EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

On the analysis of moving heart valves : a numerical fluid-
structure interaction model

Citation for published version (APA):

Horsten, J. B. A. M. (1990). On the analysis of moving heart valves : a numerical fluid-structure interaction
model. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Applied Physics and Science Education]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR338577

DOI:
10.6100/IR338577

Document status and date:
Published: 01/01/1990

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023


https://doi.org/10.6100/IR338577
https://doi.org/10.6100/IR338577
https://research.tue.nl/en/publications/9d1b2427-55e2-465b-810e-30241a9dfdf6

ON THE ANALYSIS OF
MOVING HEART VALVES

A NUMERICAL FLUID-STRUCTURE INTERACTION MODEL

l

o

JOOST HORSTEN



ON THE ANALYSIS OF MOVING HEART VALVES



This research is supported by the Dutch Technology Foundation (STW),
grant nr. EWT 58.0857

Financial support by the Netherlands Heart Foundation
for the publication of this thesis is gratefully acknowledged

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK DEN HAAG
Horsten, Jan Baptist Adrianus Maria

On the analysis of moving heart valves: a numerical fluid-structure interaction model /
J.B.A.M. Horsten - [S.I. : s.n.]. -lIl.

Proefschrift Eindhoven. - Met lit.opg. - Met een samenvatting in het Nederlands

ISBN 90-9003613-X.

SISO 605.12 UDC 616.12/.14-77

Trefw.: hartkieppen.



ON THE ANALYSIS OF MOVING HEART VALVES

A NUMERICAL FLUID-STRUCTURE INTERACTION MODEL

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.ir. M.Tels,
voor een commissie aangewezen door het College van Dekanen
in het openbaar te verdedigen
. op vrijdag 12 oktober 1990 te 16.00 uur

door
Jan Baptist Adrianus Maria Horsten

geboren te Eindhoven

druk: wibro dissertatiedrukkerij, helmond.



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. D.H. van Campen
prof.dr.ir. G. Vossers

en de copromotor:

dr.ir. A.A. van Steenhoven



Voor Rob

Like all young men | set out to be a genius,
but mercifully laughter intervened

Lawrence Durrell



Contents

1.

2.

Abstract
Samenvatting

Introduction

1.1
1.2
1.3

1.4
1.5

Motivation

Physiological situation

Existing models

1.3.1  Overview

1.3.2  Peskin’s model

1.3.3  Weakly coupled methods
Problem definition

Methods applied

Physical-mathemical models

21

22
2.3

2.4

Fluid models

2141 Quasi 1D model

212 Von Mises model

2.1.3 Finite Element model
Structure model

Fluid-structure interaction models
2.3.1  Single degree of freedom
2.3.2  Multiple degrees of freedom
2.3.3  Summary of algorithm
Numerical tests

2.4.1 Finite element mesh
2.42 Time integration

2.43 Convergence

2.5 Discussion

Experiments

3.1
3.2
3.3
3.4
3.5
3.6

Experimental setup

Flow characterization
Measurement equipment
Test of experimental model
Parameter estimation

Error estimation

Rigid valve

4.1
4.2
4.3
4.4
4.5
4.6

Fixed valve in a steady flow
Fixed valve in a pulsatile flow
Steady free valve

Moving free valve

Parameter variation
Discussion

vi
viii

— h b b b b b —h
Lo

N -

NI
NEAEDN -

212
2.16
2.16
2.19
2.21
2.21
2.21
2.24
2.25
2.31

3.1
3.4
3.6
37
3.10
3.12

4.1
4.6
4.10
4.11
4.13
4.20



vi

On the analysis of moving heart valves

mmoow»

Segmented valve

5.1 Free valve in a steady flow 5.1
5.2 Free valve in a pulsatile flow 5.3
5.3 Parameter variation 5.5
5.4 Discussion 5.12

Summary and conclusions

References
List of symbols

Appendices

Outline of a fully coupled method

Von Mises fluid model

Finite Element fluid model

Van Wijngaarden-Dekker-Brent method
Minimization method

Quasi 1D fluid model with a parabolic velocity profile



vii

Abstract

In the present study a two-dimensional numerical fluid-structure interaction model is
developed for the analysis of the dynamic behavior of a prosthetic heart valve. Two
different valve types are considered. The first is a rigid valve which can rotate around
its point of attachment. It resembles the case of a disc-type valve prosthesis, which
has only one degree of freedom. The second type is a segmented valve, consisting
of several rigid segments connected to each other. This type is intended for the
Vdesign of valve prostheses with more degrees of freedom such as flexible
- bio-prosthetic or artificial leaflet valves. The buoyancy, the bending stiffness and the
load due to the fluid flow are included in the valve equilibrium equation. The
constitutive equations may be nonlinear. Large displacements and deformations are
allowed.

Various fluid models are incorporated in the fluid-structure interaction model.
The simplest are a quasi one-dimensional analytic model and a potential flow model.
Furthermore, a finite element fluid model, based on the two-dimensional unsteady
Navier-Stokes equations, is applied. The coupled fluid-structure system is solved by
a fully coupled, iterative method: both the fluid and the structure subsystem are
evaluated separately (one subsystem is solved while the other is kept constant) and
an iteration is performed until equilibrium is achieved. The equilibrium position of the
rigid valve is found by the application of the root finding method of Brent (1973). The
equilibrium position of the segmented valve is found by Powell’s hybrid method, a
nonlinear least squares method.

Experiments have been performed to validate the fluid-structure interaction
models. Steady and unsteady cases have been considered. Separate experiments
have been performed to determine the parameters in the constitutive equations. In
general the agreement between experimental and numerical results are good. Some
small deviations occur, which can be attributed to spurious threedimensional effects
in the experimental model or to an insufficient accuracy of the parameters of the
constitutive equations. For the rigid valve an unconditional numerical stability is
achieved. The numerical segmented valve model converges for a wide range of
parameters.

Apart from the application to heart valve prostheses, the models can be used
for a rather general class of fluid-structure interaction problems. The model will be
useful especially in those cases in which a full description of the fluid is required,
when the structure has relatively few degrees of freedom and when the structure
displacements and deformations are large.
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Samenvatting

Dit onderzoek heeft tot doel het ontwikkelen van een tweedimensionaal numeriek
vloeistof-structuur interactiemodel voor de analyse van de beweging van een hart-
klepprothese in een pulserende bloedstroming. Er worden zowel een stijve kiep,
roterend om zijh aanhechtingspunt, als een gesegmenteerde klep, bestaande uit een
aantal aan elkaar bevestigde stijve segmenten, bestudeerd. De stijve klep is bedoeld
voor de analyse van mechanische disk-prothesen, de gesegmenteerde klep voor de
analyse van flexibele prothesen van biologische of kunstmatige materialen. De
opwaartse krachten, de buigstijfheid in de bevestigingspunten en de invioed van de
vloeistofstroming worden betrokken in de evenwichisvergelijking van de klep. De
constitutieve vergelijkingen kunnen niet-lineair zijn. Grote verplaatsingen en
vervormingen zijn mogelijk.

De vlosistofstroming wordt beschreven door zowel een quasi-eendimensionaal
analytisch model, een tweedimensionaal model potentiaalstromingsmodel als door
een tweedimensionaal numeriek eindige elementen model, gebaseerd op de
instationaire Navier-Stokes vergelijking. De oplossing van het gekoppelde
vloeistof-structuur systeem wordt gevonden met een volledig gekoppelde, iteratieve
methode: het vioeistof- en het structuursubsysteem worden apart opgelost en de
evenwichtssituatie wordt iteratief bepaald. De evenwichtspositie van de stijve klep
wordt bepaald met de methode van Brent (1973) voor het vinden van de oplossing
van een algebratsche niet-lineaire vergeliking. De evenwichtsstand van de
gesegmenteerde klep wordt gevonden met Powell's hybride methode, een
niet-lineaire kleinste kwadraten methode.

De theoretische modelien zijn geverifieerd aan de hand van experimenten in
zowel stationaire als instationaire situaties. Over het algemeen komen de
theoretische en experimentele resultaten goed overeen. Er treden enkele kleine
afwijkingen op die toegeschreven kunnen worden aan ongewenste driedimensionale
stromingseffecten in het éxperimentele model en aan de beprekte nauwkeurigheid
van de materiaalparameters in de constitutieve vergelijkingen. In het geval van de
stijve kiep is onvoorwaardelijke numerieke stabiliteit beréikt. Het numerieke model
voor de gesegmenteerde klep convergeert voor een groot bereik van parameters.

Naast de toepassing op hartklepprothesen kunnen de modellen ook worden
toegepast op een meer algemene klasse van vloeistof-structuur interactieproblemen.
De modellen zijn vooral geschikt wanneer een volledige beschrijving van de
vloestofstroming vereist is, wanneer de structuur relatief weinig vrijheidsgraden heeft
en wanneer de structuur grote verplaatsingen en vervormingen ondergaat.



1. INTRODUCTION
1.1 Motivation

Frequently, natural human aortic valves do not function properly and need to be
replaced by valve prostheses. Commercially available valve prostheses can be
divided into two main categories: mechanical and biological prostheses. Nowadays,
‘most mechanical valve prostheses are disc-type valve prostheses, which consist of
one or two rigid plates, mounted in a frame. Biological valve prostheses are
constructed from prepared porcine valves or from porcine or bovine heart tissue. A
survey of the merits of these prostheses types is given by Rousseau (1985).

This study is carried out within the framework of a research project which has
as ultimate goal the design of an improved aortic valve prosthesis, based upon a
fundamental understanding of the behavior of the natural valve. This prosthesis
should be a tri-leaflet valve, which enables the use of the three natural sinuses. The
geometry of the valve should be such that it provides gradual valve closure. The
leaflets should be constructed of flexible fiber reinforced synthetic materials to
overcome complications associated with biological leafiet valves. Previous research
is done by van Steenhoven (1979), who investigated the fluid dynamics of the natural
valve, by Sauren (1981), who investigated the mechanics of the natural valve, by van
Renterghem (1983), who investigated the valve geometry during the cardiac cycle
and by Rousseau (1985) who developed a numerical model for the mechanical
analysis of an artificial leaflet valve in the fully closed situation.

This study will focus on the numerical analysis of the dynamic behavior of a
model valve prosthesis. The object is the development of a numerical fluid-structure
interaction model, which describes the opening and closure of the valve. Such a
model is necessary for the optimization of the dynamical aspects of the valve:
improvement of the closure efficiency and minimization of flow resistance, fluid shear
stresses and bending strains. The latter constitute a stimulating factor in the forming
of calcium deposits (Rousseau,1985).

1.2 Physiological situation

Sketches of the heart and the natural aortic valve are given in figures 1.1, 1.2 and
1.3. The aortic valve is located between the left ventricle and the aorta. It consists of
three flexible leaflets. The vaive exhibits a 120° rotational symmetry. Behind every
leaflet a cavity in the aorta is present, called the sinus of Valsalva (Reid, 1970,
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figure 1.1 Sketch of the human heart (after Arts, 1978)

valve leaflet

F
lef >y
eft S > aorta
ventricle 5
N
sinus of
Valsalva

figure 1.2 Sketch of the natural aortic valve in a fully opened position (solid

line) and in a closed position (dashed line) and the flow

phenomena around an opened valve (after Bellhouse in Bergel,
1972)
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valve
leaflet

sirus of
Valsalva

figure 1.3 Sketch of the natural aortic valve as seen from the aorta into the
direction of the left ventricle

Swanson & Clark, 1973). The valve leaflets are made of soft elastine texture,
reinforced by collagen fibers (Sauren, 1981). This construction enables the valve to
be flexible while opening or closing, to minimize the flow resistance, and to be strong
in fully closed position when it has to withstand the largest pressure drop. The valve
tissue is anisotropic and visco—elastic (Sauren, 1981). The visco—elasticity is mainly
important in the fully closed situation, when the stresses reach their maximum values
and some relaxation occurs. When the valve is open, the stresses are very small
(Thubrikar,1982). So, in this situation the mechanical behavior of the texture is of
minor importance. The density of the valve texture is about equal to that of blood, so
buoyancy forces are negligible in the in-vivo situation. Since the mass of the valve
itself is much smaller than the mass of the blood flowing around it, it can be
expected that also inertial effects of the valve are negligible. The aperture of the
valve varies from fully closed to fully opened (van Steenhoven, 1979) so the
displacement of the vaive leaflets is large.

The fluid phenomena around the valve are rather complex. Figure 1.4 shows
that the variations of the flow rate are large. Furthermore, the shape of the fluid
domain changes considerably due to the large valve displacements. During the
systolic phase of each heart period vortices are formed behind each leaflet in the sini
(see figure 1.2) and they are broken down again during the diastolic phase. Since
the valve is located at the entrance of the aorta, no flow development can occur and
the axial velocity is approximately constant over the diameter. In large blood vessels
as the aorta, blood behaves in a good approximation like an incompressibie,
Newtonian fluid (Caro et al., 1978). It appears that in the case of properly working
heart valves, the fiuid flow is laminar and that no turbulence occurs (Nerem & Seed,
1972). Only when a heart valve or valve prosthesis exhibits a malfunctioning, some
turbulence can occur.
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Physiological aortic flow

800
600 [
@
E
s 400
0
w
200
O Il V/\ 1 1
00 0.2 0.4 086 08
Time (s}
Kﬁgure 1.4 Physiological flow rate as a function of time (after Milnor, 1982)

Laminar flow of a Newtonian incompressible fluid satisfies the Navier-Stokes
and continuity equations (Batchelor, 1983). In dimensionless form these equations
read:

Sta+0-Vi-LV204Vp=0 (1.1)
ﬁe
v.i=0 (12)

with U the velocity vector, p the pressure, V the gradient vector operator and the
superscript dot - denotes the local time derivative. Re is the Reynolds number,
defined as Re = u hJv with u, the cross-section averaged velocity at top systole, he
a characteristic length and v the kinematic viscosity. Physiological values are given
by Milnor (1982). The maximum Reynolds number, based upon aorta radius as
characteristic length, is about 4500. St denotes the Strouhal number and is defined
as St = h/u,r with 7 the deceleration time of the systole. A typical physiological
value of Stis 0.1.

An important feature of the valve-fluid system is that the motion of the valve
and the fluid flow are strongly coupled. The valve imposes the shape of the fluid
domain and the boundary conditions on the contact surface. On the other hand, the
valve itself is passive and the only mechanisms which move it are the fluid stresses
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on the valve. The interaction phenomena are responsible for an important feature of
the natural valve. It already closes partially during flow deceleration and only a very
small amount of back flow is necessary to obtain a full closure, thus increasing the
efficiency of the valve (Bellhouse & Talbot, 1969). This process is initiated by the
adverse pressure gradient during flow deceleration (van Steenhoven & van Dongen,
1979). Another physiological relevant aspect of this early closure is the reduction of
the pressure rise just after valve closure (van Steenhoven & van Dongen, 1986).

- 1.3 Existing models

Several models have been developed which might be relevant for the description of
the flow around heart valves. In section 1.3.1, a short overview is given of some
models which have some relation to this study, but which have been developed for
different situations. in sections 1.3.2 and 1.3.3, two types of models are described
which are more related to this study. In section 1.3.4 an outline of an alternative
strategy is given.

in these models several types of coupling methods are used. In order to avoid
confusion, some terms are defined here. Decoupled methods ignore the interaction
almost completely. First, the behavior of one of the subsystems (fluid or structure) is
computed for every point of time. The solution of this first subsystem is used as
boundary condition for the computation of the second one. The interaction is only
one way, from the first to the second subsystem. In weakly coupled methods both
subsystems are also solved separately in time, but only during one discrete timestep.
Before the start of a new timestep, the solution of the previous timestep of one
subsystem is available to solve the other subsystem. In both strategies, the
subsystems need not to be exactly in equilibrium with each other at every timestep.
The guarantee of this equilibrium is the start for fully coupled methods. In iteratively
fully coupled methods, both subsystems are still solved separately but the equilibrium
is obtained by some sort of iteration. In directly fully coupled methods both
subsystems are solved simultaneously.

1.3.1 Overview

There are several numerical models which give an analysis of the flow field around
fixed heart valves. Examples of these studies are those of Idelsohn et al. (1985),
Stevenson et al. (1985) and Thalassoudis et al. (1984). They give a rather accurate
description of the two—dimensional steady flow around a fully opened valve. The
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authors are mainly interested in the calculation of shear stresses in the fluid. The
motion of the valve is not taken into account, thus ignoring the interaction between
fluid flow and valve motion.

A large category of models which have some relation to the present problem
are those analyzing the flow around flexible membranes and plates and along
compliant walls. Examples are the studies of Frederiks et al. (1986) and Gad—el-Hak
(1986). Their main interest is the occurrence of flow—induced instabilities in the
structure. In most studies, the problem is simplified by ignoring viscous phenomena
and by restricting to small structure amplitudes, so that linear models can be applied.
Since in our case these restrictions are too severe and since flow instabilities are not
yet of primary concern, these type of models are not applicable here.

A third category is that of analytical quasi one—dimensional models, specially
developed for the interaction problem of heart valve and blood flow. Examples of
these models are those of Bellhouse & Talbot (1969), van Steenhoven & van Dongen
(1979), Lee & Talbot (1979) and Wipperman (1985). In these models the
cross—section averaged values of axial fluid velocity and pressure are used and
special assumptions for the fluid flow and pressure in the sinus are made.
Notwithstanding these strong simplifications they give a fair global description of the
valve motion. However, they are not accurate enough for a detailed analysis of the
effect of small variations of the valve geometry and the mechanical properties on the
valve motion. :

1.3.2 Peskin’s model

A model, specially developed for the mitral heart valve, is given by Peskin (1977). it
incorporates the full Navier—Stokes equations and flexible boundaries. An essential
characteristic of the model is that the computation of fiuid flow and structure motion
are partly decoupled: a weak coupling is applied. Another feature is that the
interaction between fluid ‘and structure is not taken into account by prescribing
boundary conditions at the contact surface but by using local body forces in the fluid
at the location of the contact surface. The structure is fuily submerged in the fluid.
Magnitude and direction of these local body forces are chosen in such a way that
they simulate the presence of the submerged structure.

The starting point of the model is formed by the Navier-Stokes and continuity
equations. The Navier-Stokes equation is extended with a body force 1 according to:

Sti+0-Vu-L vi+Vp-1=0 (1.3)
Re
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with T the external body force per unit mass resulting from the presence of the
structure. Boundary conditions are only necessary at the border of the computation
domain.

When T is known on a time level t on every place X, then the fluid velocity can
be computed from equations (1.3) and (1.2). That still leaves the problem of the
computation of 1. At this stage, Peskin makes the assumption that the inertia of the
structure is negligible compared to that of the surrounding blood and that the
structure is purely elastic. From these assumptions follows that the force 1, acting on
the fluid by the structure, is fully determined by the instantaneous geometry of the
structure and that it always balances the local internal elastic forces in the structure.

Because the fluid is viscous, no discontinuities in the velocity can occur.
Therefore, the local fiuid velocity is equal on both sides of the structure and equal to
the velocity of the structure. Because tangential velocity of both fluid and structure
are equal, no slip on the structure surface occurs. Since the normal velocities are
equal, no fluid will flow through the structure. Therefore, the physical boundary
conditions on the structure are satisfied automatically.

The structure is modeled as a network of linear elastic springs, which connect
the discrete structure points. Also bending stiffness is incorporated. For a given
geometry of the boundary the internal structure forces can be computed.

For the numerical computation of the fluid velocity field, Peskin uses a finite
difference method. A square grid with equidistant grid points is used. He uses a
hybrid grid approach: the discrete structure points are allowed to move freely through
this grid. They do not have to coincide with the fluid grid points. Consequently, an
interpolation must be performed between fluid and structure points. Peskin’s
interpolation approach is based on the application of discrete deita functions.

Hence, the equations of motion of structure and fluid are weakly coupled. The
interaction is incorporated by the structure force f. Therefore, in the discrete time
integration the structure and fluid systems will be solved separately. The most simple
approach would be just to compute the structure force at the start of the timestep
and to proceed with the computation of the fluid flow. According to Peskin such a
method appears to be numerically unstable. Therefore he uses a somewhat more
sophisticated approach: he tries to give an approximation of the force at the end of
the timestep.

In order to estimate the structure force, he states that it can be approximated
by
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st 1.4
[ Stat (1.4)

This is in fact a simplification of the Navier-Stokes equation (1.3) in which the
convective, viscous and pressure forces are neglected. Using this approximation,
estimates of valve position of the valve leaflet and the corresponding structure force
at the end of the actual time step are computed. In turn, these estimates are used to
compute an approximation of the fluid velocity field at the end of the timestep. Peskin
assumes that this approximation is good enough to ensure that, at the end of the
timestep, the estimated fluid—structure force and the internal structure force balance,
and that both structure and fluid are in equilibrium. No iteration is performed to
guarantee such an equilibrium. In general, these forces will not balance.

The way in which the fluid-structure force is computed, is crucial. Peskin's
approach is based on the simpiified Navier-Stokes equation (1.4). He does not give
any justification for this choice. In fact, (1.4) will only be a good approximation of
(1.3) if the local acceleration term is much larger than the other terms. A simple
example, of a case in which this condition is obviously not satisfied, is the steady
flow parallel to the structure, for instance a fully opened valve. In that case, the
internal structure forces will be in equilibrium with the viscous forces. In steady cases
where large velocity gradients occur, the convective term will dominate, for example
near an almost closed valve.

Using the dimensionless parameters Re and St an estimate can be made of
the relative importance of the different terms in (1.3). In the aorta Re=4500 and
St=0.1. For the mitral valve these values are about Re=3500 and St=0.2. The
product of St and Re reflects the magnitude of the local acceleration term in the
Navier-Stokes equation relative to that of the viscous term. So it can be concluded
that the negligence of the viscous forces, compared to the local acceleration forces is
reasonable as long as no flow separation occurs. But if the flow separates, viscosity
must be incorporated, at least at the separation point. Furthermore, the convective
forces are of the same order or even larger than the local acceleration forces (since
St<1). The negligence of these forces is therefore even more questionable. This
conclusion is confirmed by the work of van Steenhoven and van Dongen (1979), who
found that in the physiological range of Reynolds numbers viscous phenomena are
of minor importance and that the influence of the St-number is large. If St > 0.3 the
acceleration forces dominate the convective ones. If St<0.15 this is not true anymore.
This means that Peskin’s approach would not be valid for the aortic vaive. The
application to the mitral vaive (as Peskin does) can be slightly better justified.

The highly simplified estimation of the interaction forces results in a numerical
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stability which is only conditional. In more recent work (Tu & Peskin, 1988) a model
is presented in which unconditional stability is achieved. However, this model is only
applied to Stokes flow. Another drawback of Peskin's method is the spatial accuracy
which is limited to first order, due to the repeated interpolation of velocity and forces
to and from fluid grid points and structure points. Because of these limitations,
Peskin's method is not applied in this study.

| 1.3.3 Weakly coupled methods

Another category of numerical models is the one developed for the interaction of fluid
with large, complex structures. Overviews of this type of models are given by
Belytschko (1980) and Park & Felippa (1983). A typical application of these type of
models is the response analysis of a nuclear reactor due to some accident. An
example is found in the work of Kulak (1981, 1984, 1985). Most models are finite
element models. The emphasis lays on the description of the structure. Inertia,
damping and stiffness are incorporated. Structure displacements can be large, so
nonlinear structure models are applied. Many of them use an arbitrary
Lagrange—Euler description for the spatial discretization. In general, the fluid
description is more simplified, by restricting it to linear models with an inviscid fluid
and with small fluid displacements. Typical for those models is a partial decoupling
(or weak coupling) of fluid and structure. The total system is partitioned in a fluid and
a structure subsystem, which are integrated separately in time. Several variations are
developed. The simplest one is the explicit-explicit partition. Both subsystems are
integrated with an explicit time integration system. There are no special requirements
for the boundary conditions at the contact surface, since they can simply be
extrapolated from previous timesteps. These models can be very efficient, but they
are only conditionally stable. Another possibility is an explicit-mplicit partition: first
one system (usually the fluid) is integrated with an explicit method. The solution of
this subsystem at the boundary is used as a contact condition for the second
subsystem, which is integrated with an implicit scheme. In general, these methods
show better stability properties, but they are still conditionally stable. In an
implicit-implicit method both subsystems are integrated implicitly, thus improving the
stability further. In this case a complication arises for the contact condition. None of
the subsystems can be integrated first when the contact conditions are not available
(which depend on the solution of the other subsystem). This contact condition must
be extrapolated from the previous timestep, thus introducing an explicit component in
the algorithm, which may destroy the stability of the total system. Much attention is
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paid to stability analyses in order to select the proper extrapolator. An outline of such
a weakly coupled method is given in appendix B.

These types of methods can not generally be applied to the combination of an
incompressible fluid and a structure which has small inertia, damping and bending
stifiness, like a prosthetic leaflet heart valve. Consider for example the valvular
opening and closing phase when the valve Is at least partly strain free. Then, in
some parts no internal stresses are present and consequently, the fluid forces on
both sides of the valve must balance. If a weakly coupled method is applied, first the
position and/or the velocity of the boundary is estimated. If first the fluid flow is
computed, generally the fluid stresses on both sides of the valve will not balance.
The resulting fiuid load is applied to the valve and the valve displacements are
computed. Due to the small stiffness of the structure these displacements will be
large, and may even be infinite, in order to obtain internal stresses which balance the
fluid load. Apart from numerical problems, which may arise because the initial
estimate of the valve may be an undetermined situation, it will be clear that this
situation is not physically realistic. In reality, the deformation will be finite since the
balancing mechanism is not the increase of the internal stresses, but an
instantaneous fluid pressure rise behind the valve, retarding the valve. This
correction mechanism is lacking in the weakly coupled approach and the method is
therefore expected not to be reliable for all situations which can be expected when
examining a leaflet valve. :

If, on the other hand, the structure would have no inertia and would be
stress-free during the full cardiac cycle, an alternative, decoupled strategy would be
applicable. If the valve has no internal stresses, it can not exert any force on the fluid
and the vailve motion would not affect the fluid flow. Then, it would be possible to
compute the fluid flow while ignoring the presence of the valve and to compute the
valve deformation afterwards, assuming that it flushes along with the fluid. A
continuously stress-free valve would be of no use, since it does not exert any force
on the fluid and therefore it can not prevent the fiuid from flowing back into the
ventricle. So, a decoupled approach will not be applicable. The problem at hand is
characterized by a combination of situations with and without stress. Since both
decoupled and weakly coupled methods are not readily applicable, a fully coupled
approach must be used.
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1.3.4 Outline of fully coupled methods

One could think of a directly fully coupled treatment of fluid and structure. No
example of such a strategy is found in the literature. An outline of a possible
approach is given in appendix A. A complication is the combination of the
Langrangian description for the structure (nodal points coincide with material points
and move together with the structure) and the Eulerian description for the fluid (nodal
‘points are fixed in space). An arbitrary Langrange—Euler approach for the fluid must
be used in which the nodal points can move with an arbitrary speed. In fact, these
methods are developed for weakly coupled strategies, as are described in section
1.3.3. In those cases the method can be very much simplified since the structure
displacement is computed first, uncoupled from the fiuid flow. At the moment that the
fluid flow must be computed, the position and velocity of the boundaries are all
known, and the fluid computation is fairly straightforward. The implementation of a
truly fully coupled method is much more complicated, since fluid boundary position
and speed are a function of the fiuid flow itself and are therefore unknown. This
observation gives rise to extra nonlinear terms in the system of equations. At this
moment, it is not clear how they can affect the stability of the system.

Another drawback of a directly fully coupled approach is that the number of
equations which must be solved simultaneously, increases. Furthermore, one is -
forced to implement both structure and fluid solver in one software package. This
may result in large, inflexible computer codes, which are difficult to adapt or maintain.
Because of these considerations, the directly fully coupled approach is not applied in
this study. An iteratively fully coupled method does not suffer from the disadvantages
of a directly coupled method. Both subsystems are evaluated separately: one
subsystem is solved while the other is kept constant. Therefore, an Eulerian
description can be used for the fluid. if required, both subsystems can be solved with
a different software package. In general, the memory computer requirements will be
less than in the fully coupled approach, since the subsystems are smaller than a
directly coupled system. A possible drawback could be the .number of iterations
needed to obtain the solution.

1.4 Problem definition
The general object of this study is the development of a numerical fluid—structure

interaction model, allowing a full description of the flow field in complex shaped
domains and for structures which may have a variety of mechanical and dynamical
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properties. The structure displacements may be large. The interaction between fluid
and structure is fully taken into account. An iteratively fully coupled approach will be
applied.

Because of combutational reasons, the fluid flow and the structure are
restricted to be two—dimensional. The model valve is shown in figure 1.5. It may be
rigid or segmehted, consisting of several rigid links. Behind the valve a cylindrical
cavity is present, which is a modeled version of the physiological sinus of Valsalva.
The rigid valve and the links can rotate around their points of attachment. No strains
occur, so their lengths are fixed. The links are attached to the rigid channel or to
each other by membranous hinges. These hinges may cause a bending moment.
Since in general the density of the valve may be different from the density of the fluid
a gravity or buoyancy force may act on the links. The inertia of the valve is
neglected. The rigid valve can be regarded as a disc—type prosthesis. With an
increasing number of links, the segmented valve will behave more and more like a
fully flexible valve. The fluid flow will be assumed to be incompressible, Newtonian
and laminar.

(a

u(t)—>

u(t)—>

Figure 1.5 Two-dimensional heart valve models (a) rigid, (b) segmented
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1.5 Methods applied

Several fluid models will be used, the most advanced is based on the full
two—dimensional Navier-Stokes and continuity equations for a Newtonian,
incompressible and laminar fluid by a finite element method. Furthermore, two
simpler, analytical fluid models will be applied in order to gain more fundamental
physical understanding of the fluid flow phenomena and to demonstrate the flexibility
of the interaction model. The valve is described by the equilibrium equation of a set
of rigid links.

The interaction between fluid and structure is taken fully into account. The
equations of motion of fluid and structure are iteratively coupled. The subsystems are
evaluated separately and an iteration is applied until equilibrium between fluid and
valve is achieved. In this way the numerical stability is guaranteed. It will appear that
the assumptions, made for fluid and structure, are not restrictive to the actual
interaction model. For example, inertial and (visco-) elastic phenomena of the
structure can easily be incorporated and, as will be illustrated, the interaction model
can easily be used in combination with any fiuid solver, which matches the needs of
a specific problem.

The theoretical models will be validated by means of a comparison of
theoretical simulations to experimental results.
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2. PHYSICAL-MATHEMATICAL MODELS

in this chapter, a model is presented for the analysis of a coupled system of fluid
flow and structure motion. As discussed in chapter 1, the approach is an iteratively
fully coupled one. Several variations are developed, using different models for the
fluid flow (numerical or analytical) and the valve (rigid or segmented).

Unless otherwise stated, dimensionless quantities are used. The characteristic
length is defined as the channel height and the characteristic velocity as the velocity,
averaged over the channel height at the moment of maximum flow rate. The
characteristic time is defined as the deceleration time if the flow rate is pulsatile, as
the period time if the flow rate is varying harmonically and as the ratio of
characteristic length and characteristic velocity if the flow rate is constant.

2.1 Fluid models

Figure 2.1 shows a global sketch of the flow field around the rigid model valve in a
steady flow case. It is obtained by visualizations by ink injection in the experimental
model, which will be described in chapter 3. The fluid phenomena are similar to
physiological ones: flow separation at the valve tip and the formation of a vortex
behind the valve. Since both the fluid phenomena and the shape of the domain are
rather complex, a suitable approach for the flow description in this study is a finite
element method. In section 2.1.3 such a method is described which solves the full
Navier-Stokes equations.

_\x\s//

figure 2.1 Global sketch of the steady flow field around a rigid model valve
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This numerical model is preceded by two simpler, analytical models. They are
introduced because it will turn out that, notwithstanding their simplicity, they are able
to describe some aspects of the flow field quite well, albeit in a qualitative way, thus
giving more insight in the physics of the flow. Furthermore, they illustrate the
flexibility of the fluid-structure interaction model. Both analytical models are applied to
a valve in a steady position. A simple quasi one-dimensional model, based on
Bernoulli's theorem and conservation of mass, is given in section 2.1.1. Section 2.1.2
describes a two-dimensional potential flow model.

2.1.1 Quasl! one-dimensional fluld model

in this section a simplified analytical model is presented for the fluid flow around a
two-dimensional aortic valve. The model is presented for the case of a rigid valve in
an unsteady flow. Besides, a formulation is given for segmented valve in a steady
flow. .

In the derivation of the models it is assumed that the fluid is incompressible,
that the viscosity of the fluid is negligible and that the velocity gradient in the vertical
direction is zero ("plug flow"). In order to simulate the effect of flow separation at the
valve tip, the pressure in the sinus is assumed to be constant and equal to the
pressure at the downstream end of the valve. The physiological Reynolds number is
fairly high (Re,,,~4500), so viscous effects in the fluid are small indeed. This does
not hold for the vaive tip, where the flow separates. Since the fluid velocity in the
sinus is much smaller than in the main flow and the pressure must be continuous in
the vertical direction, the flow separation is accounted for in a simplified way by the
assumption with respect to the sinus pressure. These assumptions are the same as
made by van Steenhoven & van Dongen (1979) and by Wipperman (1985) who also
incorporated the unsteady valve motion in their models.

Because of these assumptions, the continuity equation reduces to:

h(x)u(x,) = houg(t) = hyu(t) (2.1)
with hy = 1. The momentum equation reduces to Bernoulli’s theorem:
A
Ju200 + 0 = JuF + py + G T u(iax (22)

x denotes the horizontal coordinate, h the local valve height, u and p the axial fluid
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velocity and pressure, respectively and t the time. Subscripts o and t refer to the
valve fixation point and the tip respectively. Without loss of generality, it can be
stated that

p =0 (2.3)
Furthermore,
Xy =0 (2.4a)
h(0) = h, (2.4b)
X; = Xy + lcos @ (2.4¢)
h =h_-ssing (2.4e)

where x; and h; are the horizontal vertical coordinate of the connection point between
the links i and i+1, whereas @, is the angle between link i and the horizontal axis (cf.
figure 2.5). |, is the length of link i and s the local coordinate along a link.

Rigld valve In a pulsatile flow

Substitution of (2.1), (2.3) and (2.4) in (2.2) gives (with n=1, I=l; and ¥=¢4) an
expression for the pressure along the vaive:

= 1 1 - 1
P(s) = 2h3u3 [(ho- I 'sing)2 (hy- s Si"q’)Z] ’

|
du ds
h P - ~ B
Tlodl® (h,- s sing)2
o

- 1h3u3 [(h 1 1 ] .

o | Sing2 (hy- s sing)?

h . )
ﬁ g¥o [In(ho- s sing) - In(h- | smcp)] (2.5)

The moment acting on the valve is obtained by integrating the pressure along the
valve according to

|
my =OI p(s) s ds (2.6)
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Substituting (2.5) in (2.6) and using some standard integrals yields

hy- | sing h
1 12 1 o o
= sh - | ) -1
M= 2 8u8|:2(h0- | sing)? sin2<p{n( ho & hy- | sing }] *
h h h h,|
o du 0 )2 ) - ol _|? 2.7
sing 91 [(simp) n(ho- | sing 2 sing i] at

Segmented valve In a steady flow
The pressure, integrated force and moment on a link of the chain valve can be

calculated in a very similar way as in the rigid valve case (if the flow is steady). The
analog of equation (2.5) for a separate link i is

1 i . 1
P(e) = 30898 [ - oo (28)

The fiuid link force is given by

I
fi=J 'pds = (2.9)
1 i 1 1]
2h8u3[h sing. (h.,- Lsing)  h._.sing. (2.10)
% I 1 i 1-1SING; .

Here fi is directed normal to the link. The link moment due to the fluid is found in an
analogous way as (2.7):

mg = 5h3u3[%<,'1—;>2 :

hi.q-;si h
1 gt 809y | g _1}]

- - (2.11)
sm2¢pI hi_4 hH-Iismcpi ‘

2.1.2 Von Mises fluld model

An appropriate analytical model for the steady flow around the rigid valve is given by
von Mises (Gurevich, 1965). The model is a potential flow model and uses complex
function theory. For practical application the resuiting analytical expression need to
be evaluated numerically. An outline of the original fluid model is given in appendix
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C. Here, the essentials and the application to our problem are given.

The domain of the model is shown in figure 2.2. There is a close resemblance
to the aortic model. The sinus is not explicitly present, but a wake is assumed to be
present behind the valve, bounded by a free streamline. At the valve tip, the
streamline is not in the axial direction (as in the case of the quasi one-dimensional
model in section 2.1.1) but tangential to the valve.

C
H ............
\Q B
Lo~ u,
: et
H ¢6 E
figure 2.2 Fiuid domain according to the von Mises fluid model

The domain in figure 2.2 is regarded as a complex plane. In this plane a
complex velocity and a corresponding velocity potential are defined. These quantities
can be evaluated by transforming the plane to another complex plane, in which the
fluid domain has the shape of an upper half circle. In turn, this half circle can be
expanded to the full transformed plane. More details of this transformation are given
in appendix C. With the use of some complex function theory, the velocity near the
valve can be expressed as

u(s) = uo(?,)“ 2.12)
in which u, is the entrance velocity, ur the angle of the vaive with the horizontal
axis, s the coordinate along the vaive from fixation point to tip and o a parameter
depending on s according to

s_j.ghylp 1, 1 . 2 do’ 2.1
Dy %_I"[o'+n+o'+1/n REPT s

7 is representing the position of the source of the entrance flow in the transformed
complex plane and is determined by

M 1 1 1 2 ydo_ |
;l_ 1 =1 214
IO [ O+1] * o+1/n o+ ] oH 0 ( )

The pressure p along the valve can be expressed by using Bernoulli's theorem as
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p(s) = 3 u - § u*(s) (2.15a)
= 3wt - (02H (2.150)

with u, the velocity at the valve tip and at the free streamline. The moment which is
exerted by the fluid on the valve is given by

m¢=J 'n(s) s ds (2.16)
o

The fluid problem is fully defined by (2.12) up to (2.15). First 1} must be solved
from (2.14). 1) depends only on the given domain parameters p,| and h,. Since the
equation is a nonlinear integral equation, it is solved numerically. For that purpose
(2.14) is redefined as

f(")=f|‘3'%gj:>[o+q+a1_1m'ﬁ]%=° 2.17)
which is iteratively solved with the Van Wijngaarden-Dekker-Brent method (see
appendix E). The integral in (2.17) is evaluated with a combination of the midpoint
rule and a Romberg extrapolation scheme (Press,1985). The midpoint rule was used
instead of the more efficient combination of trapezoidal rule and Romberg
extrapolation because of the integrable 1/c! singularity at 0=0. Because of this
singularity also a change of variables is carried out according to

1 L -
o] oo =y [T FgET M, (2.18)

in which we used the transformation a=B1/(1"‘). Once 1) is solved from (2.17), the
integration (2.16) is performed using a combination of the trapezoidal rule and a
Romberg extrapolation scheme. This integration is not straightforward since (2.13)
gives s as function of o, but in (2.15) o as function of s is needed. This relation
cannot be expressed expilicitly, so once again Brent's method is used, in this case for
finding o for a given s. This happens in a similar way as described for the solving of
(2.17). In this way the numerical solution for the moment on the valve is found.

An interesting secondary result of the von Mises model is the contraction
coefficient k, defined as (see also figure 2.2)



Physical mathematical models 27

. (2.19)

P
]

e

]
44

t

K quantifies the deviation of the flow from a quasi one-dimensional one. In the quasi
one-dimensional case k=1 since a plug fiow is assumed both before and behind the
valve. Once 1) is solved, k can be calculated straightforward. In table 2.1 k is given
for some orientations of the valve. From this table follows that, if the valve is far
closed, the velocity far behind the valve is about 20% larger than in the quasi
one-dimensional case. Since the pressure is proportional to the square of the
velocity, the difference is then about 40%. Gurevich has also computed the
contraction coefficients (see table 2.1). His results are interpolated by a sixth order
polynom. The resemblance is close.

?0O Ka K
0 1.000 1.000
10 0.9323 0.9257
20 0.8705 0.8669
30 0.8155 0.8155
35 0.7907 0.7904
table 2.1: Contraction coefficient K for several orientations of the valve. Kg

are values based on results of Gurevich (1965).

2.1.3 Finite element fluld model

In this section the numerical method, used for the discretization of the unsteady
Navier-Stokes and continuity equations, is summarized. It has been implemented in
the SEPRAN software package (Segal, 1984). More details can be found in appendix
D and in Cuvelier et al. (1986).

Flow of an incompressible, Newtonian and isothermal fluid must satisfy the
Navier-Stokes and continuity equations (1.1) and (1.2). To solve the velocity and the
pressure from the momentum and continuity equations for t > t5 in a domain Q with
boundary T', boundary and initial conditions are required. In their general form the
boundary conditions read:
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A or (S-R)-f =0,

[=21

]are prescribed on T for t >t

[ =21

-t or (5-1)-1 =0

with 11 the outward normal unit vector and { the tangential unit vector on I and S the
Gauchy stress tensor. Furthermore as an initial condition the velocity field at t =
must be prescribed: '

U prescribed on Q for t = t;

X: velocity
O: pressure

Modified Crouzeix—Raviart p;— p1

re2.3  Modified Crouzeix ph-p, element, used for spatial discretization of
21
the Navier-Stokes and continuity equations

To obtain an approximation of the velocity and the pressure field within a
two-dimensional domain €2, a standard Galerkin finite element method is applied. A
7-noded triangular Crouzeix-Raviart element, as shown in figure 2.3, is used
(Cuvelier et al., 1986). The basis functions of the velocity are extended quadratic
functions. Velocity unknowns are defined in all the nodal points. Pressure unknowns
are only defined in the center of the element, which are the pressure itself and its
spatial derivatives. The basis functions of the pressure are linear and discontinuous
over the element boundaries. The advantage of this approach is that per element the
continuity equation is satisfied. The velocity unknowns and the pressure derivatives
within the centroid of the element are eliminated by consideration of the
Navier-Stokes and continuity equations element-wise. This leads to a total amount of
unknowns per element of 13. It can be shown that the element satisfies the
Babuska-Brezzi condition (Cuvelier et al., 1986). The accuracy of the velocity is of
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order Ax3 and that of the pressure of order Ax2, with Ax a characteristic element
size. An example of a typical element mesh is given in figure 2.12.

The spatial discretization leads to a set of nonlinear first order differential
equations:

Mi+[S+Nwu+LTp=1+b (2.20a)
Lu=0 (2.20b)

where y contains the velocity and p the pressure unknowns in the nodal points. M J
represents the local acceleration term, LTQ the pressure gradient term, Su the
viscous term, N(uy) u the convective acceleration term and Ly the velocity
divergence term. f and b represent the volume and boundary forces, respectively. In
order to reduce the number of unknowns, a penalty function method is applied. The
discretized continuity equation is replaced by:

Lu=eMyp T (221a)
or

p=iM MLy (2.21b)

with Mp the pressure matrix and € a very small parameter. Substitution of this
relationship into the discretized Navier-Stokes equation leads to:

Mi+[S+NWy+ LM Lu=f+b (2.22)

which contains only unknowns for the velocity. The matrix LTM")’L is singular (see
appendix C). This singular matrix is multiplied by the large parameter 1/e and added
to the regular system matrix. Therefore, for too small values of € the total system
matrix becomes singular, whereas for too large values of this parameter the
approximation of the continuity equation is not accurate enough. For the problems
solved in this study the value of € was chosen to be £=10'6, which leads to values of
€ |lp|l of 0(10%) in the dimensionless formulation which is in the order of the square
root of the machine precision yn, 1 = 10715, More detalils are given by Cuvelier et al.
(1986).

The local time derivative in (2.20) is approximated by the generalized
trapezoidal rule:
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n+1_,n
. n+9 - u_ 2 23
g AT (2.23a)
g0 g™ 4 (1-0) " (2.23b)

in which g“ is an abbreviation for u(nAt) with At the time step. If 8 = 1 the method is
equivalent to the Euler-implicit scheme, which is unconditionally stable and first order
accurate in time. If 8 = 0.5, the method is a Crank-Nicolson scheme, which is also
unconditionally stable and second order accurate in time. Although the
Crank-Nicolson scheme has the highest order of accuracy, in this study 6 = 1 will be
used. The motivation is found in the observation that, for reasons which are not
completely clear yet, the corhputed pressure shows small oscillations around the
correct values if a Crank-Nicolson scheme is used (van de Vosse, 1986&1987).
Some attention to this phenomena will be paid in section 2.4. The restriction to a first
order scheme is not inherent to the fluid-structure interaction algorithm itseif (there
are no objections for a higher order scheme), but is a result of a limitation of the fluid
solver.

The nonlinear convective term N(u) u in (2.20a) is linearized by a Newton-
Raphson iteration scheme:

N(yi+1) ';_li+1 - J(gl) gi+1 - N(gl) yi ) (224)
with i the index of the iteration step and J(u) the Jacobian matrix of N(u) u.
Substituting equations (2.21), (2.22) and (2.23) into (2.20) leads to the final set of
equations:
[M/At +S+ J(gmhi) + %LTMF-,IL] 9n+1,i+1 -
M/At yn § N(ym1,l) 9n+1,i 4 !n+1 + 9n+1 (225)
At every time step a full Newton-Raphson iteration is carried out until

i llu* !l < Snewton (2.26)

with 5newton=1o_6' At every iteration step the system (2.25) is built and solved. The
condition of the system matrix is bad, due to the use of the penalty function method.
So without preconditioning, iterative methods are not suitable for solving the system
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of equations. Here, a direct solving technique is used. The system matrix is
asymmetric due to the contribution of the asymmetric convective matrix N. Therefore,
symmetric solvers like LDLT- and GGT-decomposition of the system matrix are not
suitable here and one is forced to use an asymmetric LU-factorization technique
(Cuvelier et al., 1986). Attempts have been made to reduce the number of iteration
steps but experiments with simplified Newton schemes, when the Jacobian matrix is
not updated every iteration step, did not result in a decreasing amount of computing
iime.

After convergence the pressure at t, ., in the centroid of the element is
computed from (2.21b) and its derivatives from the Navier-Stokes equation (Cuvelier
et al.,, 1986). The normal and tangential stresses are interpolated to the element
vertices. The total fluid moment acting on the valve is obtained by integrating the
local stress over the valve. Since the stresses are known to vary linearly over each
element, the fluid moment is integrated exactly (at least within the accuracy of the
finite element discretization) in an analytical way.

As initial condition, the steady state solution for a fully opened valve is taken.
The boundary conditions are prescribed according to figure 2.4. At the entrance, a
fully developed parabolic axial velocity profile is prescribed and the radial flow is set
to zero. The entrance channel is chosen to be long enough to guarantee a full
development of the unsteady velocity profile. This fully developed entrance condition
is used, although it does not correspond to the physiological one, since it facilitates
the experimental verification. As contact condition on the vaive, the fluid velocity is
set equal to the local valve velocity, determined from the actual valve position and
that at the previous point of time. At the outlet a stress free flow condition is
prescribed.

u,=0, u=0.

Il
O O

C c
=
Il
O£
c/c
|3
on‘_a
H
Q Q
2

u=0, u=0

figure 2.4 Boundary conditions applied to the fluid
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2.2 Structure model

The aortic valve is modeled as a two-dimensional chain consisting of a finite number
(n) of rigid segments, with one degree of freedom each: their angle of rotation (figure
2.5). In the special case when n=1, the valve is completely rigid, rotatable only
around its point of fixation. The following forces and moments are acting on the
segments: buoyancy force, fluid force and bending moment in the contact points
(figure 2.6). In figures 2.7 and 2.8 some segment quantities are defined. The inertia
of the valve is neglected.
At each point of time a segment must satisfy the equilibrium conditions

Tt + o + T + fix = 0 (2.27a)

LN R | | 2.27b

hyt * thya + Tgy + Ty = (R&th)

(fgylg + fhyal) €S, + (g + fhyohsing, +

miq+mip, +mi=0 (2.27¢)

with fg the buoyancy force ,f; the fluid force, f,, the hinge force respectively. | is the
length of the segment and Ig the position of the center of mass. Index i refers to
segment i, subscripts x and y refer to the horizontal and vertical directions, whereas
1 and 2 refer to the left and right edge, respectively. m} denotes the moment about

the contact point with segment i-1 due to the fiuid flow. m is the bending moment in
the contact points. The components of the buoyancy force are given by

fsi,y =% | cos ¢
f&x =0 (2.28)

with y the effective weight per length. For the bending moment in the contact points it
is assumed that it can be described by

. P
mp = 2 Balero.)* (2.29)

The parameters ¥, Igi and ﬁki will be determined experimentally, accompanied with
some additional assumptions. This will be discussed in chapter 3. The fluid forces
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figure 2.5 Definition of the geometry of a segmented valve

fbuoyan(:y

m
bending

figure 2.6 Forces acting on a valve
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figure 2.7 Definition of some parameters of a rigid valve

figure 2.8 Definition of forces, acting on a segment of a segmented valve



Physical mathematical models 2.15

and moments must be calculated by one of the fluid models from section 2.1. On the
segment edges the contact conditions

o = -fhk] (2.30a)
fhy2 = g1 (2.30b)
mip = -mi+1 (2.30c)

ére imposed. The boundary conditions for segment n

flo=0 (2.31a)
fiy2 =0 (2.31b)
ml =0 (2.31¢c)

complete the set of equations. For an arbitrary set ¢; (i=1,n) the system is not in
equilibrium. For those states a residual moment m}es per segment is defined as

Migs = (llgi + Thyt) 005, + (L 1oi + Hi,o) sing,
+ My + My + m} (2.32)
The unknown contact forbes can be calculated in a recursive way:
it = et = e - e (2.332)
fhyr=fed -1 - (2.33b)

Starting from the valve tip, where boundary conditions (2.31) can be applied, the
contact forces ft']x and f,‘1y can be calculated for every segment with (2.33), which in
turn can be substituted in (2.32). This leads, together with (2.29) and (2.30) and
expressions for the fluid moment and forces from section 2.1, to n equations with
unknowns ¢, (i=1,n).

The desired equilibrium state is achieved when all the residual moments (2.32)
are zero. This state cannot be found directly because the resulting set of equations
can be strongly nonlinear. When a finite element fluid model is applied it is even
essentially impossible, since no explicit expression for fiuid forces and moments can
be given. Therefore, an iterative solving procedure must be used. This is subject of
the next section.
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2.3 Fluld-structure Interaction models

In sections 2.1 and 2.2 several models for fiuid and structure have been introduced.
They have been treated separately, without taking into account the interaction
between them. In this section two models are presented which provide for the
interaction between fluid flow and structure motion. The first one is suitable for a rigid
valve, which has only one degree of freedom. In that case, the valve equilibrium
position is equivalent to the root finding of a nonlinear scalar equation. This approach
is not suitable for a segmented valve, which has more degrees of freedom.
Therefore, the equilibrium search is reformulated as a minimization problem. Both
methods are iterative ones and make an explicit attempt to combine robustness with
efficiency.

2.3.1 Single degree of freedom

In section 2.2 the search for the equilibrium position of a rigid valve in a fluid flow is
reduced to the root finding of a nonlinear function with one independent variable, say”

m(¢) = 0 | (2.34)

Since the function is nonlinear, an iterative method is necessary which is expected to
result in a sequence Por-r®j with given initial estimate ¢, and

li = 2.
j_I’IQI;I (pi a (2.35)
m(a) =0 (2.36)

In general, m(¢) may have more roots. If m has only one root then the equilibrium
position of the valve is unique. For the solution of such nonlinear scalar equations, a
number of methods exists. An important feature of such methods is the order of
convergence p defined as the largest value of p for which the limit

. |9iq-2]
!lm——J——p+ =K 0<k<1 (2.37)
e |9j-af

exists. If p=1 and k > 0 the convergence is linear, if p=1 and k=0 or if p>1 it is
superlinear. Another important consideration is the fact that the derivative of m with
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respect to @ can not be evaluated. A very suitable method for this study is the
method of van Wijngaarden & Dekker, later improved by Brent (1973). For brevity it
will be referred to as Brent's method. In this study, a modified version of the source
code, supplied by Press et al. (1985) is used.

Brent's method guarantees global convergence to a root of arbitrary nonlinear
equation. It is never significantly slower than the classical bisection method (p = 1
and k= 0.5). Moreover, a fast superlinear convergence is obtained close to roots of
continuously differentiable functions (p=5(1+,/5) = 1.62). Essentially, the method is a
combination of bisection and successive interpolation. In this way it combines
robustness with fast convergence. A brief outline of the method is given in appendix
E. A discussion of its merits is given by Press et al. (1986).

Brent's method guarantees convergence only if the root is initially bracketed.
That leaves the problem how to bracket it. There is no general solution for this
problem. The strategy of choice heavily depends on the features of the function
involved. Important factors are the bounds of the regions on which the function is
defined, the existence of multiple roots and singularities and the computational effort
required for the evaluation of the function.

The fluid moment is expected to be a regular smooth monotonic function of
position. Furthermore, one bracketing interval is a priori known: the equilibrium
position must be somewhere between the fully opened en fully closed position. So, at
first sight the problem is simple: use Brent's method with both exireme positions as
starting interval. However, some practical points and some principal problems must
be considered.

The motion of the valve can be expected to be a smooth function of time, since
the physiological flow rate variations are also smooth. So, the equilibrium position of
the previous time step will be a fair estimate for the solution on the next. This will
improve the convergence of the Newton iteration for the fluid flow, since it is very
sensitive to the quality of the initial estimate. On the other hand, it will also speed up
the Brent iteration procedure for the valve position, since close to the root
superlinear convergence may be expected. In order to take advantage of the
computational work done in the previous time steps, it is important to avoid
unnecessary jumps far from the solution. It is especially important to limit the
evaluations for a relatively far closed valve, since the further the valve is closed the
harder the fluid flow can be solved. Then, finer element meshes and more Newton
iteration steps are necessary. On the other hand, care must be taken that the
bracketing is carried out fast enough, otherwise the bracketing of the root would be
far more expensive than the final convergence to it. 'Going downhill with a



- 218 On the analysis of moving heart valves

sequence of careful, small steps can easily be too costly.

The bracketing method which is applied in this study is a restricted
extrapolation. As a first estimate the solution of the previous time step Is taken. The
sign of the moment is tested and as a second estimate a trial step is taken in the
direction in which the valve is being pushed. Then a linear extrapolation is performed
and the next estimate is taken somewhat further than the zero crossing of the
extrapolating line, in order to increase the chance that the root is bracketed indeed.
Both the extrapolating step and the extrapolated position are restricted to predefined
limits. Successive linear exfrapolation is performed until the root is bracketed. The
bracketing and Interpolation process is illustrated in figure 2.9.

fix} —>

; Initial estimate

Trnal step

Restricted extrapolation
interpolation

Bisection

Interpolation

(SR LN N S N

figure 2.9 Diagram of the bracketing and interpolation procedure, used for
the convergence to the equilibrium position of a rigid valve
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2.3.2 Multiple degrees of freedom

The set of equilibrium conditions for a multi-segment valve (section 2.2) results in a
set of n nonlinear equations of n unknowns ;. This set of equations is solved by
reformulating the problem as a nonlinear least squares problem. Define a residual
moment '

n
re) = iLm%(gp)- @ = [Pys®] (2.38)

where r is total residual moment to be minimized and m; the moment, acting on
segment i, which is a function of a position set ¢. Once a minimum of r is found
which equals zero, ¢ contains the equilibrium position of the valve segments and
therefore of the valve itself. The segment moments m; depend on all @,,...¢,. In
general no explicit relation for this dependence can be given, especially not when the
finite element fluid model (section 2.1.3) is used. A consequence is that derivatives
cannot be calculated. Therefore, a method must be used which does not require the
evaluation of derivatives. A very suitable nonlinear least squares method for this
study is Powell's hybrid method (Powell, 1970, implemented in the NAG-library).

Since the problem is nonlinear, the method is an iterative one. Essentially, it is
a combination of the classical Gauss-Newton and steepest-descent methods. The
Gauss-Newton method converges superlinearly close to minimum, but far from the
minimum the convergence can be poor or even absent. The steepest-descent
method is much more robust, but its convergence is in general slow. Each next
iteration step is a mixture of a Gauss-Newton step and a steepest-descent step. This
mixture is controlled by a comparison of the actual reduction, obtained in the
previous iteration steps, and the predicted reduction, assuming the residual to be
quadratic. If the progress is poor, the steepest-descent step is favored, otherwise the
Gauss-Newton step is. At the start of the iteration, the derivatives of the segment
moments with respect to the segment positions are approximated by finite
differences. Later, the derivative information is updated, using the function
evaluations only, by assuming that the segment moments m; depend linearly on ¢
(Broyden’s rank-one update).

Like Brent's method (section 2.3.1), Powell's method combines a robust
convergence far from the equilibrium position, with a fast, superlinear convergence
close to it. The well-known Newton-Raphson method for the solution of sets of
nonlinear equations lacks this type of robustness and is therefore not applied here.
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figure 2.10 Flow chart of the fluid-structure interaction algorithm for each
timestep
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More details of Powell's hybrid method are given in appendix E and in Powell (1970)
and Scales (1985).

Notwithstanding the robustness of Powell's hybrid method, occasionally it fails
to find the equilibrium position. In these cases, a new initial estimate is generated
and the iteration process is restarted.

2.3.3 Summary of algorithm

A summary of the resulting algorithm is given in the flow chart of figure 2.10. It is
valid for both the rigid and segmented valve.

At the start of each time step some initializations are performed. As an initial
estimate for the valve position the position at the previous time step is taken. Then,
the finite element mesh is updated and the fluid boundary conditions at the
fluid-valve contact surface are updated. The valve velocity is obtained from a
straightforward finite difference approximation using its positions on the previous and
the current timestep. The normal fluid velocity at the contact surface is set equal to
the local valve velocity. The tangential fluid velocity is set to zero.

Next, the fluid velocity field is solved. Since this is a nonlinear problem, a
Newton-Raphson iteration is used. If the velocity field is known, the pressure and
shear stresses in the element centroids are computed and interpolated to the
element vertices. The fluid moment acting on each segment is obtained by
integrating the fluid stresses. Then it is checked whether they are in equilibrium with
the bending and buoyancy moments. If not, a new valve position estimate is
generated using Brent's method or Powell’s hybrid method. This is proceeded until
the valve is in equilibrium. Then the algorithm proceeds with the next timestep.

2.4 Numerical tests

In this section some aspects of the accuracy of the solution and of convergence and
efficiency of the methods are considered.

2.4.1 Finite element mesh

The spatial discretization of the fluid domain into finite elements introduces a
truncation error for the velocity solution which is of order (Ax)P with Ax a
characteristic element size. If the mesh is refined, so that Ax decreases, the solution
of a discretized linear system is expected to converge to the exact solution according
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to

ug- u
lim M = 2P (2.39)
Ax=10 [lup- uyll

with u,=u(Ax), u,=u(Ax/2) and u,=u(Ax/4) and || || some norm. In order to verify the
convergence, as norm a discrete L,-norm is used, according to

n
2

PTE
lull = ¢=0—""2 (2.40)
with n the number of degrees of freedom. Figure (2.11) shows two of the element
meshes which are used for this verification. The element distribution is approximately
equidistant and the elements are refined by a factor 2 in each direction at each
refinement step. Tables 2.2 shows that the velocity indeed converges if the mesh is
refined, with p = 2.1. Table 2.3 shows that the fluid moment converges with p = 1.4.

(a)

®)
===
I
=
figure 2.11 Finite element meshes used for checking the convergence in the

element mesh (a) reference mesh Ax (b) refined mesh Ax/2

The difference between the velocity solution on the coarsest and that on the
finest mesh is only 0.3%, so the coarse mesh is expected to give results for the
velocity field with sufficient accuracy for the purpose of this study. This is not true for
the fluid moment. The differences between the solution obtained with different mesh
distributions increases to 26% at Re = 500, probably due to discretization errors. The
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use of a very fine element mesh is not acceptable since it requires an amount of
computing time which is too large for an application combined with the iterative
fluid-structure interaction algorithms. The accuracy of the coarse mesh can be
improved by choosing the element distribution according to figure 2.12 while keeping
the number of unknowns approximately equal. The difference between the fluid
moment of the optimized mesh and the finest mesh (Ax/4), which is taken as the
reference case, is -0.2% at Re = 100, 4% at Re = 300 and 9% at Re = 500 (see
table 2.3). This suggests an acceptable accuracy for the optimized mesh at low
values of the Reynolds number, but some care must be taken at higher values. In
chapter 4, the computation of the fluid moment will be validated by a comparison with
experimental data.

||g1 I 0.7448665
||92|| 0.7430119
||g4|| 0.7426367
||g1-92|| 0.0126023
||92-g4|| 0.0029955
p=2.07 —)
table 2.2 Convergence of velocity if mesh is reﬁned_ (u4: velocity from
standard characteristic mesh size Axg; ug: Ax = Axg/2; uy:
Ax = Ax /4)
Re=100 Re=300 Re=500
M4 0.70602 4.95348 13.19103
Mg 0.66355 4.44402 11.22894
My 0.64762 4.18953 10.44877
P 1.42 1.37 1.33
Mo 0.64632 4.35066 11.38194
table 2.3 Convergence of the fluid moment my if the mesh is refined

isotropically (m¢,: standard characteristic mesh size Axs; Mo
Ax = Axs/2; Mgy Ax = Axsl4) and the fiuid moment my, resulting
from the optimized mesh



2.24 On the analysis of moving heart valves

figure 2.12 Optimized finite element mesh, used in the remainder of the
study

2.4.2 Time discretization

The time integration is tested for the situation of a rigid valve in a fixed position when
flow rate is pulsatile. First, the velocity field is solved and then the fluid moment is
computed by integration of the pressure and shear stress over the valve. Figure 2.13

shows the fluid moment obtained by the Euler-implicit and Crank-Nicolson methods
for two different time steps.

Fluid moment on a fixed valve
Pulsatile flow

0.20
0.10
— =1
& At=025
£ 0004 o= 1
o At=0.125
c !
ow =05
g -0.10 | At=0.125
= 0=05
£=0.25
-0.20 f
-0.30
o 1 2 3 4 5
Time (=)
figure 2.13 Numerically computed moment on a fixed valve due to a

pulsatile flow rate as a function of time for different time
integration parameters

As mentioned before, the implementation of the Crank-Nicolson method in the
finite element model exhibits oscillations in the pressure. For a small timestep

(At=0.125) the oscillations are small but significant. For a somewhat larger timestep
(At=0.25) the course of the pressure starts smooth, but after the sharp dip of the
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deceleration phase, a large oscillation is initiated which continues during the
computation (in this case the first computed period is shown). The origin of these '
oscillations is not yet fully understood. It is assumed that they are caused by the use
of the penalty function method. Small fluctuations in the velocity solution which occur
during the computation can not be eliminated or damped by the Crank-Nicolson
method. These oscillations themselves are small. However, the pressure is
computed from (2.21b), so the pressure oscillations are a factor 1/e=10° larger than
those of the velocity. For computation of the fluid field alone, without any
fluid-structure interaction, these oscillations are not troublesome, since they can be
eliminated effectively by applying a two-step method which gives the pressure at the
intermediate time levels t= (n+3)At (van de Vosse, 1987). In cases with
fluid-structure interaction, this two-step method can not be applied since the fluid
moment, and therefore the fluid pressure, at the time levels t = (n+1)At are required.

If the Euler-implicit scheme is used, no oscillations are observed. A slight
difference occurs if the time step is changed, indicating the presence of numerical
damping due to the first order truncation error. Since this difference is small and
since the solution is close to that of the second order accurate Crank-Nicolson
method, the numerical damping is only small here. Therefore, the Euler-implicit
method with At=0.25, is found to be of sufficient accuracy for this study.

2.4.3 Convergence

In the algorithm, several iteration methods are used. In this section the convergence
of these methods is verified.

A Newton-Raphson iteration is applied for the linearization of the nonlinear
convective term of the Navier-Stokes equation. Its theoretical order of convergence,
as defined by equation 2.37, is p = 2. The actual convergence may be judged from
the analysis of the behavior of the expression

o 4l
lim 70+ 7I+17 o

i (2.41)
e ;1P

with || || chosen according to (2.40). p is equal to the slope of a linear fit in a plot of
I [ gi|| against "”j 2 Y 11l on a log-log scale. The convergence process is shown
in figure 2.14. A superlinear convergence is observed, with a convergence rate close
to the theoretical expected one, until the subsequent difference between two iteration
steps is decreased to about 10°. Due to the truncation errors in the finite element
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discretization and to the finite machine floating point precision (10715) the solution
does not converge any further. In the remainder of this study, the Newton iteration is
stopped when the difference between the solutions of two successive iteration steps
is less then 1076, since this appears to yield a sufficient accuracy.

Convergence of iteration
Newton—Raphson

-2t

-
(: L] result
o
o) | —— theory
8 -6
=]
8t =4
*®
-10
-10 -8
“logliy,,,—u)l
figure 2.14 Convergence test of the Newton-Raphson iteration method,

which is applied to solve the set of finite element fluid equations
(steady flow, Re=100). j corresponds to the iteration index.

The order of convergence of the Brent iteration is expected to be
approximately that of the successive linear interpolation method (secant method), i.e.
%(1+J5)= 1.62. The actual convergence is shown in figure 2.15. First, the
convergence is checked for the Brent iteration in combination with the analytical
quasi one-dimensional fluid model, whose solution is not subjected to truncation or
discretization errors. The convergence continues until the difference between two
successive iteration steps is in the order of the machine precision. The order of
convergence is very close to the theoretical one. If the Brent iteration is used
together with the finite element fluid model, the difference between successive
iteration steps can not be further decreased than about 1078, which is approximately
the square root of the machine precision. The convergence process is slightly slower
than for the analytical fluid model. Especially, beyond a subsequent difference of 107
the convergence becomes slower. In this study, the Brent truncation criterion is
chosen to be 1076,
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Convergence test of Brent’s method, which is applied to find the
equilibrium position of a rigid valve, combined with the quasi
one-dimensional analytical and finite element numerical models
(steady flow, Re=100). j corresponds to the iteration index.

Convergence of iteration
Powell hybrid
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Convergence test of Powell’s hybrid method, which is used to
find the equilibrium position of a segmented valve (4 segments)
in combination with the finite element fluid model (steady flow,
Re=100). j corresponds to the iteration index.
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The convergence behavior of Powell’s hybrid method is similar to that of
Brent's method (figure 2.16). After some initial iteration steps, required for the
estimation of the Hessian matrix (j=1,4, not shown in figure 2.16), the convergence is
superlinear until a subsequent difference of 1078 (the square root of the machine
precision) is achieved. After this point the convergence slows down. The subsequent
difference can not be diminished further than about 10710, As a truncation criterion
108 is chosen.

Iteration efficiency Brent

Steady flow
30 £p=0.3
3
2
]
3
2
°
o
o
€
2
root root
bracketing approximation
figure 2.17 Cumulative number of Newton iterations required by the finite

element fluid model in order to find the equilibrium position of a
rigid valve in a steady flow for various bracketing strategies
(A@:trial step, f: extrapolation factor, Re=300, first estimate
¢=0.0,, equnllbnum position =0.2380, truncation criteria:

8rewton= 1074 sb,emﬂo“‘)

If the finite element fluid model is applied, a Newton iteration is required for
each Brent or Powell iteration step, i.e. for each position estimate. In this study, the
computation time is dominated by the solving of the fiuid- equations. Therefore, the
computational effort is directly proportional to the number of Newton iterations per
timestep. Figure 2.17 shows the number of Newton iterations in case of a steady
flow for various bracketing strategies. In this case 6 position estimates and between
16 and 26 Newton iteration steps are required, which are typical numbers for steady
flow cases. From figure 2.17 it is evident that the required number of position
estimates for the root bracketing equals that for the accurate approximation by
Brent's method. Nevertheless, most computational effort is used for the root
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bracketing. The total effort depends quite strongly on the bracketing procedure. If a
large arbitrary estimation step A¢=0.3 is chosen, 26 Newton iteration are required.
This is decreased to 16 if the step is chosen as Ag=107, which is a gain of 38%. So
a careful trimming of the bracketing parameters can reduce the computational effort.
If Brent's method is applied to a case with a pulsatile flow rate, as shown in
figure 2.18, the result is similar to that of the steady flow case. About 20 Newton
_iteration steps per timestep are required. The trimming of the bracketing parameters
is somewhat more complicated, since the valve displacement per timestep varies
strongly during the flow cycle. As might be expected, the computational effort is
smaller if the valve velocity is modest (during diastolic phase and in maximal opened
position, which is just after the flow rate maximum as will be shown in chapter 4)
than when the valve is accelerated (during fiow acceleration and deceleration).

Iteration efficiency Brent
Pulsatile flow

40

number of Newton iterations

Time (=)
root root
bracketing approximation
figure 2.18 Cumulative number of Newton iterations required by the finite

element fluid model in order to find the dynamic equilibrium
position of a rigid valve in a pulsatile flow (Rz:saw, St=0.69,
truncation criteria: &,gyton= 10" Spyem=10"C, initial bracketing

step A@=0.03, zero bending moment and buoyancy force)

Figure 2.19 shows the computational effort if Powell's hybrid method is applied.
it appears that for a valve of only one segment (which is in fact a rigid valve)
Powell's minimization method is only slightly less efficient than Brent's root finding
method. Powell's method requires 11 position estimates, whereas for Brent's method
only six are sufficient, but the amount of Newton iterations is comparable. This is in
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contrast to what was expected, since Brent's method is able to use the signs of the
evaluated function values, thus having more information available than Powell’s
method, which takes only the magnitude into account. Apparently, Powell’s method
behaves more subtle if the iteration process is still far from the solution. The
maximum step which might be taken is carefully controlled by the algorithm itself,
resulting in smaller steps than the bracketing method used for Brent's method. The
smaller the position step is, the better is the initial estimate of the fiuid velocity field
for the Newton iteration process. Powell’'s method requires about 1.7 Newton steps
per position estimate, whereas the bracketing+Brent method requires at least 2.7
steps. The computational effort increases with the number of valve segments. For
one segment 11 positions estimates and 19 Newton steps are used, whereas a valve
of sixteen segments needs 52 position estimates and 70 Newton steps. This
increase is fairly modest and is less than for various classical methods, for which the
number of function evaluations (i.e. position estimates) is approximately proportional
to the number of degrees of freedom (number of segments) (Box,1966)

Iteration efficiency Powell

Steady flow
Powell B newton
iterations iterations

number of iterations

1 2 4 8 16
number of segments

figure 2.19 Cumulative number of iterations required to find the equilibrium
position of a segmented valve in a steady fiow for various
numbers of segments (Re=300, first estimate ¢=0.0,, equilibrium
position (=0.2380, truncation criteria: &g 0= 104,

5powell=‘ 0¥
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2.5 Discusslion

Each of the interaction methods for a rigid or a segmented valve can be combined
with a particular fluid model, thus resulting in a variety of model evolutions. As will be
obvious and as will be shown in chapter 4, the finite element method yields the most
versatile and accurate fluid model. The computations are performed on an
Apollo-DN3000 minicomputer and on an Alliant FX/4 mini-supercomputer with two
parallel vector processors.

The interaction algorithm inherently satisfies the physical equilibrium conditions
and the contact conditions at the fluid-structure interface. Since the fluid flow is
integrated in time with an unconditional numerical stability and since the structure at
the end of each timestep is guaranteed to be in equilibrium with the fluid, an
unconditional numerical stability for the total algorithm may be expected.

In this study it is assumed that the equilibrium situation of the fluid-structure
system is a unique one. In general, this condition is not necessarily satisfied. The
structure may have more than one (local) equilibrium position or bifurcations in the
fluid or structure solution may occur. Since the Reynolds number is rather low
(Re £ 1000), fluid flow bifurcations are not expected. The valve is always exposed to
external fluid stresses, so it is likely that the solution of the structure will be well
determined. The initial estimate at each timestep (the solution at the previous one)
will be not far away from the equilibrium position, since the fluid moment is
continuous in time. Therefore, if a minimum of the residual moment is found (which
equals zero), it is very likely that it is indeed the correct equilibrium position. The
existence of the solution is in the problem at hand not a point of discussion, since it
is known that the valve must be somewhere between the fully opened and fully
closed position. Because of these considerations, in this study no special care is
taken to avoid the problems mentioned above.

The applied trial and error mesh optimization method yields an element
distribution which is approximately optimal for the specific geometry and flow under
consideration. A more advanced optimization method would be an adaptive mesh
strategy, in which the mesh is adapted in every situation in such a way that the
spatial discretization error is distributed homogeneously over the domain.

In the structure model, elastic, visco-elastic and inertial effects are not taken
into account. This simplification is not inherent to the algorithm, but it is induced by
the subject of study, in which these phenomena are not relevant. Elasticity and
visco-elasticity can readily be incorporated in the structure equilibrium equations. If a
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more sophisticated model is required, the equilibrium of the structure may be
evaluated by a finite element method. If inertial effects are relevant, the equilibrium
condition of a segment can be generalized according to the familiar equation

Im=j@ (2.42)

with j, the moment of inertia of the valve and @ the angular acceleration. The second
order time derivative can de discretized by either

! = [ - 20" + 9T TYAR + O(AY (2.43)

or, if a second order accurate fluid solver is used,

oM = 2g™1- 59" + g™ 1- PVYAR + O(AL) (2.44)

These expressions can be verified by using Taylor series expansions.

Extension of the analytical fluid models to moving valves can easily be
developed, especially with respect to the quasi-one-dimensional model. Since this is
not of primary interest in this study, no further attention is paid to such extensions.



3. EXPERIMENTS

The theoretical models, introduced in the previous chapter, will be validated by
means of a comparison of theoretical predictions to experimental results. In sections
3.1 through 3.3 the experimental setup Is described. Section 3.4 gives the results of
some experimental tests. Finally, the estimation of the valve parameters and its
impact on the accuracy of the computed vaive equilibrium position are described in
sections 3.5 and 3.6.

3.1 Experimental setup

The experimental setup is shown in figure 3.1. The flow system consists of three
reservoirs and a steady pump, maintaining a constant pressure difference. The flow
rate in the actual model is regulated by an electrically controlled motor valve. Behind
the valve a diffusor is present in order to break down vortices. The inlet length before
the model is long enough to ensure that the flow is flilly developed and laminar, in
both steady and unsteady cases. As fluid water is used, to which 0.05% of an oil
emulsion (Dromus Shell, normally used as cooling fluid during drilling and milling) is
added as seeding for laser Doppler measurements. 0.0002% CuSO, is added to
prevent the growth of micro-organisms.

R
diffusor
T motor model
valve
) pump l
&

figure 3.1 Diagram of the experimental setup
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force transducer

M pinhole

float
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figure 3.2 Detail of the experimental rigid valve model. A similar setup is
used for a segmented valve

figure 3.3 Three-dimensional sketch of the experimental aorta model (sizes
are in mm)
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The aorta model is shown in some more detail in figure 3.2. Valve, aorta and
sinus can be recognized. A sketch of the three-dimensional shape is given in figure
3.3. The channel height is 20 mm. The ratio of height to depth is 1:6 in order to
create a situation which is approximately two-dimensional.

In the remainder of this study, two different experimental situations will be
considered. The first is that of the valve held in a fixed position. In this situation a
force transducer is mounted to the valve, which measures the forces acting on the
valve by the fluid flow, the buoyancy and/or the membrane. An adjustable float
prevents the force transducer from being overloaded. Especially in the unsteady flow
case, some leakage flow through the connection hole in the top of the sinus is
present. In order to minimize this flow, an adjustable pinhole is present. The diameter
of the transducer rod is 1.5 mm, the diameter of the pinhole 1.9 mm. This choice is a
compromise between the minimization of the leakage flow at one hand and of the
friction between rod and pinhole at the other. By measuring the rise of the fluid level
in the vertical tube, it is estimated that the leakage flow rate is about 0.2-0.4% of the
aorta flow rate.

The second experimental situation is that of a valve which is allowed to move
freely in the fluid. In this case the valve will always be in dynamical equilibrium with
the fluid. The position and motion of the valve will be registered.

transducer

sheet
l segment marker

figure 3.4 Detailed sketch of the rigid and segmented valve models (sizes in
mm)
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The rigid valve is constructed from two slices of polystyrene attached to a
silicon rubber sheet (see figure 3.4). The part of the sheet which sticks out on the
back of the valve is used to fix the valve to the aorta wall. The fixation angle is 0.785
rad (459). In one of the slices a cavity is machined out in order to make the resultant
density of the valve less than that of water. The density of the valve is about 95% of
that of the fluid. The tip of the valve is sharp (tip angle is 30°) in order to assure that
the flow always separates at the tip. The length of the valve is 27.7 mm,the thickness
is 2.1 mm and the width is 119.2 mm, leaving a slit of 0.4 mm between the valve and
the front and rear channel walls. The force transducer rod can be fixed to the valve
by a hinge at a distance lf = 12.7 mm from the edge where the valve is connected to
the wall. The transducer fixation point is 10 mm from the symmetry plane of the aorta
model in order to minimize the flow disturbances in the central part of the flow
channel. The relationship between the measured force f and the moment m is given
by

m = {l¢ cos ¢.

The segmented valve is constructed from four slices of polyethylene, fixed on
the top side of a silicon rubber sheet, as shown in figure 3.4. The length of each
slice is 7.0 mm, the total length of the valve is 30 mm. The thickness is 1 mm and
the width is 119.0 mm. The density of the polyethylene is about 0.94 kglm3. On
every segment two markers of retro-reflective material are placed. The segments are
trapezoidal in order to prohibit contact between the segments when the valve is
moving. The tip angles are 45°. The valve is fixed to the aorta wall at an angle of
0.392 rad (22.59). _

Apart from the more elaborated experiments with the rigid and segmented
valves, an indicative experiment is performed with a flexible valve consisting of a
very thin (3um) polyethylene sheet (110 x 30 mm2).

3.2 Flow characterization

The inlet flow is characterized by the Reynolds number Re, the Strouhal number St
and the shape of the flow rate curve as a function of time. Re and St are defined as

u.h
Re=—% (3.1)
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h
St = ﬁ (3.2

with h., the channel height (20 mm) and v the kinematic viscosity. For water, v

equals approximately 108 m?/s. The temperature dependency of v is taken into
account. As characteristic velocity u,, is chosen the mean velocity, averaged over the
channel height, at the moment of maximum flow rate. A typical value for u, is 15
mm/s, which corresponds to Re = 300. This value of Re is chosen, in spite of the
fact that it is much lower than the physiological value (4500), since it can be handled
numerically. Both steady and unsteady flow will be used. In case of an unsteady flow

rate, it will be pulsatile as shown in figure 3.5. This flow rate is determined by
Definition of a pulsatile flow

u:
o
2
e
3
Y
w
0.05 u, A . \
o 1 2 3 4 5 6 7 8
Time (t/7)
figure 3.5 Definition of the pulsatile inlet flow rate as a function of time,

used both for experiments and numerical computations

measuring the axial fluid velocity in the symmetry plane at the inlet and integrating it
over the channel height. Since the flow rate deceleration time is an important
parameter in the valve closure mechanism (van Steenhoven,1979), this time is
chosen as the characteristic time 7. It is defined as the time interval between the
moment the flow rate reaches its maximum and the moment it has decreased to 5%
of its maximum value (see figure 3.5). The length of the period is 107. The moment
of maximum flow rate is defined to be at 27. In this study 7 =1.8s, corresponding to
St = 0.69 at Re = 300. Lower values of 7 could not be achieved due to irregularities
of the speed of the motor valve at low rotation frequencies.
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3.3 Measurement equipment

The local fluid velocity is measured with a standard one-channel laser Doppler
anemometer system (Dantec), consisting of optics, a Bragg-cell to provide a
frequency shift and a frequency tracker. The size of the measuring volume is 0.2 mm
in the direction perpendicular to the model and 0.06 mm in the other directions (0.3%
of the channel height). In steady flow cases, the mean velocity is determined over an
interval of 10 to 100 seconds. If the flow is pulsatile, averaging takes place over 5
flow periods. The resulting accuracy (defined as the 95% confidence interval) of the
velocity is 5-10™ m/s? (3% of the characteristic velocity at Re = 300).

The force transducer is a linear variable differential transformer (T&S FT5A)
with a range of £ 0.05 N. The maximum error is 5-10%N and the frequency band
width is 0-50 Hz. The maximum displacement is 0.1 mm (0.5% of the channel
height). If the valve is held in a fixed position and if the pinhole is removed, the force
transducer does not show a measurable hysteresis. If the pinhole is present, a
hysteresis of 210N is observed, which is less than the maximum error of the
transducer. It is probably caused by a slight friction in the pinhole. The resulting
accuracy for the moment is 6-10 Nm. if the valve is moved from one position to
another the hysteresis is 2.104N, independent of the fact whether a pinhole is
present or not. it is plausible that this hysteresis is caused by friction in the hinge
which connects the valve and the transducer rod (figure 3.4).

The velocity and force data are digitized and read by a micrb—computer, which
also provides the automatic positioning of the laser Doppler system by means of
stepper motors.

The positions of the rigid and the flexible valves are measured by means of a
standard video-system. In case of the rigid valve, the image is projected on a screen,
on which the valve angle is measured manually. The accuracy is 0.4° or 0.007
radians, which is 1% of the valve angle in fully closed position. The position of the
flexible valve is copied manually from a monitor.

In case of the segmented valve, the segment positions are measured with a
digital marker tracking system which is capable to track real-time the motion of a set
of reflective markers. The system consists of a Hamamatsu C1181 random access
camera and a Hentschel 84.330 video-tracking system. In contrast to a conventional
camera, in which repeatedly the full image is scanned, the random access camera is
capable to address directly only specific, relevant parts of the image. Here, these
relevant parts are reflective markers on the valve. Since only a small part of the
image is scanned, a high scanning frequency can be obtained. The random access
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mechanism of the camera is controlled by the tracking system. First, an initial
scanning of the full image is performed, in order to locate the start position of the
markers. Around each marker a scanning window is defined. During the remainder of
the measurement, in which the markers are allowed to move, only these scanning
windows are addressed. After each scanning the marker positions are recomputed
and the scanning windows are moved in such a way that the center of the marker is
placed in the center of the new window. So, at each point in time the image
coordinates of the window coincide with the marker position. These image
coordinates are collected real-time by a micro-computer. Afterwards, the image
coordinates are transformed to the laboratory coordinates. The required
transformation is obtained by measuring the image coordinates of three calibration
markers which are placed on positions in the model whose laboratory coordinates
are well-known. By this strategy errors due to parallax and refraction are
compensated also.

In this study, two markers per segment and four calibration markers are used,
which leads to a total of 12 markers. The scanning frequency is 137 Hz (which may
be higher if less markers are used). The size of the measurement area is
approximately 120x120 mm2. The resolution within each window is 256 x 256
pixels2. The size of a window is 2 % of the measurement area or 2.4 x 2.4 mmZ2. So,
the theoretical resolution is £0.01 mm which still can be improved by averaging over
a number of samples. In practice however, ihe accuracy is less due to noise and
transformation errors. By comparing the measured positions of well defined markers
with their actual positions, the real error appears to be £0.15 mm (95% confidence
interval). This is less accurate than theoretically obtainable. It is expected that the
accuracy can be improved by the application of a more advanced calibration and
transformation strategy, using more calibration markers as applied by Peters (1987).
The resulting accuracy for the segment orientation angle is £0.04 rad (2°).

3.4 Test of experimental model

In the theoretical models, it is assumed that the flow is two-dimensional. By making
the width of the model six times larger than its height, an attempt is made to achieve
a flow which is, at least in a major part of the model, two-dimensional as well. This is
verified by measuring velocity profiles of the axial component along lines, parallel to
z-axis (perpendicular to the symmetry plane of the experimental model) for the case
of a steady flow around a fixed, rigid vaive. The results are shown in figures 3.6 and
3.7.
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Velocity Profiles in z-direction

figure 3.6 Variation of the axial velocity along lines perpendicular to the
symmetry plane of the experimental model. z=60mm corresponds
to the symmetry plane. (Re = 100, @ =12.3°)

Velocity Profiles in z-direction

figure 3.7 Variation of the axial velocity along lines perpendicular to the
symmetry plane of the experimental model. z=60mm corresponds
to the symmetry plane. (Re = 100, ¢ =35°)
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Figure 3.6 shows that when the valve is moderately closed (¢ = 12.3°), the

flow is in a good approximation two-dimensional, apart from the boundary layer. The .-

boundary layer occupies about 15% of the flow channel. If the valve is further closed,
this approximation does not hold anymore. Figure 3.7 shows the situation in which
¢ = 35° and the valve opening is reduced to 2.5 mm. This opening is of the same
order as the total width of the slits between valve and the front and rear channel
walls (1mm). Especially in the sinus and behind the valve, large disturbances of the
. two-dimensionality are observed. Upstream the valve, the profiles are comparable to
the moderately closed case: a flat velocity profile, apart from the boundary layer.
Below the valve, the velocity is high and the boundary layer is very thin. Above and
behind the valve, the velocity profiles are highly irregular: high velocities occur close
to the wall and in the center of the channel the flow is reversed. Flow visualization
with ink injection showed that in this situation a large double helical vortex is present
behind the valve (figure 3.8). Therefore, the flow in the experimental model around a
far closed valve cannot be regarded as being two-dimensional. The validation of the
theoretical models is restricted to cases with a moderate valve closure.

~—~—0
figure 3.8 Sketch of the three-dimensional fluid flow phenomena in the

experimental model
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3.5 Parameter estimation

In equations (2.28) and (2.29) the valve parameters ¥, | and By == )fipi are defined.
7 is the effective weight per length, Igi is the position of the center of mass and ﬂoi'
Bpi are the bending parameters. Estimates and/or assumptions for the parameters
of the experimental valves are required as input data for the numerical models.

An obvious assumption would be to set Bos equal to zero, since in general
there will be no bending moment if ¢, = ¢, ,. Furthermore, since the segments are
symmetrical in a good approximation, the position of the center of mass could be
assumed to be in the middie of a segment so Igi = |/2, with |; the length of the
segment. For the segmented valve these assumptions will be made indeed.
However, since the rigid valve is slightly asymmetric and hollow, the assump_tioh Ig =
I/2 does not hold for this type of valve. Furthermore, since the density of the valve is
very close to that of water, the density difference is difficult to measure accurately.
Several attempts were made to determine y and lg experimentally or to compute
them from the valve dimensions, but the desired accuracy.was not obtained.
Therefore, an alternative approach is chosen. The effects of buoyancy and bending
are combined in one intrinsic valve moment my, according to (2.29) with Bo # 0.
There is no distinction made between the individual contributions of buoyancy and
bending. This strategy does not allow computing the buoyancy force which is needed
in (2.33) to eliminate the hinge forces, but, since there is in this case only one
segment present, elimination is not required, so this does not matter.

The model parameters are determined by measuring the valve moment as a
function of position in the situation that no fluid flow is present. The results of the
measurements are shown in figure 3.9. Some hysteresis is present, which is larger
than the accuracy limit, but significantly smaller than the range of the valve moment
itself. It is caused by friction in the hinge where the force transducer rod is fixed on
the valve. (This type of friction must not be confused with the, much smaller, friction
at the diaphragm.) A linear least square curve fit is applied to determine the valve
parameters. A second order polynom with parameters Bo. B1 and B2 appears to yield
sufficient accuracy.

As mentioned before, for a segmented valve B is set to zero and it is
assumed that I9i= /2. The determination of the other parameters ¥ and B;, ..., Bpi is
more complicated than in the rigid valve case. Since even in the latter relatively
simple case both a direct experimental determination and a computation from the
valve geometry did not yield a sufficient accuracy, no attempt has been made to
repeat this for the more complicated segmented valve. After some trial and error, the
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Experimental valve moment
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figure 3.9 Experimental valve moment at Re = 0 as a function of position.
The dashed line denotes the applied linear least square fit, used
to quantify the valve parameters

following method has been used. Various well-known external loads are applied to
various locations on the valve. These loads may be either small brass weights
placed on top of the valve or small pieces of cork, mounted on the bottom side. The
weight of the messing and cork weights is determined separately with a balance. The
accuracy is +0.03 N. By varying the loads and the location on the valve, the valve is
deformed in ways, which resemble the valve deformation due to the fluid flow.
Totally, 21 situations as shown in figure 3.10a are considered. The deformations are
measured by using the marker-tracking system described earlier. The Ioads and
deformations are substituted in the valve equilibrium equations (2.27), (2.28) and
(2.29), which yields estimations for the yal\)e parameters. The fact that the center of
mass of the applied weights does not coincide with that of the valve segments is
taken into account. A nonlinear least squares method (Gill & Murray, 1978,
implemented in the NAG-library) is applied in order to find the optimal set of valve
parameters. In order to eliminate spurious effects due to temperature fluctuations
and changes in the material behavior,v' the valve parameters have always been
determined just before carrying out the fluid-structure interaction experiments. A set
of eight parameters ¥ and Bﬁ (i=1,4) appears to be the optimal choice. If fewer
parameters are used by choosing y or B, to be equal for all or some segments,'
insufficient accuracy is achieved, whereas a second order approach as in the rigid
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valve case does not essentially improve the accuracy.

In chapter 5 it willlappear that the actual deformations in the fluid-structure
experiments cover only a subrange of the ones shown in figure 3.10a: a modest
valve closure and a concave valve shape. It might be expected that a set of
parameters obtained from a reduced set of deformations, only covering this
subrange, will yield a better agreement between experimental and numerical results.
Therefore, the valve parameters are also determined from the reduced set of six
deformations shown in figure 3.10b, which are in better agreement with the actually
observed deformations.

Valve parameter experiments

Full set Reduced set

figure 3.10 Valve positions used for the experimental determination of the
valve parameters (a) full set of positions (b) set of- positions
reduced to those positions, representative for those during the
fluid-structure experiments

3.6 Error estimates

Errors in the determination of the valve parameters affect the accuracy of the
computed valve equilibrium position. In this section, the influence of this experimental
errors is analyzed.

Since the system equations are nonlinear, coupled and partly given in a
recursive form, a straightforward error propagation can not be applied. The analysis
method which is used in this study is illustrated by figure 3.11. The basic idea is the
simulation of the parameter estimation and equilibrium search procedures starting
from antificially simulated, and therefore well-known, reference cases. The resulting
valve positions obtained from the combination of parameter estimation and
equilibrium search are compared with the reference case, thus giving an estimate of
the resulting error of the complete method.



Experiments 3.13

D <
£ ; simulation
Qw 3 = f I éf
parameter | eauilibrium
estimation c” search
comparison
© ©”
L.
figure 3.11 Flow chart of the error estimation method

First, sets of valve parameters ¢ and valve positions ¢ are chosen. ¢ will be
the set of experimentally determined parameters. For @ a representative selection of
possible valve positions is chosen. For a rigid valve 20 equidistant positions between
¢=0.0 and ¢=0.4 are used and for the segmented valve the positions as shown in
figures 3.10a and 3.10b. Substitution of these sets in the valve equilibrium equation
yields the external forces {, needed to assure the equilibrium of the valve. As in the
real experimental case, the valve parameters g' are estimated from the valve
positions ¢ and the corresponding applied external forces f by means of an
optimization method. To both ¢ and f random normally distributed noises o
are added, simulating the effect of stochastic experimental errors. The standard
deviation of the noise is chosen equal to the half of the experimental error, thus
defining thie experimental error as the 95% confidence interval. With the estimated
parameter set g' and the external forces a new set of equilibrium positions ¢ can be
computed. In this computation the external forces f are the equivalent of the fluid
forces. To these external forces a relative systematic error A; can be added,
representing the effect of numerical errors in the computation of the fluid moment

and &

due the discretization. Finally, the computed equilibrium positions are compared with
the original reference positions. If experimental errors are considered, an estimate for
the standard deviation o of the computed valve position is given by
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o )i:(q;,-qa;)?/n (3.3)

with n the number of positions. The reliability interval for the computed equilibrium
position is defined as twice this standard deviation. The systematic error of the vaive
position is defined as the difference between reference and computed position if only
systematic errors in the fluid moment are considered.

1
€p & Aim Ay
0 0 0 +2.1078
0.007 0 0 +0.001
0 5] 0 10.005
0.007 5 0 10.006
0 0 -0.2 +0.002
o 0 4 -0.01
0 0 9 -0.02
rad 107%N % rad
]
table 3.1 Effect of various errors on the accuracy of the numerically computed

position of a rigid valve. eq, and €& experimental stochastic errors in the
measurement of the valve position and valve force (both are required for
the determination of the valve parameters), Ay systematic numerical
error in the computation of the fluid moment, Aq,: error in the. computed
valve position

Table 3.1 summarizes the results of the error estimation for the rigid valve. if
€ £ and A are all set to zero, the error is about +2. 10 rad due to the truncation
error of the equilibrium search. If also the experimental errors o and g are
considered, the accuracy of the equilibrium position becomes $0.006 rad (0.39),
which is in the same order as the experimental error. The error of the external forces
gives the major contribution. The systematic numerical errors of the fluid moment
have a somewhat larger impact on the valve position. If the relative error A; is +4%
(which corresponds to the Re=300 case in section 2.4.1) the error of the valve

position is -0.01 rad, which increases to -0.02 rad if A;= +9% (Re=500 in section
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2.4.1). For Re < 300 the resulting accuracy is acceptable. The results for higher
values of the Reynolds number are considered to have mainly an indicative value.

Figure 3.12 shows the dependence of the resulting error on the angle
measurement error. For a rigid valve (1 segment), the increase of the resulting error
is approximately linear. The contribution of the measurement error to the resulting
error is negligible indeed. For the segmented valve however, the angle measurement
error is crucial. The resulting error increases very fast with the angle measurement
. error. Furthermore, the angle measurement error is six times larger than in the rigid
valve case. For an angle measurement error of 0.04 rad, the resulting error is
approximately 0.16 rad (99, which is rather large. The extreme sensitivity of the
resulting error is probably due to the fact that an error in one segment directly affects
the force and moment balances of the others. From figure 3.12 it is clear that if the
angle measurement error would be reduced with a factor two or three (which is felt
to be possible by improving the calibration and transformation procedure), the
magnitude of the resulting error would be acceptable. The errors in the external load
and in the lever length appear to have a small or negligible influence on the resulting
error (0.02 rad due to the load error and 10™ rad due to the lever length error).

Error analysis
Angle measurement error
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Angle measurement error [rad]

figure 3.12 Resulting error in the computed valve equilibrium position due to
experimental errors in the position measurement during the
parameter estimation experiments



3.16 On the analysis of moving heart valves




4. RIGID VALVE

The models of chapter 2 are first applied to a rigid valve. The results will be given in
this chapter. They will be validated by a comparison with experimentél results,
obtained by the methods described in chapter 3. Before presenting the results of a
freely moving valve in sections 4.3 and 4.4, the theoretical fluid models and the
experimental methods are tested in a situation in which the valve Is held in a fixed
" position. In this case the interaction model is not yet applied.

4.1 Fixed valve In a steady flow

An essential part of the interaction model is the moment exerted by the fluid on the
valve. The computation of this fluid moment is tested independently from the total
interaction model by keeping the valve in a fixed position. The fluid moment is
computed and compared with the results obtained from the different analytical
models and with experimental data. In this section steady flow situations are
considered. In the next, the flow rate will be pulsatile. Unlike the analytical models,
the finite element fluid model also gives, apart from the fluid moment, detailed
information on the total velocity field around the valve. The computed velocity field
will be compared with the results of laser-Doppler measurements.

il

figure 4.1 Velocity and pressure fiekds around a fixed valve in a steady flow
(Re = 400, @ =15°)

Figure 4.1 gives a typical example of the velocity field and the pressure
distribution for a moderately closed valve (valve angle 150). The flow separates at
the valve tip, forming a wake and a vortex behind it. The flow reattaches at a
distance of about the sinus diameter. The pressure in the sinus is low and
approximately equal to the pressure at the valve tip. These observations correspond
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with the assumptions, made for the quasi one-dimensional analytical fluid model in
section 2.1.1. Because of the flow reattachment, the assumption of a horizontal
streamline far behind the valve in the von Mises model is not completely satisfied.
This reattachment is at least partly caused by a viscous diffusion of the jet-like flow
right behind the valve. Since in the von Mises model no viscous effects are present
(apart from the flow condition at the valve tip), this model ignores this type of
diffusion.

Fluid stress on valve
Steady flow, Re=100, @=15°
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figure 4.2 Numerical normal and shear stresses along a fixed valve due to a
steady flow (Re = 100, ¢ = 15°)

The pressure distribution obtained from the finite element model is shown in
more detail in figure 4.2. At the sinus side of the valve the pressure is constant. At
the aortic side, the pressure is high near the fixation point and drops nearly
quadratically in the direction of the tip. The shear stresses are much smaller than the
pressure. Since also the lever length of the shear- stress is small (approximately the
thickness of the valve), the contribution of these stresses 1o the total fiuid moment is
in this case of minor importance. The numerical computations are performed for two
different element meshes, shown in figure 4.3. In order to compare these
computations with experimental data, in figure 4.4 velocity profiles of the axial
component are given on several locations. The differences between the results of
both meshes are smalier than 1% and are too small to be visible in the figure. In a
good approximation, the shape of the velocity profiles remains parabolic until it
reaches the valve tip. The velocity in the sinus is approximately zero. Behind the
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valve, some reversed flow is present, indicating the existence of a weak vortex. Apart
from the wake, the agreement with the experimental results is close. In the wake, a
slight difference occurs. A close examination shows that in the numerical case, the
vortex is somewhat closer to the valve than is observed experimentally.

(a)

()

figure 4.3 Finite element meshes, used for the computation of the velocity
profiles in figure 4.4 (a) 327 elements, 1139 unknowns (b) 1266
elements, 4729 unknowns

figure 4.4 Experimental () and numerical (-) profiles of axial velocity for
both standard and fine mesh (@ = 12.4°, Re = 100)

Figure 4.6 shows that this discrepancy increases when the valve is further
closed. Now, some differences between the numerical results for the coarse and the
fine mesh (figure 4.5) are present. The coarse mesh causes some oscillations at the
valve tip and somewhat behind it, indicating that it is too coarse for this situation.
These oscillations disappear when the mesh is refined. Also the global form of the
velocity profiles is different for both meshes, but still the results for the fine mesh do
not fully agree with the experimental ones. In chapter 3 it is shown that the flow in
the experimental model is not two-dimensional if the valve is in this far closed
position. Essentially three-dimensional flow phenomena occur in this case.
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(a)

®)
=T
o
figure 4.5 Finite element meshes, as used for the computation of the
velocity profiles of figure 4.6 (a) 310 elements, 1073 unknowns (b)
1270 elements, 4745 unknowns

figure 4.6 Experimental and numerical profiles of axial velocity (¢ = 35°,
Re = 100), (a) 310 elements, (b) 1270 elements (see figure 4.5)

Therefore, at least part of the deviations found will be caused by three-dimensional
effects in the experiments.

The previous comparisons show that for moderately closed valves, both
element meshes yield proper results. When the valve is far closed, the coarse mesh
is not suitable. A finer mesh gives better results, but the computational effort will be
too large, when used in combination with the fluid-structure interaction algorithm.
Also the experimental data are not reliable in this situation. For these reasons, in the
remainder of this study, the valve positions will be restricted to moderate angles (up
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to approximately 200).
The moment exerted by the fluid on the valve as a function of the Reynolds
number is shown in figure 4.7. Experimental, analytical and numerical results are
given. The analytical fluid moments increase essentially quadratic if the Reynolds
number (or better: the flow rate) increases. This follows directly from Bernoulli's
theorem. Also the experimental and numerical results increase quadratically in a
good approximation, thus showing that the viscous phenomena within the fluid have
.only a slight effect (apart from the flow separation on the valve tip), since the
moment would increase only linearly with the flow rate if viscous phenomena were
dominating the flow field. The tendency of all theoretical results agrees well with the
experimental ones. As might be expected, the agreement improves when the model
becomes more sophisticated.

Fluid moment on a fixed valve
Steady flow, ¢=10°
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figure 4.7 Experimental, analytical and numerical fiuid moments, acting on a

valve in a fixed position (@=10°) due to a steady fiow, as a
function of the Reynolds number

The qualitative agreement for the quasi one-dimensional model is good,
suggesting that the most important physical phenomena are incorporated in it.
However, since the relative deviations from the experimental results can raise to
almost 300%, the model is too rough to give precise results. The fact that the inlet
velocity profile is flat (in contrast to the fully developed parabolic one in the
experimental case) is not responsible for the observed deviation. In appendix F it is
estimated that a parabolic profile decreases the pressure gradient over the valve
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slightly (approximately 14%). For the von Mises model, the relative differences are
about 25%. This shows that a large improvement is obtained when two-dimensional
flow phenomena are incorporated. The remaining deviation is caused by the
ignorance of the viscous phenomena and the convection due to vortex formation and
flow reattachment. For the finite element model, the agreement is close. The model
predicts a somewhat larger fluid moment, but the deviations fall within the
experimental accuracy limit. On the other hand, in chapter 3 it has been observed
that the fluid flow in the experimental model is in a good approximation
two-dimensional (for these moderate valve angles), apart from the boundary layers
at the front and rear channel walls, which occupy about 16% of the vaive width. At
Re=500, the experimental fluid moment is about 14% less than predicted
numerically. Therefore, it is likely that the (small) deviation can be explained partly
from this imperfectness of the experimental model. With the applied standard
element mesh the maximum Reynolds number for which the fluid solver converged
was about 500.

4.2 Fixed valve In a pulsatile flow

It the fixed valve is exposed to a pulsatile flow, the fluid moment on it will be time
dependent. The flow rate as a function of time is shown in figure 4.9. The velocity
field and pressure distribution on certain time levels are shown in figure 4.8. At
t = 0.0, the flow rate is zero and velocities are small. A very weak vortex behind the
valve is present, persisting from the previous period. At t=1.0, the fluid starts
accelerating. The vortex is swept away. At t=1.5 (about halfway the accelerating
period), the velocity profiles are nearly flat. At t=2.0 (maximum flow rate) a new
vortex is being formed behind the valve, which rapidly grows during flow deceleration
(t=2.5). At t=3.0 the flow rate is almost zero again. Near the boundaries a region of
small reversed flow is present. A strong vortex remains. Just downstream this vortex,
a secondary vortex is being formed which has grown at t=4.0, when the main vortex
is already decaying. Both vortices lose strength in the remainder of the flow cycle
until t=10.0, when the situation is identical to that at t=0.0. In the numerical
computations, the flow phenomena become already periodically at the start of the
second period.

In figure 4.9 experimental, analytical and numerical data on the fluid moment
as a function of time are given. All data show that the fluid moment is not only
related to the flow rate itself but that it is. more or less proportional to the time
derivative of it. The moment is positive (in valve opening direction) when the flow
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figure 4.8

Velocity field around a fixed valve at 12° in a puisatile flow
(Re = 313, St = 0.69) on several dimensionless time levels
(maximum flow rate at t=2.0, pulse width = 1.0, see figure 4.9)
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accelerates, approximately zero when it is constant and negative (towards the closed
position) during flow deceleration. This follows directly from the unsteady Bernoulli
equation (2.2). The fact that the deceleration of the flow generates a fiuid moment
which attempts to close the valve, causes the early state closure of the natural aortic
valve (van Steenhoven and van Dongen, 1979). The zero crossing of the moments
do not coincide exactly with the flow rate maximum, since a steady component is
superimposed, which is approximately proportional to the square of the flow rate (see
figure 4.7).

Fluid moment on a fixed valve
Pulsatile flow
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figure 4.9 Experimental, analytical and numerical fluid moments, acting on a

valve in a fixed position (q>=10°) due to a pulsatile flow, as a
function of time (Remax = 313, St = 0.69)

The agreement between experimental and theoretical results is not as close as
in the steady flow case. Apart from the amplitude, the numerical and analytical
results agree fairly well. Both are more or less symmetrical around zero showing a
sharper pulse during flow deceleration than during acceleration. This is caused by
the asymmetry of the flow rate pulse, which drops somewhat faster than it rises. The
zero crossings do not exactly coincide. The amplitudes differ about a factor 2, slightly
less than in the steady flow case. The reasons for these deviations are similar to
those discussed in the previous section. Figure 4.10 shows that the time integration
step, the inlet length and the element mesh do not affect the numerical results
essentially. The inlet length and mesh distribution hardly show any effect. Decreasing
the time step shows that a small amount of numerical damping is present.
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figure 4.10 Comparison of numerical fluid moments on a valve in a fixed

position in a pulsatile flow. The standard case is also shown in
figure 4.9 and is computed using the standard mesh and inlet
length and At=0.25.

The experimental results are rather different. The amplitudes of numerical and
experimental fluid moment agree fairly well, but the course of the experimental fluid
moment is more asymmetrical and the zero crossing lags more behind the flow rate
than the theoretical results do. It is plausible that the experimental results are
disturbed by the boundary layer at the front and rear sides of the flow channel. In
this boundary layer, the relative importance of the viscous effect, compared to inertial
effects, are larger than in the main flow. Therefore, the pressure gradient in the
boundary layer will be more in phase with the flow rate than it is in the remainder of
the channel. The pressure gradient in both the main flow and the boundary layer
contribute to the experimentally observed moment, so it will be more in phase than in
the purely two-dimensional theoretical cases. The experimental course of the
moment as a function of time can be thought as being a superposition of a part
which is proportional to the flow rate curve and another part, proportional to its time
derivative. This is observed indeed in figure 4.9. Experimentally, the moment is
shifted in positive direction so the zero crossing alters and the negative peak
decreases. An additional cause of this discrepancy is the fact that, although
minimized by the presence of the diaphragm in the sinus, a small leakage of flow still
exists in the sinus. Furthermore, it is possible that the rod connecting valve and
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transducer is subjected to some friction at the diaphragm, causing an hysteresis
effect.

4.3 Steady free valve

The previous sections of this chapter have dealt with a valve in a fixed position,
when no full interaction of valve motion and fluid flow is present. In this section, the
elementary but illustrative case is studied of a free valve which is in its equilibrium
position In a steady flow. Since the valve is allowed to move freely, this equilibrium
position is not known in advance and therefore the interaction model of section 2.3.1
is applied.

Valve equilibrium position
Steady flow
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figure 4.11 Experimental, analytical and numerical valve equilibrium positions
of a free valve in a steady flow as a function of the Reynolds
number

The valve equilibrium position is computed as a function of the Reynolds
number. The results are shown in figure 4.11. Since from figure 4.7 it is observed
that the fluid moment increases when the Reynolds number increases, it is obvious
that the valve will be more opened at higher Reynolds numbers. This is found
indeed, both experimentally and theoretically. Also the global tendency of the
theoretical valve positions resembles the experimental one. The analytical models
predict less effect of the Reynolds number than is observed. This is consistent with
the observation in section 4.1 that they underestimate the fluid moment. The finite
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element fluid model gives fairly accurate results. The valve angles are somewhat
smaller than the experimental ones because of the fact that the finite element model
predicts a somewhat larger fluid moment (see figure 4.7), so the valve is pushed up
a little more.

4.4 Moving free valve

n this section some transient cases are considered of a valve which is moving while
interacting with a fluid. The interaction model of section 2.3.1 is used in combination
with the full unsteady Navier-Stokes equation for the fluid. The analytical models of
chapter 2 do not incorporate the motion of a valve, so they are not applied here.

llwll

figure 4.12 Velocity and pressure fields around a free valve moving under
constant flow rate conditions from fully opened position to its
steady equilibrium position (Re = 130, St = 1, At=0.1, t=0.2)

The first case is that of a closing valve under a constant flow rate condition.
The valve is fixed In fully opened position until t=0 and then released. The valve will
move towards its equilibrium position. Figure 4.12 shows the fluid phenomena at a
typical timestep. The valve velocity is large compared to the fluid entrance velocity.
The contents of the sinus rotates together with the valve. This observation supports
the negligence of the inertia of the valve, since it is much smaller than that of the
fluid surrounding it. In figure 4.13 the position of the valve as a function of time is
shown. After a short acceleration period, the valve moves downward with an
approximately constant velocity until a maximum is reached and then it moves to its
steady state equilibrium position in a damped oscillatory way. This behavior is found
both experimentally and numerically. The numerical solution with the largest timestep
shows considerable numerical damping, due to the Euler impilicit time integration
scheme: the solution lags behind the experimental motion and the extremes are
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Valve motion
Steady flow, Re=130
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figure 4.13 Experimental and numerical valve positions as a function of time

for a valve which is held in fixed horizontal position until t=0 in a
steady flow (Re=130) and then released

smaller. The agreement between the numerical solution for a small time step and the
experimental results is much better. In the first part of the motion, the agreement is
very close. The maxima coincide in time, but experimentally it is somewhat smaller
than it is predicted numerically. The minima at about t=0.8 do not coincide. The
numerical minimum lags behind and is slightly larger; the experimental motion is
damped out earlier. Magnitude and origin of the difference between the final
equilibrium position are similar to that found for the steady state case (see figure
4.11). In principle, two possible explanations could be given for the differences
between the experimental and numerical valve motions. Although for the small time
step the numerical solution is much smaller than for the large time step, there will still
be some numerical damping left. This might account partly for the lagging of the
numerical minimum. However, it does not explain why the numerical extremes are
larger than the experimental ones. Therefore, a more likely cause is that the fluid
flow in the experimental model is not perfectly two-dimensional, as shown in figure
3.6. The motion of the valve will be affected by friction forces due to the boundary
layers at the front and rear panel of the flow channel. This causes an extra damping
of the valve motion, which is not accounted for in the numerical model.
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4.5 Parameter variations

With the numerical model some more simulations are performed. Figure 4.14 shows
the motion of the free valve due to a harmonically varying flow rate. The first period
is a start-up effect, but after that the valve motion becomes harmonic. It is interesting
to note that the valve moves already towards its closed position during flow
deceleration, just like the natural aortic valve does. This observation is consistent
with the results of section 4.2.

Numerical valve motion
Harmonically varying flow rate
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figure 4.14 Numerical simulation of the valve motion in the case of a

harmonically varying flow rate (Reax 100, St=1)

Figure 4.15 shows the valve motion due to a pulsatile flow according to the
experimental situation. The Reynolds and Strouhal numbers are kept equal to those
in the fixed valve case. In figure 4.15 é parameter k is introduced by which the
experimentally determined valve parameters are multiplied. k=1 corresponds to the
original, experimental situation. k=0.1 and k=0.01 correspond to hypothetical valves
for which both the buoyancy and the hinge bending are made smaller relative to the
fluid moment. The steady equilibrium positions of these valves at Re=0 coincide with
those for the k=1 case. At Re=0, the buoyancy force balances the hinge bending
moment. So, they may be regarded as valves whose bending hinge is made more
flexible and whose density is adapted in order to maintain the original equilibrium
position. This enables a comparison between the different cases. The case k=0 is a
fully free valve, which is not subject to any buoyancy and hinge bending. Such a
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Free_ valve in a pulsatile flow
Re=313, St=0.69, varying stifness k
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figure 4.15 Numerical simulation of the valve motion due to a pulsatile flow

rate for various valve parameters. (Repax = 313, St = 0.69)

valve has no well determined equilibrium position on its own. The motion and
equilibrium are completely induced by the surrounding fluid flow.

it appears that for k=1 the valve amplitude is rather small. The position of the
valve is in a good approximation in phase with the fluid moment on a fixed valve as
shown in figure 4.9. Apparently, the displacements are too small to generate a
significant contribution by the inertia of the surrounding fiuid. The valve opens during
flow acceleration, it tends to close in the deceleration phase and it remains in its
equilibrium position if the flow rate is zero.

If the hinge is more flexible (k=0.1 and k=0.01) the valve amplitude increases
and the motion is not in phase with the fluid moment as observed in the fixed valve
case. This indicates an increasing inertial fluid effect. For k=0.1, the hinge moment is
still large enough to force the valve into its equilibrium position, albeit just at the end
of the flow period. If k is less than 0.1 the valve hinge becomes too weak to
accomplish this. The extreme is the fully free valve (k=0) when the valve has a
pseudo-equilibrium position at ¢ = 0.55. This corresponds to a valve closure of about
75%. The valve motion becomes periodical after about three flow cycles. Figure 4.16
shows the velocity field for this case. Globally, it resembles the flow field for the fixed
valve case (figure 4.8). At t=0.0 the velocities are small. A vortex is present in the
sinus. It is closer to the valve than in the fixed valve case. At t=1.0 the fluid is
accelerated and the valve starts to open. At t=1.5 the valve has reached its
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figure 4.16 Velocity field around a free valve in a pulsatile flow (Re = 313,
St = 0.69, k=0) on several time levels
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maximum velocity and pushes the contents of the sinus out. On t=2.0 the flow rate is
maximal, the valve is slowing down but still moving towards the fully opened position.
Just at t=2.5, when the flow has its maximum deceleration, the valve reaches its
maximum position and its velocity becomes zero. At t=2.75 the valve is moving
towards the closed position. A vortex in the sinus is being formed. At t=3.0, when the
flow rate is nearly zero, the valve has its maximal closing velocity. At t=4.0 the valve
has nearly reached its pseudo-equilibrium position and its velocity becomes zero.

Free valve in a pulsatile flow
St=0.69, k=0, varying Re
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figure 4.17 Numerical simulation of the valve motion due to a pulsatile flow

rate for various Reynolds numbers (k = 0, St = 0.69)

The simulations in figure 4.15 are performed for the experimental flow
conditions (Re=313 and St=0.69). Figure 4.17 shows the effect of a variation of the
Reynolds number for St=0.69 and k=0. It is clear that the effect is only marginal for
Re=300-1100 for this rather large value of the Strouhal number. The fluid flow solver
does not allow computations for Re>1100. The effect of the Strouhal number is
larger, as is shown in figure 4.18. The physiological relevant case corresponds to
St=0.06. The pseudo equilibrium position is in all cases around ¢=0.55 rad (72%
closure). For low Strouhal numbers the motion of the valve is nearly in phase with
the flow rate and its amplitude is large. The maximum opened position is negative
(further than horizontal) and coincides with the maximum flow rate. At the end of the
systolic phase, the valve is nearly at its final diastolic position. This is consistent with
the experimental and theoretical results from Bellhouse et al. (1969 & 1971), van
Steenhoven & van Dongen (1979), Lu & Talbot (1979) and Wippermann (1985). No
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full valve closure is observed here, since no back flow is present. The higher the
Strouhal number, the smaller the valve amplitude and the more the valve motion
becomes out of phase with the flow rate. At St=0.2 the moment of maximal opened
position is halfway the deceleration phase and the valve does not reach his
pseudo-equilibrium state before the end of the period. The fluid acceleration forces
are proportional to the Strouhal number. This explains the phase change of the valve
motion.

Free valve in a pulsatile flow
Re=313, k=0, varying St
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figure 4.18 Numerical simulation of the valve mation due to a puisatile flow

rate for various Strouhal numbers (k = 0, Re = 313)

In order to make a comparison with the work of van Steenhoven & van Dongen

(1979) on the early valve closure, the case is studied of a linearly decreasing flow
rate according to

uo=1 t<o0
uo=1-t O<t<1
Ug=0 t>1 (4.1)

Their experimental and analytical data are shown in figure 4.19. Their model is
based on the same assumptions as the quasi one-dimensional model used in this
study, but it also incorporates the motion of the valve. It is only valid at the onset of
the valve closure, i.e. p<< a2 or |A - 1| << 1, with
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A=1-lsin¢g (4.2

Because of the absence of viscosity, the theoretical Reynolds number is infinite.
Their experiments are performed with a two-dimensional flexible leaflet valve at
Re = 3100 and St=0.06. This large value of the Reynolds number can not be
handled by the finite element fluid model, so computations are performed at
Re = 300 and Re =1000, as shown in figure 4.19. The numerical results share the
main characteristic with those for the case with a pulsatile flow rate: at the end of the
deceleration phase, the valive is far closed. In this case, the valve closure is about
50%. The dependence on the Reynolds number is somewhat larger than in the case
with a pulsatile flow rate. The agreement with the experiments is fair, especially at
the end of the deceleration phase. In the early phase the differences between
experimental, analytical and numerical results are quite large. Numerically, the valve
starts slowly and keeps moving slowly until the second half of the deceleration
phase. The valve velocity in the initial phase for the analytical model is about three
times as large. The experimental results are somewhere in between. The difference
between the results of the numerical and the analytical model is caused by the
presence of viscosity in the former one. This can be shown by considering the
dimensionless Navier-Stokes equation (1.1). If the valve is fully opened, it can be
simpiified to the quasi one-dimensional form

Sté au o 1 Fu

at+U£+$'R—e¥= (4.3)

The flow is linearly decelerating according to (4.1). If the fluid flow is assumed to be
quasi-steady, the velocity profile is parabolic. This yields:

aJ0
a = '1
ug = 6y (1-y) (4.4)

so that for a fully opened valve the initial pressure difference p(},0)-p(0,0) is:
Ap =1 (St- ) (4.5)
B Re ’

with | the length of the valve. For | = 1.385 St = 0.06 and Re = 300, Ap = 0.028,
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while for Re - «, Ap = 0.083. Therefore, in the numerical case the pressure gradient,
which is the driving force for the valve closure, is approximately a factor 3 smaller at
Re = 300 due to the viscous forces.

From (4.5) it follows that valve closure only occurs if St > 12/Re. Furthermore,
it explains the difference in the dependence on the Reynolds number between the
pulsating and the decelerating flow case. In the pulsatile flow case St=0.69 and
100 < Re < 1100, so the pressure gradient varies between 0.79 and 0.94, which is a
.change of less than 20 %. In the decelerating flow case, St is much lower (0.06) so
" the pressure gradient varies from 0.03 at Re=300 to 0.07 at Re=1000 which is an
increase of more than a factor 2.

Valve closure
decelerating flow. St=0.06
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figure 4.19 Comparison of the experimental and analytical quasi

one-dimensional results of van Steenhoven and van Dongen
(1979) with numerical results and results of an extended quasi
one-dimensional model for a rigid valve in a linearly decreasing
flow rate, starting from the steady state (St=0.06,
A=1-lsing

For a further analysis, the effect of the fluid viscosity can be incorporated in the
model of van Steenhoven & van Dongen in a simplified way. Substitution of (4.4) in
(4.3) and integration yields

d X
P(XY) = P + Ju2 - Ju? - Sts c!) u dx - %ﬁ—x (4.6)
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with p, the pressure at the entrance plane of the valve. Again the valve closure
parameter A is introduced according to (4.2) and It is assumed that |A- 1| << 1. The
continuity equation is substituted in (4.6) and the mean pressure across the vaive is
assumed to be equal to zero, i.e.

OI ! P(x.1) - p,)] dx’ = 0 4.7)

The pressure in the sinus is taken equal to that at the vaive tip. This leads to a
differential equation for A of the form

23
a2 94, A8 st1u 94 4 [4u2 + 8 5t19Y0] 2 -
42 3 dt 37 dt

4u2 + 20 st 19y , 48, 4.8
0+ GG *Re ' Yo e

with initial conditions dA/dt = 0 and A = 1 at t=0. The third term at the right hand side
of (4.8) is the contribution of the fluid viscosity. Equation (4.8) is integrated with a
standard central difference method. For Re = 300, the result is given in figure 4.19.
Clearly, the numerical results agree much better with those of the extended analytical
model than with those of the original one, especially in the early phase of the valve
closure. In the later stages, both the original and the extended analytical model
become inaccurate. The assumption that |A - 1| << 1 is not satisfied then.
Furthermore, the velocity profile is not a quasi-steady parabolic one then, since
unsteady flow development will occur. This is indicated by the Womersley parameter
a, with o = Re St > 12, which is the ratio of inertial over viscous forces. Unsteady
flow development would only be negligible if ¢ << 1.

4.6 Discussion

From the results in the previous sections it is concluded that the interaction model,
combined with the finite element model, can be successfully applied to the analysis
of the interaction between the fluid flow and the valve motion. It is expected that the
model is also applicable to other comparable fiuid-structure interaction problems,
characterized by highly coupled, nonlinear system equations, complex fluid
phenomena and large structure displacements. An unconditional numerical stability
has been achieved.
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The close agreement between the experimental and numerical resuits for the
falling valve problem suggests that the discrepancy between the experimental and
numerical unsteady fluid moments is not caused by the numerical fluid model but
mainly by a shortcoming of the experimental setup.

The number of position estimates required to locate the dynamic or steady
equilibrium position at each timestep varies from five to eight. In general, two or three
estimates are needed to bracket the equilibrium position and the remainder is used
by Brent's algorithm in order to locate it within the required accuracy (10 rad). Per
position estimate, between two and eight Newton iterations are necessary to solve
the fluid problem. The number of Newton iterations decreases when the equilibrium
position is being reached, since a better initial estimate for the Newton iteration is
available. For the typical number of unknowns of 721, the numerical procedure
requires about 30 minutes computing time per time step on an Apollo DN3000
minicomputer and about 1.5 minutes on an Alliant FX/4 mini-supercomputer with two
parallel vector processors. This gain of a factor 20 is caused mainly by a higher
clock speed (factor 4) and by the vectorization of the matrix solving routine (factor 4).
Parallelism has only a small effect (factor 1.2).

Restrictions for the application of the interaction model are imposed by the
finite element fluid model. It would be preferable if the time integration scheme would
be second order accurate in order to eliminate numerical damping as a possible
error source and to reduce the number of time steps while keeping the same
accuracy. Furthermore, the range of the Reynolds number is not large enough to
apply it to fully physiological flow rate situations (Reyqx=4500). Finally, the analysis
of flow around far closed valves requires many elements and therefore much
computational effort. On the other hand, the effect of the Reynolds number is not a
dominant one in the analyzed range and since no new physical phenomena are
expected beyond that range, this restriction is not an essential one. Furthermore, the
fluid-interaction strategy as developed here, can easily be combined with any
numerical or analytical fluid solver, which meets the requirements for a particular
problem, as is illustrated by the quasi-one-dimensional and von Mises models.

The fully free valve (k=0) corresponds to a disc-type valve prosthesis, which is
allowed to move freely (within limits). As is shown here (figure 4.15), such a valve is
able to close due to flow deceleration, just as the natural valve does. Here, no full
valve closure is achieved (the valve closes only for about 65%) since no back flow is
present. If the simulation of a full physiological flow cycle is required, including back
flow and full valve closure, the model must be extended with a closure algorithm,
which is not included in the present model.
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5. SEGMENTED VALVE

in this chapter, the multiple degrees of freedom model is applied to a segmented
valve consisting of four rigid segments. The fluid field will be calculated using the
finite element fluid model. In sections 5.1 and 5.2 the model is validated by a
comparison with experimental results. In section 5.3 more features of the model are
demonstrated in a short parameter study.

5.1 Free valve in a steady flow

The equilibrium position of the vaive is studied as a function of the Reynolds number.
A global presentation of the numerical results is given in figure 5.1. Just as in the
rigid valve case, the valve opens more if the Reynolds number is increased. Due to
the presence of buoyancy the shape of the valve is concave. If no buoyancy was
present, at Re = 0 the valve would be straight in a position of 0.39 rad (22.59), which
is the angle of fixation. With increasing Reynolds number, the shape and the
curvature of the valve hardly changes. This valve behavior is also observed during
the experiments. Apparently, the bending forces are relatively large compared to the
variation of the fiuid force.

Segmented valve in a steady flow

figure 5.1 Numerical position of a segmented valve in a steady flow for
various Reynolds number (parameters determined from a subset
of the parameter estimation experiments)
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A comparison between numerical and experimental results is shown in figure
5.2. The relative valve opening (the space between valve tip and bottom divided by
the channel height) is plotted as a function of the Reynolds number. If the valve
parameters are estimated using the full set of parameter estimation experiments as
discussed in chapter 3, then the agreement is only modest, albeit well within the
predicted accuracy limits given in chapter 3. Experimentally, the valve hardly
changes position. Numerically, the valve starts at a more closed position but if the
Reynolds number is increased it opens faster, until at Re = 400 the agreement is
close. The deviations can be explained partly from the sensitivity of the valve
parameters to the measurement errors in the parameter estimation experiments.
Furthermore, it can be argued that only a subset of the rather arbitrary set of valve
positions in the vaive parameter estimation experiments are relevant for the flow
situation at hand, namely those situations in which the valve is pushed upward and
when it has a concave shape. If the valve parameters are estimated using only such
a subset, then the agreement improves, as is demonstrated in figure 5.2.

Segmented valve equilibrium

Steady flow
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figure 5.2 Experimental and numerical relative valve opening of a segmented

valve in a steady flow for various Reynolds numbers (num 1:
valve parameters determined form all available parameter
estimation experiments, num 2: valve parameters determined from
a subset of the parameter estimation experiments)
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5.2 Free valve in a pulsatile flow

In order to validate the computation of the dynamic behavior of the segmented valve,
the motion due to a pulsatile flow is studied both experimentally and numerically. As
shown in figure 3.5, The flow rate changes as a function of time in a similar way as
in the rigid valve case. Figure 5.3 globally shows the valve position at some
characteristic points of time. At t=1, the onset of the systolic phase, the valve is in its

. Segmented valve in a pulsatile flow

figure 5.3 Numerical position of a segmented valve in a pulsatile flow
(Re = 178, St = 0.83, valve parameters determined from subset of
parameter estimation experiments)

steady state position, corresponding to Re = 0 in figure 5.1. At t=2, the instant of
maximum flow rate, the valve is at its maximum opened position. During the second
part of the systolic phase the valve tends to close due to flow deceleration and
bending stiffness. At t=3, the end of the systolic phase, the valve has reached its
maximal closed position, which is further closed than the steady state position.
Afterwards, it moves gradually back to its steady state position. Due to buoyancy, the
shape of the valve remains nearly always concave, very similar to the steady state
cases of figure 5.1. Only at t=3, a slight S-form of the valve is observable. Since the
bending forces are relatively large compared to the fluid forces, the displacement
and deformation of the valve is only modest. A comparison between experimental
and numerical data is given in figures 5.4 and 5.5, where the relative valve opening
is plotted as a function of time. The numerical results in figure 5.4 are obtained with
valve parameters determined from the full set of parameter estimation results, as
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figure 5.4

figure 5.5

Relative valve opening
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discussed in chapter 3 and in the previous section. The qualitative agreement is fair.
Both the experiment and numerical simulation show the behavior discussed above.
In addition, they show a local maximum at t=4, which is in the early phase of the
diastolic phase. The quantitative agreement shows similar deviations as in the steady
state case of the previous section. The diastolic position shows the same deviation
as the steady state position at Re = 0. Furthermore, the numerical valve amplitude is
larger than is observed experimentally. For the major part this can be explained from
'the steady state deviation observed in figure 5.1. If the valve parameters are
estimated using the same subset of parameters estimation experiments, as
discussed in the previous section, the quantitative agreement improves (cf. figure
5.5). Especially, the diastolic position agrees much better. The difference in valve
amplitude is not diminished. The remaining deviations are attributed to the limited
accuracy of the estimation of the valve parameters and to the presence of a
boundary layer at the front and rear wall of the experimental model, which slows
down the valve motion in a simitar way as discussed in the previous chapter. This
three-dimensional phenomenon is not included in the two-dimensional numerical
model.

5.3 Parameter variation

With the numerical model for the segmented valve some more simulations are
performed. Since the model is intended for application to flexible leaflet valves, some
special attention will be paid to the role of the bending stiffness. Also the Strouhal
number is varied and both a pulsatie and a harmonically varying flow rate are
applied. Furthermore, the results are given of an indicative experiment with a
two-dimensional flexible leaflet valve.

In this section, a pulsatile flow rate is used, which is given by

ug = sin?(3xt) ifost<2
=0 if2st<4

with a periodicity of 4, shown in 5.6. The systolic phase is very similar to the one
defined in chapter 3. The diastolic phase is shorter to resemble the flow conditions of
the earlier performed flexible leaflet experiments.

Figure 5.7 shows the experimentally observed motion of a two-dimensional,
very thin flexible leaflet valve due to the pulsatile flow. At t=0, the valve leaflet is
almost straight and nearly fully opened. During flow acceleration (O<t<1), the valve is
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Definition of a pulsatile flow
Segmented valve
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figure 5.6 Definition of the pulsatile flow rate as used in this section

Flexible valve in a pulsatile flow

Re=1000 St=0.17

figure 5.7 Experimentally observed motion of a flexible valve in a pulsatile
flow
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pushed into the sinus and the shape of the valve is convex. During flow deceleration
(1<t<?), the valve starts to close, beginning with the part close to the point of
attachment, since there the pressure difference over the valve is larger than at the
valve tip. The shape of the valve quickly changes into a concave one, with the
largest curvature close to the point of attachment. The motion of the valve tip lags
behind and the curvature change is only modest at that point. During the diastolic
phase (2st<4), the valve tip comes at equal height as the rest of the valve and the
valve more or less stretches itself. The maximum valve closure is about 50%. Due to
viscous damping in the boundary layers at the front and rear wall of the experimental
model, the sides of the valve near the boundary do not move exactly in phase with
the center part of the valve. So, the valve does not remain flat, but it is curved in the
direction perpendicular to the model plane. The positions shown in figure 5.7 are
those of the center part of the valve. Because of this, the results of this experiments
have only an indicative value.

in figure 5.8 some results of numerical simulations for a segmented valve are
given. As in chapter 4, a relative bending stiffness parameter k is used, where k=1
corresponds to the experimental case. The absolute bending stiffness in the contact
points of the segmented valve is about equal to the bending stiffness in the point of
attachment of the rigid valve. Buoyancy is not present here. The fixation angle of the
valve (and so its equilibrium position at Re=0) is 0.39 rad (22.5°). In order to restrict
the amount of computation time the Reynolds number is chosen to be 300, which is
30% of its value during the experiments.

First, the Strouhal number is chosen equal to that of the flexible vaive
experiment, i.e. St=0.17. Figure 5.8a shows the results for a relative stiff valve
(k=0.1). At the start of the systolic phase, the vaive is nearly at its maximum closed
position (about 80% closed). During flow acceleration it opens until at t=1 (maximum
flow rate) it is in nearly fully opened position. During the deceleration phase and the
diastolic phase it moves again towards the closed position. The maximum closed
position is reached just before the end of the diastolic phase. Then, due to its
bending stiffness, the valve bounces back, just before it is accelerated by the fluid
flow. Also due to the bending stiffness, the shape of the valve is concave if it is
opened further than its equilibrium position and convex if it is closed further than this
position. The motion of the valve tip is in phase with the part close to the point of
attachment. The overall behavior of this rather stiff valve resembles that of the rigid
valve. Figure 5.8b shows that when the bending stiffness is decreased by a factor 5
(k=0.02), no essential changes in the valve behavior are observed. The valve
amplitude and the curvature changes are somewhat larger. Apparently, the stiffness
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Segmented valve
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figure 5.8 Numerical simulation of the motion of a segmented valve in a

pulsatile fiow for various values of the Strouhal numbers St, the
relative bending stiffness k and the fixation angle (Re = 300,
At=0.2)
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of the valve is still larger than in the experimental case of the fully flexible valve.

For the pulsatile flow and a Strouhal number of St = 0.17, no convergence has
been obtained for k < 0.02. Unlike the rigid valve model, the segmented valve model
does not converge unconditionally. No strict convergence limit is encountered but the
convergence slows down more and more if the bending stiffness and/or the Strouhal
number is decreased, until the limits of the available computation time are reached.
This decreasing rate of convergence is caused by the fact that the dynamical
equilibrium position becomes undetermined if both the internal forces due to the
bending stiffness and the external forces due to the fluid flow become zero.
Especially in the diastolic phase, in which also the steady component of the fiuid
force is absent, this situation may occur or at least may be approached. Apparentiy,
for cases close to this undetermined state, the residual moment varies so little close
to the minimum that it can not be located accurately. An incidental cause for the
breakdown of the convergence process is that sometimes a valve position must be
evaluated which is beyond the capacity of the mesh generator or the fluid solver, e.g.
a case in which a part of the valve lies outside the fiuid domain. Additional
precautions, which are not taken here, would circumvent these events.

If the Strouhal number is increased to St = 1, then for k=0.1 (figure 5.8¢c) the
valve behavior is similar to that of the St = 0.17 case. Due to the increase of the
inertial effects the valve amplitude is somewhat less. For St = 1, the bending stiffness
can be decreased further. Convergence is obtained for k down to k=0.002, a factor
500 less than the reference case. The result is shown in figure 5.8d. Now, the valve
behavior has changed. The curvature changes have increased and resemble more
the experimental case of the fully flexible valve. The motion of the valve tip lags
behind that of the part close to the point of attachment. During valve acceleration
(0<t<1) the valve has a convex shape whereas its shape is concave during flow
deceleration (1<t<?). As in the previous cases, the valve displacement is large.
Figure 5.8e demonstrates the effect of the fixation angle. It has been changed from
0.39 rad (22.5°% to 0°. As might be expected, the valve position range is shifted
somewhat more into the sinus, resulting in a less complete valve closure. The
agreement with the experimental results shown in figure 5.7 is improved.

Some more details of the velocity field are shown in figure 5.9 for the case
earlier shown in figure 5.8d. Globally, the results resemble those of the rigid valve
case, shown in chapter 4. At the start of the systolic phase, the valve is in its
maximum closed position and the fluid velocities are small. A weak vortex behind the
valve is persisting from the previous period. During flow acceleration the valve
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figure 5.9 Velocity field for a segmented valve in a pulsatile flow (Re = 300,
St = 1, k = 0.002) upper left: t=0, bottom right: t=3.6, At=0.4
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moves up and the contents of the sinus is pushed out. The vortex disappears. The
valve reaches its maximum opened position halfway the deceleration phase. Then its
shape changes from convex to concave and it starts closing. A new vortex is formed
behind it. In the diastolic phase, the valve keeps moving down and finally stretches
" tself. The vortex is diffusing until the start of the new flow cycle.

Segmented valve
Harmonically varying flow rate

k=0.01
t=0.5 : t=0.55
t |
t=0.05 t=1
k=0
% t=0.5 =1
t=0.05 t=0.55
Re=300 St=1
figure 5.10 Numerical simulation of the motion of a segmented valve due to a

harmonically varying flow rate for various relative bending stiffness
k (Re=300, St=1, At=0.05)

In the previous cases, the flow rate has been pulsatile according to figure 5.6.
Then, the valve amplitudes are large but the curvature changes are only modest.
The curvature changes increase if the valve becomes more flexible and if the fluid
inertial forces become larger. In order to demonstrate the capabilities of the model,
also the case of a harmonically varying flow rate according to figure 4.14 is studied.
The Strouhal number is chosen to be St = 1, with the characteristic time defined as
the periodic time. The results are shown in figures 5.10 and 5.11. Generally, the
valve displacement is much smaller than for a pulsatile flow. The curvature changes
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are much larger and that holds also for the phase difference between the motion of
the valve tip and that of the part close to the point of attachment. The latter moves
more or less in phase with the flow rate, while the valve tip may lag considerably
behind. If k=0.01 (figure 5.10a) both parts of the valve have approximately an
opposite phase, resulting in a resonance-like behavior. If the bending stiffness is set
equal to zero (for which convergence is achieved in this case) the valve motion
becomes wave-like, with large deformations and different parts of the valve moving in
different directions. The latter is clearly visible in figure 5.11. Due to the absence of
the diastolic phase and the relative large inertial fluid forces, it is less likely that the
dynamic equilibrium of the valve becomes nearly undetermined than in the case with
pulsatile flow rate. This is reflected in the range of convergence, which is wider and
also incorporates the fully flexible valve with k=0. For the previous simulations, four
segments seem to be sufficient. A practical application of the k=0 case would require
a larger number of segments.

5.4 Discussion

From the results of the previous sections it is concluded that the interaction model
can be applied to heart valve models and other fluid-structure systems with more
than one degree of freedom. The qualitative agreement between the experimental
and numerical results is good. The quantitative agreement is reasonable. If the valve
marker positions are measured more accurately and if more attention is paid to the
choice of parameter estimation experiments, a better agreement may be expected.
For this study, a valve consisting of four rigid segments appeared to yield an
adequate description of the behavior of a flexible valve, except when the deformation
is very large. The numerical segmented valve model yields results similar to those of
an indicative experiment with a flexible leaflet valve.

If the valve is relatively stiff, the algorithm converges rapidly and the required
amount of computation time is limited. The number of Newton iteration steps per time
step (which each requires the solving of the fluid system) is comparable to the
number in the rigid valve case. However, if the valve becomes more flexible, the
number of position estimates and Newton iterations increases. No strict convergence
limit has been encountered. In practice, the convergence is limited by the amount of
computation time available. The largest computational effort, encountered in this
study, was a requirement of about 2900 Newton iterations for one individual
timestep, using about 4 hours CPU on an Alliant FX/4. Additional safeguards may be
added to the algorithm in order to prevent incidental breakdown of the computation
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figure 5.11 Velocity field for a segmented valve in the case a harmonically
varying flow rate (Re = 300, St = 1, k = 0.0) upper left: t=0,
bottom right: t=0.9, At=0.1
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when a valve position must be evaluated which is beyond the capability of the mesh
generator or the fluid solver.

Like in the rigid valve case, it would be preferable when the time integration
scheme would be second order accurate and when the Reynolds number could be
increased to physiological values.

If the simulation of a full physiological flow cycle is required, including back flow
and full valve closure, the model must be extended with a closure algorithm, which is
not included in the present model.



6. Summary and conclusions

In the present study a numerical fluid-structure Interaction model has been
developed for the analysis of the dynamic behavior of a prosthetic heart valve.
- Experiments have been performed to validate the numerical resulits.

Two different valve types have been considered. The first is a rigid valve which
.can rotate around its point of attachment. It resembles the case of a disc-type valve
prosthesis, which has only one degree of freedom. The second type is a segmented
valve, consisting of several rigid segments connected to each other. This type is
intended for the design of valve prostheses with more degrees of freedom such as
flexible bio-prosthetic or artificial leaflet valves. The buoyancy, the bending stiffness
and the load due to the fluid flow are included in the valve equilibrium equation.
Friction in the contact points and the inertia of the valve have not been considered,
but could be incorporated easily if desired. The constitutive equations may be
nonlinear. Large displacements and deformations are allowed.

Various fluid models have been incorporated in the fluid-structure interaction
model. The simplest is a quasi one-dimensional analytical model. It is based on
Bernoulli’'s theorem and conservation of mass. Velocity gradients in radial direction
are not considered in this model. Somewhat more advanced is the model of von
Mises (Gurevich, 1967). This is a two-dimensional potential fiow model which
explicitly takes into account the contraction of the flow behind the valve. Both models
have been applied to a rigid valve in a steady state position. Furthermore, a finite
element fluid model based on the two-dimensional unsteady Navier-Stokes equations
has been applied. This model gives a full description of the fluid flow in complex
shaped domains. The Navier-Stokes and continuity equations are spatially
discretized by means of a standard Galerkin finite element method. A 7-noded
triangular element is used in which the velocity is approximated by an extended
quadratic function. The pressure is approximated by a linear function being
discontinuous over the element boundaries. The pressure unknowns are eliminated
from the momentum equation using a penaity function approach. The time integration
is performed with an Euler implicit scheme. As a contact condition on the valve, the
fluid velocity is set equal to the local valve velocity. This velocity is determined from
the actual valve position and the position at the previous point in time. The spatial
accuracy of the velocity is of third order. The accuracy of the pressure is of second
order. The temporal accuracy is of first order for as weil as the velocity and the
pressure. The finite element fluid model has been applied to both the rigid and the
segmented valve. Reynolds numbers up to 1100 have been achieved, which are
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lower than the physiological value of 4500. The Strouhal number has been varied
between 0.06 (the physiological value) and 2.

The coupled fluid-structure system is solved by a fully coupled, iterative
method: both the fluid and the structure subsystem are evaluated separately (one
subsystem is solved while the other is kept constant) and an iteration is performed
until equilibrium is achieved. Since the rigid valve has only one degree of freedom,
its equation of motion is a nonlinear scalar equation. The root of this equation
corresponds to the equilibrium position. The method of Brent (1973) is used to locate
this root. This method does not require the evaluation of derivatives with respect to
the valve position (which are not available in the present study) and it combines
robustness with a fast local convergence. The equilibrium position of the segmented
valve is found by formulating the problem as a nonlinear least squares problem in
which the sum of the squares of the residual segment moment is minimized. Powell’s
hybrid method (Powell, 1970) has been applied for this minimization. Like Brent's
method it does not require the evaluation of derivatives and it combines robustness
and fast local convergence.

Experiments have been performed to validate the fluid-structure interaction
models. The computation of the velocity field has been checked by comparing the
results to those of laser-Doppler measurements. The computed fluid load exerted on
the valve has been compared with experimental data obtained with a force
transduder mounted to the valve. The valve motion has been recorded with a video
system and compared to numerical predictions. Steady and unsteady cases have
been considered. Separate experiments have been performed to determine the
parameters in the constitutive equations.

The results of the rigid valve model are quite satisfactory. The quasi
one-dimensional fluid mode! and the von Mises model have been applied to compute
the fluid load due to a steady flow and the steady equilibrium position as a function
of the Reynolds number. They yield good qualitative agreement with the
experiments. However, the quantitative agreement of the quasi one-dimensional
model is poor, whereas the von Mises model gives much better resuits. This
indicates that the two-dimensionality of the flow, in the form of flow contraction
behind the valve, is an important phenomenon in this steady flow case. The finite
element method proves to yield the most accurate results. The agreement between
experiments and numerical simulations is close. In case of an unsteady flow some
small deviations occur, which can be attributed to spurious three-dimensional flow
phenomena in the experimental model. The model vaive shows an early state
closing behavior which resembies that of the natural aortic valve. The influence of
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the Reynolds number, the Strouhal number and the bending stiffness has been
analyzed. As expected, the valve amplitude increases if the valve becomes less stiff.
The effect of the Reynolds number on the valve motion is not a dominant one. So, it
is believed that results, obtained for lower Reynolds numbers than the physiological
ones, are useful for physiological applications. The Strouhal number is more
important. An unconditional numerical stability is achieved, independently of the
‘bending stiffness and buoyancy, which both may be zero.

The segmented valve model demonstrates a good qualitative agreement
between the experimental and numerical results. Some deviations occur due to the
limited accuracy of the constitutive parameters of the valve and due to
three-dimensional flow phenomena in the experimental model. When the bending
stiffness is small, the valve shows large displacements and large curvature
variations. The numerical solution procedure converges to the dynamic equilibrium
position for a wide range of parameter sets. Also in cases without any buoyancy and
bending, convergence has been obtained. The behavior of a four segment valve
resembiles largely that of a fully flexible valve.

It is believed that the fluid-structure interaction models presented in this study
may contribute to the development of improved heart valve prostheses. In the
present form the models can be used for an indicative study of the dynamic behavior
of existing or newly developed one- or bileaflet disc type or flexible leaflet type
prostheses. If required, valve inertia or visco-elasticity can easily be incorporated.
For a complete analysis of the dynamic valve behavior a three-dimensional fluid
model must be applied. Furthermore, some special care should be taken to
incorporate the possibility of full valve closure, which is not considered in the present
study.

Apart from the application to heart valve prostheses, the models can be used
for a rather general class of fluid-structure interaction problems. The model will be
useful especially in those cases in which a full description of the fluid is required,
when the structure has a relatively few degrees of freedom and when the structure
displacements and deformations are large. If a full description of the fluid is not
required, an analogous fully coupled iterative approach can be used with a simplified
fluid model, as has been demonstrated with the quasi one-dimensionai and potential
fluid models. If the structure has negligible inertia, internal damping and stiffness
during at least part of the computation, fully coupled iterative methods, like the ones
at hand, are probably the only applicable methods.
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List of symbols

Convention

a scalar

a rate of a

a vector

3 rate of 2

a column of scalars

al transpose of a

A second-order tensor

AC conjugate of A

A inverse of A

A matrix of scalars

AT tranpose of A

Al inverse of A

a-b dot product

det(4) determinant of A

AB double dot product of two tensors
Symbols

1 force

h local vertical valve position
1 unit tensor

k bending stiffness, relative to reference case
| valve/segment length

L divergence matrix

Ig buoyancy force lever

m valve/segment moment with respect to fixation-point
M mass matrix

n number of segments

n normal vector

N convection matrix

p pressure

Re Reynolds number

S local coordinate along valve
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Indices

T Qa ™ O o

Gauchy stress stensor

diffusion matrix

Strouhal number

time

tangential vector

velocity

axial/horizontal coordinate

radialivertical coordinate

coordinate perpendicular to twodimensional model plane
valve/segment bending parameter

valve/segment buoyancy parameter

boundary

truncation criterion

timestep

characteric element size

penalty function parameter

von Mises source position; machine precision

time integration parameter; argument complex von Mises velocity
flow contraction coefficient; asymptotic convergence constant
relative valve opening

von Mises valve angle

kinematic viscosity

order of convergence

stress; von Mises coordinate along valve; standard deviation
characteristic time scale

valve/segment angle

domain

gradient vector operator

Laplace operator

bending
characteristic
fluid
buoyancy
hinge
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with U the velocity vector, p the density, S the Cauchy stress tensor, F the
deformation tensor, V the gradient vector operator and the superscript dot - the local
(spatial) time derivative. Subscripts f and s refer to the fluid and structure system,
respectively. The subscript o refers to the reference state. Assuming that the fluid is
Newtonian and that the structure is elastic the following constitutive relations must be
satisfied:

S = -pg +1((Vhy®+(Vii)) in (A-2a)
S = G(Fy) in Qg (A.2b)

with p the pressure, I the unit tensor and G some tensor specifying the constitutive
behavior of the structure. Superscript ¢ denotes the conjugate and 7} the dynamic
viscosity. The contact conditions on I are:

- G, (A.3a)
0 (A.3b)

Q¢
@ o
-

with & the local stress defined as & = S-A, with i the unit outward normal vector on
T.

To solve the set of equations (A.1), (A.2) and (A.3) simultaneously, several
techniques can be applied. Here a reference system is employed whose points move
in =8, independent of the motion of the fluid. Variables referring to these reference
points are denoted by a subscript r. The position of the reference points and
structure points are referred to as ;‘r and )’(s, respectively. Using this concept the
momentum equation (A.1a) is rewritten as

Ps + pyllgly) - Vg = V- S in Q, (A4)
Here the accent ' denotes the time derivative of a quantity in point of the moving
reference system. The points of the reference system may be moved with an
arbitrary velocity as long as the contact condition
Up = Ug = Ug= X, onT (A.5)
is satisfied. The reference system can be regarded as a solid with ﬁf and p; as

relevant state variables.
To obtain an approximation of the fiuid velocity and the pressure fields within
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Qr and of the structure displacements in Qs. the method of the weighted residuals is
applied. This yields for the momentum equations (A.4) and (A.1c):

J W, [y Upe py(licG) -V 8 de, =
Q

r
-[ @S a0, + [W,-8yar (A.63)
Q, r
[ (VoS + Vg ar - 0 (A6b)
Q r

S

with w weighting functions. The continuity equations (A.1b) and (A.1d) yield similar
expressions and are not considered here. The position of the reference and structure
points are time dependent and not a priori known. As a consequence the gradients V
can not be elaborated, Furthermore, the domains Q= and ; and the boundary I
are not a priori known, so the integrals in (A.6) can not be evaluated. Following a
method, well-known in nonlinear solid mechanics, it is assumed that an estimated
solution of the set of equations has been determined. Estimations of the unknown
variables (denoted with a superscript asterisk *) are {, and X, on T, X, U; and p;,
which can be used to compute V', S, F and S;. Together with the known reference
state and the unknown current state, the estimated state is shown in figure A.2.

figure A.2 Definition of position vectors and transformation tensors
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The value of the relevant reference state in the current state can be written as the
sum of their estimated values and iterative changes, according to

X, = X, + &%, (A7a)
Xg = Xg + OXg (A.7b)
Ug = Uy + 80 (A70)
Ps = pi + 8py (A.7¢)
Sg =S + 88 (A.7¢e)

Using a tensor H, which describes the deformation form the estimated state to the
current state the following expressions can be derived :

V=-H%Y (A.8a)
dQ, = det(H) dQ, (A.8b)
dQ, = det(H) dQ (A.8¢c)

dr’ = det(H) |[HS-A|| dr" (A.8d)
Substitution of (A.7) and (A.8) in (A.6) yields:
J W, [ i) -(H VU] det(H)IQ; =
Qt
j {0 )C-H'Y{-pl + (V' 0C-H '+ H®- (V') det(H)<, +
Qﬂ
J Wy~ & det(H) || HC- || or” (A9a)
I
j {(VWg)C- H (S +8S )det(H) dQ; +
o,
JWS-(6;+86s)det(H)||H‘°- Al or’ =0 (ASb)
I_‘t

Here, H, 8Sg and 8S; are nonlinear functions of 8Xg, 8%, 8U; and 8py. In order to
solve the system (A.9) it is linearized and discretized. This will eventually lead to a
set of linear equations of the form
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Ma={ (A.10a)
a = [8u; 5, 8%, Sxgl" (A.10b)

So the final set (A.10) contains the unknowns of both fiuid and structure, which are
solved simultaneously.

In the process of linearization of (4.9) numerous simplifications and additional
assumptions can be made. For instance, a relationship between ﬁr and is can be
chosen in order to eliminate ﬁr as unknown. This could lead to an Arbitrary
Langrange-Euler approach, in which the nodal points of both fluid and structure
move with a prescribed velocity. The process of linearization, simplification and
implementation is a tedious one and, which is more important, does not guarantee to
the stability of the solution of the resulting set of equations, especially when the
structure displacements are large.
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APPENDIX B: VON MISES FLUID MODEL

In this appendix some details are given of the analytical potential fluid model for the
steady flow around a rigid valve as developed by von Mises (Gurevich, 1965).

A sketch of the fluid domain is given in figure 2.2. The domain is regarded as a
complex plane, the z-plane. In this plane a velocity vector is defined as

i=uef (B.1)

with u the amplitude and 6 the argument of the velocity. Defined are also the
complex conjugate of the normalized velocity

§-4 o0 (B2)

with u, the magnitude of the velocity at the valve tip and on the free streamiine.
Define also a complex velocity potential W and its complex conjugate WC, satisfying

awe_g (B.3)
SO
£- 4 8 (B.4)

The velocity field in the physical z-plane is transformed by the transformation
E=tt (B.5)

to a half sphere in another complex plane, which we will call the t-plane (see figure
B.1). The orientation of the valve is defined as ux. This can be shown as follows.
From the z-plane it is clear that in E u=u, and 6=0. From (B.2) and (B.5) it follows
that t=1. On the rigid walls EH and HC is also valid that 6=0; the local velocity there
is smaller than u, and equals zero in the stagnation point C. So, EH and HC are
transformed to the interval te[0;1] of the positive real axis in the t-plane. The point C
is a special one, since the derivative g% is not bounded there, so the transformation
is locally not conform. This problem is avoided by considering a half circle around C

in the t-plane with arbitrary small radius € Then t=¢ el® and according to (B.5)
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B C H E
*—o
= O n +1
figure B.1 Von Mises fluid domain, transformed to a half

circle in the complex t-plane

.§=e”ei’w‘. It follows that an increment a in the t-plane corresponds to an increment
ur in the z-plane and that happens to be the orientation of CB. Point B transforms to
t=-1 (in B u=u, and 6=y, so t=EV/M_el™--1). So, the line CB is transformed to the
interval te[-1;0] on the negative real axis in the t-plane. On the free streamline BE
u=u, so |§|=|t|=1. The argument in the z-plane ranges from ux in B to 0 in E and
from (B.5) it follows that the argument in the t-plane then ranges from # in B and 0 in
E. This is a half circle with radius 1 in the upper half space from B to E, which closes
the contour.

The flow in both the z-plane and the t-plane can be represented by a source of
strength q in H and a sink of strength -q in E. It is convenient to extend the domain
in the t-plane to the whole plane. In order to satisfy the boundary conditions at the
real axis (no flow penetrating it) a mirror transformation with respect to the real axis
is performed, which creates a closed spherical streamline. Because of this extension
the source and sink are doubled in strength, because only half of the fluid arrives in
the upper half plane. The circle theorem of Milne-Thomson is used to satisfy the
boundary condition on the circle. Consider a complex plane in which the flow can be
represented by a complex velocity potential W=f(t). Then the potential flow in the
same plane with a cylinder (radius r) placed in the origin, is described by

W =1(t) + (P : (B.6)

(Milne-Thomson,1966). The resulting velocity potential in the complex plane of
interest becomes {(figure B.2):

W=3in(n) + Sin(t-n) +

+ Fin(p) - £ ing-1) (B7)
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1/7m

2q

figure B.2 Von Mises fluid domain, extended to the full
complex t-plane, using extra sources and sinks

Parameter 17, the position of the source, is still not known but can be determined by
making use of the fact that |CB|=l. Using the identity

z=a—tlut%€vdW=a—tI%-dW (B.8)
and (B.5) gives
z= 1¢ [ rH QW o, (8.9)

CB is in the t-plane represented by
oo Mol ge[0;1]. (B.10)
Substituting this in (B.9) and using the derivative of (B.7) with respect to t gives
I=]|CB| =

q (Tdt o1 1 2 B.11
7o Lo Ay =
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jv[V-ﬁ]dQ =0 (C.4b)
Q

for YW € W Yv € V. All components of the vector function w and their partial
derivatives in space as well as the scalar function v must be square Lebesque
integrable over the domain Q. Using integration by parts and Gauss' theorem, the
first equation is transformed to:

j[St WO+ Well-(V 0)] + (V W)S:S]dQ2 =

- jv‘v-?dg + JW-Tdr (C.5)
Q r

for Yw € W, with T the stress vector defined as = S-i, i being the outward normal
unit vector on boundary I'. Equations C.5 and C.4b are suitable for discretization with
the finite element method. In this method the region € is divided into elements. Every
element consists of a number of nodal points for the velocity and the pressure and
the unknowns U and p are supposed to be a linear combination of the values of
these unknowns in the nodal points:

n
a(x.b) =I§1¢,(i) Ui (C.6a)

m
P =L ¥i(%) p(H (C.6b)

with n the total number of nodal points for the velocity and m the total number of
nodal points for the pressure. The functions ¢, and v; are the so-called basis
functions for the velocity and the pressure in nodal point i, respectively. These
functions are fully determined by the position vector x. The symbols ﬁi and p; present
the velocity vector and the pressure in nodal point i, respectively, and are only
functions of time. Therefore, the velocity and pressure fields are completely
determined by the basis functions and the nodal point values. To solve the system of
equations also assumptions must be made for the weight functions w and v. To this
end finite dimensional subspaces W, ¢ W and V, c V are constructed and the
equations C.4b and C.5 should hold for \Tvh € W, and v, € V,. Within the Galerkin
method the basis functions for the velocity and the pressure are used to define these
subspaces. In other words Wy, is spanned by the set {g;, i=1,n} and V, is spanned by
the set {y;, i=1,m}. Therefore, the arbitrary weight functions Wh and v, can be written
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as:

n
WhX.t) = i§1¢,(i)¢v,(t) (C.7a)
m

vh(X) = i§1a4f,(i)vi(t) (C.7b)

- Substitution of the equations C.6 and C.7 into the equations C.5 and C.4b leads to:

n n n n
-+ 3 -+ +
iglwi.{s‘L[St %151(”1“] * %i§1¢l|§1 (V @i Iy + 5¢-VylaQ} =

i -

i§1wi-{j gfde + [glan) (C.8a)
Q r

m n R

iZ-,Vi‘J)WajE,V ¢-lid2 =0 (C.8b)

for ali VWh € W}, and Vvy, € V},. The requirement that these equations must hold for
all admissable vector functions Wh and scalar functions Vi substitution of the
constitutive relation for Newtonian fluids (eq. C.2) and presentation in a Cartesian
coordinate system leads to a set of differential equations. With the gradient operator,
the velocity and the pressure column defined as:

VT = [9/dx,,0i0x,]
o = [u]...uq)
P’ = [PyrPpl

and ] being a 2-dimensional unit matrix, the set of nonlinear first order equations
reads:

Mi+[S+NWu+LTp=f+b (C.9a)
Lu=0 (C.9b)

with M the mass matrix:

Mil = Stjqwl 1dQ (C.10a)
Q
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S the diffusion matrix:

i o 1 T T
s - L[ (V] Yoy + Vo, Vo[la2
Q
N(u) the convection matrix:
. n
Nwi = [9at Tau]e
Q

L the divergence matrix:

Whi = - [yipa0
Q

{ the body force column:

1= [gtc0
Q
and b the boundary stress column:
o' - [gtar
r

(C.10b)

(C.10c)

(C.10d)

(C.10e)

(C.10f)

In this presentation M, S and N are square 2nx2n matrices, L is a mx2n matrix and f
and b are 2nx1 columns. Mi, sil and M(L_J)ij are square 2x2 matrices and (LT)ij, ji and

pi are 2x1 matrices.

The application of the penalty function method (see section 2.1.3) leads in a

similar way to the pressure matrix Mp:

M - [vivion
Q

(C.11)

Since the matrix L is not a square matrix, it has at most m independent rows. The
same is true for the 2nx2n matrix 21_5 LTM,‘;‘L which occurs due to the application of

the panlaty function method. Therefore this matrix is singular.



APPENDIX D: VAN WIJNGAARDEN-DEKKER-BRENT
METHOD

In this appendix an outline is given of the van Wijngaarden-Dekker-Brent method
(Brent, 1973). In the remainder it will be referred to as Brenf's method. It is used in
section 2.3 for the convergence to the equilibrium position of a rigid valve.
_ Essentially, the method is a combination of bisection and interpolation. It
combines a guaranteed global convergence of at least first order with a superlinear
- convergence close to roots of continuously differentiable functions. Roughly
sketched, the method proceeds as follows.

It is assumed that the root is initially bracketed in a known interval. The method
decreases the interval length stepwise, assuring that the root is kept within the
brackets. If possible, a next estimate of the root is obtained by an interpolation within
the current interval, but at the start of each step it is first checked whether the
decrease of the interval bounds has been sufficiently rapid in the previous iteration
steps. If not, the interpolation is obviously not efficient enough and a bisection step is
taken. If it was, a new interpolation is tested (but not yet performedi). Depending on
the available old points the interpolation is either linear or inverse quadratic (position
¢ as quadratic function of moment m). Then it is checked whether there is no danger
of over- or underflow and whether the interpolated point falls within the bracketed
interval. If so, the interpolation is performed, otherwise a bisection step is taken. In all
cases the correction is at least equal to the demanded tolerance, since a smaller
step does not make sense.

If three distinct old points ab and ¢ are available an inverse quadratic
Lagrange interpolation is used. The interpolation is inverse quadratic since with a
direct quadratic interpolation a quadratic equation must be solved, which in general
gives two distinct roots. Inverse quadratic interpolation avoids the problem of which
root should be accepted. The interpolation formula is (Press et al., 1986)

[m-m(a)lm-m(b)]e , _[m-m(b)lim-m(c)]a
[m{c)-m(a)] [m (c)-m(b)] [m(a)-m(b)][m (a)-m(c)]

Q=

[m-m (¢)][m-m(a)] b (D.1)
[m(b) - m(c)] [ m (b)-m(a)]

Setting m to zero gives as next root estimate

P
¢=b+ g (D.2a)
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with
r = m(b)/m(c), s = m(b)/m(a), t = m(a)/m(c) (D.2b)
p = s[t(r-t)(c-b) - (1-r)(b-a)] (D.2¢)
q = (t-1)(r-1)(s-1) (D.2d)

If there are only two distinct old points available the inverse quadratic interpolation is
not possible, so a linear interpolation is performed using (D.2.5) and (D.2a) together
with '

p = (c-b)s (D.4a)
q=s-1 (D.4b)

Now the algorithm is discussed in somewhat more detail way. Consider again
the three points ab, and ¢ and define them such that m(b) m(c)<O and
| m(b)|<|m(c)|. Here b is the best approximation to Pequil SO far, a is the previous
value of b (and may be equal to c) and Pocuil must lie between b and c (initially a=c).
Define also the tolerance § and the midpoint of the interval z=;(c-b). Furthermore,
denote d as the correction to be made on b and e as the previous correction made.
Apart from initializations a typical step is taken as follows:

{test whether convergence is achigved}
if |z|<8 or m(b)=0 then {root is found}
stop;
{root not found, so proceed}
if |e|<8 or |m(b)|>|m(a)| then
{convergence is too slow: use bisection}
d:=z; e:=d,
else {convergence is rapid enough: use interpolation if possible}
if a=c then ‘
{only two distinct points: use linear interpolation}
p := (c-b)s
q:=s-1
else {three distinct points a,b,c available: use quadratic interpolation}
p := s[t(r-t)(c-b) - (1-r)(b-a)]
q:= (t-1)(r-1)(s-1)
{test if interpolation is successful}
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if |p/q|<1.5|z| {interpolation within boundary?}
and |plq|<}|e| {convergence fast enough?} then
{accept interpolation}
d:=p/q; e:=d;
else {interpolation not possible or not efficlent enough}
d:=z; e:=d;
if |d|<3 then {correction too small to be meaningful: take step of &}
b:=b+é
else {correction large enough: accept it}
b:=b+d
{proceed with next step}

The choice for the criterion |p/q|<1.5|z| instead of the simpler criterion |p/q|<|z]| is
motivated by Brent because of the use of the quadratic interpolation. For more
details one is refered to his work.

The tolerance of the final approximation of the root is 25, where

8 =2¢|b| + 8, (D.5)

with & the relative machine precision and &, a positive absolute tolerance. The
algorithm is designed in such a way that rounding errors cannot prevent
convergence (Brent, 1973, p51). If rounding errors are taken into account the
tolerance & increases slightly to

& =3e|b| + &, (0.6)

(Brent, 1973, p52).

By carefully checking the convergence rate and taking bisection steps if
necessary, Brent's method is never much slower than the bisection method. This is
the main improvement of Brent. It is especially important for ill-behaved functions and
for initial guesses far from roots of well-behaved functions. At a certain stage of the
iteration process, closer to the root, superlinear convergence will set in. The order of
convergence then will be at least equal to that of the secant method (successive
linear interpolation), i.e. p = %(1+,/5) =1.62. The inverse quadratic interpolation (also
added by Brent) can improve this slightly, but the effect is only modest. Practical
tests of Brent show reduction of the total number of function evaluations by several
percents.
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In section 2.3 the bracketing of the root (which must proceed the application of
Brent's method) is described globally. Here, some more details are given.

With ? the j-th estimate of the valve position on timestep n+1 and m; the
resulting moment, A‘Ptry a trial step, AQpa, the maximum allowed step, ¢, and
®max the minimum and maximum allowed position and u an elongation factor, the
algorithm can be written as follows:

@y = o" {solution of previous timestep as initial estimate}
if m, >0 then {valve is pushed down}
Qo =@y + A‘Ptry
else {valve is pushed up}
02:= 01 - Agyy
j:=2
repeat

Ap:=p mj((p]-fq}])/(mj-fmj)

it |Ap| < A@pay then
q;, "= q)l +Ag

else {step too large, must be restricted}
Py =G+ AP axSign(Ag)

if @1 < Pmin then @4 = Pmin

if @1 > Pmax then @4 = Pmax

until m; My, q < 0

Every timestep the two most recent estimates are used because they are the
closest to the root, since m(¢) is monotonic and only extrapolation takes place.
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In this appendix an outline is given of Powell's hybrid method, which is used in
section 2.3.2 to locate the equilibrium position of a segmented valve. Consider the
scalar function

n
d@-EﬂW@ (E.1)

= m'(@)m(p) (E2)

with QT = [@4,---9p] and rpT = [fy,-...tq). r is total residual to be minimized and m;
are functions of a parameter set . In this study, m represents the link moments and
¢ the positions of the links.

Since the problem is nonlinear an iteration is used according to

Bt = B+ & (E3)

with @, the k-th estimate for the minimum and &, a correction to it. Differentiating
(E.2) with respect to ¢ and setting the gradient to zero (since a minimum is sought)
leads to

Wik + 2, mi(@V2mi( @3, = -Jm (E4)

with J(¢) the Jacobian matrix of m, defined by

J om, (E.5)
i~ 30, :
a(pj

with I=1,...n and j=1,...n. At this point it is assumed that the residual r(g) is zero at the
minimum and that it is small close to it. Since in this study m represents the link
moments which are zero at the equilibrium position and which are smooth functions
of position, it is expected that this assumption holds indeed. Then, the second term
on the left hand side can be ignored. With this approximation (E.3) becomes

JiedeBic = ~dim (E6)



E.2 On the analysis of moving heart valves

This is further simplified by a premultiplication by .l[(T. yielding

i = My (E7)

Since no derivatives are available, the Jacobian matrix Jk and its inverse J;‘ are
approximated by matrices B, and H,. At the first iteration step, B, is approximated
by finite differences and H,, from an inversion of B,,. At the next iteration steps they
are updated according to

(Am, - B. Ag) Al
'Bk+1 = Ek * =k AQ?A??( Qk (E8)

_(HAm - Apy) Agy Hy
Ay Hy Amy

Hepr = Hy (E9)

This is found by assuming m to be linear and demanding that the update (E.3) does
not cange the information normal to the step. It is called Broyden's rank-one updating
formula.

An iteration step starts with the computation of a so-called Gauss-Newton step

o - -Hye my (E10)

This follows from (E.7) and (E.9). This step can be computed directly, without solving
a set of equations. Close to a minimum of locally nearly quadratic functions, an
iteration based on Gauss-Newton step will show a fast, superlinear convergence. Far
from the minimum however, the convergence can be poor.

Therefore, the step size that may be taken at any iteration is limited by a
variable parameter A, which defines a region of trust. If ||58"|| < A, then the
Gauss-Newton step is accepted. Otherwise the vector

&=-BRm (E.11)

is calculated. §§d is proportional to the negative gradient of r(gp). and thus pointing to
the direction of steepest descent. A step of length

T 2
m
o = Mz (E.12)
BBk mll
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in this direction is considered. This step would give the exact minimum along §:" if
r(¢) was quadratic. If ak||§§d|| 2 A, then a pure steepest-descent move of magnitude
A, is made:

o = O+ T B8 €19
il

' Failing both of these events, the method interpolates between 52" and §§" according
to

Be1 = B + B B + (1B 32 (E.14)

where B, is chosen such that ||Ag, || = A,.

A, controls the mixture of Gauss-Newton and steepest-descent methods, a
large value favors the former and a small value the latter. The value of A is adapted
during the iteration, depending on the progress of the minimization process. To
decide whether or not to change A, in the next iteration, the actual reduction in
function value is compared with that predicted assuming r(¢) to be quadratic. If the
progress is poor, A, is decreased (increasing the steepest-descent bias). If r(¢)
appears to be locally nearly quadratic and so the progress is good , A, might be
increased (favoring the Gauss-Newton step). Within one iteration step, an inner
iteration is performed in which the A,, the step size and the step direction are
repeatedly adapted until r 4 <T,.

As an infinitesimal step in the steepest-descent direction will always reduce the
function value at non-stationary points, a sufficient small initial value of A, will always
be successful and the method can consequently be made globally convergent. Since
these infinitesimal steps converge very slow, good initial estimates 9, and B, are
still important for a fast convergence at some distance of the minimum. Close to the
minimum of locally nearly quadratic functions r(¢) the method reverts to the original
Gauss-Newton method, resulting in a fast, superlinear convergence. '
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APPENDIX F: QUASI 1D FLUID MODEL WITH A
PARABOLIC VELOCITY PROFILE

In this appendix an estimation is given of the effect of a parabolic velocity profile on
the steady quasi one-dimensional fluid model of chapter 2. Again it is assumed that
there is no pressure gradient in vertical direction. Some symbols are defined in figure
F.1.

figure F.1 Definitions for a quasi one-dimensional fluid model with a
parabolic velocity profile

If the dimensionless two-dimensional Navier-Stokes and continuity equations
are considered in the vorticity formulation (Batchelor, 1983) and if the inertial term
and the viscosity term are omitted, the fluid flow satisfies

0-Vo =0 (F.1)
u0 o= uth[ (F.2)
with h,=1 and w the vorticity
du, du,
W= i ; (F.3)

Since in this case auylax is small, it follows from (F.3) and (F.1) that duJdy is
approximately constant along a streamline. In the remainder of this appendix the
suffix x will be omitted. With the additional assumption that streamlines which are
equidistant in the entrance plane, stay equidistant throughout the fluid domain, it
follows that the shape of the velocity profile remains unchanged. From this
assumptions it follows that (see figure F.1)

Um~Yp Yom
=0 (F.4)
o

t
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In order to satisfy the continuity equation (F.2) the velocity profile at the valve tip is a
biased parabolic one as shown in figure F.1. Furthermore,

Uo =5 Uom (F.5)
Uy = U + § () (F.6)
A=hghy=1-1Ising (F.7)

From (F2), (F.4), (F.5), (F.6) and (F.7) it follows that

i = Vol + 31 9

From Bernoulli’s theorem it follows that the maximum pressure difference over the
valve is given by

7 (F.9)
For a flat velocity profile u,.=u, and ug=u, so that
Ape. 12l -
Pfat = 7 Yo [12 1] (F.10)
Substituting (F.5) and (F.8) in (F.9) yields for a parabolic velocity profile
Appa,=;ug{[/‘?-1]+§u2-1]} (F.11)

For a modest valve closure of ¢ = 10° (A = 0.76) and Uo= 1, Apg = 0.366 while
Appalr = 0.313. This is a relative decrease of about 14%.
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STELLINGEN
behorende bij het proefschrift

On the analysis of moving heart valves
A numerical fluid-structure interaction model

J.B.A.M. Horsten

Zwak-gekoppelde vioeistof-structuur interactiemodellen zijn ongeschikt voor de
analyse van de beweging van lichte, flexibele structuren zoals hartkleppen.

T. Belytschko, 1980

Hoofdstuk 1 van dit proefschrift

De beperkte numerieke stabiliteit van het vioeistof-structuur interactiemodel van
Peskin wordt in belangfijke mate veroorzaakt door een fysisch niet-realistische
benadering van de vloeistofkrachten.

C.S. Peskin, 1977

Hoofdstuk 1 van dit proefschrift

De analytische modellen van van Steenhoven & van Dongen en van
Wippermann voor de beweging van de aortaklep kunnen op eenvoudige wijze
worden uitgebreid met de invloed van viskeuze stromingseffecten.

A.A. van Steenhoven & M.E.H. van Dongen, 1979

F.K. Wippermann, 1985

Hoofdstuk 4 van dit proefschrift

Gezien de potentieel fnuikende invioed van snurken op intermenselijke relaties,
is de analyse ervan een maatschappelijk zeer relevante toepassing van
stroming-structuur interactiemodellen.

Volgens tenminste een gedeelte van de door haarzelf opgestelde kenmerken
kan de wetenschapsfilosofie zelf niet als wetenschap worden aangemerkt.
A. Chalmers, Wat heet wetenschap, Boomn, 1987
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7)

8)

9)

De natuurwetenschap houdt zich niet bezig met het verklaren van
verschijnselen, maar slechts met de beschrijving van de onderlinge
samenhang ervan.
L. Wittgenstein, Tractatus logico-philosophicus, Polak & van Gennep,
1975

Vanwege het voortdurend gebrek aan ethische en maatschappelijke vorming
van studenten aan de technische universiteiten, zijn deze universiteiten in
belangrijke mate medeverantwoordelijk voor het onethisch en maatschappelijk
ongewenst gebruik van techniek.

Denken over de dood maakt het leven zinvol.
M. Heidegger, Sein und Zeit, Niemeyer, 1941

Indien hun spel niet hoorbaar verschilt van elektronisch voortgebrachte muziek, .
zijn musici muzikaal gezien overbodig en moet hun beroep beschouwd worden
als een folkloristisch ambacht.



