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Summary

Disturbance of wall shear stress distribution in large arteries is believed to be one the
key factors in the development of atherosclerosis and the failure of vascular grafts.
Modeling of the blood flow induced wall shear stress in large and medium sized
arteries therefore qualifies as an important research area and is the main topic of this
thesis.

In modeling wall shear stress, the choice of an appropriate constitutive equation for
blood is crucial. Determination of an appropriate constitutive model for blood is
not trivial: it is a concentrated suspension of blood cells in plasma and exhibits a
range of non-Newtonian properties. These properties are mainly governed by the
deformation and aggregation of red blood cells. Apart from the fluid properties, flow
conditions in large arteries are an important factor in determining an appropriate
constitutive equation for blood. In the literature on blood flow in large arteries, blood
is generally modeled as a Newtonian fluid with the high shear rate limit viscosity of
blood (n = nso)-

In the first part of this thesis, a macroscopic constitutive equation for blood is pro-
posed. A concentrated KSCN solution with 250 ppm Xanthan gum served as a macro-
scopic blood analog fluid. The viscometric properties of this fluid are almost identical
to the viscometric properties of blood. The Xanthan gum solution was modeled by
the inelastic shear-thinning Carreau-Yasuda model. Laser Doppler anemometry and
FEM analyses were applied to obtain detailed quantitative information on the velocity
distribution in a model of the carotid bifurcation under steady flow conditions and in
a 90° degree curved tube under unsteady flow conditions. The results for the non-
Newtonian Xanthan gum solution were compared to a Newtonian fluid model with a
viscosity equal to the high shear viscosity of the blood analog fluid.

The experimental results showed significant differences between the velocity distri-
bution of the Newtonian and non-Newtonian fluid, implying that the non-Newtonian
properties of the blood analog fluid cannot be ignored. The non-Newtonian flow in
the two models was predicted quite well by the numerical simulations, using the in-
elastic fluid model. This indicates that shear thinning is the dominant non-Newtonian
property of the blood analog fluid and that viscoelasticity can be ignored for the pre-
diction of the velocity distribution.

The shear thinning properties of the non-Newtonian fluid can be approximated by a
Newtonian fluid with a viscosity evaluated at a characteristic shear rate of the flow.
The characteristic shear was based on an average shear rate, rather than on wall shear
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xii Summary

rate. The results of the Newtonian flow field, using a characteristic viscosity, com-
pared well to the non-Newtonian flow field. The value of Re for the non-Newtonian
fluid was based on the characteristic viscosity and is about three times lower than Re
for the Newtonian fluid with 5 = 7.

The ability of this macroscopic model to predict flow of a red blood cell suspension
is verified by analyses of velocity profiles downstream a backward-facing step under
steady flow conditions. The velocity distribution was measured by means of ultra-
sound velocimetry. The comparison between numerical and experimental results in-
dicates that flow of the red blood cell suspension can be described using the inelastic
Carreau-Yasuda model. Both viscoelasticity and particulate nature of the red blood
cell suspension do not significantly influence the flow features under steady flow con-
ditions. The velocity measurements were used to validate a clinical procedure to
determine wall shear rates in-vivo. The clinical procedure gives a good approxima-
tion in the central part of the channel, but procedure underestimates wall shear rates
by approximately 25% in fully developed flow.

Whether the Carreau-Yasuda model can also be used to predict wall shear stresses
accurately, requires a new experimental technique. A method to determine wall shear
stress was developed for flow in a rectangular duct, and evaluated for a Newtonian
and a non-Newtonian fluid. Wall shear stress was inferred from the deformation of an
elastic gel layer inside the flow model. The deformation of the gel layer was measured
accurately by means of speckle pattern interferometry and through the properties of
the gel layer, wall shear stress was computed. The measured wall shear stress showed
good agreement with the computed wall shear stress for both the Newtonian and the
non-Newtonian fluid. With the proposed method, wall shear stress can be determined
without prior knowledge of the properties of the fluid.

The method to determine wall shear stress distribution was applied downstream a
backward-facing step, using a red blood cell suspension as a measuring fluid. The
wall shear stress distribution was determined under steady flow conditions. The good
agreement between experimental and numerical wall shear stress distribution is in-
dicative for the inelastic behavior of the red blood cell suspension. Furthermore, the
particulate nature of the red blood cell suspension does not seem to influence flow
behavior and wall shear stress distribution.

On the basis of the results presented in this thesis, it can be concluded that velocity
and wall shear stress distributions in large arteries can be modeled with an inelastic
Carreau-Yasuda model, thus providing valuable information for studies on the devel-
opment of atherosclerosis and failure of vascular grafts.



Chapter 1

General introduction

Atherosclerosis is a disease that may cause progressive occlusion of the lumen of ar-
teries. It is one of the main causes of death in the western society. The development of
this disease, atherogenesis, is therefore an important research topic. In the advanced
stage of atherosclerosis, the occluded part of the artery is often by-passed or replaced
by a vascular prosthesis. These prostheses often fail due to hyperplasia, causing an
occlusion of the artery at the anastomoses. There are strong indications that develop-
ment of atherosclerosis and failure of vascular prostheses can be correlated to local
hemodynamics, and a key role is attributed to wall shear stress (section 1.1). Al-
though the exact mechanisms of the above mentioned pathological processes are not
yet known, it is well established that the endothelial mono-layer, separating blood
from the vessel wall, forms a highly active and wall shear stress sensitive interface.
The response of the endothelial cells to blood flow is discussed in section 1.2. To link
atherogenesis to response of the endothelium to the loading conditions in the arterial
system, modeling of blood flow in large arteries is important and it involves a range
of topics, including hemorheology, hemodynamics and determination of wall shear
stress. The study of these topics form the main objective of this thesis (section 1.3).
An outline of the thesis is given in section 1.4.

1.1 Blood flow, atherogenesis and hyperplasia

1.1.1 Blood flow and atherogenesis

From clinical practice it is known that particular sites in the arterial tree are specif-
ically sensitive to atherogenesis. Local hemodynamics apparently play an important
role in the development of this disease (for a review, see Nerem, 1993).

Normal arteries consist of three distinct layers: the intima, the media and the ad-
ventitia. The intima consists of connective tissue and is covered by endothelium.
The endothelium is a mono-layer of cells and forms the interface between blood and
the vessel wall. The media, the middle layer, consist mainly of smooth muscle cells,
while the outer layer, the adventitia, is composed of smooth muscle cells, collagen
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and fibroblasts. Three types of atherosclerotic lesions can be recognized: the fatty
streak, the fibrous plaque and the complex lesions (Ross and Glomset, 1976; Glagov
et al., 1995). The fatty streak consist of localized smooth muscle cells, surrounded
by deposits of lipids. The fibrous plaque, commonly associated with atherosclerosis,
consists of lipid-laden smooth muscle cells in the intima, and the lesions protrude
into the artery. The fibrous plaque covers a deeper accumulation of free lipids and
cell debris. The development of the fibrous plaque is often preceded by prolifera-
tion of smooth muscle cells in the intima. Once the fibrous plaque calcificates and
is altered by thrombosis, the complex lesion is formed. Local hemodynamics can be
linked to atherogenesis: low and alternating positive and negative (oscillating) blood
flow induced wall shear stresses and enhanced diffusion of molecules through the
endothelium correlate with the sites, prone to the development of atherosclerotic le-
sions.

The wall shear stress in the arterial system has a pulsatile nature but remains unidi-
rectional in the larger part of the arteries. Except for the lesion-prone sites: the wall
shear stresses are predominantly low and can have alternating positive and negative
values. At these sites, rounded cells can be found, while the endothelial cell in less
lesion-prone regions is elongated and orientated in the direction of the wall shear
stress. Nerem (1992) argues that the endothelial cells are influenced by the local
hemodynamics. The properties of endothelial cells in regions with low or oscillating
wall shear stress might be changed in a way that favors the process of atherogenesis.
The correlation between low or oscillating wall shear stresses and atherogenesis is
confirmed by other studies (Friedman et al., 1981; Nerem, 1993).

It has been shown that in large arteries, the transport of various molecules from
the blood to the sub-endothelium is restricted, except for the sites prone to the de-
velopment of atherosclerotic lesions (Nerem, 1992). Enhanced permeability of the
endothelium to low density lipoproteins (LDL), and subsequent modification of LDL
by the endothelial cells, might be important for the development of fatty streaks. The
presence of NO determines the oxidative environment of the endothelium, an impor-
tant factor in the development of atherosclerosis. The amount of NO, released by
the endothelium, is influenced by wall shear stress, and the near wall blood velocity
determines the convection of NO. From these observations, particle residence time
could be regarded as a key factor in atherogenesis. Caro et al. (1971) developed a
theory based on shear rate depended mass transfer mechanisms for small particles
(e.g. cholesterol) suspended in the blood. The local shear rate governs the concen-
tration distribution of these particles and thus the diffusion of these particles to the
vessel wall. Combined with a model for biochemical interaction of the particles in the
wall, they were able to link regions with low wall shear rates to the preferred sites for
atherogenesis.

In order to further study the process of atherogenesis, modeling of blood flow induced
mechanical load of the endothelial cells and the near-wall rheology of blood in large
and medium sized arteries is of great interest.
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1.1.2 Hyperplasia in vascular grafts

The failure of smaller vascular grafts is due to the development of hemodynamically
significant stenoses at the anastomotic sites (Ku and Allen, 1995). The development
of stenoses starts with a process called neointimal hyperplasia. In the initial stage of
neointimal hyperplasia, the anastomosis is covered with a cloth, containing platelets,
fibrin and red blood cells. Subsequently, the cloth is covered with endothelial cells,
and the cloth is replaced. At a final stage, intimal hyperplasia might occur. This pro-
cess is characterized by sub-endothelial cell proliferation of random structure, and
it might lead to significant stenoses. The later stage is believed to be related to wall
shear stress. A compliance mismatch between prosthetic graft and vessel wall induces
shear stress gradients, followed by a response of the endothelial cells. Experiments
on the development of intimal hyperplasia in tapered vascular grafts in dogs have
confirmed this hypothesis: in the grafts, the intimal thickening did correlate with low
shear stresses (Salam et al., 1996). In the study of Hofstra (1995), intimal thickening
at the proximal anastomotic sites correlated with high shear rates.

The importance of blood flow modeling is evident: in combination with an appropri-
ate model for the vessel, the wall shear stress and shear rates in a new arterial graft
could be predicted and the mechanical properties and geometry of the graft could be
optimized to obtain a smooth wall shear stress transition at anastomotic sites.

1.2 Blood flow and the endothelium

The local nature of atherogenesis and failure of vascular prostheses may be correlated
to wall shear stress distribution and particle residence time of various molecules.
These observations are mere correlations and do not explain the origin of the diseases.
A key-role in the development of atherosclerosis is attributed to the endothelium. It
is involved in various processes: regulation of the diameter of the artery, prevention
of coagulation of blood and control of the vascular permeability. The endothelium is
subjected to mechanical loads: blood flow induced pressure and wall shear stress and
strains from the deforming vessel wall (figure 1.2). Zhao et al. (1995) showed that
the endothelium responds strongly to both cyclic variation of strains of the vessel wall
and to flow induced wall shear stress. This study focuses on latter of the two loading
conditions of the endothelium: pressure induced strain distribution in large arteries
is described by Rutten (1998).

Endothelial cells are highly responsive to flow induced wall shear stress. The mechan-
ical loads are converted to biochemical messengers, and these messengers change the
mechanical and functional properties of the endothelial cells. Since the loading con-
ditions in the arterial system vary, the properties of the endothelium have a local
character (Sato and Oshima, 1994). The locally altered properties of the endothe-
lium can be associated with the pathological processes, described previously.

The endothelial cells show a myriad of responses when subjected to mechanical load
in-vitro (Davies and Tripathi, 1993; Davies, 1995; Nerem, 1993). The properties of a
cell can be altered at cellular, molecular and genetic level, and at various time scales.
The fastest response can be seen at a molecular level: alteration of ionic conduc-
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Figure 1.1: The mechanical loads on the endothelium. -

tance of the membrane, activity of the membrane enzyme adenylate cyclase, inositol
triphosphate generation and an altered intercellular Ca®* concentration occur within
seconds. At a longer time scale, the gene expression changes. Eventually, under
sustained load, the endothelial cells exhibit structural changes, and the cytoskeleton
reorganizes, leading to orientation of the endothelial cells.

1.3 Aim of the study

From the above cited literature on cultured endothelium, it is clear that the loading
conditions of the endothelium play a key role in the various pathological processes.
The extent to which wall shear stress and near-wall blood rheology are responsible
for the pathological processes, described in section 1.1, requires more insight into
blood flow induced wall shear stress and wall shear rate distribution. The blood flow
induced wall shear stress and wall shear rate depend on the properties of blood, the
geometry of the arteries, and on the flow conditions. The aim of this study is to obtain
an experimentally validated model to predict blood flow induced wall shear stress and
wall shear rate in large arteries. The influence of deformability of the vessel wall on
wall shear rate and wall shear stress is not included in this study.

The blood flow induced wall shear stress and wall shear rate can be obtained through
the solution of the equations of motion. To solve these equations, a constitutive model
for blood is required. Since this study focuses on the blood flow in large arteries,
a continuum model for blood will be used. The parameters in these models can
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be determined by measuring the properties of blood in viscometric flow. Using a
macroscopic continuum model for blood, velocities distribution and wall shear stress
can be studied in physiologically relevant flows. Validation of this macroscopic model
for blood is required to investigate whether or not the particulate nature of blood
can be ignored. Part of this study deals with a new method to measure blood flow
induced wall shear stress in-vitro. The developed method can be used to validate the
model’s ability to predict blood flow induced wall shear stress.

The result of this study will be an evaluation of an appropriate model for the constitu-
tive behavior of blood, and its application in relevant geometries under physiological
flow conditions. The constitutive model for blood can then be used to predict wall
shear stress in-vivo and in optimization of vascular graft design.

1.4 Scope of the thesis

Blood exhibits a range of non-linear responses to mechanical loading. The concen-
tration of the constituents of blood and their morphology take account for this com-
plex behavior. The choice of an appropriate constitutive model, required to solve
the equations of motion, is therefore not a trivial matter. The motivation to adopt a
macroscopic constitutive model for blood is based on the assumption that concentra-
tion distribution of red blood cells in large arteries is homogeneous. The properties
of blood and a discussion of the concentration distribution of red blood cells in large
arteries form the first part of chapter 2. A review of the available macroscopic models
for blood, combined with the flow conditions in the arterial system, lead to a choice
of a constitutive model for blood. This constitutive model is applied to study veloc-
ity fields in physiologically relevant geometries, both experimentally and numerically
(chapter 3 and 4). The influence of the macroscopic non-Newtonian behavior of blood
on flow phenomena under physiological flow conditions is investigated. The results
of this study indicate that the non-linear properties of the macroscopic fluid model,
even under the assumption that the particulate nature of blood can be neglected,
have a significant effect on the velocity field. Ultrasound velocimetry is applied to
assess the ability of the macroscopic model to predict velocity distributions in a red
blood cell suspension in backward-facing step flow (chapter 5). Whether the macro-
scopic model for blood can also be applied to predict wall shear stress is studied in
the second part of this thesis. To investigate this topic, a new method is developed to
measure the wall shear stress (chapter 6). This method is applied in backward-facing
step flow, using a red blood cell suspension as a measuring fluid. The ability of the
macroscopic model for blood to predict wall shear stress is assessed in chapter 7. The
thesis is concluded with a general discussion (chapter 8).
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Chapter 2

Blood and blood flow

The properties of blood depend mainly on the concentration and properties of the red
blood cells (section 2.1). Since it has a major impact on the choice of the constitutive
model for blood, the homogeneity of the red blood cells in large arteries is discussed
in section 2.2. From this discussion, it is hypothesized that the red blood cell concen-
tration in large arteries is homogeneous, and that blood flow in large arteries can be
modeled with a macroscopic constitutive equation for blood. A selection of macro-
scopic constitutive models is discussed in section 2.3. The choice of an appropriate
macroscopic constitutive model depends on the flow conditions in and the geometry
of the arteries. Through a discussion on dimensionless parameters in blood flow in
large arteries, an indication of the influence of various properties of blood can be
obtained (section 2.4). The section on the constitutive equations, combined with the
discussion on the scaling aspects in blood flow, gives a guideline for the modeling of
the blood flow in large arteries (section 2.5).

2.1 Morphology and viscometric properties

Blood is a concentrated suspension of blood cells in plasma. The white blood cells, or
leucocytes, are roughly spherical in shape with a diameter between 7 and 9 um. The
platelets are much smaller than the leucocytes; they are oval shaped with a diameter
ranging from 1 to 3 um. Together, the leucocytes and the platelets occupy less than
one percent of the volume of blood. The red blood cells, or red blood cells, are
biconcave discs and occupy 45 % of the blood volume. They dominate the rheological
behavior of blood. Further discussion of the blood cells will therefore be confined to
the red blood cells.

2.1.1 Morphology and properties of plasma and red blood cells

This review on the composition and properties of the constituents of blood is limited
to plasma, being the suspending phase, and red blood cells. The information for

7
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this section is taken from Merrill (1969), Cokelet (1972) and Caro et al. (1978) and
Alberts et al. (1994).

Plasma

Plasma is an aqueous saline solution containing proteins and inorganic molecules.
The outline of the composition of the plasma is given in table 2.1. The density of
plasma is 1030 kg.m~3. If denaturation of the plasma proteins is avoided, plasma
behaves like a Newtonian fluid with a dynamic viscosity of n = 1.2 mPa.s. The inor-

material concentration molecular weight dimension
£.100 ml—1 *¥1073 nm
water 90-92
proteins
albumin 3.3-4.0 69 15x4
globulins 1.88-1.97 44-1300
fibrinogen 0.34-0.43 400 50-60x3-8
inorganic constituents
cations
sodium 0.31-0.34
other (Na*, Ca?®*, Mg?*)  0.027-0.035
anions
chloride 0.36-0.39
other 0.20-0.24

Table 2.1: Composition of plasma [from Caro et al. (1978)]

ganic constituents of the plasma are a governing factor in various transport processes
and generate an osmotic pressure of about 8 - 10° Pa (equivalent to a 0.9% sodium
chlorine solution by weight).

The proteins have various functions and can be divided into three groups:

e fibrinogen: a large, asymmetric molecule that is intimately involved in the co-
agulation of blood. Although the concentration of fibrinogen is low, it attributes
significantly to the elevated viscosity of plasma due to its asymmetry.

e albumin: a small molecule that is important for the osmotic pressure, induced
by the proteins.

o globulins: relatively symmetric molecules that are involved in transport of lipids
and antibody reactions.

Apart from the buffering function of all the proteins, both fibrinogen and the globulins
are involved in the aggregation of red blood cells.
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Red blood cells

Red blood cells form the dominant particulate matter of blood. The volume concen-
tration of the red blood cells, called hematocrite (Ht), is about 45 %. The density
of the red blood cells is 1080 kg.m~3. The red blood cell is a biconcave discoid and
the main dimensions are given in figure 2.1. The origin of the biconcave shape of
the red blood cell is a subject of dispute. For a review of possible explanations, one
is referred to Fung (1993). An important consequence of the biconcave shape is the
ability of the red blood cell to change shape without changing the surface area. The

7.8um

2.8um

Figure 2.1: Size and dimension of the red blood cell

membrane of the red blood cell has a thickness of 80 nm and consists of a phospho-
lipid bilayer. This bilayer is covered with albumin on the outside and with another
protein layer, spectrin, on the inside. The spectrin layer is a skeletal protein and sup-
ports the lipid bilayer. The liquid interior of the red blood cell is a saturated solution
of haemoglobin (32 % by weight), behaving as a Newtonian fluid with a dynamic
viscosity of n = 6 mPa.s (Cokelet and Meiselman, 1968).

The haemoglobin (MW = 68.000) is a protein complex, consisting of a Fe?* complex,
the haem group, surrounded by amino-acid molecules. The haem group is essential
for transport processes for it can bind oxygen and carbon-dioxide and it gives blood
its red color.

The biconcave shape, combined with the low bending stiffness of the membrane and
the liquid interior, enhance the ability of the red blood cell to deform readily. This
enables red blood cell to pass through capillaries with a diameter smaller than 8 pum.
Another phenomenon, closely linked to the deformability of the red blood cell, is the
rotation of the membrane around the liquid interior in a shear flow (tank-threading
movement, Schmid-Schénbein et al. (1971)).

Red blood cells aggregate face to face if they are brought in contact with each other
at low shear rates (see figure 2.2). These aggregates are known as rouleaux and
are formed under the influence of bridging macromolecules, especially fibrinogen.
At near zero shear rates, secondary aggregation of the rouleaux occurs, leading to
formation of a rouleaux network.
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2.1.2 Viscometric properties of blood

The properties of blood are governed by the concentration and the properties of the
red blood cells. The discussion on the properties of blood in this section is limited
to physiological values of Ht, but it should be noted that the properties of blood are
dependent on the concentration of red blood cells. The deformability, orientation and
aggregation of the red blood cells induce the specific behavior of blood in simple shear
flow, the prevailing flow condition at near-wall sites in the vascular tree. Shear flow
can be generated in a viscometer and is often used to characterize fluids. A uniform
velocity field is generated and by measuring the flow induced torque, the viscometric
properties of a fluid can be determined.

shear thinning At low shear rates (y < 10 s71), the red blood cells tend to aggre-
gate and form rouleaux. Under no flow conditions, the time scale for the formation
of rouleaux is 60 s. At a shear rate of y = 10 s71, the collision frequency of the
red blood cells increases and the time scale for rouleaux formation decreases to 10 s
(McMillan et al., 1987). These rouleaux increase the viscosity of the blood. If shear
rate is decreased even further (y < 1s71), the rouleaux form three dimensional struc-
tures, inducing an additional increase of the viscosity. The time required for building
a network is even longer than for rouleaux formation. If shear rate is increased, the
rouleaux break up and the red blood cells align with flow. Eventually, shear rates are
high enough to deform red blood cells, thus decreasing viscosity. Deformability; ori-
entation and aggregation of red blood cells result in shear thinning behavior of blood
{(figure 2.2).

viscoelasticity The deformability and orientation of rouleaux and individual red
blood cells lead to the viscoelastic behavior of blood. They provide means of storing
energy during flow. Thurston (1973) investigated viscoelastic properties of blood in
the linear viscoelastic regime and measured a significant elastic component in oscil-
latory blood flow (figure 2.3). He also measured the shear rate dependence of the
viscoelastic properties of blood at a given frequency (Thurston, 1979). From these
measurements, the non-linear viscoelastic properties of blood are evident.

thixotropy Thixotropy is a property of structured fluids, subjected to a transient
load. Alteration of the mechanical load changes the structure of the fluid (e.g. break
down of rouleaux, orientation of red blood cells), and some time is required before
a new equilibrium is established. McMillan et al. (1987) investigated the transient
properties of blood in viscometric flow. They measured shear stress generated by
blood, subjected to a number of sequential steps in shear rate (figure 2.4). The over-
shoot in shear stress was attributed to orientation of red blood cells. The delayed
relaxation of shear stress can be related to the viscoelastic properties of blood and a
rapid loss of orientation of the red blood cells. The same authors could not detect any
measurable first normal stress differences in blood.
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Figure 2.2: Viscosity in steady shear of normal blood, blood with hardened red blood
cells (no deformation) and blood in a Ringer solution (no aggregation) [from Chien
et al. (1970) and Caro et al. (1978)]
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Figure 2.4: Transient behavior of blood: measured shear stress after repeated steps
in shear rate [from McMillan et al. (1987)]
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Cokelet (1972) presented an extended review on the problems arising in determining
the properties of blood through viscometry. The measured torque at low shear rates is
a function of time, indicating migration of red blood cells and subsequent formation
of a plasma rich layer near the wall. Reduction of the measured torque to shear stress
and rotational speed of the viscometer to shear rate is not valid due to inhomogeneity
of the fluid. Karnis et al. (1966) measured velocity and concentration distributions in
concentrated suspensions in a Couette device. They showed that the concentration
distribution was not uniform and the velocity gradient was not constant. From these
studies, it can be concluded that determination of the viscometric properties of blood
is complicated and that results from the literature should be interpreted with caution.

2.2 Concentration distribution of red blood cells

The concentration distribution of red blood cells in large arteries is an important
factor in the choice of an constitutive model for blood. If homogeneity of the con-
centration distribution of red blood cells can be assumed, a macroscopic continuum
model can be used to describe blood flow in large arteries. Several mechanisms are
responsible for migration of isolated particles across streamlines. Fluid inertia and
the presence of the wall induce lateral displacements of particles in tube flow (for
a review, see Goldsmith, 1993). In a concentrated suspension like blood, particle-
particle interactions and the crowding effect are dominant over the mechanisms of
migration of isolated particles (Goldsmith and Marlow, 1979). Two mechanisms can
be responsible for an inhomogeneous concentration distribution in a concentrated
suspension: the wall exclusion effect and shear induced migration.

2.2.1 Wall exclusion effect

The wall exclusion effect states that particles with radius a cannot be closer to the
wall than a. The consequence of this effect is that the particle concentration close to
the wall is lower than the bulk concentration of the fluid. A cell-depleted or cell-free
region with a lower viscosity is formed at the wall, serving as a lubricating layer.

The effect of the cell-depleted layer on blood flow was studied extensively for capillary
flow. For tubes with a radius (a) smaller than 100 um, the inhomogeneous concen-
tration distribution of the red blood cells leads the the well-known Féhraus-Linquist
effect (Farhazus and Lindquist, 1931); the pressure drop along a tube decreases with
decreasing diameter of the tube. This effect can be attributed for by modeling blood
as a two-phase fluid: a core region with high erythrocyte concentration and a cell-
depleted layer with the plasma viscosity (e.g. Uijttewaal, 1993). The velocity dis-
tribution in capillaries was studied by e.g Bugliarello and Sevilla (1970). Using a
comparable two-phase model for blood flow, they were able to obtain a good agree-
ment between experimental and analytical velocity distributions in 40 and 70 um
tubes. The study of Goldsmith and Marlow (1979) showed that the cell-depleted
layer for concentrated red blood cell suspensions was approximately 4 um. For small
capillaries (a = 50 um), this cell-depleted layer attributed to a blunted axial velocity
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profile with a core region of particles with constant axial velocity. The size of the
core region decreased with increasing diameter of the tube. The lower concentration
of the red blood cells at near wall sites is also associated with an increased platelet
concentration in-vivo (Tangelder et al., 1986).

Detailed information about the cell-depleted layer in large arteries is relatively scarce.
Phibbs (1968) studied the thickness of the cell-depleted peripheral layer. By quick-
freezing a femoral artery of a rabbit, they were able to investigate the concentration
distribution of the red blood cells. They found a decreased red blood cell concentra-
tion in a peripheral layer with a thickness of about one particle diameter, which is too
small to significantly influence blood flow in large arteries.

2.2.2 Shear induced migration

Shear induced migration in a suspension is caused by the hydrodynamic interactions
of the particles. The migration process can be modeled by a convection diffusion
equation. Philips et al. (1992) proposed a transport equation that accounts for shear
induced migration of rigid particles in a concentrated suspension. The particle fluxes
can be attributed to two effects: spatially varying interaction frequency and spatially
varying viscosity. Due to spatially varying interaction frequency, particles will move
from high shear rate to low shear rate regions and from regions with high particle
concentration to regions with low particle concentration. The spatially varying vis-
cosity will cause doublets of particles to move towards regions with lower viscosity.
The transport equation predicts shear-induced migration in a tube flow depending
on particle radius b, tube length L and the ratio of particle-tube radius H = b/a. In
fully developed flow, the model predicts an inhomogeneous concentration distribu-
tion with higher particle concentrations in the central part of the tube. Experiments
by Koh et al. (1994) showed that the the model for shear induced migration can be
used to predict concentration and velocity distribution in concentrated suspensions
of rigid spheres in tube flow. They found a blunted axial velocity profile and a con-
centration distribution with a marked peak in the center of the tube.

Phan-Thien and Fang (1996), based on the work of Nott and Brady (1994), deter-
mined the entrance length L to reach steady state for shear induced migration in
tube flow:

a3

b2

In table 2.2, equation (2.1) is applied to blood flow in the human circulation. The
estimated inlet length for the concentration distribution in large arteries in human
circulation are too long to reach steady state due to the size of the red blood cells. For
smaller tubes (H = 0.1), shear induced migration can give rise to an inhomogeneous
concentration distribution and a flattened velocity profile. It has to be remarked
that Koh et al. (1994) concluded from their experiments that inlet lengths for shear
induced migration might be considerably shorter than predicted by Nott and Brady
(1994). The mechanisms for shear induced migration are valid for rigid spheres: the
theory was not applied to asymmetric, deformable particles yet.

L =05 2.1
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Vessel a [m] H[-1  Ls [m]
Aorta 1.2-1072 3.107% 5.10%
Carotid  4-1073 1-107% 2.10°
Arteriole 4.107° 1.107! 2.10°3

Table 2.2: Estimation of inlet length for concentration distribution in the human
circulation, using the results of Phan-Thien and Fang (1996).

From the above observations, it can be assumed that the cell-depleted layer and shear
induced migration do not significantly influence blood flow in large arteries. The
red blood cell concentration can be regarded as homogeneous. From that it follows
that flow large arteries can be modeled with a macroscopic constitutive equation for
blood.

2.3 Constitutive models

Determination of the blood flow induced wall shear stress and wall shear rate requires
the solution of the Navier-Stokes equations. In a general form, these equations read:

ovV+pv-V)v—V.o=f
(2.2)
V.v=0

where v is the velocity vector, o the Cauchy stress tensor, f the body force per unit
mass, V the gradient operator, and v is the time derivative % A constitutive equation
is required to couple the Cauchy stress to the rate of deformation and/or the defor-
mation of the fluid. For a Newtonian fluid with a constant dynamic viscosity 7, the

Cauchy stress tensor can be written as:
o = —pl+2nD (2.3)
1
D = S[W+ (vv)'] (2.4)

where p is the hydrostatic pressure, and D the rate of deformation tensor. The consti-
tutive equation for blood should preferably incorporate the non-linear and time de-
pendent properties, discussed in section 2.1.2. In this section, a review will be given
on the constitutive models that can be used to characterize blood. Constitutive equa-
tions can be subdivided into generalized Newtonian (section 2.3.1) and viscoelastic
(section 2.3.2) models.

2.3.1 Generalized Newtonian fluid models

The generalized Newtonian fluid models are time independent constitutive mod-
els. They can be used to model the viscous properties of blood. Viscoelasticity and
thixotropy cannot be described with these models.



16  Chapter 2

Newtonian model

Many fluids obey Newton’s law, stating that stress in the fluid is proportional to rate
of deformation. In simple shear, Newton’s law reduces to:

T =1ly| (2.5)

where 7 is the dynamic viscosity of the fluid, and t shear stress and |y| the absolute
value of the shear rate. The materials that follow Newton’s law are gases and small
molecule liquids like water and oil. In Newtonian fluids, there are no normal stress
differences in steady shear, nor can shear thinning behavior be modeled.

Generalized Newtonian models

The Newtonian model can only predict the behavior of a limited class of fluids. A
logical extension of the Newtonian model is a dependence of viscosity on shear rate.
In this way, shear thinning can be modeled. For generalized Newtonian models, the
Cauchy stress tensor depends on the second invariant of the rate of deformation ten-
sor (IIp):

o = —pl+ 2n(Ilp)D (2.6)

In simple shear, IIp reduces to y. A range of shear rate dependent viscosity models is
used to model shear thinning behavior of blood. The power-law model is a general-
ized Newtonian model that is widely used to model the behavior of blood. In simple
shear, it states that:

t=mly|" or n=m|p|""} 2.7)

The two parameters in this model, n and m, characterize the fluid behavior. The
main advantage of this model is its simplicity: analytical solutions for simple flow
problems are available. The power law model cannot predict the viscosity of the fluid
at high (n — 0) or at low shear rates (n — oc0). Furthermore, the constants in the
model cannot be associated with the physical properties of the fluid. The constitutive
equation for a Casson model is given by:

1
i =17+ (nlyl)? (2.8)

The Casson model is appropriate for shear thinning fluids with a yield stress (ty). The
evidence for yield stresses in blood are circumstantial and there is no consensus about
the yield stress value. Other models, like the Carreau-Yasuda model, predict the shear
thinning behavior of blood more accurately:

N =N . n-l1

T =14 (gl (2.9)

Mo — Mo [ ¢ 7l ]
At high shear rates, the fluid behaves like a Newtonian fluid with a viscosity 7., de-
scribing the viscosity of blood with deformed and aligned red blood cells. At low
shear rates, another Newtonian plateau can be observed with a viscosity of ng. At the
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intermediate shear rates, the fluid will exhibit non-Newtonian behavior. The transi-
tion from the low shear rate Newtonian plateau to the high shear rate limit is a fluid
property. Based on the work of Krieger and Dougherty (1959), Quemada (1978)
proposed a viscosity model combining concentration and shear rate dependence:

-2

. k _koc
=n(p,¥) = s 1—9 Koo + —

2 A%
1+(h)
where ko, ko, g and y, are material parameters and ¢ the concentration of red blood
cells.

(2.10)

2.3.2 Viscoelastic fluid models

Whenever materials exhibit a time dependent response to mechanical loading, they
are categorized as viscoelastic materials. Subjected to small strains, the viscoelastic
properties of the fluid are independent of strain. The properties in the small strain
region can be modeled with linear viscoelastic constitutive equations. The linear
viscoelastic properties of fluids are often used for characterization purposes. In all
practical applications fluids are subjected to large strains and strain rates. Non-linear
viscoelastic models have to be applied to model this behavior.

Linear viscoelastic models

The linear viscoelastic behavior of a fluid can be modeled with an equation proposed
by Maxwell:
dt
dt
where A is the relaxation time, and t the deviatoric part of the Cauchy stress tensor.
For k = 1, equation (2.11) reduces to a single mode Maxwell model. The single
mode Maxwell model can be understood intuitively: at high deformation rates, the
time derivative in equation (2.11) dominates and the fluid exhibits solid-like behavior,
while at low deformation rates the time derivative disappears and a viscous response
of the fluid is expected. For k = 1...n, a generalized Maxwell model is obtained. A
generalized Maxwell model incorporates a series of relaxation times (Ax) and viscosi-
ties () and can be used to model the linear viscoelastic properties of blood.

It has to be kept in mind that the Maxwell constitutive equation is only valid for
small strains and therefore can only be used to model linear viscoelastic behavior of a
fluid. It does not predict important non-linear effects: shear thinning, thixotropy and
non-linear viscoelasticity are not modeled. The linear Maxwell model can be used to
determine characteristic time constants for a fluid.

T+ A—— = m2D (21D

Non-linear viscoelastic models

The time dependent behavior of viscoelastic fluids subjected to large strains cannot be
described with the generalized Maxwell model. In non-linear viscoelastic models, the
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local time derivative in equation (2.11) is substituted by a convective time derivative.
This substitution enables modeling of the constitutive properties of viscoelastic fluids
subjected to large strains. In this section, the non-linear viscoelastic models will be
discussed briefly.

The non-linear and time dependent properties of a fluid can be incorporated in the
Maxwell model (2.11):

T+ A T= 02D (2.12)

By substituting the local time derivative in equation (2.11) by the upper-convected
time derivative, the upper-convected Maxwell (UCM) model is obtained. The upper-
convected time derivative contains products of velocity gradient and stress:

P) . . -
Vza—:+v-Vr-(Vv)T-r—r.vV (2.13)

For small strains, the UCM model reduces to the linear Maxwell model and for steady
flow and small strains, the UCM predicts Newtonian behavior.

The UCM model can be generalized by including several terms that enable a better fit
of viscometric data:

T +7 + 2k (7, D) + Afy (D) = ne2D (2.14)

The terms f; and f; are measures of the stress build-up and stress decay, respectively.
Several forms for these additional terms have been introduced in literature, each
having their specific advantages and drawbacks.

Williams et al. (1993) proposed a special form of the Maxwell model to relate the
micro-structure of blood to its macroscopic properties. Both A and 5 depend on a
structure factor P. This structure factor is a measure of the number of rouleaux in
blood. The kinetics of P are given by:

ap = k(1 —P) —a|p|P (2.15)
dt

where k and «|y| describe the mechanisms for the formation and the break up of the
rouleaux structures. Equation (2.15) can be used to predict the viscometric properties
of blood at low shear rates.

Quemada followed a similar approach in a series of studies (Quemada and Droz,
1983; Quemada, 1984, 1993). A non-linear Maxwell equation was adopted to model
the viscometric behavior of blood. The viscous and elastic properties depended on
a structure parameter A. With this model, the transient data from McMillan et al.
(1987) were predicted quite accurately (see also figure 2.4).

The parameters in the above mentioned non-linear viscoelastic models require more
data than currently available for blood. No reliable information on normal stress
differences or elongational viscosity of blood are available. For further reading on
non-linear viscoelastic models and constitutive models in general, one is referred to
Bird et al. (1987) and Macosko (1994).
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2.4 Dimensionless parameters in blood flow

The constitutive equations that can be used to describe the properties of blood are
discussed in the previous section. The choice of the appropriate constitutive equation
does not only depend on the properties of blood but also on the flow conditions and
the geometry of the arteries.

The dimensionless form of equation (2.2) for Newtonian fluids yields two important
dimensionless parameters:

av 1
Sr— V)W=-Vp+—V. .16
rat+(v W p+Re T (2.16)
L
Sr= VT . Strouhal number 2.17)
LV
Re = — : Reynolds number (2.18)
n

In equations (2.17) and (2.18), L, V, T, p and n are measures for characteristic
length, velocity, time, density and viscosity respectively. Sr gives the ratio of the
instationary to the convective forces while Re gives the ratio of the convective to
the viscous forces. The dimensionless parameters for non-Newtonian flow, consisting
of a fluid parameter and a flow parameter, can be used to estimate the combined
effect of fluid properties and flow conditions. After adopting a constitutive model,
three dimensionless parameters can be formulated to estimate the influence of various
aspects of the macroscopic non-Newtonian behavior of blood on blood flow in large
arteries.

2.4.1 Can blood be modeled as a Newtonian fluid?

The steady shear properties of blood clearly indicate its shear thinning behavior. Two
Newtonian plateaus are present: one at low shear rates (), and one at high shear
rates(ns). To model the shear thinning properties of blood, the Carreau-Yasuda
model is adopted (equation 2.19). The dimensionless viscosity (n*) can be written
as:

7= T = [ ()7 2.19)

M0 — Moo

where 7 is viscosity, y shear rate and no, 7, 1, a and A, are fluid parameters. The
dimensionless viscosity depends on the shear rate, and a definition of a characteristic
shear rate can be used to estimate the importance of the shear thinning properties
of blood for the flow in large arteries. For that purpose, a shear rate number (N, ) is
defined:

Ny = Ast }./c (2.20)

where A, is a characteristic time constant of the fluid and y, a characteristic shear
rate of the flow. For high values of the shear rate number N,, the fluid will behave
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as a Newtonian fluid with n = 1., while at low values of N, a Newtonian model
with n = no can be used. At intermediate values, the shear thinning behavior must
be taken into account. For Ay, the time constant in the Carreau-Yasuda model (Aey)
can be used, and its value follows from viscometric data (Ay &~ 0.1 s, see chapter 4).
An estimation of the characteristic shear rate for blood flow in large arteries can be
derived from Newtonian flow in a straight tube. From the momentum equation for
steady, axisymmetric flow in a straight tube, the velocity distribution can be obtained.
The velocity distribution is used to determine shear rate:

v
y = 4—2r (2.21)
a

where r is the radial coordinates, a is the radius of the tube and V the mean velocity.
A characteristic shear rate in this flow could be defined as:
. 2V
Ve =2 (2.22)
a
The characteristic shear rate in large arteries can be defined in various ways: some
authors use wall shear rate (which is in fact often the highest shear rate occurring in
blood flow), while others use a shear rate based on an average value (table 2.4.1).
The definition of the characteristic shear rate (equation 2.22) resembles the defini-

study definition of y,
Baaijens et al. (1993) v
Ballyk et al. (1994) %

Cho and Kensey (1991) 3’;:1 %V

Mann and Tarbell (1990) sl dl
Thurston (1973)
Takami et al. (1990)

Table 2.3: Definitions of the characteristic shear rate in other studies. n is the power
law index from the generalized Newtonian power law model.

tions used by Baaijens et al. (1993) and Thurston (1973). Using in-vivo data from
blood flow in the common carotid artery (Hoeks et al., 1995) and Agy = 0.1, equation
(2.20) yields a shear rate number between 4 and 7. This means that the characteristic
shear rate in this artery is in the shear thinning region of the viscosity of blood. Fol-
lowing these arguments, the shear thinning properties of blood for flow in the carotid
artery should be taken into account.

In many investigations on blood flow in large arteries, blood is modeled as a Newto-
nian fluid. The viscoelasticity of blood is ignored, and using the argument that shear
rate in larger arteries is predominantly high, the viscosity of blood is taken equal to
the high shear rate limit viscosity of blood (7).
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Whether or not these assumptions are admissible is under dispute. Several numerical
studies indicate that the influence of the shear thinning properties of blood is not
significant for the flow in large arteries. Perktold et al. (1991) computed instationary
flow in a three dimensional model of the carotid bifurcation, comparing a Newtonian
model fluid (n = 3.5 mPa.s) to a Casson model fluid (equation (2.8), . = 3.2 mPa.s).
They used identical flow conditions for the two fluids. At end diastole, they observed
slightly flattened velocity profiles in the common carotid artery. In the carotid sinus,
the secondary velocities were somewhat lower and the region of flow reversal slightly
smaller for the Casson fluid. Despite these small differences, no significant influence
of shear thinning properties on large scale flow phenomena in the internal carotid
artery was found. Some numerical studies (e.g. Cho and Kensey, 1991) support their
results, while other studies contradict them (e.g. Rodkiewicz et al., 1990), or apply
scaling procedures while comparing Newtonian and shear thinning model fluids (e.g.
Baaijens et al., 1993; Ballyk et al., 1994).

From the above cited literature, it is obvious that there is no consensus as far as
the influence of the non-Newtonian properties of the fluid is concerned. No detailed
comparison between numerical and experimental results in complex flow is available,
thus hampering evaluation of the influence of non-Newtonian fluid properties. In
this thesis, the non-Newtonian flow in the carotid bifurcation (chapter 3) and in a
90° curved tube (chapter 4) will be studied both numerically and experimentally to
investigate this topic.

2.4.2 Is viscoelasticity important?

Two dimensionless parameters are available to determine the importance of the vis-
coelasticity of a fluid: the Weissenberg number and the Deborah number. The defi-
nition of these two dimensionless parameters can be derived from the dimensionless
form of the upper-convected Maxwell model:

3
Deg—; +We(v-Vr— (VW) -T—1T-VV)+1=2D (2.23)

where 7 is the dimensionless extra stress tensor, and D the dimensionless rate of
deformation tensor. The stress tensor is made dimensionless with an and the rate

of deformation tensor with ‘5, The Weissenberg number (We) gives the ratio of the
characteristic time of the fluid to a characteristic convective time-scale of the flow,
while the Deborah number (De) relates the characteristic time of the fluid to the
characteristic time of the flow:

A
We = AveVe De:—;—e (2.24)

where A,. is the appropriate characteristic time constant of the fluid, and T a char-
acteristic time of the flow. For De — 0 and We — 0, the elastic properties can be
ignored and the fluid behaves in a purely viscous fashion. Above some critical value
of De and We, the elastic properties of the fluid have to be taken into account. The
values of De;; and We,, usually in the order of one, have to be determined experi-
mentally. There are three relevant time constants: the time constant associated with
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the formation of the rouleaux, the time required to break down these structures, and
finally the relaxation time of the deformed red blood cells. For the viscoelastic time
constant of blood, the relaxation time of the red blood cells (0.06 s) seems to be the
most appropriate choice (Cokelet, 1972; Sharp et al., 1996). The Weissenberg num-
ber, depending on the characteristic shear rate, will be in the order of 1, while the
Deborah number is one order of magnitude smaller. Based on the value of the Weis-
senberg number, the convective viscoelastic properties cannot be neglected in blood
flow in large arteries. The influence of viscoelasticity on the velocity distribution and
wall shear stress in blood flow in large arteries has not been investigated extensively,
and will be addressed in chapter 3 and 4.

2.5 Conclusions

The choice of the appropriate constitutive model for blood depends on the properties
of blood, the concentration distribution of red blood cells, and on the flow conditions
in and the geometry of large arteries. The effect of the inhomogeneous concentra-
tion distribution is probably not significant for large scale flow phenomena: the cell-
depleted layer is very small compared to the size of the artery and the arteries are too
short to allow the development of shear induced migration. To predict the velocity
distribution in large arteries, the shear thinning behavior and the viscoelastic proper-
ties of blood cannot be neglected on fore-hand. The characteristic shear rates in the
large arteries are in the non-Newtonian regime of the shear rate dependent viscosity
and the two dimensionless parameters characterizing the influence of viscoelasticity,
We and De, are not small enough. From these observations, it follows that, for the
prediction of the velocity field, blood should be modeled as a homogeneous, shear
thinning and viscoelastic fluid. Using an appropriate blood analog fluid, this hypoth-
esis must be investigated experimentally in a relevant geometry under physiological
flow conditions. For the numerical modeling, a generalized Newtonian fluid model
is used. In chapter 3, the steady flow of a non-Newtonian macroscopic blood ana-
log fluid is investigated and the unsteady flow features are studied in a 90° curved
tube (chapter 4). In these chapters, the influence of the non-Newtonian properties of
the blood analog fluid on the velocity distribution are studied in detail. The ability
of the blood analog fluid to mimic the behavior of blood is evaluated in backward-
facing step flow (chapter 5). The experimental velocity distribution in a red blood
cell suspension under steady flow conditions is compared to numerical results.

Wall shear stresses in the large arteries might be influenced by the particulate na-
ture of blood. An independent measurement of the wall shear stress has to indicate
whether a macroscopic blood analog fluid can be used to model wall shear stresses.
For that purpose, a new method to determine the wall shear stress distribution is
presented in chapter 6. The results for the developed model fluid will be confronted
with a red blood cell suspension to evaluate its ability to mimic the blood flow in large
arteries and to predict blood flow induced wall shear stress (chapter 7).
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Steady non-Newtonian flow in a
carotid bifurcation model *

3.1 Introduction

From clinical practice it is known that specific sites in the arterial tree are sensitive
to the development of atherosclerotic lesions. Local hemodynamics are believed to
play an important role in the development of these lesions. In view of the predilec-
tion of atherosclerosis for the non-divider wall in the sinus of the carotid bifurcation,
atherogenesis (figure 3.1) was related to low or oscillating shear rate or shear stress
(Caro et al., 1971; Friedman et al., 1981; Zarins et al., 1983; Nerem, 1992). Local
hemodynamics are not only governed by the pressure pulse, the geometry of the bi-
furcation and the properties of the arterial wall, but also by the rheological properties
of the fluid. In this study, the influence of the non-Newtonian properties of blood on
the velocity distribution in a rigid model of the carotid bifurcation under steady flow
conditions is described.

Previous research has clearly demonstrated the non-Newtonian behavior of blood
(Chien et al., 1970; Thurston, 1973, 1979). In steady shear experiments, blood ex-
hibits shear thinning behavior. At low shear rates, rouleaux of red blood cells are
formed, effectively increasing the viscosity of blood. These structures break down
at higher shear rates. The red blood cells orientate and deform and the viscosity of
blood decreases, reaching a constant viscosity at high shear rates (7, = 3.5 mPa.s).
The viscoelastic properties of blood can be determined in oscillating shear flow. In

1The contents of this chapter are submitted to Journal of Biomechanics, under the title:

The influence of the non-Newtonian properties of blood on the flow in large arteries: Steady flow in
a carotid bifurcation model

EJ.H. Gijsen, EN. van de Vosse and J.D. Janssen

The literature review on the influence of the non-Newtonian properties of blood on flow in large arteries
in the introduction is identical to the corresponding part of section 2.4.1.
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4.6 mm

external carotid
common carotid artery

artery

internal carotid
artery

non-divider wall

Figure 3.1: Schematic representation of the carotid bifurcation.

the linear viscoelastic regime, the complex viscosity of blood clearly shows the pres-
ence of an elastic component. The elastic component of the complex viscosity can
be associated with the energy storing capacity of the deformable red blood cells and
aggregates.

The flow in a carotid bifurcation model was studied experimentally by Bharadvaj et al.
(1982a,b). They investigated the velocity distribution under steady flow conditions
and found a complex flow field in the internal carotid artery in which secondary
flows played an important role. They determined a region with low velocities near
the non-divider wall that extended with increasing Reynolds number. At the divider
wall of the carotid sinus a high shear region with high axial velocities was found,
separated from the low shear region by a shear layer. The numerical work of Rindt
et al. (1990) confirmed these results. The unsteady flow in the carotid bifurcation
was studied by Perktold and Hilbert (1986); Ku and Giddens (1987); Rindt and van
Steenhoven (1996) and Palmen et al. (1997). These studies showed that similar flow
characteristics prevail, altered by the inertia effects induced by the pulsatility of the
flow. The in-vivo study of Reneman et al. (1985) confirms these findings.

In the studies mentioned above, and many other investigations on blood flow in large
arteries, blood was modeled as a Newtonian fluid. The viscoelasticity of blood was
ignored, and using the argument that the shear rate in large arteries is predominantly
high, the viscosity of blood was taken equal to the high shear rate limit viscosity
of blood (7). Whether or not these assumptions are admissible is under dispute.
Several numerical studies indicate that the influence of the non-Newtonian proper-
ties of blood are not significant for the flow in large arteries. Perktold et al. (1991)
computed instationary flow in a three dimensional model of the carotid bifurcation,
accounting for the shear thinning properties of blood. They compared a Newtonian
model fluid (n = 3.5 mPa.s) to a Casson model fluid (5« = 3.2 mPa.s), using identical
flow conditions for the two fluids. They observed slightly flattened velocity profiles
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in the common carotid artery for the Casson fluid. In the carotid sinus, the secondary
velocities were somewhat lower and the region of flow reversal slightly smaller for
the Casson fluid. Despite these small differences, no significant influence of the shear
thinning properties on the large scale flow phenomena in the internal carotid artery
was found. Some numerical studies (e.g. Cho and Kensey, 1991)) support the results
of Perktold et al. (1991) , while other studies contradict them (e.g. Rodkiewicz et al.,
1990), or apply scaling procedures while comparing Newtonian and shear thinning
model fluids (e.g. Baaijens et al., 1993; Ballyk et al., 1994). None of the above studies
incorporated the viscoelastic behavior of blood.

Experimental studies on non-Newtonian flow in larger arteries are relatively sparse,
but the ones available indicate a significant influence of the viscoelasticity of the blood
analog fluids on the flow phenomena. Liepsch and Moravec (1984) investigated the
flow in a rigid 90° bifurcation under steady flow conditions. They found a striking
influence of the non-Newtonian properties of a polyacrylamide solution on the axial
velocity distribution. Especially the size and the location of the region of flow reversal
were affected by the non-Newtonian properties of the fluid. Ku and Liepsch (1986)
studied the axial velocity distribution in a 90° bifurcation under pulsatile flow condi-
tions, also using a polyacrylamide solution. They found a reduction of the size of the
region with flow reversal for the non-Newtonian fluid in a rigid model. It has to be
remarked though, that polyacrylamide solution is much more elastic than blood.

In the present study, a blood analog fluid will be presented that can be used for laser
Doppler anemometry (LDA) measurements in a Plexiglas model of the carotid bifur-
cation. The measured axial velocity distribution will be compared to finite element
simulations. The viscoelastic properties of the blood analog fluid are not taken into
account tin the numerical simulations. It will be shown that the non-Newtonian prop-
erties of the blood analog fluid significantly influence the axial velocity distribution.
The measured velocity compares well to the numerical results, indicating that shear
thinning is the dominant non-Newtonian property of the blood analog fluid.

3.2 Experimental methods

3.2.1 Blood analog fluid

The shear thinning and viscoelasticity of blood are closely related to its microscopic
structure. The red blood cells determine the rheological behavior of blood; both shear
thinning and viscoelasticity are related to aggregation, deformation and alignment of
the red blood cells. A suitable blood analog fluid should include these non-Newtonian
properties. Application of the blood analog fluid for LDA measurements in a three di-
mensional Plexiglas model imposes two additional requirements: transparency and a
matched refraction index. A concentrated solution of potassium thiocyanate in water
(KSCN, 71 % by weight) meets the latter two demands and was used as the Newto-
nian control fluid (7 = 2.9 mPa.s, p = 1410 kg.m~%) while addition of 250 ppm Xan-
than gum (95465 Fluka) resulted in shear thinning and viscoelastic behavior. Aque-
ous Xanthan gum solutions have proven to be one of the more successful blood analog
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Figure 3.2: Steady (a) and oscillatory (b) shear properties of the KSCN-X solution,
compared to the properties of blood. The blood measurements were taken from
Thurston (1979). The steady shear data of the KSCN-X solution are presented with
vertical error-bars.

fluids (Brookshier and Tarbell, 1993). The viscometric experiments, using a cone-
plate viscometer (RFSII, Rheometrics), showed that the KSCN-Xanthan gum solution
(KSCN-X) mimics the shear thinning properties of blood quite well (figure 3.2a). In
oscillatory shear, the viscous components (1’) and the elastic (") component of the
complex viscosity of the KSCN-X solution were measured in the linear viscoelastic
regime. Comparison with the linear viscoelastic properties of blood showed a good
agreement for viscous component, but some differences regarding the elastic compo-
nent (figure 3.2b). The microscopic mechanism responsible for the viscoelastic prop-
erties of the blood analog fluid will generally differ from those described for blood,
and thus a complete match of all the rheological properties of blood is unlikely to be
found. The properties of the KSCN-X solution were measured before and after the
experiments. No differences were seen, indicating that the KSCN-X solution was not
damaged by the pump.

3.2.2 Testrig

The geometry of the three dimensional model of the carotid bifurcation (figure 3.1)
was derived from Bharadvaj et al. (1982a). The 1:1 model was machined out of
PMMA (Plexiglas) with a refraction index of 1.491, and was identical to one used in
the study of Rindt et al. (1990).

A schematic presentation of the fluid circuit is given in figure 3.3. The reservoir con-
taining the measuring fluid was immersed in a container filled with water that was
kept at a constant temperature (36°C). A positive displacement pump (Moyno, Rob-
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Figure 3.3: The test rig.

bins & Myers inc.) was used to pump the fluid to a constant head tank. This tank was
successfully employed to eliminate disturbances of the stationary flow caused by the
pump. Before entering the model of the carotid bifurcation, the fluid passed through
an inlet tube of a length of 300a, where a represents the radius of the common carotid
artery. This inlet tube was necessary to guarantee a stable and fully developed flow
as the fluid entered the measuring section. Return tubes with a tabs and flow sensors
(stTransflow 601, Skalar Instruments) transported the fluid back to the reservoir. Ti-
tanium oxide flakes (Iriodine 111, Merck) were added to the fluid in a concentration
of about 20 g.m~3 to serve as seeding for the LDA measurements. The velocity mea-
surements were performed by means of a two-component fiber optics LDA system in
backscatter mode in combination with a Flow Velocity Analyzer (FVA, 58N20, Dan-
tec). A 300 mW Argon-ion laser (55004, Ion Laser Technology) generated a green
laser beam (A = 514.5 nm) and a blue laser beam (A = 488.0 nm). Glass fibers
transmitted the laser light to the measuring probe. A front lens with a focal length of
80 mm focused the laser beams to form a measuring volume (50 x 50 x 120 um).

3.2.3 Experimental procedure

The velocity measurements were performed under steady flow conditions. The di-
mensionless parameters describing the flow, Re (Reynolds number) and y (flow divi-
sion ratio), were defined as follows:
Re — 2,oaV, Y= % ’
] Qe
where V represented the cross sectional mean velocity in the common carotid artery, a
the radius of the common carotid artery, n and p the dynamic viscosity and the density
of fluid. Qg and Q¢ represent the flow through the external and common carotid
artery, respectively. The experiments with the Newtonian fluid were performed for
Re = 270 and y = 0.45. Application of equation (3.1) to determine the Re number
for the non-Newtonian is ambiguous, since n depends on shear rate. In this study,

3.1
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the non-Newtonian fluid was subjected to the same flow conditions as the Newtonian
fluid: the mean axial velocity and the flow division ratio were identical for the two
fluids. The velocity distribution was measured at one site in the common carotid
artery and at five sites in the internal carotid artery (figure 3.4). The axial velocity

2a

Figure 3.4: The location of measurement sites.

in the common carotid artery was measured 6a upstream of the apex, along the y-
axis. In the internal carotid artery, the velocity distribution was mapped at Iy, Ios,
I, I1s and I, each plane separated by a distance a along the x’ axis. In the internal
carotid artery, the velocity in the x and y direction was measured and subsequently
transformed to the velocity in the x’ direction. The velocity signals were computed
as the mean of 100 measurements. Only half of the planes in the internal carotid
artery were mapped because of symmetry. To check the validity of the symmetry
assumption, Ipy for the Newtonian fluid and I,y for the non-Newtonian fluid were
measured completely.

3.3 Numerical methods

3.3.1 Newtonian fluid

The numerical modeling of steady, incompressible and isothermal flow of a (general-
ized) Newtonian fluid requires the solution of the impulse or Navier-Stokes equations
and the continuity equation:

o(v-VIv—-V.o=f
(3.2)
V.v=0
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where v is the velocity vector, ¢ the Cauchy stress tensor, f the body force per unit
mass, and V the gradient operator. A constitutive equation is required to couple the
Cauchy stress to the rate of deformation and/or the deformation of the fluid. For a
Newtonian fluid with a constant dynamic viscosity n, the Cauchy stress tensor can be
written as:

o = —pl+2nD (3.3)
D = %[Vv-{-(Vv)T] (3.9

where p is the pressure and D the rate of deformation tensor. Substitution of equa-
tions (3.3) and (3.4) in the Navier-Stokes equations, followed by a discretization,
using Galerkin’s finite element method (e.g. Cuvelier et al., 1986), leads to the fol-
lowing set of non-linear differential equations:

[S+N®Iv+LTp=f
(3.5)
Lv=0

where v and p are columns containing the unknown velocity components and pres-
sure values in the discrete points, S the diffusion matrix, N(¥) the non-linear convec-
tion matrix, L the divergence matrix, and f are columns containing the body and
boundary forces. The convective term was linearized using the Newton-Raphson
method. In the resulting system of linear equations (3.5), the boundary conditions
are included. A parabolic velocity profile was prescribed as the axial inlet velocity in
the common carotid artery. No-slip conditions served as the boundary conditions at
the wall. Symmetry was prescribed for the symmetry plane and stress-free outflow
was used for the internal and external carotid artery (see also figure 3.5). The length
of the external carotid artery was used to control the flow division ratio y. Equation
(3.5) can be written in a compact form as:

S+N@ LT[ % f
s 1]l 0

The set of linear differential equations was solved on the mesh depicted in figure
3.5. The Crouzeix-Raviart type elements contain 27 nodes, with a quadratic approx-
imation for the three velocity components in each node. Both the pressure and the
pressure gradient are defined at the centroid of each element. The mesh consisted
of 1084 elements and contained 10353 nodal points. The package SEPRAN (Segal,
1984) was employed to generate the mesh and to build and solve the system of equa-
tions. The equations (3.6) were solved using the integrated method (e.g. Cuvelier
et al., 1986). Renumbering of the unknown quantities ¥ and p (Segal and Vuik, 1995)
was performed to avoid zero diagonal elements in the assembled matrix in equation
(3.6). The preconditoning of the assembled matrix according to a incomplete LU de-
composition limited the required CPU time. A BiCGstab iterative solver was applied
and the iteration process was stopped using the following criterion:
resk

— < e

—— © e=10"3 3.7)
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Figure 3.5: The finite element mesh.

with k the iteration number, and res* and res® the residual at iteration k and 0 respec-
tively. After each iteration process, the resulting velocity field (v/+!) was compared to
the velocity field from the previous iteration process (V) to test for convergence:

V¥l vl <e ; e=10"5 (3.8)

with [ the iteration step, and ||...|| the maximum norm.

3.3.2 non-Newtonian fluid

In this study, only the shear thinning properties of the KSCN-X solution were taken
into account. Since viscoelasticity was not included, the comparison of the numerical
and experimental results should indicate whether viscoelasticity significantly alters
the velocity distribution in carotid artery flow.

The shear thinning was accounted for by employing the Carreau-Yasuda model (e.g.
Bird et al., 1987):

N =N _ [1+ ()]s 3.9
70 — Neo
For y, a scalar measure of the rate of deformation tensor was used (Macosko, 1994).
Iy, = tr(D? (3.10)
v = 2 (3.11)

The Carreau-Yasuda model was fitted to the experimental data (solid line in fig-
ure 3.2a), resulting in the following set of parameters:

Mo =22mPas; ne=22mPas; a=0.644; n=0.392; A =0.110s (3.12)
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The shear rate dependent viscosity slightly altered the computational method. The
Cauchy stress tensor read:

o =-pl+2n(y)D (3.13)
In the subsequent discretization, the diffusion tensor was non-linear:
[S@#) +N@®IW+Lp=f
(3.19)

Lv=20

The non-linear diffusion matrix was linearized by application of the Picard method.
The subsequent solution of the equations (3.14) was identical to the procedure fol-
lowed for the Newtonian fluid.

3.4 Results

In figure 3.6 the axial velocity profile in the common carotid artery is given for the
Newtonian and the non-Newtonian fluid. As the flow is fully developed, the axial
velocity profile for the Newtonian fluid is parabolic. The velocity profile of the non-
Newtonian fluid is flattened as expected for a shear thinning fluid (figure 3.6). The
flattened velocity profile is predicted well by the numerical method. The errors in
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Figure 3.6: The experimental (o) and numerical (——) results of the axial velocity
profile in the common carotid artery for the Newtonian fluid (KSCN) and the non-
Newtonian fluid (KSCN-X).

the velocity signal from the FVA can be attributed to the noise on the velocity signal
and the presence of velocity gradients in the measuring volume. In the central part
of the tube, the error in the velocity signal is less than 2 %, while at near wall sites,
the presence of steep velocity gradients causes an increase of the maximum error to
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8 %. The influence of alignment and positioning errors and fluctuations of the flow is
estimated to be less than 3 % (see also Rindt et al., 1991).

In figures 3.7 and 3.8, the experimental and numerical results in the internal carotid
artery are given for the Newtonian and the non-Newtonian fluid respectively. The
axial velocity in the plane of symmetry and perpendicular to this plane are presented
(A — A" and B — B' in figure 3.4) The isovelocity lines for the complete cross section
are given at plane Ipo, I1p and . The isovelocity line for v = 0 is presented by a
dashed line. The numerical results for the Newtonian and the non-Newtonian fluid
are compared in figure 3.9.

Newtonian (exp) vs. Newtonian (num)

The axial velocity distribution gives an indication of the complex flow phenomena
in the internal carotid artery. As the fluid enters the bifurcation, it is split by the
apex. As a result, high velocity gradients are expected at the divider wall (plane Ino).
Another important geometrical factor is the curvature effect, originating from the
transition from the common carotid artery and the internal carotid artery. The faster
moving fluid in the central part of the tube is swept towards the divider wall and is
replaced by slower moving fluid particles near the non-divider wall. The fluid near
the divider wall is transported circumferentially towards the non-divider wall. This
secondary flow pattern (Dean vortex) results in C-shaped axial isovelocity lines at all
locations. The internal carotid artery itself has a prominent feature that influences
the flow: its changing cross sectional area. The cross sectional area first increases,
reaching its maximum value at plane I, and then decreases. The increase of the cross
sectional area results in an adverse pressure gradient. The fluid is decelerated, and
especially the low impetus fluid near the non-divider wall is affected by this adverse
pressure gradient. Together with the curvature effect, this results in flow reversal
near the non-divider wall at plane Ips and Io. From plane I, on, the cross sectional
area reduces again, and the fluid is accelerated, resulting in a slightly flattened axial
velocity distribution and high wall shear rates at plane I5o. Finally, the presence of
a shear layer, separating the low velocity area in the central part of the cross section
from the area with high velocities near the divider wall, is notable at plane I, and
I1s5. The axial velocity distribution at plane Ioo shows that the assumption of symmetry
is valid. The flow features described above, agree well with previous studies on the
steady flow in carotid artery models (e.g. Bharadvaj et al., 1982b; Rindt et al., 1990:
Palmen et al., 1997).

The comparison between the numerical and experimental results reveals good agree-
ment. The high velocity gradients near the divider wall, flow reversal near the non-
divider wall, the presence of the shear layer and the C-shaped axial isovelocity lines
are predicted well.
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Figure 3.7: The experimental and numerical axial velocity distribution for the Newto-
nian fluid. The axial velocity in the symmetry plane (A—A’) and perpendicular to this
plane (B — B') are presented in the two top figures and the contour plots for Ino, I1o
and Iy are given in the bottom part of the figure (see also figure 3.4). The mean axial
velocity in the common carotid artery (V), is indicated. The area with flow reversal is
given by the dashed line in the contour plots.
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non-Newtonian (exp) vs. non-Newtonian (num)

The geometrical features of the carotid bifurcation also dominate the flow features
for the non-Newtonian fluid. The flow division at the apex causes high velocities near
the divider wall, the divergence of the lumen results in reduced velocities near the
non-divider wall, and the convergence of the lumen is responsible for the increased
velocity at plane Io. The influence of the secondary flow on the axial velocity distri-
bution is much less pronounced, as can be seen from the axial isovelocity lines. The
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Figure 3.8: The experimental and numerical axial velocity distribution for the non-
Newtonian fluid. The axial velocity in the symmetry plane (A~ A’) and perpendicular
to this plane (B — B') are presented in the two top figures and the contour plots for
Ino, o and Ly are given in the bottom part of the figure (see also figure 3.4). The
mean axial velocity in the common carotid artery (V), is indicated.

viscoelastic properties of the fluid were not included in the numerical model. Despite
this simplification, the agreement between the experimental and numerical results is
good. As a consequence, it must be concluded that the viscoelasticity of the KSCN-X
solution under steady flow conditions does not influence the velocity distribution in
the carotid bifurcation significantly.
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Newtonian (num) vs. non-Newtonian (num)

A comparison between the Newtonian and the non-Newtonian results reveals the in-
fluence of the shear thinning properties of the KSCN-X solution on the velocity distri-
bution. Since for both the Newtonian and the non-Newtonian fluids the experimental
results were predicted quite accurately by the numerical code, the numerical results
are used for the comparison. The flow division at the apex results in high shear rates
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Figure 3.9: Comparison of the computed axial velocity distribution for the Newtonian
and the non-Newtonian fluid. The axial velocity in the symmetry plane (A — A’) and
perpendicular to this plane (B — B') are presented in the two top figures and the
contour plots for Ino, 1o and Iy are given in the bottom part of the figure (see also
figure 3.4). The mean axial velocity in the common carotid artery (V), is indicated.
The area with flow reversal is given by the dashed line in the contour plots.

near the divider wall. The velocity gradients are less steep for the KSCN-X solution.
The flattened axial velocity profile in the common carotid artery might contribute to
lower velocity gradients near the divider wall. The axial velocity distribution shows
significant flattening and higher velocities near the non-divider wall. At the planes
Ips and Iyo, the shift of the peak axial velocity towards the divider wall is less pro-
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nounced for the non-Newtonian fluid. The typical ’C’-shape in the contour plot of
the axial velocity distribution, as present in the Newtonian case, is absent. The ax-
ial velocity profiles are flatter and the peak axial velocity is significantly lower. The
region of flow reversal is absent for the non-Newtonian fluid. Further downstream,
substantially lower axial velocity in the center of the vessel can be seen for the Newto-
nian fluid whereas the non-Newtonian fluid shows an almost fully recovered velocity
profile at plane I.

3.5 Discussion and conclusion

Laser Doppler anemometry and numerical analyses were applied to obtain detailed
quantitative information on axial velocity distribution in a three dimensional model
of the carotid bifurcation for a Newtonian and non-Newtonian fluid under steady flow
conditions. A concentrated KSCN solution with 250 ppm Xanthan gum served as a
blood analog fluid. The investigation of the influence of the non-Newtonian proper-
ties of blood on the flow phenomena in a model of the carotid bifurcation was the
main goal of this study. The distensibility of the vessel wall, pulsatility of the flow
and the compliance of the arterial tree downstream of the bifurcation were not in-
cluded in this study. Direct comparison of the results of this study with in-vivo velocity
measurements in the carotid bifurcations is not possible because of the assumptions
mentioned above. By carefully controlling the experimental conditions, this study
provides the means to evaluate the influence of the non-Newtonian properties of the
blood analog fluid on the flow patterns in the carotid bifurcation.

The velocity distribution for the Newtonian fluid in the internal carotid artery com-
pares well to previous studies (Bharadvaj et al. (1982b); Rindt et al. (1990); Palmen
et al. (1997)). The dominant features are flow separation, secondary flow due to the
curvature, flow reversal due to widening of the lumen and the effect of the conver-
gence of the lumen. Differences between the measured velocity distribution of the
Newtonian and non-Newtonian fluid are evident. In the common carotid artery the
non-Newtonian fluid shows a flattened axial velocity profile due to its shear thinning
behavior. In the internal carotid artery, the non-Newtonian velocity field is flattened,
has lower velocity gradients at the divider wall, and positive velocity gradients at
the non-divider wall. Furthermore, the curvature induced secondary flow seems to
be less dominant. The non-Newtonian flow in the carotid bifurcation was predicted
quite well by the numerical simulations. The fact that only the shear thinning proper-
ties were included and that viscoelasticity was ignored in the numerical simulations
indicates that shear thinning is the dominant non-Newtonian property of the blood
analog fluid and that viscoelasticity can be ignored for the prediction of the axial
velocity distribution. The effect of the non-Newtonian properties on oscillating flow
features and wall shear stress remains to be investigated.

The results of Perktold et al. (1991) seem to disagree with the results obtained in
the present study. They found only a minor influence of shear thinning on the end-
diastolic flow features in the carotid bifurcation. The diameter of the common carotid
artery in their study was smaller (6.2 mm), and the mean axial velocity higher. As a
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consequence, the shear rates were higher. Under these circumstances, the influence
of the shear thinning properties on the velocity distribution can be expected to be less
dominant. Baaijens et al. (1993) studied the velocity distributions in a 2D model of
the carotid bifurcation for a Newtonian and two non-Newtonian fluids numerically,
and found only minor differences. They used a scaling procedure, involving increased
mean axial velocity for the non-Newtonian fluids, thus increasing shear rate. The
influence of the shear thinning properties can therefore expected to be smaller than
in our study. The experimental results of Liepsch and Moravec (1984) and Ku and
Liepsch (1986) showed a dramatic influence of the non-Newtonian properties of the
blood analog fluid on the velocity patterns. The polyacrylamide solution, used as a
blood analog fluid in these studies, is highly elastic. The results of Mann and Tarbell
(1990) showed that polyacrylamide solutions are inadequate to mimic the behavior
of blood. No reports on detailed velocity measurements, using an aqueous Xanthan
gum solution as a blood analog fluid, could be found.

From this study, and the results of Perktold et al. (1991), it can be concluded that
the influence of the shear thinning properties on the velocity distribution in larger
arteries strongly depends on slight variations in shear rate. The validity of the scaling
procedure, used by Baaijens et al. (1993), requires further research. Furthermore, the
influence of viscoelasticity for unsteady flow conditions, and the validity of the blood
analog fluid to mimic the behavior of blood have to be investigated. The 90° curved
tube will serve as a model geometry for future experiments and simulations: the flow
contains similar flow characteristics (secondary flow, skewed axial velocity profiles),
without being influenced by a complex geometry.
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Chapter 4

Unsteady non-Newtonian flow
in 90° curved tube’

4.1 Introduction

From clinical practice it is known that specific sites in the arterial tree are sensitive
to the development of atherosclerotic lesions, causing progressive occlusion of the
lumen of arteries. Local hemodynamics are believed to play an important role in
the development of those lesions. The predilection of atherosclerosis for bends and
bifurcations can be related to low or oscillating shear rates or shear stresses (Caro
et al., 1971; Friedman et al., 1981; Zarins et al., 1983; Nerem, 1992). The study
of velocity distribution and wall shear stresses in a 90° curved tube can be used to
gain more insight into the hemodynamical factors that promote the development of
atherosclerosis.

Newtonian flow

The fully developed steady flow in loosely curved tubes was first analyzed by Dean
(1927, 1928). Using stream functions and a perturbation method, Dean was able
to solve the equations of motion. He found that the flow in the curved tube was
governed by one dimensionless parameter, the Dean number. The Dean number is a
combination of a geometry factor (curvature ratio, § = %, where a is the radius of the

1 The contents of this chapter are submitted to Journal of Biomechanics, under the title:

The influence of the non-Newtonian properties of blood on the flow in large arteries: Unsteady flow
in a 90° curved tube

EJ.H. Gijsen, E. Allanic, EN. van de Vosse and J.D. Janssen
Parts of the sections Introduction, Experimental methods and Numerical methods are almost identical

to the previous chapter. The section on the dimensionless parameters in non-Newtonian flow is almost
identical to the discussion in section 2.4.
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2paV

tube and R is the radius of the curvature) and the Reynolds number (Re = , where

V is the characteristic velocity, 7 the dynamic viscosity and p the density of the fluid).
For time dependent fully developed flows, an additional dimensionless parameter is

required. In literature on blood flow, the Womersley parameter (o« = a £, where

is the frequency of the flow oscillation) is often used to characterize time dependent
flow phenomena. Dean’s theory was extended to include flow at a wide range of Dean
numbers, curvature ratios, and Womersley parameters: a review of these studies is
given by Pedley (1980) and Berger et al. (1983).

The entry flow in curved tubes, either developing from a parabolic or a uniform inlet
velocity profile, is more complex. Only a few analytical studies are available (Singh,
1974; Yao and Berger, 1974; Pedley, 1980) and the applicability of these studies is
often limited. Due to the complexity of the problem, several studies apply computa-
tional methods to solve the equations of motion for the entry flow in curved tubes.
For the steady entry flow, developing from a uniform velocity profile, one is referred
to e.g. Agrawal et al. (1978); Soh and Berger (1984). Development from a parabolic
entry profile was studied by Olson and Snyder (1985); Bovendeerd et al. (1987) and
van de Vosse et al. (1989). Unsteady entry flow, especially relevant for physiologi-
cal flow in the arterial system, was studied by Mullin and Greated (1980): Chandran
and Yearwood (1981); Talbot and Chong (1983); Rindt et al. (1991) and Naruse and
Tanishita (1996).

non-Newtonian flow

Previous studies clearly demonstrated the non-Newtonian behavior of blood (Chien
et al., 1970; Thurston, 1979). In steady shear experiments, blood exhibits shear thin-
ning behavior. Rouleaux of red blood cells are formed at low shear rates, effectively
increasing the viscosity of blood. These structures break down at higher shear rates.
The red cells orientate and deform and the viscosity of blood decreases. In oscillat-
ing shear flow, the viscoelastic properties of blood can be determined. In the linear
viscoelastic regime, the complex viscosity of blood clearly shows the presence of an
elastic component. The elastic component of the complex viscosity can be associated
with the energy storing capacity of the deformable red blood cells and aggregates. De-
spite these findings, blood flow in larger arteries is usually modeled as a Newtonian
fluid.

In the available literature, the assumption that in large arteries blood behaves like a
Newtonian fluid, is under dispute. Several numerical studies indicate that the influ-
ence of the shear thinning properties of blood on the velocity distribution in complex
flows are not very significant. Perktold et al. (1991) used the generalized Newto-
nian Casson model to compute instationary flow in a three dimensional model of the
carotid bifurcation. They compared the Newtonian model fluid (y = 3.5 mPa.s) to a
Casson model fluid (n., = 3.2 mPa.s), using identical flow conditions for the two flu-
ids. They observed slightly flattened velocity profiles in the common carotid artery for
the Casson fluid. In the carotid sinus, the secondary velocities were somewhat lower
and the region of flow reversal slightly smaller for the non-Newtonian fluid. Despite
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these small differences, no significant influence of shear thinning on the large scale
flow phenomena in the internal carotid artery was found. Some numerical studies
(e.g. Cho and Kensey, 1991) confirm the results of Perktold et al. (1991), while other
studies contradict them (e.g. Rodkiewicz et al., 1990)), or apply scaling procedures
while comparing Newtonian and non-Newtonian flow (Baaijens et al., 1993; Ballyk
etal., 1994).

Experimental studies on viscoelastic flow in larger arteries are relatively sparse but
indicate a significant influence of the viscoelasticity of the fluids on the flow phenom-
ena. Liepsch and Moravec (1984) investigated the flow in a rigid 90° bifurcation
under steady flow conditions. They found a striking influence of the non-Newtonian
properties of a polyacrylamide solution on the axial velocity distribution. Especially
the size and the location of the region of flow reversal were affected by the non-
Newtonian properties of the fluid. Ku and Liepsch (1986) studied the axial velocity
distribution in a 90° bifurcation under pulsatile flow conditions, also using a polyacry-
lamide solution. They found a reduction of the size of the region with flow reversal for
the non-Newtonian fluid. One should realize though, that a polyacrylamide solution
is much more elastic than blood. Mann and Tarbell (1990) applied a flush mounted
hot film anemometer to evaluate the influence of non-Newtonian fluids on the mag-
nitude of wall shear rate in a bend. They compared the shear rates of one Newtonian
and three blood- analog fluids and found significantly higher wall shear rates in os-
cillatory flow for the viscoelastic fluids, especially at the inner bend. This study is
of particular interest because it includes wall shear rate measurements, induced by
blood flow.

The available literature on non-Newtonian flow in curved tubes is limited. Several an-
alytical studies extended Dean’s theory to include a range of generalized Newtonian
and viscoelastic constitutive models. Most of the theoretical investigations are lim-
ited to fully developed flow at low Dean numbers (e.g. Jones, 1960; Clegg and Power,
1963; Bowen et al., 1991; Robertson and Muller, 1996). Das (1992) used a bound-
ary layer approximation to study fully developed flow at high Dean numbers. The
unsteady fully developed flow for a viscoelastic fluid was studied by James (1975).
To the authors best knowledge, no analytical studies are available to incorporate the
non-Newtonian fluid properties in the equations of motion to investigate entry flow.
The experimental studies on non-Newtonian flow in curved tubes are mostly limited
to pressure drop measurements (e.g. Singh and Mishra, 1980). Takami et al. (1990)
studied the entry flow of non-Newtonian fluids both numerically and experimentally.
They used two different non-Newtonian fluids and applied a power law model to val-
idate the experimental results. They found good agreement between experimental
and numerical results, but did not include unsteady flow in their study.

Outline of the study

In this study, the unsteady flow of a Newtonian and a non-Newtonian blood analog
fluid was investigated both numerically and experimentally. Both fluids were sub-
jected to identical flow conditions and the velocity distribution in a 90° curved tube
was studied in detail. Comparison between the experimental results for the Newto-
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nian and non-Newtonian fluid revealed the influence of the non-Newtonian proper-
ties of the blood analog fluid. In the numerical simulations, viscoelasticity was not
included, thus allowing for a discrimination between the influence of shear thinning
and viscoelasticity on the velocity distribution.

4.2 Dimensionless parameters in non-Newtonian flow

The impact of the non-Newtonian properties of blood on the flow phenomena in large
arteries does not only depend on the fluid properties, but also on the flow conditions
the fluid is subjected to. Dimensionless parameters, consisting of a fluid parameter
and a flow parameter, can be used to estimate the combined effect of fluid proper-
ties and flow conditions. After adopting a constitutive model, three dimensionless
parameters can be formulated. To model the shear thinning properties of blood, the
Carreau-Yasuda model was employed (equation 4.1). The dimensionless viscosity
(n*) can be written as:

7= L = [+ ()]

10 — Moo

n-1
a

4.1

where 7 is viscosity and y shear rate. This model describes the behavior of fluids with
Newtonian plateaus at low (1) and high shear rate (), and a transition area gov-
erned by the parameters n, a and A.,. Using these observations, a shear rate number
can be defined:

Ny = Ast ).’c 4.2)

where A is a characteristic time constant and jy, a characteristic shear rate. For high
values of the shear rate number Ny, the fluid will behave as a Newtonian fluid with
1 = 1o, While at low values of N, a Newtonian model with n = ny can be used. At
intermediate values, the shear thinning behavior must be taken into account. Two
dimensionless parameters are available to determine the importance of the viscoelas-
ticity of a fluid: the Weissenberg number and the Deborah number. The definition of
these two dimensionless parameters can be derived from the dimensionless form of
the upper-convected Maxwell model:

]
Dea—:—!—We(VvVT—(VV)C"L’—T~VV)+T=2D (4.3)
where 7 is the dimensionless stress tensor, and D the dimensionless rate of deforma-

tion tensor. The stress tensor is made dimensionless with Vin The rate of deformation

tensor is made dimensionless with é The Weissenberg number (We) gives the ratio
of the characteristic time of the fluid to a characteristic convective time-scale of the
flow, while the Deborah number (De) relates the characteristic time of the fluid to the
characteristic time of the flow:

Ave

We = Ay, ; De= - 4.4
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where A, is the appropriate characteristic time constant of the fluid, and T a charac-
teristic time of the flow. For De — 0 and We — 0, the elastic properties can be ignored
and the fluid behaves in a purely viscous fashion. Above some critical value of De and
We, the elastic properties of the fluid have to be taken into account. The values of
Decrie and We,;:, usually of order one, have to be determined experimentally.

The values of Ay, Ave, T and y,. have to be determined to obtain the values of the above
mentioned dimensionless parameters for blood flow in large arteries. For Ay, the time
constant in the Carreau-Yasuda model (1,) can be used, and its value follows from
viscometric data. For the viscoelastic time constant of blood, the relaxation time of
the red blood cells (0.06 s) seems to be the most appropriate choice (Cokelet, 1972;
Sharp et al., 1996). The characteristic time-scale of the flow (T) is equal to the period
time of the physiological flow pulse. The characteristic shear rate for the blood flow
in larger arteries can be defined in various ways: some authors use wall shear rate,
which in fact is often the highest shear rate occurring in blood flow, while others use
a shear rate based on an average value (table 4.1). In this study, a simple definition,

study definition of y,
Baaijens et al. (1993) ”a—V
Ballyk et al. (1994) v

Cho and Kensey (1991) 3’:1'1 9&‘5

Mann and Tarbell (1990) bl Tw 4V
Takami et al. (1990)
Thurston (1973)

3a

Table 4.1: Definitions of the characteristic shear rate in other studies. n is the power
law index from the generalized Newtonian power law model.

based on the average shear rate in a two dimensional Poiseuille flow, is used:

2V
}"c = —a_ . (4.5)

The definition of the characteristic shear rate shows resemblance to the definitions
used by Thurston (1973) and Baaijens et al. (1993).

The above mentioned dimensionless parameters, depending on fluid properties and
flow conditions, will be used to estimate the importance of shear thinning and vis-
coelasticity.
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4.3 Experimental methods

4.3.1 Blood analog fluid

The shear thinning and viscoelasticity of blood are closely related to its microscopic
structure. The red blood cells determine the rheological behavior of blood: both shear
thinning and viscoelasticity are related to aggregation, deformation and alignment of
the red blood cells. A suitable blood analog fluid should include the non-Newtonian
properties of blood. Application of the blood analog fluid for laser Doppler anemom-
etry (LDA) in a three dimensional Plexiglas model imposes two additional require-
ments: transparency and a matched refraction index. A concentrated solution of
potassium thiocyanate (KSCN, 71 % by weight) meets the latter two demands and
was used as the Newtonian control fluid (n = 2.9 mPas, p = 1410 kg.m~3) while
addition of 250 ppm Xanthan-gum (95465 Fluka) resulted in shear thinning and vis-
coelastic behavior. Viscometric experiments, using a cone-plate viscometer (RFSII,
Rheometrics), showed a good agreement between the KSCN-Xanthan gum solution
(KSCN-X) and blood for the shear thinning behavior (figure 4.1). The Carreau-Yasuda

o : blood o : blood, visc.

+ : KSCN-X * : blood, elas.

- : Carreau-Yasuda fit — : KSNCX, visc.
—— : KSCN-X, elas.

viscosity [Pa.s]
viscosity [Pa.s]

shear rate [s~!]

€))]

frequency [Hz]
(b)

Figure 4.1: Shear thinning (left) and linear viscoelastic (right) properties of the
KSCN-X solution, compared to the properties of blood. The blood measurements
were taken from Thurston (1979). The steady shear data of the KSCN-X solution are
presented with vertical error-bars.

model was fitted to the experimental data (solid line in figure 4.1a), resulting in the
following set of parameters:

no=22mPas; ne=22mPas; a=0.644; n=0.392; A =0.110s (4.6)
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The results of oscillatory shear experiments showed that the linear viscoelastic prop-
erties of the KSCN-X solution did not match the properties of blood very well. The fit
of a four-mode Maxwell model to the linear viscoelastic data rendered a relaxation
time of the KSCN-X solution of 0.3 s. The microscopic mechanism responsible for the
viscoelastic properties of the KSCN-X solution differ from those for blood, and thus it
is not likely that a complete match of all the rheological properties of blood can be
found. The properties of the KSCN-X solution were measured before, during and after
the LDA experiments. No differences were seen, indicating that the KSCN-X solution
was not damaged by the pump.

4.3.2 Testrig

The velocity measurements were performed in a three dimensional model of a curved
tube, using LDA. A schematic presentation of the fluid circuit is given in figure 4.2.
The reservoir containing the measuring fluid was immersed in a container filled with
water that was kept at a constant temperature (36°C). A positive displacement pump
(Moyno, Robbins & Myers inc.) was used to pump the fluid to a constant head tank.
This constant head tank was successfully employed to eliminate disturbances of sta-
tionary flow caused by the pump. The unsteady flow component was generated by a
computer controlled piston pump (Vitro Systems Inc.). The model of the 90° curved
tube was made of Plexiglas. The diameter of the tube was 8 mm, and the curvature
radius was 24 mm. Before entering the model of the 90° curved tube, the fluid passed
through an inlet tube of a length of 200a, where a represents the radius of the tube.
This inlet tube was necessary to guarantee a stable and fully developed flow as the
fluid entered the measuring section. A return tube with a tab and flow sensor (Trans-
flow 601, Skalar Instruments) transported the fluid back to the reservoir. Titanium-
oxide flakes (Iriodine 111, Merck) were added to the fluid in a concentration of about
20 g.m® to serve as seeding for the LDA measurements. The velocity measurements
were performed by means of a two-component fiber optics LDA system in backscatter
mode in combination with a Flow Velocity Analyser (58N20, Dantec). A 300 mW
Argon-ion laser (5500A, Ion Laser Technology) generated a green (A = 514.5 nm)
and a blue laser beam (A = 488.0 nm). Glass fibers transmitted the laser light to the
measuring probe. A front lens with a focal length of 80 mm focused the laser beams
to form a measuring volume (50 x 50 x 120 um).

4.3.3 Experimental procedure and error estimation

The velocity measurements, using the Newtonian KSCN solution, were performed
under unsteady flow conditions. The mean axial velocity (V) as a function of time
is given in figure 4.2. Re varied from 300 (diastole) to 750 (peak systole), while «
based on the period time of the flow pulse (T = 1 s) was equal to 7. After mapping
the velocity field for the Newtonian control fluid, 250 ppm Xanthan gum was added
to the KSCN solution and the measurements were repeated for identical flow rate and
period time of the flow pulse. Since the viscosity of the KSCN-X solution depends on
the shear rate, determination of Re and « is not trivial. This issue will be discussed in



46  Chapter 4
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Figure 4.2: The test rig is shown in the upper part. In the bottom part, the experi-
mental grid is shown on the right side. The measuring section indicates the planes
for the velocity measurements. The flow pulse is shown on the left side. The mean
axial velocity (V) was obtained from the flow sensor.
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the section 4.6.

The flow parameters, fluid properties and the dimensionless parameters for the non-
Newtonian flow are summarized in table 4.2. The values for the KSCN-X solution
are compared to in-vivo measurements of Hoeks et al. (1995). The shear thinning
properties of blood are assumed to be identical to the KSCN-X solution and the flow
pulse frequency is assumed to be 70 beats per minute. The values for blood! refer to
healthy young individuals while the data for blood? originates from older individuals
(table 4.2). End-diastolic values are used to determine the mean axial velocity. From

flow parameters fluid properties | dimensionless parameters
fluid a Vv T Ast Ave N, We De
mm cmst s s s - - -
blood! 3.3 120 0.85 ] 0.1 0.06 7.3 4.4 0.07
blood? 3.9 7.8 0.85 ] 0.1 0.06 40 24 0.07
KSCN-X | 4.0 7.8 1.0 | 0.1 0.3 4.0 124 0.3

Table 4.2: Characteristic parameters for blood and the blood analog fluid. The data
for blood flow are taken from Hoeks et al. (1995). Blood* and blood? refers to data
taken from younger and older individuals, respectively. The data for end diastolic
flow are used to obtain the values forV.

this comparison, it can be seen that the shear thinning of the KSCN-X solution can
be compared to blood flow for the older individuals, while the influence of viscoelas-
ticity is overestimated. Based on the values of the dimensionless parameters, both
viscoelasticity and shear thinning cannot be neglected.

The velocity components were measured according to the experimental grid, given in
figure 4.2. Starting at the inlet of the curved section, seven planes were measured
from 6 = 0° to 90° with increments of 15°. During 16 flow cycles, the velocity was
measured at each location with an effective data rate of about 30 Hz. Comparison
of the results of the velocity measurements to the numerical data was facilitated by
dividing each flow cycle into 64 intervals and averaging the velocities in these inter-
vals. The experimental error in the determination of the velocity vector originates
from several sources: errors in the positioning of the measuring volume, variation in
the flow pulse, and noise on the velocity signal. These errors account for an error
in the measured velocity of less than 3 % of the mean axial velocity (see also Rindt
et al., 1991). Another source of inaccuracy of the velocity measurement is due to the
presence of a velocity gradient in the measuring volume. Generally, this error is less
than 2 %, but at locations with steep velocity gradients the error can increase to 8 %
of the mean axial velocity.
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4.4 Numerical methods

4.4.1 Newtonian fluid

The numerical modeling of incompressible and isothermal flow of a (generalized)
Newtonian fluid requires the solution of the impulse or Navier-Stokes equations and
the continuity equation:

oV+p(v-VIv—-V.o=f
4.7)
V.-v=0
where v is the velocity vector, o the Cauchy stress tensor, f the body force per unit
mass, V the gradient operator and v is the time derivative %’ . A constitutive equation
is required to couple the Cauchy stress to the rate of deformation and/or the defor-
mation of the fluid. For a Newtonian fluid with a constant dynamic viscosity 5, the

Cauchy stress tensor can be written as:
6 = —-pl+2yD (4.8)
1
D = S[Vv+ (vv)1] (4.9)

where p is the pressure and D the rate of deformation tensor. Substitution of equa-
tions (4.8) and (4.9) in the Navier-Stokes equations, followed by a discretization,
using Galerkin’s finite element method (e.g. Cuvelier et al., 1986), leads to the fol-
lowing set of non-linear differential equations:

MV + [S+N@)Iv+LTp=f
(4.10)
=0

where v and p are columns containing the unknown velocity components and pres-
sure values in the discrete points, M the mass matrix, S the diffusion matrix, N(¥)
the non-linear convection matrix and L the divergence matrix. The column f contains
the body and boundary forces. The time derivative was approximated by applying
the Crank-Nicholson discretization scheme. The convective term was linearized using
the Newton-Raphson method. In the system of equations (4.10), the boundary con-
ditions were included. The time dependent solution for unsteady flow in a straight
tube (Womersley profiles) was prescribed as the axial inlet velocity profile. No-slip
conditions served as the boundary conditions at the wall. Symmetry was prescribed
for the symmetry plane and stress-free outflow conditions were used (see also fig-
ure 4.3). The set of linear differential equations was solved on the mesh depicted in
figure 4.3. The Crouzeix-Raviart type elements contain 27 nodes, with a quadratic
approximation for the three velocity components in each node. Both the pressure
and the pressure gradient were defined in the centroid of each element. The mesh
consisted of 1084 elements and contained 10353 nodal points. The package SEPRAN
(Segal, 1984) was employed to generate the mesh and to build and solve the system
of equations. The equations (4.10) were solved using the integrated method (e.g.
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tc%p view
of the mesh

Figure 4.3: finite element mesh

Cuvelier et al., 1986). Renumbering of the unknown quantities v and p (Segal and
Vuik, 1995) was performed to avoid zero diagonal elements in the assembled matrix.
The preconditoning of the assembled matrix according to a incomplete LU decompo-
sition limited the required CPU time. A BiCGstab iterative solver was applied and the
iteration process was stopped using the following criterion:

resk
_—‘<E

—GSe; €= 10°° (4.11)

with k the iteration number, and res* and res® the residual at iteration k and O re-
spectively. For the flow pulse, 64 time steps per period were used, and two complete
periods were computed.

4.4.2 non-Newtonian fluid

In the numerical part of this study, only the shear thinning properties of the KSCN-X
solution were taken into account. Since viscoelasticity was not included, the compari-
son of the numerical and experimental results should indicate whether viscoelasticity
significantly alters the velocity distribution.

The shear rate dependent viscosity slightly altered the computational method. For the
shear rate in the Carreau-Yasuda model, a scalar measure of the rate of deformation
tensor was used (Macosko, 1994).

Iy = tr(D? (4.12)

vy = 20 (4.13)

The shear rate dependent Cauchy stress tensor read:

o = —pl+2n(y)D (4.14)
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In the subsequent discretization, the diffusion tensor was non-linear:

MV + [S(¥) + N@) IV +LTp=f
(4.15)
Lv=20

The non-linear diffusion matrix was linearized by application of the Picard method.
The subsequent solution of the equations (4.15) was identical to the procedure fol-
lowed for the Newtonian fluid.

4.5 Results

In figures 4.4 till 4.9, the experimental and numerical results are presented. The axial
velocity distribution in the plane of symmetry (A—A’) and perpendicular to this plane
(B —B’) are shown in the upper part of each figure. Furthermore, the isovelocity lines
for the axial velocity distribution are presented in contour plots at plane 15, 45 and
75. At these planes, the secondary velocity distribution is given as well.

4.5.1 Newtonian (exp) vs. Newtonian (num)

end diastole (figure 4.4)

At the entrance of the curved section, the axial velocity profile was nearly parabolic.
The upstream influence of the curved section caused the axial velocity distribution to
be slightly skewed towards the inner bend. The secondary velocities, though being
very small, were directed towards the inner bend throughout the entire cross section.
At plane 15, secondary flow, originating from a balance between the centrifugal and
viscous forces, was set up. The faster moving fluid in the core moved towards the
outer wall, while the slower moving fluid near the side wall was propelled towards
the inner wall. The axial velocity distribution was hardly influenced by the secondary
flow pattern at this site. The strength of the secondary vortex increased further down-
stream, reaching its maximum at plane 30. The increased strength of the secondary
vortex also influenced the axial velocity distribution: the locus of the peak axial veloc-
ity moved towards the outer wall, while particles with low velocity were transported
to the center, taking account for lower axial velocity in the central part of the tube
further downstream. From plane 45 on, the circumferential transport of the faster
moving fluid took account for C-shaped axial isovelocity lines. In plane 75 and 90,
the vortex developed a tail. The results at end diastole compare well to the exper-
imental results of Bovendeerd et al. (1987), indicating that steady flow conditions
prevail during end diastole.

A comparison between the numerical and the experimental results revealed that the
numerical code predicted the measured velocity very well. Due to low data rates, the
measured velocities at near wall sites were sometimes erroneous. The magnitude of
the secondary flow was slightly overestimated, and the center of the vortex in the
experimental results was slightly shifted towards the inner bend for planes 45 till 90,
while the numerical results predicted a more central position of the vortex.
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000: experimental —: numerical

Figure 4.4: Experimental and numerical velocity distribution at end diastole for the
Newtonian fluid. The axial velocity in the symmetry plane (A—A’) and perpendicular
to this plane (B — B, top left) are presented in the two top figures. The contour plots
of the axial velocity and the secondary velocities are given for plane 15, 45 and 75 in
the bottom part of the figure. The time is indicated in the schematic presentation of
the flow pulse (bottom left).
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peak systole (figure 4.5)

The inertia forces, taking account for the acceleration of the fluid, dominated the flow
features during systole. The axial velocity field was not dominated by the secondary

000: experimental —: numerical
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Figure 4.5: Experimental and numerical velocity distribution at peak systole for the
Newtonian fluid. The axial velocity in the symmetry plane (A—A’) and perpendicular
to this plane (B — B/, top left) are presented in the two top figures. The contour plots
of the axial velocity and the secondary velocities are given for plane 15, 45 and 75 in
the bottom part of the figure. The time is indicated in the schematic presentation of
the flow pulse (bottom left).

flow, resulting in a more blunted velocity distributions. The viscous boundary layer
was much thinner, resulting in steep velocity gradients near the wall. A slight shift
of the peak axial velocity towards the outer bend, combined with lower velocities in
the central part of the tube, was found from plane 45 on. The C-shaped isovelocity
lines were much less pronounced. The secondary vortex, apart from being somewhat
stronger, showed essentially the same features as during end diastole.

In peak systole, the agreement between numerical and experimental results was not
as good as at end diastole. At the outer wall, the predicted velocities were somewhat
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lower than the measured velocities. This discrepancy could not be attributed to the
coarseness of the mesh: refinement near the wall did not improve the results. In the
measured secondary velocity field, a slightly elongated vortex was be seen from plane
15 on. The numerical results indicated a more compact structure of the vortex. Fur-
thermore, the tail of the vortex in plane 75 and 90 seemed to be more pronounced in
the experimental data.

begin diastole (figure 4.6)

At begin diastole, an adverse axial pressure gradient was present to decelerate the
fluid. This adverse pressure gradient was expected to influence the regions with low

000: experimental —: numerical

Figure 4.6: Experimental and numerical velocity distribution at begin diastole for the
Newtonian fluid. The dashed line in the contour plot denotes zero axial velocity. The
axial velocity in the symmetry plane (A — A’) and perpendicular to this plane (B — B/,
top left) are presented in the two top figures. The contour plots of the axial velocity
and the secondary velocities are given for plane 15, 45 and 75 in the bottom part
of the figure. The time is indicated in the schematic presentation of the flow pulse
(bottom left).
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velocity. At the entrance of the curved tube, the velocity at near wall sites was lower
than at end diastole. From plane 15 on, the outward shift of the peak axial velocity
was still observable, and flow reversal near the inner bend was seen from plane 30 on.
The plateau region in the central part of the tube was extended, and a free shear layer
with high axial velocity gradients developed near the outer wall. The axial velocity
distribution showed a second minimum in the central part of the tube, approaching
zero at plane 45. The strength of the secondary vortex reached its maximum at plane
15, indicating a rapid build up of the secondary motion. The center of the vortex was
displaced to the inner wall at plane 30, and a tail developed from plane 45 on. This
tail developed further, being most pronounced at plane 75. Due to the rapid build
up of the secondary motion, the C-shaped axial isovelocity lines developed early, and
the lines with high axial velocity bent over towards the central part of the tube from
plane 60 on.

Comparison with the numerical results indicated that the high velocity near the outer
wall was underestimated, and that the region with flow reversal was predicted quit
well. Generally, the results for the Newtonian flow showed a good agreement with
the results obtained by Rindt (1989).

4.5.2 non-Newtonian (exp) vs. non-Newtonian (num)

end diastole (figure 4.7)

At the entrance of the curved section, a slightly flattened axial velocity distribution,
in combination with an upstream influence of the bend, was observed for the non-
Newtonian fluid. The secondary velocity distribution showed the development of a
Dean vortex, resulting in a shift of the peak axial velocity towards the outer wall. Flat-
tened axial velocity profiles were observed in the plane perpendicular to the plane of
symmetry. The influence of the secondary velocity distribution on the axial flow fea-
tures was not as pronounced as for the Newtonian fluid. Generally, the flow features
for the non-Newtonian fluid showed the expected curved tube flow features.

The numerical code, considering the shear thinning properties of the Xanthan gum
solution only and ignoring its viscoelasticity, provided a good prediction of the veloc-
ity distribution. Only the secondary velocities at plane 75 showed some deviations.
This was probably due to an error in the position of the measuring volume in the
experiments.

At end diastole, the steady flow features prevailed. This means that the time depen-
dent contribution of the elastic stress tensor is not important for the velocity field at
this stage in the flow pulse. The convective contribution of the elastic stress tensor,
however, could influence the velocity distribution. The good agreement between ex-
periments and numerical results indicates that the convective viscoelastic properties
of the Xanthan gum solution do not influence the velocity distribution: the convec-
tive elastic stress contribution can therefore be ignored. For these flow conditions, We
does not exceed its critical value.
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000: experimental —: numerical

Figure 4.7: Experimental and numerical velocity distribution at end diastole for the
non-Newtonian fluid. The axial velocity in the symmetry plane (A — A’) and per-
pendicular to this plane (B — B', top left) are presented in the two top figures. The
contour plots of the axial velocity and the secondary velocities are given for plane 15,
45 and 75 in the bottom part of the figure. The time is indicated in the schematic
presentation of the flow pulse (bottom left).
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peak systole (figure 4.8)

The observations at end diastole hold for peak systole as well. The overall flow fea-
tures were close to the ones of the Newtonian fluid. Inertia dominated flow, with
the corresponding flat axial velocity distributions and high shear rates near the wall.
The comparison between the experimental and numerical results still indicated good

000: experimental —: numerical
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Figure 4.8: Experimental and numerical velocity distribution at peak systole for the
non-Newtonian fluid. The axial velocity in the symmetry plane (A — A’) and per-
pendicular to this plane (B — B', top left) are presented in the two top figures. The
contour plots of the axial velocity and the secondary velocities are given for plane 15,
45 and 75 in the bottom part of the figure. The time is indicated in the schematic
presentation of the flow pulse (bottom left).

agreement. Only at plane 75, the magnitude of the secondary velocity component
directed towards the outer wall in the plane of symmetry was higher for the experi-
mental results.

At peak systole, the time dependent contribution of the elastic stress tensor could
influence the flow features. The excellent prediction of the numerical code indicates
that the time dependent viscoelastic properties of the Xanthan gum solution are not
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important for the velocity distribution. Not only the We number, but also the De num-
ber remain below its critical value. This means that the viscoelastic properties of the
Xanthan gum solution do not have to be taken into account for the prediction of the
velocity distribution in a curved tube for the used flow conditions.

begin diastole (figure 4.9)

The conclusions from the previous sections on the non-Newtonian flow, are confirmed
by the results of begin diastole. The flow features were in accordance with the ex-

000: experimental —: numerical

Figure 4.9: Experimental and numerical velocity distribution at begin diastole for
the non-Newtonian fluid. The axial velocity in the symmetry plane (A — A’) and
perpendicular to this plane (B — B’, top left) are presented in the two top figures. The
contour plots of the axial velocity and the secondary velocities are given for plane 15,
45 and 75 in the bottom part of the figure. The time is indicated in the schematic
presentation of the flow pulse (bottom left).

pected curved tube flow, and the experimental results showed good agreement with

the numerical data.
The fact that the numerical code predicts the experimental results accurately indicates
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that the viscoelastic properties of the experimental fluid can be ignored for determi-
nation of the velocity distribution.

4.5.3 Newtonian (num) vs. non-Newtonian (num)

From the previous discussion, it is obvious that viscoelasticity is not important for the
velocity distribution: both We and De are below their critical value. The influence of
shear thinning remains to be investigated. Since computations predicted the exper-
iments well, the numerical results were used for a comparison between Newtonian
and non-Newtonian flow characteristics (figure 4.10). At end diastole, the shear thin-

—— Newtonian fluid - - - non-Newtonian fluid

Figure 4.10: Numerical axial velocity distribution in the plane of symmetry for the
two fluids. The axial velocity in the symmetry plane (A — A') and perpendicular to
this plane (B — B/, top left) are presented in the two top figures. The contour plots
of the axial velocity and the secondary velocities are given for plane 15, 45 and 75 in
the bottom part of the figure. The time is indicated in the schematic presentation of
the flow pulse (bottom left).

ning fluid showed a flatter profile at the entrance of the tube, and the influence of
the secondary velocity on the axial velocity distribution was much less pronounced:
the dip in the central part of the tube, present for the Newtonian fluid from plane
45 on, was absent for the shear thinning fluid. The velocity gradients at the outer
and the inner wall of the curved section were almost identical. At peak systole the
same features were found. At begin diastole, the differences between the two fluids
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were even more evident: the local minimum in the central part of the cross section
as well as the flow reversal at the inner wall was absent for the shear thinning fluid.
The slower development of the secondary flow for the non-Newtonian fluid clearly
influenced the axial velocity profiles.

4.6 Implications for blood flow modeling

In the previous section, the experimental and numerical results for the unsteady flow
for a Newtonian and a non-Newtonian blood analog fluid were presented. In this
section, the implications of the presented results for the modeling of blood flow in
large arteries are discussed.

The determination of Re requires a measure of the viscosity. For the Xanthan gum
solution, the viscosity is a function of shear rate, and the determination of Re requires
careful consideration. Shear rate varies throughout the cross section of the tube:
high values at the outer wall and low values near the inner wall and the central
part of the tube. At lower shear rates, the viscosity of the Xanthan gum solution
increases, thus accounting for a more viscous behavior. The results of the previously
discussed velocity distribution point into this direction. For the flow conditions in our
experiments, the value of the characteristic shear rate (equation 4.5) is 39 s™1. A
characteristic viscosity (7.), based on the characteristic shear rate and the parameters
of the Carreau-Yasuda model, yields a value of 7.8 mPa.s. Using this value for the
viscosity, Re and « for the KSCN-X solution can be determined and compared to the
values for blood flow (see also table 4.2). The shear thinning properties of the KSCN-
X solution are assumed to be representative of blood and end diastolic flow conditions
are used in table 4.3. Due to the higher density of the KSCN-X solution, Re and « are

fluid properties | dimensionless parameters
fluid 0 e Re o

kgm=3 mPas | — -
blood! 1080 6.7 | 128 3.6
blood? 1080 8.1 82 3.9
KSCN-X | 1410 7.8 | 113 4.2

Table 4.3: Dimensionless parameters for blood and KSCN-X. The data for blood are
taken from Hoeks et al. (1995). Blood* and blood? refers to data taken from younger
and older individuals, respectively. The data for end diastolic flow are used to obtain
the values for Re.

higher than the values for the blood flow for the older individuals. We investigated
whether flow of KSCN-X solution can be described by Newtonian fluid model, using
the characteristic viscosity. The experimental results of the KSCN-X solution were
compared to numerical Newtonian results, based on the parameters, given in table
4.3.

The main flow features for the non-Newtonian fluid were discussed in the previous
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section, so the focus will be on the comparison between the results. The results of this
comparison are shown in figure 4.11 for end diastole. A remarkable agreement be-
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Figure 4.11: Velocity distribution at end diastole for the non-Newtonian fluid (ex-
perimental results) and the rescaled Newtonian fluid (numerical results). The axial
velocity in the symmetry plane (A — A') and perpendicular to this plane (B — B/, top
left) are presented in the two top figures. The contour plots of the axial velocity and
the secondary velocities are given for plane 15, 45 and 75 in the bottom part of the
figure. The time is indicated in the schematic presentation of the flow pulse (bottom
left).

tween the experimental non-Newtonian and the Newtonian numerical results, using
n = n., can be observed at any location. All the flow features from the non-Newtonian
flow can be described with the rescaled Newtonian fluid. The results for peak systole
and begin diastole (not shown) also gave good agreement. The conclusion of this
comparison is that the non-Newtonian flow of KSCN-X under the flow conditions in
this study can be approximated by a Newtonian model, using n = n.. The viscosity
for this Newtonian model is based on the characteristic shear rate, and is about three
times the high shear rate viscosity.



Unsteady non-Newtonian flow in 90° curved tube 61

Takami et al. (1990) compared steady flow of a Newtonian and a non-Newtonian
fluid. They rescaled the Newtonian flow, using the characteristic shear rate given
in table 4.1. The basis of the definition they used is not clear. They found good
agreement between numerical and experimental results, but differences were seen
between the non-Newtonian and the Newtonian flow. Whether this discrepancy can
be explained from the low characteristic shear rate they used to determine viscosity
and Re for the Newtonian fluid cannot be concluded from the available information.

4.7 Discussion and conclusions

The unsteady non-Newtonian flow of a blood analog fluid in a 90° degree curved tube
was studied both numerically and experimentally. The experimental results show that
the non-Newtonian flow cannot be predicted with a Newtonian model with a viscos-
ity of ne. The comparison with numerical results indicates that the main differences
between the two flows can be attributed to the shear thinning behavior of the blood
analog fluid. Despite the relatively high values of We, viscoelasticity does not signifi-
cantly change the velocity field. The absence of a high normal stress differences and
the relative importance of convection might explain the low impact of the viscoelastic
properties of the blood analog fluid.

The shear thinning behavior of the blood analog fluid allows for linearization: the
shear rate dependent viscosity can be approximated by a viscosity evaluated at the
characteristic shear rate of the flow. The results of the scaled Newtonian flow field,
using n = 7., compared well to the non-Newtonian flow field. The definition of
the characteristic shear rate is under dispute (see table 4.1). The good agreement
between the non-Newtonian and rescaled Newtonian velocity field indicates that a
definition of y,, based on an average shear rate, as proposed in this study and in
the studies of Thurston (1979) and Baaijens et al. (1993), is appropriate. The good
agreement between the rescaled Newtonian flow field and the non-Newtonian flow
field also has implications for the determination of the Re number. The value of Re
for the non-Newtonian flow, based on the characteristic viscosity, is about three times
lower than the Re number for the Newtonian flow.

Comparison with other studies including non-Newtonian flow in physiologically rel-
evant flow indicates that shear rate is important. The study of Perktold et al. (1991)
included the shear thinning of blood through a Casson model. They found only mi-
nor differences between the velocity field of the shear thinning fluid and a Newtonian
fluid (n = ns). The shear rate in their study is relatively high, and explains why
they did not find any significant differences between the two flow fields. From this, it
can be concluded that the influence of shear thinning on the flow field is sensitive to
small variations in shear rate. Although speculative, the sensitivity to the character-
istic shear rate might also help to explain the differences between the flow fields in
younger and older individuals (Reneman et al., 1985). Since the characteristic shear
rate in the older individuals is lower, the characteristic viscosity is higher, and a more
viscous behavior of blood is expected. Using these arguments, the absence of flow
reversal in the internal carotid artery in the older individuals could be explained.
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Two main points of interest remain: the validity of the KSCN-X solution to mimic the
behavior of blood and the blood flow induced wall shear stresses. Whether or not
blood can be mimicked by the KSCN-X solution can only be evaluated by direct com-
parison: the velocity measurements in a physiologically relevant geometry should be
used to confront the two fluids. Wall shear stresses are difficult to obtain from the
measured velocity distribution: the extrapolation of the velocity at near wall sites to
obtain wall shear rate is rather inaccurate (Lou and Yang (1993)). Furthermore, it
remains unclear whether the two-phase nature of blood has a significant influence of
the near wall viscosity and thereby blood flow induced wall shear stress. An alterna-
tive approach (Gijsen et al., 1997a) could be used to elucidate this matter.



Chapter 5

Wall shear rate distribution in
backward-facing step flow of a
red blood cell suspension*

5.1 Introduction

The development of atherosclerosis and the failure of vascular grafts is often associ-
ated with local hemodynamics. The predilection of atherosclerotic lesions for specific
sites in the arterial tree can be correlated to low and oscillating wall shear stresses
or low wall shear rates (Nerem, 1992; Caro et al., 1978). The re-occlusion of vas-
cular grafts at the distal anastomoses can also be linked to local hemodynamics (Ku
and Allen, 1995). Modeling of blood flow in large arteries, including the choice of
an appropriate constitutive model for blood, is therefore a relevant research topic.
Clinically, ultrasound velocity measurements can be used to estimate wall shear rate
in-vivo (Brands et al., 1995). To link the development of atherosclerosis to hemody-
namical variables, the accuracy of the clinical procedure to estimate wall shear rate
has to be known.

Blood is a concentrated suspension of blood cells in plasma, and its non-Newtonian
behavior has been demonstrated previously (Chien et al., 1970; Thurston, 1979).
The macroscopic viscometric properties of blood can be approximated by application
of a wide range of non-linear constitutive models ranging from inelastic shear thin-
ning models (see Cho and Kensey, 1991) to viscoelastic models, in which the time-
dependent behavior of blood is included (e.g. Sharp et al., 1996). Inelastic shear
thinning models were used in a number of numerical investigations of blood flow

IThe contents of this chapter are submitted to Journal of Vascular Investigation, under the title:

Wall shear rates in backward-facing step flow of a red blood cell suspension
EJ.H. Gijsen, PJ. Brands, EN. van de Vosse and J.D. Janssen
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in large arteries (e.g. Perktold et al., 1991; Baaijens et al., 1993). From the exper-
imentalists point of view, a similar approach can be followed: a blood analog fluid
can be chosen such that its macroscopic viscometric properties mimic the behavior of
blood (e.g. Liepsch and Moravec, 1984; Ku and Liepsch, 1986). Gijsen et al. (1997a)
employed a Carreau-Yasuda model to successfully describe the behavior of a macro-
scopic blood analog fluid in various geometries under physiologically relevant flow
conditions. They found good agreement between the numerical and experimental
results, indicating that the macroscopic blood analog fluid behaved like an inelastic
shear thinning fluid. These approaches yield predictions of the velocity distribution
of blood in large arteries, but they discard the particulate nature of blood. The ability
of these numerical and physical macroscopic models to predict the blood velocity in
large arteries remains to be investigated.

- In the present study, flow of a red blood cell suspension was studied in a two-
dimensional backward-facing step flow under steady flow conditions. Flow down-

reattachment
point

! reattachment !
! length !

Figure 5.1: Two-dimensional backward-facing step flow

stream a backward-facing step contains physiologically relevant flow features: flow
reversal and a reattachment point (figure 5.1). A comparable geometry was used
to mimic flow downstream a stenosis (van de Vosse, 1987), and to investigate the
response of cultured endothelial cells to flow recirculation (Truskey et al., 1995).
Furthermore, flow was studied in this geometry extensively, thus enabling validation
of the results obtained in the current study.

Armaly et al. (1983) investigated Newtonian flow downstream a backward-facing
step both experimentally (laser Doppler anemometry) and numerically (finite differ-
ence method) for a wide range of Reynolds numbers. The Reynolds number (Re)
was based on the height (h) of and the mean axial velocity (U) in the inlet channel
(figure 5.1). They concluded that the flow remained essentially two-dimensional up
to Re ~ 400 in a setup with a width to height ratio of 36. For these values of Re,
they were able to predict the measured velocity distribution and reattachment length
with two-dimensional computations. At higher values of Re, the flow showed three-
dimensional features, and the axial velocity distribution in the symmetry plane could
not be predicted with two-dimensional computations. Halmos et al. (1975a,b) studied
the flow of an inelastic non-Newtonian fluid in a tubular expansion. They compared
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computed and measured reattachment length and the velocity field for a Newtonian
and a shear thinning power law fluid. The velocity distribution was computed by
means of a finite difference technique, and reattachment length and velocity field
were determined through visualization of stream lines and a particle tracking tech-
nique, respectively. They were able to predict the reattachment length and velocity
distribution accurately. For the power law fluid, they defined Re using a viscosity (1.),
based on a characteristic shear rate (y.):

phU . .U
Re = s Ne=n) ; Ye= T (5.1
Nc h

with p the density of the fluid. Application of equation (5.1) enables a compari-
son between the Newtonian and the power law fluid: the reattachment length for
the power law fluid was only slightly longer, indicating that the velocity field of the
power law fluid could be approximated by a Newtonian model, using the character-
istic viscosity. Pak et al. (1990) used three different fluids: a Newtonian, an inelastic
non-Newtonian and a viscoelastic fluid. They visualized the flow in a tubular expan-
sion, and compared measured reattachment lengths. They confirmed the results of
Halmos et al. (1975b), finding hardly any difference between reattachment lengths
for the non-Newtonian inelastic fluid and the Newtonian fluid, using the characteristic
viscosity. They observed that viscoelasticity of the fluid decreased the reattachment
length considerably.

The aim of this study was to validate a macroscopic constitutive model for blood and
a clinical method to determine wall shear rate in-vivo. Ultrasound velocimetry was
applied to determine the velocity distribution in a red blood cell suspension. The
viscometric properties of the suspension were used as an input to determine the pa-
rameters of an inelastic non-Newtonian constitutive model. This model was used in
a finite element computation, and the resulting velocity distribution was compared
to experimental results. From this comparison, the ability of the macroscopic con-
stitutive model to predict the velocity distribution of the red blood cell suspension
can be assessed. Accurate determination of wall shear rate from ultrasound velocity
measurements depends on the ability of the ultrasound system to measure velocity
close to the wall. The accuracy of the clinical method to measure wall shear rate can
be assessed, using experimentally validated numerical results.

5.2 Methods

The velocity distribution of the red blood cell suspension in backward-facing step flow
was determined by means of ultrasound velocimetry. In this section, the preparation
and the properties of the red blood cell suspension, the fluid circuit and ultrasound
system are described briefly. A brief account of the numerical procedure is given and
finally, the experimental procedure is discussed.
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5.2.1 Red blood cell suspension

The shear thinning and viscoelasticity of blood are closely related to its microscopic
structure. The red blood cells determine the rheological behavior of blood: both shear
thinning and viscoelasticity are related to aggregation, deformation and alignment of
the red blood cells. Three liters of fresh blood were obtained through venipuncture
of a pig. EDTA was added to the fresh blood to avoid coagulation. The blood was
centrifuged and the plasma, blood platelets and white blood cells were removed. The
red blood cells were washed three times in an isotonic TEMS buffer. The packed red
blood cells were resuspended in the buffer at hematocrite of 35%. The removal of the
plasma and the platelets was necessary to avoid platelet coagulation and denaturation
of plasma proteins. The red blood cell suspension was characterized in viscometric
flow (parallel-plate device, RFSII, Rheometrics). The steady shear data, together with
the fit of the inelastic shear thinning Carreau-Yasuda model (e.g. Bird et al., 1987),
are shown in figure 5.2a. The linear viscoelastic properties are shown in figure 5.2b.
The viscometric data indicate that the red blood cells do not aggregate: the steady
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Figure 5.2: Steady (a) and linear viscoelastic (b) properties of the red blood cell
suspension (RBC suspension). The solid line in (a) denotes the Carreau-Yasuda fit,

shear viscosity remains fairly low at low shear rates and the elastic component of the
complex viscosity is low. These findings were confirmed by microscopic inspection:
no aggregation was found. Since red blood cell aggregates are unlikely to occur in
blood flowing in large arteries (e.g. Sharp et al., 1996), the red blood cell suspension
can be regarded as an appropriate blood analog fluid.

The viscosity was measured before and after the experiments and no significant dif-
ferences were found, indicating that the red blood cells were not damaged during the
experiments. Microscopic inspection revealed that the red blood cells retained their
biconcave shape, and no significant amount of damaged red blood cells was detected.
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5.2.2 Fluid circuit

The flow model, to study the flow downstream a backward-facing step, was con-
structed from Plexiglas (figure 5.3). The length of the channel was 500 mm, and the
width 100 mm. The channel expanded from h = 2.5 mm to H = 5 mm (see also
figure 5.1). The upper plate of the channel contained a slit surrounded by a container
to accommodate the ultrasound probe. The slit was located in the plane of symmetry
of the channel. A polycarbonate film was introduced into a chamber in the upper
plate, separating container from channel. The container was filled with water, and
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Figure 5.3: The fluid circuit.

the ultrasound probe was mounted to a traverse under an angle of observation of 70°.
A constant head tank provided a constant pressure gradient across the flow model,
thus ensuring steady flow conditions in the setup. The flow rate through the duct was
adjusted by controlling the pressure gradient between the constant head tank and
the reservoir and was monitored by a flowmeter (Transflow 601, Skalar) in the outlet
tube. A centrifugal pump (Biopump BP-80, Medtronics) was applied to circulate the
red blood cell suspension. An arterial filter was employed to remove air bubbles and
red cell aggregates from the suspension.

5.2.3 Ultrasound velocimetry

The details of the ultrasound echo system were described by Brands et al. (1995).
The three main constituents of the system were the ultrasound transmitter and re-
ceiver, the data acquisition system (DAS), and a personal computer with dedicated
software for signal processing. The echo system was operated in the pulsed Doppler
mode with a pulse repetition frequency (PRF) of 1 KHz. The carrier frequency of
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the ultrasound wave was 5 MHz and pulse trains of 2 periods were transmitted. The
reflected and scattered radio frequency (RF) signals were sampled with a frequency
of 20 MHz during 4 seconds. The RF-signals were stored in the so-called RF-matrix,
containing the RF signals in time and depth. The RF-matrix, the basic object for signal
processing, was transferred to the PC. In the post-processing, the RF-matrix was di-
vided into half-overlapping estimation windows. In this configuration, the ultrasound
system measured velocity along the line of observation with a spatial resolution of
150 um and a temporal resolution of 10 ms. The diameter of the ultrasound beam
was approximately 1 mm. The reflections from the polycarbonate film and bottom
wall served as a window for the RF signal. Within this window, the RF signal was av-
eraged over 600 ms to improve the signal-to-noise ratio. A sixth order high pass filter
with a cut-off frequency of 5 Hz was employed to eliminate the reflections from the
walls. A mean frequency estimator, based on analytic radio frequent domain signals,
was applied to determine the velocity distribution (Brands et al., 1997).

5.2.4 Numerical methods

The numerical modeling of steady, incompressible and isothermal flow of a Newto-
nian fluid requires the solution of the Navier-Stokes equations. These equations were

Figure 5.4: Schematic presentation of the mesh for the fluid part. In the actual com-
putations, four times as many elements were used. The coordinate system and the
corresponding velocity components are given as well.

discretized, following Galerkin’s finite element method (e.g. Cuvelier et al., 1986).
The convective term was linearized using a Newton-Raphson method. The pressure
was approximated by a penalty function with penalty parameter equal to 107°, en-
suring that the divergence of the velocity field was of order 10~°. A parabolic velocity
profile was prescribed at the inlet. No-slip conditions served as the boundary con-
ditions at the wall and stress-free outflow was used. The equations were solved on
a 2-dimensional mesh (figure 5.4). The Crouzeix-Raviart type elements contained 9
nodes, with a biquadratic approximation for the two velocity components. Both the
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pressure and the pressure gradient were defined at the centroid of each element. The
package SEPRAN (Segal, 1984) was employed to generate the mesh and to build and
solve the system of equations.
The velocity distribution was computed for two different constitutive equations: an
inelastic non-Newtonian model and a Newtonian model, using a characteristic viscos-
ity. The shear thinning properties of the red blood cell suspension were taken into
account by employing the Carreau-Yasuda model:
T2 (14 ()4 (5.2)
70 — Neo
The Carreau-Yasuda model was fitted to the experimental data (solid line in figure
5.2), resulting in the following set of parameters:

no=12mPa.s; neo =1.0mPa.s; a=0.222; n=0.681; A =0.086s (5.3)

The non-linear viscous term, introduced by the shear rate dependent viscosity, was
linearized by application of the Picard method. The viscoelastic properties of the red
blood cell suspension were not accounted for. For the Newtonian model, the char-
acteristic shear rate was determined following equation (5.1), and the parameters of
the Carreau-Yasuda model were used to determine the characteristic viscosity.

5.2.5 Experimental procedure and error estimates

The velocity distribution was measured for a flow rate of Q = 15 ml/s, corresponding
to an average velocity in the inlet channel of U = 60 mm/s. The velocity was mea-
sured at 3 positions in the inlet channel and in the outlet channel. Downstream of
the step, measurements were taken at axial coordinates x = 2 mm to x = 20 mm with
increments of 1 mm (for the coordinate system, see figure 5.4). The axial coordinate
of the measurement sites is defined as the intersection of the ultrasound beam with
the lower wall of the channel.
The estimated velocity from the ultrasound data is a projection of the velocity vector
on the line of observation. The axial velocity was obtained by dividing the estimated
velocity by the cosine of the angle of observation. The numerical data were treated
in the same way: the components of the velocity vector were projected on the line
of observation and divided by the cosine of the angle of observation. This procedure
enabled a comparison of the experimental and numerical velocity distribution. It
has to be kept in mind though that this procedure yields the axial velocity only in
absence of axial velocity gradients. Not only the velocities, but also the shear rates
were compared. The shear rates were extracted from the experimental data by finite
difference of the estimated velocity (for the coordinate system, see figure 5.4):
’

st = T (5.4)
The numerical data were subjected to the same procedure.
Determination of the absolute value of the velocity is sensitive to the angle of obser-
vation: a deviation of the angle of 3% may lead to differences of the absolute value
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of the velocity of about 25%. Since the angle could not be determined accurately,
one scaling factor was used for the measured velocity. The scaling factor was deter-
mined by comparing the measured maximum velocities to the computed maximum
velocities in the inlet and outlet section. This scaling procedure eliminates systematic
errors caused by inaccuracies in determining the angle of observation and estimating
the speed of sound in the red blood cell suspension. Another systematic error occurs
in the vicinity of the wall. Due to the dimensions of the measuring volume, both fluid
and wall will attribute to the reflected signal if the center of the measuring volume is
close to the wall (partial volume effect). In the setup used, this distance is approxi-
mately 330pum. The reflections from the wall are suppressed by high-pass filtering. As
a consequence, the estimated velocity will be biased towards a higher value at near-
wall sites. (Hoeks et al., 1993)), inaccuracies of axial positioning of the ultrasound
probe, and inaccuracy of the flowmeter. These error sources were estimated to add
up to 5% of the mean axial velocity.

5.3 Results

5.3.1 Numerical results

The numerical results were validated by exploring the dimensionless location of the
reattachment point (figure 5.1) as a function of Re for a Newtonian fluid model and
the Carreau-Yasuda model. For the non-Newtonian fluid, equation (5.1) was used to
determine characteristic shear rate, viscosity and Re. In figure 5.5, the results for the
two fluid models are compared with the measurements of Armaly et al. (1983) and
the empirical relationship for tubular expansion, given by Ward-Smith (1980). The
results indicate that the numerical results for the Newtonian fluid agree well with
the values given in literature. For the non-Newtonian fluid, the reattachment length
is predicted quite accurately by employing Re, based on a characteristic viscosity. At
higher values of Re, the reattachment length is slightly longer for the non-Newtonian
fluid. These findings indicate that previously reported results of Halmos et al. (1975b)
and Pak et al. (1990) on inelastic non-Newtonian fluid flow in a tubular expansion
also hold for backward-facing step flow.

The accurate prediction of reattachment length indicates that the velocity distribution
in backward-facing step flow of an inelastic non-Newtonian fluid can be approximated
by a Newtonian model, using a characteristic viscosity. Using equation (5.1) and
Q = 15 ml/s, the characteristic viscosity and Re can be computed:

Ve=241/s ; n.=48%n, ; Re=32 (5.5)

Comparison of the velocity distribution obtained with the non-Newtonian fluid model
and those obtained with the Newtonian model with a characteristic viscosity reveals a
good agreement (figure 5.6). Peak velocities in inlet and outlet are somewhat higher
for the Newtonian model, and in the neighborhood of the reattachment point some
differences are found. This can be attributed to the non-linear properties of the shear
thinning fluid. From these results, it can be concluded that both the reattachment
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Figure 5.5: The dimensionless position of the reattachment point for the Newtonian
and the non-Newtonian fluid. The reattachment length (x;) is made dimensionless
with step height (H — h).

Figure 5.6: Axial velocity distribution for the non-Newtonian (solid) and Newtonian

(dashed) fluid. For the Newtonian fluid, the characteristic viscosity n. = 4.8 * 1o, 18
used.
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Figure 5.7: Measured velocity profiles for Q = 15 ml/s

length and the velocity distribution for an inelastic non-Newtonian fluid can be pre-
dicted accurately by application of a Newtonian model based on an appropriate char-
acteristic viscosity.

5.3.2 Ultrasound velocity measurements

The measured velocity distribution for the red blood cell suspension is shown in figure
5.7. At each site, the RF-signals were measured during 4 s, and averaged over 600 ms.
The velocity distribution in figure 5.7 was obtained by taking the median of the time
averaged velocity estimates. In the top figure, inlet, outlet and the first velocity profile
behind the step are shown. In the bottom part of the figure, a zoomed image of 7
velocity measurements behind the step is presented. The nearly parabolic velocity
distribution in the inlet and the outlet channel can be clearly discerned. The shear
thinning properties of the red blood cell suspension do not give rise to an appreciable
flattening of the velocity profiles. Behind the step, a recirculation zone with negative
axial velocities is present. The measured velocity at the wall often shows non-zero
values. This can be attributed to the finite size of the measuring volume: the center of
the measuring volume is in the wall, while part of the measuring volume is still in the
fluid, resulting in a non-zero velocity estimate. In the region with flow reversal and
near the reattachment point, the measuring volume sometimes contains only very low
velocities. The high-pass filtering removes these velocities, resulting in zero velocity
estimates in those areas.
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Figure 5.8: Comparison between numerical (solid line) and experimental results (0):
velocity profiles in the inlet, outlet and downstream the step. The experimental re-
sults, possibly influenced by the presence of the channel wall, are marked with an
asterix. The velocity is scaled with the mean axial inlet velocity and the coordinate
with the inlet height.

5.3.3 Numerical vs. experimental results
Velocity distribution

The measured velocity distributions were compared to the computational results, us-
ing the non-Newtonian fluid model. The inlet and outlet profiles, as well as four
profiles behind the step, are shown in figure 5.8. The computed velocity profiles in
the inlet and outlet were used to scale the experimental results. A good agreement
between measured and computed velocity distribution at those locations can there-
fore be expected. Behind the step, the comparison is presented for x = 2, 3, 4 and
6 mm. At these locations, good agreement between the measured and predicted ve-
locities was found as well. The location and the size of the recirculation zone are
predicted accurately. The measured negative velocities in the recirculation zone are
somewhat lower than the computed values. At near-wall sites, some deviations of the
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Figure 5.9: Comparison between numerical(solid line) and experimental (o) shear
rates. The experimental results, possibly influenced by the presence of the wall, are
marked with an asterix. The shear rate is scaled with y, and the coordinate with the
inlet height.

measured and computed velocities were found. These differences can be attributed
to the finite size of the measuring volume, and the use of the high-pass filtering. The
measurement points, where an influence of the presence of the wall can be expected,
are denoted by an asterix. From these observations, it can be concluded that the non-
Newtonian fluid model provides a good prediction of the main features of the flow
field of the red blood cell suspension. Especially in the central part of the channel, a
good agreement between numerical and experimental data was obtained.

Shear rates

In figure 5.9, the measured and computed shear rates are presented. The results are
given for the same locations as in figure 5.8. The shear rate estimations, possibly in-
fluenced by the presence of the wall, are denoted by an asterix. In the central part of
the channel, a good agreement between the experimental and numerical results was
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obtained. At near-wall sites, some deviations of predicted and measured shear rates
can be observed, even for those measuring sites that are not influenced by the pres-
ence of the wall. These results confirm that the flow of the red blood cell suspension
can be modeled with the inelastic non-Newtonian fluid model.

Wall shear rates

The in-vivo velocity measurements with ultrasound can be used to estimate wall shear
rates. In the procedure, proposed by Brands et al. (1995), wall shear rates are de-
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Figure 5.10: Computed (solid line) and measured (o) wall shear rates along the upper
and lower wall. The shear rate is made dimensionless with y,.

termined by computing the maximum value of the spatial derivative of the measured
velocity profile in the vicinity of the wall:

14
?w=maxl“&;|§—> 10r -1 (5.6
In the inlet and outlet section, the highest shear rates occur at the wall. In ultra-
sound velocity measurements, the partial volume effect leads to an overestimation of
velocity and underestimation of shear rate close to the wall. The maximum value of
the spatial derivative of the measured velocity profile will therefore occur close to,
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but not at the wall. The procedure to estimate wall shear rates is therefore likely
to underestimate true wall shear rates. In fully developed flow, the maximum value
of the spatial derivative of the velocity profile can be found at the last measuring
point in the vicinity of the wall that is not influenced by the partial volume effect (see
for example shear rate in the inlet and outlet channel, figure 5.9). The loci of these
points are indicated by the dashed lines in figure 5.9. Measurements closer to the wall
cannot be used to determine shear rate accurately due to the partial volume effect.
The experimentally determined values of the shear rates along the dashed lines in
figure 5.9 are compared to the computed wall shear rates (figure 5.10). As expected,
the experimental shear rates underestimate the computed wall shear rates. In the
region of constant wall shear rate in the outlet section (x > 12 mm), the experimen-
tally determined wall shear rates were averaged using the data along the upper and
lower wall. The average value of the experimentally determined wall shear rate was
approximately 25% lower than the computed wall shear rate.

5.4 Discussion and conclusions

In this study, the flow of a red blood cell suspension downstream a backward-facing
step was investigated experimentally and numerically. The velocity distribution was
measured by means of ultrasound velocimetry. An inelastic non-Newtonian fluid
model and a Newtonian fluid model, using a viscosity based on a characteristic shear
rate, were used to compute the velocity distribution. From the comparison of the
numerical results of the two fluid models, it can be concluded that the velocity distri-
bution of the inelastic non-Newtonian fluid can be approximated by the Newtonian
model, using a characteristic viscosity, confirming the results of Halmos et al. (1975a)
and Pak et al. (1990).

The numerical and experimental velocity and shear rate distribution were compared
to evaluate the ability of the inelastic non-Newtonian fluid model to predict the flow
of the red blood cell suspension. The comparison indicates that the main flow fea-
tures can be described using the inelastic non-Newtonian fluid model. Both the po-
sition and the size of the recirculation zone, as well as recovery to a near parabolic
velocity distribution were predicted accurately. Only at near wall sites, the experimen-
tal results are influenced by the presence of the wall, and some deviations between
numerical and experimental results are found. From literature, it is known that vis-
coelasticity significantly influences the reattachment length (Pak et al., 1990). Since
the reattachment length of the red blood cell suspensions was predicted accurately
with the inelastic fluid model, viscoelasticity of the suspension does not significantly
influence the flow features under the flow conditions used in this study. This find-
ing is in agreement with the results of Brookshier and Tarbell (1992). They investi-
gated wall shear rate distribution in a curved tube by means of hot-film anemometry.
Wall shear rates for a porcine red blood cell suspension and for an inelastic aqueous
Xanthan-gum solution were compared, and a qualitative agreement was obtained.
Assuming that the non-Newtonian model predicts the velocity and shear rate distri-
butions accurately, it can be concluded that the experimental results can be used to
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determine shear rates in the central part of the channel. The dimensions of the mea-
suring volume influence the shear rate estimates in the vicinity of the wall: in this
study, a good agreement between numerical and experimental results was obtained
if the center of the measuring volume was further than 330 um from the wall. This
distance depends on the size of the measuring volume and the angle of observation.
In clinical practice, the maximum value of the experimentally determined shear rates
serves as an estimate of wall shear rate (Brands et al., 1995). In the region with con-
stant wall shear rate, this maximum shear rate coincides with last measuring point
in the central part of the channel, that is not influenced by the partial volume effect.
In this region, the clinical procedure underestimates the wall shear rate by approxi-
mately 25%. The procedure to estimate wall shear rate in-vivo, as proposed by Brands
et al. (1995), can serve as a least estimate of true wall shear rate.

The red blood cell suspension, used in this study, does not exhibit any aggregation.
The presence of red blood cell aggregates influences the viscoelastic properties of
blood. The influence of the elastic properties of blood are therefore underestimated
in this study. Red blood cell aggregates, however, are probably small in size or not
present at all in blood flowing in large arteries (e.g. Sharp et al., 1996). Furthermore,
previous research showed that viscoelasticity did not influence the velocity distribu-
tion of a macroscopic blood analog fluid with a significant elastic component of the
complex viscosity (Gijsen et al., 1997a). It can therefore be assumed that the influ-
ence of viscoelasticity of whole blood under steady flow conditions can be ignored.
The impact of unsteady flow on the ability of the inelastic fluid model to predict blood
flow in large arteries remains to be investigated. So has the impact of the particulate
nature of blood on the wall shear stress distribution. The presence of a cell-free layer
at near wall sites does not have a significant impact on the velocity distribution, but
could influence wall shear stress. To further investigate this matter, an alternative
approach to measure wall shear stress distribution (e.g. Gijsen et al., 1997b) is re-
quired.
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Chapter 6

A new method to determine
wall shear stress distribution

6.1 Introduction

Information about the wall shear stress, exerted by a fluid flowing over a solid sur-
face, is important to comprehend the performance of various systems. Determination
of wall shear stress can be applied to optimize drag reduction in pipe flow or skin
friction in aerodynamics. In a more fundamental application, wall shear stress mea-
surements can be combined with fluid velocity measurements to evaluate the perfor-
mance of constitutive models. This study focuses on a physiological application: the
role of wall shear stress in the development of atherosclerosis. Atherosclerosis is a
complex disease that causes a progressive occlusion of the lumen of large arteries.
The predilection of atherosclerosis for specific sites in the arterial tree is believed to
be related to low or oscillating wall shear stresses (Nerem, 1992). Wall shear stress is
defined as the product of wall shear rate (y,,) and dynamic viscosity of the fluid (n).
Wall shear rates in large arteries can be determined by means of ultrasound velocime-
try: the velocity distribution is measured along the radius of the artery, and the wall
shear rate is defined as the maximum of the spatial derivative of the axial velocity
distribution. Subsequently, wall shear stress is computed by adopting a model for the
viscosity of blood (e.g. Samijo et al., 1997). Validation of this non-invasive procedure
to evaluate blood flow induced wall shear rate and stress in a physiologically relevant
flow (e.g. flow downstream a backward-facing step) is desirable.

1The contents of this chapter are published in the Journal of Rheology, 41(5), 995-1006:

A new method to determine wall shear stress distribution
EJ.H. Gijsen, A. Goijaerts, EN. van de Vosse and J.D. Janssen

In the introduétion, some topics from chapter 2 reappear. The blood analog fluid in this study is slighlty
different from one used in chapter 3 and 4.
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The clinical procedure to determine wall shear rate can be evaluated by using an al-
ternative measuring technique, e.g. hot wire anemometry (Mann and Tarbell, 1990).
A review on other available methods to measure wall shear rate is given by Han-
ratty and Campbell (1983). Estimation of the viscosity of concentrated suspensions,
such as blood, at near wall sites poses major difficulties. The constitutive behavior of
blood is governed by the suspended particles. Both in viscometric and in tube flow,
the concentration distribution of the suspended particles in blood does not have to be
homogeneous (Karnis et al., 1966; Tangelder et al., 1986). Therefore, the viscosity of
blood near the wall can not be inferred directly from viscometric experiments. As a
consequence, an accurate determination of wall shear stress, exerted by the flow of a
suspension like blood, requires a different measurement technique.

Instead of focusing on the fluid, the response of a sensing element, attached to the
wall, can be used to measure wall shear stress. In aerodynamics, wall shear stress
in air flow is often measured using compact strain gauges that consist of a sensing
element that can move parallel to the boundary of the wall. The deformation of the
element, or the force required to keep it in its original position, is a measure of wall
shear stress. A review of the available gauges is given by Winter (1977). If wall shear
stress is low, as expected in blood flow in large and medium sized arteries (maximum
values: 2 — 3 Pa, (Giddens et al., 1990), 3 — 4 Pa, (Samijo et al., 1997)), accurate
measurement of stress is only possible if the surface of the sensing element is rela-
tively large, thus limiting the applicability of these devices in physiologically relevant
geometries. Tanner and Blows (1976) measured the thickness of an oil film in air
flow and related the thickness variation to wall shear stress distribution. Although
the thickness of the oil layer was measured quite accurately, the method was inapt for
measuring absolute values of wall shear stress. Together with its quasi-static nature,
this limits the applicability of this method. Parmar (1991) investigated the applica-
bility of shear stress sensitive liquid crystals to determine wall shear stress. When
the liquid crystals are illuminated with white light, the reflected light will change
color when the crystals are subjected to a mechanical load. Although the response
time of the crystals is very short, the resolution of this method (5 Pa) is too low for
physiological applications.

In this paper an alternative method to determine the wall shear stress is presented
(figure 6.1). A highly deformable gel layer is used as the sensing element. The gel

3 displacement fluid
T

-— gel

g -|— wall

Figure 6.1: Wall shear stress measurement through displacement of gel layer.
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layer is attached to the inner wall of a flow model. The wall shear stress, exerted by
the fluid, deforms the gel layer slightly. The small deformation of the gel layer can be
measured accurately by means of speckle pattern interferometry (SPI). Through the
known properties of the gel, wall shear stress (,,) can be inferred from the deforma-
tion of the gel layer:

Tw = Nyw = G(Z—Z) ~ %u (6.1)
where G is the shear modulus, h the thickness and u the displacement of the gel layer.
Using this method, wall shear stress can be determined without prior knowledge of
the viscosity of the fluid. In this paper, it is shown that the proposed method can be
used to determine physiologically relevant wall shear stress values. This is demon-
strated by assessment of wall shear stress in a rectangular duct under steady flow
conditions, using water as a measuring fluid. The experimental data are compared to
the analytically determined wall shear stress values. The method can also be applied
to measure the influence of blood-like shear thinning behavior on wall shear stress.
The experimental results for a blood analog fluid are compared to numerically deter-
mined values. If blood is used as a measuring fluid, the combination of the proposed
method and clinically applied velocity measurements in a physiologically relevant
geometry can be used to validate the procedure to determine wall shear stress in
arteries.

6.2 Experimental methods

The feasibility of the proposed method is assessed by measuring wall shear stress in a
rectangular duct. The deformation of the gel layer, attached to the inner wall of the
duct, was measured by means of SPI. The principle of SPI used in this study will be
explained briefly, followed by a description of the SPI apparatus, the set-up and the
experimental fluids.

6.2.1 Speckle Pattern Interferometry

When a monochromatic light source illuminates a diffusive surface, the reflected light
interferes and a speckle pattern is generated. In the configuration, as shown in fig-
ure 6.2, two laser beams are used to illuminate a diffusive surface, and the speckle
pattern is recorded by a CCD camera. The speckle pattern can be used to measure
displacements of the surface in the plane of the laser beams, perpendicular to the
viewing direction of the camera (Jones and Wykes, 1989). Each laser beam generates
a speckle pattern, and the two speckle patterns interfere. The intensity distribution
(I(x,y)) on the image plane of the CCD camera, can be decomposed into the intensi-
ties of the two separate speckle patterns and an interference term:

1606y) =L y) + L, y) + 2T (¢, Y)a (x, y)cos(p(x, y)) (6.2)

where (x,y) denotes the position vector on the image plane of the CCD camera,
Ii(x,y) and L (x,y) the intensities of laser beam 1 and 2, respectively, and the third
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Figure 6.2: In-plane displacement measurement with SPI.

term the interference term. The contribution of the interference term depends on
the phase difference (¢(x,y)) between the two laser beams. The phase difference
between the two laser beams depends on the surface height, leading to a random
distribution of the intensity. If the surface is subjected to small deformations (defor-
mation on the order of the wavelength of the laser light), I; and I, remain unchanged
while the phase difference between the two laser beams reflected from the diffusive
surface changes (¢(x,y) + §(x,¥)), and so will the contribution of the interference
term. The simplest way of obtaining information about the displacement induced
phase difference 5(x, y) is application of video signal subtraction. If the intensity of
the recorded speckle pattern before deformation is subtracted from the intensity of
the speckle pattern after deformation of the surface, the resulting intensity distribu-
tion (I.) is:

1 1
L(x,y) =4yL(x,ya(x,y) | sin5(¢(X.y) + 8(x.y))sin§(6(x,y)) | 6.3)

The intensity distribution after video signal subtraction still has a random character,
but it is modulated by the displacement induced phase difference. The phase differ-
ence depends on the in-plane displacement u of the surface and on the configuration
of the speckle apparatus:
4mrsin(0)u
A
where A is the wavelength of the laser beam and 6 the angle between the laser beam
and the viewing direction of the CCD camera (see also figure 6.2). The phase change
will only occur due to a displacement in the plane of the laser beams, perpendicular
to the viewing direction (x-direction in figure 6.3). Only one component of the dis-
placement field of the surface can be monitored and the displacement measurements
are not disturbed by out-of-plane movements.

3(x,y) = (6.4)
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Figure 6.3: In-plane displacement measurement on a surface subjected to shear: im-
age of the undeformed surface (a), the deformed surface (b) and fringe pattern after
video signal subtraction (c).

In figure 6.3, the principle of SPI is demonstrated for a surface subjected to in-plane
simple shear. The speckle pattern of the undeformed surface is shown in figure 6.3a.
The deformation of the surface results in a linear displacement u(y) (figure 6.3b).
Since the displacement is a function of y only, the displacement induced phase dif-
ference between the laser beams will be a function of y as well (equation 6.4). After
video signal subtraction, the phase difference § appears as the argument in the ab-
solute sine function for the resulting intensity (equation 6.3). Each time the phase
difference is n-2m, the resulting intensity shows a local minimum, resulting in a fringe
pattern (figure 6.3c).

For further reading on SPI, one is referred to Jones and Wykes (1989) and Cloud
(1995).

6.2.2 Experimental setup

The SPI configuration is schematically shown in figure 6.4. A 10 mW He-Ne laser
(105-L, Spectra Physics) produces a laser beam with a diameter of approximately
1 mm and a wavelength of 632.8 nm. The laser beam is expanded by the lens L and
split by the beam splitter BS. The two laser beams, reflected by the adjustable mirrors
M, eventually overlap on the surface, the displacement of which has to be measured.
The CCD camera (MXR, HCS) records the generated speckle patterns. The camera
is connected to a PC with a frame grabber. Image processing software (TIM, Difa
Measuring Systems) provides the necessary tools for video signal subtraction. The
position of individual components of the apparatus can be adjusted so the angle 6
can be varied from 30° to 60° and the dimension of the investigated area from 2
x 2 mm to approximately 40 x 40 mm. The performance of the speckle apparatus
was evaluated in a benchmark experiment. The displacement of surface, subjected to
a small rotation, was measured, and a reproducibility and resolution of 50 nm was
achieved.

The deformation of the gel layer was measured in-a Plexiglas rectangular duct (height
x width x length = 5 x 100 x 500 mm). Two constant head tanks provided a constant
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Figure 6.4: SPI apparatus.

pressure gradient over the flow model, thus ensuring steady flow conditions in the
setup. The flow rate through the duct was adjusted by controlling the pressure gra-
dient and was monitored by a flowmeter (Transflow 601, Skalar) in the outlet tube.
The gel layer (height h = 2.2 mm) was attached to the lower wall of the duct. Since
a diffusive surface is required to perform SPI, a thin layer of titanium oxide (sl Iri-
odine 111, Merck) was used to cover part of the gel layer, 350 mm downstream of
the entrance of the duct (figure 6.5). The diffusive patch extended from the side wall
(r = 0 mm) into the duct (y = 15 mm). The displacement of the diffusive patch was
measured to determine wall shear stress. In figure 6.5, the expected wall shear stress
distribution in the rectangular duct is shown. In fully developed flow, shear stress
along the bottom wall of the duct is independent of the axial position and increases
from zero at the side wall to its maximum value in the central part of the duct.
Accurate determination of wall shear stress from the displacement measurements of
the gel depends on detailed knowledge of the properties of the gel layer (equation 6).
The gel layer was produced from a 3.5% gelatin solution in water and its properties
were measured in a parallel-plate viscometer (Rheometrics, RFSII). Dynamic strain
experiments were performed with a strain amplitude of 1% at a frequency of 1 Hz
and the results indicate that the gel was essentially elastic (G = 175 Pa). No further
treatment of the gelatin or the Plexiglas was required to ensure proper attachment
of the gelatin to the wall of the duct. The height of the gel layer was determined by
carefully controlling the amount of the gelatin solution, poured into the duct. During
curing of the gel layer, no change of volume was seen.
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Figure 6.5: Schematic presentation of the duct and the expected velocity, shear stress
and deformation distribution.

6.2.3 Experimental fluids

Two fluids were used in this study: a Newtonian fluid to evaluate the performance
of the developed method and a non-Newtonian fluid to investigate the influence of
shear thinning properties of blood on the magnitude of wall shear stress. Water was
used as the Newtonian fluid and a Xanthan gum solution (275ppm in water) served
as non-Newtonian fluid. The steady shear viscosity of the Xanthan gum solution
(figure 6.6) was measured in a parallel-plate viscometer (Rheometrics, RFSII). The
Xanthan gum solution mimics the shear thinning behavior of blood as was shown
by for example Mann and Tarbell (1990). To validate the method, the measured
wall shear stress was compared to analytically (water) and numerically (Xanthan
gum solution) obtained wall shear stress values. From the analytical solution of the
velocity field in a rectangular duct (Ward-Smith, 1980), the velocity gradient along
the gel layer was computed for the flow rates used in the experiments. The wall
shear rates, multiplied by the dynamic viscosity of water, yielded the analytical wall
shear stresses, which were compared to the experimental results. The shear thinning
behavior of the non-Newtonian fluid was fitted with the Carreau-Yasuda model (Bird
et al., 1987). Using the parameters of this generalized Newtonian model, the velocity
distribution, the wall shear rates and the wall shear stresses were computed with the
finite element package SEPRAN (Segal, 1984). The measured wall shear stresses for
the non-Newtonian fluid were compared to the computational results.
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Figure 6.6: Measured steady shear viscosity of the Xanthan gum solution (o) and the
Carreau-Yasuda fit (). The shear rate range in the experiments is indicated.

6.3 Results

For the Newtonian fluid, the deformation of the gel layer was measured for 7 differ-
ent flow rates. For each flow rate, the measured speckle pattern was subtracted from
the reference speckle pattern at zero flow. Since the flow was assumed to be fully
developed and the gel layer to be homogeneous, the displacement of the gel layer
was expected to be constant for constant y (see also figure 6.5). The fringe distribu-
tion should therefore exhibit fringes parallel to the side wall of the duct (figure 6.7).
The intensity of the measured fringe pattern was averaged over an area Ax and the
resulting fringe distribution was approximated by an absolute sine function (equation
6.3). The approximation procedure resulted in an optimally fitted intensity distribu-
tion, that was converted to a displacement through equation (6.4). The procedure is
visualized in figure 6.7 for a flow rate of 1.11 I/min. In the top panel, the measured
fringe pattern is depicted. The averaged and fitted mean intensity are shown in the
mid panel and the resulting displacement in the bottom panel. The expected fringe
pattern, with the fringes parallel to the wall, can be discerned clearly. In the averaged
fringe distribution, the position of the fringes can readily be seen. The fitting pro-
cedure yields a displacement distribution that is non-zero at the wall: this is caused
by a displacement of the duct. This off-set of the displacement can be subtracted
from the fitted displacement to obtain the displacement of the gel layer. The mea-
sured wall shear stress was inferred directly from the displacement through equation
(6) and compared to the analytical wall shear stress distribution for three flow rates
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Figure 6.7: Fringe distribution (top) at a flow rate of 1.11 l/min and the averaged
and fitted intensity distribution (center) and the resulting displacement (bottom).

(figure 6.8). In the region that is not affected by the presence of the side wall, the
measured values of the wall shear stress show an excellent agreement with the ana-
lytical wall shear stress values. Near the side wall, the measured wall shear stress is
substantially lower than the analytical wall shear stress. This can be attributed to the
kinematic boundary conditions for the gel layer. The gel layer is not only attached to
the bottom wall but also to the side wall: the displacement of the gel layer close to the
side wall will be lower than one would expect on the basis of equation (6.1). Finally,
a comparison between the analytical and the measured wall shear stress at y = 7 mm
is presented in figure 6.9. The measured wall shear stress shows an almost perfect
linear fit (not shown), but the slope of the fitted line is not exactly equal to one, being
4% higher. This indicates that the estimated value of G/h is too high: either the thick-
ness of the gel layer or the shear modulus of the gel were not determined accurately
or altered during the measurements. v

For the non-Newtonian fluid, wall shear stress was determined for 10 flow rates,
ranging from 0.1 to 1.0 [/min. The shear rate varied from 13 s~! to 130 s~! (see also
figure 6.6). As a calibration, the gel layer displacements were also measured using
water at flow rates of 0.5 and 1.0 I/min. These measurements were used to deter-
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Figure 6.8: Wall shear stress as a function of the distance from the side wall (y). A
comparison between the measured and the analytical Ward-Smith (1980) wall shear
stresses for three different flow rates.

mine the value for G/h. This value was used to convert measured displacement to
wall shear stress for the non-Newtonian fluid. The measured wall shear stress values
for the Xanthan gum solution, scaled with the computed values for water, are shown
in figure 6.10. As expected for a shear thinning fluid, the shear stress ratio for the Xan-
than gum solution decreases as flow rate increases, and it compares favorably with
the computed values. Only at lower flow rates, some differences can be seen between
the measured and the computed values. These discrepancies can be attributed to the
increased sensitivity to inaccuracy in determining flow rate and counting fringes.

6.4 Discussion and conclusions

A new method to determine wall shear stress for flow in a rectangular duct is de-
scribed and was evaluated for a Newtonian and a non-Newtonian fluid. The value of
the wall shear stress was inferred from the deformation of an elastic gel layer inside
the flow model. The deformation of the gel layer was accurately measured by means
of speckle pattern interferometry and through the properties of the gel layer, wall
shear stress was computed. The measured wall shear stress far enough from the side
wall showed good agreement with the computed wall shear stress for both the Newto-
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Figure 6.9: Measured (o) and analytical (- -) wall shear stress as a function of the
flow rate aty = 7 mm.

nian and the non-Newtonian fluid. The wall shear stress measurements were accurate
enough to discriminate between the two fluids. The kinematic boundary conditions
for the gel layer influenced its response near the side wall of the duct. With the pro-
posed method, wall shear stress can be determined without prior knowledge of the
properties of the fluid.

Three aspects determine the accuracy of the wall shear stress measurement: the dis-
placement measurement, the properties of the gel layer and the loading condition of
the gel layer in the flow model. The displacement measurements were performed
with a relatively simple speckle apparatus. The reproducibility and resolution of the
speckle apparatus are satisfactory. The main drawback of the apparatus is its lack
of direction-sensitivity: a positive displacement yields the same fringe pattern as a
negative displacement. The properties of the gel layer, the shear modulus of the gel
and the thickness of the layer, reflect the response of the gel layer to wall shear stress.
Both properties must be determined accurately and remain unaltered once placed in
the flow model. Depending on the chemical composition of the fluid, the gel layer
may swell or part of the solid fraction of the gel may dissolve in the fluid, thus chang-
ing the properties of the gelatin. Application of the method in more complex flows
or fluids should therefore be accompanied by a calibration procedure to determine
the value of G/h in-situ as was done for the non-Newtonian fluid. The third aspect
that influences the measured displacement is the loading condition of the gel layer.
Equation (6.1) is only valid for a freely moving gel layer subjected to a shear load.
Both the dynamic and the kinematic boundary conditions for the gel layer can alter
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Figure 6.10: Scaled measured wall shear stress for the Xanthan gum solution (o),
compared to the numerical results (- -) as a function of the flow rate aty = 7 mm.

the response of the gel layer and equation (6.1) should be regarded with caution. A
gradient in wall shear stress, e.g. in the neighborhood of a stagnation point, results in
a load on the gel layer that consists of both shear and tensile stress. In this situation,
equation (6.1) cannot be applied. Equally important for the response of the gel layer
are the kinematic boundary conditions, as can be concluded from figure 6.8. The gel
layer clings to the side wall and the response of the gel layer is altered.

Extension of this method to physiological flow conditions imposes several additional
requirements. Since the displacement of the gel layer in more complex flow can be
both positive and negative, direction-sensitivity of the speckle apparatus is required.
Several methods to include direction-sensitivity are available (Creath, 1985). These
methods (e.g. phase stepping speckle interferometry) can be used to determine the
exact value of the displacement induced phase difference: direction-sensitivity is in-
cluded and the accuracy will improve. A second, and more important requirement,
is additional knowledge of the behavior of the gel layer. In more complex flow, both
the wall shear stress gradients and kinematic boundary conditions for the gel layer
influence the response of the gel layer. Since the displacements of the gel layer are
small and the gel is elastic, the measured displacements of the gel can be used as a
boundary condition for a simple, linear elastic finite element computation to predict
the behavior of the gel. Wall shear stress can then be obtained as a result from these
computations. The combination of phase stepping speckle interferometry and finite
element analysis of the gel layer will enable validation of the in-vivo procedure to
determine wall shear stress in physiologically relevant flows.
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Wall shear stress distribution in
backward-facing step flow of a
red blood cell suspension '

7.1 Introduction

The development of atherosclerosis and the failure of vascular grafts is often associ-
ated with local hemodynamics. The predilection of atherosclerotic lesions for specific
sites in the arterial tree can be correlated to low and oscillating wall shear stresses
or low wall shear rates (Nerem, 1992; Caro et al., 1978). The re-occlusion of vascu-
lar grafts at the distal anastomoses can also be linked to locally disturbed wall shear
stress patterns (Ku and Allen, 1995). From these observations, it can be concluded
that the modeling of blood flow induced wall shear stress in large arteries is a relevant
research topic.

Blood is a concentrated suspension of blood cells in plasma, and the non-Newtonian
behavior of blood has been demonstrated previously (Chien et al. (1970); Thurston
(1979)). The macroscopic viscometric properties of blood can be approximated by
application of a wide range non-linear constitutive models, ranging from inelastic
shear thinning models (see Cho and Kensey, 1991) to viscoelastic models in which
time-dependent behavior of blood is included (e.g. Sharp et al., 1996). These equa-
tions serve as an input for a number of numerical investigations of the blood flow in
large arteries (e.g. Perktold et al., 1991; Baaijens et al., 1993). From the experimen-
talists point of view, a similar approach can be followed: a blood analog fluid can

1The contents of this chapter are submitted to Biorheology, under the title:

Wall shear stress in backward-facing step flow of a red blood cell suspension
EJ.H. Gijsen, EN. van de Vosse, and J.D. Janssen

The introduction, the discussion on the red blood cell suspension as well as some parts of the numerical
methods in this chapter are identical to the corresponding parts in chapter 5.
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be chosen with viscometric properties identical to blood (e.g. Liepsch and Moravec,
1984; Ku and Liepsch, 1986). Gijsen et al. (1997a) employed a Carreau-Yasuda model
to successfully describe the behavior of a macroscopic blood analog fluid in various
geometries under physiologically relevant flow conditions. They found a good agree-
ment between numerical and experimental results, indicating that the macroscopic
blood analog fluid behaves like an inelastic shear thinning fluid. These physical and
numerical macroscopic models are used to model blood flow in large arteries, but
they discard the particulate nature of blood.

Wall shear stress (r,) can be determined by multiplying wall shear rate (y,,) and
dynamic viscosity (n) of the fluid. In the numerical studies, wall shear stresses are
computed from the velocity field and the macroscopic constitutive equation. Wall
shear rates in experimental studies are usually obtained from extrapolation of mea-
sured velocity profiles using ultrasound (e.g. Brands et al., 1995) or by application of
hot-film anemometry in in-vitro models (e.g. Brookshier and Tarbell, 1993). To com-
pute wall shear stresses, a model is used to infer the viscosity of blood (e.g. Samijo
et al.,, 1997). The particulate nature of blood complicates the choice of an appro-
priate model for blood viscosity: near wall concentration distribution of red blood
cells might be important for the determination of wall shear stress. An alternative
approach to determine wall shear stress was presented by Gijsen et al. (1997b). They
used the deformation of a gel layer to infer wall shear stress. Using this method, wall
shear stress can be determined without having to model the near wall viscosity of
blood.

The aim of this study is to determine the blood flow induced wall shear stress distribu-
tion and to investigate whether this wall shear stress distribution can be predicted by
a macroscopic constitutive model for blood. The flow of a red blood cell suspension

reattachment
point

! reattachment
! length

Figure 7.1: Backward-facing step flow.

will be studied in two-dimensional backward-facing step flow under steady flow con-
ditions. Flow downstream a backward-facing step contains physiologically relevant
flow features: a stagnation point and flow reversal. Furthermore, flow in this ge-
ometry was studied extensively, both experimentally and numerically (Halmos et al.,
1975a,b; Armaly et al., 1983; Pak et al., 1990, e.g.), thus enabling detailed validation
of the results of the current study.
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In a previous study, it was shown that for a red blood cell suspension the velocity
distribution and shear rates in backward-facing step flow could be modeled with an
inelastic non-Newtonian fluid model Gijsen et al. (1998). The results for the non-
Newtonian fluid model were compared to a Newtonian model with a characteristic
viscosity. The characteristic viscosity (.) was based on a characteristic shear rate
(y.), following the procedure of Halmos et al. (1975a):

hU . .U
Re, = pn s ne=nye) 5 Ve= M (7.1)

4

with 7 the shear rate dependent dynamic viscosity of the fluid and U and h the mean
velocity in and height of the inlet channel, respectively.

In this study, wall shear stress distribution downstream a backward-facing step was
determined experimentally. The measured wall shear stresses were compared to nu-
merically determined values, using the inelastic Carreau-Yasuda model and a Newto-
nian model, based on the characteristic viscosity.

7.2 Experimental methods

7.2.1 Procedure

The method to study wall shear stress distribution downstream a backward-facing
step is based on a method proposed by Gijsen et al. (1997b). In that study, displace-
ment of a gel layer was measured at the fluid-solid interface in a rectangular duct
(figure 7.2). The wall shear stress was inferred directly through the properties of the

displacement fluid

-— gel

-— wall

Figure 7.2: Determination of wall shear stress through displacement of gel layer

gel layer:

du G
= .W =3 (=)~ — - ,2,
T=npe =G ()~ U (7.2)
where G is the bulk modulus of the gel, h the height of the gel layer and u the dis-
placement measured. In this study, the gel layer was located downstream a backward-
facing step (figure 7.3). In this setup, the wall shear stress is negative in the recir-
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Figure 7.3: Wall shear stress distribution and expected displacement of gel layer
downstream a backward-facing step.

culation zone, zero at the reattachment point and it attains a constant positive value
further downstream. Due to the presence of a gradient in the wall shear stress and the
influence of kinematic boundary conditions for the gel layer, equation (7.2) cannot be
applied: a finite element computation of the deformation of the gel layer is required
to convert measured displacement to wall shear stress. To be able to perform these
computations, the properties of the gel layer (G and h) have to be known.

The procedure to determine the wall shear stress in backward-facing step flow of a
red blood cell suspension is visualized in figure 7.4. A calibration procedure with a
Newtonian fluid was used to determine the properties of the gel layer. The wall shear
stress distribution was obtained from a finite element computation of the Newtonian
fluid flow (step 1), and served as a dynamic boundary condition for the computation
of the deformation of the gel layer. The displacement of the gel layer was measured
by means of phase stepping speckle interferometry (PSSI), and the computed dis-
placement was compared to the measured displacement (step 2). Since the behavior
of the gel layer is linear in its modulus (small deformations, linear elastic behavior),
computed deformation can be fitted to measured deformation and the modulus of the
gel follows from this fitting procedure. The modulus of the gel served as an input to
convert measured displacement to wall shear stresses (step 3), using a red blood cell
suspension as measuring fluid. The measured wall shear stress distribution can then
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be compared to the computed wall shear stress distribution (step 4).

In the following sections, the experimental and numerical methods, required for the
determination of the wall shear stress downstream the backward-facing step are dis-
cussed. Phase stepping speckle interferometry is applied to determine the displace-
ment of the gel layer. The principle of PSSI is discussed briefly, followed by a de-
scription of the red blood cell suspension and the fluid circuit. Finally, the numerical
methods are discussed.

7.2.2 Phase stepping speckle interferometry

The displacement of the gel layer was determined by application of speckle pattern in-
terferometry. The speckle pattern originates from the interference of monochromatic
coherent light, reflected from a diffusive surface. If the diffusive surface is illuminated
by two laser beams, and the image of the surface is recorded by a CCD camera (figure
7.5), electronic speckle pattern interferometry can be applied to measure in-plane
displacements of the surface (see e.g. Jones and Wykes, 1989; Cloud, 1995). The
intensity distribution from the speckle pattern on the image plane of the CCD camera
can be written as:

Ix,y) = Ig(x,y) + Imcos(¢(x,¥)) (7.3)

where I and Iy is the background and the modulation intensity respectively and (x, y)
denotes the position vector on the image plane of the CCD camera. The contribution
of the modulation intensity is determined by the phase difference between the two
laser beams (¢ (x, y)) and it has a random nature due to the roughness of the reflecting
surface. In-plane displacement of the surface induces an additional phase difference
(A¢(x,y)) between the two laser beams:

Ap(x,y) = 2T”u(x,y)(sin 61 + sin ;) (7.4)

where A is the wavelength of the laser light, 6, and 6, the angle between the incident
light beams and the optical axis, and u(x, y) the in-plane displacement of the surface
(figure 7.5). In phase stepping speckle interferometry, the phase difference ¢ (x, y) of
each point of the speckle pattern is determined. This can be achieved by application
of the five-bucket method (e.g. Cloud, 1995). Five images of the speckle pattern are
recorded. These five images are separated from each other by a step in the phase
difference (B8) between the two laser beams. The phase difference is induced by
changing the optical path length of one of the incident laser beams. The value of
¢(x,y) can be determined from the five measured intensity distributions:

Li¢,y) = Ig(x,y) + Iycos(p(x,y) + (i — 1)B) (7.5)
ﬁ:% . i=1,2,3,45 (7.6)
2L (x,y) — 2I4(x, y) }
213(3"7}’) “Is(x».)’) - Il(x,.)’)

To obtain information on the displacement induced phase difference between the
laser beams A¢(x,y), five images are recorded before and after displacement of the

o0,y) = arctan[ (7.7)
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Figure 7.5: In-plane displacement measurements with speckle interferometry.

gel layer. Since the phase difference is known before and after deformation at each
position in the image plane, the displacement induced phase difference can be de-
termined. The displacement of the surface can be obtained through equation (7.4).
Determination of the value of ¢(x,y) is subjected to noise from several sources and
generally some pixels have to be excluded from further processing. The nominator
(N(x,y)) and denominator (D(x,y)) in equation (7.7) are used to compute a modu-
lation intensity amplitude (A(x,y)):

A(x,y) = vD(x,y)? + N(x,y)? (7.8)

The modulation intensity is used as a filter: pixels with a modulation intensity below
a threshold are marked as invalid and are excluded from further processing. After
marking the invalid pixels, the phase maps before and after deformation are filtered
and subtracted from each other. The resulting map of A¢(x,y) can be determined
modulo 2. Phase unwrapping, applied to remove the modulo 2r steps, is based on
a method proposed by van Haasteren (1994). The resulting phase map is converted
to a displacement map, and filtered.

7.2.3 Red blood cell suspension

The shear thinning and viscoelasticity of blood are closely related to its microscopic
structure. The red blood cells determine the rheological behavior of blood: both shear
thinning and viscoelasticity are related to aggregation, deformation and alignment of
the red blood cells. Three liters of fresh blood were obtained through venipuncture
of a pig. EDTA was added to the fresh blood to avoid coagulation. The blood was
centrifuged and the plasma, blood platelets and white blood cells were removed. The
red blood cells were washed three times in an isotonic TEMS buffer. The packed red
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blood cells were resuspended in the buffer at a hematocrite 35%. The removal of the
plasma and the platelets was necessary to avoid platelet coagulation and denaturation
of plasma proteins. The red blood cell suspension was characterized in viscometric
flow (parallel-plate device, RFSII, Rheometrics). The steady shear data, together with
the inelastic shear thinning Carreau-Yasuda model (e.g. Bird et al., 1987), are shown
in figure 7.6a. The linear viscoelastic properties are shown in figure 7.6b. The visco-
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Figure 7.6: Steady (a) and linear viscoelastic (b) properties of the red blood cell
suspension (RBC suspension). The solid line in (a) denotes the Carreau-Yasuda fit.

metric data indicate that red blood cells do not aggregate: the steady shear viscosity
remains fairly low at low shear rates and the elastic component of the complex vis-
cosity is low. These findings are confirmed by microscopic inspection: no aggregation
was found.

The viscosity was measured before and after the experiments and no significant dif-
ferences were found, indicating that the red blood cells were not damaged during the
experiments. Microscopic inspection revealed that the red blood cells retained their
biconcave shape, and no significant number of damaged red blood cells was detected.

7.2.4 Testrig
The speckle apparatus

The configuration of the speckle apparatus is shown in figure 7.7. A 10 mW He-Ne
laser (105-L, Spectra Physics) produces a laser beam with a diameter of approxi-
mately 1 mm and a wavelength of 632.8 nm. The laser beam passes through a beam
expander and is split by the beam splitter. The two laser beams, reflected by two ad-
justable mirrors and expanded by a microscope objective, overlap on the surface the
displacement of which has to be measured. One of the mirrors is connected to a piezo
electric transducer (P-841, Physik Instrumente) with an expansion of 1.501 pm.V-1.
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The closed loop controller of the piezo electric transducer (P-862, Physic Instrumente)
is hooked up to a PC. The PC supplies an analog input signal for the piezo controller.
The CCD camera (1550/RS, JAI) records the generated speckle patterns. Image pro-
cessing software (TIMWIN, Difa Measuring Systems) is applied to record the speckle
patterns. The camera is connected to a PC with a frame grabber (Pulsar, Matrox).

object

PZT
controller

,/

PC He-Ne laser

camera

frame grabber

Figure 7.7: The speckle apparatus.

The five images, required for PSSI, are recorded consecutively: the PC generates a
signal for the piezo controller, the mirror is displaced and subsequently a trigger is
generated for the CCD camera. An image is recorded and the process is repeated
till five images of the surface are obtained before and after deformation. The perfor-
mance of the speckle apparatus was evaluated in a benchmark experiment. In the
benchmark experiment, the displacement of a surface, subjected to a small rotation,
was measured and reproducibility and resolution of 20 nm was achieved.

Fluid circuit

The flow model, to study the flow downstream a backward-facing step, was con-
structed of Plexiglas (length: 500 mm, and width: 100 mm). The rectangular channel
expanded halfway from h = 2.5 mm to H = 5 mm. A constant head tank provided
a constant pressure gradient along the flow model, thus ensuring steady flow condi-
tions in the setup. The flow rate through the channel was adjusted by controlling the
pressure gradient between the constant head tank and the reservoir and was mon-
itored by a flow meter (Transflow 601, Skalar) in the outlet tube (figures 7.8). A
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centrifugal pump (Biopump BP-80, Medtronics) was used to circulate the red blood
cell suspension. A reservoir was milled in the lower plate downstream the step to

constant head
tank

l[”

flow
meter  reservoir

.......... . —_—
1 : | S -

—l l——l I \ diffusive layer
l T pump

reservoir

Figure 7.8: The fluid circuit.

accommodate the gel layer (height h = 4.1 mm, length Ly,; = 70 mm). The reser-
voir extended under the step to avoid excessive reflection of the laser light from the
side of the step. Since a diffusive surface is required to perform PSS, a thin layer of
titanium oxide (Iriodine 111, Merck) was used to cover the gel layer. The gel layer
was produced from a 8.0% gelatin solution in TEMS buffer. No further treatment of
the gelatin or the Plexiglas was required to ensure proper attachment of the gelatin
to the wall of the duct.

7.3 Numerical methods

The numerical part of this study involves two aspects: computation of velocity distri-
bution downstream the backward-facing step and determination of wall shear stress
induced displacement of the gel layer.

7.3.1 Flow downstream a backward-facing step

The numerical modeling of steady, incompressible and isothermal fluid flow requires
the solution of the Navier-Stokes equations. These equations were discretized, fol-
lowing Galerkin’s finite element method (e.g. Cuvelier et al., 1986). The convective
term was linearized using a Newton-Raphson method. The pressure was approxi-
mated by a penalty function with the penalty parameter equal to 10~%, ensuring that
the divergence of the velocity field was of order 1075. A parabolic velocity profile was
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prescribed at the inlet. No-slip served as boundary condition at the wall and stress-
free outflow was used. The equations were solved on a 2 dimensional mesh (figure
7.9). The Crouzeix-Raviart type elements contained 9 nodes, with a biquadratic ap-
proximation for the two velocity components. Both the pressure and the pressure
gradient were defined at the centroid of each element. The package SEPRAN (Se-

mesh for fluid computation

'

step 2: step 3:
wall shear stress displacement

mesh for solid computation

Figure 7.9: Schematic presentation of the meshes for the fluid and the solid part. In
the actual computations, four times as many elements were used. Step 2 and step 3
refer to figure 7.4.

gal, 1984) was employed to generate the mesh and to build and solve the system of
equations.

The velocity and wall shear stress distributions were computed for three different
constitutive equations. A Newtonian model with n = 1 mPas was used for the buffer
solution in the calibration procedure (figure 7.4, step 1). For the red blood cell sus-
pension, an inelastic non-Newtonian model and a Newtonian model, based on a char-
acteristic viscosity, was used (figure 7.4, step 4). The shear thinning properties of the
red blood cell suspension were taken into account by employing the Carreau-Yasuda
model:

N7l _ [14+ ()% nd (7.9)
N0 — Moo -

The Carreau-Yasuda model was fitted to the experimental data (solid line in figure
7.6), resulting in the following set of parameters:

no=12mPas; no =10mPas; a=0.222; n=0.681; A =0.086s (7.10)

The non-linear viscous term, introduced by the shear rate dependent viscosity, was
linearized by application of the Picard method. The viscoelastic properties of the red
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blood cell suspension were not accounted for. For the Newtonian model, the char-
acteristic shear rate was determined following equation (7.1), and the parameters of
the Carreau-Yasuda model were used to determine the characteristic viscosity.

7.3.2 Deformation of the gel layer

The presence of a wall shear stress gradient downstream a backward-facing step ne-
cessitates numerical modeling of of gel layer deformation. The computation of this
deformation was straightforward: The gelatin was modeled as an isotropic, nearly
incompressible, linear elastic material. The displacement of the gel layer was small
enough to guarantee linear deformations. Plain strain was assumed, and zero dis-
placement was prescribed at all boundaries of the gel layer, except at the fluid-solid
interface. At this interface, two different boundary conditions were used (see figure
7.9). For calibration of the gel layer (figure 7.4, step 2) the flow induced wall shear
stress of the Newtonian fluid computations served as the boundary condition. To de-
termine red blood cell suspension induced wall shear stress (figure 7.4, step 3), the
measured displacement served as a kinematic boundary condition. SEPRAN was also
used to compute the deformation of the gel layer, thus facilitating the exchange of -
boundary conditions between fluid and solid computations.

7.4 Results

7.4.1 Validation of the numerical results

The wall shear stress along the gel layer, induced by the red blood cell suspension and
the buffer solution, follow from the computed velocity distribution downstream the
backward-facing step. The numerical results are validated by exploring the location of
the reattachment point as a function of Re (figure 7.1). For the non-Newtonian fluid,
equation (7.1) was used to determine Re. In figure 7.10, the results for the Newto-
nian and non-Newtonian fluid are compared with the measurements of Armaly et al.
(1983) and the empirical relationship for tubular expansion, given by Ward-Smith
.(1980). The results indicate that the numerical results for the Newtonian fluid agree
well with the values given in literature. For the non-Newtonian fluid, the reattach-
ment length is predicted quite accurately by employing Re, based on the characteristic
viscosity. At higher values of Re, the reattachment length is slightly longer. These find-
ings indicate that previously reported results of Halmos et al. (1975b) and Pak et al.
(1990) on inelastic non-Newtonian fluid flow in a tubular expansion also hold for
backward-facing step flow.
The accurate prediction of reattachment length indicates that the velocity distribution
in backward-facing step flow of an inelastic non-Newtonian fluid can be approximated
by a Newtonian model, using a characteristic viscosity.
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Figure 7.10: The dimensionless position of the reattachment point for the Newtonian
and the non-Newtonian fluid. The reattachment length (x.) is made dimensionless
with step height (H — h).

7.4.2 Characterization of the gel layer

The first step in the procedure, given in figure 7.4, involves calibration of the gel layer.
The calibration procedure starts with the computation of the wall shear stress induced
by a Newtonian fluid (step 1). The computed wall shear stress serves as an input for
the computation of the displacement of the gel layer. The properties of the gel layer
are established by the comparison of the computed and measured displacements (step
2).

The buffer solution served as Newtonian calibration fluid (5 = 1 mPas, Re = 150).
The computed wall shear stress along the gel layer is shown in figure 7.11a. The
position downstream the step is made dimensionless with the step height:

_ X
T H-h

The zone with flow reversal (negative wall shear stress), the reattachment point, and
the development towards fully developed flow can be observed.

Measurement of the displacement of the gel layer for the Newtonian buffer solution
was repeated eight times, and the mean displacement of the gelatin layer is shown
in figure 7.11b. The displacements approach zero at x¥’ = 0 and x’ = 28. Negative
displacements are found in the recirculation zone and a plateau of constant displace-
ment can be observed from x’ = 14 on.

Deformation of the gel layer is linear with the modulus of the gelatin, allowing for
a least square fit of the measured and the computed displacement (figure 7.11b). A

J

X (7.11)
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step 1: computed wall shear stress step 2: comparison of displacements
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Figure 7.11: The computed wall shear stress distribution along the gel layer and
the measured (solid line) and computed (dashed line) displacement of the gel layer
for the buffer solution. The standard deviation of the displacement measurements is
indicated by the dotted line. Position behind the step is made dimensionless with step
height.

close agreement between measured and fitted displacements is observed, indicating
that the method is suitable to determine wall shear stresses downstream a backward-
facing step. From the fitting procedure the modulus of the gelatin was determined
(E = 2440Pa) and this modulus was used for the subsequent wall shear stress mea-
surements for the red blood cell suspension.

7.4.3 Wall shear stresses: Red blood cell suspension

The displacement measurements for the red blood cell suspension were performed
at three flow rates: Q = 15, 22.5 and 30 ml.s~!. These flow rates correspond to
a mean axial inlet velocity of U = 60, 90 and 120 mm.s~!, respectively. The mean
results of eight displacement measurements are shown in the top part of figure 7.12.
As expected, the displacements for the red blood cell suspension are larger than those
the buffer solution: the viscosity of the red blood cell suspension is higher, thus in-
ducing higher shear stresses and larger displacements. Only at the highest flow rate,
significant negative displacements are measured, indicating that flow reversal is less
dominant for the red blood cell suspension than for the Newtonian buffer solution.
The modulus of the gel layer, determined with the buffer solution, and the measured
displacements served as input for the computation of the wall shear stress along the
gel layer (figure 7.4, step 3). The standard deviation of the measured displacements
were used as upper and lower limits, and an indication of the accuracy of the wall
shear stress measurements was obtained. The results of the conversion of the mea-
sured displacements to wall shear stress distribution is shown in the bottom part of
figure 7.12. Negative wall shear stresses are present in the region with flow reversal
at the higher flow rates, and a constant wall shear stress is obtained downstream.
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Figure 7.12: Top figure: displacement measurements of the gel for the red blood cell
suspension at three flow rates (solid line). Bottom figure: measured (solid line) wall
shear stress for the red blood cell suspension. The computed wall shear stresses are
given by the dashed line (non-Newtonian) and the dashed-dotted line (Newtonian,
n = ncJ). The standard deviation is for the displacement and the wall shear stress is
indicated by the dotted line.



106  Chapter 7

The accurate prediction of reattachment length indicates that the velocity distribu-
tion in backward-facing step flow of an inelastic non-Newtonian fluid can be approx-
imated by a Newtonian model, using a characteristic viscosity. Using equation (7.1),
characteristic shear rate, viscosity and Re can be computed (table 7.1). These values

Q U Ye Mc Re
mls~! | mms~! | s7! | mPas | —
15 60 25 5.3 29
22.5 20 37.5 5.1 46
30 120 50 4.9 64

Table 7.1: Values for the characteristic shear rate, viscosity and Re.

are used to assess the ability of Newtonian fluid model to predict wall shear stress,
induced by the red blood cell suspension (figure 7.4, step 4).

In the bottom part of figure 7.12, measured and computed wall shear stresses are
shown. The measured wall shear stress is compared to the inelastic non-Newtonian
and Newtonian predictions. In general, the non-Newtonian fluid model provides an
accurate prediction of the measured wall shear stress distribution. The values of the
wall shear stress in fully developed flow show excellent agreement: only at the lowest
flow rate the model overestimates wall shear stress slightly. The location of the reat-
tachment point is predicted accurately. Only downstream of the reattachment point,
measured wall shear stress is significantly lower than computed wall shear stress.
The origin of this deviation is not known. From the comparison of the measured
and computed wall shear stresses, it can be concluded that the wall shear stresses,
induced by the red blood cell suspension, can be predicted accurately with the purely
viscous Carreau-Yasuda model. The Newtonian model, based on a characteristic vis-
cosity, also gives a fair prediction of the wall shear stress distribution. However, for
all flow rates, the Newtonian fluid model overestimates wall shear stresses: this effect
increases with increasing flow rate.

7.5 Discussion and conclusions

The aim of this study was to measure blood flow induced wall shear stress and to as-
sess the ability of a macroscopic model for blood to compute the wall shear stresses. A
previously developed method to determine wall shear stress distribution (Gijsen et al.,
1997b) was evaluated in backward-facing step flow. The wall shear stress distribution
was inferred from the measured displacement of a gelatin layer. This displacement
served as an input for a simple, linear elastic, computation of deformation of the gel
layer. The wall shear stress was extracted from this computation.

To calibrate the gel layer and to evaluate the proposed method, measurements were
performed with a Newtonian fluid. The computed wall shear stress distribution served
as a boundary condition for the computation of the deformation of the gelatin layer.
The computed displacements were then fitted to the measured displacements, thus
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obtaining the modulus of the gel layer. The good agreement between measured and
computed displacement indicates that the method can be used to determine wall
shear stress downstream a backward-facing step.

The wall shear stress distribution for the red blood cell suspension was determined for
three different flow rates. The measured displacement was converted to wall shear
stress. The viscometric properties of the red blood cell suspension were modeled with
the inelastic Carreau-Yasuda model. This fluid model was applied to compute the wall
shear stress distribution. The good agreement between experimental and numerical
wall shear stress distribution is indicative of the inelastic behavior of the red blood cell
suspension. These results are in agreement with the results of Brookshier and Tarbell
(1993) and Gijsen et al. (1998). The wall shear stress was predicted accurately using
a macroscopic fluid model. In this model, the fluid is assumed to be homogeneous.
Therefore, the particulate nature of the red blood cell suspension does not seem to
influence flow behavior and wall shear stress distribution.

The results for the non-Newtonian fluid model were approximated quite well by a
Newtonian model, using a viscosity, based on an average shear rate in the inlet chan-
nel (Halmos et al., 1975a). The Newtonian model is bound to overestimate wall shear
stress in regions with higher wall shear rates: the scaling procedure should be applied
with caution.

The influence of unsteady flow on wall shear stress distribution, induced by a red
blood cell suspension, remains to be investigated. Application of the method, pre-
sented in this study, to unsteady flow conditions requires dynamic measurement of
the displacement of the gelatin layer. The approach, proposed by Reynolds and Toal
(1992), enables real-time displacement measurement with speckle interferometry,
and could be applied to measure time-dependent displacement of the gelatin layer
downstream a backward-facing step.
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Chapter 8

Discussion and conclusions

8.1 General discussion

Disturbance of wall shear stress distribution in large arteries is believed to be one
the key factors in the development of atherosclerosis and failure of vascular grafts.
Modeling of the blood flow induced wall shear stress in large and medium sized
arteries therefore qualifies as an important research area and is the main topic of this
thesis. In modeling wall shear stress, the choice of an appropriate constitutive model
for blood is crucial.

Constitutive models for blood

Blood is a concentrated suspension of blood cells in plasma and it exhibits a range
of non-Newtonian properties. These properties mainly depend on the aggregation,
orientation and deformation of red blood cells. Aggregates are unlikely to occur in
large arteries: the build-up time for red blood cell aggregates is rather long and shear
rates are high (e.g. Sharp et al., 1996). Blood in large artery flow can therefore be
regarded as a suspension of deformable red blood cells in Newtonian plasma with the
characteristic time scale of order 0.1 s.

Blood can be modeled by a range of constitutive models, the simplest being a New-
tonian fluid model, the more complex microscopic models describing the behavior of
individual red blood cells. However, since the concentration distribution of red blood
cells in large arteries can be assumed to be homogeneous, a macroscopic model for
blood can be adopted. The class of constitutive models is then limited to Newtonian,
inelastic shear thinning and viscoelastic models. The influence of viscoelasticity on
the flow phenomena is determined by the Deborah number (De: a measure for un-
steady viscoelasticity) and the Weissenberg number (We: a measure for convective
viscoelasticity). Another dimensionless parameter, the shear rate number, gives an
estimate of the importance of shear thinning. Using these dimensionless parame-
ters, combining characteristic properties of the fluid and flow conditions, it can be
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concluded that both shear thinning and viscoelasticity should be included in a consti-
tutive model for blood.

Flow of a red blood cell suspension

A red blood cell suspension was used to investigate steady flow downstream a back-
ward-facing step: velocity, shear rate and wall shear stress distributions were deter-
mined experimentally and numerically. The red blood cell suspension was modeled
using the inelastic, shear thinning Carreau-Yasuda model.

The velocity and shear rate distribution were measured by means of ultrasound ve-
locimetry. The comparison between numerical and experimental results revealed a
good agreement: both the position and the size of the recirculation zone downstream
the step, as well as recovery to a near parabolic velocity distribution were predicted
accurately. Since an inelastic model was applied to compute the velocity distribution,
it can be concluded that the velocity and shear rate distribution in flow of a red blood
cell suspension is not significantly influenced by viscoelasticity.

Wall shear stress distribution was measured by employing a new experimental tech-
nique. A gel layer, attached to the wall of the flow model downstream the step, served
as a sensing element. The gel layer deforms under influence of flow induced wall
shear stress. The measured displacement of the gel layer, combined with the proper-
ties of the gel, are used to determine wall shear stress. The displacement of the gel
layer was measured by means of speckle pattern interferometry, and a resolution of
approximately 0.01 Pa was achieved in determining wall shear stress.

The wall shear stress distribution for a red blood cell suspension was determined for
three different flow rates. The good agreement between experimental and numerical
wall shear stress distribution is indicative for the marginal influence of the elastic
behavior of the red blood cell suspension in steady flow. Furthermore, the particulate
nature of the red blood cell suspension, that could cause an inhomogeneous viscosity
due to migration of the red blood cells, does not seem to influence flow behavior and
wall shear stress distribution.

From the above, it can be concluded that both velocity and wall shear stress distribu-
tion downstream a backward-facing step under steady flow conditions for a red blood
cell suspension can be modeled with an inelastic shear thinning fluid model.

Flow of a macroscopic blood analog fluid

The Carreau-Yasuda model was successfully employed to model the behavior of a
macroscopic blood analog fluid in various geometries under physiologically relevant
flow conditions. A concentrated KSCN solution with 250 ppm Xanthan gum served as
a macroscopic blood analog fluid. Laser Doppler anemometry was applied to obtain
detailed quantitative information on velocity distribution in a model of the carotid
bifurcation under steady flow conditions and in a 90° degree curved tube for un-
steady flow. An excellent agreement between numerical and experimental data was
obtained, although the elastic properties of the blood analog fluid in viscometric flow
were similar to whole blood.
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Despite the relatively large value of We, velocity and wall shear stress distribution was
modeled accurately by employing the inelastic Carreau-Yasuda model. The results of
the unsteady flow experiments in the 90° degree curved tube, combined with the fact
that the Weissenberg number is larger than the Deborah number, indicates that the
Carreau-Yasuda model is appropriate for modeling blood flow in large arteries. Only
non-linear viscoelastic behavior of whole blood or a profound influence of unsteady
flow on the concentration distribution of red blood cells could be responsible for a
failure of the Carreau-Yasuda model to describe blood flow in large arteries under
unsteady flow conditions.

Characteristic viscosity

In the experiments with the macroscopic blood analog fluid, the velocity distribution
for the non-Newtonian fluid showed significant differences when compared to a New-
tonian fluid model, having a a viscosity equal to the high shear viscosity of the blood
analog fluid (n = n). However, the non-Newtonian results were approximated quite
accurately by a Newtonian model based on a characteristic viscosity. The character-
istic viscosity was obtained by evaluating viscosity of the non-Newtonian fluid at a
characteristic shear rate. The characteristic shear rate was based on an average shear
rate (e.g. Thurston, 1973; Pak et al., 1990; Baaijens et al., 1993), rather than on wall
shear rate (e.g. Mann and Tarbell, 1990; Cho and Kensey, 1991).

The numerical investigation of Perktold et al. (1991) showed only a minor influence
of shear thinning on the flow features in the carotid bifurcation. The characteristic
shear rate in their study was higher, the characteristic viscosity therefore lower, and
the influence of the shear thinning properties on the velocity distribution can be ex-
pected to be less dominant. This indicates that blood flow in large arteries is sensitive
to the characteristic shear rate. Although speculative, the sensitivity to the character-
istic shear rate might also help to explain the differences between the flow fields in
younger and older individuals (Reneman et al., 1985). Since the characteristic shear
rate in the older individuals is lower, the characteristic viscosity is higher, and a more
viscous behavior of blood is expected. Using these arguments, the absence of flow
reversal in the internal carotid artery in the older individuals could be explained.
The characteristic viscosity cannot be used to predict wall shear stress. Since the
velocity distribution is approximated accurately, the Newtonian model, based on the
characteristic viscosity, underestimates wall shear stresses in low wall shear rate re-
gions and overestimates wall shear stress in regions with high wall shear rates. Fur-
thermore, application of the characteristic viscosity cannot be generalized to all ge-
ometries and flow conditions. The merit of this linearization procedure lies in the
description of the character of the flow: the characteristic viscosity should be used to
determine the dimensionless parameters in blood flow in large arteries.

Wall shear stress in a 90° degree curved tube

Wall shear stress in a 90° curved tube serves as an illustration for the discussion
above. In figure 8.1, axial wall shear stresses in the plane of symmetry along the
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inner bend and outer bend are presented. The results for the Carreau-Yasuda model
and for two Newtonian models (7 = 7, and n = 7.) are shown at the three time
steps used in chapter 4. The non-Newtonian fluid model predicts an increasing wall
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Figure 8.1: Axial wall shear stress in a bend. The time steps and the planes are
identical to the ones used in chapter 4.

shear stress along the outer bend for increasing angle at every time step. Peak wall
shear stresses are observed during systole (t/T = 0.1): a maximum value of 2 Pa is
attained. Along the inner bend, wall shear stress decreases with increasing angle. The
Newtonian model (5 = 7n,,) underestimates wall shear stress along the outer bend.
The differences between Newtonian and non-Newtonian fluid models is even bigger
along the inner bend: flow reversal, present for the Newtonian fluid at begin diastole
(t/T = 0.25), is absent for the non-Newtonian fluid model. The Newtonian model,
based on the characteristic viscosity, overestimates wall shear stress along the outer
bend. Especially during peak systole, wall shear stresses are too high. Along the inner
bend, a good approximation is found for begin and end diastole.
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Final conclusions

Keeping some reservations of the validity of the Carreau-Yasuda model for unsteady
flow conditions in mind, the following set of final conclusions can be formulated:

¢ Velocity distribution and wall shear stress of blood flow in large arteries can be
modeled with an inelastic Carreau-Yasuda model.

o The particulate nature of blood appears to be unimportant for prediction of
blood flow induced wall shear stress.

e A viscosity, based on a characteristic shear rate, should be used to determine
dimensionless parameters in blood flow.

8.2 Implications for clinical research

The findings in this thesis may have consequences regarding the research on response
of endothelial cells and the failure of vascular grafts. The in-vitro research on the
response of cultured endothelial cells to wall shear stress should preferably mimic
the in-vivo loading conditions. Basically, two different approaches can be followed
to obtain these in-vivo loading conditions of the endothelial cells: ultrasound and
magnetic resonance imaging (MRI).

Ultrasound velocimetry is a widely spread non-invasive measuring technique. Ul-
trasound studies can be used to obtain detailed information on the geometry of the
vascular tree, and velocity measurements can be performed to determine flow rate
through and velocity distribution in arteries. Geometry and flow rates can then be
used to compute wall shear stress distribution in-vivo. The measured velocity distri-
bution can serve as a validation of the numerical procedure. The same observations
hold for MRI, and the study of (Steinman and Rutt, 1997) is an example of the po-
tentials of this approach. They obtained a full 3D geometry of the carotid bifurcation
and flow rates by means of MRI. These data were used as an input to compute ve-
locity and wall shear stresses. The computations of the in-vivo loading conditions
of the endothelial cell require a constitutive equation for blood. Steinman and Rutt
(1997) used a Newtonian fluid model for blood. The results in this thesis indicate
that application of an inelastic shear thinning model is more appropriate. The pa-
rameters for these models depend strongly on concentration and properties of the
constituents of blood. These parameters have to be determined for each individual
separately: viscometry seems to be the most accurate way of determining these pa-
rameters. However, since velocity profiles can be measured, both with ultrasound and
MRI, some effort on finding these parameters on the bases of the measured velocity
profiles seems justified.

Following the procedure, described above, the in-vivo blood flow induced wall shear
stresses, acting on the endothelial cells, can be determined, and hemodynamical
variables, such as wall shear stress, can be correlated to vascular diseases in a non-
invasive manner. For the in-vitro research on the response of endothelial cells, this
information is vital. The imposed wall shear stresses in the experimental setups, as
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used by (e.g. Truskey et al., 1995), can be adjusted to mimic the in-vivo wall shear
stress distribution.

Velocity profiles measured with ultrasound are often used to assess wall shear rates.
In the central part of arteries, this clinical procedure provides a good approximation.
At near wall sites, the experimentally determined shear rates tend to underestimate
true shear rates (see chapter 5). Extrapolation of estimated shear rate in the central
part of the artery to obtain wall shear rate is feasible: information of the geometry
and flow rates suffices to compute wall shear rates, thus providing a direct and simple
procedure to evaluate an important hemodynamic variable.

In the design of vascular grafts, a smooth transition of wall shear stress at the anasto-
moses seems to be essential in the functioning of the grafts. A numerical procedure,
modeling blood as a inelastic shear thinning fluid, could be applied to predict wall
shear stress distribution at anastomoses. The diameter and angle of the graft can be
varied to minimize wall shear stress gradients.

Palmen et al. (1997) investigated the influence of a mild stenosis on velocity distri-
bution in a carotid artery model to promote early detection of atherosclerosis in-vivo.
Only minor disturbances of the velocity field were detected, shear layer disturbances
being the most promising detection parameter. These shear layer disturbances are
more pronounced at higher Re. In the definition of Re, n = ny, was used. This re-
search has shown that a characteristic viscosity should be used, leading to a significant
decrease of Re. Early detection of stenosis, using velocity measurements, is therefore
even less feasible than concluded by Palmen et al. (1997).

In the discussion above, the development of atherosclerosis and functioning of vascu-
lar grafts was discussed in the light of blood flow induced wall shear stresses. In these
observations, elasticity of the vessel wall was not included. The elasticity of the ves-
sel wall is important for two reasons: its influence on deformation of endothelial cells
and on blood flow. The endothelium is subjected to blood flow induced wall shear
stresses and to strains, caused by the deforming vessel wall. The deformation of the
vessel wall triggers various processes in the endothelium (e.g. Zhao et al., 1995), and
atherosclerosis is probably caused by a combination of disturbed wall shear stress dis-
tributions and non-uniform vessel wall deformations. In the study of Rutten (1998),
the loading of the endothelium due to deforming vessel wall is described. Secondly,
the deformation and global movement of the vessel might influence the velocity dis-
tribution in the vessel (Rutten, 1998). So both in studies on the development of
atherosclerosis and in the design of vascular grafts, the non-Newtonian properties of
blood should be included in combination with deformation of the artery.

To further investigate the relative importance of the wall shear stress versus vessel
deformation, an extension of the study of Zhao et al. (1995) is required. They stud-
ied the influence of cyclic deformation of the vessel wall and of wall shear stress
on the morphology of and the F-actin organization in endothelial cells in a straight
tube. These investigations should be conducted in a geometry where atherosclerosis
typically develops: an elastic curved tube, lined with endothelial cells, seems to be
an appropriate model. The response of endothelium can be studied under pressure
variations to investigate the influence of non-uniform vessel deformation, and under
physiological flow conditions to study the influence of wall shear stress.
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Samenvatting

Een verstoorde wandschuifspanningsverdeling in de grote arterieén wordt gezien als
een van de belangrijkste factoren in het ontstaan van aderverkalking en het falen van
vaat-prothesen. Het modelleren van de wandschuifspanning, veroorzaakt door de
stroming van bloed, is daarom een belangrijk onderzoeksgebied en is het onderwerp
van dit proefschrift.

Bij het modelleren van wandschuifspanning is de keuze van een goed constitutief
model voor bloed van wezenlijk belang. Het bepalen van dit model is niet eenvoudig:
bloed is een geconcentreerde suspensie van bloed cellen in plasma en vertoond een
scala van niet-Newtonse eigenschappen. Deze eigenschappen worden voornamelijk
bepaald door de aggregatie en deformatie van de rode bloed cellen. Behalve de eigen-
schappen van bloed, spelen ook de stromingscondities in de grote arterieén een be-
langrijke rol in de keuze voor een constitutief model voor bloed. In de literatuur in
het algemeen gemodelleerd als een Newtonse vloeistof met een viscositeit gelijk aan
de viscositeit van bloed bij hoge afschuifsnelheden (n = o).

In het eerste gedeelte van dit proefschrift wordt een macroscopisch model voor bloed
geponeerd. Een geconcentreerde KSCN oplossing, met daarin 250ppm Xanthan gum,
dient als een macroscopische bloed analoge vloeistof. De viscometrische eigenschap-
pen van deze vloeistof zijn vrijwel gelijk aan die van bloed. De Xanthan gum oplossing
is gemodelleerd door middel van een viskeus, afschuifsnelheidsafhankelijk, Carreau-
Yasuda model. Laser Doppler anemometrie en eindige elementen berekeningen zijn
gebruikt om gedetailleerde informatie te verkrijgen van het snelheidsveld in een
model van de carotis vertakking onder stationaire stromingscondities en in een model
van een 90° bocht onder instationaire stromingscondities. De resultaten voor de Xan-
than gum oplossing zijn vergeleken met een Newtonse vloeistof met n = 7q..

De experimentele resultaten laten zien dat er significante verschillen aanwezig zijn
in de snelheidsvelden voor de niet-Newtonse en de Newtonse vloeistof. Dit is een
indicatie dat de niet-Newtonse eigenschappen van de model vloeistof niet verwaar-
loosd kunnen worden. De niet-Newtonse stroming werd goed voorspeld door de
in-elastische niet-Newtonse berekeningen. Dit geeft aan dat het afschuifsnelheid-
safhankelijke gedrag van de bloed analoge vloeistof de dominante niet-Newtonse
eigenschap is en dat viskoelasticiteit verwaarloosd kan worden voor de voorspelling
van het snelheidsveld.



De afschuifsnelheidsafhankelijke eigenschappen van de niet-Newtonse vloeistof kun-
nen worden benaderd met behulp van een Newtonse vloeistof met een viscositeit,
gebaseerd of een karakteristieke afschuifsnelheid. De karakteristieke afschuifsnel-
heid is niet gebaseerd op de afschuifsnelheid aan de wand, maar op een gemiddelde
waarde. Het Reynolds getal voor de niet-Newtonse vloeistof, gebaseerd op de karak-
teristieke viscositeit, is een factor drie lager dan het Reynolds getal gebaseerd op 7.
De voorspellende waarde van het model voor de snelheidsverdeling in een suspensie
met rode bloed cellen is geévalueerd in een stroming achter een stap onder stationaire
stromingscondities. De snelheidsverdeling is gemeten met ultrageluid. Het vergelijk
van experimentele en numerieke data geeft aan dat ook de stroming van een rode
bloed cel suspensie voorspeld kan worden met behulp van een in-elastisch Carreau-
Yasuda model. De resultaten van dit experiment zijn gebruikt om een klinische meth-
ode te testen om de afschuifsnelheid aan de wand te bepalen. De klinische procedure
geeft een goede voorspelling in het centrale gedeelte van het stromingskanaal, maar
onderschat de afschuifsnelheid aan de wand met ongeveer 25%.

Of het Carreau-Yasuda model ook gebruikt kan worden om de wandschuifspanning te
bepalen, vereist een nieuwe meettechniek. Een methode om de wandschuifspanning
te bepalen is ontwikkeld voor stroming in een rechthoekig kanaal en getest voor een
Newtonse en een niet-Newtonse vloeistof. De wandschuifspanning is bepaald door de
deformatie van een gel laag aan de binnenkant van het stromingskanaal te bepalen.
De deformatie van de gel laag is gemeten met speckle interferometrie, en gecom-
bineerd met de eigenschappen van de gel laag, kan uit de gemeten deformatie de
wandschuifspanning afgeleid worden. De gemeten wandschuifspanning vertoonde
een uitstekende overeenkomst met de berekende wandschuifspanning, voor zowel de
Newtonse als de niet-Newtonse vloeistof. Met deze methode kan de wandschuifspan-
ning bepaald worden zonder dat de eigenschappen van de vloeistof bekend zijn.

De methode om wandschuifspanning te meten is toegepast in de stroming achter een
stap met een rode bloed cel suspensie als meetvloeistof. De wandschuifspanning is
bepaald onder stationaire stromingscondities. De goede overeenkomst tussen experi-
mentele en numerieke waarden van de wandschuifspanningsverdeling geven aan dat
ook de wandschuifspanning kan worden voorspeld met het Carreau-Yasuda model.
Viskoelasticiteit en het deeltjes karakter van de vloeistof spelen blijkbaar geen rol in
het bepalen van de wandschuifspanning.

Uit de resultaten van dit proefschrift kan worden geconcludeerd dat zowel snelheids-
als wandschuifspanningsverdeling van bloed in de grote arterieén kan worden voor-
speld met behulp van het viskeuze afschuifsnelheidsafhankelijke Carreau-Yasuda model.
Daarmee kunnen in-vivo wandschuifspanningsverdelingen bepaald worden, waarmee
de invloed van een belangrijke factor in het ontstaan van aderverkalking en het falen
van vaat-prothesen nader bestudeerd kan worden.
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Stellingen

behorend bij het proefschrift

Modeling of wall shear stress in large arteries

. De veronderstelling dat de afschuifsnelheid in de grote slagaderen zo hoog is
dat het niet-Newtonse karakter van bloed verwaarloosd kan worden is onjuist.

o dit proefschrift

. De invloed van de niet-Newtonse eigenschappen van bloed op de
wandschuifspanning kan worden beschreven met een puur viskeus constitutief
model voor bloed. '

o dit proefschrift

. Het afschuifsnelheidsafhankelijke gedrag van bloed kan gelinearizeerd worden
met behulp van een karakteristieke viscositeit. Het Reynolds getal, gebaseerd
op deze karakteristieke viskositeit, is lager dan algemeen wordt aangenomen.
Daardoor zal de opsporing van stenoses in de carotis vertakking aan de hand
van gemeten snelheidsprofielen nog moeilijker worden.

o dit proefschrift

e D.E.M. Palmen, EJ.H. Gijsen, EN. van de Vosse, and J.D. Janssen (1997):
’Diagnosing minor stenoses in carotid artery bifurcation models using the
disturbed velocity field.” Journal of Vascular Investigation, 3(1), 26-41.

. Een constitutief model dat alleen de afschuifsnelheidsafhankelijke viscositeit
modelleert is in het algemeen ontoereikend voor een niet-Newtonse vloeistof.
Dat deze modellen toereikend zijn voor bloed in de grote slagaderen komt
door de door convectie gedomineerde stroming.

o dit proefschrift

. Voordat complexe meetapparatuur wordt aangeschaft is een grondige kennis
van het meetprincipe vereist. Het vooraf ervaring opdoen met de relevante
meetprincipes voorkomt teleurstellingen.

. Aandacht voor productontwikkeling in biomechanisch wetenschappelijk
onderzoek zal financiering en onderzoeksevaluatie vergemakkelijken en hoeft
het karakter van het onderzoek niet negatief te beinvloeden.

. De mate waarin gerefereerd wordt naar proefschriften kan geen
rechtvaardiging zijn voor de hoeveelheid tijd die wordt besteed aan het
schrijven daarvan.



8. In de biologische evolutie staat het model] van Lamarck, dat vooruitgang
impliceert, lijnrecht tegenover het - correcte - model van Darwin. In de
culturele evolutie zou vooruitgang kunnen worden bereikt door
kennisoverdracht van de ene generatie op de andere. De massale vernietiging
van cultuur en milieu lijkt erop te wijzen dat Darwin’s model ook geldt voor de
cultureie evolutie,

® S.J. Gould (1996): 'The mismeasure of man’.

9. Illegalisering van cafeine zou van veel universiteitsmedewerkers criminelen
maken.

10. Kok is ook maar een betaalde baan.

11. Stellingen kenmerken zich vaker door gebrek aan nuances dan door de kracht
van het gestelde.

12. Het belang van gezamenlijk eten en drinken kan nauwelijks overschat worden.

Frank Gijsen,
Eindhoven, 7 mei, 1998
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