidt, 2007b), and finally suggest
possible ad hoc possible solutions to one of the problems outlined: assumed
Dutch CS teachers’ weak PCK.

In this research project it has been decided to focus on only one of the different
topics of CS: programming. Focusing on one topic would allow an in-depth
analysis which seems more appropriate than a rather global description of a

1.4: Structure of the dissertation 11

number of topics. The reasons for choosing programming is that this is one
of the core topics of a CS curriculum in both secondary and higher educa-
tion, and is considered by many to be a difficult topic to learn and to teach.
The term programming is used to refer to that topic through which secondary
school students are introduced to computer programming, also present in the
Dutch curriculum for CS (Appendix A). No specific programming languages
(e.g. Java, Python, etc.) are referred, because these are considered to be
means and tools to achieve the learning and teaching of programming. Sec-
ondary school students should be taught programming concepts independent
of specific applications and programming languages (Stephenson et al., 2005;
Szlávi & Zsakó, 2006).

Taking into consideration the different aims described earlier, this study fo-
cuses on the following research questions:

1. To what extent is it possible to recognize aspects of Pedagogical Content
Knowledge of programming for secondary education in current litera-
ture?

2. What is the Pedagogical Content Knowledge of programming in the con-
text of secondary school education?

3. To what extent is it possible to identify the Pedagogical Content Knowl-
edge of programming in Dutch secondary school textbooks?

4. What is Dutch teachers’ Pedagogical Content Knowledge of program-
ming for secondary school?

These questions will be elaborated in the next chapters in greater detail.

1.4 Structure of the dissertation

The research project presented in this book consists of five chapters (see Table
1.2 for an overview). First a literature review study reveals to what extent
previous studies uncovered the PCK of programming for secondary school.

12 Chapter 1: Introduction

The results of this study are presented in Chapter 2, with the title “Teaching
programming in secondary school: a pedagogical content knowledge perspec-
tive”. This chapter presents the answer to the first research question. In the
second part a research instrument to portray PCK is introduced and the PCK

of programming is unveiled. The results, gathered in an international scenario,
are presented in Chapter 3, with the title “Portraying the pedagogical content
knowledge of programming for secondary school”, and describes the answer to
the second research question. In following part of this study, the results of the
second study are used to develop a research instrument to assess textbooks
in respect to the different aspects of PCK that teachers might need in teach-
ing material. The instrument is then used to assess three Dutch textbooks
of secondary CS, in terms of PCK. The results of this study are presented in
Chapter 4, with the title “Programming: teaching material and Pedagogical
Content Knowledge”, providing the answer to the third research question. In
the last part of this study, the results of the second and third study are used to
develop a research instrument to assess Dutch teachers’ PCK of programming.
The results, presented in Chapter 5, with the title “Programming: teachers
and Pedagogical Content Knowledge” are the answer to the fourth research
question. The general conclusions and discussion to this research project are
examined in the last chapter, Chapter 6.

1.4: Structure of the dissertation 13

Table 1.2: Schema representing the four parts of research project, in respect
of the time span and the chapters of the thesis

14 Chapter 1: Introduction

15

Chapter 2

Teaching Programming in
Secondary School: a

Pedagogical Content Knowledge
Perspective 1

Abstract

The goal of this literature study is to give some preliminary answers to the
questions that aim to uncover the Pedagogical Content Knowledge (PCK) of
Informatics Education, with focus on programming. PCK has been defined as
the knowledge that allows teachers to transform their knowledge of the sub-
ject into something accessible for their students. The core questions to uncover
this knowledge are: what are the reasons to teach programming; what are the
concepts we need to teach programming; what are the most common difficul-
ties/misconceptions students encounter while learning to program; and how
to teach this topic. Some of the answers found are, respectively: enhancing
students’ problem solving skills; programming knowledge and programming

1Published as: Saeli, M., Perrenet, J., Jochems, W.M.G., & Zwaneveld, B. (2011). Teach-
ing Programming in Secondary School: a Pedagogical Content Knowledge Perspective. In-
formatics in Education, vol. 10, no 1, 73-88.

16 Chapter 2: Literature Review

strategies; general problems of orientation; and possible ideal chains for learn-
ing computer programming. Because answers to the four questions are in a
way not connected with each other, PCK being an unexplored field in Infor-
matics Education, we need research based efforts to study this field.

2.1 Introduction

The 21st century is characterized by the ubiquitous presence of technology in
everyday life. New generation students are surrounded by computer related
instruments and will possibly do a job that has not been invented yet. Com-
puting succeeded to conquer most of the aspects of our society and, in order
to fit in, people need to be versatile and adaptable to modern and future tech-
nology. This scenario emphasizes the need to provide an education that can
offer students and future adults the ability to understand and work with com-
puter related instruments. The aim of Computer Science Education Research
(CSER) is to improve the quality of the teaching and learning of the topics rel-
ative to this computerized world. A review of the literature (Holmboe, McIver,
& George, 2001) evidences the existing need to broaden the efforts of infor-
matics educators to contribute to the knowledge of why informatics should be
taught at all, how informatics should be taught, what topics of informatics
should be taught, and for whom the teaching of informatics is meant. In this
literature review we are particularly interested in answering these questions
relative to a specific topic of informatics: programming.

In this article we refer with the term of informatics as the computer science
education delivered to upper secondary school students (14 to 18 years old).
There seems to be no distinction in the use of these two terms in the CSER
community.

The answers to the four questions introduced lead to the understanding of the
concept called Pedagogical Content Knowledge (PCK) (Shulman, 1986). PCK

is a concept that combines the knowledge of the content (e.g. maths, infor-
matics, etc.) to the knowledge of the pedagogy (e.g. how to teach maths, how
to teach informatics, etc.), giving insights into educational matters relative to
the learning and teaching of a topic. Teachers with good PCK are teachers
who can transform their knowledge of the subject into something accessible
for the learners. Studies portraying the PCK of programming will enable in-

2.2: Programming Education 17

formatics teacher trainings to improve their programs (Lapidot & Hazzan,
2003), boosting in this way their future teaching. There is evidence of the
international interest (Stephenson et al., 2005; Ragonis, Hazzan, & Gal-Ezer,
2010; Woollard, 2005) on this topic, where the first efforts have been made to
achieve the goal to portray the PCK of informatics.

PCK is a construct specific to teachers’ knowledge; therefore teachers are the
focus of this article. There are other aspects of the teaching and learning of
programming that are as important as teachers’ knowledge. Examples could
be gender issues, mostly dealing with motivations that bring boys and girls
to enroll in informatics courses; and students’ motivation, which is part of
general pedagogical knowledge. However, these topics of interest, despite very
important, are not the focus of this paper.

2.2 Programming Education

Programming is only one of the topics concerning the teaching of informat-
ics. In the Netherlands, informatics has been defined as a new generation
discipline, because it is linked with Mathematics, Physics, Engineering, Lin-
guistics, Philosophy, Psychology, Economy, Business, and Social Sciences in
general (Mulder, 2002). If on one hand this complexity results in a relatively
difficult job for researchers in this field, on the other it is possible to rely on the
research achievements already obtained in the above mentioned disciplines. As
Guzdial suggests, the basic mechanisms of human learning haven’t changed
in the last 50 years (Guzdial, 2004) and we can prevent the reinvention of
the wheel by looking at research in education, cognitive science and learning
sciences research (Almstrum, Hazzan, Guzdial, & Petre, 2005).

A popular definition is that programming is the process of writing, testing,
debugging/troubleshooting, and maintaining the source of code of computer
programs (Wikipedia, 2007). We will later see that programming is a much
broader topic than that described by the latter definition, as for example the
ability to solve a complex problem with a top-down approach. Programming
is a skill that is considered hard to learn and even after two years of instruc-
tion, the level of programming understanding is low (Kurland, Pea, Clement,
& Mawby, 1989). However, if supported by suitable teaching strategies and

18 Chapter 2: Literature Review

tools it can be mastered by pupils to some extent (Papert, 1980).

In this literature study we refer to programming as the topic used to intro-
duce upper secondary school students to computer programming. We will not
refer to specific programming languages (e.g. Java, Python, etc.), because we
consider these as a mean/tool to achieve the teaching of programming. Sec-
ondary school students should be taught programming concepts independent
of specific applications and programming languages (Stephenson et al., 2005;
Szlávi & Zsakó, 2006).

2.3 Pedagogical Content Knowledge

Pedagogical Content Knowledge (PCK), a concept introduced by (Shulman,
1986, 1987), is defined as:

The ways of representing and formulating the subject that make
it comprehensible to others (Shulman, 1986, p.9).

There is in fact a difference between knowing how to program and being able
to teach programming. The classroom, where learning and teaching occur, is
a complex environment in which several processes and actions happen. But
when talking about PCK a special attention should be spent on students’
learning. An aspect of PCK concerns the need teachers have to represent and
formulate the subject, so that comprehension can occur. From the literature
we know that different learners have different learning styles (Rayner & Rid-
ing, 1997), and needs. This implies that:

there are no single most powerful forms of representation, the
teacher must have at hand a veritable armamentarium of alter-
native forms of representation, some of which derive from research
whereas others originate in the wisdom of practice. Pedagogical
content knowledge also includes an understanding of what makes
the learning of specific topics easy or difficult: the conceptions

2.3: Pedagogical Content Knowledge 19

and preconceptions that students of different ages and backgrounds
bring with them to the learning of those most frequently taught
topics and lessons. If those preconceptions are misconceptions,
which they so often are, teachers need knowledge of the strate-
gies most likely to be fruitful in reorganizing the understanding of
learners, because those learners are unlikely to appear before them
as blank slates (Shulman, 1986, p. 9).

An example in informatics could be the teachers’ knowledge about the con-
cept of programming structures, and the need to formulate their knowledge
in a way that can be easily understood by their students. All research in this
domain agrees on claiming that PCK is a knowledge that develops with years
of teaching experience (Rovegno, 1992; Grossman, 1990; Loughran, Milroy,
Berry, Gunstone, & Mulhall, 2001; Morine-Dershimer & Kent, 1999; Van Driel
et al., 1998; Sanders, 1993), because teachers need to build up ”a veritable
armamentarium” of representations (Shulman, 1986).

The concept of PCK has been largely assimilated in educational research
(Carpenter et al., 1988; Cochran, DeRuiter, & King, 1993; Van Driel et al.,
1998; Peterson, Fennema, Carpenter, & Loef, 1989; Rich, 1993; Rovegno,
1992; Sanders, 1993) and some scholars have reformulated it (Grossman &
Howey, 1989; Grossman, 1990; Hashweh, 2005; Marks, 1990; An et al., 2004;
Turner-Bisset, 1999). A deep and broad PCK is important and necessary for
effective teaching (An et al., 2004; Magnusson et al., 1999). Moreover, Hash-
weh (Hashweh, 2005) underlines how the teacher’s approach or orientation to
his or her discipline (personal beliefs) influences the teaching of a certain topic,
and might influence her/his PCK. This means that each teacher’s PCK is in a
way personal.

For the purpose of this literature study we will use the reformulation of the
concept of PCK proposed by Grossman (1989, 1990). We choose her refor-
mulation because we think that it schematizes the PCK through simple and
easy to use questions such as: why teach a certain subject?; what should be
taught?; and what are learning difficulties?. In our study we add a fourth
question, which refers to the teaching methodology: how to teach?. This last
aspect has been also lately introduced by Grossman (1990). We think that the
latter is an important aspect of the PCK of a topic because it gives an insight

20 Chapter 2: Literature Review

of what teachers actually do. The question used to uncover this aspect of PCK

is: how should the topic be taught?. By answering these four questions it will
be possible to define the PCK of a certain subject. The four questions are all
connected with each other, because the reasons to teach a topic (first ques-
tion) will influence the contents chosen to be included in the curriculum. In
addition the learning difficulties that students encounter will surely influence
the way to teach it.

2.4 Methods and Aims

This literature study has been conducted by exploring the existent literature
available. Sources include printed articles, books chapters and information
found on the Internet. The research has been conducted by using searching
engines such as Google Scholar, or by browsing references lists of other articles.
The keywords used, sometimes in combination with each other, are: “Peda-
gogical Content Knowledge”, “Teachers’ education”, “Programming (Educa-
tion)”, “Student’s misconceptions/difficulties in learning to program”, “Sec-
ondary education”, “Why to teach programming”, and “How to teach Pro-
gramming”. The choice of the articles has been mostly dictated by the search
of papers published in research journals and presenting research results, as
practice in science education research suggest. Also, papers from conference
proceedings are considered, where relatively young subjects like informatics
find the fastest way to share their results. Despite the call for people who are
active in CSER to rely on scientific papers preferably not published in con-
ference proceedings (Randolph, 2007; Lister, 2007), we found that still most
of the up-to-date literature is shared through conference papers and therefore
the need to rely on them.

The goal of this literature study is to sketch the PCK of programming, not of
specific topics (e.g. variables, functions, etc.), but referring to programming
as a subject. As instrument we use the framework introduced earlier, which
consists of the four questions (see Table 2.1).

2.5: PCK of programming 21

Why to teach

......?
What to teach

......?

Learning

difficulties

......?

How to teach

......?

PEDAGOGICAL CONTENT

KNOWLEDGE

Table 2.1: Diagram based on Grossman’s reformulation of PCK.

2.5 PCK of programming

As previously stated, the PCK of a subject is the knowledge that enables
researchers and teachers to better understand the issues related to the teaching
and learning of the subject, and consequently provide a better teaching. In
this section we give preliminary answers to the core questions uncovering the
PCK of programming, using the method described above.

2.5.1 Why teach programming?

What are the reasons to teach programming at high school level for non-major
students? In a way, this question could also be reformulated as “why should
students learn to program at all?”. The answer, however, is interesting from a
teacher’s perspective. If this literature study would focus on students rather
than teachers, than the question should be rephrased as “why should I, as
student, learn to program?”. This question, if properly answered, would also
help teachers to motivate students to enrol in informatics courses in a first
place. However, this is not the goal of this paper.

Soloway (1993) answers this question by reporting “respected folks’ opinions”
such as those by Seymour Papert and Alan Kay, arguing that in learning
to program one learns powerful problem-solving/design/thinking strategies.

22 Chapter 2: Literature Review

This is because when students program, they first need to find a solution
to a problem, and then they need to reflect on how to communicate their
solution to the machine, using syntax and grammar, through an exact way of
thinking (Papert, 1980; Szlávi & Zsakó, 2006). The latter contributes to the
students’ natural language skills, because they are required to learn to tell,
in an unambiguously way, what they want the computer - an unintelligent
machine - to perform (Hromkovič, 2006). Programming involves the ability to
generate a solution to a problem. Generating solutions means that one of the
learning outcomes is the ability to solve problems and also, if the problem is
a big problem, the ability to split the problem into sub problems and create a
generalizable central solution. In addition, the student achieves the ability to
create usable, readable and attractive solutions.

Problem solving skills can be deployed to solve ‘realistic’ problems in vari-
ous domains together with the computing goals (Sims-Knight & Upchurch,
1993; Dagiené, 2005). Transferability of these and other skills is the argument
that brought Feurzeig and his colleagues (Feurzeig, Papert, Bloom, Grant, &
Solomon, 1970) to introduce programming as a way to help students to un-
derstand mathematics concepts such as: rigorous thinking, variable, function,
decomposition, debugging and generalization. Syslo and Kwiatkowska (2006)
went further by exploring those mathematics concepts that can benefice from
programming, but which still have to be included in the (Polish) secondary
school curriculum. Besides transferability of skills, when learning to program
students also acquires a sense of mastery over a technological instrument and
establishes contact with some of the deepest ideas of different disciplines such
as: science, mathematics and the art of intellectual model building (Papert,
1980). Moreover, as we anticipated earlier on, programming is a new gen-
eration subject, which brings together pieces from different areas such as:
linguistics, mathematics and economics (Mulder, 2002). This completeness
gives students the opportunity to be faced with a multi-disciplinary subject
that connects different aspects in a single class. Students could experience the
opportunity to delve deeper into previously acquired knowledge, as for exam-
ple Resnick and Ocko’s students (1990) did with the physics concept of friction.

2.5.2 What should be taught?

By answering this question we aim to understand what are the core concepts
of programming students need to learn. Decisions about what it is needed

2.5: PCK of programming 23

to teach are usually taken by curriculum and examinations designers. In in-
formatics efforts to define a suitable curriculum have been made since the
late ’60s (Atchison et al., 1968). However we should consider the different
curricular representations (Akker & Voogt, 1994) including: the ideal cur-
riculum, which refers the original ideas and intentions of the designers; the
formal curriculum, denoting the written curriculum (documents, materials);
the perceived curriculum, indicating the interpretation of the users, especially
the teachers, of the curriculum; the operational curriculum, identifying the
actual instruction process in the classroom; and the experiential curriculum,
which represents students’ reactions and outcomes. In this literature study
we combine topics suggested from the ideal, the formal and the perceived cur-
riculum (e.g. Gal-Ezer & Harel, 1999; Tucker et al., 2003; UNESCO, 2002;
Tucker, 2010), because we think that these together form a more complete
and realistic view of what happens in a class.

Rephrasing Romeike (2008), the core of programming is all about problem
solving and creating a program as solution. In programming we can distin-
guish two kinds of knowledge, namely the program generation and the program
comprehension (Van Merriënboer & Paas, 1987; Robins, Rountree, & Roun-
tree, 2003; Mannila, 2007). In the first case, the programmer analyses the
problem, produces and algorithmic solution, and then translates this algo-
rithm into a program code. This means that students should be coached in
the process of problem solving, reflection on this process, and in the develop-
ment of algorithmic ways of thinking (Feurzeig et al., 1970; Resnick & Ocko,
1990; Sims-Knight & Upchurch, 1993; Dagiené, 2005; Breed, Monteith, &
Mentz, 2005; Hromkovič, 2006; Futschek, 2006; Ginat, 2006). As for program
comprehension, the programmer is asked to give a demonstration of her/his
understanding of how a given program works. We consider then the teaching
in secondary school of program generation and program comprehension very
important.

Programs are a set of instructions that computers execute in order to perform
a task and are written in a programming language. Usually curriculum de-
signers leave the choice of the programming language to teachers, and among
secondary teachers there seems to be heterogeneity in the choice of program-
ming languages/paradigms. In the process of learning to program, Govender
(2006) identifies, from a technical point of view, three main aspects students
need to learn: data, instructions and syntax. Data refers to the concepts of

24 Chapter 2: Literature Review

variables and data types for procedural programming, and objects involving
attributes and actions for OO programming. As for instructions, the needed
understanding is about control structures and subroutines for the procedural
programming, and interacting objects and methods in the case of OO program-
ming. Syntax denotes the group of rules that determine what is allowed and
what is not within a programming language. Syntax rules determine what it is
called the vocabulary of the language, how programs can be constructed using
techniques such as loops, branches and subroutines. Govender’s classification,
however, does not take care of the modularity and abstraction aspects of pro-
gramming, as for example Abelson and Sussman (1996) do. They identify
three main aspects: primitive expressions, representing the simplest entities
that a language is concerned with; means of combination, by which compound
elements are built from simpler ones; and means of abstraction, by which com-
pound elements can be named and manipulated as units. These three aspects
deal with two kinds of elements: data and instructions. By using these three
mechanisms in combination with each other it is possible to formulate complex
programs, starting from simpler ones.

A final aspect, equally important, is the semantic of a program, also referred
to as the meaning of a program. A semantically correct program is a program
that performs the required task. Programs written with different syntax can
perform the same semantic task.

2.5.3 What are the learning difficulties?

In this section we deal with students’ different needs and difficulties. Because
of the complexity of individuals, different students will have different needs
and difficulties. For this reason some of the studies presented might result
contradictory, but in fact they present the different realities of different stu-
dents.

It has been stated several times that programming is a difficult task to achieve
(Van Diepen, 2005; Govender, 2006) and often novice programmers hold mis-
understanding and misconceptions. In early stages of the learning process a
correct program often results as an unexpected surprise (DuBoulay, O’Shea,
& Monk, 1989). By answering this question we aim to understand the most

2.5: PCK of programming 25

common problems students have while learning to program. From this knowl-
edge we can attempt to find solutions to prevent or guide these problems. A
brief exploration of the most common problems is given.

DuBoulay (1989, p. 283-284) identifies five kinds of difficulties/areas which
have a certain degree of overlap in programming learning/teaching, concerning
aspects such as motivation and technical aspects. Students’ difficulties are: 1)
orientation, finding out what programming is useful for and what the benefits
to learn to program are; 2) the notional machine (understanding the general
properties of the machine that one is learning to control) and realizing how the
behaviour of the physical machine relates to the notional machine; 3) notation,
which includes the problems of aspects of the various formal languages such
as syntax and semantics; 4) structures, understanding the schemas or plans
that can be used to reach small-scale goals (e.g., using a loop); 5) mastering
the pragmatics of programming (learning the skill to specify, develop, test and
debug a program using the available tools).

From a relationship student-computer point of view, Pea (1986) identifies the
existence of persistent conceptual language-independent ’bugs’ in how novices
program and understand programs. The starting point of the analysis of con-
ceptual ’bugs’ is that students have a tendency to converse with a computer
as if it was a human (considered also as the superbug), with consequences
such as expecting the computer to interpret students’ conversations. Pea dis-
tinguishes three different kind of conceptual ‘bugs’: the parallelism bug refers
to the assumption that different lines in a program can be active or somehow
known by the computer at the same time, or in parallel. Another bug is the
intentionality, for which students believe that computers “go beyond the in-
formation given” in the lines of programming code being executed when the
program is run. The last bug, egocentrism, refers to students’ assumption that
there is more of their meaning for what they want to achieve in the program
than is actually present in the code they have written (e.g. “Don’t print what
I say, print what I mean!”). Students’ conceptions do not guide their attention
to consider these problems as relevant reasons for their programs not to work
as planned.

Another problem students could face is the paradigm shift (Kölling, 1999b,
1999a; Mazaitis, 1993) in cases where their teacher proposes them to learn
more than one programming language with different paradigms (e.g. proce-

26 Chapter 2: Literature Review

dural and object oriented), although this is not advisable in an introductory
course at secondary school level. Students usually encounter problems in pass-
ing from one paradigm to another, especially from the procedural to the object
oriented (but not the vice versa).

Regarding the acquisition of problem solving skills, several papers explore the
different difficulties students encounter while trying to generate a solution for
a given problem. Novices (Ginat, 2006) tend to maintain local, limited-insight
points of view of the problem, leading often to undesirable, erroneous out-
comes. It seems that novices fail to realize the importance of a global point
of view. Also Weigend (2006) observed how, even when finding a mental or
practical solution to a problem, students fail to write a correct program that
does the job. The reason might be that students are not trained to translate
mental intuitions in a communicative way, or might be connected with the se-
mantic of a program. Semantic is also considered to be a problematic aspect of
programming. This is because it requires the student to put together different
parts of a program (variables, expressions, statements, control structure, ob-
jects and methods) into a working solution. Semantic is closely related to the
debugging activity and the related correctness of a program (Pea & Kurland,
1983), a concept introduced by Dijkstra (1968, 1972). When teachers choose a
programming language offering a more complex syntax, students will be faced
with both semantic and syntax difficulties (Mannila, Peltomäki, & Salakoski,
2006).

2.5.4 How should the topic be taught?

By answering this question we aim to understand what the best approaches to
introduce students into the learning of programming are, not only to prevent
the above mentioned difficulties/misconceptions, but also to hook students’
motivation in an effective and engaging way. As in the previous section, be-
cause of the complexity of individuals, different students will have different
needs and difficulties. For this reason some of the studies presented might
report contradictory results, but actually they propose different teaching ap-
proaches to meet different students’ learning needs. We cannot conclude which
one method is the best, but only highlight those methods which are considered
best in different circumstances. This is also directly connected with Shulman’s
definition, which considers PCK as an armamentarium/repertoire of represen-

2.5: PCK of programming 27

tations.

Hromović (2006) suggests that programming is seen as a skill to communicate,
in an unambiguously way, a set of instructions to an unintelligent computer.
If this process could take place by means of a relatively simple programming
language (e.g. Python) offering a simpler syntax than other commonly used
programming languages, students could focus more on the semantic aspect of
the program and produce fewer syntax errors (Mannila et al., 2006). Another
way to start this learning process could be the use of practical examples, such
as rewriting recipes for cooking for a cooking machine (Hromkovič, 2006).
The process should lead students to write at first simple programs, and then
combine the simple solutions together to obtain solution to more complicated
problems (Abelson & Sussman, 1996). This approach has the twofold purpose
to let the student not only experience the historical development, but also
learn the concepts of modularity and reusability. Writing a set of instruc-
tions to solve a problem is the definition of algorithm. In other words, writing
code for a correct mental solution. To achieve algorithmic thinking students
should solve many problems, which should be chosen independently from any
programming language (Futschek, 2006), and should follow some pedagogical
principles (Romeike, 2008). In fact, algorithmic thinking can be successfully
introduced without the aid of a computer at all (Bell, Witten, & Fellows,
1998; Curzon & McOwan, 2008). However, it happens that students fail to
translate their correct reasoning into an unambiguous set of instructions for
the machine. To overcome this, students could be coached in analysing their
intuitions and connecting them to the designated task (Weigend, 2006).

Linn and Dalbey (Linn & Dalbey, 1989, p. 58-62) suggest an ideal chain for
learning computer programming, which gradually goes from program compre-
hension and ends with program generation. The chain has three main links:
single language features, design skills, and general problem-solving skills. Ac-
cording to Linn and Dalbey (1989) the ideal chain should start with the under-
standing of the language features, knowledge that can be assessed by asking
students to reformulate or change a language feature in a program so that
the program does something slightly different. The second link of the chain
consists of design skills, which are a group of techniques used to combine lan-
guage features to form a program. This chain link also includes templates
(stereotypical patterns of code that use more than a single feature) and proce-
dural skills (used to combine templates and language features in order to solve

28 Chapter 2: Literature Review

new problems, including planning, testing and reformulating). The third link
of the chain, problem-solving skills, is useful for learning new formal systems.
Problem-solving skills can be assessed by asking students to solve problems us-
ing an unfamiliar formal system such as a new programming language. Though
this chain of cognitive accomplishment requires an extensive amount of time
it forms a good summary of what could be meant by deep learning in intro-
ductory programming (Robins et al., 2003).

To provide novices with a framework for understanding, some model or de-
scription of the machine should be introduced, where a model should be de-
signed around each group of novices, distinguished either for their age, back-
ground or kind of studies (DuBoulay, 1989). Students working with such
models excelled at solving some kind of problem more than students without
the model (Mayer, 1989). An example could be the metaphor of a black box
inside the glass box as a way to present computing concepts to novices. The
reason is that novices start programming with very little idea of the properties
of the notional machine implied by the language they are learning.

The previous approaches mostly deal with the difficulties and misconceptions
presented in the previous section. If we look at approaches which aim at
teaching programming in an engaging way, we should refer to the family of
programming environments and suited programming languages developed with
the main goal to introduce students into the programming practice in active
and motivating scenarios. These environments have been specially designed
to answer the difficulties students usually encounter when learning to program
with normal programming languages (Mannila et al., 2006). The list is quite
long and the first efforts have been already made in the early ’70s. Among
the most popular we have Logo and its derivates (Feurzeig et al., 1970; Pa-
pert, 1980; Resnick & Ocko, 1990), initially designed to teach mathematics,
which has the focus to enhance problem solving skills; Scratch (Resnick et al.,
2009) which, based on a metaphor of building bricks and offering much of the
same functionality as Logo, allows students to create syntactically correct pro-
gram, and leaves the students to focus on the semantic aspect; and finally the
more modern Alice, Greenfoot and Gamemaker (respectively Cooper, Dann,
& Pausch, 2003; Kölling & Henriksen, 2005; Overmars, 2004). These learning
environments find their basis in Piaget’s model of children’s learning, where
students are fostered to build their own intellectual structures, if provided
with the right material. It is then the teacher’s task to find suitable sup-

2.6: Conclusions and Implications 29

port/stimuli/learning material to use with each of these tools. Some of these
languages and environments, however, might not include some structures or
topics important to the learning of programming (Murnane & McDougall,
2006).

2.6 Conclusions and Implications

In the previous section we gave the first preliminary answers to the questions
that aim to uncover the PCK of programming. The first question aims to
understand what the reasons to teach programming are. Preliminary answers
to our first question are the following: enhancing students’ problem solving
skills and offering the students a subject, which includes aspects of different
disciplines; use of modularity and transferability of the knowledge/skills; and
the opportunity to work with a multi-disciplinary subject.
The second question aims to list the concepts/aspects that a programming
curriculum should include. Preliminary answers point to the following con-
cepts/aspects: programming knowledge, which refers to the knowledge of the
data, instructions and syntax of a programming language, but also primitive
expression, means of combination and means of abstraction; programming
strategies, which identify the way syntax is used to create programs to solve
problems; and programming sustainability, which refers to the ability to create
user friendly and attractive program/software that takes care of ethical and
privacy issues.
The third question aims to answer issues relative to the various difficulties
students encounter while learning to program, such as a general problem of
orientation; difficulty to instruct the machine about the solution of a problem;
and tendency to converse with a computer as if it was a human. Regarding
the solution of a problem, students tend to maintain a local, limited point of
view, failing to find a suitable solution.
The fourth question addresses these difficulties, by discussing teaching meth-
ods such as possible and effective teaching sequences; offering a simple pro-
gramming language so students can focus on the syntax; choosing several
problems to solve, which should be carefully chosen, independently from any
programming language, in order to achieve algorithmic thinking; and teach-
ing by means of suited programming languages or programming environments.

30 Chapter 2: Literature Review

In most of the cases these four ‘answers’ are not connected with each other,
because no explicit attempt to uncover the PCK of programming has been
done before, neither on higher or secondary education. The task in portraying
the PCK of programming will be to find the answers not only from a general
point of view (programming in general), but from the perspective of each of
the most frequently taught topics, which are at the heart of learning to pro-
gram (e.g. variables, functions, etc.). An example will be answering the four
questions regarding the teaching of problem solving skills. Despite the fact
that some of these answers are available for some concepts, most have still to
be studied. Therefore we propose a call for research to portray the PCK of the
most commonly taught programming topics.

This literature study constitutes the first phase of a PhD project, which is
still in progress. In the second phase it will be attempted to uncover the PCK

of programming for secondary education from an international perspective,
through the use of research instruments already deployed in other subjects
(Loughran et al., 2001). In the third phase an instrument will be developed to
assess to what extent an informatics textbook can support teachers with low
PCK. While the fourth phase of the project will consist of the formulation of
an approach to assess Dutch teachers’ PCK. The results of this project will be
used to improve teacher training for the subject of programming.

31

Chapter 3

Portraying the Pedagogical
Content Knowledge of

Programming for Secondary
School 1

Abstract

In this article we present the results of an exploratory study to portray teach-
ers’ Pedagogical Content Knowledge (PCK) of programming for secondary
education. PCK is teachers’ knowledge about teaching and learning gained
through disciplinary and pedagogical training and practice. Our research ques-
tions are: What is the PCK of programming in the context of secondary school
education?; and is there a difference between teachers’ PCK as portrayed in
this study and the teaching theories and teaching practice found in the lit-
erature? Data was collected in four countries: Italy, Belgium, Lithuania and
the Netherlands, using semi-structured group interviews. In terms of the first
research question, the results constitute the first effort to portray the PCK

1This chapter has been submitted for publication as: Saeli, M., Perrenet, J., Jochems,
W.M.G., & Zwaneveld, B. Portraying the Pedagogical Content Knowledge of Programming
for Secondary School

32 Chapter 3: Protraying PCK

of programming for secondary education regarding the following seven top-
ics: control structures (with focus on loops), decomposition of the problem,
problem-solving skills, parameters, algorithms, data structures and arrays.
For each topic we revealed information such as the reasons for teaching that
topic, students’ required prior knowledge and difficulties, and teaching meth-
ods. Our results were partly confirmed by literature about teaching theories
and practical advice, but also complemented the literature.

3.1 Introduction

In recent decades the topic of programming has been introduced in secondary
school curricula in several countries. Because this is a relatively new topic,
efforts are being made to provide research-based support to improve the un-
derstanding of its teaching and learning. One way to do this is by studying the
Pedagogical Content Knowledge (PCK) of this subject. PCK has been defined
as the possible ways to represent and formulate a subject that make it compre-
hensible to others (Shulman, 1986). PCK is the knowledge about the teaching
and learning of a subject that teachers gain through their disciplinary and
pedagogical training, and moreover through their teaching experience. Deep
and broad PCK is important and necessary for effective teaching (An et al.,
2004; Magnusson et al., 1999). One of the reasons to study the PCK of a sub-
ject is to enable teacher training centers to improve their programs (Lapidot
& Hazzan, 2003).

In previous work (Saeli, Perrenet, Jochems, & Zwaneveld, 2011c) a literature
study to sketch the PCK of programming for secondary school present in the
literature has been conducted. The theoretical framework used is Grossman’s
reformulation of PCK (Grossman & Howey, 1989; Grossman, 1990), in which
PCK is the answer to the following four questions: why to teach a certain
subject?; what should be taught?; what about students?; and how to teach a
certain subject? It was found that in most cases these four ‘answers’ are not
connected with each other, because no explicit attempt to uncover the PCK

of programming has been made before, neither on higher nor on secondary
education, although the construct has already been introduced in computer
science education research (Woollard, 2005; Ragonis & Hazzan, 2008). The
task in portraying the PCK of programming will be to find the answers not
only from a general point of view (programming in general), but from the per-

3.2: Method 33

spective of each of the most frequently taught topics, which are at the heart
of learning to program (e.g. variables, functions, etc.). An example will be
answering the four questions regarding the teaching of problem-solving skills,
or algorithmic thinking.

The goal of this study is to portray the PCK of programming for secondary
school with the aim of bridging the gaps identified in the previous work (Saeli
et al., 2011c). This leads us to a standard knowledge of the PCK for pro-
gramming for secondary school. We also aim to indicate possible differences
between teaching theories in the literature and teaching practices. The re-
search questions are therefore:

- What is the Pedagogical Content Knowledge of programming in the context
of secondary school education?
- Is there a difference between teachers’ Pedagogical Content Knowledge por-
trayed in this study and the teaching theories and practical advice found in
the literature?

In this literature study we refer to programming as the topic used to intro-
duce upper secondary school students to computer programming. We do not
refer to specific programming languages (e.g. Java, Python, etc.), because
we consider these as a means/tool to achieve the teaching of programming.
Secondary school students should be taught programming concepts indepen-
dently of specific applications and programming languages (Stephenson et al.,
2005; Szlávi & Zsakó, 2006).

3.2 Method

To answer the first research question and therefore to portray the PCK of
programming for secondary school we use the research instrument described
below. To answer the second research question, the results obtained through
the research instrument are categorized and then compared with the teaching
theories found in the literature.

34 Chapter 3: Protraying PCK

3.2.1 Instrument

The research instrument used for this study is an adaptation of CoRe (Con-
tent Representation), and is designed to portray the PCK of science for sec-
ondary school (Loughran et al., 2000, 2001; Mulhall, Berry, & Loughran, 2003;
Loughran, Mulhall, & Berry, 2004). CoRe is an instrument to capture the PCK

of a specific topic, and gives a narrative account providing an overview of how
teachers approach the teaching of the whole of a topic together with the rea-
sons for that approach in the form of propositions. CoRe is both a research
tool for accessing teachers’ understanding of the content as well as a way of
representing this knowledge, and is used by the researcher for schematic rep-
resentation of a number of teachers’ inputs.

As already stated, the research instrument is used to capture the PCK of a
specific topic, in which the specific topic in the context of CoRes is referred to
as the ’Big Idea‘ (for example Mulhall et al., 2003). The instrument consists
of eight questions (Loughran et al., 2004) as listed below for each Big Idea
explored.

The research instrument involves the following eight questions to be answered
by expert teachers concerning a specific Big Idea:

1. What do you intend the students to learn about this Big Idea?

2. Why is it important for the students to know this Big Idea?

3. What else do you know about this Big Idea (and you don’t intend stu-
dents to know yet)?

4. What are the difficulties/ limitations connected with the teaching of this
Big Idea?

5. What do you think students need to know in order for them to learn this
Big Idea?

6. Which factors influence your teaching of this Big Idea?

7. What are your teaching methods (any particular reasons for using these
to engage with this Big Idea)?

3.2: Method 35

8. What are your specific ways of assessing students’ understanding or con-
fusion around this Big Idea?

In the course of this study it was decided to formulate question no. 5 in
this way (S. Fincher, personal communication, August 2009), to gain further
information from teachers. The question was posed instead of the following,
which was originally included in the work by Loughran and colleagues (2001):

5a. Which knowledge about students’ thinking influences your teaching of this
Big Idea?

The reason for this choice is to be able to gain an important piece of students’
knowledge which teachers with low PCK levels may find useful. Owing to time
restriction it was decided to keep the total number of CoRe questions to eight.

Because one of the aims of this study is to fill the gaps found in the previous
study, in which Grossman’s theoretical framework was used, there was a need
to regroup the questions of the research instrument. For the context of this
study, the questions of the CoRe instrument are categorized to fall into Gross-
man’s PCK reformulation according to the table below (see Table 3.1), which
shows that Grossman’s questions are answered by grouping together one or
more of the CoRe questions.

3.2.2 Participants

Participants involved in this study belong to the category of secondary school
teachers of computer science (CS). If necessary, secondary school teacher train-
ers can also be involved in the data collection process. If there are not enough
teachers meeting the criteria in the country where the research is based, par-
ticipants from other countries can be involved. The requirement to participate
in this study is to have an already developed PCK of programming for sec-
ondary education. According to Shulman’s definition of PCK, this knowledge
grows with years of teaching experience, and must be supported by solid sub-
ject matter knowledge. For these reasons, teachers invited to take part in the
study are required to have at least five years of teaching experience and to
have at least a bachelor’s degree in computer science.

36 Chapter 3: Protraying PCK

Why to teach a certain

topic?

What to teach about a

certain topic?

What about students'

difficulties on a certain

topic?

How to teach a certain

topic?

Pedagogical Content Knowledge

- Why is it important for the

students to know this idea?

- What do you intend the

students to learn about this

idea?

- What else you might know

about this idea (that you don't

intend students to know yet)?

- What are difficulties/

limitations connected with the

teaching of this idea?

- What do you think students

 need to know in order for

them to learn this idea?

- What are your specific ways

of ascertaining students'

understanding or confusion

around this idea?

- Which factors influence your

teaching of this idea?

- WHat are teaching methods

(any particular reasons for

using these to engage with

this idea)?

Table 3.1: The eight CoRe questions categorized according to Grossman’s
reformulation.

3.2.3 Procedure

Taking the point of view that PCK is something that resides in the body of
CS teachers as a whole, a group approach is used. In this context teachers are
encouraged to think about and to share their knowledge about how to teach
particular CS content well, which they have developed through their practice
(Loughran et al., 2000).

The data collection method consists of semi-structured group interviews or-
ganized in the context of workshops. Workshops have a twofold purpose: to
serve as a method to gather data, and to provide in-service training for teach-
ers (Van Driel et al., 1998). The reason to organize workshops is to encourage
teachers to participate in a research study, by giving an opportunity of pro-
fessional development. After running a pilot study to gain familiarity with
the instrument, a time schedule to run workshops was defined. Invitations to

3.2: Method 37

experienced teachers are sent, stating that the workshop would last for two
hours. Time restriction is necessary to be able to organize group meetings
efficiently.

The workshops, involving around five teachers at a time, are videotaped. Each
workshop is divided into two parts. In the first part of the workshops, teachers
list what in their opinion are the core concepts within a subject which are at
the heart of the learning for that specific subject’. They first do this individu-
ally, and then in a group discussion. The answers are then called Big Ideas of
programming in the context of secondary education. In the second part of the
workshops teachers are given an A3 sheet representing the CoRe matrix; they
choose one or two of the Big Ideas and then for each Big Idea they answer the
eight CoRe questions introduced above (already in Table 3.1), first individu-
ally and then in group discussion. Groups are not required to reach consensus,
and disagreements in the answers to these questions underline the differences
between teachers’ views of teaching and how these influence teachers’ beliefs
and practices. Teachers choose the Big Ideas according to their level of in-
terest, and not the order of importance of the topics. Teachers should when
possible be given the opportunity to use their native languages, so they can
express their thoughts and ideas better.

3.2.4 Analysis

Each workshop is videotaped and transcribed. The data gathered through
videos and teachers’ notes is analyzed in order to fill in a group CoRe matrix
for each workshop. Teachers’ individual CoRes are also taken into considera-
tion. As often happens in group discussions, participants do not systematically
answer a list of questions, especially when these are related to each other, but
jump from one question to another, or unintentionally answer one question
while responding to another. Answers are transcribed and ordered according
to the questions to which they belong. This process is done by analyzing all
parts of the discussion among the teachers and comparing them with each of
the eight questions. If the topic of a part of the discussion corresponds to
one of the questions, it is then labeled as belonging to that question (even
though it could actually come from the discussion of a different question).
The data is finally organized in a matrix according to the CoRe sheet. Each
cell includes the answers of the teachers given in a specific workshop. For

38 Chapter 3: Protraying PCK

each workshop a list of Big Ideas and a group CoRe matrix for each Big Idea
discussed is created. Disagreements are part of the PCK repertoire and give
teachers examples of possible contrasting situations. This phase ensures that
the first research question is answered, by organizing the data in a way that
falls into the CoRe framework of PCK. Furthermore, the data obtained during
the workshops is written down in text, analyzed and organized according to
the figure presented earlier on (Table 3.1), in which the eight questions of the
CoRe matrix are categorized under Grossman’s theoretical framework. This
last step shows the results in a way that can be compared with previous work
(Saeli et al., 2011c), and that answers the second research question.

3.3 Results

In this section a selection of the data, collected in the period from May 2009
to November 2009 is reported. A selection is made because of space limits,
and this is made by selecting the data that will be discussed later. A complete
collection of all the results is presented in the technical report relating to this
study (Saeli, Perrenet, Jochems, & Zwaneveld, 2010).

3.3.1 Participants

Because it was not possible to find teachers meeting the criteria in the Nether-
lands, where this research is based, teachers from different countries were
invited. Teacher trainers were also asked to participate, to get an accept-
able number of respondents. During this study a total of 6 workshops were
organized in four different countries (Table 3.2), with a total of 31 partici-
pants. Participants in the workshops all had the opportunity to express their
thoughts/ideas in their native language. During the two Lithuanian group in-
terviews an interpreter helped the researcher to communicate with the teach-
ers. Twenty-five available and suitable teachers were found in three countries:
Italy, Lithuania and Belgium.

3.3: Results 39

Country (cities) No. of workshops No. of teachers (t) or
teacher trainers (tt)

Italy (Udine and Vi-
cenza)

2 6t (Udine) and 4t (Vi-
cenza)

Lithuania (Vilnius and
Druskininkai)

2 4t (Vilnius) and 7t
(Druskininkai)

Belgium (Hasselt) 1 3t+1tt
Netherlands (Utrecht) 1 6tt

Table 3.2: List of the countries, number of workshops per country and partic-
ipants per workshop.

3.3.2 Big Ideas about programming

The Big Ideas about programming are listed below (Table 3.3), which show
how many groups of teachers named each one. Locations are listed with the
following abbreviations: Italy Udine as IT1; Italy Vicenza as IT2; Belgium as
BE; Lithuania Vilnius as LT1; Lithuania Druskininkai as LT2; The Nether-
lands as NL. In some cases different groups named similar topics while using
different terms (e.g. logical skills, logical thinking) and, where applicable, it
was decided afterwards to use the same terminology.

3.3.3 CoRes

The Big Ideas chosen and discussed through CoRes are listed in Table 3.4.
These lead to an answer to the first research question, in respect to these
seven concepts (see section 3.1).

The following Big Ideas were collected before adapting the instrument, there-
fore answering question 5a (which knowledge about students’ thinking influ-
ences your teaching of this Big Idea?): control structures for IT1, problem-
solving skills for BE and algorithms for IT2. An extract of the CoRe about
control structures with focus on loops is reported in Table 3.5.

40 Chapter 3: Protraying PCK

BIG IDEA Frequency Location

Control structures: loops, condi-
tions and sequence

6 IT1, IT2, BE, LT1,
LT2, NL

Functions 5 IT1, IT2, BE, LT1, NL
Procedures and methods 5 IT1, IT2, BE, LT1, NL
Algorithms 5 IT1, IT2, LT1, LT2, NL
Variables and constants 4 IT1, IT2, LT1, NL
Parameters 4 IT1, IT2, BE, NL
Data structure 4 IT1, IT2, LT2, NL
Decomposition 4 IT1, IT2, BE, LT1
Reusability (one time named as
generalization)

3 BE, LT1, NL

Arrays 2 LT1, NL
Logical thinking (one time named
as logical skills)

2 IT1, IT2

Formal language grammar and
syntax (one time named as formal-
ism)

2 IT2, IT2

Input and output 2 IT2, LT1
Problem-solving skills 1 BE
User interface 1 NL
Thinking in modules 1 NL
Programming paradigms 1 NL
Recursion 1 NL
Direct and indirect referencing 1 NL

Table 3.3: Table summarizing the Big Ideas listed by the teachers of the
different workshops, their frequencies and the locations in which the teachers
named the referred Big Ideas referred to.

BIG IDEA discussed Location

Control structures, focus: loops IT1 and LT1
Data structures NL
Arrays LT1
Problem-solving skills BE
Decomposition NL
Parameters IT2
Algorithms IT2 and LT2

Table 3.4: List of Big Ideas discussed during the workshops and the corre-
sponding locations.

3.3: Results 41

Question BIG IDEA Loops - from UDINE

1 GIOVANNA: Identify starting condition; groups of instructions to
repeat; exit condition...

2 ... SIMONE: One of the fundaments to understand the “mira-
cle” of informatics: by combining in few ways a few elementary
operations/actions, you can achieve amazing things....

3 ... GIOVANNA: Invariant ...

4 ... FRANCESCA: What is before loops, in loops and after loops;
condition of loops; loops in true/false conditions. Students also do
not manage to find their mistakes (e.g. when working with files,
the condition EOF).

5a ... GAIA: Focusing the explanation on components of the loop
more difficult to build.

6 GAIA: We try to organize the curriculum with other teachers and
to organize combined examples. ...

7 ... FRANCESCA: To teach the construct ‘for’ it is possible to
start with a practical example, connected with everyday life such
as: We go to the cinema, and we stand at the exit door. We want
to know for how many people was the film good and for how many
was it bad. I start like this. Then I ask them ‘what should we
do?’. And the answer is ‘waiting until somebody will appear at
the door.’ ...

8 FRANCESCA: Asking them to explain aloud what would be the
solution to a problem using the loop. In this way is possible to
understand where the difficulty is, by analyzing the sequence of
words and in her/his activity. ...

Table 3.5: Extract of the CoRe about control structures with focus on loops.
The questions from 1 to 8 are those reported in the section ‘Instrument’.

42 Chapter 3: Protraying PCK

Similarly, six other CoRe matrixes have been made for the other six Big Ideas,
and these are available in the technical report. The CoRe matrixes represent
the answer to the first research question. In the next section we report on the
analysis regarding the seven Big Ideas discussed during the workshops, leading
to an answer to the second research question. From each Big Idea we report
only the questions from Grossman’s reformulation (see Table 3.1), and these
will be compared later with the literature.

3.3.4 The seven Big Ideas

Big Idea: Control structure, focus on Loops

What about the students:

What else might you know about loops (that you don’t intend students
to know yet)?

- knowledge about recursion and invariants;
- more concise and efficient solutions;
- knowledge about implementations of loops in different program-

ming languages
What are difficulties/ limitations connected with the teaching of loops?

- identifying: what is before loops; identifying the group of instruc-
tion to repeat; and after loops.

- condition of loops (true/false or non-trivial conditions);
- explicit/implicit counters; zero iteration; limit cases (first and last

iteration).
- generalization of the problems;
- to synthesize and to imagine the expected result of a loop;
- difficulties in changing a term (e.g. modifying the initialization of

a variable).
What do you think students need to know in order for them to learn
loops?

- variables;
- assignments;
- conditions;
- basic types, usually integers are used as counters in loops such as

’for’.
What are your specific ways of ascertaining students understanding or
confusion around loops?

3.3: Results 43

- simulation with pencil and paper;
- explaining in words what happens in the algorithm used and rea-

sons to use certain variables;
- a computational equivalence of iterative structures;
- giving almost identical loops and asking students to identify the

loop that actually solves a specific problem;
- correcting students’ own programs by asking them to execute it in

a debugging context;
- giving a loop with a mistake and asking the student to spot it;
- measuring students’ enjoyment in creating new and more compli-

cated loops.

Big Idea: Decomposition

While answering the questions relating to the Big Idea decomposition, partic-
ipants found disagreement among teachers on the use of a wrong algorithm.
The reason not to use this methodology is the difficulty of the task because of
the cognitive skills involved.

Why to teach:

Why is it important for the students to know this idea?
- students will manage to reach a higher level of abstraction;
- to solve bigger problems;
- it is a universal problem also proposed in mathematics education.

What about the students:

What else might you know about this idea (that you don’t intend stu-
dents to know yet)?

- choice of global or local variables;
- interface;
- parameters;
- formal specification.

What are the difficulties/ limitations connected with the teaching of this
idea?

- often students immediately start to write code, without decom-
posing the problem.

- finding suitable problems to propose to students.
What do you think students need to know in order for them to learn
this idea?

44 Chapter 3: Protraying PCK

- it is necessary to give students prior knowledge of possible solutions
to small problems.

- Students need experience of where a solutions can lead to.
What are your specific ways of ascertaining students understanding or
confusion around this idea?

- asking students to read a program and describe what each part is
doing.

Big Idea: Parameters

What about the students:

What else might you know about this idea (that you don’t intend stu-
dents to know yet)?

- the internal functioning of the computer in relation to parameters,
for example types of linking.
What are the difficulties/ limitations connected with the teaching of this
idea?

- identifying situations in which it is useful to pass quantities as
parameters;

- deciding to pass quantities by value, by address, as parameter,
through the result of a function, or keeping them as global or local
variables.
What do you think students need to know for them to learn this idea?

MISSING: Teachers did not find a suitable answer to this question
What are your specific ways of ascertaining students understanding or
confusion around this idea?

- formulating simple questionnaires in which students are asked pa-
rameters of input/output;

- asking students to realize and discuss programs, using different
kind of parameters.

3.3: Results 45

Big Idea: Arrays

What about the students:

What else might you know about arrays (that you don’t intend students
to know yet)?

- Size limitations (or the possibility of modifying the size);
- indirect sorting;
- two-dimensional arrays.

What are the difficulties/ limitations connected with the teaching of
arrays?

- there is only one name for several places in which to store values
(correlated with the aspect of indexing);

- range check (when the index is going out of array);
- use of variables as index.

What do you think students need to know for them to learn arrays?
- basic types;
- variables;
- assignment;
- the mathematical model of progression.

What are your specific ways of ascertaining students understanding or
confusion around arrays?

- giving confusing examples, as for example a[[[1]]];
- asking to find the maximum value of the array (value);
- finding the place of the maximum value (index)

Big Idea: Problem-solving skills

Why to teach:

Why is it important for the students to know this idea?
- it is an expertise that can be reused in other domains than com-

puter science;

What about the students:

What else might you know about this idea (that you don’t intend stu-
dents to know yet)?

- working in circles rather than in a top-down approach, which is
what students are usually confronted with.
What are the difficulties/limitations connected with the teaching of this
idea?

46 Chapter 3: Protraying PCK

- students often find methods to follow quite boring;
- there is often not enough time to show students all the possible

implementations of the same problem.
What do you think students need to know for them to learn this idea?

- Teachers did not find a suitable answer to this question.
What are your specific ways of ascertaining students’ understanding or
confusion around this idea?

- asking students to apply a method to solve a problem, and test
its applicability by verifying if the problem is actually solved. The role
of the students would be to recognize variables and constants.

- giving bigger problems to solve, assuming enough time is available,
and letting students to work in groups on an assigned problem and come
up with their solutions. The memebers of the groups will then mix, and
there will be discussions in each group on the different implementations
of the same problem.

How to teach:

Which factors influence your teaching of this idea?
Teachers did not find a suitable answer to this question.

What are the teaching methods (any particular reasons for using these
to engage with this idea)?

- explaining the existence of methods to solve problems, which can
save the time spent on ineffective attempts. It is important however to
choose problems which are neither too difficult nor too easy; and they
should especially be problems related to real-life situations.

These tables represent a first step to finding the answer to the second research
question. The, complete answer is reached in the next section, in which these
results are compared with the literature.

3.4 Conclusions and discussion

In this section we discuss the most interesting results found in the analysis in
relation to the body of research found in the literature (Saeli et al., 2011c).
We have analyzed the literature with respect to the Big Ideas listed by the
teachers during the different group interviews, and made a closer comparison
of the discussions of the participants in this study on the seven Big Ideas

3.4: Conclusions and discussion 47

(control structures, data structures, arrays, problem-solving skills, decompo-
sition, parameters and algorithms). As will be seen, some of our results are a
confirmation of what the literature already suggested, while others appear to
be research-based results that are reported for the first time in this paper. It
is interesting to note that we did not find any disconfirmation of our results
within the literature.

3.4.1 The Big Ideas of programming

As stated earlier, during the first part of the group interviews teachers listed
the topics that in their opinion are at the heart of teaching and learning pro-
gramming (see Table 3.3). We now compare the literature (Saeli et al., 2011c)
in search of agreement or disagreement with the content of a possible sec-
ondary school curriculum. Answers from the literature point to the following
concepts and aspects: problem-solving skills are seen as the core concept of
programming knowledge; from a technical point of view, students need to gain
knowledge of the data, instructions and syntax of a programming language,
but also primitive expression, means of combination and means of abstraction;
programming strategies, which identify the way syntax is used to create pro-
grams to solve problems; and finally acquiring the skill to write semantically
correct programs.

When comparing the literature with the results of this study, at first sight a
striking outcome is that problem-solving skills, considered as core program-
ming skills, were named by only a group of teachers. However, within the
topic of problem-solving skills we find, as a sub-topic, decomposition of the
problem (Soloway, 1986; Schoenfeld, 1979), which was named by four groups.
In their answers, teachers discussing the topic of problem-solving skills gave
as examples problems involving decomposition. This means that most teach-
ers probably refer to problem-solving skills by just one of their sub-domains:
decomposition. This may explain why the Big Idea of problem-solving skills
was named by only one group, even though it is at the heart of teaching pro-
gramming. The reason could be that the group included a teacher from high
education, and this could have influenced the choice made by this term.

Concerning the other concepts listed by the participants in this study, we

48 Chapter 3: Protraying PCK

note that these are in line with the suggestions found in the literature, cover-
ing knowledge of the data (variables, constants, arrays and data structures),
instructions (functions, procedures and methods), syntax (formal language
and syntax), means of combination (control structures and algorithms) and
programming strategies (re-usability). The only concept that seems not be
considered as a separate entity by teachers is semantics, although this is an
issue that appears frequently in the transcripts.

3.4.2 The seven Big Ideas

During the second part of the group interviews teachers discussed the different
aspects of PCK for certain topics (see Table 3.4). With these results we now
compare the literature (Saeli et al., 2011c) in search of possible agreement
between teachers’ PCK and the teaching theories found in the literature. This
process will lead us to an answer to the second research question.

Regarding the Big Idea control structures (with focus on loops), we find agree-
ment with the results found in the literature. On the question ‘What about
the students?’, the participants in this study identified some of the students’
difficulties while learning this topic, for example issues with implicit coun-
ters (DuBoulay, 1989). This difficulty can be related to a more general issue:
hidden and internal changes in the programming language. These internal
changes are hidden from the students, and cause difficulty. Other difficulties
are revealed in recognizing the different parts of the loops (before loops; the
group of instructions to repeat; and after loops), also mentioned by Du Boulay
(1989).

Regarding the Big Idea array and the question ‘What about the students?’
Du Boulay (1989) proposes an in-depth analysis of the problems students en-
counter while learning this topic. In this approach students’ difficulties and
misconceptions are classified into different areas, some of which correlate with
those of this study. The participants in this study found that students have
trouble understanding that there is only one name for several places in which
values are stored (correlated with the aspect of indexing). On the indexing
problems, Du Boulay links these difficulties to the more general problem of
assignment understanding. Moreover the participants in our study reported
other difficulties experienced by students, such as range check (when the in-
dex is going out of array) and the use of variables as index. On the latter,

3.4: Conclusions and discussion 49

Du Boulay associates this difficulty with the more general issues relating indi-
rection’ (e.g., pointers). Regarding the Big Idea parameters and the question
‘What about the students?’, Hristova and colleagues (Hristova, Misra, Rut-
ter, & Mercuri, 2003) studied misconceptions and difficulties experienced by
students learning this topic in the Java environment. Their findings reveal
different aspects of misconceptions compared with those found in this study.
They found that students are confused between declaring parameters of a
method and passing parameters in a method invocation. While the partici-
pants in this study found identifying situations in which it is useful to pass
quantities as parameters; and deciding to pass quantities by value, by address,
as parameter, through the result of a function, or keeping them as global or
local variables. Through our findings we can strengthen the knowledge about
students’ difficulties while learning parameters.

The Big Idea problem-solving skills is a topic on which it is possible to find
answers in the literature to the question ‘Why to teach it?’. Linn and Dalbey
(1989) claim that problem-solving skills are useful for learning new formal sys-
tems, which constitute templates and procedural skills common to many or all
formal systems or other domains (Schoenfeld, 1979; Mayer, 1989; Feurzeig et
al., 1970). This to a certain extent agrees with the reasons given by the partic-
ipants in this study, who referred to the potential re-usability of this expertise
in other domains than computer science (which would consist of a formal sys-
tem), such as mathematics education. To achieve re usability, the curriculum
should be revised in a way that encourages students to transfer this knowl-
edge from one domain to another (Soloway, 1986), for example by making the
transferability explicit. Regarding the question ‘How to teach it?’, Linn and
Dalbey do not directly address teaching methods for problem-solving skills
in their paper, but refer to situations in which students can acquire this ex-
pertise, for example while attempting to apply templates or procedural skills
learned in one system to a new system. Similarly, Dagiené (2005) suggests
informal learning environments, such as competitions, to improve problem-
solving skills. This could be considered complementary to our participants’
teaching method, which consists in explaining to students the existence of
methods to solve problems, thereby saving time spent on ineffective attempts.

Regarding the Big Idea decomposition of the problem, Soloway (1986), in
agreement with our participants, explores some aspects of the PCK of prob-
lem solving in relation to the question ‘Why to teach it?’. One of the purposes

50 Chapter 3: Protraying PCK

of teaching decomposition of the problem is that this knowledge can be re-used
in other disciplines Perkins and colleagues (1989), for example mathematics
(as the participants in this study also suggested). On the question What about
the students?’, Soloway agrees by suggesting that students must already pos-
sess the primitives into which the problem will be decomposed in order to carry
out a stepwise-refinement strategy. Obviously when students start learning to
program, as our participants also underlined, they lack the knowledge of those
possible primitives. On problems encountered while learning decomposition of
the problem, Perkins and colleagues (1989) agree with our empirical data on
the students’ failure to recognize the need to break down problems, consider-
ing the programming language as the influential factor. Perkins and colleagues
complete their discourse noting that students face difficulties in decomposition
of the problem because they often try to deal with decomposition issues in the
middle of coding, instead of preparatory planning.

Summarizing, the answer to the first research question is the body of knowl-
edge collected through CoRes regarding the seven Big Ideas listed above, and
can be considered as the first effort to portray the PCK of programming for
secondary school. The second research question is answered by the close con-
frontation between the teachers’ PCK and the teaching theories found in the
literature. Because no disconfirmation of our results is found in the literature,
we can suggest that teachers’ PCK is in line with the teaching theories found
in the literature.

The results of this study represent a source of information for both researchers
and teachers. From the point of view of researchers, this study is the first struc-
tured effort to portray the PCK of secondary school programming. Seven topics
of programming for secondary school are covered in this study: control struc-
tures (with focus on loops), decomposition of the problem, problem-solving
skills, parameters, algorithms, data structures and arrays. From the point of
view of a teacher, this study serves as a source of information for reflection,
professional growth and inspiration. The knowledge gathered through such a
study can be used for the writing of a textbook or guide for teachers, finding
a suitable representation of this knowledge.

3.4: Conclusions and discussion 51

3.4.3 Limitations

A limitation of the instrument is that teachers sometimes have no answers
to the questions, for example for ‘problem-solving skills’ (Saeli et al., 2010,
p. 22). Addressing the question Which other factors influence your teaching
of problem-solving skill?’, the group interviewed discussed general teaching
factors, such as time pressure and lack of teaching material. It should be
noted that also the Australian researchers (see for example Mulhall et al., 2003,
p. 21) were confronted with the situation of producing CoRes with empty cells.
The reasons could be of a different nature and have not been investigated. A
limitation regarding the choice of respondents is that teacher trainers also
appeared to list Big Ideas with higher levels of difficulties (see Table 3.3).
Although it was not found in this study, teachers from different countries
could also report different teaching methods or teaching beliefs. However, this
could be considered as a strengthening of the instrument in portraying a more
complete PCK of a topic.

3.4.4 Suggestions for further research

In this study we decided not to use PaP-eRs (Pedagogical and Professional-
experience Repertoires). PaP-eRs are narrative accounts of teachers’ PCK for
a particular piece of subject content. Each PaP-eR ‘unpacks’ the teacher’s
thinking around an element of PCK for that content, and is based on class-
room observations (Mulhall et al., 2003). The PCK portrayed from such an
instrument would therefore represent the PCK (Loughran et al., 2000) of an in-
dividual teacher. Because the main goal of this study is to sketch a standard
for PCK of programming for secondary school, we leave the construction of
PaP-eRs for further research, aimed for example at contextualizing the knowl-
edge of PCK for a specific context (e.g. country, county, region, school or
classroom). We hope to see more research following this path in order to pro-
vide the research community with more results on the PCK of programming,
to extend the results of this study, and to find the PCK for other topics of pro-
gramming and hopefully for other areas of CS. Knowledge of PCK could then
be deployed to improve teacher training courses for CS teachers, to organize
in-service training courses for teachers with low PCK, to assess teachers’ PCK,
or to analyze teaching material.

52 Chapter 3: Protraying PCK

Acknowledgements

We would like to thank the Italian, Lithuanian, Belgian and Dutch participants
in our workshops, and Prof. Dagienè, Dr. Mirolo and Dr. Gonnissen for
helping us to organize the workshops.

53

Chapter 4

Programming: Teaching
material and Pedagogical

Content Knowledge 1

Abstract

The scope of this article is to understand to what extent Computer Science
teachers can find support for their Pedagogical Content Knowledge (PCK) in
teaching material. We report the results of a study in which PCK is used
as framework to develop a research instrument to examine three high school
computer science textbooks, with special focus on programming. PCK is anal-
ysed in this study in its two components: pedagogical knowledge (PK) and
content knowledge (CK). The results of the textbooks have been compared
with the results of a previous study, in which experienced teachers from vari-
ous countries were involved in semi-structured interviews to portray the PCK

of programming for secondary school. Our expectations to find textbooks rel-
atively strong on the CK, but weak on the PK aspect, is confirmed by the
results.

1This chapter has been accepted for publication as: Saeli, M., Perrenet, J., Jochems,
W.M.G., & Zwaneveld, B. Programming: Teaching material and Pedagogical Content
Knowledge. Journal of Educational Computing Research

54 Chapter 4: Measuring the PCK of Textbooks

4.1 Introduction

Teachers, especially at the beginning of their career, use textbooks to deter-
mine what content to teach their students and to retrieve possible content
representations (Wang, 1998; Chiappetta, Sethna, & Fillman, 1993). In dis-
ciplines such as science, textbooks are used most of the teaching time (Wang,
1998; Good, 1993). Also, guidelines of national curriculum and final exams
provide an overview of the content to teach. But what could be the infor-
mation a novice teacher needs to find in a textbook? And what is a suitable
textbook from the perspective of a novice teacher? In this article we will try
to answer these questions by describing a method to analyze textbooks which
teachers, novice teachers and textbook authors can use. This method is ex-
emplified using Computer Science (CS) as target discipline, but scholars from
other disciplines can adapt it.
One of the aspects novice teachers need support for is the development of their
Pedagogical Content Knowledge (PCK) of the subject they teach. PCK is a
construct that has been firstly described by Shulman (1986, 1987) and then
reformulated by other scholars (see for example Grossman, 1989; Hashweh,
2005) and is defined as:

“the ways of representing and formulating the subject that make
it comprehensible to others”(Shulman, 1986, p. 9).

In other words, PCK is that expertise that allows teachers to represent, in an
effective way, the subject to their students, for example by using metaphors
(Woollard, 2005). The more representations teachers have, the higher chance
they have to suit the different students’ learning needs. Teachers at the begin-
ning of their career have no or low PCK (Rovegno, 1992; Van Driel, Verloop,
& Vos, 1998) and could find content representation in teaching materials such
as textbooks. It is then important to understand whether teachers can find
support for their developing PCK in the textbook of their choice.
PCK is a special amalgam of content and pedagogy that is unique to experi-
enced teachers (Shulman, 1987), thus we could see it as the combination of
Pedagogical Knowledge (PK) and Content Knowledge (CK), because on one
hand teachers need to have knowledge of the subject (CK) and on the other
they need to have a suitable pedagogical approach for that subject (PK). This
construct refers to teachers’ knowledge and in this study is used as framework

4.1: Introduction 55

Study to portray PCK

(Saeli et al., 2011a)
This study

CoRe

PCK

PTA

teachers

to contruct

to portray to assess

to compare

Figure 4.1: Schema representing the relation between this study and a previous
one. The terms used are CoRe (Content Representation), PTA (PCK Textbook
Analyzer) and PCK (Pedagogical Content Knowledge)

to analyze school textbooks.
In this article we describe our instrument, PTA (PCK Texbook Analyzer),
which will be later tested on the subject of programming. The PTA is an
adaptation of the research instrument CoRe (Loughran et al., 2001), which
has been used in a previous study (Saeli et al., 2010) to portray the PCK of
programming for secondary school. The results of the textbook analysis, using
the PTA, are then compared with those of the previous study. In Figure 4.1
we find a schema representing the relations of the CORE instrument with
the definition of PCK and the construction of PTA, and the relation between
the results of the previous study with those of the textbook analysis. In the
course of this study PTA will be used on Dutch textbooks, because this re-
search is based in the Netherlands. This study is financed by the University
of Eindhoven (the Netherlands), Eindhoven School of Education, in collabora-
tion with ICL (Interuniversitaire Commissie Lerarenopleiding, Interuniversity
Committee of Teacher Training).

The PTA is an instrument that can be used by teachers who need to choose a
textbook, by textbook authors as a guideline, and by other researchers working

56 Chapter 4: Measuring the PCK of Textbooks

on the field of PCK or CS education.
An introduction to the PCK of Programming will now be given, followed by an
analysis of textbook and a discussion about the situation in the Netherlands.
Finally we will describe the research questions which have driven this work.

4.1.1 PCK of Programming

In a previous work the authors of this article reported the results of a study
with the aim of portraying the PCK of programming in the context of sec-
ondary school (Saeli et al., 2010) in order to fill the gap evidenced in the
literature (Saeli et al., 2011c). These results were obtained by using the re-
search instrument CoRe (Content Representation), which has been already
successfully used by Australian researchers in another domain (Loughran et
al., 2001). PCK has been defined as the armamentarium of representations
that teachers need to have at their disposal when teaching a certain subject.
To initialize the process to create such a set, a total of 31 experienced teachers
and teacher trainers have been asked to take part to semi-structured group
interviews. These interviews had a length of roughly two hours, involving
around five teachers at a time. Each interview was divided into two parts. In
the first part teachers had to individually list what in their opinion the ’Big
Ideas’ of programming are (the CK component). Big ideas are those concepts
within a subject which are at the heart of the learning for that specific subject.
The results reveal that there are eleven Big Ideas in the context of learning to
program (see Table 4.1).

In the second part of the interviews teachers were given a CoRe matrix (see
Appendix C for an example) to discuss. They chose, based on their interests,
one or two of the “Big Ideas” and then, for each Big Idea they answered the
eight questions listed in Table 4.2.

Question 5 was firstly conceived as: knowledge about students’ thinking that
influences your teaching of this idea. But because this question could be in-
cluded in question 6, it was decided to include the question 5 as it is now (S.
Fincher, personal communication, August 2009).
The results, of an international nature, have been collected in four countries
(Italy, Belgium, Lithuania and the Netherlands) and constitute a contribution
to the efforts to portray the PCK of programming for secondary education.

4.1: Introduction 57

Big Ideas

Control structures: loops, conditions and sequential
Functions, procedures and methods
Algorithms
Variables and constants
Parameters
Data structure
Decomposition
Reusability
Arrays
Logical Thinking
Formal language grammar and syntax

Table 4.1: List of the core topics within programming at the heart of its
learning.

From the eleven Big ideas, seven topics have been explored, namely: control
structures, with focus on loops; data structures; arrays; problem solving skills;
decomposition; parameters; and algorithms. For each of these topics we now
have available the knowledge about the PCK of these concepts.
An example on the PCK of algorithms is (Saeli et al., 2010):

- What to teach about algorithms: Students need to learn
to identify the sequence of actions that bring to the solution of a
given problem
- Why to teach algorithms: It is important that students learn
the use and generation of algorithms because every programming
problem has to be solved through the development of an algorithm,
which will give reliability to the job also in presence of difficulty of
verification. Without algorithms and algorithmic thinking it would
not be possible to write in concrete programming language.
- Learning difficulties (what about the students) about al-
gorithms: Students do not require having knowledge about non
deterministic algorithms, problems of complexity, variety of for-
malities or choice of particular structures. Students do not always
recognize the need to develop an algorithm until they will have
to solve complex problems. Moreover they have difficulty to au-
tonomously work and to identify the elementary actions of the
executor. Students will be facilitated in the learning of algorithms

58 Chapter 4: Measuring the PCK of Textbooks

Questions

1. What do you intend the students to learn about this Big idea?
2. Why is it important for the students to know this Big idea?
3. What else you might know about this Big idea (and you don’t

intend students to know yet)?
4. What are difficulties/ limitations connected with the teaching of

this Big idea?
5. What do you think students need to know in order for them to

learn this Big idea?
6. Which factors influence your teaching of this Big idea?
7. What are teaching methods (any particular reasons for using these

to engage with this Big idea)?
8. What are your specific ways of ascertaining students understand-

ing or confusion around this Big idea?

Table 4.2: The eight questions of the CoRe instrument

if they have a good background of mathematical logic and moti-
vation. It is possible to ask students to formalize algorithms from
different domains, as for example cooking recipes, or to propose
examples in which they have to autonomously reach to identify
the algorithm.
- How to teach algorithms: The interactive environment of pro-
gramming languages gives the opportunity to obtain results also
without a proper preparatory development. This promotes the
tendency students have of skipping the analysis of the problem. A
way to introduce students to algorithms in programming education
is to first identify algorithms in the everyday life before working
with algorithms to calculate something more abstract. The pro-
cess could be assisted by the teacher, who analyzes examples with
the students and suggests possibilities of implementation.

4.1.2 Textbook analysis

Textbook analysis is a research method that has been broadly used in different
science areas. The reasons to conduct textbook analysis can be various and
from different perspectives (e.g. researcher, textbook author, teacher, etc.).
Examining the space devoted to interactions among different subjects and
topics, understanding the content covered in the textbook, finding sources for

4.1: Introduction 59

students’ misunderstanding, finding the relation between national curriculum
and textbooks, finding exercises or tests for students, etc. (Ahtineva, 2005;
Chiappetta et al., 1993; Good, 1993; Stylianidou, Ormerod, & Ogborn, 2002).
Textbook analysis can be conducted either with a qualitative or a quantita-
tive approach. In the first case an in-depth analysis of the content offered in
the textbook is performed, while in the quantitative approach statistics such
as number of concepts, number of pages or other quantities are taken into
account. In our analysis we will use both approaches, because on one hand
we want to know which concepts are covered in a textbook, and on the other
hand we want to understand the quality of the concepts offered in the text-
book. In the context of CS we have found three studies which analyze textbook
in different natures. Means (1988) analyzed ten introduction-to-programming
textbooks with the purpose of finding possible differences in the content with
earlier texts, possible trends in the content of different books and to provide
a framework to allow comparisons between past and recent textbooks. Wu
and colleagues (Wu, Lin, & Lin, 1999) explored the nature and the presen-
tation styles of programming examples; and WU and colleagues (Wu, Lee, &
Lai, 2004) explored the use of concept maps to examine concepts presented in
textbooks. It appears that there is no previous study in CS literature in which
PCK has been used to analyze textbooks. Moreover Wang (1998) proposes to
design teacher-friendly content analysis methods. In this way student teach-
ers, during their teaching preparation, can be instructed on how to choose a
suitable textbook according to their needs.

4.1.3 The Dutch Scenario

The Netherlands is a country in which the teaching of CS for secondary school
has been recently introduced (Grgurina, 2008) in the school year 1999/2000,
and at the moment is an elective course, examined only at school level. Dutch
teachers can choose among three textbooks available in commerce for computer
science: Fundament of Computer Science (original title: Fundament Informat-
ica), Enigma and Active Computer Science (original title: Informatica actief).
The textbook Instruct is available in combination with extra modules, with
a focus on programming. Usually teachers use the main book Instruct with
one extra module (e.g. Java) dedicated to programming (Instruct, 2011). In
the results section the textbooks will be referred as A (Instruct), B (Active
informatics) and C (Enigma). Regarding the textbook Instruct, its modules
are referred as: a (Java), b (Delphi), c(PHP), d (BlueJ), e (VB.net) and f
(VisualBasic). The results relative to the textbook Instruct and its modules

60 Chapter 4: Measuring the PCK of Textbooks

are presented in combination with each of the modules, as for example Aa
(Instruct + Java), Ab (Instruct + Delphi), etc.
The authors of the three Dutch books claim that, in general, the content
of the exam program has been inspirational for the writing of the textbooks
(Schmidt, 2007b). The exam program for programming refers to the sub-
domain of Software (domain B, basic knowledge and skills, retrieved from
the website examenblad.nl, 2010). The guidelines for the school exam pro-
pose that: the candidate masters simple data types, program structures and
programming techniques. In Appendix A there is a detailed table with the
guidelines for the school exam, proposed by Schmidt (2007a). It should be
noted that in the Dutch curriculum, a maximum of quarter of the total time
is devoted for programming (which means around 60 to 70 teaching hours per
year), despite the fact that the worldwide computer science community con-
siders this topic at the heart of computer science education (Grgurina, 2008).
This implies that in the Dutch school scenario, programming is not seen at
the heart of learning CS.

4.1.4 Research Questions

The aim of this study, as mentioned earlier, is to develop a research instru-
ment, called PTA, to analyze textbooks using PCK as framework of reference,
and to test PTA on Dutch CS textbooks. The research questions therefore are:

- Is it possible to apply the concept of PCK to the analysis of a textbook with
the use of the PTA?
- To what extent can we identify the PCK of programming in Dutch secondary
textbooks?

We expect to find textbooks relatively strong on the CK, but weak on the PK
aspect. The reason is because in general, the content of the exam program
has been inspirational for the writing of the textbooks (Schmidt, 2007), which
is highly a CK aspect, and no reference is made about the PK. Therefore
there seems to be no explicit effort to support teachers’ developing PCK in the
design of the textbooks.
The method used for this study will now be described, followed by the results,
a discussion and the conclusion.

4.2: Methods 61

PTA Construction

PTA Evaluation
PCK Analysis

CK Component PK Component

Content
validity

Construct
validity

Practicality,
Effectiveness

criteria

Reliability

CoRe

Terms Core

SOLO

Content

Breadth

Depth

Figure 4.2: Scheme summarizing the different stages of the method. The terms
used are CoRe (Content Representation), SOLO (Structure of the Observed
Learning Outcomes)

4.2 Methods

In this section we describe two methods, summarized in Figure 4.2: the eval-
uation of the PTA instrument (left most column) and the assessment of the
PCK of Dutch textbooks (centre and right most column).

4.2.1 PTA Evaluation

In order to answer the first research question, about the quality of the instru-
ment PTA, we use Nieveen’s quality assessment (Nieveen, 1999), which has
been primarily designed for educational products. Its applicability in vari-
ous domains of educational product development, such as for example learn-
ing material and computer support systems, has also been proved (Nieveen,

62 Chapter 4: Measuring the PCK of Textbooks

1999). We extend the list of possible target products, using Nieveen’s quality
assessment on the PTA, a textbook content analysis instrument. Nieveen’s
framework for product quality consists of check lists on the following criteria
(Figure 4.2, left most column): validity, which refers to its content and its
construct; practicality, focusing on the easiness of the instrument; and effec-
tiveness, referring to the time requirement for the use of the instrument.

In order to evaluate these different aspects the following steps will be cov-
ered. As for the content validity, the theoretical framework of the PTA will
be compared with the state-of-art of PCK; while for the construct validity we
will verify if the components of the instrument are consistently linked to each
other. Regarding the practicality and the effectiveness of the PTA, two stu-
dent teachers and a teacher trainer will be involved in the study. A last step
will be concerned with the evaluation of the reliability of the instrument. To
do so a second researcher will be asked to use the PTA on one topic using two
different textbooks. Their results will be compared with each other and the
percentage of agreement calculated (Figure 4.2, left most column, lower part).

4.2.2 Quality Evaluation

The goal of this phase is to answer the research question: Is it possible to
apply the concept of PCK to the analysis of a textbook?

Content Validity

The CoRe instrument has been successfully used in different subjects(Loughran
et al., 2001; Saeli et al., 2010) and has been positively assessed on how the
eight questions actually cover the different aspects of Grossman’s reformula-
tion of PCK (Saeli, Perrenet, Jochems, & Zwaneveld, 2011a).

4.2: Methods 63

Construct Validity

The instrument covers both pedagogy and content through the PK and CK
components respectively. Moreover, the instrument is to be used in combina-
tion with the results already available about the PCK of a subject, which is
the result of group interviews made with experienced teachers. This in order
to assure that the knowledge assessed is indeed that special amalgam unique
to teachers.

Practicality and Effectiveness

In order to evaluate the practicality and the effectiveness of the PTA, two
student teachers and a teacher trainer are questioned regarding the easiness
and the time consumption of the instrument, reporting a score between low,
medium or optimal for easiness and for effectiveness.

Reliability

In order to test the reliability of the instrument, a pilot round has been run.
Two researchers (the first and second author of this article) independently
analysed two textbooks on the topic ‘control structures’ using the following
parts of the PCK analysis: step two and three of the CK component and the
entire procedure of the PK component. Their scores have been compared, with
the following statistical results: the step two of the CK component scored a
percentage of agreement (POA) of .83; the third step scored a POA of 1; the
PK component scored a POA=.83. After discussing step two, full agreement
on the method was found. Because some of the scores are binary numbers
(namely CK breadth) it was not possible to perform correlation analysis.

4.2.3 Textbook Analysis

The second research question, assessing the PCK of a textbook, can be an-
swered by using our research instrument. PTA is based on the CoRe instru-
ment introduced earlier, with some adjustments, and by using the results of
a previous study (Saeli et al., 2010). Similarly to the CoRe, PTA focuses on
Big Ideas (core concepts of a subject), which could be considered as the CK

64 Chapter 4: Measuring the PCK of Textbooks

(content knowledge) aspect of PCK. For each of these Big Ideas, an analysis of
its PK (pedagogical knowledge) aspect is conducted through the eight ques-
tions introduced earlier. We will now describe the details of the two parts of
the PTA (illustrated in Figure 4.2, centre and left most column).

CK Component

Assessing the CK component of a textbook means finding the answer to the
first question listed in Table 4.2: “1. What do you intend the students to learn
about this Big Idea?”. To do so, we divide the CK analysis into three steps:
coverage, breadth and depth (Figure 4.2, centre column).
The first step, measuring the CK coverage of a textbook, consists of verifying
whether in the table of content and/or in the index of the textbook the topics
shown in Table 4.1 are available. If available a ‘1’ will be assigned for the
corresponding topic, otherwise a ‘0’ is assigned (see Figure 4.3, left column,
as example). In the case of digital textbooks it is possible, when available, to
use a search engine to browse the content of the textbook.

This first step assures whether the topics are named or not. The second step,
the CK breadth, consists in analyzing the chapters relative to each topic of
Table 4.1, verifying whether the terms of the concept tables (Table 4.3 for an
example) are covered. As long as at least a paragraph is spent on the topic (or
the concept of the topic), a ‘1’ will be assigned (see Figure 4.3, middle column
as example). The concept tables are produced in a preparatory step in which a
group of computer science researchers and teachers are asked to list the terms
related to those topics, in the context of secondary school learning, and reach
a consensus. Summarizing, the criteria to understand to what extent a topic
is covered is to examine the percentage of terms covered.

There is a final third step, the depth of coverage for each topic. This step is
performed by using the Structure of the Observed Learning Outcomes (SOLO)
taxonomy (Fuller et al., 2007) for each topic (e.g. control structures, functions,
etc.). The SOLO taxonomy has been used to assess students’ learning, but we
extend its use and adopt it to assess not the learning outcome, but the learn-
ing aid provided by the textbook. The SOLO taxonomy has 5 levels of under-
standing, that in our case will become level of coverage: (1) pre-structural, not

4.2: Methods 65

Terms - Control Structures

conditions
logical operator
boolean type
selection
iteration
sequence
if then - if then else
while - do while
for
choice - switch - case

Table 4.3: Example of table of terms

related to topic, disjoint, missed the point; (2) uni-structural, simple meaning,
naming, focussing on one issue in a complex case; (3) multi-structural, ‘shop-
ping list’, disorganised collection of items; (4) relational, understanding, using
a concept that integrates a collection of data, understanding how to apply the
concept to a familiar data set or to a problem; and (5) extended abstract,
relating to existing principle, so that unseen problems can be handled, going
beyond existing principles. The chapters relative to each topic are analyzed to
verify which of these 5 levels the topic belongs, and mark it with the relative
level number. Only one level, the highest, will be chosen, in case more than a
value is present.

Summarizing, in order to measure the CK of a textbook we first analyze
whether the Big Ideas of programming are mentioned, then we analyze the
breath of its coverage and finally its depth (an example in Figure 4.3).

PK Component

As for the PK analysis of the PCK of a textbook, we use the results of a previ-
ous study (Saeli et al., 2010) in which the research instrument CoRe (Content
Representation) has been used to portray the PCK of programming for sec-
ondary school. At the moment seven topics, in the context of programming,
have been studied, namely: loops, data structures, arrays, problem solving
skills, decomposition, parameters and algorithms. The chapters of the text-
books where those topics are covered are analysed. The CoRe is an instrument

66 Chapter 4: Measuring the PCK of Textbooks

CK Coverage CK Breadth CK Depth

BIG IDEAS

Textbook

A

Control

structures

1

Functions 1

Algorithms 1

Variables 1

Parameters 1

Data structure 1

Decomposition 1

Reusability 1

Arrays 1

Logical

thinking

0

Formal

language

0

Total % 63%

Algorithm Textbook

A

Solve a problem 1

List of instruction 1

Steps 1

Efficiency 0

Total % 75%

….

Control

structures

Textbook

A

conditions 1

logical operator 1

boolean type 1

iteration 1

sequence 1

if then - if then

else

1

while - do while 1

for 1

choice - switch -

case

1

Total % 100%

BIG IDEAS Textbook

A

Control

structures

3

Functions 2

Algorithms 2

Variables 2

Parameters 3

Data structure 3

Decomposition 0

Reusability 0

Arrays 2

Logical

thinking

0

Formal

language

0

Median 2

Figure 4.3: Example of partial results of the CK component relative to a
textbook analysis using PTA.

4.2: Methods 67

that through the use of questions unpacks the PCK of a subject. We use the
answers to these questions from the previous study from which to compare
the content of the textbook with (Figure 4.2, right most column). We analyse
the textbook in search of answers to questions 2 to 8, each answer will be then
assessed in terms of comparison with the results of Saeli and colleagues (2010)
as: absent (0), low (1), sufficient (2), high (3) in relation to their quality and
quantity (for an example see Table 4.5). Below we present the questions and
the methods to measure the presence and the quality of each answer found in
the book.

2. Why is it important for the students to know this Big idea?:
References to the importance to learn/use this specific topic (e.g., it is impor-
tant to learn control structures because it is necessary to solve more abstract
problems).

3. What else you might know about this Big idea (and you don’t
intend students to know yet)?: A list of topics that will be covered in
the future (next school year, for example) by accomplishment of the relative
chapter, or in the teachers’ guide.

4. What are difficulties/ limitations connected with the teaching of
this Big idea?: Hints or suggestions about the difficulty of the topic (e.g.
when we want to use a loop, it is often difficult to identify the group of actions
to repeat).

5. What do you think students need to know in order for them to
learn this Big idea? : Guidance about how to read the book, looking for a
hierarchy or sequence to read the different chapters (e.g. in order to be able
to use loops, it is advisable to first learn about variables), or some sort of
requirements to access the relative chapter.

6. Which factors influence your teaching of this Big idea?: This
answer can be found in the teacher guide of the textbook, when available
(e.g., when teaching loops, it would be advisable to work in collaboration with
the sport teacher, because in sport loops are practically used).

7. What are teaching methods (any particular reasons for using
these to engage with this Big idea)?: Different approaches to teach the
topic proposed in the book (e.g. in order to understand which construct it is
possible to ask students ‘do you know how many times you want to do it?’).

68 Chapter 4: Measuring the PCK of Textbooks

Extract from a textbook

Algorithms are a set of instructions in a specific order, which
serve to solve a problem. The algorithm to a problem to
reach a program, looks like follows:
1. definition of the problem
2. analysis
3. schematic solution
4. the making of the source code
5. compiling

Table 4.4: An extract from one of the textbooks listed above, paragraph about
Algorithms

8. What are your specific ways of ascertaining students understand-
ing or confusion around this Big idea?: This answer can be found in the
diagnosis/assessment section of the book, as for example the problems pro-
posed at the end of the chapter (e.g. by asking students to solve an exercise
using loops and asking them to write next to the solution an explanation).

Summarizing, in order to analyse the PK component of the PCK of a textbook,
we compare the answers of the questions listed above, with the results found
by Saeli and colleagues (Saeli et al., 2010). We now propose an example on
how to use the PTA instrument by using an extract from one of the textbooks
(Table 4.4). Concerning the CK depth, if we compare the text with the list of
terms (see Figure 4.3, centre column, below), we see that this textbook scores,
in terms of CK coverage, 75%, because all the terms (‘solve a problem’, ‘list of
instruction’ and ‘steps’) except one (efficiency) have been named. In respect
to CK breadth, this textbook will score a SOLO level of 3, because the text
looks like a ’shopping list’ and no relation is made with familiar data.

As for the PK analysis, we read the paragraph (Table 4.4) in search of the
answers above listed and compare them with the results found in Appendix
C .
The analysis will be:
2. There is no reference to the importance to learn/use algorithms. Score: 0
3. There is no reference to what can be achieved in the future, nor is a teach-
ers’ guide is available. Score: 0
4. There are no hints about students’ difficulties. Score: 0
5. There is no reference of prerequisites. Score: 0

4.3: Results 69

Textbook 2. 3. 4. 5. 6. 7. 8.

A 0 0 0 0 0 1 0

Table 4.5: Example of PK analysis of a textbook

6. There is a teacher’s guide available on this topic. Score: 0
7. The algorithm structure is given. Score: 1
8. Students are asked to think of situation where to apply algorithms, but no
real application is proposed, as from the results in Appendix C . Score: 0

These results are then summarized in the compact form showed in Figure 4.5.

4.3 Results

In this section we report the results obtained in this study relative to the anal-
ysis of the textbooks.

4.3.1 PCK Analysis

The goal of this phase is to answer the research question: “To what extent
can we identify the PCK of programming in Dutch textbooks?” PTA, the
method to assess the PCK of a textbook, focuses on two different aspects:
the CK component, including its coverage, breadth and depth; and the PK
component.

CK Coverage

The goal of the first step of this analysis is to evaluate whether the Big Ideas
relative to the teaching and learning of Programming are covered. As we can
see in Table 4.6, last row, on average 64% of the topics are covered. The
Textbook C (second last column, last row) covers the majority of the topics,
with 91%, while the Textbook Aa (second column, last row) scored the least,
with 36%. Considering the Big Ideas, on average 63% of the books cover

70 Chapter 4: Measuring the PCK of Textbooks

Big Ideas Aa Ab Ac Ad Ae Af B C Total
Control Structures 1 1 1 1 1 1 1 1 100%
Function 1 1 1 1 1 1 1 1 100%
Algorithms 1 1 1 1 1 1 1 1 100%
Variables 1 1 1 1 1 1 1 1 100%
Parameters 0 1 1 0 1 1 1 1 75%
Data structure 0 0 0 0 0 0 0 0 0%
Decomposition 0 1 0 0 1 1 1 1 62%
Reusability 0 0 0 0 0 0 0 1 12%
Arrays 0 1 1 1 1 1 1 1 87%
Logical thinking 0 0 0 0 0 0 0 1 12%
Formal language 0 0 1 1 1 0 0 1 5%
Average 36% 64% 64% 54% 73% 64% 64% 91% 64%

Table 4.6: Scores of the CK Coverage analysis, divided per textbook.

these Big Ideas (last column), as seen in the last column. The Big Ideas that
are covered by every textbook are (100%): control structures, function and
algorithm (third to fifth row). The Big Idea that is not covered at all is: data
structure (eighth column).

CK Breadth

The goal of the second step is to assess the breadth of coverage for each topic.
For each Big Idea a group of experts in the field have been asked to develop
table of terms related to those topics. A total of six experts were involved in
this phase, producing tables of terms for 8 out of 11 concepts. The concepts for
which terms are missing are logical thinking and formal language. The concept
problem solving skills has been incorporated with decomposition, because one
is a subtopic of the other.
The scores relative to the breadth (percentage of terms present in the book)
are reported (see Table 4.7), in relation with the table of terms introduced in
the method section.

On average the textbooks cover 62% of the designed terms (see last row). The
Textbook B (eighth column) is the one that covers the most of the designed
terms with an average of 80% , while the Textbook Aa (second column) scores
the least with an average of 45% . Considering the Big Ideas (last column), on
average the 62% of the terms is covered in the textbooks. The Big idea that
has been the most broadly covered is control structures (on the third row),

4.3: Results 71

Big Ideas Aa Ab Ac Ad Ae Af B C Total
Control Structures 100 100 100 100 100 100 100 100 100%
Function 86 86 71 71 43 43 71 43 64%
Algorithm 75 75 75 75 75 75 75 100 78%
Variable 57 86 71 14 57 57 100 57 63%
Parameters 0 80 80 0 60 60 60 100 55%
Arrays 0 14 29 57 57 57 86 71 46%
Decomposition 0 17 0 0 50 50 67 50 29%
Average 45% 65% 61% 45% 63% 63% 80% 73% 62%

Table 4.7: Scores relative to the CK Breadth analysis, expressed in percentage
(%)

scoring 100%, while the least covered is decomposition (see the second last
row), with 29%.

CK Depth

The goal of the third step is to understand the depth of coverage for each
topic. For each Big Idea the scores relative to the depth (score of the SOLO
taxonomy level between 1 and 5) are reported, as shown in Table 4.8.
The median value of the SOLO levels of the textbooks is 4 (see last row). The
Textbooks with a higher SOLO level are Textbooks: Ac, Ae, Af, B and C, all
scoring a median of 4, while the lowest SOLO level belongs to Textbooks: Aa,
Ab and Ad,all scoring a median of 3.
Regarding the Big ideas, the median value of the SOLO level is 4. The Big
Ideas that have been most deeply covered are: control structures, functions/
procedures/ methods, variables, and parameters, all scoring a median of 4.
While the least deeply covered is decomposition, with a median value of the
SOLO levels of 3.

PK Component

This last part of the textbook analysis aims at assessing the PK component
of the general PCK per book. The scores relative to the answers of the seven
questions (Q2 to Q8) are reported in Table 4.9 Table 4.10. In the first table
the scores are the result of the sum of the seven answers (scoring between 0,
absent, and 3, high) of each textbook, presented per Big Idea. In each cell

72 Chapter 4: Measuring the PCK of Textbooks

Big Ideas Aa Ab Ac Ad Ae Af B C Total
Control Structures 4 4 4 4 4 4 5 4 4
Function 4 4 5 4 3 3 4 4 4
Algorithm 3 3 3 3 4 4 4 5 3.5
Variable 4 4 4 3 4 4 4 4 4
Parameters 0 3 4 0 4 4 4 4 4
Arrays 0 3 2 3 4 4 5 4 3.5
Decomposition 0 3 0 0 4 4 3 4 3
Median 3 3 4 3 4 4 4 4 4

Table 4.8: Scores relative to the CK Depth analysis.

values can vary between a minimum of 0 and a maximum of 21 (seven times
the highest score). In the second table the scores are the result of the sum
of each answer (scoring between 0, absent, and 3, high) of the five Big Ideas
per textbook, presented per Question. In each cell values can vary between a
minimum of 0 and a maximum of 15 (five times the highest score).

Big Ideas Aa Ab Ac Ad Ae Af B C Total (out of 168)
Control Structures 4 4 4 4 4 4 6 7 37
Arrays 0 0 0 2 3 3 6 7 21
Decomposition 0 1 0 0 2 2 0 3 8
Parameters 0 3 4 0 3 3 2 5 20
Algorithm 1 1 1 1 3 5 5 9 26
Total (out of 105) 5 9 9 7 15 17 19 31

Table 4.9: Results of the PK analysis per Big Idea, on a maximum score of:
168 per Big idea and 105 per Textbook

From the Big Idea point of view all topics are scoring quite low (Table 4.9, last
column). The topic with less support for PK is decomposition, scoring an 8
out of a maximum of 168, while the topic scoring the best is control structures,
with a value of 37.
From a Question point of view (Table 4.10), there are three questions that
have not been answered by any of the textbooks, namely: question 3, 4 and
6. Of the other questions, the best answered one is question 7, scoring 54 out
of 120; while the worst one is question 2, scoring 20.

Regarding the textbooks (Table 4.9 and Table 4.10, last rows), all books score
quite low. The textbook providing less support for the PK component is Aa,
scoring 5 out of 105; while the most supportive is textbook D, scoring 31.

4.4: Conclusions and Implication 73

Big Ideas Aa Ab Ac Ad Ae Af B C Total (out of 120)
Q2 1 1 2 1 1 2 3 9 20
Q3 0 0 0 0 0 0 0 0 0
Q4 0 0 0 0 0 0 0 0 0
Q5 0 0 0 0 0 1 3 0 4
Q6 0 0 0 0 0 0 0 0 0
Q7 3 6 5 4 9 9 6 12 54
Q8 1 2 2 2 5 5 7 10 34
Total (out of 105) 5 9 9 7 15 17 19 31

Table 4.10: Results of the PK analysis per Question, on a maximum total
score of: 120 per question and 105 per Textbook

4.4 Conclusions and Implication

In this paper we discussed the use of PCK as framework to analyse sec-
ondary school textbooks in terms of how a textbook can support teachers’
in-development PCK. The two research questions leading this study concern
the use of the PTA and the assessment of a textbook PCK.
Regarding the first research question, “is it possible to apply the concept of
PCK to the analysis of a textbook?”, the results suggest that it is indeed possi-
ble in general to use PCK as a framework to analyse a textbook. An exception
is made for some topics, such as formal language and logical thinking, for
which the terms to measure the CK breadth were missing, because the group
of experts did not find suitable terms for those concepts. This represents a
limitation for the PTA instrument, which cannot be used with all concepts.

Regarding the second research question, “to what extent can we identify the
PCK of programming in Dutch textbooks?”, we found a confirmation of our
expectations, the textbook having scored relatively high in the CK component,
and low in the PK component. In terms of CK coverage more than a half of
the Big Ideas listed are covered by the books. Also, per Big Idea, there is a
connection between the frequency of the topic in the textbooks and the fre-
quency of the groups naming the same topic (Saeli et al., 2011a). For example
Control Structures is a topic covered in each of the textbooks, and is also a
topic named by all the groups in Saeli and colleagues’ study. The striking re-

74 Chapter 4: Measuring the PCK of Textbooks

sult is relative to data structure, which has been named by 66% of the groups,
but not covered in any of the textbooks; and Reusability, named by half of the
groups, and covered by only one of the eight books. This means that teachers
with a weak background in CS and who are willing to teach programming
cannot find content related support on these Big Ideas, and therefore no ped-
agogical information. On the other end the Big Idea formal language, covered
by half of the textbooks has been named by only of the 33% of the groups
from the previous study. In terms of the CK breadth, more than half of the
textbooks quantitatively covers these concepts. The only remarkable result is
relative to the concept “decomposition”, which is poorly covered. Though, it
should be considered that this concept is not included in the Dutch curricu-
lum. A surprising choice if we consider that from the previous study 66% of
the groups interviewed found it at the heart of learning programming.

Regarding the CK depth, we can notice that there is not much variation in
the scores, which on average are quite high. This means that teachers can find
a relatively good support in terms of the quality of the content.

As anticipated earlier, the PK component of the textbooks is very poor, with
the exception of teaching methods and ways to ascertain students’ under-
standing. Three of the questions have not been answered at all, namely:
further knowledge teachers could know about the topic; students’ difficul-
ties/misconceptions around the topic; and possible factors influencing the
teaching of the topic. These three questions find potential answers in the
teachers’ guide to the textbooks. None of the three textbooks had any teach-
ers’ guidelines on the teaching of these topics, hence the low scores. From the
Big Idea point of view, also the PK component analysis is in line with the
CK analysis, finding the best support for the topic “control structures”, while
“decomposition” scores the worse.

On the use of PTA for other purposes than research (e.g. teaching), we suggest
an alternative and more practical use of the PTA, to reduce time consumption,
though it has been positively scored in terms of time consumption. Also in
terms of practicality, the instrument needs some revision, the participants hav-
ing scored the instrument as medium in terms of easiness of use. Suggestions
for an alternative use of the PTA are however relative to the Dutch situation,
being developed from the results of this study. We think that it is important
to complete the step referring to the CK coverage, because it shows if the text-

4.4: Conclusions and Implication 75

book is covering the most important concepts within programming. As for the
CK breadth, we suggest to analyse three concepts: control structures (scoring
the highest), parameters (scoring the middle) and decomposition (scoring the
lowest). Regarding the CK depth there is not much variation in the results,
therefore we suggest to randomly pick two or three concepts. As for the PK
component the results suggest that some questions are completely omitted by
the books, and in general there is not much variation of the scores per book.
We suggest to randomly pick two or three concepts and to analyse the PK
component.

For those textbook authors who want to target teachers with low PCK, we sug-
gest to take into account our results when designing their products. However,
it should be noted that the results of this study do not point at the general
quality of a textbook, but only in terms of their PCK. Also, not all textbooks
are designed to support teachers’ developing PCK, therefore not all textbook
should score high from a PCK analysis.

Because this study is the first in its kind, we cannot compare our results
with those of others studying the PCK of textbooks. Our results suggest that
teachers with low PCK, either because of lack of content knowledge or because
of lack of teaching experience, are not able to find suitable support for the
development of their PCK. This might explain the reason why some teachers
do not relate to textbooks for the teaching of CS (Schmidt, 2007b) and refer
instead either to teaching material they develop themselves or to material
uploaded on a portal for CS teachers (www.informaticaVO.nl).

Acknowledgements

We would like to thank Elisa, Dennis and Frank, the student teachers who
took part into this research.

76 Chapter 4: Measuring the PCK of Textbooks

77

Chapter 5

Programming: Teachers and
Pedagogical Content

Knowledge1

Abstract

In this article we report about a study to assess Dutch teachers’ Pedagogical
Content Knowledge (PCK), with special focus on programming as a topic
in secondary school informatics education. For this research we developed
an online research instrument: Online Teacher PCK Analyser (OTPA). The
results show that Dutch teachers’ PCK is scored between low and medium.
Also we enquired whether there is any relation between teachers’ PCK and
the textbooks they use by comparing the results of this study with those of a
previous one in which the PCK of textbooks was assessed. The results show
that there is no strong relation. Finally, we looked for trends between teachers’
PCK and their educational backgrounds, as most of the Dutch teachers have a
different background than Informatics. The results show that also in this case
there is no strong relation.

1This chapter has been accepted for publication as: Saeli, M., Perrenet, J., Jochems,
W.M.G., & Zwaneveld, B. Programming: Teachers and Pedagogical Content Knowledge in
the Netherlands. Informatics in Education

78 Chapter 5: Measuring Teachers’ PCK

5.1 Introduction

The goal of this study is to measure Dutch teachers’ Pedagogical Content
Knowledge (PCK) in informatics education using an instrument developed
for this purpose. The reason to underpin such a study is the concern about
the quality of Informatics education in secondary schools (Van Diepen et al.,
2011). In order to assess the current Dutch scenario, we choose to analyse
Dutch teachers’ PCK. PCK is that expertise that allows teachers to present,
in an effective way the subject to their students (Shulman, 1986) and can be
seen as the special combination of content knowledge (CK) and pedagogical
knowledge (PK), and grows with the years of teaching experience. The instru-
ment used, OTPA (Online Teachers’ PCK Analyzer) reported in Appendix B ,
is an adaptation of the research instrument CoRe, used to portray the PCK

of chemistry education (Loughran et al., 2001) and programming education
(Saeli et al., 2011a).

Teachers’ answers to the online questionnaire are then compared with the
standard PCK of programming portrayed in a previous study (Table 5.1, left
column), fully available in the technical report (Saeli et al., 2010) and briefly
represented in Appendix C . Further, possible relations between teachers’ PCK

and the textbooks they use are sought, by comparing teacher’s results with
those of another study (Table 5.1, right column), in which Dutch textbooks
were analysed in search of aspects of PCK (Saeli, Perrenet, Jochems, & Zwan-
eveld, 2011b). Below (Table 5.1) a scheme is provided representing the rela-
tions of the CoRe instrument with the definition of PCK and the construction
of OTPA, and the relation between the results of this study with those of
two previous ones. These two studies will later be referred as the ‘interna-
tional study’ (Saeli et al., 2011a) and the ‘textbook analysis study’ (Saeli et
al., 2011b). A last goal of the study described in this paper is to understand
whether teachers’ disciplinary background (e.g. literature, mathematics, arts,
etc.) is related with teachers’ PCK.

5.1.1 PCK Development

Having good PCK means that teachers have several representations of the most
commonly taught topics within a certain subject. The more representations
teachers have at their disposal and the better they recognize learning difficul-
ties, the more effectively they can deploy their PCK (Van Driel et al., 1998).

5.1: Introduction 79

Study to portray PCK

(Saeli et al., 2011a)
This study

Study to analyse textbooks

(Saeli et al., 2011b)

CoRe

PCK

OTPA

teachers textbooks

to contruct

to portray to assess to assess

to compare to compare

PTA

Table 5.1: Scheme representing the relation between this study and two previ-
ous ones. The terms used are CoRe (Content Representation), OTPA (Online
PCK Teachers’ Analyzer), PCK (Pedagogical Content Knowledge) and PTA
(PCK Textbook Analyzer)

This implies that PCK is knowledge that grows with the years of teaching
experience and can be almost absent at the beginning of the teaching career.
Research in fact shows how novice teachers’ PCK was inadequate to support
teaching in field experiences (Rovegno, 1992). However, teacher training pro-
vides a framework on which novice teachers can build their PCK on (Grossman,
1990).

A different scenario is presented when teachers, with several years of teach-
ing experience, are teaching a subject outside of their certification. A study
(Sanders, 1993) shows that teachers, when teaching a topic outside their sci-
ence specialty, sometimes acted like novices (e.g., difficulties in answering stu-
dents’ questions; determining how deep and how much of the topic to present
to the students) and sometimes as experts. The conclusion is that PCK is
knowledge that is transferable, but not fully. It seems that experienced teach-
ers with strong PCK can reuse their knowledge to teach subjects outside of
their certification. Their PCK helps them to recognize the need to transform
the knowledge for the students, even though there might be the difficulty
determining how much to present at a given time and how to sequence presen-
tations. Through their PCK they can recognize the need to deal with students’

80 Chapter 5: Measuring Teachers’ PCK

input and try to determine students’ background knowledge.

5.1.2 Measuring PCK

Educators and researchers have developed several techniques and methods to
study PCK (An et al., 2004; Carpenter et al., 1988; Kromrey & Renfrow,
1991; Carlson, 1990; Rohaan, Taconis, & Jochems, 2009). Baxter and Leder-
man (1999) give a description of the most general techniques used and their
criticisms. They organize the different methods into three groups: convergent
and inferential techniques; concept mapping, card sorts and pictorial represen-
tations; and multi-method evaluation. Convergent and inferential techniques
include Likert self-report scales, multiple-choice items and short answer for-
mats. These techniques seem to be an economical means of improving general
teacher tests, but it is unclear if these tests are actually tapping new do-
mains of knowledge. The assessment and measurement of PCK concerns the
study of a teacher’s ability to deal with the unusual, non-generalizable aspects
of teaching. Accordingly these techniques seem to be inadequate, because
they are too restrictive. Concept mapping, card sorts, and pictorial represen-
tations are tools that have been largely used to study teachers’ knowledge
and beliefs, and to measure short-term changes. These tools are not suitable
to study the persistence of changes and (therefore) they have little value in
understanding the development and change of a teacher’s PCK (where PCK

involves changes that take place through the years). Multi-method evaluations
include a variety of techniques to collect data such as interviews, concept maps,
and video-prompted recall (Magnusson et al., 1999). Studies conducted with
multi-method evaluations are effective in assessing PCK, but they are time-
and energy-consuming. For certain studies (Hashweh, 1987) difficulties can
be the feasibility to replicate the measurements. In some cases there is the
need to make difficult decisions as to which data sources are needed to build a
global profile of PCK. The description of the multi-method evaluations suggest
that the assessment of PCK is neither simple nor obvious.

Methods and instruments to measure and assess PCK are being studied and
experimented with. The most common trend is to rely on qualitative ap-
proaches. However, these produce results that do not allow one to generalize
concepts about teaching and PCK, because they often consist of case studies.
It seems that quantitative approaches have been rarely adopted and their re-
sults give a partial view of a teachers’ PCK. Both methods are effort and time

5.1: Introduction 81

consuming. The qualitative methodology requires time for the data analysis
part (e.g., interviews transcripts), and in contrast the quantitative method
requires time for the development of the research instruments (e.g., adequate
multiple-choice items design).

In this study we use an instrument that has both qualitative and quantitative
aspects, because we think that a combination of the two techniques will lead
to a stronger measurement.

5.1.3 PCK of Programming

The results of the first effort to portray the PCK of programming are re-
ported in the international study (Saeli et al., 2010, 2011a). These results
were obtained by using the research instrument CoRe (Content Representa-
tion), which has already been successfully used by Australian researchers in
chemistry education (Loughran et al., 2001). PCK has been defined as “the
armamentarium of representations that teachers need to have at their disposal
when teaching a certain subject” (Shulman, 1987). To initialize the process
to create such a set, a total of 31 experienced teachers and teacher trainers
have been asked to take part in semi structured group interviews, organized in
the format of workshops. These interviews had a length of roughly two hours,
involving around five teachers at a time. Each interview was divided into two
parts. In the first part teachers had to individually list what in their opin-
ion the “Big Ideas” of programming are (the CK component). Big ideas are
those concepts within a subject which are at the heart of the learning for that
specific subject according to well-educated and experienced teachers. The Big
Ideas in the context of learning to program that have been named by more
than two groups are reported in Table 5.2. In the second part of the workshops
teachers chose, based on their interests, one or two of the Big Ideas and then,
for each Big Idea they answered the eight questions listed below (Table 5.3).
These results comprise the standard against which the PCK Dutch teachers
will be measured.

The data has been collected in four countries (Italy, Belgium, Lithuania and
the Netherlands) and constitute the first contribution to the efforts to portray
the PCK of programming for secondary education. Having the possibility
to freely choose from the eleven Big ideas, the teachers chose seven topics
according to their interest, namely: control structures, with focus on loops;

82 Chapter 5: Measuring Teachers’ PCK

Big Ideas

Control Structures: loops, conditions and sequence
Functions, procedures and methods
Algorithms
Variables and constants
Parameters
Data structure
Decomposition
Reusability
Arrays
Logical Thinking
Formal language grammar and syntax

Table 5.2: List of the core topics within programming at the heart of its
learning

data structures; arrays; problem solving skills (named by only one group);
decomposition; parameters; and algorithms. The PCK of these topics is now
available integrally in the technical report (Saeli et al., 2010), and in Appendix
C only the known PCK of the Big Idea algorithms is reported.

5.1.4 The Dutch Situation

In the Netherlands Informatics at secondary schools first landed in 1998, when
the Dutch Ministry of Education had the content and quality of all existing
courses controlled and new ones introduced. Informatics was one of these new
courses. Concerning the content of Informatics courses it should be noted that
in the Netherlands, lower grades students (up to 14 years old) are all expected
to become IT literate (Hulsen et al., 2005), which is to achieve the minimal
level of familiarity with technological tools like word processors, e-mail, and
Web browsers (on Information Technology Literacy, 1999). This means that
by attending secondary Informatics education students should foster higher
achievements. Recently (fall 2007) secondary education underwent two modi-
fications, which for Informatics implied a simplification of the curriculum. It
became less detailed and schools were granted more autonomy and choice in
the way they organize education. Informatics is at the moment an elective
subject for students and for schools as well.

5.1: Introduction 83

Questions

1. What do you intend the students to learn about this Big idea?
2. Why is it important for the students to know this Big idea?
3. What else you might know about this Big idea (and you don’t

intend students to know yet)?
4. What are difficulties/ limitations connected with the teaching of

this Big idea?
5. What do you think students need to know in order for them to

learn this Big idea?
6. Which factors influence your teaching of this Big idea?
7. What are teaching methods (any particular reasons for using these

to engage with this Big idea)?
8. What are your specific ways of ascertaining students understand-

ing or confusion around this Big idea?

Table 5.3: The eight questions of the CoRe instrument

At the moment, on a total of roughly 550 secondary schools, there are about
350 Informatics teachers (Schmidt, 2007b) in the Netherlands, most of whom
did not receive a formal teacher training in Informatics, but were offered an
in-service training spread over two school years, known as the CODI course
(Consortium Omscholing Docenten Informatica - Consortium for the schooling
of Informatics teachers). The content of this course covers about half of the
first year of a Bachelor of Science in Informatics and the pedagogical aspect
of teaching Informatics in the last two years of secondary education (ages 16
to 18). The common scenario is that there is only one Informatics teacher per
school, in case a school offers Informatics. Considering the amount of Dutch
schools, it means that only around the 65% of schools could adequately provide
an Informatics curriculum. Further, the majority (67%) of these teachers in
2007 were 50 years old, or more, which means towards the end of their career.
It seems that Informatics in the Netherlands is at a crossroad, where there is
even the risk to withdraw the teaching of Informatics from schools (Van Diepen
et al., 2011). The curriculum is divided into four domains, namely, Informat-
ics in perspective (possible uses and scope of Informatics), basic concepts and
skills, systems and their structures, and applications in connection. These four
domains are divided into 18 sub-domains (Schmidt, 2007a), but the level of
understanding and depth students are expected to achieve are not specified.
Three textbooks are available in the Netherlands: Fundament of Computer
Science (original title: Fundament Informatica), Enigma and Active Com-

84 Chapter 5: Measuring Teachers’ PCK

puter Science (original title: Informatica actief). The authors of the three
Dutch books claim that, in general, the content of the exam program has been
inspirational for the writing of the textbooks (Schmidt, 2007b). The exam
program is divided in several subdomains, programming is mentioned in the
subdomain Software (domain B, basic knowledge and skills, retrieved from
the website www.examenblad.nl, 2010). The results of the textbook analy-
sis study (Saeli et al., 2011b) suggest that these books sufficiently support
teachers’ PCK on the content component (CK), but fail in supporting the
pedagogical component (PK).

5.1.5 Research Questions

The aim of this study is to measure Dutch Informatics teachers’ PCK. To do
so we develop a research instrument, called OTPA. Moreover we are interested
in exploring the relation between teachers’ PCK on the one hand and on the
other hand their background studies and the textbook they use. Therefore
the research questions are:

- Is it possible to assess teachers’ PCK with the use of OTPA?
- What is Dutch teachers’ PCK of programming for secondary school?
- To what extent is teachers’ PCK related to the textbook they use?
- To what extent is teachers’ PCK related to their disciplinary background?

5.2 Methods

In this section we describe the methods to answer the four research questions.
The methods for the first two questions are summarized in Table 5.4: the
evaluation of the OPTA instrument (left most column) and the assessment of
Dutch teachers’ PCK (centre and right most column). Regarding the third
research question, finding a relation between teachers’ PCK and the textbooks
they use, we will use the results the textbook analysis study to find any trend
to suggest whether a textbook with high PCK could support teachers’ PCK.
The fourth question is answered by grouping teachers according to their dis-
ciplinary backgrounds.

5.2: Methods 85

OTPA Construction

OTPA Evaluation PCK Analysis

CK Component PK Component

Content
validity

Construct
validity

Practicality
Effectiveness

criteria

Reliability

CoRe

CoRe Content

Terms Breadth

Table 5.4: Scheme summarizing the different stages to answer the two first
research questions. The acronym used is CoRe (Content Representation).
Details of the method used follow in the next sections.

5.2.1 Participants Teachers’ PCK

The OTPA has been available online between January 2011 and April 2011,
and has been filled in by 92 teachers, but only 69 of those reached the end of
the questionnaire. The other 23 teachers abandoned the process, though they
were given the opportunity to complete the questionnaire in a later stage by
anonymously signing in again. We report the results of those teachers who
reached the end of the questionnaire. The majority of the participants are
either at the beginning of their teaching (Table 5.5) - less than 10 years expe-
rience - or quite experienced - between 20 and 40 years of teaching. As for the
teaching experience of Informatics education, the majority of teachers have
less than 10 years of teaching experience (Table 5.6). Of these teachers 37 also
teach another discipline, and the majority of those teaches a scientific oriented
subject (e.g. mathematics, physics) (Table 5.7). In the Netherlands subjects
are categorized as follows: alpha are subject such as Dutch and English; beta
are subjects such as mathematics and physics; gamma are subjects such eco-

86 Chapter 5: Measuring Teachers’ PCK

nomics or geography; and delta is the category for informatics (Mulder, 2002).
This categorization sees Informatics as the only delta discipline because this
subject is unique in that it has in its nature different aspects of other disci-
plines.

Teaching experience Frequency

<10 years 26
10 to 20 5
20 to 30 18
30 to 40 20

TOTAL 69

Table 5.5: General teaching experience

Informatics Teaching experience Frequency

<10 years 37
10 to 20 30
20 to 30 1
30 to 40 1

TOTAL 69

Table 5.6: Informatics teaching experience

5.2.2 OTPA (Online Teacher’s PCK Analyser) Evaluation

In order to measure Dutch teachers’ PCK we developed an instrument by
adapting the CoRe, an instrument used to portray the PCK of programming
(Saeli et al., 2011a). The adaptation is made into two directions, the content
and the form. Originally the CoRe instrument was designed to portray the
PCK of chemistry education (Loughran et al., 2001), whereas this study deals

Teaching also another discipline Frequency

alpha 26
beta 5

gamma 18
other 20

TOTAL 37 (of 69)

Table 5.7: Teaching also other discipline

5.2: Methods 87

with the topic of interest is Informatics education, with a focus on program-
ming. As for the form, CoRe was initially designed to be used in the context of
semi-structured interviews, while in this study it is adapted to be used in the
format of an online questionnaire. Also questions about teachers’ disciplinary
background and teaching experience are added.

In order to answer the first research question, the quality of the instrument
OTPA, we used Nieveen’s quality assessment (Nieveen, 1999), which has been
primarily designed for educational products. Its applicability in various do-
mains of educational product development, such as for example learning mate-
rial and computer support systems, has also been proven (Nieveen, 1999). The
use was further extended to evaluate a research instrument to analyze text-
books (Saeli et al., 2011b). We extend the list of possible target products, using
Nieveen’s quality assessment on the OTPA. Nieveen’s framework for product
quality consists of checklists on the following three criteria (Table 5.4, left most
column): validity, which refers to its content and its construct; practicality,
focusing on the easy of use of the instrument; and effectiveness, referring to
the time requirement for the use of the instrument.

In order to evaluate the different aspects of the OTPA evaluation, the fol-
lowing steps are covered. For the content validity, the theoretical framework
of the OTPA is compared with the theoretical framework of PCK, to verify
whether the instrument assesses all aspects of PCK; while for the construct
validity it will be verified if the components of the instrument are consistently
linked to each other. Regarding the practicality and the effectiveness of the
OTPA, an independent researcher is asked to assess the easiness and the time
consumption of the instrument, in terms of low, medium or optimal for easi-
ness and for effectiveness.

A further step regards the evaluation of the reliability of the instrument. To
evaluate the instrument reliability, another independent researcher is asked
to use the OTPA to analyse three randomly chosen teachers’ responses to
the online questionnaire. The two researchers’ results are compared with each
other and the percentage of agreement calculated (Table 5.4, left most column,
lower part).

88 Chapter 5: Measuring Teachers’ PCK

5.2.3 Quality evaluation

The goal of this phase is to answer the research question: Is it possible to
assess teachers’ PCK with the use of the OTPA?

The CoRe instrument, which has been readapted to build OTPA, has been suc-
cessfully used in different subjects (Loughran et al., 2001; Saeli et al., 2011a)
and has been positively assessed on how the eight questions actually cover the
different aspects of PCK (Saeli et al., 2011b). There is an almost one-to-one
correspondence between the OTPA and the results obtained with the CoRe.

The instrument analyses both aspects of pedagogy (PK) and content (CK),
two of the three main components of PCK. The data obtained with this in-
strument is then compared with the known PCK.

In order to measure the practicality and effectiveness a second researcher par-
ticipated into this study. The second researcher commented that: “Controlling
the urge to be too interpretive and give meaning where none was obvious was
not easy. I do not think this is a reflection of the instrument. I believe this is
probably a common factor in any qualitative research where respondent’s words
represent the data. Where the respondent’s comments were of good quality and
quantity, the scoring was easy”. The second researcher’s comment reveals a
difficulty of analyzing qualitative data that is not specific to this study. There-
fore her positive score in terms of the practicality of PTA is at a medium level
in terms of easiness. When asked to score its effectiveness, the second re-
searcher reported the instrument to be high in terms of time consumption,
commenting that “It is operational and perfectly usable for scoring the respon-
dents’ answers”.

Moreover, regarding the reliability of the instrument, a pilot round has been
run. Two researchers (the first author of this article and a second external
researcher) independently analysed two teachers’ answers to the open-ended
questions (CK3 and PK2 to PK8, reported in Appendix B). The answers to
be compared have been randomly and blindly chosen by the second research.
The scores have been compared and resulted in a percentage of agreement
(POA) of .81. After discussing the answers that produced different scores, full
agreement on the method was found.

5.2: Methods 89

5.2.4 Teachers’ PCK Analysis

The second research question, assessing Dutch teachers’ PCK, is tackled by
using our research instrument. The data obtained are compared with the
standard of PCK for programming, obtained through workshops, fully available
in the technical report (Saeli et al., 2010) and partially reported in Appendix
C . Similarly to the CoRe, OTPA focuses on Big Ideas (core concepts of a
subject), considered as the CK (content knowledge) aspect of PCK. For each
of these Big Ideas, an analysis of its PK (pedagogical knowledge) aspect is
conducted through the eight questions introduced earlier (Table 5.3). Below
the details of the CK and PK components of the OTPA (Table 5.4, centre and
left most column) follow.

Content Knowledge Component

Assessing the CK component is done in two phases (Table 5.4). In the first
phase we analyse the answers to two multiple-choice questions (see Appendix
B), which are labelled as CK1 and CK2. Question CK1 has been constructed
using the aforementioned Big Ideas of programming, obtained from the inter-
national study (Saeli et al., 2011a); while CK2 is constructed using experts’
opinion regarding which terms are related to the teaching of control structures,
obtained from the textbook analysis study (Saeli et al., 2011b). In the list of
choices of these two questions there are both correct and incorrect answers,
therefore teachers have to recognize the right choices and cross them. For
each correct choice they get 1 point, up to 11 for CK1 and up to 8 for CK2.
In order to be consistent with the scales of questions CK3 and PK2 to PK8,
the scores of questions CK1 and CK2 are then labeled as ‘low’, ‘medium’ and
‘high’. To do produce such labels CK1 and CK2 scores are divided into thirds
(e.g. for CK2: a 0 to 2 score is labelled as ‘low’, 3 to 5 as ‘medium’, and 6 to
8 as ‘high’).

In the second phase the answer to the question: “1. What do you intend the
students to learn about this Big Idea?” (Table 5.3) is found. This is the first
of the PK part of the questionnaire, but because it refers to content knowledge
is labelled as CK3. The answer is compared with experienced teachers’ PCK,
considered as the standard and reported in (Saeli et al., 2011a). It is evaluated
as: blank (0) if answer is not given; low (1) if only 1/3 of the standard is listed
by the participant; sufficient (2), if 2/3 of the standard is named by the par-
ticipant; and high (3) if the full standard is listed by the participant. Because

90 Chapter 5: Measuring Teachers’ PCK

of the qualitative nature of this analysis one does not find exact matching
answers, but similar concepts are also positively scored.

An example of the CK3 could be comparing a teacher’s answer on the topic
‘algorithm’ with the standard (Appendix C and Table 5.8):

Teacher: ‘Algorithm’ = plan of steps/recipe. Writing an algorithm = solv-
ing a problem. You can write simple algorithms, using parameters, iterations,
conditions and simple data structures (variables/arrays).

This teacher’s answer is scored with a ‘medium’, because it indeed lists topics
such as sequence of actions (plan of steps) and combination of structures to
reach the solution of a problem (parameters, iterations, etc.), but fails in
naming its representation and realization and the necessity for algorithms.

What do you intend the students to learn about this
idea?

-To start programming in concrete programming languages
for the future Foundation for the future programming
- Managing to spot the sequence of actions which bring to
the solution of the problem
- A correct description of algorithms allows to: boost (sharp-
ens) logic skills; communicate the results of the job.
- Utility to clarify a fixed sequence of actions which allows
to obtain specific, concrete and correct results
- What it is, for what is it useful, representation, realization.
The goal is to teach students that you need instructions to
solve a problem, independently that it will be a computer
to execute your instructions

Table 5.8: An extract of the CoRe about algorithms fully reported in Appendix
B

Pedagogical Knowledge Component

As for the PK (Pedagogical Knowledge) aspect of teachers’ PCK, as term of
comparison the standard of the PCK of seven topics in the context of program-
ming is used, namely: loops, data structures, arrays, problem solving skills,

5.2: Methods 91

decomposition, parameters and algorithms. We offered teachers, in the con-
text of the OTPA, the choice of one of the seven topics listed above. They were
then prompted with the eight questions introduced in Table 5.3 and had the
possibility to skip them or leave them blank. As question 1 is used to analyse
the CK component, we only use questions 2 to 8 for the PK component. Each
answer is then assessed for comparison with the results of the international
study (Table 5.4, right column) as: blank (0), low (1), sufficient (2), or high
(3) in relation to their quality and quantity. Similarly to the CK3, teachers’
answers are compared and scored (see example in previous paragraph). Be-
cause of the qualitative nature of this analysis, it is not always possible to find
exact matching answers, but more often similar concepts can be found. When
teachers’ answers are different from the standard, but still seem to be of good
quality, an expert has been asked to assess these questions.

In the course of the international study (Saeli et al., 2010) the PCK of some
Big Ideas has been collected using a different set of questions to Table 5.3.
For the Big Ideas ‘problem solving skills’ question 5 was conceived as follows:
Which knowledge about your students’ thinking influences your teaching of
this Big Ideas? Consequently for those teachers answering that question of
the OTPA on the concept of problem solving skills an expert has been asked
to assess teachers’ answers.

Relation with Textbook

In order to explore whether there is any relation between teachers’ PCK and
the PCK of the textbook they use, the results of this study are compared with
those of the textbook analysis study, in which the PCK of textbooks have been
measured (Saeli et al., 2011b). The resulting histogram graphs are studied in
search of relations and trends (see Tables 5.16 and 5.17).

Relation with Background

In order to test whether there is any relation between teachers’ PCK and their
background, the results of teachers’ PCK will be sorted according to teachers’
disciplinary backgrounds, according to the alpha, beta, gamma, delta cate-
gorization introduced earlier. Similarly to the previous section, the resulting
histogram graphs are studied in search for relations and trends (see Tables

92 Chapter 5: Measuring Teachers’ PCK

5.20 and 5.21).

5.3 Results

This section is divided into three parts: the results relative to the analysis
of teachers’ PCK; the results of possible relation between teachers’ PCK and
the textbook they use; and finally the results of a possible relation between
teachers’ PCK and their background (alpha, beta, gamma and delta).

5.3.1 PCK Assessment

In this section the results relative to the CK and PK component are reported.

Content Knowledge Component

Regarding the CK1 and CK2 components, the majority of teachers scored
medium values in both multiple choice questions (Table 5.9 and Table 5.10).
The method used to obtain these scores is reported in section 5.2.4. In the
CK3 component there is not much variation between low and medium scores,
though a consistent number of teachers skipped this question (Table 5.11).

Score Frequency

high 13
medium 54
low 2

TOTAL 69

Table 5.9: Scores of the CK1, first multiple choice question

Score Frequency

high 11
medium 42
low 16

TOTAL 69

Table 5.10: Scores of the CK2, second multiple choice question

5.3: Results 93

Score Frequency

high 6
medium 22
low 24
empty 17

TOTAL 69

Table 5.11: Score of the CK3, first open-ended question

Pedagogical Knwoledge Component

In this part the results of the PK component of teachers’ PCK is reported.
Teachers had the opportunity to freely choose one topic from the available
seven concepts. The majority chose to answer the questions for Problem Solv-
ing Skills and Algorithms (Table 5.12), while only 2 teachers chose to discuss
Decomposition. The scores relative to the answers of the seven questions (PK2
to PK8) are reported in Table 5.13. Here the scores reported are the result
of the sum of each answer (scoring between 0, blank, and 3, high) for the 69
teachers, which means that the maximum score can be 207. The question
with the highest score is PK2 (93 out of 207), concerning the reasons to teach
a certain concept. The questions with the lowest score are PK3, concerning
extracurricular knowledge about a concept, and PK6, concerning other factors
influencing the teaching of a concept, scoring relatively, 51 and 55 out of 207.

Concept Frequency

Loops 11
Data structures 6
Arrays 2
Problem solving skills 33
Decomposition 2
Parameter 4
Algorithms 11

TOTAL 69

Table 5.12: Choice of the concept to discuss

Table 5.14 provides an overview of the blank answers, either because the ques-
tions were not answered, or because the answer was out of context. Teachers
who chose to answer the questions relative to the Big Idea “data structures”
actually understood the term data structure to mean databases, therefore the

94 Chapter 5: Measuring Teachers’ PCK

Question Sum out of 207 Score

PK2 93 medium
PK3 51 low
PK4 73 medium
PK5 75 medium
PK6 55 low
PK7 67 low
PK8 63 low

Table 5.13: Summary of the scores relative to the questions. Low (sum up to
69), Medium (sum between 70 and 138), High (sum between 139 and 207).

6 teachers have been given the score ‘0’.

Questions PK2 PK3 PK4 PK5 PK6 PK7 PK8

Blank 17 40 23 25 34 27 30

Table 5.14: Number of teachers who did not answer the questions

5.3.2 Relation with Textbooks

The textbooks used in this study are three: Instruct (29 teachers), Active
informatics (20 teachers) and Enigma (only 6 teachers). Because a relevant
number of teachers do not report to use textbooks (13 teachers), their results
are also reported. However, because we have no details about the content of
teachers’ own material, it is not possible to infer or speculate from the results
relative to these teachers. Also, the research question leading the analysis
of these data concerns only the possible relation between teachers’ PCK and
the textbooks they use. The scores relative to the CK (Table 5.16) and PK
(Table 5.17) components are reported below. As for the use of textbooks,
the majority of the respondents, 29 teachers, use the Instruct textbook (Ta-
ble 5.15). This book is designed to be used with one or more extra modules.
From the data obtained we now that from a total of 69 teachers, 16 teachers
didn’t answer the questions at all, from those 7 use Informatica actief, 5 In-
struct, 2 teachers using no textbook, 1 Enigma and 1 other material (the only
representative of this group). In Table (5.15) the averages of teachers’ scores
using these textbooks are also reported, relative only to the PK component,
later analysed in detail in this section.

5.3: Results 95

Textbook Frequency blank low medium high

Instruct 29 35% 30% 30% 6%
Enigma 6 33% 31% 31% 5%
Informatica actief 20 45% 15% 35% 5%
No textbook 13 45% 30% 22% 3%
Other 1 100% 0% 0% 0%

TOTAL 69

Table 5.15: Textbook used in classroom by 69 teachers and the relative average
scores with respect to the PK component.

Note that the following results have been scaled up to 100%, though it should
be considered that sample groups for the different categories (textbook or disci-
plinary background) have very different sizes, reported in the graphs’ captions.
This choice was necessary to be able to compare the different groups.

Regarding the CK1 and CK2 (Table 5.16), there is little variation among the
teachers using different textbooks, where the most frequent score is ‘medium’.
An exception is found in CK2 for teachers using the Enigma textbook are
the only ones not to have any ‘low’ scores. As for the CK3, where teachers
were given the opportunity to leave blank answers, the scenario is different.
There is no consistency in the different groups. The only teachers scoring, in
a very small portion, ‘high’ are those using Instruct and Informatics-actief.
Enigma teachers score mostly ‘low’, while teachers not using textbooks are
almost equally spread between ‘low’ and ‘medium’.

On the questions relative to the PK component (Table 5.17), teachers were
given the opportunity to give blank answers. On average 40% of teachers
skipped these questions (not considering teachers using ‘other’ kind of teach-
ing material) and the most skipped question were PK3, PK6 and PK8. Those
who answered are almost equally distributed between ‘low’ and ‘medium’ (see
Table 5.15), with the exception of those teachers using Informatica-actief,
who mostly score ‘medium’ (35% of them). We can see the biggest variation
of scores in questions PK2 and PK3 (relatively reasons to teach a concept
and extracurricular knowledge), where some more ‘high’ scores are also found
in all textbooks, except for teachers not using textbooks. On these last two
questions, teachers using Informatica-actief are those having the smallest per-
centage of ‘low’ scores. For the other questions, there is seems to be no book

96 Chapter 5: Measuring Teachers’ PCK

Table 5.16: Results relative to teachers using the same textbook or no text-
book, divided by question (CK1, CK2 and CK3) and showed as percentage.
Instruct N=29, Enigma N=6, Informatica-actief N=20, No textbooks N=13.
Gaps between the top of the bars and 100% represent teachers who left blank
answers.

where teachers score remarkably higher than others, though it is possible to
notice some high scores (PK4, PK7 and PK8). The answers to questions PK4
(difficulties connected with the teaching) present less difficulties to teachers
using the book Inofrmatica-actief. Question PK5 (students’ prior knowledge
needed) results in a similar distribution of scores irrespective of the textbook,
with most scoring ‘medium’ and a smaller percentage ‘low’. While for PK6
(factors influencing the teaching of a concept), teachers using the Enigma
book score the highest. The answers to question PK7 (teaching methods) are
in general ‘low’ for Instruct and Enigma teachers, while mostly ‘medium’ for
teachers using Informatica-actief and teachers not using textbooks. Lastly,
regarding the question PK8 (ways of ascertaining students’ understanding)
there are more ‘low’ scores, although Instruct teachers and teachers not using
textbooks score slightly better than the others.

5.3: Results 97

T
ab

le
5.

17
:

R
es

u
lt

s
re

la
ti

ve
to

te
a
ch

er
s

u
si

n
g

th
e

sa
m

e
te

x
tb

o
ok

or
n

o
te

x
tb

o
ok

,
d

iv
id

ed
b
y

q
u

es
ti

on
(P

K
2

to
P

K
8
)

a
n

d
sh

ow
ed

a
s

p
er

ce
n
ta

ge
s.

In
st

ru
ct

N
=

29
,

E
n

ig
m

a
N

=
6,

In
fo

rm
at

ic
a-

ac
ti

ef
N

=
20

,
N

o
te

x
tb

o
ok

s
N

=
13

.
G

ap
s

b
et

w
ee

n
th

e
to

p
of

th
e

b
a
rs

an
d

10
0%

re
p

re
se

n
t

te
ac

h
er

s
w

h
o

le
ft

b
la

n
k

an
sw

er
s.

98 Chapter 5: Measuring Teachers’ PCK

5.3.3 Relation with Disciplinary Background

The teachers participating in this study have all different disciplinary back-
grounds: alpha (16 teachers), beta (26 teachers), gamma (only 6 teachers)
and delta (15 teachers). The other 6 teachers did not specify their back-
ground studies, therefore will not be shown in the results. The scores relative
to the CK (Table 5.20) and PK (Table 5.21 and Table 5.18) components are
reported below.

Background Frequency blank low medium high

alpha 16 52% 28% 16% 4%
beta 26 30% 30% 36% 4%
gamma 6 50% 14% 31% 5%
delta 15 38% 22% 30% 10%
not specified 6 52% 17% 31% 0%

TOTAL 69

Table 5.18: Background studies of 69 teachers and the relative average scores
with respect to the PK component.

Frequency

Yes 34
No 35

TOTAL 69

Table 5.19: Did you attend the CODI course?

In Table 5.18 we can see that most teachers have a beta (26 teachers), while
only 6 teachers have a gamma background. Roughly half of the teachers have
attended the CODI course (Table 5.19), the in-service training for teachers
with another disciplinary background to get basic knowledge for teaching In-
formatics.

Regarding the CK component (Table 5.20), in the context of multiple-choice
questions, teachers from different disciplines score quite similary (‘medium’),
except for gamma teachers in question CK2. A completely different scenario
is presented in the context of the open-ended question, were there is a definite
distinction between delta teachers (followed by the gamma teachers) and the
others.

Regarding the PK component (see Table 5.18), teachers with alpha back-

5.3: Results 99

Table 5.20: Results relative to teachers having the same background, divided
per question (CK1 to CK3) and showed as percentage. Alpha N=16, Beta
N=26, Gamma N=6, Delta N=15. Gaps between the top of the bars and
100% represent teachers who left blank answers.

ground are those scoring the worst out of those teachers answering the ques-
tions. While the group of delta teachers is performing slightly better than the
others. Teachers with beta background are evenly spread between ‘low’ and
‘medium’. As for the number of blank answers, teachers who answered most
of the questions (Table 5.18) are those with beta background, while the ones
answering the least have a gamma and alpha background.
Further (Table 5.21), in questions PK2 (reasons to teach a concept) and PK3
(extracurricular knowledge) there is more variation between ‘low’, ‘medium’
and ‘high’ scores spread among teachers of different backgrounds. On the same
two questions, teachers with delta background also have the largest percentage
of ‘high’ scores.

100 Chapter 5: Measuring Teachers’ PCK

T
ab

le
5
.2

1
:

R
esu

lts
rela

tive
to

tea
ch

ers
h

av
in

g
th

e
sam

e
b

ack
grou

n
d

,
d

iv
id

ed
p

er
q
u

estion
(P

K
2

to
P

K
8)

an
d

sh
ow

ed
a
s

p
ercen

ta
ge.

A
lp

h
a

N
=

1
6
,

B
eta

N
=

26,
G

am
m

a
N

=
6,

D
elta

N
=

15.
G

ap
s

b
etw

een
th

e
top

of
th

e
b

ars
a
n

d
1
00%

rep
resen

t
tea

ch
ers

w
h

o
left

b
lan

k
an

sw
ers.

5.4: Conclusions and Discussion 101

In questions PK4, about difficulties connected with the teaching of a con-
cept, gamma and delta teachers generally scored ‘medium’, while alpha and
beta had consistent ‘low’ scores. A similar scenario is presented for questions
PK5 (students’ prior knowledge needed), except for alpha teachers (mostly
scoring ‘low’); while for PK6 (factors influencing the teaching of a concept)
scores are between ‘low’ and ‘medium’, except gamma teachers (mostly scor-
ing ‘medium’). For questions PK7, relative to teaching methods, alpha and
gamma teachers mostly score ‘low’, while beta and delta teachers have a larger
proportion of ‘medium’ scores. Lastly, regarding question PK8 (ways of ascer-
taining students’ understanding), gamma teachers perform distinctively better
than the others.

5.4 Conclusions and Discussion

In this paper we discussed the use of PCK as framework to assess secondary
school teachers. The four research questions leading this study concern the use
of the OTPA, teachers’ PCK assessment, possible relation between teachers’
PCK and the textbooks they use and possible relation between teachers’ PCK

and their disciplinary background.

5.4.1 About the instrument

Regarding the first research question, “is it possible to assess teachers’ PCK

with the use of the OTPA?”, the results suggest that it is indeed possible
in general to use PCK as a framework for this kind of assessment. A second
researcher used the instrument and positively assessed it in terms of ease of
use and practicability. Though, for the qualitative aspect of the instrument,
the interpretation of teachers’ answers is at times difficult. However, this is
a common difficulty of those interpretative processes specific of qualitative
methods.

5.4.2 Dutch teachers’ PCK

The goal of the second research question of this study is to assess Dutch teach-
ers’ PCK from a general perspective. The results show that Dutch teachers
have generally scored ‘medium’ on the content knowledge component, when

102 Chapter 5: Measuring Teachers’ PCK

given multiple choice questions. In the context of open ended questions, teach-
ers perform less well and scores are almost equally distributed between ‘low’
and ‘medium’. These results might indicate that Dutch teachers have not
enough disciplinary background to answer open ended questions, which in-
volve knowledge production. However, when they are in the condition of rec-
ognizing knowledge (multiple choice questions) their performance improves.
A possible explanation of this phenomenon might be found in the difference
between knowledge recognition and knowledge production (synthesis). Ac-
cording to the hierarchical classification of cognitive processes (Krathwohl,
2002) knowledge recognition is considered of a lower difficulty than knowledge
(re)production. Teachers answering multiple-choice questions are actually rec-
ognizing knowledge, because they need to choose between correct and incorrect
answers. While when teachers answer open-ended questions they are in the
process of producing knowledge. One might argue that clicking on a multiple
choice question is faster than answering an open-ended question, influenc-
ing teachers’ performance (better with multiple choice questions and worse
with open ended questions). However, if the results of the other open ended
questions are considered (Table 5.13) it is possible to note that scores vary
between ‘low’ and ‘medium’ scores, suggesting that some aspects of Dutch
teachers’ PCK is stronger than other and is sufficient to answer open ended
questions, according to the hierarchical classification described above.

As for the pedagogical component, Dutch teachers have scored ’medium’ on
the questions relative to the reasons to teach a certain Big Idea, on the difficul-
ties connected with the teaching of a certain Big Idea and on students’ prior
knowledge required to learn a certain Big Idea. At the same time they score
poorly on questions relating to extracurricular knowledge around the Big Idea
of their choice, factors influencing their teaching of that Big Idea, teaching
methods and ways to ascertain students’ understanding. The ‘low’ scores on
these domains are also influenced by the consistent number of teachers skip-
ping these questions. Especially on the extracurricular knowledge, where more
than half of the teachers skipped the question relating to this topic. This result
evidences how Dutch teachers may be lacking of a solid disciplinary knowledge
in programming (‘low’ CK).

Summarizing, the answer to the second research question is that Dutch teach-
ers perform sufficiently on the content knowledge component, especially when
in the condition of recognizing knowledge, like with multiple-choice questions.

5.4: Conclusions and Discussion 103

One might have expected Dutch teachers to poorly score on the CK com-
ponent, because most of them have a disciplinary background different than
Informatics. However, Dutch textbooks (Saeli et al., 2011b) have been posi-
tively assessed in terms of the CK component and could have supported Dutch
teachers weak disciplinary background. We could speculate that these teachers
would benefit from well designed teaching material to further improve their
performance. These outcomes are confirmed by Dutch teachers’ results on
the pedagogical knowledge component, especially on the question relative to
extracurricular knowledge, where scores were poor both for teachers and text-
books. Also on the teaching methods, teachers seem to need more support.
This result is actually a confirmation of the need for more teaching materials
and teaching examples, also underlined by participants to the international
study (Saeli et al., 2011a). It is reassuring on the other hand, to see that
Dutch teachers score ‘medium’ on topics such as reasons to teach, students’
prior knowledge and difficulties relative to the teaching of a topic. The results
of this study could help Dutch scholars (Van Diepen et al., 2011) in the process
of revising the whole subject. From the results of this study we can conclude
that Dutch teachers are indeed neither strong on the CK nor the PK com-
ponent, though they perform much better when knowledge is made explicit
(e.g. multiple choice questionnaires). Effort should therefore be made in the
direction of producing more teaching material and guidebooks for teachers.

5.4.3 PCK and textbooks

To what extent is there a relation between teachers’ PCK and the textbooks
they use? From the results of this study (see Table 5.16) there seems to be
no relation regarding the CK component, in the sense that teachers using the
same textbook do not score better than teachers using another textbook, but
generally score ‘medium’ in the context of multiple-choice questions, and be-
tween ‘low’ and ‘medium’ (except teachers using the book Informatica-actief)
in the context of open-ended questions. A reason for this homogeneity can
be attributed to the CK component of Dutch textbooks, which has been pos-
itively assessed in the textbook analysis study.

Regarding the PK component, the first sign of a relation between textbooks
and teachers’ PCK is on the choice of Big Ideas to discuss. Teachers mainly
chose those concepts that are also present in the textbooks. Of the few par-
ticipants who decided to discuss the ‘data structures’ concept, all teachers

104 Chapter 5: Measuring Teachers’ PCK

actually answered as if the Big Idea was referring to ‘databases’. The latter
is a concept included in the Dutch curriculum (Schmidt, 2007a), while the
concept ‘data structures’ is the only concept that is not explicitly addressed
in any of the Dutch textbooks. Also it should be noted that none of these
teachers had an Informatics background. Interestingly, most of the teachers
(33 out of 69) decided to discuss the concept ‘problem solving skills’, which is
considered to be at the heart of teaching programming (Saeli et al., 2011c).
11 teachers decided to discuss either Loops and another 11 Algorithms, which
are both concepts largely covered in the textbooks.

When considering the different parts of the PK component, it is possible to
see from the graphs (see Table 5.17) that there is no real difference between
teachers using different textbooks, except for those that use Informatica-actief
in questions PK2 and PK3 (content to teach and reasons to teach that con-
tent). Dutch textbooks were assessed in a previous study as weak on the PK
component. When comparing the results of these two studies, Dutch teachers
obtained better scores in comparison with the results of the textbooks they
use. One exception is made on the question regarding the teaching methods,
where some more consistent ‘low’ and ‘medium’ scores were found from Dutch
teachers, while their textbooks scored generally ‘medium’. Although in some
aspects of PCK (reasons to teach a certain Big Idea and extracurricular knowl-
edge) there is more variation in teachers’ answers, showing also some ‘high’
results, we cannot identify any relation with the textbooks they use, which all
had poor scores on the same questions. Remarkably, teachers scored mostly
‘medium’, but also sometimes ‘high’, on those questions that found no an-
swers in the textbook analysis. These questions concern difficulties connected
with the teaching/learning of a concept and factors influencing the teaching
of a concept. These questions usually would find answers in a teacher’s guide
to the textbook, which is not available for any of the Dutch textbooks. As
for the question concerning extracurricular knowledge, mostly teachers scored
low, except for teachers using Informatica-actief. This is the only relation-
ship between teachers’ low performance and the PCK assessed in the textbook
study.

Summarizing, the answer to the second research question is that, in the Dutch
scenario, there seems to be no strong relation between teachers’ PCK and the
textbooks they use, though for some aspects teachers performance might be
linked with the quality of the textbooks (e.g. CK component).

5.4: Conclusions and Discussion 105

5.4.4 PCK and disciplinary background

The goal of the fourth research question is to understand whether there is a re-
lation between teachers’ PCK and their disciplinary background. Disciplinary
backgrounds are divided according to the Dutch categorization: alpha (e.g.
Dutch, English), beta (e.g. Mathematics, physics), gamma (e.g. Geography,
Economics) and delta (Informatics). From the results there seems to be no
relation regarding the content knowledge component, when teachers are given
the opportunity to answer multiple choice questions. When answering open
ended questions delta teachers scored remarkably better than the other teach-
ers, while alpha teachers scored worse. This is a confirmation that teachers
with a solid disciplinary background have better knowledge of the subject and
manage to reproduce their knowledge in the context of open ended questions.

Regarding the pedagogical knowledge component, one might expect teachers
teaching another discipline to actually be supported on some aspects of their
PCK from their teaching experience, as research has shown (Sanders, 1993).
Also from the results of this study it is possible to see how teachers with dif-
ferent disciplinary backgrounds than Informatics, do actually score at times
‘medium’, for example on questions regarding reasons to teach a certain con-
cept, students’ prior knowledge needed, and factors influencing the teaching.
Regarding the question about teaching methods, the teachers that seem to
score better are those with a beta or a delta disciplinary background. As for
question regarding the methods to ascertain students’ understanding, all dif-
ferent disciplines seem to have equally distributed results between ‘low’ and
‘medium’, with the exception of gamma teachers (mostly scoring ‘medium’).
Only for teachers with alpha and gamma background is there a noticeable
tendency to skip open ended questions, and unfortunately the reasons for this
are unclear.

Summarizing, the answer to the fourth and last question is that there is no
strong relation between teachers’ PCK and their disciplinary backgrounds, ex-
cept in the context of content knowledge reproduction (CK3), where Informat-
ics teachers clearly scored better than other teachers. Also teachers with alpha
and gamma background are those who mostly skipped questions, though we
cannot infer the reasons for such choice. Quite surprisingly teachers with In-
formatics background scored quite similarly to teachers with a non-Informatics
background on the content knowledge component in the context of multiple

106 Chapter 5: Measuring Teachers’ PCK

choice questions. This might be due to the fact that textbooks have been pos-
itively assessed on their CK component and might support teachers with weak
disciplinary background. As for the pedagogical knowledge aspect, it is not
possible to evidence a single disciplinary background scoring better than the
other. However teachers with alpha background scored on average the worse
and skipped the most questions. Beta and delta teachers are those that, in
average, scored better. One might have expected teachers of non-Informatics
disciplines to score better on the PK, because they are supported, in some
cases, by the PCK developed through their teaching experience.

5.4.5 Limitations of the study

The instrument OTPA, intended as teachers’ PCK measurement instrument,
has the limitation that it does not give the teacher the chance to discuss his/her
own knowledge. Though teachers were given the opportunity to write their
answers in open-ended questions, they might have not had the chance to fully
express their knowledge. Another limitation of the instrument is that several
teachers skipped the open-ended questions. Reasons might be different, as
for example time pressure, lack of knowledge or interest. Also, all teachers
answering the questions relative to the teaching of data structures actually
answered the questions referring to databases.

One might argue that the PCK assessed in this study does not reflect a teach-
ers’ actual PCK, because teachers had the chance to choose the topic to discuss.
Probably teachers chose the topics in which they felt more confident. A con-
sequence could be that even if a teachers’ PCK on her/his topic of preference
is good, it does not automatically imply that her/his PCK of programming
is good. However, the goal of this study is not to measure a single teachers’
PCK, but to assess the Dutch scenario using PCK as framework. In order to
be able to generalize our results from single teachers’ PCK it was chosen to
have a large sample size.

One final observation should be made regarding the quality of the sample of
teachers. Participants of this study were invited to fill in the questionnaire
anonymously, either through e-mail, advertisement on the portal for Dutch
speaking informatics teachers (www.informaticavo.nl) or through mailing lists.
Though the participants to this study consist of almost 1/5 of the Dutch
Informatics teachers, we suspect a bias in our results owing to the fact that

5.4: Conclusions and Discussion 107

only those teachers who feel confident in programming might have completed
the questionnaire.

Acknowledgement

We would like to thank all the teachers who kindly filled in the questionnaire.
Without them this study would have not been possible. Also we would like to
thank Cynthia C. Selby and Peter van Mill for their professional help.

108 Chapter 5: Measuring Teachers’ PCK

109

Chapter 6

Conclusions

6.1 Overview of the research

The research described in this book has been guided by the general aim of
exploring the teaching of Computer Science (CS) for secondary education, in
terms of Pedagogical Content Knowledge (PCK). CS is a discipline that has
only recently been introduced in secondary education in the Netherlands as
well as in other countries, therefore its PCK is still merely unknown. The
work conducted through the studies reported in this book has on one hand
the important and pioneering scientific relevance of portraying the PCK of this
discipline, developing an instrument to measure CS teachers’ PCK and devel-
oping an instrument to recognise aspects of PCK in textbooks. On the other
hand it has the practical relevance of improving the quality of CS education
in the Netherlands, by portraying the current situation from a Pedagogical
Content Knowledge perspective.

The need to investigate the recent Dutch CS Education (CSE) scenario is
due to the recent critics Dutch CSE received. The problems evidenced in the
Netherlands are multiple (see chapter 1), but among these the fact that most
Dutch CS teachers have weak disciplinary background (Schmidt, 2007b). This
situation is the result of an action to introduce CS in secondary education,
when no teachers of CS were available in 1998. The solution opted at that

110 Chapter 6: Conclusions

time was to organise in-service training for teachers certified in other disciplines
(e.g. economics, art, mathematics, Dutch, language, etc.). This resulted in
a population of Dutch CS teachers willing to teach CS, but having a weak
disciplinary background. Now CS risks to be erased from the CS curriculum
for secondary school, because no clear solutions are available to the problems
outlined, though efforts are being made. The approach adopted in this research
is to focus on the Pedagogical Content Knowledge (PCK) of CS as a framework
to assess the Dutch scenario and establish a basis knowledge to propose local
solutions.

In order to measure Dutch teachers’ PCK it was first necessary to explore the
current literature in search for possible knowledge about PCK of CS through
a literature review study (chapter 2). Possible gaps and lacks of the PCK

of CSE evidenced in the literature were then bridged through an exploratory
study aimed at portraying teachers’ PCK of CS inside and outside the Nether-
lands (chapter 3). Also, different aspects of PCK of CS are searched in Dutch
textbooks (chapter 4), to later find possible relations between Dutch teachers’
PCK and the information found in textbooks in a study aimed at measuring
Dutch teachers’ PCK (chapter 5).

In this research project it has been decided to focus on only one of the different
topics of CS: programming. Focusing on one topic would allow an in-depth
analysis which seems more appropriate than a rather global description of a
number of topics. The reasons to choose programming is that this is one of
the core topics of a CS curriculum in both secondary and higher education,
and is considered by many to be a difficult topic to learn and to teach.

The research questions guiding this research are:

1. To what extent is it possible to recognise aspects of Pedagogical Content
Knowledge of programming for secondary education in current litera-
ture? (Chapter 2)

2. What is the Pedagogical Content Knowledge of programming in the
context of secondary school education? (Chapter 3)

3. To what extent is it possible to identify the Pedagogical Content Knowl-
edge of programming in Dutch secondary school textbooks? (Chapter
4)

6.2: Summary of the outcomes 111

4. What is Dutch teachers’ Pedagogical Content Knowledge of program-
ming for secondary school? (Chapter 5)

In the next section an overview of the answers to these questions are given,
drawing the conclusions from the results of the studies reported in in chapters
2 to 5.

6.2 Summary of the outcomes

6.2.1 Pedagogical Content Knowledge of programming

In chapters 2 and 3 the PCK of programming for secondary education is stud-
ied in terms of its presence in current literature and its conceptualisation from
current practice. One of the reasons to conduct the literature review reported
in chapter 2 is the common consensus on the need to understand the PCK of
CS (Holmboe et al., 2001). In their paper, Holmboe and colleagues underline
the need for CS education research to focus on the traditional didactical ques-
tions of teaching why, what, how and for whom. In other words they ask for
research focused on the PCK of CS, a construct still unexplored in this dis-
cipline. In the literature review reported in chapter 2, the current literature
was first explored using as framework of reference Grossman’s reformulation
of PCK (Grossman & Howey, 1989; Grossman, 1990). In her reformulation of
the concept, PCK is seen as the answer to the following four questions: why
to teach a certain subject?; what should be taught?; what are learning diffi-
culties?; and how to teach? Answers to these questions were firstly sought in
the literature.

Because no explicit attempt to uncover the PCK of programming has been done
before, either on higher or secondary education, in most of the cases the four
’answers’ of Grossman’s reformulation found in chapter 2 are not connected
with each other. Among the reasons to teach programming, the first question,
it was found: enhancing students’ problem solving skills (Soloway, 1993) and
offering the students a subject, which includes aspects of different disciplines;
use of modularity, reusability and transferability of the knowledge/skills (Sims-
Knight & Upchurch, 1993; Dagiené, 2005); and the opportunity to work with
a multi-disciplinary subject (Mulder, 2002).

112 Chapter 6: Conclusions

The second question of Grossman’s reformulation, aimed at listing the con-
cepts/aspects that a programming curriculum should include, is answered in
the literature with: programming knowledge, which refers to the knowledge
of the data, instructions and syntax of a programming language (Govender,
2006), but also primitive expression, means of combination and means of ab-
straction (Abelson & Sussman, 1996); programming strategies, which identify
the way syntax is used to create programs to solve problems; and programming
sustainability, which refers to the ability to create user friendly and attractive
program that takes care of ethical and privacy issues (Hromkovič, 2006).

The third question, aimed at defining the various difficulties students en-
counter while learning to program, is answered by: general problem of ori-
entation, in terms of finding out what programming is useful for and what the
benefits to learn to program are (DuBoulay et al., 1989); difficulty to instruct
the machine about the solution of a problem; and tendency to converse with
a computer as if it was a human (Pea, 1986). Regarding the solution of a
problem, students tend to maintain a local, limited point of view, failing to
find a suitable solution (Ginat, 2006).

The last aspect of PCK, teaching methods, is dealt in the literatures as: of-
fering a simple programming language so students can focus on the syntax
(Mannila et al., 2006); choosing several problems to solve, which should be
carefully chosen, independently from any programming language, in order to
achieve algorithmic thinking (Futschek, 2006); and teaching by means of suited
programming languages or programming environments (Mannila et al., 2006;
Feurzeig et al., 1970; Papert, 1980; Resnick & Ocko, 1990; Resnick et al., 2009;
Cooper et al., 2003; Kölling & Henriksen, 2005; Overmars, 2004).

Though it was possible to find some aspects of PCK of programming in the lit-
erature, these are incomplete and and not always connected with each other.
Therefore the need to conduct an explorative study to portray the PCK of
programming.

These results have been compared in chapter 3 with teachers’ practice in an
international context, through the results of an exploratory study aimed at
unpacking the PCK of CS for secondary school. Using a research instrument
previously deployed to portray Australian teachers’ PCK of science education
(Loughran et al., 2000, 2001; Mulhall et al., 2003; Loughran et al., 2004),
the PCK of programming for secondary school was captured in the context of

6.2: Summary of the outcomes 113

semi-structured group interviews. These were organized in different countries
(Belgium, the Netherlands, Italy and Lithuania), with experienced teachers or
teacher trainers, with a total of 31 participants spread over 6 groups. On the
first aspect of PCK, “what to teach about programming”, when comparing
the results of the literature review with those of chapter 3, at first sight a
striking outcome is that problem-solving skills, considered as the core concept
of programming, were named by only one group of teachers. By problem-
solving skills it is meant the ability and knowledge of solving a problem using
certain techniques, such as spiral approach or decomposition (Soloway, 1986;
Schoenfeld, 1979). The latter was named by four groups. In their answers,
teachers discussing the topic of problem-solving skills gave as examples prob-
lems involving decomposition. This means that most teachers probably refer
to problem-solving skills by just one of their sub-domains: decomposition,
explaining why the concept of problem-solving skills was named by only one
group, though it is at the heart of teaching programming. Concerning the
other concepts listed by the participants in this study, these are in line with
the suggestions found in the results of chapter 2.

During the second part of the group interviews teachers discussed the four
different aspects of PCK according to Grossman’s reformulation (Grossman
& Howey, 1989; Grossman, 1990) for certain topics, which teachers chose ac-
cording to their interests, namely: control structures (with a focus on loops),
decomposition of the problem, problem-solving skills, parameters, algorithms,
data structures and array. These results constitute the first effort to portray
the PCK of programming for secondary school and can be found in the techni-
cal report (Saeli et al., 2010). When compared with the results of chapter 2,
it is possible to note that some aspects of teachers’ PCK are in line with the
teaching theories found in the literature, while other aspects complement and
bridge the gap evidenced in the literature (chapter 2). Below some examples
on the different aspects of PCK explored where comparison with literature was
possible.

• Control structures (with a focus on loops): students’ difficulties on the
learning of this concept are addressed to implicit counters and recogniz-
ing the different parts of loops (before loops, the group of instructions
to repeat and after loops). These difficulties have also been recognized
by DuBoulay (DuBoulay et al., 1989).

• Arrays: according to the participants of the study, students seem to
have troubles in understanding that in the context of arrays there is

114 Chapter 6: Conclusions

only one name for several places in which values are stored. On the
indexing aspect of this problem Du Boulay (1989) connects this problem
with a more general assignment issue. Also there are problems related
to ’indirection’ (e.g. pointers) connected with range check and the use
of variables as index.

• Parameters: on this concept findings from the literature and those of
this study do not focus on the same aspects. In the literature (Hristova
et al., 2003) issues are focused on students’ confusion between declaring
parameters of a method and passing parameters in a method invocation.
While teachers’ of this study pointed at students’ difficulties such as
passing quantities as parameters, keeping parameters global or local,
and whether to pass quantities by address or value.

• Decomposition of the problem: being decomposition of the problem a
subdomain of problem solving skills, reasons to teach it are similar for
the two topics, as for example re-usability cited by both the respondents
of the study and in the literature (Perkins et al., 1989). Again agreement
is found on the difficulties students’ encounter when learning this topic,
as for example students’ failure to recognize the need to break down
problems (Perkins et al., 1989)

• Problem solving skills: seen as at the heart of learning programming, a
reason to learn this skill is that it enables students to learn new formal
systems, which constitute templates to reuse. Participants to the study
gave reasons to teach such skill because of its re-usability of this expertise
in other domains than computer science. To achieve such re-usability the
curriculum should be revised in a way that encourages students to do
so, as also suggested by Soloway (1986). Methods to foster such skills
suggested by teachers differ with those found in the literature. Teach-
ers suggest to propose students methods to solve problems, saving time
spent on ineffective attempts, while in the literature (Dagiené, 2005) sug-
gestions focus on informal learning environments, such as competitions,
to improve these skills.

The above constitutes only a fraction of the full contribution of this study to
the understanding of PCK of programming, more is available in the technical
report of the study (Saeli et al., 2010).

6.2: Summary of the outcomes 115

6.2.2 Teaching material and PCK

Teachers, especially at the beginning of their career, use teaching material to
determine the content to teach their students and to retrieve possible content
representations (Wang, 1998; Chiappetta et al., 1993), in other words they
might look for support for their developing PCK. In chapter 4 the results of
a content analysis study are reported with the twofold goal of describing a
method of looking at teaching material from the perspective of PCK, and to
draw the Dutch scenario from the perspective of Dutch textbooks. PCK in
this study has been analysed from its two main components: content knowl-
edge (CK) and pedagogical knowledge (PK). Textbooks were found to score
relatively high in the CK component, and low in the PK component. This
means that teachers seeking for help can find relatively good support in terms
of the quality of the content in Dutch textbooks. As for the PK component,
in the textbooks it was possible to find only support for teaching methods
and aspects related to students’ understanding. Others aspects are not cov-
ered, such as further knowledge teachers could know about the topic; students’
difficulties/misconceptions around the topic; and possible factors influencing
the teaching of the topic. These three aspects find potential support in the
teachers’ guide to the textbooks. None of the three Dutch textbooks had any
teachers’ guidelines on the teaching of these topics, thus the low scores. Be-
cause the PK component of CS is an aspect that is more of interest to teachers
than students, suggestions to textbook authors were oriented in writing teach-
ers’ guidelines to the textbooks.

6.2.3 Teachers and PCK

Methods of measuring teachers’ PCK is a topic of concern of different disci-
plines (An et al., 2004; Carpenter et al., 1988; Kromrey & Renfrow, 1991;
Carlson, 1990; Rohaan et al., 2009; Baxter & Lederman, 1999), because deep
and broad PCK is linked to effective teaching (An et al., 2004; Magnusson et
al., 1999). In chapter 5 the results of an empirical study are reported with the
twofold goal of describing a method to measure teachers’ PCK and to draw
the Dutch scenario from the perspective of Dutch teachers. Using an online
anonymous questionnaire with multiple-choice and open-ended questions, it
was possible to measure 69 Dutch teachers’s PCK. Again PCK in this study
has been analysed from its two main components: content knowledge (CK)
and pedagogical knowledge (PK). The results of Sanders and colleagues (1993)

116 Chapter 6: Conclusions

about the reusability of PCK in a discipline other than a teachers’ specialty
are echoed in this study, in which Dutch teachers even when only having dis-
ciplinary background and teaching experience in other domains than CS, they
manage to reuse their PCK from other domains and disciplines, especially on
the reasons to teach certain topics. The results show that Dutch teachers per-
form poorly on the CK component when answering open-ended questions, but
improve their performance when placed in the condition of recognizing knowl-
edge, like with multiple-choice questions. As for the PK component, Dutch
teachers score adequately on questions relative to the reasons to teach a certain
topic, on the difficulties connected with the teaching of a certain topic and on
students’ prior knowledge required to learn a certain topic. While their perfor-
mance worsen on the questions relative to extracurricular knowledge, factors
influencing their teaching, teaching methods and ways of ascertain students’
understanding.

In the same study, possible relations between teachers’ PCK and their dis-
ciplinary background or textbook were sought. As for the disciplinary back-
ground, the results show a very weak relation between teachers’ PCK and their
disciplinary background. Teachers with beta or delta background are those
who in average scored the best. As for the alpha and gamma teachers, there
are those who mostly skipped questions especially on the pedagogical compo-
nent, though it is not possible to infer the reasons for such choice. Moreover,
alpha teachers are those who in average scored the worse. Quite surprisingly
teachers with Informatics background scored quite similarly as teachers with a
non-Informatics background on the Content Knowledge component in the con-
text of multiple-choice questions. A reason could be that textbooks support
those teachers on the CK component. Results of the study reported in chapter
4 in fact show that textbooks are strong on the CK component. However, in
the context of open-ended question, Informatics teachers clearly score better
than the other teachers, probably because their content knowledge is better
and allows them to reproduce their knowledge. As for the relation between
teachers’ PCK and the textbook they use, there seems to be no strong relation,
probably because the different textbooks had similar results with each other
(chapter 4).

Summarizing, the results of this research project concern an understanding
of the PCK of CS, first by analysing what is already present in literature,
and then by portraying in depth the different aspects of the PCK of seven

6.3: Critical reflections 117

topics, namely: control structures (with a focus on loops), decomposition of
the problem, problem-solving skills, parameters, algorithms, data structures
and array. Making use of this knowledge, it was possible to analyse Dutch
textbooks, finding that the PCK reported in the text was satisfying, in terms
of content knowledge, but poor in terms of pedagogical knowledge. Last,
Dutch teachers’ PCK was assessed, giving in this way a picture of the actual
scenario and the prerequisites to suggest further development. Dutch teacher’s
PCK was found to be poor, especially in the context of open ended questions.
Finding Dutch teachers’ PCK poor is not of too much surprise, especially when
considering the Dutch scenario described in chapter 1. These results echo the
results found in Schmidt’s survey about Dutch Informatics (Schmidt, 2007b),
and contribute to evidencing where support can be offered.

6.3 Critical reflections

In this section critical reflections on two different aspects of this research
project are presented. First reflection on the methodological choices are re-
ported, by analyzing the different research methods and instruments of the
studies reported in chapters 2 to 5. Lastly, reflection on the theory and how
the research described in this research project contributes to a better under-
standing of the construct of PCK.

6.3.1 Methodological reflections

In hindsight of this research, reflection on the different methods used to answer
the different research questions can be made, highlighting how the method-
ological choices, though vulnerable to critics, were taken to maximize sample
size, analysis and results. One of the major assets of this research project
is that a combination of mixed methods, both qualitative and quantitative,
grants generalizability of the results (Baxter & Lederman, 1999), in contrast
with the general trend in PCK research of focusing on a single method or
small sample size. Details of the critical reflection on the methodology and
the different methods follow.

The first methodological choice for the literature review reported in chapter 2,
was to rely on scientific papers published on referred journals, as people who
are active in CS education research suggest (Randolph, 2007; Lister, 2007).

118 Chapter 6: Conclusions

However, the study was conducted by taking into account also papers pub-
lished in conference proceedings. One might argue this choice, but it should
be considered that for young disciplines, such as CS, conference proceedings
papers are considered the fastest way to share results. Therefore, to embrace a
wider and up to date choice of papers the method to choose literature needed
to be broadened.

In chapter 3, the method used to portray the PCK of programming included the
use of a research instrument, called CoRe (Content Representation) developed
by Australian researchers (Loughran et al., 2000, 2001; Mulhall et al., 2003;
Loughran et al., 2004), in the context of science education. This instrument
is generally used in combination with PaP-eRs (Pedagogical and Professional-
experience Repertoires) therefore someone might oppose that only the combi-
nation of a CoRe and more PaP-eRs, tackling the different aspects of a CoRe,
would be considered as the full representation of PCK for a specific topic. PaP-
eRs are narrative accounts of teachers’ PCK for a particular piece of subject
content. Each PaP-eR ‘unpacks’ the teacher’s thinking around an element of
PCK for that content, and is based on classroom observations (Mulhall et al.,
2003) and interviews. The PCK portrayed from such a combination of instru-
ments would though represent the PCK of an individual teacher (Loughran et
al., 2000), being PaP-eRs narrative accounts of a single teacher’s experience.
But because the main goal of chapter 3 is to portray the PCK of programming
for secondary school in a generalizable way, it was decided not to use PaP-eRs.
Another reason not to include PaP-eRs was to keep the sample size consid-
erably big, which could have not been assured in the context of an in-depth
qualitative approach, such with PaP-eRs.

Also, one might argue that PCK is contextualized knowledge, therefore should
be portrayed considering cultural backgrounds, as involving teachers from the
same country. However, because the final goal of this research project is to
measure Dutch teachers’ PCK and because from Shulman’s definition it was
assumed that in the Netherlands there would be no teachers’ with strong PCK

of programming - whether because of lack of strong disciplinary background,
because of lack of consistent teaching experience or both - it was needed to
internationalize and generalize the results of chapter 3 by assuring a satisfying
sample size, which is to be found abroad. The method of internationaliz-
ing taken was to have a heterogeneous group of participants taking part to
semi-structured interviews organized in different countries. In this way it was
assured that the resulting PCK would not be contextualized to a specific coun-

6.3: Critical reflections 119

try, but generalized and reusable to measure Dutch teachers’ PCK.

The content analysis study described in chapter 4 is the first in its kind in
CSE research, in terms of the use of PCK as a framework to analyse teaching
material. This means that no other research results were to be used to com-
pare the results of chapter 4, implying that no stronger claims on the validity
of the instrument are possible. The instrument has been assessed in terms of
its content validity, construct validity (in terms of whether the components
of the instrument are consistently linked to each other), practicality and ef-
fectiveness, and reliability (Nieveen, 1999). One might argue that the quality
assessment method chosen is not complete, because is not possible to assess
the instrument validity, but considering that there are no results from similar
studies the choice can be considered justifiable.

The results of the study reported in chapter 5 are drawn from a combina-
tion of the data of the studies and the results of chapters 2 to 4. One might
criticize that data gathered from semi-structured group interviews and online
questionnaire are not comparable, because of the different nature of the two
methods. A different way of assessing Dutch teachers’ PCK could have been
to conduct semi-structured interviews, individually or in group. However, this
could have jeopardized attendance of a consistent number of teachers, both
for practical and personal reasons. From a motivational point of view, Dutch
CS teachers have mostly a different disciplinary background than CS, meaning
that probably teachers could have feared taking part to an interview, whether
individually or in a group format, and confront their knowledge with that of
their colleagues. Also, it was taken into consideration that teachers’ schedule
is too busy and they might have not found the time to participate to meetings.
Online questionnaires give teachers the opportunity to decide when and where
to fill in the questionnaire. Also, it was possible to fill in the questionnaire at
different moments. These choices were taken to give teachers as much freedom
and confidence as possible, and to give the best prerequisites to obtain a suit-
able sample size for the study, so that results could be generalized. However,
a risk about the heterogeneity of the sample might have been run, because it
is possible that only teachers feeling confident in “programming” might have
participated to the survey. However there is no data available to confirm this
assumption.

As for the instrument, a comparison of teachers’ PCK with that of the text-

120 Chapter 6: Conclusions

books analysed in chapter 4 reveals that textbooks resulted in a relatively
strong CK, while teachers scored mostly medium. A speculation on these re-
sults could be that the calibration of the instrument is not good enough to
discern the difference between strong and medium, and therefore a possible
relation between teachers’ small PCK and the textbooks they use is missed.
However, because no other instrument to measure CS teachers’ PCK is avail-
able, it is not possible to assess the validity of the instrument from this per-
spective.

Though PCK has been defined more than 20 years ago, and literature around
this topic and its importance has been proliferating, critics are made on what
little is known about this concept in terms of its definition, content (Hill,
Ball, & Schilling, 2008; Ball, Thames, & Phelps, 2008), and its operationaliza-
tion to achieve measurement of this knowledge. As also confirmed in chapter
3, it is not easy to find literature on methods to capture and portray such
knowledge and often only narrow content areas are explored. The important
methodological contribution of this book is to present empirical results, ob-
tained with mixed methods (semi-structured interviews, content analysis and
online questionnaire), conceptualizing the PCK of a wide range of concepts
within programming, an important topic of CS. Also the sample size and se-
lection of this research project allows the generalizability of the results, which
can be used in the context of different countries, as for example using the
results of the international study reported in chapter 3, to the national study
reported in chapter 5. The same cannot be said of the generalizability within
CS, being the results of this research project specific of programming, for most
aspects. The results of the studies reported in this book on the PCK cannot
be generalized to other topics of CS. However the methodological approach
can be generalized allowing further exploration and assessment of PCK of CS
topic (e.g. ethics in CS, history of CS, databases, etc).
Also, because efforts need to be made in representing such knowledge to other
actors (e.g. teachers, textbook authors, teacher trainers), other approaches
could be incorporated in the process of representing such complex knowledge,
as for example the “dimension doughnut” (Kinnunen, 2009). This is a model
that helps to visualize complex educational realities and phenomena, and helps
to highlight the different viewpoints of instructional processes by means of di-
mensions (e.g. teachers, students, topics to teach and teaching methods).

6.3: Critical reflections 121

6.3.2 Theoretical reflections

Since its first definition in 1986, PCK has been attracting attention. In an
interview, more than 20 years later, Shulman (Berry, Loughran, & Van Driel,
2008) renews his vision of this construct, reminding how teachers need strong
disciplinary background in order to develop their PCK. One of the conse-
quences of weak subject matter knowledge and a sense that one is weak in it,
is that teachers might tend to be rigid in his/her teaching, leaving students
little space to explore. In the context of this research project it has not been
assessed whether students’ taught by teachers’ with weak PCK are affected
in their learning, in comparison with those with stronger PCK. The data in
chapter 5 suggests that teachers’ with weak disciplinary background in general
are also weak in PCK. However PCK is not the result of only disciplinary back-
ground. Though one might have a PhD in a subject, it does not automatically
imply that the PCK would be strong (Berry et al., 2008). General pedagogical
knowledge and years of experience are the other two key ingredients for the
recipe. The latter is also suggested by the results presented in chapter 5, in
which teachers, though with strong CS background, resulted in weak PCK. A
reason could be these teachers’ few teaching experience.

PCK has already been cited in CS education research (Ragonis & Hazzan,
2008), in the context of pre-service teaching trainings. In their approach, Rag-
onis and Hazzan suggest that student teachers should be fostered to broaden
their PCK by expanding their perspectives on the field, and consequently, en-
hance the quality of their teaching. Among the issues that they mention is
the question “what is CS?”, a bird’s-eye view of the discipline and familiarity
with tools and methods for teaching. The major critics to such approach is
that it refers to PCK of CS as if it was known, neglecting the need to con-
duct explorative research towards an understanding of it. A counterexample is
Woollard’s interest in metaphors as an expression of PCK (2005). In his paper
he explores the role that metaphor plays in the teaching of computing, around
a number of difficult topics, and relates the different kinds of metaphors to dif-
ferent kind of difficulties. The contribution of his research is that by combining
his results with those reported in this book, CS education research community
can move forward towards a full understanding of the PCK of computing.

A last theoretical reflection is given on the nature of PCK, which is considered
to be of a complex nature and whose details are difficult to discern from each

122 Chapter 6: Conclusions

other (Rohaan, 2009). In this research project it was shown that actually
different aspects of a teacher’s PCK are discernible, both in a unveiling (chapter
3) and in an assessment (chapter 5) context. In the different studies it was
possible to recognize the content from the pedagogical knowledge, but also
more specific aspects (e.g. extracurricular knowledge). However, if taken one
by one, these different aspects would not represent a teachers’ PCK. It is the
combination of these that makes that special construct, known as Pedagogical
Content Knowledge. PCK is indeed a complex construct, but its different
aspects are recognizable and teachers can be assessed on these.

6.4 Practical Implications

Important practical implications derived from the results of this research
project are the possibility for textbook and teaching material authors to use
the knowledge about PCK of programming to (re-)design the content of their
material. Considering that the scenario of having CS teachers with weak dis-
ciplinary background is not only a situation specific to the Netherlands, also
teaching materials authors from other countries could be interested. Repre-
sentation of the PCK of programming could be suitably arranged in teaching
material in a way that teachers could retrieve such knowledge.

Practical implications arose from the results reported in chapter 5 would be
directed at in-service Dutch teacher trainers. These could design tailor made
solutions for Dutch CS teachers, aiming at the aspects of PCK which need
support the most (e.g. extra-curricular knowledge, teaching methods and
ways of ascertain students’ understanding). An ad hoc solution could be the
designing of guidelines for teachers to be found in teaching material (or support
for teaching material). Textbook authors could use the results of this research
to strengthen and widen the content of their teaching material. Also a web
portal could be the devised where the information gathered from the results
of this research project is organized in such a way that teachers can retrieve
material and knowledge to strengthen their PCK of programming.

Another important practical implication of this thesis is the clarification of
what should be included in a curriculum for a programming course at sec-
ondary school. In chapter 3 expert teachers from different countries agreed
on the core topics that should be offered students when learning to program.
These results can be used by Dutch curriculum authors and consequently also
by textbook authors. As seen in chapter 4, Dutch textbooks authors write

6.5: Suggestions for further research 123

their content following the Dutch curriculum guidelines, though they seemed
not to cover some important topics within programming. Having a clear pic-
ture of the core concepts to teach, and have them reported in the curriculum
and textbooks might help those teachers with weak disciplinary background
in finding their way in the difficult path of teaching programming.
Also, teaching material authors targeting teachers with not well developed
PCK could find in chapter 4 source of inspiration in terms of using the frame-
work of PCK when writing textbooks, while in chapter 3 and in the technical
report (Saeli et al., 2010) they can find useful resources about the different
aspects of PCK of different programming concepts.

An important implication of this research project is the contextualization of
CS education in secondary school and an understanding of its importance. In
chapter 2 the important question of “why should we teach programming in
secondary school” is answered. Though programming is only one of the topics
of CS in an international context, it is one of the core subjects in which the
important aspect of problem solving skills is learned, a skill that can be reused
also in other domains. In the Netherlands, as introduced earlier, Informatics
education is at crossroad, being its future in danger. The results reported in
chapter 2 renew once more the importance of offering CS as school topic. In
order to improve the teaching of this important subject, Dutch policy makers
could direct future efforts in developing and improving teaching material, be-
cause as seen in chapter 4, teachers seem to benefit from support.

6.5 Suggestions for further research

Part of the research described in this book represents the very first effort made
to portray the PCK of CS, which produced pioneering results. However, the
work reported cannot be considered to be an exhaustive representation of PCK

of CS, because in this research the only topic of CS explored is programming.
A logical next step in research would be to portray the PCK of other topics
within CS from an international perspective, using the research methods de-
scribed in this book. Also there is the need to complete the work initiated in
this book by portraying the PCK of other programming concepts, having only
seven concepts been explored until now (chapter 3).
Also, the methodology used in this research results in a representation of PCK

124 Chapter 6: Conclusions

that is decontextualized from any specific culture, country, district or school.
A next step would be to conduct research to contextualize this knowledge to
specific needs, as for example producing teaching material or teaching train-
ing courses material. A way of doing this could be to produce PaP-eRs in
collaboration with teachers having strong PCK of the subject.
Because this study its the first of this explorative nature in CS, research should
also be directed in developing other methods of portraying the PCK of CS, so
that the results of this study can be compared and instruments validated.

In chapter 4 a content analysis study to assess teaching material was described.
This study is the first in its nature, in terms of using PCK as framework to
analyse teaching material. A next step would be to develop a method to as-
sess the PCK of online teaching resources, which have a different format than
textbooks, because CS teachers have often access to digital resources as for
example the infrmaticavo.nl portal in the Netherlands. The method presented
in chapter 4 explores index, table of content and chapters. Online resources
might not have designed around these framework, therefore the need to de-
velop an alternative method for such resources. One might suggest to develop
an automated system to analyse textbooks in search for PCk representations.
Though such a system would be very useful in the context of a country with
several textbooks, the feasibility seems quite limited, due to the combined na-
ture of this approach (quantitative and qualitative). Also, research might be
also directed at developing an automated system that could analyse teaching
material in search of PCK aspects.
A last aspect of this study that could be explored is whether teachers using
teaching material designed around the PCK framework would be effectively
helped in their teaching. The goal of this study was to assess whether it
would be possible to find aspects of PCK of programming in teaching mate-
rial. Whether and how teachers would use this information was not a goal and
could be explored in further research, assuming teaching material is available.

The study reported in chapter 5 represents one of the several studies aimed
at measuring teachers’ PCK. Suggestion for those willing to conduct research
using the same or similar instrument is to take into consideration other ways
of involving participants to the study. The study described in this research
involves voluntary and anonymous participants, implying that no follow up
interviews, useful for example to deepen understanding for unclear answers or
class observations were possible.

6.5: Suggestions for further research 125

The practical implication relative to the study reported in chapter 5 is to
provide research based results in order to design ad hoc solutions to improve
the Dutch scenario. Research is needed in the direction of how to design ad
hoc solutions to improve the Dutch scenario, as for example how to design
such material.

A final suggestion is to involve students in similar research projects. It would
be especially important to understand what the link is between teachers’ PCK

and students’ understanding and motivation.

126 Chapter 6: Conclusions

127

References

Abelson, H., & Sussman, G. J. (1996). Structure and Interpretation of Com-
puter Programs (second ed.). Cambridge, Massachusetts: The MIT
Press. Hardcover. Available from http://mitpress.mit.edu/sicp/

full-text/book/book.html

Ahtineva, A. (2005). Textbook analysis in the service of chemistry teaching.
Universitas Scientiarum, 10 , 25-33.

Akker, J. Van den, & Voogt, J. (1994). The use of innovation and prac-
tice profiles in the evaluation of curriculum implementation. Studies in
Education Evaluation, 20 , 503–512.

Almstrum, V. L., Hazzan, O., Guzdial, M., & Petre, M. (2005). Challenges to
computer science education research. In Proceedings of the 36th sigcse
technical symposium on computer science education (pp. 191–192). New
York, NY, USA: ACM.

An, S., Kulm, G., & Wu, Z. (2004). The Pedagogical Content Knowledge of
Middle School, Mathematics Teachers in China and the U.S. Journal of
Mathematics Teacher Education, 7 (2), 145–172.

Atchison, W. F., Conte, S. D., Hamblen, J. W., Hull, T. E., Keenan, T. A.,
Kehl, W. B., et al. (1968). Curriculum 68: Recommendations for aca-
demic programs in computer science: a report of the ACM curriculum
committee on Computer Science. Communications of the ACM , 11 (3),
151–197.

Baeten, J. (2009). Models of Computation: Automata and Processes. Internal
publication. Retrieved October 2011, from http://www.win.tue.nl/

~andova/education/2IT15/apbook11ver2009.pdf

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knoweldge for
teaching - what makes it special? Journal of Teacher Education, 59 (5),
389-407.

http://mitpress.mit.edu/sicp/full-text/book/book.html
http://mitpress.mit.edu/sicp/full-text/book/book.html
http://www.win.tue.nl/~andova/education/2IT15/apbook11ver2009.pdf
http://www.win.tue.nl/~andova/education/2IT15/apbook11ver2009.pdf

128 References

Baxter, J. A., & Lederman, N. G. (1999). Assessment and Measurement
of Pedagogical Content Knowledge. In J. Gess-Newsome & N. G. Led-
erman (Eds.), Examining pedagogical content knowledge (pp. 147–161).
Dordrecht, the Netherlands: Kluwer Academic Publishers.

Bell, T., Witten, J. H., & Fellows, M. (1998). Computer Science
Unplugged... Off-line activities and games for all ages. Retrieved
April 2011, from http://csunplugged.org/sites/default/files/

activity pdfs full/CS Unplugged-en-10.2006.pdf

Berry, A., Loughran, J., & Van Driel, J. H. (2008). Revisiting the roots of ped-
agogical content knowledge. International Journal of Science Education,
30 (10), 1271-1279.

Breed, E. A., Monteith, & Mentz, E. (2005). Effective Learning in Computer
Programming: the Role of Learners’ Reflective Thinking. Proceedings of
the 35 Years of Computers in Education: What Works? Proceedings of
IFIP 8th World Conference on Computers in Education - WCCE 2005.

Carlson, R. E. (1990). Assessing Teachers’ Pedagogical Content Knowledge:
Item Development Issues. Journal of Personnel Evaluation in Education,
4 , 157–173.

Carpenter, T. P., Fennema, E., Peterson, P. L., & Carey, D. A. (1988). Teach-
ers’ Pedagogical Content Knowledge of Students’ Problem Solving in El-
ementary Arithmetic. Journal for Research in Mathematics Education,
19 (5), 385-401.

Chiappetta, E., Sethna, G., & Fillman, D. (1993). Do middle school life science
textbooks provide a balance of scientific literacy themes? Journal of
Research in Science Teaching , 30 (7), 787-797.

Cochran, K. F., DeRuiter, J. A., & King, R. A. (1993). Pedagogical Content
Knowing: An Integrative Model for Teacher Preparation. Journal of
Teacher Education, 44 (4), 263–272.

Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., & Young,
P. R. (1989). Computing as a discipline. Commun. ACM , 32 , 9–23.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in in-
troductory computer science. In Proceedings of the 34th sigcse technical
symposium on computer science education (pp. 191–195). Reno, Navada,
USA: ACM.

Curzon, P., & McOwan, P. (2008). Engaging with Computer Science through
Magic Shows. Paper presented at the 13th Annual Conference on Inno-
vation and Technology in Computer Science Education.

Dagiené, V. (2005). Teaching Information Technology in General Education:
Challenges and Perspectives. In R. T. Mittermeir (Ed.), From computer
literacy to informatics fundamentals (Vol. 3422, pp. 53–64). Berlin /

http://csunplugged.org/sites/default/files/activity_pdfs_full/CS_Unplugged-en-10.2006.pdf
http://csunplugged.org/sites/default/files/activity_pdfs_full/CS_Unplugged-en-10.2006.pdf

References 129

Heidelberg: Springer.
Dijkstra, E. W. (1968). A constructive approach to the problem of program

correctness. BIT Numerical Mathematics, 8 (3), 174–186.
Dijkstra, E. W. (1972). Notes on Structured Programming. In O. J. Dahl,

E. W. Dijkstra, & C. A. R. Hoare (Eds.), Structured programming (pp.
1–82). London and New York: Academic Press.

Dijkstra, E. W. (1987). Mathematicians and computing scientists: The cul-
tural gap. Abacus, 4 (4), 26-31.

DuBoulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway
& J. C. Spohrer (Eds.), Studying the novice programmer (pp. 283–299).
London: Lawrence Erlbaum Associates.

DuBoulay, B., O’Shea, T., & Monk, J. (1989). The Black Box Inside the
Glass Box: Presenting Computing Concepts to Novices. In E. Soloway
& J. C. Spohrer (Eds.), Studying the novice programmer (pp. 467–446).
London: Lawrence Erlbaum Associates.

Eurydice. (2007). The education system in the netherlands 2007. Retrieved
August 2011, from http://english.minocw.nl/documenten/en 2006

2007.pdf

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C. (1970).
Programming-languages as a conceptual framework for teaching mathe-
matics. SIGCUE Outlook , 4 , 13–17.

Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D., Hernán-Losada,
I., Jackova, J., et al. (2007). Developing a computer science-specific
learning taxonomy. SIGCSE Bull., 39 , 152–170.

Futschek, G. (2006). Algorithmic Thinking: The Key for Understanding
Computer Science. In R. Mittermeir (Ed.), Informatics education – the
bridge between using and understanding computers (Vol. 4226, pp. 159–
168). Berlin / Heidelberg: Springer.

Gal-Ezer, J., & Harel, D. (1999). Curriculum and Course Syllabi for a High-
School CS Program. Computer Science Education, 9 (2), 114–147.

Ginat, D. (2006). On Novices’ Local Views of Algorithmic Characteristics.
In R. Mittermeir (Ed.), Informatics education – the bridge between us-
ing and understanding computers (Vol. 4226, pp. 127–137). Berlin /
Heidelberg: Springer.

Good, R. (1993). Science textbook analysis - editorial. Journal of Research
in Science Teaching , 30 (7), 619.

Govender, I. (2006). Learning to Program, Learning to Teach Programming:
Pre- and In-service Teachers’ Experiences of an Object-oriented Lan-
guage. Unpublished doctoral dissertation, University of South Africa.

Grgurina, N. (2008). The first decade of informatics in dutch high schools.

http://english.minocw.nl/documenten/en_2006_2007.pdf
http://english.minocw.nl/documenten/en_2006_2007.pdf

130 References

Informatics in Education, 7 (1), 55-74.
Grossman, P. L. (1990). The making of a teacher: Teacher knowledge and

teacher education. New York [etc.]: Teachers College Press, Columbia
University.

Grossman, P. L., & Howey, K. R. (1989). A Study in Contrast: Sources
of Pedagogical Content Knowledge for Secondary English. Journal of
Teacher Education, 40 (5), 24–31.

Guzdial, M. (2004). Programming Environments for Novices. In S. Fincher
& M. Petre (Eds.), Computer science education research (pp. 127–153).
Lisse, The Netherlands: Taylor & Francis.

Hashweh, M. (1987). Effects of Subject-Matter Knowledge in the Teaching of
Biology and Physics. Teaching & Teacher Education, 3 (2), 109–120.

Hashweh, M. (2005). Teacher pedagogical constructions: a reconfiguration of
pedagogical content knowledge. Teachers and Teaching , 11 , 273-292.

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical con-
tent knwoledge: Conceptualizing and measuring teachers’ topic-specific
knowledge of students. Journal for Research in Mathematics Education,
39 (4), 372-400.

Holmboe, C., McIver, L., & George, C. (2001). Research Agenda for Computer
Science Education. 13th Workshop of the Psychology of Programming
Interest Group.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and
correcting java programming errors for introductory computer science
students (Vol. 35) (No. 1). SIGCSE Proceedings of the 34th technical
symposium on Computer science education, Reno, Nevada, USA. ACM
Press.

Hromkovič, J. (2006). Contributing to General Education by Teaching Infor-
matics. In R. Mittermeir (Ed.), Informatics education – the bridge be-
tween using and understanding computers (Vol. 4226, pp. 25–37). Berlin
/ Heidelberg: Springer.

Hulsen, M., Wartenbergh-Cras, F., Smeets, E., Uerz, D., Neut, Sontag, L., et
al. (2005). ICT in Cijfers - ICT-onderwijsmonitor studiejaar 2004/2005
(Tech. Rep.). Nijmegen/Tilburg: IVA - ITS.

Kinnunen, P. (2009). Challenges of teaching and studying programming at a
university of technology - viewpoints of students, teachers and the uni-
versity. Unpublished doctoral dissertation, Helsinki University of Tech-
nology.

Kölling, M. (1999a). The Problem of Teaching Object-Oriented Programming,
Part 2: Environments. Journal of Object-Oriented Programming , 11 (9),
6-12.

References 131

Kölling, M. (1999b). The problem of teaching object-oriented programming,
Part I: Languages. Journal of Object-Oriented Programming , 11 , 8-15.

Kölling, M., & Henriksen, P. (2005). Game programming in introductory
courses with direct state manipulation. SIGCSE Bulletin, 37 , 59–63.
Available from http://dx.doi.org/10.1145/1151954.1067465

Krathwohl, D. (2002). A revision of bloom’s taxonomy: An overview. Theory
into practice, 41 (4), 212-218.

Kromrey, J. D., & Renfrow, D. D. (1991). Using Multiple Choice Exami-
nation Items to Measure Teachers’ Content-Specific Pedagogical Knowl-
edge. Paper presented at the Annual Meeting of the Eastern Educational
Research Association.

Kurland, D. M., Pea, R. D., Clement, C., & Mawby, R. (1989). A Study of
the Development of Programming Ability and Thinking Skills in High
School Students. In E. Soloway & J. C. Spohrer (Eds.), Studying the
novice programmer (pp. 83–112). Lawrence Erlbaum Associates.

Lapidot, T., & Hazzan, O. (2003). Methods of teaching a computer science
course for prospective teachers. SIGCSE Bulletin, 35 (4), 29–34.

Linn, M. C., & Dalbey, J. (1989). Cognitive Consequences of Programming
Instruction. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice
programmer (pp. 58–62). London: Lawrence Erlbaum Associates.

Lister, R. (2007). The Randolph thesis: CSEd research at the crossroads.
SIGCSE Bulletin, 39 , 16–18.

Long, T. J., Weide, B. W., Hollingsworth, J., Sitaraman, M., Edwards, S.,
Bucci, P., et al. (1997). Providing intellectual focus to cs1/cs2. On-
line Publication. Retrieved April 2011, from http://citeseer.ist.psu

.edu/viewdoc/summary?doi=10.1.1.40.1947

Loughran, J., Gunstone, R., Berry, A., Milroy, P., & Mulhall, P. (2000). Sci-
ence Cases in Action: Developing an Understanding of Science Teachers’
Pedagogical Content Knowledge. Paper presented at the Annual Meeting
of the National Association for Research in Science Teaching (73rd, New
Orleans, LA, April 28-May 1).

Loughran, J., Milroy, P., Berry, A., Gunstone, R., & Mulhall, P. (2001). Doc-
umenting Science Teachers’ Pedagogical Content Knowledge Through
PaP-eRs. Research in Science Education, 31 , 289–307.

Loughran, J., Mulhall, P., & Berry, A. (2004). In Search of Pedagogical Con-
tent Knowledge in Science: Developing Ways of Articulating and Docu-
menting Professional Practice. Journal of Research in Science Teaching ,
41 (4), 370–391.

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, Sources, and De-
velopment of Pedagogical Content Knowledge for Science Teaching. In

http://dx.doi.org/10.1145/1151954.1067465
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.1947
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.1947

132 References

J. Gess-Newsome & N. Lederman (Eds.), Examining pedagogical content
knowledge (Vol. 6, pp. 95–132). Dordrecht: Springer Netherlands.

Mannila, L. (2007). Novices’ progress in introductory programming courses.
Informatics in education, 6 (1), 139–152.

Mannila, L., Peltomäki, M., & Salakoski, T. (2006). What about a simple
language? Analyzing the difficulties in learning to program. Computer
Science Education, 16 (3), 211–227.

Marks, R. (1990). Pedagogical Content Knowledge: From a Mathematical
Case to a Modified Conception. Journal of Teacher Education, 41 (3),
3–11.

Mayer, R. E. (1989). The Psychology of How Novices Learn Computer Pro-
gramming. In E. Soloway & J. C. Spohrer (Eds.), Studying the novice
programmer (pp. 129–159). London: Lawrence Erlbaum Associates.

Mazaitis, D. (1993). The Object-Oriented Paradigm in the Undergraduate
Curriculum: A Survey of Implementations and Issues. SIGCSE Bulletin,
25 (3), 58–64.

McGuffee, J. W. (2000). Defining computer science. SIGCSE Bulletin, 32 ,
74–76.

Means, W. H. (1988). A content analysis of ten introduction to programming
textbooks. ACM SIGCSE Bulletin, 20 (1), 283-287.

MIT Museum - Hal Abelson. (2010). Google app inventor. Retrieved October
2011, from http://museum.mit.edu/150/29

Morine-Dershimer, G., & Kent, T. (1999). The Complex Nature and Sources
of Teachers’ Pedagogical Knowledge. In J. Gess-Newsome & N. G. Le-
derman (Eds.), Examining pedagogical content knowledge (pp. 21–50).
The Netherlands: Kluwer Academic Publishers.

Mulder, F. (2002). INFORMATICA: van BETA- naar DELTA-discipline.
TINFON , 11 (2), 48.

Mulhall, P., Berry, A., & Loughran, J. (2003). Frameworks for representing
science teachers’ pedagogical content knowledge. Asia-Pacific Forum on
Science Learning and Teaching , 4 (2).

Murnane, J. S., & McDougall, A. (2006). Bad computer science in beginners
programming courses: ”considered harmful?”. In D. Watson & D. Benzie
(Eds.), Proceedings of ifip-conference on imagining the future for ict and
education. Alesund, Norway.

Nieveen, N. (1999). Prototyping to reach product quality. In J. V. den Akker,
R. M. Branch, K. Gustafson, N. Nieveen, & T. Plomp (Eds.), Design
approaches and tools in education and training (p. 125-135). Dordrecht:
Kluwer academic publishers.

on Information Technology Literacy, N. (1999). Being Fluent with Information

http://museum.mit.edu/150/29

References 133

Technology. National Academy Press.
Overmars, M. (2004). Teaching computer science through game design. Com-

puter , 37 (4), 81–83.
Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New

York, NY, USA: Basic Books, Inc.
Pea, R. D. (1986). Language-independent conceptual ”bugs” in novice pro-

gramming. Journal of educational computing research, 2 (1), 25–36.
Pea, R. D., & Kurland, D. M. (1983). On the cognitive Prerequisite of Learning

Computer Programming (Tech. Rep.).
Perkins, D., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1989).

Conditions of learning in novice programmers. In E. S. J. Spohrer (Ed.),
Studying the novice programmer (p. 261-279). Hillsdale, NJ: Lawrence
Erlbaum.

Peterson, P. L., Fennema, E., Carpenter, T. P., & Loef, M. (1989). Teacher’s
Pedagogical Content Beliefs in Mathematics. Cognition and Instruction,
6 (1), 1–40.

Ragonis, N., & Hazzan, O. (2008). Disciplinary-pedagogical teacher prepara-
tion for pre-service computer science teachers: Rational and implemen-
tation. In R. T. Mittermeir (Ed.), Lncs (Vol. 5090, p. 253-264). Berlin
/ Heidelberg: Springer.

Ragonis, N., Hazzan, O., & Gal-Ezer, J. (2010). A survey of computer sci-
ence teacher preparation programs in israel tells us: ’computer science
deserves a designated high school teacher preparation’. SIGCSE’10 pro-
ceedings of the 41st ACM technical symposium on Computer science
education.

Randolph, J. J. (2007). Computer Science Education Research at the Cross-
roads: A Methodological Review of Computer Science Education Re-
search: 2000-2005. Unpublished doctoral dissertation, Utah State Uni-
versity.

Rayner, S., & Riding, R. (1997). Towards a Categorisation of Cognitive Styles
and Learning Styles. Educational Psychology , 17 (1), 5–27.

Resnick, M., Maloney, J., Monroy-Hermández, A., Rusk, N., Eastmond, E.,
Brennan, K., et al. (2009). Epistemology and Learning Group, E & L
Memo No. 8. Communications of the ACM , 52 (11), 60-67.

Resnick, M., & Ocko, S. (1990). Lego/logo: Learning though and about design.
(Vol. 8). Cambridge: MIT Media Laboratory.

Rich, Y. (1993). Stability and Change in Teacher Expertise. Teacher &
Teacher Education, 9 (2), 137–146.

Roberts, E., Shackelford, R., LeBlanc, R., & Denning, P. J. (1999). Cur-
riculum 2001: interim report from the acm/ieee-cs task force. SIGCSE

134 References

Bulletin, 31 , 343–344.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching

Programming: A Review and Discussion. Computer Science Education,
13 (2), 137–172.

Rohaan, E. J. (2009). Testing Teacher Knowledge for Technology Teaching in
Primary Schools. Unpublished doctoral dissertation, Eindhoven Univer-
sity of Technology.

Rohaan, E. J., Taconis, R., & Jochems, W. (2009). Measuring teachers’ ped-
agogical content knowledge in primary technology education. Research
in Science and Technological Education, 27 (3), 327-338.

Romeike, R. (2008). What’s my challenge? the forgotten part of problem
solving in computer science education. In R. T. Mittermeir (Ed.), Issep
2008, lncs 5090 (p. 122-133). Springer Berlin / Heidelberg.

Rovegno, I. C. (1992). Learning to teach in a field-based methods course:
the development of pedagogical content knowledge. Teaching & Teacher
Education, 8 (1), 69–82.

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2010). Por-
traying the Pedagogical Content Knowledge of Programming - The
Technical Report. Internal publication. Retrieved June 2011,
from http://teachingprogramming.esoe.nl/TechnicalReport/SPJZ

Technical Report.pdf

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2011a). Portraying
the pedagogical content knowledge of programming. (Submitted)

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2011b). Programming:
Teaching material and pedagogical content knowledge. (Submitted)

Saeli, M., Perrenet, J., Jochems, W., & Zwaneveld, B. (2011c). Teaching
programming in secondary school: a pedagogical content knowledge per-
spective. Informatics in Education, 10 (1), 73-88.

Sanders. (1993). Secondary Science Teachers’ Knowledge Base when Teaching
Science Courses in and out of Their Area of Certification. Journal of
Research in Science Teaching , 30 (7), 723–736.

Schmidt, V. (2007a). Handreiking schoolexamen informatica havo/vwo -
tweede fase (guidelines for sescondary school exam - second phase) (Tech.
Rep.). Enschede, The Netherlands.

Schmidt, V. (2007b). Vakdossier 2007 informatica (dossier of the subject
computer science 2007) (Tech. Rep.). Enschede, The Netherlands: Slo,
Stichting L.

Schoenfeld, A. H. (1979). Explicit heuristic training as a variable in problem-
solving performance. Journal for Research in Mathematics Education,
10 , 173-187.

http://teachingprogramming.esoe.nl/TechnicalReport/SPJZ_Technical_Report.pdf
http://teachingprogramming.esoe.nl/TechnicalReport/SPJZ_Technical_Report.pdf

References 135

Shulman, L. (1986). Those who understand: Knowledge growth in teaching.
Educational Researcher , 15 , 4-14.

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform.
Harvard Educational Review , 57 , 1-22.

Sims-Knight, J., & Upchurch, R. (1993). Teaching software design: A new
approach to high school computer science. The Annual Meeting of the
American Educational Research Association.

Soloway, E. (1986). Learning to program = learning to contruct mechanisms
and expanations. Communications of the ACM , 29 , 9.

Soloway, E. (1993). Should We Teach Students to Program? ACM Commu-
nications, 36 (10), 21–24.

Stephenson, C., Gal-Ezer, J., Haberman, B., & Verno, A. (2005). The New
Educational Imperative: Improving High School Computer Science Edu-
cation (Tech. Rep.). Final Report of the CSTA Curriculum Improvement
Task Force - February 2005.

Stylianidou, F., Ormerod, F., & Ogborn, J. (2002). Analysis of science text-
book pictures about ‘energy’ and pupils’ readings of them. International
Journal of Science Education, 24 (3), 257-283.

Syslo, M., & Kwiatkowska, A. (2006). Contribution of informatics education
to mathematics education in schools. In R. T. Mittermeir (Ed.), Issep
2006, lncs 4226 (p. 209-219). Berlin / Heidelberg: Springer.

Szlávi, P., & Zsakó, L. (2006). Programming versus application. In R. T. Mit-
termeir (Ed.), Issep 2006, lncs 4226 (p. 48-58). Berlin / Heidelberg:
Springer.

Tucker, A. (2010). K-12 computer science: aspirations, realities and challenges.
In Issep 2010, lncs (p. 22-34). -.

Tucker, A., Deek, F., Jones, J., McCowan, D., Stepherson, C., & Verno, A.
(2003). A Model Curriculum for K-12 Computer Science (Vol. Final
Report of the ACM K-12 Education Task Forse Computer Science Cur-
riculum Committee; Tech. Rep.).

Turner-Bisset, R. (1999). The Knowledge Bases of the Expert Teacher. British
Educational Research Journal , 25 (1), 39–55.

UNESCO. (2002). Information and communication technology in education. a
curriculum for schools and programme of teacher development. (J. An-
derson & T. V. Weert, Eds.). France: Author. Paris.

Van Diepen, N. (2005). Elf redenen waarom programmeren zo moeilijk is
(Eleven reasons why programming is so difficult). TINFON , 14 (4), 105–
107.

Van Diepen, N., Perrenet, J., & Zwaneveld, B. (2011). Which Way with
Informatics in High Schools in the Netherlands? The Dutch Dilemma.

136 References

Informatics in Education, 10 (1), 123-148.
Van Driel, J. H., Verloop, N., & Vos, W. de. (1998). Developing Science

Teachers’ Pedagogical Content Knowledge. Journal of Research in Sci-
ence Teaching , 35 (6), 673–695.

Van Merriënboer, J. J. G., & Paas, F. G. W. C. (1987). Instructional strategies
and tactics for the design of introductory computer programming courses
in high school. Instructional Science, 16 (3), 251–285.

Wang, H. (1998). Science textbook studies reanalysis: Teachers “friendly”
content analysis methods? Annual Meeting of the National Association
for Research in Science Teaching (71st, San Diego, CA, April 19-22,
1998).

Weigend, M. (2006). From intuition to programme. programming versus
application. In R. T. Mittermeir (Ed.), Issep 2006, lncs 4226 (p. 117-
126). Berlin / Heidelberg: Springer.

Woollard, J. (2005). The implications of the pedagogic metaphor for teacher
education in computing. Technology, Pedagogy and Education, 14 (2),
189-204.

Wu, C., Lee, G., & Lai, H. (2004). Using concept maps to aid analysis of con-
cept presentation in high school computer. Education and Information
Technology , 9 (2), 185-197.

Wu, C., Lin, J., & Lin, K. (1999). A Content Analysis of Programming
examples in high School Computer Textbooks in Taiwan. Journal of
Computers in Mathematics and Science Teaching , 18 (3), 225-244.

137

Appendices

Appendix A - Sub-Domain B3: SOFTWARE

Goal: The candidate possesses simple data types, program structures and
programming techniques. For the core program (in Dutch ’kernprogramma’,
contains all domains and almost all sub-domains of the CS curriculum) stu-
dents develop software needed for the functionality of a simple web application
form. A simple web application contains at least one function for the data en-
try and at least one function for the presentation of the stored data, whether
or not in edited form (sorted, grouped or aggregated). The corresponding
programming language or languages have the following possibilities:
- a connection with a database - database instructions can gather from and
offer to the database management system
- the result of a selection assignment in the database. */+
- The layout of a web page with (dynamic) in- and output possibilities.
The scripting languages for Web applications that are prevailing nowadays
have at their disposal the named options, and are thus sufficiently suitable.
As for the layout of a webpage HTML is sufficient. Furthermore, the core pro-
gram comprehends an introduction to the object-oriented programming. From
this programming paradigm the students controls the following concepts:
- Object
- Object-class
- Attributes and methods.

138 Appendices

Students can apply these concepts in the development of an object-oriented
or visual program. With the latter concept a program is designed with a
graphical user interface. This interface contains screen objects as buttons,
text boxes, combo boxes, and so on. The screen objects have attributes such
as position, colour and label and methods that can handle user events. It is
sufficient that in the core program students can connect the concept of object
and can write a visual program. For vwo-students there a deepen program
also learn:
- to write a OO-programme with logical objects (which are only in the memory
of the computer and not as visible screen objects)
- to use collection of objects in the program (which consist of a collection of
other objects, such as the array and the array list (Java).

In addition, vwo-students learn to ’neatly’ program. This means that these
students learn to program in a (OO)-language that enforces flexible typing.

Appendix B: The OTPA 139

Appendix B The OTPA

Background information

Please fill in the following fields:

TEACHING
For how many years have you been a teacher?

...... years

Are you teaching Informatics this school year?
2yes
2no

If yes, for how many years have you been teaching Informatics?
...... years

Are you teaching other subjects?
2yes
2no

If yes, which ones?
...........

EDUCATION
Did you study Informatics at university level?
2yes
2no

If yes, which level?
If no, which other subject did you study and its respective level?
..........

2yes
2no

140 Appendices

Textbooks

Which one of these textbooks do you use?
2Instruct

2Java
2Delphi
2PHP
2BlueJ
2Visual Basic
2VB. net

2Enigma
2Informatica Actief
2other:......

CK1 Component

Please, tick the concepts that you find are at the heart of learning pro-
gramming for students at VO level. If you find the need to add more,
please use the reserved space below the list.

2Control structures: loops, conditions and sequential
2Functions, Procures and methods
2Algorithms
2Variables and constants
2Parameters
2Pointers
2HTML
2Data structures
2Decomposition (Problem solving)
2Reusability
2Arrays
2 Logical thinking
2Formal language: grammar and syntax
2.....

Appendix B: The OTPA 141

CK2 Component

Please, cross the terms that you find are at the heart of learning control
structures. If you would like to add more, please use the reserved space
below the list

2 conditions
2 tag
2 parameters
2 selection
2 typing
2 iteration
2 sequence
2 database
2 pointer
2 if then if then else
2 while - do while
2 for choice switch case
2 ...

PK Component

The following questions will help us understanding the different possible
ways to teach one of the following topics: loops, data structures, arrays,
problem solving skills, decomposition, parameters and algorithms. Please,
give your answers to the following questions, but first choose the topic
(only one) of your preference:

2 loops
2 data structures
2 arrays
2 problem solving skills
2 decomposition
2 parameters
2 or algorithms

142 Appendices

PK Component - open ended questions

Now please, provide an answer to the following questions:

- (CK3) What would you like your students to learn about this Big Idea?
Insert answer

- (PK2) Why is it important for the students to know this Big Idea?
Insert answer

- (PK3) What else you might know about this Big Idea (and you don’t
intend students to know yet)?

Insert answer

- (PK4) What are difficulties/ limitations connected with the teaching of
this Big Idea?

Insert answer

- (PK5) What do you think students need to know in order for them to
learn this Big Idea?

Insert answer

- (PK6) Which factors influence your teaching of this Big Idea?
Insert answer

- (PK7) What are teaching methods (any particular reasons for using these
to engage with this Big Idea)?

Insert answer

- (PK8) What are your specific ways of ascertaining students understanding
or confusion around this Big Idea?

Insert answer

Appendix C: - PCK about Algorithms 143

Appendix C - PCK about Algorithms

Core about Algorithms

1. What do you intend the students to learn about this
idea?
To start programming in concrete programming languages for the
future - Foundation for the future programming.
- Managing to spot the sequence of actions which bring to the
solution of the problem.
- A correct description of algorithms allows to: boost (sharpens)
logic skills; communicate the results of the job.
- Utility to clarify a fixed sequence of actions which allows to
obtain specific, concrete and correct results.
- What it is, for what is it useful, representation, realization. The
goal is to teach students that you need instructions to solve a
problem, independently that it will be a computer to execute your
instructions

4. Why is it important for the students to know this idea?
- To write good programs.
- Foundation for the future.
- To autonomously cope with the analysis of a problem and pro-
pose a possible solution.
- To give reliability to the job also in presence of difficulty of
verification.
- Because every programming problem has to be solved through
the development of an algorithm.
- To solve problems.

3. What else you might know about this idea (that you
don’t intend students to know yet)?
- Difficult algorithms.
- variety of formalities, definitions and specific tools.
- Choice of particular structures.
- Several personal exercises and teaching/professional experience.
- Problems of complexity for resolving algorithms; non determin-
istic algorithms.

4. What are difficulties/ limitations connected with the
teaching of this idea?
- Algorithmic thinking is something new that student needs to
understand. They will also find it in other subjects.

144 Appendices

CoRe about Algorithms (continued)

- Autonomous ability of the student to analyze a problem.
- The need to realize the job into a working experience.
- Often students do not understand the need to develop an algo-
rithm, until they will have to solve complex problems. At that
point it will be too late to start clarifying their ideas.
- To spot elementary actions of the executor

5. What do you think students need to know in order for
them to learn this idea?
- Mathematics logic knowledge.
- Limits the curriculum, because there is the need to spend time
on helping students understanding difficult topics.
- Students aim to immediately obtain results.
- Students think they are unimportant. There is the need to show
them the actual utility of algorithms.
- Choice of concrete cases to propose.

6. Which factors influence your teaching of this idea?
- Motivation, Success, Feedback.
- The use of formalism to present an algorithm.
- Possibility to compare other areas of study.
- Logical skills, knowledge of specific students reasons.
- The interactive environments of programming languages give the
opportunity to obtain results also without a proper preparatory
development. In the past, the slowness of the machine would force
programmers plan their actions, because they had only one chance
per day. Nowadays students have possibility to try out their code
as many times as they want.

7. What are teaching methods (any particular reasons for
using these to engage with this idea)?
- Give problem solving to good students, more examples,rRead
algorithmic structures.
- Analyzing examples with the students and suggestion of imple-
mentation.
- Development of well known subjects to demonstrate the func-
tionality of the method to represent the algorithm.

Appendix C: - PCK about Algorithms 145

CoRe about Algorithms (continued)

- The idea would be to start for algorithms as they are and not
relative to informatics. First of all students should have an idea
of what the automatic functioning is. That in a prefixed way,
from an input it will come an output. For example students are
proposed some data and the output of an operation. Then students
are asked to guess how the results have been obtained. This could
be a way to let students discover that there is an internal logic,
and they have to understand how it works.
- Identifying algorithms in the everyday life before to work with
algorithms to calculate something more abstract.
TWO DIFFERENT APPROACHES - Flowcharts are not suitable for
a better understanding of algorithms. - Flowcharts used next to
the code help students to visualize what is the flow of the program

8. What are your specific ways of ascertaining students
understanding or confusion around this idea?
- Reactions, asking to write what happens in a given algorithm.
- Exercises in full autonomy.
- From small particulars and by asking specific questions.
- Formalize algorithms from different domains, as for example
cooking recipes.
- Propose other examples in which students have to autonomously
reach to identify algorithms.

146 Appendices

147

Summary

Teaching Programming for Secondary School: a Peda-
gogical Content Knowledge Based Approach

Computer science is a subject that is increasingly being taught in schools at
secondary level in the past twenty years. One of the reasons for this choice is
that citizens of this century are surrounded by products and other results of
Computer Science (CS) and are asked to develop an attitude and skills that
allows them to be able to use them properly. Also, with the recent evolution
of social media, music players and mobile phones, users are inspired to develop
their own applications and the Internet offers a multitude of online tutorials.
Teaching CS at secondary school means enabling new generation citizens to
acquire skills to develop applications, but also much more such as: learning to
recognize when, how and why CS can be used to address and solve all sort of
problems (develop methods/instruments for concrete problems), viewing the
possibilities and limits of CS, and understand the social and ethical aspects of
users interacting with IT tools.

Because the teaching of CS at secondary school has only been relatively re-
cently introduced, still discussion is open on agreeing what to teach, how to
teach, with which reasons to teach and what students’ difficulties to cope
with. In other words the Pedagogical Content Knowledge (PCK), a construct

148 Summary

defined by Lee Shulman (1986). For Computer Science it is still in its very
early infancy. This thesis focuses on this topic, with special attention on
programming. PCK is that expertise that allows teachers to represent, in an
effective way, the subject to their students, it is the special amalgam between
general and specific pedagogical knowledge and content knowledge. It is a
knowledge that grows with the years of teaching experience.

The general research aim of this thesis is to understand what the PCK of CS for
secondary school is, with a special focus on the subject “programming”, being
programming one of the core subjects of CS. Knowledge of PCK will then be
used to assess the Dutch situation, with special focus on Dutch CS textbooks
and Dutch teachers. The final aim is to find tailor made solutions for the
Dutch CS scenario, where CS risks to disappear from the secondary school
curriculum due to several problems. Among the problems evidenced: most
Dutch teachers have no solid disciplinary background, being mostly teachers
from other disciplines re-trained to teach CS. To support these teachers ad hoc
solution, it is necessary to understand the PCK of CS. To do so a preparatory
literature study reveals to what extent the PCK of programming has been
explored. Because no real effort to portray such knowledge has been done
in CS before, an exploratory study has been designed and conducted with
expert CS teachers in order to unveil this knowledge. With the knowledge
about PCK gathered through this exploratory study, the PCK of textbooks
and teachers in the Dutch scenario is evaluated. Summarizing, the research
questions addressed in this thesis are:

1. To what extent is it possible to recognize aspects of Pedagogical Content
Knowledge of programming for secondary education in current litera-
ture?

2. What is the Pedagogical Content Knowledge of programming in the con-
text of secondary school education?

3. To what extent is it possible to identify the Pedagogical Content Knowl-
edge of programming in Dutch secondary school textbooks?

4. What is Dutch teachers’ Pedagogical Content Knowledge of program-
ming for secondary school?

149

In chapter 2, with the title “Teaching programming in secondary school: a
pedagogical content knowledge perspective” the first research question is an-
swered. The goal of this literature study is to find a preliminary sketch of
what the Pedagogical Content Knowledge of CS, with focus on programming,
is. PCK has been defined as the knowledge that allows teachers to transform
their knowledge of the subject into something accessible for their students.
The four core questions to uncover this knowledge are: what are the con-
cepts we need to teach programming?; how to teach this topic?; what are
the reasons to teach programming?; and what are the most common diffi-
culties/misconceptions students encounter while learning to program? Some
of the answers found are, respectively: enhancing students’ problem solving
skills; programming knowledge and programming strategies; general problems
of orientation; and possible ideal chains for learning computer programming.
Because answers to the four questions are not connected with each other, PCK

being an unexplored field in CS, there is need of research based efforts to study
this field.

In chapter 3, entitled “Portraying the pedagogical content knowledge of pro-
gramming for secondary school”, the second research question is answered.
The exploratory study aims at portraying teachers’ PCK of programming for
secondary education, from an international setting. Also possible differences
between teachers’ PCK portrayed in this study and the teaching theories and
teaching practice found in the literature (see chapter 2) are investigated. Be-
cause of the insufficient number of Dutch teachers to participate in the study,
it was necessary involving teachers from other countries, therefore the interna-
tional setting. The data have been collected in four countries: Italy, Belgium,
Lithuania and the Netherlands, using semi-structured group interviews. The
results constitute the first effort to portray the PCK of programming for sec-
ondary education regarding the following seven topics: control structures (with
focus on loops), decomposition of the problem, problem solving skills, param-
eters, algorithms, data structures and arrays. For each topic information such
as reasons for teaching it, students’ required prior knowledge and difficulties,
teaching methods is revealed. The results were partly confirmed by literature
about teaching theories and practical advice, but also complemented it.

In chapter 4, with the title “Programming: textbooks and Pedagogical Con-
tent Knowledge”, the third research question is addressed. The scope of this
study is to understand to what extent teachers with low PCK can find support

150 Summary

for their Pedagogical Content Knowledge (PCK) in textbooks. The results of
a study in which PCK is used as framework to develop a research instrument
to examine all three high school Dutch computer science textbooks, with spe-
cial focus on programming, is reported in this chapter. PCK is in this study
analysed in terms of its two components: pedagogical knowledge (PK) and
content knowledge (CK). The results with respect to the textbooks have been
compared with the results of the previous study (see chapter 3), in which ex-
perienced teachers from various countries were involved to portray the PCK

of programming for secondary school. The expectations to find textbooks rel-
atively strong on the CK, but weak on the PK aspect, are confirmed by the
results.

In chapter 5, entitled “Programming: teachers and Pedagogical Content Knowl-
edge”, the answer to the fourth and last research question is found. In this
chapter the research to assess Dutch teachers’ PCK, with special focus on pro-
gramming, is reported. For this study an online research instrument called
Online Teacher PCK Analyzer (OTPA) was developed. It consists of an adap-
tation of Content Representation (CoRe) already introduced in chapter 3. The
results show that Dutch teachers’ PCK is scored between low and medium (in
a scale between low, medium and high). Also, it is enquired whether there
is any relation between teachers’ PCK and the textbooks they use, by com-
paring the results of this study with those of a previous one (see chapter 4)
where the PCK of textbooks was assessed. The results show that there is
no strong relation, indicating that teachers using different textbooks generally
have similar PCK. Finally, trends between teachers’ PCK and their educational
backgrounds, having most of the Dutch teachers a different background than
Computer Science, is searched. The results show that also in this case there
is no strong relation.

In chapter 6 the conclusions of this research project are reported, which in-
clude the standard of PCK for programming, a method to assess textbooks
and an overview of the actual Dutch situation regarding the teaching of pro-
gramming. An overview of the outcomes of this research is given, from the
perspective of the different studies. Further, some critical reflections are pre-
sented with respect to the methodological choices which, though vulnerable to
critics, were taken to maximize sample sizes or data collection, as for example:
including conference papers in the literature review study, though in science
education is good practice to refer only to journal papers; or preferring an

151

online questionnaire to measure Dutch teachers’ PCK above interviews, which
give a more in depth view of teachers’ reasoning. Also theoretical reflections
are given, in hindsight of the research conducted, such as the exclusion, from
this research, to explore whether students benefit when taught by teachers
with strong PCK. Lastly practical implications of this research and sugges-
tions for further research are proposed, such as the possibility for textbook
and teaching material authors to strengthen their material with the results of
this research. Also Dutch teacher training centers can use the results of this
study to understand which areas of Dutch teachers’ PCK need more support.

152 Summary

153

Samenvatting

Onderwijs in programmeren in het voortgezet onderwijs:
een benadering vanuit de Pedagogical Content Knowl-
edge

Informatica is een vak dat de laatste 20 jaar meer en meer onderwezen wordt
in het voortgezet onderwijs. Een van de redenen hiervoor is dat men in de
huidige maatschappij omgeven is door producten en andere resultaten van
informatica en dat men gevraagd wordt een houding en vaardigheden te on-
twikkelen om deze op de juiste wijze te gebruiken. Bovendien, met de recente
ontwikkeling van sociale media, muziekspelers en mobiele telefoons, worden
de gebruikers genspireerd hun eigen applicaties te ontwikkelen, waarvoor op
Internet een veelheid aan handleidingen online beschikbaar is. Informatica on-
derwijzen in het voortgezet onderwijs betekent een nieuwe generatie vaardig
maken in het ontwikkelen van applicaties. Maar het betekent nog veel meer,
bijvoorbeeld dat deze generatie leert te herkennen wanneer, hoe en waarom
informatica gebruikt kan worden om allerlei soorten problemen op te lossen
(methoden/instrumenten te ontwikkelen voor concrete problemen), dat deze
generatie leert de mogelijkheden en beperkingen van informatica te zien en
leert de sociale en ethische aspecten te begrijpen van gebruikers in interactie
met ICT-middelen.

154 Samenvatting

Aangezien het informaticaonderwijs recentelijk in het voortgezet onderwijs
is gentroduceerd, is de discussie nog gaande over wat precies onderwezen
moet worden, hoe precies onderwezen moet worden en om welke redenen, en
met welke moeilijkheden voor de leerlingen rekening gehouden moet worden.
Met andere woorden: de Pedagogical Content Knowledge (PCK), een begrip
gedefinieerd door Lee Shulman (1986). Voor het vak informatica staat de PCK

nog in haar kinderschoenen. In deze dissertatie staat de PCK van informatica
centraal, specifiek gericht op programmeren. PCK is die expertise waardoor
docenten het vak aan hun leerlingen op effectieve wijze kunnen laten zien; het
is die speciale samensmelting van algemene en specifieke pedagogische kennis
en vakinhoudelijke kennis. Het is kennis die toeneemt met de jaren van on-
derwijservaring.

Het algemene onderzoeksdoel van deze dissertatie is te begrijpen wat de PCK

voor informatica voor het voortgezet onderwijs inhoudt, waarbij de focus ligt
op een van de centrale onderwerpen van de informatica, programmeren. De
vergaarde kennis van de PCK van informatica zal dan gebruikt worden om
de Nederlandse situatie te meten, in het bijzonder de Nederlandse school-
boeken en de Nederlandse docenten. Het uiteindelijke doel is goed passende
oplossingen te vinden voor het Nederlandse informaticascenario, waar door
verscheidene problemen het risico bestaat dat informatica uit het curriculum
verdwijnt. Een van de gebleken problemen is dat de meeste Nederlandse docen-
ten geen stevige disciplinaire achtergrond hebben, daar ze voor het merendeel
uit een andere discipline afkomstig zijn en voor het onderwijs in de informatica
alleen een nascholing hebben gevolgd. Het begrijpen van de PCK van de infor-
matica is een directe oplossing om deze docenten te ondersteunen. Daartoe is
een literatuurstudie gedaan om te laten zien in hoeverre de PCK van program-
meren is onderzocht. Omdat er nog geen pogingen waren ondernomen om deze
kennis te portretteren is een exploratief onderzoek opgezet en uitgevoerd met
ervaren docenten informatica om deze kennis te openbaren. Met de door deze
exploratieve studie vergaarde kennis van de PCK, werd de PCK van school-
boeken en van docenten in de Nederlandse context gevalueerd. Samengevat
zijn de onderzoeksvragen van deze dissertatie de volgende:

1. In hoeverre is het mogelijk aspecten van Pedagogical Content Knowl-
edege voor programmeren in het voortgezet onderwijs te vinden in de
actuele literatuur?

155

2. Wat houdt de Pedagogical Content Knowledge in voor programmeren in
het voortgezet onderwijs?

3. In hoeverre is het mogelijk de Pedagogical Content Knowledge voor pro-
grammeren te identificeren in Nederlandse schoolboeken voor het voort-
gezet onderwijs?

4. Wat is de Pedagogical Content Knowledge van docenten voor program-
meren in het Nederlands voortgezet onderwijs?

In hoofdstuk 2, getiteld “Het onderwijzen van programmeren in het secundair
onderwijs vanuit een pedagogical content knowledge perspectief”, wordt de
eerste onderzoeksvraag beantwoord. Het doel van deze literatuurstudie is een
voorlopige schets van wat de Pedagogical Content Knowledge (PCK) met de
focus op programmeren inhoudt. PCK is hier gedefinieerd als de kennis die
het docenten mogelijk maakt hun vakinhoudelijk weten zodanig om te vor-
men dat het voor leerlingen toegankelijk wordt. De vier kernvragen om deze
kennis aan het licht te brengen, zijn achtereenvolgens: welke begrippen zijn
er nodig om programmeren te onderwijzen?; hoe moet programmeren onder-
wezen worden?; wat zijn de redenen om programmeren te onderwijzen?; en
welke zijn de meest voorkomende moeilijkheden/misconcepties bij leerlingen
die leren programmeren?. Enkele van de gevonden antwoorden zijn achtereen-
volgens: het vergroten van de probleemoplosvaardigheden van de leerlingen;
programmeerkennis en programmeerstrategien; algemene orintatieproblemen;
en mogelijke ideale leerlijnen voor programmeren. De antwoorden op de vier
vragen kunnen niet met elkaar verbonden worden, omdat de PCK in de infor-
matica nog niet onderzocht is; gedegen onderzoek is op dit gebied nodig.

In hoofdstuk 3, getiteld “Een schets van de pedagogical content knowledge
voor programmeren in het voortgezet onderwijs”, wordt de tweede onder-
zoeksvraag beantwoord. Deze exploratieve studie is erop gericht de PCK van
docenten voor programmeren in het voortgezet onderwijs te portretteren va-
nuit een internationale setting. Ook worden mogelijke verschillen onderzocht
tussen de PCK van docenten uit deze studie en onderwijstheorien en onder-
wijspraktijk uit de literatuur (zie hoofdstuk 2). Omdat voor deze studie te
weinig Nederlandse docenten geschikt waren, was het nodig docenten van an-
dere landen erbij te betrekken, vandaar de internationale setting. De gegevens

156 Samenvatting

zijn verzameld in Itali, Belgi, Litouwen en Nederland, door middel van semi-
gestructureerde groepsinterviews. De resultaten van deze eerste poging de
PCK van programmeren in het voortgezet onderwijs in kaart te brengen, be-
treffen de volgende zeven onderwerpen: controlestructuren (met de nadruk op
loops), probleemdecompositie, probleem-oplosvaardigheden, parameters, algo-
ritmes, datastructuren en arrays. Voor ieder onderwerp is informatie verza-
meld, zoals de redenen om het topic te onderwijzen, de bij de leerlingen vereiste
voorkennis, moeilijkheden van leerlingen en onderwijsmethoden. De resultaten
kwamen deels overeen met onderwijstheorien en praktische adviezen uit de lit-
eratuur, deels waren ze aanvullend.

In hoofdstuk 4 met de titel “Programmeren: leerboeken en Pedagogical Con-
tent Knowledge” wordt de derde onderzoeksvraag behandeld. Het doel van
deze studie is te begrijpen in hoeverre docenten met geringe PCK daarin door
leerboeken ondersteund kunnen worden. In dit hoofdstuk worden de resul-
taten beschreven van een studie waarin met PCK als raamwerk een instrument
wordt ontwikkeld om de drie Nederlandse schoolleerboeken voor informatica
te onderzoeken met de focus op programmeren. PCK wordt in deze studie ges-
plitst in haar twee componenten: pedagogische kennis (PK) en vakinhoudelijke
kennis (CK). De resultaten met betrekking tot de leerboeken zijn vergeleken
met die van de eerdere studie (zie hoofdstuk 3) waarin ervaren docenten van
diverse landen participeerden bij het in kaart brengen van de PCK van pro-
grammeren in het voortgezet onderwijs. De verwachting dat leerboeken relatief
sterk zouden zijn op het CK-aspect, maar zwak op het PK-aspect, werd door
de resultaten bevestigd.

In hoofdstuk 5, getiteld “Programmeren: docenten en Pedagogical Content
Knowledge”, wordt het antwoord gevonden op de vierde en laatste onder-
zoeksvraag. In dit hoofdstuk wordt verslag gedaan van het meten van de
PCK, met de focus op programmeren, van Nederlandse docenten. Voor deze
studie werd een online instrument ontwikkeld, de Online Teacher PCK An-
alyzer (OTPA). Het bestaat uit een aanpassing van het al in hoofdstuk 3
beschreven instrument Content Representation (CoRe). De resultaten laten
zien dat Nederlandse docenten op PCK tussen laag en gemiddeld scoren (op
een schaal van laag-gemiddeld-hoog). Ook werd onderzocht of er een verband
was tussen de PCK van een docent en het gebruikte leerboek door de resul-
taten van deze studie te vergelijken met die van de voorgaande (zie hoofdstuk
4) waarin de PCK van leerboeken werd gemeten. De resultaten geven aan

157

dat er geen sterke relatie is; docenten die verschillende leerboeken gebruiken
hebben een in het algemeen vergelijkbare PCK. Aangezien de meeste Neder-
landse docenten een andere achtergrond hebben dan informatica konden ver-
banden onderzocht worden tussen deze achtergrond en de PCK. De resultaten
gaven aan dat er ook in dit geval geen sterke relatie is.

In hoofdstuk 6 worden de algemene conclusies van dit onderzoeksproject ger-
apporteerd, onder meer de standaard PCK voor programmeren, een methode
om leerboeken te meten en een beeld van de actuele Nederlandse situatie
ten aanzien van het programmeeronderwijs. Er wordt een overzicht gegeven
van de resultaten vanuit het perspectief van de verschillende studies. Vervol-
gens worden enkele kritische reflecties gepresenteerd betreffende de gemaakte
keuzes voor de onderzoeksmethode. Alhowel men kritiek kan hebben op de
gemaakte keuzes, zijn ze vooral gemaakt met het oog op maximalisatie van
zowel de steekproefgrootte als van hoeveelheid vezamelde data. Voorbeelden
van deze keuzes zijn het opnemen van conferentiepapers in de review van de
literatuur, hoewel het in het onderzoek van science onderwijs goed gebruik is
alleen naar tijdschriftartikelen te verwijzen, en het prefereren van een online
vragenlijst om de PCK van Nederlandse docenten te meten, boven interviews
die meer diepgaand inzicht zouden hebben gegeven op de gedachtegang van
de docenten. Er wordt, terugkijkend op het uitgevoerde onderzoek, ook een
theoretische reflectie uitgevoerd, bijvoorbeeld op het niet meenemen van on-
derzoek naar het profijt wat leerlingen hebben van onderwijs door docenten
met een hoge PCK. Tenslotte worden praktische implicaties van het onderzoek
genoemd en suggesties gegeven voor verder onderzoek. Auteurs van leermate-
riaal kunnen bijvoorbeeld hun materiaal versterken met de resultaten van dit
onderzoek. Ook kunnen centra voor docententraining uit de resultaten van
dit onderzoek afleiden welke gebieden van de PCK van Nederlandse docenten
meer ondersteuning nodig hebben.

158 Samenvatting

159

Curriculum Vitae

Mara Saeli was born on 26 February 1981 in Messina, Italy. After finishing de-
gree high school in 1999 at Liceo Scientific ”‘G. Seguenza”’ in Messina (Italy),
she studied a Computer Science Bachelor at Universita’ di Ferrara in Ferrara
(Italy) and a Mathematics and Science Education Master at Universiteit van
Amsterdam (The Netherlands). Her Master dissertation on Action Research
was carried out in a Secondary School in Messina (Italy). From 2008 she
started a PhD project at Technische Universiteit van Eindhoven at Eindhoven
(The Netherlands) of which the results are presented in this dissertation. Since
2008 she is employed at Technische Universiteit van Eindhoven.

160 Curriculum Vitae

161

List of Pubblications

Hamer, J., Cutts, Q.I., Jacková, J., Luxton-Reilly, A., McCartney, R., Pur-
chase, H.C., Riedesel, C., Saeli, M., Sanders, K. & Sheard. J. (2008).
Contributing student pedagogy. SIGCSE Bulletin, 2008: 194 212.

Saeli, M. (2008). International innovations in Computer Science Education:
impressions of the ITiCSE conference (original title: Internationale in-
novatie in informatica-onderwijs: impressie van de ITiCSE-conferentie).
TINFON, 17, 3, 68-70.

Saeli, M. (2009). Planting the seeds of Action Research for the revitaliza-
tion and professionalism of Mathematics teachers. Quaderni di Ricerca in
Didattica (original title: Notebooks of Research in Education), 19, 83-100.

Saeli, M. (2009). How to teach programming in secondary education: first
results of a PhD project. In Proceedings of ITiCSE’2009.

Saeli, M., Perrenet, J., Jochems, W.M.G.m Zwaneveld, B. (2010). Portraying
the Pedagogical Content Knowledge of Programming The Technical Re-
port. Internal publication. Available at:
teachingprogramming.esoe.nl/TechnicalReport/SPJZ Technical Report.pdf

Saeli, M., Perrenet, J., Jochems, W.M.G.m Zwaneveld, B. (2011). Teach-
ing Programming in Secondary School: a Pedagogical Content Knowledge
Perspective. Informatics in Education, vol. 10, no 1, 73-88.

162 List of Pubblications

163

Eindhoven School of Education

PhD dissertation series

Sande, R.A.W. van de. (2007). Competentiegerichtheid en scheikunde leren:
over metacognitieve opvattingen, leerresultaten en leeractiviteiten.

Hooreman, R. (2008). Synchronous coaching of trainee teachers: an experi-
mental approach.

Rajuan, M. (2008). Student teachers perceptions of learning to teach as a basis
for supervision of the mentoring relationship.

Raessens, B.A.M. (2009). De E-kubus: een analysemodel voor curricula.

Rohaan, E.J. (2009). Testing teacher knowledge for technology teaching in
primary schools.

Oemar Said, E. (2009). De Da Vinci Case: een onderzoek naar de relaties
tussen vernieuwende leeromgevingen en de motivatie en regulatievoorkeuren
van leerlingen in het MBO.

Koopman, M. (2010). Students’ goal orientations, information processing
strategies and knowledge development in competence-based pre-vocational
secondary education.

164 Eindhoven School of Education

Mittendorff, K.M. (2010). Career conversations in senior secondary vocational
education.

Crasborn, F.J.A.J. en Hennissen, P.P.M. (2010). The skilled mentor. Mentor
teachers’ use and acquisition of supervisory skills.

Van Bragt, C.A.C. (2010). Students’ educational careers in Higher Education:
A search into key factors regarding study outcome.

Bakker, G. de. (2010). Allocated only reciprocal peer support via instant mes-
saging as a candidate for decreasing the tutoring load of teachers.

Vos, M.A.J. (2010). Interaction between teachers and teaching materials: on
the implementation of context-based chemistry education.

Bruin-Muurling, G. (2010).The development of proficiency in the fraction do-
main.

	Contents
	1 Introduction
	1.1 Background to the study
	1.2 Theoretical background
	1.3 Definition of the problem and research questions
	1.4 Structure of the dissertation

	2 Literature Review
	2.1 Introduction
	2.2 Programming Education
	2.3 Pedagogical Content Knowledge
	2.4 Methods and Aims
	2.5 PCK of programming
	2.6 Conclusions and Implications

	3 Protraying PCK
	3.1 Introduction
	3.2 Method
	3.3 Results
	3.4 Conclusions and discussion

	4 Measuring the PCK of Textbooks
	4.1 Introduction
	4.2 Methods
	4.3 Results
	4.4 Conclusions and Implication

	5 Measuring Teachers' PCK
	5.1 Introduction
	5.2 Methods
	5.3 Results
	5.4 Conclusions and Discussion

	6 Conclusions
	6.1 Overview of the research
	6.2 Summary of the outcomes
	6.3 Critical reflections
	6.4 Practical Implications
	6.5 Suggestions for further research

	References
	 Appendices
	Appendix A - Sub-Domain Software
	Appendix B - The OTPA
	Appendix C - PCK about Algorithms

	 Summary
	 Samenvatting
	 Curriculum Vitae
	 List of Pubblications
	 Eindhoven School of Education

