
 

Rotational and translational phonon modes in glasses
composed of ellipsoidal particles
Citation for published version (APA):
Yunker, P. J., Chen, K., Zhang, Z., Ellenbroek, W. G., Liu, A. J., & Yodh, A. G. (2011). Rotational and
translational phonon modes in glasses composed of ellipsoidal particles. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 83(1), 011403-1/5. Article 011403.
https://doi.org/10.1103/PhysRevE.83.011403

DOI:
10.1103/PhysRevE.83.011403

Document status and date:
Published: 01/01/2011

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.1103/PhysRevE.83.011403
https://doi.org/10.1103/PhysRevE.83.011403
https://research.tue.nl/en/publications/557baa06-15e6-4b77-90a0-e2ae16397e5d


PHYSICAL REVIEW E 83, 011403 (2011)

Rotational and translational phonon modes in glasses composed of ellipsoidal particles

Peter J. Yunker,1 Ke Chen,1 Zexin Zhang,1,2,3 Wouter G. Ellenbroek,1 Andrea J. Liu,1 and A. G. Yodh1

1Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
2Complex Assemblies of Soft Matter, Centre National de la Recherche Scientifique-Rhodia-University of Pennsylvania UMI 3254 Bristol,

Pennsylvania 19007, USA
3Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China

(Received 23 September 2010; revised manuscript received 1 December 2010; published 18 January 2011)

The effects of particle shape on the vibrational properties of colloidal glasses are studied experimentally.
“Ellipsoidal glasses” are created by stretching polystyrene spheres to different aspect ratios and then suspending
the resulting ellipsoidal particles in water at a high packing fraction. By measuring displacement correlations
between particles, we extract vibrational properties of the corresponding “shadow” ellipsoidal glass with the same
geometric configuration and interactions as the “source” suspension but without damping. Low-frequency modes
in glasses composed of ellipsoidal particles with major-to-minor axis aspect ratios of ∼1.1 are observed to have
predominantly rotational character. In contrast, low-frequency modes in glasses of ellipsoidal particles with larger
aspect ratios (∼3.0) exhibit a mixed rotational and translational character. All glass samples were characterized
by a distribution of particles with different aspect ratios. Interestingly, even within the same sample it was found
that small-aspect-ratio particles participate relatively more in rotational modes, while large-aspect-ratio particles
tend to participate relatively more in translational modes.
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Although the “glass transition” occurs in a broad array
of disordered systems, including molecular [1], polymer [2],
granular [3], and colloidal glasses [4], much of the physics
of granular and colloidal glasses has been derived from
investigating ensembles of its simplest realization: spheres.
The constituent particles of many relevant glasses, however,
are anisotropic in shape or have orientation-dependent interac-
tions. Such anisotropies are believed to affect many properties
of glasses [5–10]. Thus, exploration of glasses composed
of anisotropic particles holds potential for uncovering new
consequences for both the physics of glasses and materials
applications [11].

In glasses composed of frictionless spherical constituents,
rotations of the spheres do not cost energy. Rotational modes
therefore correspond to zero-frequency phonon excitations
in the harmonic approximation. For anisotropic constituents,
however, rotations are more energetically costly and can
couple to translations. Glass vibrational properties, including
the phonon density of states, are therefore expected to
depend on the major-to-minor axis aspect ratio of constituent
particles. Simulations of disordered systems with aspect ratios
marginally greater than 1.0, for example, find low-energy
rotational modes that are largely decoupled from translational
modes [12,13]; apparently, when particles rotate in such
systems, neighboring particles also rotate, but their positions
remain essentially unperturbed.

Here we experimentally study glasses composed of ellip-
soidal particles with aspect ratios α ranging from 1.0 to 3.0.
To this end, we extend the displacement correlation matrix
techniques employed in recent papers [14–17] to include rota-
tions, and we employ video microscopy to derive the phonon
density of states of corresponding “shadow” ellipsoidal glasses
with the same geometric configuration and interactions as
the experimental colloidal system but absent damping [15].
The spectra and character of the vibrational modes in these
disordered media were observed to depend strongly on particle
aspect ratio and particle aspect ratio distribution. For glasses

composed of particles with small median aspect ratios of ∼1.1,
the lower-frequency modes are almost completely rotational
in character, while higher-frequency ones are translational. In
glasses of particles with larger aspect ratios (∼3.0), significant
mixing of rotations with translations is observed. In contrast to
numerical findings for zero-temperature systems [12,13], we
observe that the very lowest frequency modes for both systems
have a mixed rotational-translational character, independent
of aspect ratio. Additionally, even within the same sample, it
was found that small-aspect-ratio particles tend to participate
relatively more in rotational modes, while large-aspect-ratio
particles tend to participate relatively more in translational
modes. Evidently, the distribution of particle aspect ratios
significantly affects phonon modes of glasses.

The experiments employ micron-sized polystyrene parti-
cles (Invitrogen) stretched to different aspect ratios [18–20].
Briefly, 3-μm-diameter polystyrene particles are suspended
in a polyvinyl alcohol (PVA) gel and are then heated above
the polystyrene melting point (∼120◦ C) but below the PVA
melting point (∼180◦ C). In the process, the polystyrene melts,
but the PVA gel only softens. The PVA gel is then placed
in a vise and stretched. The spherical cavities that contain
liquid polystyrene are stretched into ellipsoidal cavities. When
the PVA gel cools, the polystyrene solidifies in the distorted
cavities and becomes frozen into an ellipsoidal shape. The
hardened gel dissolves in water, and the PVA is easily removed
via centrifugation. Each iteration creates ∼109 ellipsoidal
particles in ∼50 μL suspensions. Experiments are performed
on samples stretched to 110% and 300% of their original
size [snapshots of experimental particles are shown in the
insets in Figs. 1(a) and 2(a)]. The stretching scheme produces
a distribution of aspect ratios with a standard deviation of
∼18%. This distribution is most important for suspensions
that are only slightly distorted from their initial spherical
shape and therefore have greater propensity to crystallize. The
distribution of aspect ratio N (α) for suspensions with more
spherical particles [Fig. 1(a)] is peaked at αPeak = 1.1, with
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FIG. 1. (Color online) (a) Distribution of particle aspect ratio N (α) in samples with peak aspect ratio αPeak = 1.1. The inset shows
an experimental snapshot of part of the sample. (b) Vibrational density of states. Vertical dashed lines separate three distinct regimes
corresponding to modes in the vector plots displayed in (f)–(i). (c) Translational (solid black line) and rotational (dashed red line) contributions
to participation fraction PF plotted versus frequency ω. (d) Participation-fraction-averaged aspect ratio ᾱω plotted versus frequency ω.
(e) Participation ratio PR plotted versus frequency ω. (f)–(i) Displacement vector plots of eigenmodes from lowest frequency (f) to highest (i).
The size of each arrow is proportional to the translational displacement of the particle at that position. The color (gray shading) intensity of
each particle is proportional to the rotational displacement of the particle at that position (online, red indicates clockwise and blue indicates
counterclockwise), with faint color (light gray) indicating small rotation and strong color (dark gray) indicating large rotation. Aspect ratio
and frequency are specified in each plot.

mean aspect ratio ᾱ = 1.2, but it also has a long tail extending
to α ∼ 2.0. A similar plot is shown in Fig. 2(a) for samples
with αPeak = 3.0 and ᾱ = 3.3.

Particles are confined between glass plates to quasi-two-
dimensional chambers. From separate brightness calibration
studies, we estimate the chambers to be no more than 5%
larger than the minor axis particle length [15]. In all samples,
dynamics are arrested (i.e., the average time it takes particles to
move a distance greater than one tenth of the minor axis particle
length is greater than our 10 000 s experimental window) (see
Appendix A), and the spatial correlation functions of bond-
orientational order decay exponentially (see Appendix B), with
an average bond-orientational order parameter of 0.3 (0.03) for
αPeak = 1.1 (3.0). Nematic order is largely absent; the mean
value of the nematic order parameter is 0.05, and the maximum
value is 0.11 (see Appendix C).

Previous works have noted that the packing fraction at
the jamming transition varies with particle shape [6]. In
order to characterize how close our samples are to the
jamming transition, we slowly evaporated water from the
sample chamber. Complete evaporation should pack particles
at the jamming transition for hard particles. We verified
this claim for bidisperse mixtures of spheres with a size
ratio of 1.4, where we find φA,MAX = 0.84(1), as expected.
For ellipsoids with αPeak = 1.1, φA,MAX = 0.87(1), consistent
with [6,9,21]; the sample employed in this paper has φA =
0.86(1). For ellipsoids with αPeak = 3.0, φA,MAX = 0.84(1),
again consistent with [6,9,21]; the sample employed in this
paper has φA = 0.83(1). Thus, both samples are near, but
below, the jamming transition, with φA,MAX − φA ≈ 0.01.

We extract vibrational properties by measuring displace-
ment correlations. Specifically, we define u(t) as the 3N -
component vector of the displacements of all particles from
their average positions (x̄,ȳ) and orientations (θ̄)[u(t) =
(x(t) − x̄,y(t) − ȳ,θ (t) − θ̄)] and extract the time-averaged
displacement correlation matrix (covariance matrix) Cij =
〈ui u j 〉t , where i,j = 1, . . . ,3Ntot run over particles, positional
and angular coordinates, and the average runs over time. In
the harmonic approximation, the correlation matrix is directly
related to the sample’s stiffness matrix, defined as the matrix
of second derivatives of the effective pair interaction potential
with respect to particle position and angle displacements.
In particular, (C−1)ij kBT = Kij , where Kij is the stiffness
matrix. Experiments that measure C therefore permit us to
construct and derive properties of a “shadow” ellipsoidal
glass system that has the same static properties as our
colloidal system (e.g., same correlation matrix and same
stiffness matrix, but no damping) [15]. Following [22], we
expect undamped hard particles that repel entropically, near
but below the jamming transition, to give rise to solidlike
vibrational behavior on time scales that are long compared
to the collision time but short compared to the time between
particle rearrangement events [14,17]. The stiffness matrix
arising from entropic repulsions is directly related to the
dynamical matrix characterizing vibrations Dij = Kij

mij
, where

mij = √
mimj and mi is an appropriate measure of inertia.

For translational degrees of freedom, mi = m, where m is
the particle mass. For rotational degrees of freedom, mi = Ii

represents the particle moment of inertia with respect to axes
centered about each particle’s center of mass and pointing in
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FIG. 2. (Color online) (a) Distribution of aspect ratio N (α) in samples with peak aspect ratio αPeak = 3.0. The inset shows an experimental
snapshot of part of the sample. (b) Vibrational density of states. Vertical dashed lines separate three distinct regimes corresponding to modes in
the vector plots displayed in (f)–(i). (c) Translational (solid black line) and rotational (dashed red line) contributions to participation fraction PF

plotted versus frequency ω. (d) Participation-fraction-averaged aspect ratio ᾱω plotted versus frequency ω. (e) Participation ratio PR plotted ver-
sus frequency ω. (f)–(i) Displacement vector plots of eigenmodes from lowest frequency (f) to highest (i). The size of each arrow is proportional
to the translational displacement of the particle at that position. The color (gray shading) intensity of each particle is proportional to the rotational
displacement of the particle at that position (online, red indicates clockwise and blue indicates counterclockwise), with faint color (light gray)
indicating small rotation and strong color (dark gray) indicating large rotation. Aspect ratio and frequency are specified in each plot.

the z direction; Ii = m(a2
i + b2

i )/2, where ai and bi are the
major and minor radii of the ith ellipsoid. The eigenvectors of
the dynamical matrix correspond to amplitudes associated with
the various phonon modes, and the eigenvalues correspond
to the frequencies/energies of the corresponding modes. Data
were collected over 10 000 s so that the number of degrees of
freedom, 3N ≈ 2000, is small compared to the number of time
frames (∼8000) [15]. Additionally, we find Kij is far above
the noise only for adjacent particles, as expected.

The vibrational density of states D(ω) is plotted in Fig. 1(b)
for the system with αPeak = 1.1. D(ω) exhibits two distinct
peaks. Zero-temperature simulations find that these peaks split
completely for α sufficiently close to 1 and for sufficiently
small systems close enough to the jamming transition [12,13].
For ellipsoids with αPeak = 3.0 [Fig. 2(b)], on the other hand,
D(ω) has a single peak, consistent with numerical predictions
[12,13]. Thus, the vibrational spectrum of ellipsoids with small
anisotropy is significantly different from those of spheres and
those of ellipsoids with higher aspect ratio.

To quantitatively explore the modes, we calculated several
different quantities. We will first introduce all of these
quantities and then discuss them all at the same time. First,
to quantify the translational and rotational contributions
to each mode, we sum the participation fractions PF of
translational and rotational vibrations over all particles for
each mode. The eigenvectors of each mode are normalized
such that

∑
m,n eω(m,n)2 = 1, where m runs over all particles

and n runs over all coordinates. The participation fraction
for particle m, component n, in mode with frequency
ω is then PF (ω) = eω(m,n)2. Thus, the translational
participation fraction in a mode with frequency ω is

PF,XY (ω) = ∑
m=1,...,N,n=X,Y eω(m,n)2, and the rotational

participation fraction is PF,θ (ω) = 1 − PF,XY (ω) =∑
m=1,...,N eω(m,θ )2. Translational and rotational participation

fractions are plotted in Figs. 1(c) and 2(c).
To investigate the effects of aspect ratio polydispersity, we

measure the eigenvector-weighted ellipsoid aspect ratio as a
function of mode frequency. Specifically, we compute ᾱω =∑

m,n αmeω(m,n)2, where αm is the measured aspect ratio of
particle m. Thus, ᾱω is a measure of the average particle aspect
ratio for the particles participating in mode ω [Figs. 1(d) and
2(d)].

Finally, to assess the degree of mode localiza-
tion, we quantify the spatial extent of individual
modes by computing the participation ratio PR(ω) =
[
∑

m,n eω(m,n)2]2/[Ntot
∑

m,n eω(m,n)4] [Figs. 1(e) and 2(e)].
The participation ratio provides an indication of mode local-
ization in space. If a mode is localized, a small number of terms
will dominate, making

∑
m,n eω(m,n)4 and [

∑
m,n eω(m,n)2]2

similar in size, so PR(ω) ≈ 1/N .
Representative modes are shown in Figs. 1(f)–1(i) and 2(f)–

2(i) for samples with αPeak = 1.1 and 3.0, respectively. Modes
from all samples fall qualitatively into three regimes. For
αPeak = 1.1, three distinct regimes exhibiting different
behavior are labeled in Figs. 1(b)–1(e). For mode frequencies
higher than ω ≈ 54 000 rad/s, i.e., frequencies above the “dip”
separating the two peaks in the density of states [Fig. 1(b)], the
modes (regime 3) are translational in character. Interestingly,
the lowest-frequency modes in regime 3 are spatially extended
[Fig. 1(h)], while the highest-frequency modes are spatially
localized [Fig. 1(i)], similar to the modes in glasses composed
of spheres. Modes just above ω ≈ 54 000 rad/s are enriched
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in longer ellipsoids and have a mixed translational-rotational
character. Modes in regime 2, extending from
1300 � ω � 54 000 rad/s, are strongly rotational in
character and are concentrated on small-aspect-ratio particles
[Fig. 1(g)]. In regime 1, below ω ≈ 1300 rad/s, modes
again have a mixed rotational-translational character and are
concentrated on longer particles [Fig. 1(f)]. Regime 1 was not
observed in numerical simulations of monodisperse ellipsoid
packings at zero temperature [12,13]. We also find that the
mean value of elements of the stiffness matrix connecting
particles to their neighbors decreases as aspect ratio increases
(see Appendix D); this observation suggests that longer
ellipsoids are more weakly coupled to their neighbors and are
relatively more likely to be excited at low frequency.

Figures 2(b)–2(e) show that for αPeak = 3.0, high-frequency
modes above ω ≈ 3 × 105 rad/s in regime 3 are translational
in character, with a nearly average mode-averaged aspect ratio,
resembling those of spheres. These translational modes cross
from extended [Fig. 2(h)] to localized [Fig. 2(i)] at the upper
end of the spectrum. Modes with 20 000 � ω � 3 × 105 rad/s
in regime 2 are extended, with a mixed rotational-translational
character, and are slightly enriched with longer ellipsoids at
higher frequencies and shorter ellipsoids at somewhat lower
frequencies [Fig. 2(g)]. In regime 1, ω � 2 × 104 rad/s, modes
are again slightly enriched in larger-aspect-ratio particles
and are quasilocalized with mixed translational-rotational
character [Fig. 2(f)].

Comparing the two systems, the behaviors of modes at
high frequencies (regime 3) and at the lowest frequencies
(regime 1) are qualitatively very similar. The largest qualitative
differences between large- and small-aspect-ratio systems
occur in regime 2, where modes have primarily rotational
character for systems with αPeak = 1.1 and modes have mixed
translational-rotational character for systems with αPeak = 3.0.

To summarize, experiments suggest that the nature of low-
frequency modes in glasses depends strongly on constituent
particle aspect ratio. Rotational modes tend to occur at lower
frequencies than translational vibrations, and for glasses with
aspect ratios of ∼1.1, a frequency regime exists wherein
the spectrum is strongly rotational in character, consistent
with numerical results [12,13]. Additionally, even within each
sample, particles with small aspect ratios tend to participate
more in rotational modes, while particles with larger ones tend
to participate more in translational modes. We also find low-
frequency modes enhanced in larger aspect ratio particles with
mixed rotational-translational character that were not present
in simulations. The distribution of particle aspect ratio N (α) is
thus an important physical factor affecting phonon modes of el-
lipsoidal glasses. Recent work suggests that low-participation-
ratio, low-frequency modes appear to correlate with regions
prone to rearrangement or plastic deformation [23]. Thus,
the existence of additional low-frequency modes concentrated
around particles with certain aspect ratios may have important
consequences for the mechanical response of glasses.
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Matthew Lohr for helpful discussions, and we gratefully ac-
knowledge financial support from the National Science Foun-
dation through Grant Nos. DMR-0804881 and PENN MRSEC
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FIG. 3. (Color online) The two-point correlation function Q2,
which probes self-overlap on the preselected length scale dL, is plotted
versus delay time for ellipsoidal glasses with different aspect ratios.
Dynamic arrest is apparent.

APPENDIX A: GLASSY DYNAMICS

As a first step toward elucidation of glass dynamics in these
systems, we compute the two-time self-overlap correlation
function: Q2(dL,�t) = 1

Ntot

∑Ntot
i=1 exp(−�ri (�t)2

2d2
L

) (Fig. 3) [24].
Here dL is a preselected length scale to be probed, Ntot is the
total number of particles, and �ri(�t) is the distance particle i

moves in time �t . If a particle moves a distance smaller than
dL, Q2 will remain approximately unity; if a particle moves a
distance greater than dL, Q2 will fall to zero. Notice that for
glasses of each aspect ratio, Q2(dL = 1.0 μm) decays very
little over the experimental time scale, thereby indicating that
glass dynamics are arrested at length scales of order of the
particle size.

APPENDIX B: BOND-ORIENTATIONAL ORDER

To demonstrate the absence of long-range orientational
order in these systems, the bond-orientational order param-
eter ψ6 = 1

Ntotz

∑Ntot
j=1 | ∑z

k=1 ei6θjk | and its spatial correlation
function g6(r = |ri − rj|) = 〈ψ∗

6i(ri)ψ6j (rj )〉 are calculated
(Fig. 4). Here θjk is the angle between the x axis and the j − k

bond between particles j and k, z is the coordination number
of particle j , and ri and rj are the positions of particles i and j .
g6 decays faster in samples with αPeak = 3.0 than it does in

FIG. 4. (Color online) Bond-orientational order spatial correla-
tion functions g6(r) for ellipsoidal glasses with different aspect ratios.
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FIG. 5. (Color online) The average nematic order parameter S

as a function of the director angle for samples with αPeak = 3.0 (solid
squares) and αPeak = 1.1 (open circles).

samples with αPeak = 1.1. However, g6 decays exponentially
in each sample (see exponential fit line in Fig. 4), a signature
of structural disorder characteristic of glasses (e.g., [25]).

APPENDIX C: NEMATIC ORDER

To demonstrate the absence of long-range nematic order
in these systems, the nematic order parameter, S = ∑Ntot

j=1 2 ∗
cos(θj − θDir)2 − 1, where θj is the orientation of particle j

and θDir is the orientation of the nematic director, and angle
brackets represent ensemble averaging, is calculated (Fig. 5).
For an isotropic distribution of orientations, S = 0, and for
perfectly aligned particles, S = 1. The mean value of S

in our large-aspect-ratio samples (αPeak = 3.0) is 0.05, and
the maximum value of S is 0.11. The mean value of S in
samples with αPeak = 1.1 is 0.00, and the maximum value of S

is 0.25.

FIG. 6. The average spring constant KiNN connecting nearest
neighbors as a function of aspect ratio α for samples with αPeak = 1.1.
Error bars represent standard error.

APPENDIX D: LOW-FREQUENCY MODES WITH MIXED
ROATIONAL-TRANSLATIONAL CHARACTER

Low-frequency modes for samples with αPeak = 1.1 have
mixed rotational-translational character. These modes were
not seen in zero-temperature simulations in which all particles
have identical aspect ratios [12,13]. These “mixed” modes
typically involve larger-aspect-ratio particles. To understand
why these modes appear at low frequencies, we calculated
the average spring constant connecting a particle’s rotation
to its nearest neighbors KiNN = 〈Kij/mij 〉NN , where 〈 〉NN

indicates an average over nearest-neighbors pairings, i runs
over all θ components, and j runs over all components. We
then plotted KiNN as a function of aspect ratio (Fig. 6). KiNN

decreases as α increases, indicating that the average spring
constraining rotation decreases as α increases. Smaller spring
constants KiNN lead to vibrations at smaller frequencies. Thus,
particles with larger aspect ratios tend to vibrate at lower
frequencies.
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