EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Sybar, a human motion analysis system for rehabilition
medicine

Citation for published version (APA):

Hautus, E. H. (1997). Sybar, a human motion analysis system for rehabilition medicine. [Phd Thesis 1 (Research
TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR503083

DOI:
10.6100/IR503083

Document status and date:
Published: 01/01/1997

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR503083
https://doi.org/10.6100/IR503083
https://research.tue.nl/en/publications/5d96cb85-a77f-498a-b1b8-88e1308bbafd

L
o

i

L

e
G

e

e o g‘gﬁ

o

o

-
o

i
e

i e
. S

-

i
o
i

.

. e
e
i L«gﬁc%‘(;@f

G

o
e
i

o

i
T
-

L

-

L
ok

ac,;

-
,;E;Dt

s
i

S
s

Gniaia

e

-
L

e
-

L, e

.

. L

o
L

e

i

i

e
i
e

e

A

i

.

L

0

G

e

i

-

i
. i

o e
i i

pus

o
e . s
- é\% T

i

G e o

...

, L r
; i ; . i G
S

;
e
o

o

e
e .
-

Sl

-

o
.

cE o
o ‘ .
. . .

a
e
o o
i P o
R

o
o

o

.

T

G
. i - e

s

i
S .
. i v

i

o
i

-

e

e
e

i

iy
.

i

: o

.

.

.

e

L
o

.

s

o

.
e . *ﬁmm“ i
-

i . L

g naa

Lo -
i

i

Sybar,
a Human Motion Analysis System for
Rehabilitation Medicine

Proefontwerp

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.dr. M. Rem,
voor een commissie aangewezen door
het College voor Promoties
in het openbaar te verdedigen
op dinsdag 25 november 1997 om 16.00 uur

door

Edwin Hautus

geboren te Eindhoven

Dit proefschrift is goedgekeurd door de promotoren:
prof.dr. D.K. Hammer

en
prof.dr.ir. K. Kopinga

Copromotor:
dr.ir. CWA.M. van Overveld

Druk: Universiteitsdrukkerij TU Eindhoven

Summary

The Sybar project is a designer’s Ph.D project that deals with the
development of a motion-analysis system for rehabilitation medi-
cine, at the VU Hospital in Amsterdam.

Human motion can be analyzed by biomechanical measurement
systems. There are a number of different methods to generate sev-
eral types of data on human motion. Biomechanical analysis of
patients with motion disorders can potentially give valuable infor-
mation to physicians. However, existing biomechanical measure-
ment systems that have been introduced in a clinical setting have
had only limited success, because they have been designed for other

purposes.

The goal of the Sybar project is to build a biomechanical analysis
system specific for the clinical setting. We take the clinically
accepted way of human observation as a starting point. Instead of
providing large amounts of measurement data separately, the exist-
ing image of the patient is enhanced with additional information.
We believe that by showing a video of a patient in combination
with graphics measurement results, it becomes much easier to
directly relate the data to the actions of the subject under investiga-
tion.

Sybar is developed using object oriented methods. In particular, the
Object Modeling Technique (OMT) is used. From a software-
engineering point of view, interesting aspects are:

® aclear system specification can not be determined without some
form of rapid prototyping.
® the environment of the system is complex, and dynamic.

e the requirements for digital video and image processing are on
the edge of what is technically feasible.

Summary 3

Summary

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

1.1
1.2
1.3

2.1
22
23

24

3.1
32
33
34
3.5
3.6
3.7

4.1
42
43
4.4
4.5
4.6

5.1

Summary 3

Introduction 9

Sybar 9

Setup of this thesis 11
The chapter structure 13

Human Motion Analysis 17
Short history of human motion analysis 17
Current clinical measurement methods 19

Problem statement: measurement methods for patient
assessment 21

Our approach 23

Requirements Definition 25

Function of the requirements definitions 25
Clear presentation of measurement data 25
User friendliness 26

Patient friendliness 27

Reliability 27

Maintainability 28

Resource constraints 28

Requirements Specification 31
Function of the requirements specification 31
System boundaries 31

Types of measurements that are supported 32
The physician’s view of the system 33
Maintainability requirements 39

Performance requirements 40

Analysis Model 41
Function of the analysis model 41

5.2 The object model 41
5.3 The dynamic model 45
5.4 The functional model 46

CHAPTER 6 Toplevel Design 47
6.1 Introduction 47
6.2 Decomposition of Sybar 47
6.3 The measurement system 48
6.4 The computer system 50
6.5 Sybar software 51

CHAPTER 7 Recording Subsystem 55
7.1 System design 55
7.2 Object design 58

CHAPTER 8 Display Subsystem 65
8.1 System design 65
8.2 Object design 69

CHAPTER 9 Kinematics: Systems and Algorithms 81

9.1 Introduction 81
9.2 ‘Modeling human motion 81
9.3 Detection of kinematics 83
9.4 Detection devices 83
9.5 Detection device for Sybar 86
9.6 Computer vision basics 86
9.7 General issues on retrieving human motion from images 89
9.8 Approaches without markers 90
9.9 Approaches that use markers 92

9.10 Classification of approaches 96

9.11 Approach for Sybar 97

CHAPTER 10

CHAPTER 11

CHAPTER 12

CHAPTER 13

CHAPTER 14

10.1
10.2
10.3
10.4
10.5
10.6
10.7

11.1
11.2
11.3
11.4
11.5

12.1
12.2
12.3
12.4
12.5

13.1
13.2

14.1
14.2
14.3

14.4

Kinematics from a Single View 99

Introduction 99

Chen and Lee’s approach to 3D reconstruction 100
Problems with Chen and Lee’s approach 102
Reconstruction using a linearized set of equations 104
Solving the equations using singular value decomposition
Results of our approach 114

Conclusion 121

Kinematics Subsystem 123
Introduction 123

Kinematics subsystem design 123
The feature detector 126

The human model 132

Tracker 136

Design Methodology 143
Design & design methods 143
Software design methods 145
Choosing a toolset 147
Toolset for Sybar 147

Design strategy 149

Design Process 153
Subprocesses of the design process 153
People 159

Evaluation 161
Evaluation of Sybar 161
Evaluation of the main goal: clinical usefulness 161

Evaluation of the system with respect to the requirement
definition 163

Evaluation of the design methods 164

111

1.1
1.2
1.3

2.1
2.2
23
24
2.5
2.6

Object Oriented Methods & OMT 169

A very short introduction to object oriented methods
The object modeling technique 171

Two small extensions of OMT 174

Hardware Implementation 177
Measurement devices 177

Synchronization 177

Video recorder 178

Video digitizing and hardware compression 178
Data acquisition 180

List of devices and overview 180
Bibliography 183
Acknowledgments 191
Samenvatting 193

Curriculum Vitae 195

169

CHAPTER 1

Introduction

1.1

This chapter gives an introduction to the Sybar project, a
designer’s Ph.D. project for the Eindhoven University of
Technology.

Sybar

1.1.1

A designer’s Ph.D. is a post-graduate doctorate program intended
for second phase design course graduates. In contrast with tradi-
tional Ph.D. projects, the goal of a designers Ph.D. project is not to
do research which is relevant to the scientific community, but to
prove one’s abilities in developing a design and managing the
design process.

The Sybar project deals with the development of a motion-analysis
system for rehabilitation medicine at the VU Hospital in Amster-
dam. The project took place at the department of Clinical Physics &
Engineering of the VU Hospital. A number of employees of the VU
Hospital participated in the project. Sybar is an acronym for
‘Systeem voor bewegingsanalyse bij revalidatie’, which is dutch for
‘system for motion analysis in rehabilitation medicine’

Purpose

Human motion can be analyzed by biomechanical measurement
systems. There are a number of different methods to generate sev-

Introduction ' 9

1.1.2

eral types of data on human motion. Furthermore, there are many
disorders that effect the human ability to move and that require
treatment. Biomechanical analysis of these patients can potentially
give valuable information to physicians. However, existing biome-
chanical measurement systems that have been introduced in a clini-
cal setting, have had only limited success, because they have been
designed for other purposes.

The goal of the Sybar project was to build a biomechanical analysis
system specific for the clinical setting. The novelty to the approach
is that the biomechanical measurements are seen as an enhancement
of the normal working procedure of the physicians, and not as a
completely separate procedure.

From a software-engineering point of view, interesting aspects are:

® aclear system specification can not be determined without some
form of rapid prototyping.
® the environment of the system is complex, and dynamic.

¢ the requirements for digital video and image processing are on
the edge of what is technically feasible.

Design description and process

A problem with describing the design is that there is no general
consensus in computer science on what a software design actually
is. However, there are a number of design methods that try to struc-
ture the design process. One of these methods, the Object Modeling
Technique (OMT), is used as a basis for the design description in
this thesis. A short introduction to OMT is given in Appendix A.

A characteristic of design-method books is that they often describe
the design process in an idealized way. In practice, there is always a
structured side and a creative side of the design process. The prob-
lem with creativity is that it is nearly impossible to control. A
design process therefore in practice never completely follows a
method. The Sybar project is no exception. OMT was used as a
design language, however, the design process was often driven by
creativity and intuition.

10

Introduction

1.2 Setup of this thesis

1.241

The description of the design is separated into two parts: analysis
and design. The analysis part describes the desired behavior of the
system. The design part describes the way to achieve this desired
behavior. Describing a design without giving the analysis does not
make much sense, since there is then no way to verify that the
design meets the requirements.

One of the purposes of a Ph.D. by design is to gain insight into the
design processes of the engineering disciplines involved. For this
reason, this thesis does not only describe the design itself, but also
the process that leads to the design.

Analysis

The description of the analysis is separated in a number of parts.
Each part describes the requirements of the system on a certain
level of detail. Going from one level to the next, involves design
activities. For example, to get from the requirements definition to
the requirements specification, involves the design of the user inter-
face. The description of the user interface is in itself a requirement
for the design part.

We distinguish the following parts in the description of the analy-
sis:

® Domain analysis. background information on the project

® Problem statement: the specific problem that is the purpose for
building the system.

o Initial approach: the initial approach towards solving the prob-
lem.

® Requirements definition: a statement describing in global terms
what the system is expected to provide.

® Requirements specification: a more detailed overview of the
requirements, still using natural language.

® Analysis model: a model of the system, as it is required to func-
tion in its environment.

Although the design method OMT recognizes the top down
approach in the design phase, it does not distinguish the subphases
in the analysis phase. We think that requirements engineering is

Introduction 11

1.2.2

1.2.3

such an important part of Sybar, that it requires a number of levels
of detail to be described. We feel however, that this set-up does not
deviate fundamentally from the suggested software life-cycle
described in OMT. The terminology used for the analysis subdivi-
sion is taken from [69]

Design.

We distinguish the following parts in the design description:

® Top level design: global design of the system and the division of
the system into subsystems.

® System design: design of each of the subsystems.
® Object design: design of the individual classes of a subsystem.

This setup follows the suggested setup of OMT.

Quite often in software design, the hardware configuration that the
software is supposed to run on, is part of the requirements. How-
ever, in our case, determining the hardware configuration was an
integrated part of the design task. Sybar can therefore be seen as a
combined software and hardware design with a strong emphasis on
software design. The overall hardware design is one of the first
steps in the toplevel design. However, there are also hardware
aspects to certain subsystems.

Process and evaluation
The design process is described in three parts:

® Design methodology: describes the selection of a design method
for Sybar.

® Design process: describes the design process that led to the
design.

® Evaluation: gives an evaluation of both the design and the design
process.

12

Introduction

1.3 The chapter structure

The chapter structure of the thesis is based on the setup described in
previous section. The domain analysis, problem statement and ini-
tial approach, are described in a single chapter on human motion
analysis. The system design and object design of the sub systems
are described in a single chapter for each of the subsystems. The
description of the kinematics subsystem is divided into three chap-

ters.

In the following table, we give an overview of the contents of the
chapters in this thesis.

TABLE 1

Guide to the chapters
Chapter Description
1 | Introduction | This chapter gives an introduction to the Sybar

project, a designer’s Ph.D. project for the Eindhoven
University of Technology. At this moment, you are
reading this chapter.

Part 1: Analysis

2

Human
Motion
Analysis

Require-
ments Defi-
nition

Require-
ments Speci-
fication

Analysis
Model

The first human motion analysis systems date back
to the previous century. Over the years, new meth-
ods to measure and analyse human motion have been
introduced. This chapter gives a short history of
human motion analysis and gives the purpose of
building a new motion analysis system.

The main goal for the Sybar project is the develop-
ment of a system that aids physicians in patient
assessment. In this chapter, the requirements are
given that are critical for the success of the project.

This chapter gives the requirements specification of
Sybar. First, the system boundaries are defined.
Then, the types of measurements that are supported
are given and the system is described from the view-
point of the physician. Finally, maintainability and
performance requirements are given.

In this chapter, the analysis model is described,

using the object modeling technique (OMT). This
concludes the analysis phase.

Introduction

13

TABLE 1 Guide to the chapters
Chapter Description

Part 2: Design

6 | Toplevel This chapter gives the top level design of Sybar. The
Design top level design describes the decomposition of the

complete system into subsystems. The toplevel
design consists of both hardware and software

7 | Recording This chapter describes the recording subsystem,
Subsystem which is responsible for the acquisition and manage-

ment of measurement data.

8 | Display The display subsystem is responsible for the display
Subsystem of measurement results, and the interaction that

takes place during a viewing session.

9 | Kinematics: | Human kinematics can be measured in a large num-
Systems & ber of ways. This chapter first gives an overview of
Algorithms the devices and algorithms that are used. Next, the

kinematics detection approach for Sybar is chosen.

10 | Kinematics This chapter deals with the possibility of retrieving
Measure- 3D kinematics from a single camera view for Sybar.
ment froma | First, Chen and Lee’s approach is summarized and
Single View | discussed. Next, the 3D reconstruction is formulated

as a minimization problem, to be solved with the
SVD-technique. Finally, some test results of the
approach are presented and conclusions are drawn.

11 | Kinematics This chapter describes the kinematics subsystem. It
Subsystem uses the results of the research of thé previous chap-

ters. First, the system is divided into three sub-
systems. Next, a description of each the subsystems
is given.

Part 3: Process & Evaluation

12 | Design This chapter discusses the choice of a design method
Methodology | for Sybar. First, design and design methods in gen-

eral are discussed. Next, the general software engi-
neering methods are described. Finally, the choice
for a particular method and design strategy for Sybar
is motivatéd.

14 Introduction

TABLE 1

Guide to the chapters

Chapter Description
13 | Design This chapter describes the design process of the
Process Sybar project. First, the process is divided into sub-
processes. Next, these processes are described,
including some of the problems that were encoun-
tered. Finally, the project team and the contributions
of the members of the team are described.

14 | Evaluation This chapter evaluates the Sybar project. Both the
developed product and the design process are evalu-
ated. Finally, some lessons learned during the
project are described.

Appendices

A | Object This appendix gives a short introduction to object

Oriented oriented methods and the Object Modeling Tech-
Methods & nique (OMT). Furthermore, it introduces two small
OMT extensions of the notation that are used in the thesis.

B | Hardware Most of the hardware that was to be used for the

Implementa- | Sybar project was bought specifically for the project.

tion This appendix describes the hardware components
and the way they are connected.

Bibliography

Introduction

15

16

Introduction

CHAPTER 2

Haman
Motion
Analysis

21

The first human motion analysis systems date back to the previous
century. Over the years, new methods to measure and analyze
human motion have been introduced. This chapter gives a short
history of human motion analysis and gives the purpose of building
a new motion analysis system.

Short history of human motion analysis

Human and animal motion has intrigued humanity, and artists in
particular, from the beginning of our existence. Ancient paintings of
running hunters and prey in caves are still testimony of this. The
first important pioneer in scientific motion analysis is the Italian
physician and mathematician Borelli (1608-1680). In his treatise on
animal motion, he discusses the working of motion using models
based on observation and mechanical laws. His work was unsur-
passed for almost two centuries.

In the 19th century, the invention of photography lead to new possi-
bilities in registrating motion. Photographer E.J. Muybridge was the
first to study the possibilities of using a series of photographs, shot
with a number of cameras, to study human and animal motion. In
particular, his photographs of race horses are well known.

Interestingly enough, the invention of cinematography was a direct
result of the desire to analyze human and animal motion. It was the

Human Motion Analysis 17

FIGURE 1

Motion analysis of pole
vaulter using a
photographic plate
recording by Marey

French scientist £.J. Marey (1830-1904) who, inspired by Muy-
bridge, invented the movie camera and projector. His main interest
was that of registrating animal and human motion. For this purpose,
he also developed mechanical sensors to measure foot pressure. His
goal was to give a quantitative description of movement (also
known as a kinematic description), and he was the first to present
measurement data of human movement using a graphic method.

Muscles are an essential part of the human motor system.The elec-
trical activity of muscles can be measured, using a technique known
as electromyography. The pioneer in this area is Duchenne de Bou-
logne, who improved existing measurement systems and studied the
human muscle system in the 19-th century. Closely related to the
measuring of electricity (kinesiological EMG) in the muscles, is the
stimulation of muscles using electricity (clinical EMG). Both types
of EMG were studied by Duchenne de Boulogne.

The first 3D-kinematic analysis of motion
was performed by Braune and Fisher in
1891. Their method was based on Marey’s
photographic plates. They used four cam-
eras and attached light tubes to the human
subject. Preparing the subject took six to
eight hours. All the 3D-calculations had to
be done by hand and took several years.

Braune & Fisher also were the first to mea-
sure the forces and moments involved with ,
the movement, also known as the kinetics. riure 2

They did this by measuring inertial proper- Prepared subject in Braune
ties of body segments and combining these and Fisher's motion analysis

18

Human Motion Analysis

2.2

with the 3D data. Braune and Fisher studied only one human sub-
ject.

Another important pioneer in the history of motion analysis is the
russian scientist Nikolaj Bernstein. Using a systematic methodol-
ogy, his research team studied a large number (800) of subjects.
Like Braune and Fisher, Bernstein’s data acquisition method was
based on photogrammetry. Unfortunately, Bernstein’s work was
unknown for a long time because it was only published in the Rus-
sian language.

After World War II, a group of researchers at the University of Cal-
ifornia performed extensive research on human motion. Their goal
was to gain insight in human motion in order to improve the design
of artificial limbs. They used a number of measurement methods
and devices, including an improved force plate device.

Since the California group did their research, the introduction of
computer systems has made motion analysis much easier. A num-
ber of commercial motion analysis systems have become available.
Furthermore, human-motion analysis labs have been established in
universities, hospitals and research centers around the world.
Human motion analysis systems are used in ergonomics, sports, the
entertainment industry, ortopedics and rehabilitation medicine.

This concludes our short history of motion analysis. In the next sec-

tion, we will give an overview of the measurement methods for
motion analysis used today.

Current clinical measurement methods

In this section, we describe the types of measurements and mea-
surement devices that are most frequently used in the motion analy-
sis laboratories. More detailed overviews can be found in [11,13,14,
15]. Most analysis of human motion focuses on the movement of
walking, because it is such an important motion in daily life. The
analysis of walking is also known as gait analysis.

Human Motion Analysis 19

2.21

2.2.2

223

224

General movement parameters

In gait analysis, general movement parameters such as walking
speed, step frequency, step length, etc. can be measured. For this, a
stop watch or foot contact device is used.

Kinematics

Kinematics describe the movement of body segments. The historic
studies by Marey, Braune and Fischer, based on photographic tech-
niques, studied kinematics. Currently, there are a number of differ-
ent ways that kinematics are measured: there are camera systems,
acoustic systems, magnetic systems, goniometers, and accelerome-
ters. These systems are described in greater detail in Chapter 9,
which deals with kinematic detection systems and algorithms

Kinetics

Kinetics describe the forces and moments that cause motion. Kinet-
ics follow from kinematics and inertial properties of model seg-
ments. Unfortunately, it is not easy to obtain these inertial
properties. Therefore, kinetics of lower extremities are often mea-
sured with a force plate that measures the forces of the foot towards
the floor. When combined with kinematics and inertial properties of
leg segments, force plate data can be used to calculate moments in
joints of the lower extremities.

Electromyography

The muscles are an essential part of the human motor system.
Movement is achieved by the complex activity of contracting mus-
cles that produce work. Since it is the activity of a number of mus-
cles that causes joint rotations, the activity of individual muscles
can not be determined from kinematics or kinetics. However, elec-
trical activity of individual muscles can be measured, and this is
known as electromyography (EMG).

Unfortunately, there is no direct relation between the electrical
activity of the muscle and the force produced by the muscle. How-
ever, EMG can be used to determine at which point in time muscles
are (relatively) active during a motion pattern, for example during a
gait cycle. This is useful information to determine the cause of a

20

Human Motion Analysis

225

2.3

motion disorder. EMG is measured with electrodes that are applied
to the surface or with wire electrodes that are applied directly into
the muscle. Surface electrodes can only be used for superficial mus-
cles and are not very specific, while wire electrodes give specific
information on non-superficial muscles.

Energy expenditure

To perform a movement, the muscles in the human body contract,
for which energy is needed. Energy expenditure is a measure for the
efficiency of a person’s motor skills. Energy expenditure is usually
measured by determining the difference between the percentages of
oxygen in inhaled and exhaled air. An alternative to measuring oxy-
gen levels is the measurement of heart rate. However, this method
is not very reliable, since the heart rate can also be influenced by
other factors, such as mental stress.

Problem statement: measurement methods for
patient assessment

The measurement methods described in the previous section each
give information on certain aspects of human motion. An applica-
tion of this information can be found in the treatment of patients
with motion disorders. A distinction can be made between motion
analysis in the context of clinical research and motion analysis for
patient assessment. In the context of research, studies are done on
data of populations of patients. The goal is to learn more about cer-
tain motion disorders. In patient assessment, a single patient is
examined. Here, the goal is to determine the best treatment for the
individual patient [7]. The measurement devices mentioned in Sec-
tion 2.2 have found applications in clinical research. However, only
few applications can be found in patient assessment [3,5,11,13].

There are several reasons for the lack of motion-analysis applica-
tions in patient assessment. First of all, there is a great diversity
between individuals, both in normal and pathological cases. It is
therefore difficult to draw conclusions from a single case. Further-
more, in case of permanently disabled patients, there is an addi-
tional problem. The goal of the treatment of permanently disabled
patients is to improve motor skills to a level of functioning that
enables the patient to perform the most important tasks of daily life.

Human Motion Analysis 21

The way this is achieved depends very much on the disability of the
patient, and it may involve alternative ways of movement. This
means that comparison with movement patterns of healthy persons
is often not relevant.

A problem of a different nature is that physicians are not trained in
interpreting results from biomechanical measurement devices. Phy-
sicians are also sometimes not convinced of the usefulness of a bio-
mechanical analysis. As was noted by Woltring, this problem was
already mentioned by H. Boerhaave in 1703: “Those who estimate
the corporal forces through Geometric Calculus from mass, shape,
and velocity, either theoretically or experimentally, are called
Mechanicians (....). All the civil and martial arts recognize the util-
ity of this science (...). Only the physicians mistrust her and judge
generally, without further examination, that she can be of no use
whatsoever” [9].

The lack of human-motion analysis applications for patient assess-
ment is the topic of much debate in the biomechanical engineering

- community. One approach that has been propagated to introduce

motion analysis, is the development of measures that indicate the
likelihood that a patient has a certain disease. However, only a few
results have been reported in this area [3].

One method that is accepted and used by physicians is that of
human observation. A patient performs an exercise and is observed
by the physician. The physician then reaches conclusions based on
his education and experience. A simple enhancement is to record
the patient on video, which enables the physician to view the patient
in slow-motion [14]. In a sense, this can be seen as an application of
Marey’s invention of cinematography. Some work has been done to
try to standardize this procedure for motion analysis [16].

In the field of biomechanics, observational analysis is often criti-
cized [11,13]. The main objection is, that the assessment is deter-
mined largely by the individual observer. Furthermore, it is simply
not possible for humans to see the causes of motion (the muscle
contractions), and the forces involved. Research that has been done
on the reliability of observational gait analysis, shows that it is
indeed only moderately reliable [8,12,16].

22

Human Motion Analysis

2.4 Our approach

Design Decision:

FIGURE 3

Sybar in relation to
biomechanics and
rehabilitation medicine

The approach we choose to follow is based on presenting biome-
chanical data together with video images that can be used for obser-
vational analysis. This way, we try to get the best of both worlds.

Rehabilitation

Biomechanics
Medicine

Human

Measurement 5
observation

methods

We take the clinically accepted way of human observation as a
starting point. Instead of providing large amounts of measurement
data separately, the existing image of the patient is enhanced with
additional information. We believe that by showing a video of a
patient in combination with graphics measurement results, it
becomes much easier to directly relate the data to the actions of the
subject under investigation. Furthermore, observational analysis
can be instantaneously combined with interpretation of results from
biomechanical measurements.

The approach is not completely new. Some experimental research
on systems that combine video with data has been done with force
plate data [1,2], and EMG data [6,19]. The Sybar project deals with
the development of a system for use in a clinical environment that
combines information from all relevant measurement systems.

Although we believe that this is a promising research direction, we
do not claim to know in advance which data is most useful to physi-

- cians. Sybar therefore has to be a flexible system that evolves

together with clinicians who have to learn to interpret the data. A
technical opportunity that gives new possibilities in the develop-
ment of motion analysis systems, is the recent availability of rela-
tively cheap digital video equipment. Existing systems still use
analog video. Using digital video gives new possibilities in the area
of user interaction and display.

Human Motion Analysis 23

In the following chapter, this initial approach is expanded into a set
of requirement definitions that we feel are essential in the develop-
ment of a clinical application for motion analysis.

24

Human Motion Analysis

CHAPTER 3

Requirements
Definition

Bl

31

The main goal for the Sybar project is the development of a system
that aids physicians in patient assessment. In this chapter, the
requirements are given that are critical for the success of the
project.

Function of the requirements definitions

3.2

In this chapter, the initial approach is translated it into a set of
requirements that are the basis for determining the more detailed
requirement specification. The requirements are also used as guide-
lines in the design process. In the evaluation, we discuss whether
Sybar succeeds in fulfilling the requirements definition.

Clear presentation of measurement data

In our society, one is frequently confronted with huge amounts of
information of all kinds of different types. Most of this information
does not interest us at all. However, to separate relevant informa-
tion from useless information is no easy task. Furthermore, the
combination of several pieces of apparently useless information
may lead to the conclusion that this information is useful after all.

Sometimes, human capabilities to grasp information are not enough
and a phenomenon called information overload occurs. Information

Requirements Definition 25

overload occurs when a person is presented with large amounts of
unstructured data, and as a result has the idea that no conclusions
can be made, although the information to make these conclusions is
probably available. Whether information overload occurs, depends
for a large part on the experience of the person involved.

Human motion measurement systems produce large amounts of
data. Biomechanists are relatively well trained in interpreting these
data. However, the end-users of Sybar are physicians. Physicians
are not trained in dealing with these types of measurement data. If
the information that motion analysis systems present is presented as
a collection of raw data, physicians will surely suffer from informa-
tion overload.

This leads to our first requirement:

Requirement 1:Measurement information is to be Dpresented in a way that is useful
Jor physicians.

3.3 User friendliness

User friendliness and human-computer-interaction are becoming
more and more important in the design of computer systems. User
friendly systems allow the user to work more efficient and with
more pleasure. Unlike in the past, unfriendly systems are now often
simply rejected by users. Projects can fail because of lack of atten-
tion to user interfaces.

The following types of users in clinical motion analysis systems can
be distinguished:

1. The physicians: these are the end-users of the system. Physicians
usually have little experience with computers. They also have lit-
tle time to learn complicated interfaces.

2. The lab operators: these operate the data acquisition equipment.
Lab operators also prepare measurements data for presentation to
physicians. Lab operators are more used to working with compli-
cated equipment.

Considering the price of a physician’s time and his inexperience
with computers, it is obvious that user friendliness to the physicians

Requirements Definition

is essential in the design of Sybar. The basic user task for physi-
cians is that of navigation through the measurement data. This leads
to our next requirement:

Requirement 2:Navigation through measurement data should be simple and intui-
tive for physicians.

The lab operators deal with the data acquisition and data processing
necessary for the presentation. Although more effort from lab oper-
ators in learning the system can be expected, it is clear that lab oper-
ators should also find the system easy to use, especially considering
that they will be the users that use the system the most.

In a clinical environment, results have to be available quickly.
Therefore, it is essential that the process of data acquisition and pro-
cessing does not take too much time.

Requirement 3:The lab operators should find the system easy to use and should be
able to perform data acquisition and data processing quickly.

3.4 Patient friendliness

The patients on which motion analysis is performed are not users.
However, it is obvious that they are to be taken into consideration.
Patients usually have some sort of motion disorder and often cannot
move very easily. Therefore, the strain that measurement system
have on patients should be kept to a minimum. Another standard
requirement for medical equipment is that the measurement system
is safe to use.

Requirement 4:The measurement system has to be patient friendly and safe.

3.5 Reliability

Since the goal of the project is to deliver a system for daily clinical
use, it is expected that physicians will over time become more and
more dependent on it. Therefore, it is essential that the system is
reliable.

Requirement 5:The system should be reliable

Requirements Definition 27

3.6

In particular, two aspects are relevant:

® It is important that no patient data can be lost.

e It is important that the information presented to the physicians is
correct

Reliability in terms of system crashes and ‘mean time between fail-
ures’ is not really an issue. Of course, a system that crashes a lot can
never be user friendly and therefore violates the other requirements

anyway.

Maintainability

There are several types of software maintenance [69]:

¢ Corrective maintenance is concerned with fixing errors in the
code.

® Adaptive maintenance is concerned with adaptation of the soft-
ware to new circumstances, for example new hardware.

® Perfective maintenance is concerned with meeting new require-
ments.

All three types of maintenance will be necessary for Sybar. In par-
ticular perfective maintenance will be necessary in order to con-
tinue the improvement of Sybar by evaluating the physicians use of
the system. Adaptive maintenance is anticipated because of the
developments in the area of digital hardware: new video cards with
better performance will improve the quality of the video images.

Requirement 6:The system should be maintainable.

3.7 Resource constraints

The amount of resources available to accomplish the design is lim-
ited.

® Budget constraints: no particular budget has been assigned to the
project, however, each purchase needs to be approved of by
management. The budget constraints is particularly relevant dur-
ing hardware design and implementation.

28

Requirements Definition

® Human resources: the amount of people available for the project
depends on which specific skills are necessary. Again, each
request for human resources needs to be approved of by manage-
ment.

® Time: the time span for the Ph.D. project is 2 years and 9 months.

These resource constraints do not lead to specific requirements, but
they do have an impact on the design.

Requirements Definition 29

30

Requirements Definition

CHAPTER 4

Requirements
Specification

4.1

This chapter gives the requirements specification of Sybar. First,
the system boundaries are defined. Then, the types of measurements
that are supported are given and the system is described from the
viewpoint of the physician. Finally, maintainability and
performance requirements are given.

Function of the requirements specification

4.2

This chapter is a more detailed description of the requirements,
using the requirements definition as a basis. In the requirements
definition, we managed to avoid design decisions. This chapter,
however, contains a large number of design decisions, some of
which were determined at the later stages of the project. The fact
that analysis and design activities can not be completely separated
is discussed in the evaluation, see Section 14.4.3.

System boundaries

System boundaries define what is considered to be part of a system
and what is considered to be part of the environment of a system.

The complete ‘Sybar Lab’ consists of:

® A measurement system that performs the data acquisition and
the data processing

Requirements Specification . 31

4.3

® A viewing station that allows the measurements to be viewed
® A lab operator that performs the measurement.

Note that the lab operator is considered to be part of the system. The
reason for this is that the lab operator has a supportive task, and no
functional requirements of his own. Therefore, the system will not

be described from the view point of the lab operator in this specifi-
cation.

The environment of the system consists of the physician and the
patient.

Types of measurements that are supported

Design Decision:

4.3.1

Design Decision.

The choice of measurement devices that are supported, has been
based on availability in the motion analysis lab at the VU Hospital.
Sybar supports the use of video recording, EMG measurements and
force plate measurements. Furthermore, kinematics can be retrieved
from the video.

Sybar is a general human motion analysis system. The most impor-
tant type of analysis in rehabilitation medicine is the analysis of
walking gait. However, the analysis of other exercises, like getting
out of a chair or jumping, is also possible with Sybar.

Kinematics

An important way to describe human motion, is by means of a kine-
matic description. Kinematic data consists of a model of the human
body and a description of its behavior through time. There is a dis-
tinction between 2D kinematic and 3D kinematic descriptions.
Since human motion is in principle a motion in three dimensions,
3D kinematics are to be preferred. Furthermore, many gait patholo-
gies involve movements in the frontal plane, and require 3D analy-
sis [7]. However since the acquisition of 3D data is much more
complex, sometimes a simple 2D kinematics analysis is used.

Sybar should at least support 2D analysis. Support for 3D analysis
is very desirable and should be investigated.

32

Requirements Specification

4.4

There are many kinematic detection systems, with many years of
development effort and, in general, an emphasis on accuracy of the
data. In chapter 9, the approach for Sybar is determined. However,
at this point, it can be said that the accuracy of the kinematics detec-
tion is not as important as the visualization and ease of use of the
overall system.

The physician’s view of the system

4.41

Design Decision:

From the viewpoint of the physician, the system consists of a com-
puter screen, a keyboard, and a mouse interface. The physician can
look at the results of the motion analysis measurement, as prepared
by the lab operator. At this point, the reader is reminded of the two
relevant requirement definition: clear presentation of data (req.def.
1) and easy navigation though data (req.def. 2). This section trans-
lates these requirements into a user interface. The design of the user
interface consists of a large number of design decisions. Only the
more interesting ones have been indicated in the side line.

General screen lay-out

The user interface uses the standard ‘desktop-metaphor’[69]. The
screen lay-out consists of a menu and a number of windows,
depending on the chosen display configuration. The windows are
either dialogs, to set parameters and options, or displays. Displays
show the measurement results in a certain way. Only one patient
exercise can be watched at a time. There is a global time state, that
influences what the displays show.

Requirements Specification 33

Figure 4 shows an example of a screen lay-out.

Setup_Model Display Access
e

EMG gauge
FIGURE 4 ideo disp F Plat
video display orce Plate
Example of a graph
screen lay-out 4/

EMG graph——p
graph cursor scroll bar control panel

The following displays are available:

® video displays display the video. The video displays shows the
video image closest to the time state. The video display is
described in Section 4.4.2.

® graphs displays show measurement data (either EMG or force
measurement) in a graph. The time axis is always horizontal.
The vertical axis shows measurement results. A cursor (vertical
line) shows the place of the time state on the time axis.

2:EMG Graph B

® gauge displays show measurement data values at the time state
in the form of a gauge. These are only available for EMG.

i vamed

® 3D kinematics displays show a view of the kinematics of (part
of) the patient, using a stick diagram model, which can be

34 Requirements Specification

4.4.2

Design Decision:

viewed by position a virtual camera. The kinematics display is
described in Section 4.4.3.

Any number of displays can be shown at a time, and because dis-
plays are windows, they can be moved and scaled to any position.
This gives the possibility of choosing a display configuration,
depending on the measurement data that is available, or the infor-
mation that the physician wants to focus on.

The video display and the kinematics display are now described in
greater detail.

The video display

Since our system is based on observational analysis (see Section
2.4), the most important display is the video display that shows the
patient. Most attention of the physician will be directed towards this
display. Therefore, the easiest way for the physician to interpret the
additional measurement data is when it is displayed in a meaningful
way inside the video image.

Force plate and EMG can be shown in the video display:

e Force plate data represents the force vector of the foot on the
force plate. This is shown as a 3D line in the video image. A
shadow indicates the projection of the vector on the floor.

® EMG data represents (electrical) muscle activity. It can be
shown as a moving gauge at the location of the muscle. To dis-
play the measurement at the location of the muscle makes sense,
since this way it is easy to see which measurement corresponds
with which muscle (no names are necessary).

There has been some discussion in the Sybar project on how to dis-
play the EMG-levels. Alternatives to the ‘moving gauges’ are:

¢ Colored muscles, where the color indicates the value. The prob-
lem with color-scales is that they are harder to interpret than
~ gauges [76].
® Vertical gauges. Using vertical gauges makes it easier to com-
pare different gauges, since they are always aligned. However,
the image becomes less clear because the gauges no longer

Requirements Specification 35

443

FIGURE §
Kinematic
display that
shows stick
figure modei

Design Decision:

respect body contours, and the correspondence to muscle loca-
tions is less clear.

The most important camera view is the sagital view, where the
patient is seen from the side as in Figure 4. However other views,
like the coronal (frontal) view, are also supported.

The 3D kinematics display

The purpose of the 3D kinematics display is to give a visualization
of the 3D kinematics from a view point that can be selected by the
user, see Figure 5. The user can move the camera on a sphere that
has its center at the gravity center of the human model. The gravity
center of the human model, is defined as the average of all model
points. The camera is automatically directed towards the gravity
center. This is a design decision that favors ease of use over flexi-
bility: the user can not look in any direction he wants. It is assumed
that the only interesting direction to look at is the center of gravity.
By moving the mouse, one can move the camera over the sphere.

By moving the mouse up and down in combination with the control
key, it is possible to change the radius of the sphere. By using the
tab key, the focal distance can be changed. Muscles are again
shown as gauges, and the force vector is shown as a 3D vector.

The chosen navigation mechanism in the 3D world favors ease of
use over flexibility: the user does not have the freedom to choose
the viewing direction. It is assumed that the user want to look at the
stick figure and therefore the view is automatically directed towards
the stick figure.

36

Requirements Specification

4.44

Design Decision:

FIGURE 6
The Control Panel

4.4.5

Navigation through time

The displays all depend on the time state of the system. Therefore,
the most important type of navigation is navigation through time.
For navigation through time, a video recorder-metaphor is used. It
is possible to play, rewind, forward and stop a recording of a mea-
surement with a user interface element that is similar to a remote
control of a video recorder, see Figure 6. If a recording is playing,
the time state is automatically adjusted. Updates are performed as
quickly as the hardware permits. There is a scroll bar that represents
the time axis. Moving the scroll bar cursor sets the time state to the
corresponding time. There is also a ‘cycle button’. If this button is
pressed, the video is continuously played from the start to the end
and over again.

Another way for the user to change the time state is to click in a
graph. The time state is then set to the point in time corresponding
to the point on the time axis where the user clicked. This feature is
useful to quickly navigate to certain points in time, based on infor-
mation from graphs. For example, the situation at a peak in a graph
can be examined by clicking on the peak.

Navigation through data

The user has the option to focus on a selection of the measurement
data. First of all, the contents of a display can be chosen. The data
consists of 2 number of channels, each representing a series of mea-
surements in time with a single sensor. One or more channels can
be shown in a graph. In the video display, the force plate and EMG
annotation can be switched on or off. Furthermore, by moving and
scaling windows, the screen can show a selection of the available
displays.

During their lifetime, displays are either visible or hidden. If the
users wants to focus on part of the data, a display can be hidden.
Displays that are hidden can be made visible again. A user can also

Requirements Specification 37

FIGURE 7

Dialog to
change the
display

4.4.6

end the life of a display by deleting it. Deleted displays can not be
restored, but new displays can created at any time.

Manipulation with displays is performed via a display confi guration
dialog, that shows the created displays, and allows operations on
them, see Figure 7.

Another way to focus on a selection of the measurement data is to
focus on particular EMG channels by hiding others. EMG channels
can be hidden by clicking on EMG bars in a gauge display. The
selected EMG is then no longer shown in any of the displays. The
gauge shows a grey bar for a hidden channel. By clicking on a hid-
den channel, it becomes visible again.

Navigation through measurements

Navigation through several measurements is performed via ses-
sions. A session represents the state of the system, as viewed by the
user. A sessions consists of the measurement data corresponding to
a single video and the display configuration chosen by the user.

A session can be stored on disk and reloaded. Via loading and sav-
ing sessions, it is possible to quickly view information from several
measurements. Sessions can also be prepared by the lab operator.

38

Requirements Specification

4.4.7

Design Decision:

4.5

Single-document interface

An important restriction is to allow only a single recording to be
viewed at a time. This is known as a single-document interface
(SDI)

Developing a SDI application has the advantage that:

e it is easier to design (keep it simple)

o there can be no confusion on which displays correspond to
which recording, since there is always a single recording

A multiple document interface (MDI) has the advantage that:

o different recordings can be compared directly
® it is more general: MDI can always be turned into SDI

The final argument that lead to the decision was that it would be

impossible to implement a MDI because of video hardware con-
straints: it is not possible to show two videos at the same time.

Maintainability requirements

One of the requirements from the requirements definition is that the
system should be maintainable (req.def. 6). The problem with main-
tainability is that it is difficult to predict what kind of maintenance
will be necessary. However, some remarks about maintainability
can be made:

® The design of Sybar should support the addition of future mea-
surement devices. It is very likely that new measurement equip-
ment will be introduced at the rehabilitation department. It
should be relatively easy to incorporate these into Sybar.

® The addition of new displays should also be supported in the
design. One of the most obvious user requirements that will keep
changing is the functionality of the displays. Therefore, chang-
ing and adding display possibilities to the system should be
straightforward.

® The design must be hardware independent whenever possible. In
particular, it is anticipated that new video cards will be used in
the future. ’

Requirements Specification 39

4.6

In contrast to the other requirements in this chapter, these require-
ments are on the design of the system, and are therefore not directly
visible to the users.

Performance requirements

The video of the patient must be shown in such a way that the phy-
sicians find it useful (req.def. 1). A high frame rate obviously is
desirable since it gives a more detailed view of the movement.
However, there are technical limitations in the frame rate that can
be achieved with video hardware. A frame rate of 25 frames per
second is enough for analysis of most human motion. This frame
rate corresponds with Standard PAL video. The analysis of fast
sport movements and high frequency shaking may require a higher
sampling rate (to avoid aliasing), however these types of analysis
are not the primary focus of Sybar. It is therefore specified that the
data in Sybar should be available with at least 25 frames per second.
This requirement is important for the hardware design.

40

Requirements Specification

CHAPTER 5

Analysis
Model

5.1

In this chapter, the analysis model is described, using the object
modeling technique (OMT). This concludes the analysis phase.

Function of the analysis model

5.2

This chapters describes the analysis model of Sybar, using the
Object Modeling Technique (OMT). The analysis model is the

. model that describes what the system should do. It consists of three

views of the system: the object model, the dynamic model and the
functional model. A short introduction to object oriented develop-
ment and OMT can be found in the appendix.

Sybar is described from the viewpoint of the physician. This means

that the acquisition and processing of measurements is not modeled
at this stage: it is considered to be part of the design.

The object model

A key aspect in object oriented development is the identification of
classes of objects. The classes of objects and their relations are
described in the object model. Furthermore, the object model also
shows relationships between objects, and the relation of the system
with the environment. The environment of Sybar consists of the
physician and the patient.

Analysis Model 41

FIGURE 8
Object Model

Figure 8 gives a global version of the model, without attributes or
operations.

e

atient

5.21

5.2.2

el et e N

System Border !

ControlPanel'

controls
v

LabOperator

Recording | DisplayConfiguration

TimedDataset

Patient, Physician and Lab Operator

There are three human objects in our model. The Patient is the sub-
ject of the motion analysis. The LabOperator performs the measure-
ment and preparation of data. Since the LabOperator has a
supportive function, he/she is considered part of the system. The
Physician uses the system to view measurement results.

Recording and DisplayConfiguration

The main purpose of Sybar is to display measurements on patients
in the context of motion analysis. For this reason, we introduce two
classes that play a vital role: The Recording class and the Display-
Configuration class. A Recording manages the data in a measure-
ment. A DisplayConfiguration takes care of the visualization of the
measurement. '

A Recording object manages the datastreams of a measurement on a
Patient. A Recording consists of a number of TimedDatasets. A

TimedDataset is an object that contains a number of time dependent
values of a datastream. The TimedDataset class is an abstract class:

42

Analysis Model

5.23

5.24

5.2.5

only descendant classes can be instantiated. A Recording is con-
trolled by the LabOperator.

A DisplayConfiguration object consists of a number of Display
objects. These objects display part of the data from a Recording in a
certain way. Like the TimedDataset, the Display class is an abstract
class. The DisplayConfiguration also contains a dialog that enables
the user to add, delete, show and hide displays (see Figure 7).

Session

A Session consists of a Recording and a DisplayConfiguration. Ses-
sions can be stored and retrieved. This makes switching between
measurements easier. A session can also be retrieved in part: for
instance, only the DisplayConfiguration can be loaded. This makes it
possible to re-use a DisplayConfiguration for another Recording.

ControlPanel and Menu

There are two classes that deal specifically with user interaction
between the Physician and the system: the Contro/Panel and the
Menu.

The ControlPanel is comparable to a remote control of a video
recorder or stereo: it contains stop, play, fast forward, fast back-
wards and slow motion buttons (see Figure 6). It is the primary way
to navigate through time. When the time is changed, this influences
the DisplayConfiguration.

The Menu is a window-menu that is used for simple user interac-
tions:

® Creation of additional displays
® Loading and saving of Sessions
e Inititiation of DisplayConfiguration dialog

TimedDatasets

There is a TimedDataset for each of the data types described in Sec-
tion 4.3 of the requirements specification:

® EmgData, contains information about electrical-activity in the
muscles.

Analysis Model 43

5.2.6

® FpData, contains information about forces, as recorded by the
force plate.

® VideoData, shows a video of the patient performing an exercise.
® Kinematics, describes the movement of the patient.

Displays

The following Displays are available (see Section 4.4.1):

® EmgGauge/EmgGraph, displays EMG in dynamic bar diagrams
or graphs.

® FpDisplay, displays force plate data.

® VideoDisplay, displays a video of the patient, together with
EMG, force plate and kinematics.

® Kinematic Displays, displays kinematics of the patient.

The Display objects are synchronized when they are displaying
data. For this purpose, all the TimedDatasets have a common time
scale. The TimedDatasets and Displays and their connections are
shown in the object model of Figure 9.

Recording DisplayConfiguratior]
FIGURE 9 consists of ‘ consists of
TimedDataset N] -
and Dis;?l:;se S Timed Dataset Display
object model

.|
VideoData VideoDisplay Graph
JEmgGauge
EmgData
1 EmgGraph
FpData ForceGraph
Kinematics KinematicsDisplay

44 Analysis Model

5.3 The dynamic model

FIGURE 10

The event flow
diagram

5.3.1

The Dynamic model describes the desired dynamic behavior of
objects by means of state diagrams and the event flow diagram. The
event flow diagram for Sybar can be seen in Figure 10. It shows the
types of events that can be expected from the environment. Since
the display of information is not considered an event, the only
events that are given back are possible error messages.

error messages
Sybar » Physician
N load/save session

load/save display configuration
load/save recording

add display)
play/forward/reverse/stop/move (through time)
move/resize/hide/show display

set options

The dynamic model of the individual classes is simple and will only
be described for the Display class.

The Display class

A Display has two states. It can be either idle or playing (playing
includes rewinding, slow-motion etc.). The object can go from idle
to playing when certain buttons are pressed by the user. In the idle
state, a still frame is shown. When a move message is received, a
different frame is shown. When a display is playing, it updates itself
with a certain update frequency.

play, fwd etc./start timer

Playing “x time ha's passed”/
update display
. stop

move

Analysis Model 45

5.4 The functional model

The functional model describes data value transformations and
dependencies. Figure 11 describes the input and output values of
the system as a whole.

Sybar Screen
y Displays
FIGURE 11 Settings
Input/Output
Physician

Figure 12 shows the data flow diagram for Sybar. The Physician
loads and saves sessions, sets options and sets the time state. A Ses-
sion consists of a Recording and a DisplayConfiguration. The dis-
play process uses the recording, display configuration and time
state to display a measurement on the screen.

FIGURE 12 . N PN

load/save
sessions \

Session Recording DisplayConfiguration

Screen

46 Analysis Model

CHAPTER 6

Toplevel
Design

Toplevel |

Design |

6.1

This chapter gives the top level design of Sybar. The top level
design describes the decomposition of the complete system into
subsystems. The toplevel design consists of both hardware and
software.

Introduction

6.2

The first step in system design is the decomposition of the system
into subsystems. Sybar consists of both hardware and software. We
first give a hardware design, then we give a global design of the
software system. The hardware subsystems consist of standard
components and are described in Appendix B. The software sub-
systems will be described in the following chapters.

Decomposition of Sybar

At the top level, Sybar consists of the following two parts:

1. A measurement system, consisting of a set of measurement
devices: an EMG measurement system, a force plate, and one or
more video camera’s.

2. The computer system that digitizes measurements, determines
kinematics from video images and displays measurement results.

Toplevel Design 47

3. A lab operator controls the measurement

Measurement system

FIGURE 13 data video
Top level y
subsystems .

Patient : Lab operator |4 Computer System

4
............................. e
Physician

6.3 The measurement system

The measurement system consists of a motion lab with measure-
ment equipment.

1. One or two video cameras and a video mixer

2. An EMG measurement system

3. A force plate measurement system

4. A synchronization module

5. A video recorder to temporarily store the video

FIGURE 14 : ——
Measurement : l Synchronization l

system

4

P Video recorder

EMG system

48 Toplevel Design

6.3.1

Design Decision:

6.3.2

Support for multiple camera’s

The motion analysis lab supports the use of a multiple camera
recording. This is done by combining the images of two cameras
into a single video image, using a video mixer device. The video
mixer takes two video signals as input and produces a single video
as output. The output video shows both input videos in the original
size and resolution. However, in order for the two input videos to
fit, part of the video is left out:

€

The advantage of combining several camera images in a single
video image, is that only a single video recorder is needed. Further-
more, video digitizers can only deal with a single video signal at a
time. By combining video signals, the camera streams can be digi-
tized in a single digitizing session.

The alternative to using a single video channel, is obviously to use a
channel for each camera.The advantage of this alternative is that no
resolution is lost in combining the video images. However, this
approach was considered not to be feasible given the budget for the
project and the hardware currently available on the market.

Synchronization

It is important that the Sybar software can show measurement
results in a synchronized way. For example, the user must be able to
see which EMG values correspond with a video image. The func-
tion of the synchronization module is to send a synchronization sig-
nal with the measurement data and the video data. This
synchronization signal is recorded during the digitizing of both the
measurement data and the video signal, and is used by the software
to synchronize the various types of data.

Toplevel Design 49

6.3.3

Design Decision:

6.4

Video recorder

During a measurement, the video (including the synchronization
signal) is recorded on a standard video recorder. An alternative
would have been to digitize the signal directly from the camera.
However, digital video requires large amounts of disk space, and
we therefore choose to first store the video on analog tape. A
selected time period can be chosen at a later stage after the mea-
surement has taken place.

This design decision is also motivated by the reliability require-
ment: if the computer system for some reason fails, there is always
the video recorded image to fall back to. The video recorder is a
backup for the digitized data.

The computer system

Design Decision:

The computer system runs the Sybar software. It has dedicated
hardware to digitize measurements signals. In the following section,
the Sybar software is described in terms of software subsystems. In
the following chapters, each of the subsystems is described in
detail. No assumptions are made as far as multiple processing or
networking is concerned.

The use of a secondary processing system for the specific purpose
of kinematics detection was considered, but it was concluded that
such an approach was not useful because the decompressing and
transporting of the digital video would take more time than the pro-
cessing itself.

50

Toplevel Design

6.5 Sybar software

6.5.1 Software subsystems

Figure 15 gives a division of the Sybar software into subsystems.

FIGURE 15
Decomposition " . ; .
of the Sybar Recording Kinematics Display
software into
subsystems Sybar Device Interfaces Window
t
Device Specific Interfaces System
Operating System

The subsystems which are shown in bold are part of the Sybar soft-
ware. The other subsystems consist of general purpose software
used by Sybar. Each subsystem can only use functions from lower
levels, not from higher. Objects from different subsystems in one
level can communicate with each other, although they are more
likely to communicate with objects from the same subsystem. We
now describe the subsystems in short.

¢ Recording subsystem: takes care of acquiring the data provided
by the measurement system and the video provided by the video
recorder.

¢ Kinematics subsystem: retrieves kinematics from the video data

* Display subsystem: takes care of interactive display of measure-
ment results

o Sybar device interfaces: deliver general interfaces to hardware
devices, independent of the specific device used.

® Device specific interfaces: deliver interfaces to specific devices,
as defined by manufactures.

® Window system: provides user interface and window functions.

® Operating system: provides low-level operating system func-
tions.

Figure 16 shows the data-flows between the top-level subsystems.
The diagram shows that the recording system is a server for the
other systems: the recording does not require input from the other

Toplevel Design 51

subsystems. The display is a client of the other systems, and the
kinematics subsystem can be seen as a data processor.

FIGURE 16
Data-flows Kinematics
between top
level ’
video data kinematics
Recording data »| Display

Design Decision: ~ 'We have chosen to separate data and the display of data. This seems
a natural division of tasks, and indeed is quite common in the object
oriented world. The alternative, to let data objects take care of their
own displays also has advantages, and is in a sense more object ori-
ented. However, there are also displays that combine data from sev-
eral measurement data objects. For this reason, we decided to
combine all displays in a display subsystem. The recording and
kinematics subsystem provide support for the display system,
including operations for objects to ‘draw themselves’.

Design Decision: ~ Another decision is that user interface aspects are notf put into an
independent subsystem. Putting user interface aspects in a single
subsystem has the advantage that porting the application to other
user interface platforms is easier, since the other subsystems then
stay unchanged. However, we have decided to divide the user inter-
face aspects over the subsystems, since every subsystem requires
quite a lot of user interaction. Whenever possible, user interface
aspects have been put in separate classes. For instance, dialogs to
manipulate object attributes are always separate objects. One argu-
ment for not completely separating the user interface is that it was
not expected that the software would have to be ported to a second
platform. Therefore, the maintainability requirement is not endan-
gered by this decision.

6.5.2 Session class

A session consists of a recording and a display configuration, see
Section 5.2.3. The Session class is not part of any of the sub-
systems. It could be considered a subsystem on its own, however

52 Toplevel Design

6.5.3

6.5.4

because it consists of a single class it is not described as such. The
function of the Session class is to direct user actions such as saving
and storing data to the specific subsystems.

Synchronization in software

As was mentioned in Section 6.3.2, the measurement and video data
is to be displayed in a synchronized way. Both the measurement
data and the video data contain a synchronization signal which is
stored in the recording subsystem. The display subsystem sends
requests to the recording subsystem for data corresponding to a cer-
tain point in time. The recording subsystem ensures that all the
objects use the same time scale. When a measurement is played
back at normal speed (as required in the specification by Section
4.6) the display subsystem uses the operating system timer func-
tions to periodically generate updates.

Description of the software subsystems

In the following chapters, the Sybar software subsystems are
described in further detail. The description of each subsystem starts
with the system design, followed by the design of the individual
classes. The kinematics subsystem is the most complex subsystem,
and is divided into three chapters. Chapter 9 gives an overview of
existing kinematic systems and algorithms. In chapter 10, a particu-
lar approach is researched. Chapter 11 gives the final kinematics
subsystem design.

Toplevel Design 53

54

Toplevel Design

CHAPTER 7

Recording
Subsystem

Recording
subsystem

71

This chapter describes the recording subsystem, which is
responsible for the acquisition and management of measurement
data.

System design

The recording subsystem has to following basic functions:

1. data acquisition of measurement data through external devices
2. storage and retrieval of the data

3. providing services for the display and kinematics subsystems to
access this data

The most important class in the recording subsystem is the Record-
ing class. Initially, a Recording is empty. A Recording can acquire a
number of TimedDatasets. Each TimedDataSet contains informa-
tion of a certain media (such as video, EMG, or force data). Each
TimedDataSet has operations to store and retrieve its data. A
Recording’s TimedDatasets are used by other objects. For example,
An EMGGraph from the display subsystem uses a TimedDataset
containing EMG data. All the TimedDatasets use the same time
scale. This enables the display subsystem to show the data in a syn-
chronized way (see Section 6.5.1).

Recording Subsystem 55

FIGURE 17

Recording
subsystem
object model

Figure 17 shows the recording subsystem object model, which is
based on the recording part of the object model described in Figure
9, Section 5.2 of the analysis. Associations that are beyond the
boundaries of the subsystem are shown, but the classes are shown in
a smaller font without boxes.

A difference with the analysis model is that the Kinematics dataset
has been left out. The kinematics data are determined and managed
in the kinematics subsystem.

VideodataRecorder
Session ﬁ Recording
TimeManager MeasurementRecord;’
has
v
TimedDataset
ForceGraph VideoDisplay
Z
....... I f l
EMGGauge —| EMGData| : : N Y :
EMGGraph 3 ForceData L VideoData
A Dol
: ol draws P]
: | EMGChannel | : ‘| ForceDrawer [VideoChannel
; : Lo l A
................... R IR P S . records
VideoDisplay : Camera
KinematicsDisplay - R
VideoDisplayUser - A
: calibrates

CameraCalibrator

The specializations of the TimedDatasets correspond to the mea-
surement types described in Section 4.3 of the requirements specifi-
cation. The following TimedDatasets are available:

® EMGdata: an EMGdata object consists of a number of
EMGChannels. Each channel corresponds with one EMG elec-
trode connected to a muscle.

56

Recording Subsystem

Design Decision:

Design Decision:

® Forcedata: a ForceData object describes the force vector as mea-
sured by a force plate device. The ForceDrawer draws the force
vector in a given display, using a Camera object to make the pro-
jection from 3D to 2D. The force drawer is used by several dis-
play objects. It is part of the recording subsystem because it is
not a Display by itself: it provides the service of drawing forces
inside a Display.

® Videodata: a Videodata object contains digitized video. Other
objects, in particular the VideoDisplay from the display system,
send commands to the Videodata, such as move, play and stop. A
Videodata object can store video information from several Vid-
eoChannels. Each VideoChannel is recorded by a video camera.

To perform 3D motion analysis and to draw force vector infor-
mation at the correct location in the video, information regarding
the position of the camera is necessary. Camera parameters can
be obtained via a method called camera calibration. In Section
9.6, the process of camera calibration is described in the context
of kinematics detection. At this point, we introduce a Camera
object that contains the parameters that determine the viewing
transformation, and a CameraCalibrator object that takes care of
the calibration process.

The Videodata is acquired by digitizing from a video source. For
this purpose, the Recording uses a separate object, a VideodataRe-
corder. The EMG and force data are acquired using a data acquisi-
tion board. The Recording uses a MeasurementRecorder to take
care of the user interaction necessary for the data acquisition. By
separating the recorder devices from the recording itself, it becomes
easier to replace these recorders in the future.

We choose to use the pin-hole camera model, described in Section
9.6.1. This means that lens distortions need not to be considered.
Furthermore, we use the straightforward linear calibration method
described in Section 9.6.2, although this method is known to be
somewhat sensitive to noise. We choose not to use the most
advanced and complex methods, since accuracy of 3D data is not
our highest priority.

Recording Subsystem 57

7.2

Object design

Recording

record_video
record_
measurement
load

save
give_emgdata
give_forcedata
give_videodata

7.21

Recording

The Recording manages the measurement and video data. The
record_video and record_measurement operations start the acquisi-
tion process of video and measurement data. Furthermore, a
Recording can be stored and retrieved from disk. This is achieved
by calling corresponding operations from each TimedDataset. The
Recording provides access to each of the TimedDatasets by means
of the give_emgdata, give_forcedata, and give_videodata opera-
tions. The recording’s begin and end time are given via the

give_time_int X X A . X o
empty give_time_int operation. The time values are initially generated by
the synchronization module (see Section 6.5.3).
Finally, the recording can also be emptied. A Recording is emptied
by removing each of the TimedDataSets.
7.2.2 TimedDataSet
A TimedDataSet represents a measurement of some kind of data via
- a sampling process. It is an abstract class: only its children can be
TimedDataSet
begin_time instantiated (see Section 1.1 of the appendix on object oriented
sample_ methods).
frequency
se:—begi"l-“me A TimedDataSet has a begin_time, indicating the time of the first
?riq—\f :::;5 e~ sample. Furthermore, it has a (constant) sample_frequency. These
give_samplenr two values can be set with the corresponding set operations. The
{load} give_samplenr operation computes the sample number given a time
{save} value.
The load and save operations are abstract functions to store and
retrieve data from disk.
58 Recording Subsystem

7.2.3 VideodataRecorder

The VideodataRecorder is the object that takes care of digitizing an
analog video signal from a video recorder. It has the following

Videodata appearance:
Recorder

Video Recorder

play
forward
rewind
stop
record

As can be seen, the VideodataRecorder is similar to the Control-
Panel from the display system. The difference is that the control
panel controls the time state of the Recording during a viewing ses-
sion, while the Videodatarecorder controls a ‘real-world’ video
recorder. Since the two classes belong to two different subsystems,
and are similar only in appearance, we have chosen to not let them
inherit from a common superclass. The record button starts the dig-
itizing of the video.

Although pushing the play, forward or rewind buttons changes the
state of the real world video recorder, the state of the VideodataRe-
corder object is not changed by these operations, except for the sta-
tus line in the user interface element. However, recording does
change the state, since only pressing the stop button is allowed:

record

)

stop
play/forward/rewind/stop

The VideoDataRecorder uses the VCRDriver object from the sybar
device interfaces subsystem (as described in Section 6.5.1). This
object, which is not described in further detail, takes care of con-
trolling the (real world) video recorder via software. The VideoDa-
taRecorder also uses the VideoDigitiserDriver from the device layer
to generate a window containing a ‘live view’ of the video. The
recording of the video is performed by the VideoData object.

Recording Subsystem 59

7.2.3 VideodataRecorder

The VideodataRecorder is the object that takes care of digitizing an
analog video signal from a video recorder. It has the following

Videodata appearance:
Recorder

Video Recorder

play
forward
rewind
stop
record

As can be seen, the VideodataRecorder is similar to the Control-
Panel from the display system. The difference is that the control
panel controls the time state of the Recording during a viewing ses-
sion, while the Videodatarecorder controls a ‘real-world’ video
recorder. Since the two classes belong to two different subsystems,
and are similar only in appearance, we have chosen to not let them
inherit from a common superclass. The record button starts the dig-
itizing of the video.

Although pushing the play, forward or rewind buttons changes the
state of the real world video recorder, the state of the VideodataRe-
corder object is not changed by these operations, except for the sta-
tus line in the user interface element. However, recording does
change the state, since only pressing the stop button is allowed:

record

G

stop
play/forward/rewind/stop

The VideoDataRecorder uses the VCRDriver object from the sybar
device interfaces subsystem (as described in Section 6.5.1). This
object, which is not described in further detail, takes care of con-
trolling the (real world) video recorder via software. The VideoDa-
taRecorder also uses the VideoDigitiserDriver from the device layer
to generate a window containing a ‘live view’ of the video. The
recording of the video is performed by the VideoData object.

Recording Subsystem] 59

7.2.4 MeasurementRecorder

The MeasurementdataRecorder is responsible for measurement of

Measurement all the data, except the videodata. It has the following appearance:

Recorder

set_muscles Measurement Recorder

set_force_plate

set_emg Timecode: 00:10:23:12

record '

stop
Before a measurement is performed, the user selects the number of
channels to be recorded, and in case of EMG measurements, pro-
vides the muscle names by selecting from a list of standardized
names. These names are also used to identify EMG data in the in
the display subsystem. There are record and stop buttons to start
and stop the measurement operations.
The state diagram is similar to the VideodataRecorder state dia-
gram, except that play, rewind and forward events do not exist.

7.2.5 EMGData

An EMGdata object manages the EMG data of a measurement.
EMG data is measured in a number of channels. Channels can be

EMGData added with the add_channel operation. Channels can be ‘hidden’ or

add_channel ¢ s Ty = . .

hide, channel shown’. Hidden channels are not shown in any display.

show_channel

set_value Samples from channels are initially set with the set_value by the

give_value MeasurementRecorder operation and can then be retrieved by other

set_color (display) objects with the give_value operation. Values are

give_color - .

cet mame retrieved by giving a time value. To convert the time value to a

give_name sample number, EMGData uses the give_samplenr from its parent

load the TimedDataSet.

save

empty An EMGChannel has a color, that is used for display and a

Is_empty name.The color and name of a channel can be set and retrieved with
the corresponding set and give operations. The EMGdata object is
emptied with the empty operation. To check whether the object con-
tains any data, the is_empty operation is available.

60 Recording Subsystem

EMGChannel

name
color
hidden

hide

show
set_value
give_value
set_color
give_color
set_name
give_name
load

save

ForceData

set_value
give_value
set_color
give_color
load

save

ForceDrawer

color
width
normalized_length
scale

set_options
give_options
draw

7.2.6

7.2.7

7.2.8

EMGChannel

EMGChannels are containers for a single channel of EMG data,
corresponding to the measurement of a single EMG electrode.
Channels can be hidden or shown. If a channel is hidden, this means
the user does not want see that particular channel in any display.

EMGChannels have a color and a name, corresponding to the mus-
cle that was measured. The reason that the colors are stored with the
data, is that they need to be consistent: a channel should have the
same color in all the displays.

The color and name of a channel can be set and retrieved with the
corresponding sef and give operations.

ForceData

The ForceData is a TimedDataset that manages data as recorded by
a force plate device. The data consists of a vector and a starting
point of the vector. Unlike EMG data, the number of channels is
constant: 3 channels describe the x,y,z location of the starting point
and 3 channels describe the 3 vector components. 1t is therefore not
necessary to introduce a force data channel class.

Like the EMGChannels, the force data channels have a color. These
are used by the ForceGraph class to draw single components from
the force vector.

ForceDrawer

The ForceDrawer can draw a 3D force vector in a given 2D display.
It is used by the VideoDisplay and the KinematicsDisplay. The
ForceDrawer has several options: the color, width and normalized
length can be set. Furthermore, a scale factor can be set to indicate
the size of the drawing. The options can be set with the set_options
operation and retrieved with the give_options operation.

The ForceDrawer gets its measurement data from the ForceData
object. The ForceData object delivers 3D data in the world coordi-
nate system. The 2D location in the image coordinate system is
determined by calling the project operation from a given Camera
object.

Recording Subsystem 61

7.2.9 VideoData

:;':::jnata The Videodata is a TimedDataset that records and manages video

stop data. The VideodataRecorder sends a record message to start digi-

show tizing and a sfop message to stop. The retrieval of data consists of

load showing images in a display. As a result, the operations are slightly

save different from the ForceData and EMGdata objects. The show oper-
ation displays a video image in a display at a given time. The frame
number is calculated through the give_samplenr operation from the
parent TimedDataset. In this case, a sample corresporids with a
video frame.
In Section 6.3.1, it is mentioned that a digitized video can be a com-
bination of several camera images. We therefore introduce a set of
VideoChannels, each corresponding to a camera view. It is not pos-
sible to view a single channel separately. However, the channels do
need to be calibrated separately in order to perform 3D analysis.

7.2.10 VideoChannel

VideoChannel A VideoChannel corresponds with a stream of images produced by

E)a:;rate a video camera. To perform a 3D analysis, the parameters of the

save camera need to be determined. Camera information is stored in a
Camera object. Each Videochannel therefore has its own Camera.

7.2.11 Camera

Camera

Darameters A Camera is an object that projects 3D points on to an image plane

set_parameters using the camera model of Section 9.6. A Camera may correspond -

calibrate to a real world video camera. There are, however, also ‘virtual’

:)’0(1'1601 cameras which can change position via user interaction.

0a

saye Virtual cameras are used by the KinematicsDisplay (see Section
8.2.12) and use the set_parameters operation to set the viewing
parameters. The parameters of cameras that have real world coun-
terparts are determined by a CameraCalibrator, via the operation
calibrate.
The project operation projects a point in 3D world coordinates to
2D using (EQ 1) and (EQ 2) from Section 9.6.1.

62 Recording Subsystem

7.2.12 CameraCalibrator

CameraCalibrator

3D world points
image points

set_world_point
mouse_click
calibrate

Design Decision:

In Section 9.6.2, a straightforward method for camera calibration is
described, based on a camera model with 11 parameters. It is men-
tioned that using this camera model, a camera can be calibrated
with six points whose world and image coordinates are known. The
world coordinate points can be set with the ser_world_point opera-
tion. The image points are set by mouse clicks.

The CameraCalibrator determines the 11 parameters of the camera
model. The solution to the set of equations is calculated, in a least
square sense, using the SVD algorithm (see 10.5.1). Although in
principle the camera calibration can be done with six points, more
accurate results are obtained when a larger number of points is
used.

For the purpose of calibration, a special calibration object has been
constructed. This rigid calibration object has a number of markers
whose coordinates are known. For the lab operator, camera calibra-
tion involves positioning the calibration object, making a camera
image of the scene, and indicating the location of the calibration
points in the image. The image coordinates can be entered via click-
ing on the video image, which is presented for this purpose. One
this has been done, the camera calibration is performed automati-
cally.

For the presentation of the video image, the CameraCalibrator uses
a VideoDisplay object from the display subsystem. For this purpose,
CameraCalibrator inherits from VideoDisplayUser. The reason for
introducing a special VideoDisplayUser class in explained in Sec-
tion 8.2.10. Being a VideoDisplayUser allows the calibrator to
receive mouse click messages from the VideoDisplay. Furthermore,
results of the calibration process can be shown in advance by draw-
ing the calibration points in the video display.

In order for the camera calibration to take place, the camera should
be stationary. A moving camera can not be calibrated with the Cam-
eraCalibrator.

Recording Subsystem 63

64

Recording Subsystem

CHAPTER 8

Display
Subsystem

Display
subsystem

8.1

The display subsystem is responsible for the display of
measurement results, and the interaction that takes place during a
viewing session.

System design

The main function of the display subsystem is to visualize measure-
ment data in a way that is useful for physicians (as described in Sec-
tion 3.2). The measurement data consists of:

1. Video, EMG and force data provided by the recording sub-
system.

2. Kinematics provided by the kinematics system

Furthermore, as described in Section 3.3, the visualization is inter-
active and should be easy for novice computer users.

The display subsystem uses the recording subsystem and the kine-
matics subsystem. From the recording, the specializations of the
TimedDataSet are used to display the correct measurement data.
From the kinematics system, the Mode! is used to display kinemat-
ics data.

We again start by giving the complete object model. The display
system object model is an detailed version of the display part of the

Display Subsystem 65

analysis model described in Section 5.2. The elements from this
model and their relations are described in this chapter. The individ-
ual objects are described in the next section.

The object model for the display subsystem is shown in Figure 18.
It shows the classes concerned with the display, and their relations.

FIGURE 18
iect X
8?5:;:3[?5;;%" Recording l TimeManager] < controls Control Panel
S [
updates
v
: - 4s€ts | DisplayManagerDialog
Session’ DisplayManager
. "] DisplayOptionsDialog
VideoData —: VideoDisplay
ForceDrawer : Em Gauge
Model g Graph
l KinematicsDispIayI
Model

EmgGraph ForceGraph l

l |

EmgData ForceData
MuscleEditor Tracker CameraCalibrator

8.1.1 Managing the display configuration

In the Section 4.4.5 of the specification, it is stated that the user of
Sybar must be able to choose his own display configuration. Fur-
thermore, the user must be able to change the display configuration
at any time. It should also be easy to extend Sybar with additional
Display classes (see Section 4.5). At this point, we extend the idea
of a display configuration, described in Section 5.2.2 of the analy-
sis, to a DisplayManager. The DisplayManager can create and delete
Display objects. Furthermore, it can hide, show, update, store and

66 Display Subsystem

Design Decision:

retrieve Display objects. The user operates on the DisplayManager
via a DisplayManagerDialog window.

Timing and control

The user of Sybar must be able to view the recording in way similar
to a video recorder (see Section 4.4.4). This means that the record-
ing is in certain position. For this, the term time state was intro-
duced in Section 4.4.1 of the analysis. The user can manipulate the
time state via the ControlPanel. The ControlPanel consists of the
standard play, forward and reverse buttons. It also has a scrollbar
for direct feedback of the position and quicker access. There is also
the possibility to repeatedly replay a recording via the loop button.

As was mentioned in Section 6.5.3, the recording system has the
information that is necessary to synchronize the different data
streams. The display system, however, has to take care of generat-
ing the updates when a recording is shown to the physician.

For the timing aspects of the display system we introduce a special
class: the TimeManager. The TimeManager keeps track of the time
state. When the time state is changed, the TimeManager sends an
update message to the DisplayManager and to the ControlPanel.
When the recording is played, the TimeManager periodically sends
update messages, until the end of the recording is reached. The
ControlPanel also needs to be updated because of the scrollbar feed-
back.

An alternative to a single object (the TimeManager) that controls
the time, is that each Display takes care of updating itself periodi-
cally. This corresponds more directly to the dynamic model of the
displays in the analysis. The advantage of a separate object to con-
trol the time is that it is easier to abstract from the operating system
and that it requires less communication with the operating system
clock functions. In some operating systems, including the one
Sybar has been implemented for, there is an upper limit to the
amount of timers that can be set. We have therefore chosen to put
timing into a single object, the TimeManager.

A result of this decision is that the dynamic model of the Display
class is simpler than described in the analysis phase. The TimeMan-
ager’s dynamic model (see the next chapter, object design) is now
similar to the Display’s dynamic model from the analysis phase.

Display Subsystem 67

Design Decision:

The ControlPanel is very similar to a Display object. The Control-
Panel needs to be updated when the position of the recording
changes (for the scroll bar). Furthermore, some display objects have
the possibility to change the position too (in particular the Graph
displays). However, we have chosen to keep the ControlPanel sepa-
rate (i.e. not let it inherit from Display), since there are some differ-
ences between the two: The ControlPanel should be visible all the
time and can not be deleted. More fundamentally, the Control-
Panel’s main function is to let the user manipulate the time state,
while the Display’s main function is to show information.

The displays

The Display class is an abstract class with abstract operations that
every child of Display should have. This means that only Display’s
children can be instantiated. The following Display classes are
available: EmgGauge, EmgGraph, ForceGraph, KinematicsDisplay
and VideoDisplay. These classes correspond to the display types
described in Section 4.4.1 of the specification. The Displays are
largely independent. They receive messages from the DisplayMan-
ager. Furthermore, for the display of actual data, they are associated
to objects from the recording subsystem. Display options for the
Displays can be set by the user via the Displa yOptionsDialog.

The Emggraph and the Fpgraph both inherit from Graph. The Emg-
graph and Forcegraph provide the functions to give data values
(give_value), and to determine the color of the graphs (give_color).
All the other aspects of maintaining a graph display are taken care
of by the Graph class.

The VideoDisplay is a relatively complex Display. It uses support
objects from other subsystems: the Model/Drawer from the kinemat-
ics subsystem draws EMG data in the video image for each video
channel using the Mode/ (see the kinematics subsystem). The Force-
Drawer from the recording subsystem draws the force plate data
into the video image, using a calibrated Camera object for each
video channel (see the recording subsystem).

68

Display Subsystem

8.2 Object design

8.2.1 TimeManager

The TimeManager takes care of timing issues. The TimeManager is
associated with a Recording. The user can navigate through a

TimeManager Recording via the time state.The time state is stored in the Time-
time state Manager. The TimeManager provides services to other objects to
:?ai:eita t change the time with the operations play, move, loop and stop. The
status time state is measured in milliseconds. The TimeManager can play
frequency at different speeds. The speed can be set via a parameter of the play
stepsize operation. A negative speed results in a recording that is played
play backwards, a speed of one is the normal speed. The reset operation
I";Z;e resets the time state to the start of the Recording, the begin_time.
stop

reset Another attribute is the status of the TimeManager. The status can
give_status be either playing or idle. The status can be requested using the func-
step_next tion give_status. If the TimeManager is playing, it automatically
:zp;g:;’ifgs calls the update functions of the associated DisplayManager and

ControlPanel frequency times per second and it updates the posi-
tion. The frequency can be changed with set_frequency operation. If
the end of the recording is reached, the TimeManager stops the
updating process.

In order to generate periodic updates, we use a timer function pro-
vided by the operating system. As a parameter to the update func-
tions, the time state of the recording is given. Since other objects
only have to deal with these time state values, the operating system
timer calls are encapsulated in the TimeManager.

The attribute play_start stores the time when the playing started. It
is used to calculate the time state when an update is sent during
playing. The time state is calculated by requesting the current time
from the operating system. The time state needs to be recalculated
because a single processor multi-tasking operating system can not
guarantee that a function will be given control at exact time points.
This means that although the frequency of updates may be lower
than the specified frequency (i.e. some frames may be skipped), the
individual updates of the display are as accurate as possible.

The TimeManager plays a recording within the time interval pro-
vided by the Recording.The operations step_next and step_previous

Display Subsystem 69

ControlPanel

move
play
stop
forward
reverse
loop
update
save

load

8.2.2

can be used to move a single frame. The length of a single frame
can be set with set_stepsize. For example, if the frame rate is 25
frames/second, the step size is set to 40 milliseconds.

The dynamic model of the timer consists of two states:

play/start timer
timer message/
“ Playing update display
stop
move
ControlPanel

The ControlPanel is a user interface object with the following
appearance:

Control Panel

The main purpose of the control panel, as described in Section
4.4.4, is that it allows the user to navigate through time. Navigation
through time is achieved by manipulating the time state, via mes-
sages to the TimeManager. The messages are send as a response to
user actions via the scroll bar or via one of the buttons.

The ScrollBar is a separate object that sends move-commands to the
ControlPanel. The ScroliBar also functions as a feedback for the
position of the recording: during playing, the ScrollBar is updated to
the current position. No further description of the (low-level) Scrofl-
Bar class is given.

If any of the buttons, play, stop, forward, reverse or loop are
pressed, the corresponding message is send to the TimeManager. In
order to keep the scroll bar up to date, the ControlPanel has an
update function which is called by the TimeManager. Finally, the
screen location of the ControlPanel is stored and retrieved together
with the display configuration. For this purpose, the ControlPanel
has save and load operations.

70

Display Subsystem

DisplayManager

dispnr

create_display
show_display
hide_display
delete_display
update

save

load
open_dialog
empty

DisplayManager
Dialog

add_button
delete_button
hide_button
show_button
ok_button
save_button
load_button

8.2.3 DisplayManager

The DisplayManager takes care of managing the display objects.
Management includes creating, showing, hiding, and deleting
objects. The create_display operation is used to create new dis-
plays. A parameter is used to indicate which type of display is to be
created. Furthermore a unique ID, dispnr, is given in order to be
able to distinguish the displays. All other parameters are determined
in the constructor of the specific display object.

When a recording is being played, the DisplayManager broadcasts
an update message to all the Display objects. The Display’s update
operations have the time state (provided by the TimeManager) as a
parameter. This means that neither the DisplayManager, nor the Dis-
plays need to keep track of the time. The DisplayManager can also
be requested for an update by other objects via its own update oper-
ation. This operation is called when the user changes display
options, and the displays need to be redrawn.

A display configuration (including window locations) can be saved
or loaded. The DisplayManager receives user-messages via the Dis-
playManagerDialog class. This dialog is created with the operation
open_dialog, which is called by the MainMenu. The empty function
is provided to clear the entire display configuration.

8.2.4 DisplayManagerDialog

The DisplayManagerDialog is the direct interface between the user
and the DisplayManager. It has the following appearance:

:EMG Graph
:EMG Gauge
:EMG Graph
:EMG Graph

pull-down menu

Display Subsystem 71

8.2.5

The main purpose of the DisplayManagerDialog is that it allows the
user to navigate through data, as described in Section 4.4.5.

The DisplayManagerDialog shows the list of the current Display
objects. New displays can be created by selecting a type from the
pull-down menu and pressing the Add button. Displays can be
deleted, hidden, or shown by first selecting an element from the list
and then pressing the relevant button. For the list, a ScrofiList
(library) class is used. Display configurations can also be saved or
loaded.

Display

The Display class is an abstract class. This means that only children
of the Display class can be instantiated. These children provide

z:,p'ay implementations for the abstract operations of Display (abstract
name operations are shown in braces in the diagrams). Displays are used
{update} to show data from TimedDataSets from the data acquisition sub-
{save} system. Display’s children have to provide the following services:
{load}

give_name ® A Display should have an update function, which will be called
give_id whenever the display needs to be updated.

® A Display should be able to save and load itself, as part of the
display configuration.

Displays are created by the DisplayManager. Information on what

type of Display should be created is provided by the user in two

ways:

1. via the DisplayManagerDialog. In this case the user can select
options in an additional dialog that is performed during the con-
struction of the display.

2. via a display configuration file. In this case the display must read
its own parameters and options from the file.

The give_id operation returns the idnr, and give_name the name of

the Display. The idnr is a unique number given by the creator of the

Display.

72 Display Subsystem

Graph

scale

origin
X_axis
y_axis
n_channels

{give_value}
{give_color}
{load}

{save}

update

resize
mouse_button
pix_to_time
time_to_pix

ForceGraph

give_value
give_color
save
load

8.2.6

8.2.7

Graph

A Graph is a Display that shows measurement data in the form of a
graph. The graph display is specified in Section 4.4.1. The Graph
class is also an abstract class. It can show a number of channels of
integer data. The n_channels attribute gives the number of channels
to be displayed.

The abstract operation give_value gives a value in the graph for a
given channel and a time. Furthermore, the abstract operation
give_color gives the color to be used for drawing the data channel.
There are also operations to /oad and save the Display for storing
and retrieving the display configuration. Using these abstract opera-
tions (provided by the children), the Graph class takes care of the
update requests from the DisplayManager.

The size of a graph display can be changed by the user via the resize
operation, dealt with by the window system. The Graph has
attributes that determine the scale, and the location of the origin, the
x-axis and y-axis of the graph. When the user resizes the display,
the resize operation is called by the operating system. The resize
operation then recalculates the scale and origin attributes.

The mouse_button operation takes care of mouse clicks of the user
in the graph. As specified, the mouse click is interpreted as a com-
mand from the user to move the time state to the position where the
mouse was clicked. For this purpose, the Graph is associated with
the TimeManager object. When a mouse click message is received
via the operating system, the screen location is transformed to a
time state value, and the move operation of the TimeManager is
called.

For conversions between graph coordinates and time state values,
the operations pix_to_time and time_to_pix are used.

ForceGraph

Forces are measured by a force plate device. The ForceGraph is a
Graph that shows graphs of the x,y and z component of the force

Display Subsystem . 73

EmgGraph

give_value
give_color
save
load

8.2.8

vector through time, in the coordinate system of the force plate. All
three channels are shown in the graph:

The operations give_value and give_color are performed by calling
the corresponding operations from the ForceData object of the
recording subsystem. If the force data is not available, the graph is
left blank. Since there are no further options that the user can set, a
dialog for initialization is not necessary. Also note that the Force-
Graph does not have an update operation: updates are taken care of
by the Graph class.

EmgGraph

EMG data provides information on electrical activity in muscles:

A number of channels of EMG can be measured in a single record-
ing. The EmgGraph is a Graph that shows a number of channels of
EMG in a single graph. The choice of channels to be shown in a sin-
gle graph display is up to the user. For this purpose, a dialog is per-
formed during the creation of EmgGraph. The muscles that are
selected by the user are shown in the graph. It is not possible to
change the selection of the muscles, once a graph is created.

The operations give_value and give_color are performed by calling
the corresponding operations from the EmgData object of the
recording subsystem. The channels that are not available are not
drawn in the graph.

74

Display Subsystem

EmgGauge

update
mouse_button
save

load

VideoDisplay

options
default_user

update
resize
mouse click
set_options
give_options
user_request
user_release
save

load

8.2.9 EmgGauge

The EmgGauge display, specified in Section 4.4.1, shows gauges
(bars) that indicate the current values of a number of EMG chan-
nels:

When the TimeManager is playing, the EMG gauges therefore show
changing levels of muscle activity. As with the EmgGraph, the
choice of the channels is up to the user and the data is provided by
the EmgData object. The colors are also provided by the EmgData
.object. This ensures that an EMG channel has the same color in all
the displays.

Next to displaying EMG values (via the update operation), the
gauge also shows the correspondence of muscle names with muscle
colors. A final feature of the EmgGauge is that individual EMG
channels can be ‘shown’ or ‘hidden’ by clicking on them, see Sec-
tion 4.4.5. The mouse_button operation translates this user action to
arequest for the EMGData object to hide or show a channel. Hidden
channels are not shown in any display, except the EmgGauge, were
they are shown as grey bars. Hiding channels allows the user to
temporarily focus on a selection of the EMG channels. This feature
was added with the ‘easy navigation through data’ goal in mind (see
requirement 2 in Section 3.3).

8.2.10 VideoDisplay

As described in Section 4.4.2 of the specification, the VideoDisplay
is the most important display of Sybar. It shows the video of the
patient, annotated with measurement data. The update operation
calls the update operations of the objects responsible for drawing a
part of the annotation: the ModelDrawer and the ForceDrawer.

The VideoDisplay can be resized by the user, via the resize func-
tions of the operating system. The VideoDisplay receives and inter-
prets these window messages via the resize operation. The user can
also set some options via a small dialog that is started by double
clicking the mouse: kinematics, force data and EMG data can be
turned on or off for the display.

Display Subsystem 75

Design Decision.

The VideoDisplay is used by other objects: the MuscleEditor (see
Section 11.4.3), the CameraCalibrator (see Section 7.2.12), and the
Tracker (see Section 11.5.7). These objects need to receive mouse
events, and they also need to draw in the display (for feedback). A
single display window is used for more purposes because bringing
up a new window for each purpose would be confusing to the user.
However, the control of the VideoDisplay needs to be managed in
some way.

One option would be to let the VideoDisplay determine which object
should have control, and send the messages to this object. This
approach leads to a large number of unnecessary “if* statements and
associations. A better (truly object oriented) approach is to define a
new abstract class: The VideoDisplayUser. The VideoDisplay only
knows that events have to be sent to this VideoDisplayUser. The
classes that need to use the display can then be made children of
VideoDisplayUser. This is the approach that we have followed.

The MuscleEditor is the default user and CameraCalibrator and
Tracker objects can request to gain control via the user_request
operation. Control is released via the user_release operation. The
default user is stored in the default_user attribute.

76

Display Subsystem

8.2.11 DisplayOptionsDialog
The DisplayOptionsDialog allows the user to set options for the dis-

DisplayOptions plays:
Dialog

ok_button
apply_button
cancel_button
set_color_force
set_color_emg

The following options are available:

® The color and width of the EMG and force vector annotations
can be set.

® The normalized length of the force vector can be set.

o The force vector and EMG visualization can be switched on or
off.

® The kinematics in the video display can be shown or turned off.

The force vector is expressed in Newton, which has no geometrical
meaning. Therefore, although the length of the vector is relative to
the measured force, the absolute length of the vector has no mean-
ing in terms of pixels in the image. The parameter that determines
the length of a vector in pixels can be set by the user, and is called
the normalized length.

The user interaction of the dialog itself is the responsibility of the
window manager. When the OK or Apply button is pressed, the val-
ues from the dialog are send to the VideoDisplay. The difference
between OK and Apply is that the dialog remains open when Apply
is pressed, and that the dialog is closed when OK is pressed. The

Display Subsystem) 77

Set Color buttons bring up a standard color selection dialog. When
a color is selected, it is send to the corresponding objects. To realize
the options, the DisplayOptionsDialog communicates with the
ForceDrawer and EMGData from the recording subsystem, and the
ModelDrawer from the kinematics subsystem.

8.2.12 KinematicsDisplay

KinematicsDisplay

The KinematicsDisplay, specified in Section 4.4.3, uses the Mode/

alfa
beta
radius

(see Section 11.4.2) to draw the kinematics via the update opera-
tion. It has its own Camera object (see Section 7.2.11) which deter-
mines the point of view. The camera is located on a sphere and set

update
mouse_event
key_event
resize

load

save

via two angle parameters: alfa and beta. The angles alfa and beta
can be changed by first pressing and then moving the mouse hori-
zontally (to change alfa) or vertically (to change beta), as in Figure
19. The center of the sphere is the average of all the model points
(the gravity center).

FIGURE 19

Navigation via
mouse dragging

vertical
mouse movement

4

A a horizontal
mouse movement

Further interaction is possible via the keyboard:

® Pressing <shift> constraints the movement to either horizontal or
vertical movement (the largest movement is chosen).

® Pressing <ctrl> in combination with vertical movement changes
the focal distance of the camera, which gives the possibility to
zoom in and out.

® Pressing <tab> in combination with vertical movement changes
the radius of the sphere, which gives the possibility to move
closer or further away from the center.

The camera orientation is always directed towards the gravity cen-
ter. The KinematicsDisplay can be resized, loaded and saved.

78

Display Subsystem

Display Subsystem

79

80

Display Subsystem

CHAPTER 9

Kinematics:
Systems and
Algorithms

| Kinematics: _#
| systems and

| algorithms ™~
|

9.1

Human kinematics can be measured in a large number of ways.
This chapter first gives an overview of the devices and algorithms
that are used. Next, the kinematics detection approach for Sybar is
chosen.

Introduction

9.2

Kinematics describe the motions of the human body, or part of the

human body, through time. Kinematics are used to analyze human

motion, both in medical applications and in other fields. Kinematic
descriptions are always based on a human model. There are a num-
ber of devices and methods that are used to detect human kinemat-
ics.

Modeling human motion

The human body is an immensely complex system. Any description
of human motion is necessarily a simplification. Therefore, a
description of human motion requires some kind of model. A very
common simplification is to describe human motion by assuming
that the body consists of a number of connected rigid body parts. A
rigid body part consists of particles that have a fixed distance to
each other. The rigidity assumption is based on the fact that the
human skeleton indeed consists of relatively rigid bones.

Kinematics: Systems and Algorithms 81

A very common rigid model is the stick figure
model, also known as the linked segment model.
In the stick figure model, the complex joints
between bones are modeled via simplified joint
models (usually hinge joints), and bones are rep-
resented by line segments. Furthermore, the num-
ber of bones (segments) is reduced. A very
common stick figure model is the 15 segment

model of Figure 20. The spine, a complex part of FIGURE 20
the human skeleton, can not easily be modeled Slick figure

with hinge joints.

Sometimes, cylinders or other solid shapes are used to represent
segments consisting of both bones and soft-tissue parts. This means
that it is assumed that entire body segments are rigid. However,
soft-tissue parts of the body are not rigid, and therefore these mod-
els have to be used with care. Solid models are useful for kinemat-
ics detection by means of model matching. This is the topic of
Section 9.8.

Modeling human motion involves two kinds of parameters:

1. Position-independent parameters. For example, segment lengths
are usually assumed to be constant during motion, and are there-
fore position independent.

2. Position-dependent parameters. These are the parameters that
determine the posture of the model. For example, most models
have angles as position dependent parameters.

For some applications, a 2D model is used. Applications with 2D
models usually assume that the motion of each body segment is
restricted to a fixed plane.

Once kinematics are available, they can be visualized in various
ways. For example, the segments of a stick figure model can be
visualized by drawing lines or cylinders. This chapter, however,
deals with the detection of kinematics, and not with the visualiza-
tion of kinematics.

82

Kinematics: Systems and Algorithms

9.3

Detection of kinematics

9.4

The detection of the kinematics of human motion is a difficult prob-
lem. The dynamic position of the skeleton, on which the rigid
human models are based, cannot be detected easily. A radical solu-
tion to this problem was used by the California group in the fifties
(see Section 2.1), where metal pins were attached to the skeleton
near the joints under local anesthesia.

A more practical, and very often applied method, is the use of
markers, attached to the skin. Joint positions are estimated from
these marker positions. A problem with the marker approach is the
fact that the skin moves relative to the skeleton. Marker approaches
are usually used in combination with stick figure models. Some
alternatives to the marker approach have been suggested in the field
of computer vision These will be described in Section 9.8.

The following section describes the types of devices and systems
used for the detection of kinematics.

Detection devices

9.4.1

There are a number of devices, based on various principles, that are
used for the detection of kinematics. In this section, we give an
overview of the most often used types. Every system has its own
advantages and disadvantages. There are also differences in accu-
racy. In the specification of commercial marker systems, the accu-
racy of the marker detection is given, not taking into consideration
the errors that are introduced by skin movements. Commercial
marker systems claim accuracies within the range of 1 mm. How-
ever, skin movements of markers attached to anatomical landmarks
during walking are in the range of 10-30 mm [18].

Camera based systems

Camera based systems register analog or digital 2D images. These
images can be used to detect kinematics. It is very difficult to detect
kinematics directly from camera images. Therefore, the commercial
systems require the subjects to wear markers.

Kinematics: Systems and Algorithms 83

Two types of markers are used: active markers and passive markers.
Active markers send light themselves, while passive markers only
reflect light. Active markers are easier to detect, whereas passive
markers are easier to use, since no electronic wiring has to be
attached to the patient. Some older (passive marker) systems
require a human operator to locate the position of the markers in the
images. Most modern systems are able to perform marker detection
semi-automatically, using image processing techniques.

Another problem that has to be solved with the marker approach is
the correspondence or identification problem. It is not enough to
detect the markers in the image, they also have to be matched with
actual model points: for example a knee marker has to be identified
as being a knee marker, not a hip marker. In the cases where the
motion is complex or when a large number of markers are used, this
can be a difficult problem.

The following camera systems can be distinguished:

® Photogrammetry systems (photo-camera): the first kinematic
systems were based on photogrammetry and cinematography.
Some are still in use today because of their high accuracy. They
usually require a human operator for marker detection.

® Opto-electronic systems (television/video): these systems are
much cheaper and easier to use than photogrammetry systems.
Detection of markers is performed either manually or automatic.

®- Infrared systems: there are both active and passive systems that
work with infrared light. The active systems use markers that
send a flash of infrared light one at a time. An infrared camera
then determines the average location of all incoming infra red
light. An advantage of this approach is that the identification of
markers is performed automatically, since the markers are
detected one at a time in a specific order. A disadvantage of this
approach is that it is sensitive to reflections of markers on the
floor or other objects [13].

In general, camera devices deliver images that need to be processed
for acquiring kinematics. The computer processing of camera
images is the topics of the field of computer vision. Section 9.7
deals with the retrieval of kinematics from camera images.

84

Kinematics: Systems and Algorithms

9.4.2

9.4.3

944

9.4.5

9.4.6

Opto-electronic scanners

The Coda 3 system is an opto-electronic scanner. It scans the mea-
surement area using a very fast moving plane of light, controlled via
mirrors. Retro-reflective markers reflect colored light, and are
detected. The colors are used to identify the detected markers.
Because every marker has to have its own color, only a limited
number of markers can be used (in the Coda 3 system there is a
maximum of 12 markers). Three scanners are used to determine 3D
coordinates [13].

Acoustic systems

Acoustic systems register active sound producing markers. Several
microphones are used to determine the 3D position.

Electrogoniometers

Electronic goniometers are devices that are attached to the body and
measure angles of joints. Goniometers give a limited description of
the kinematics: most systems only measure knee angles. Further-
more, electrogoniometers are difficult to calibrate [11].

Inertial sensors

Accelerometers and solid state gyroscopes are electrical devices
that are attached to the body and measure acceleration. They are rel-
atively small, and therefore much easier to use than goniometers.
From the acceleration, kinematics can be determined via integra-
tion, although no absolute angles can be determined. Because of
technical limitations, these systems are not widely used [13].

Magnetic tracking devices

Another method to determine the 3D coordinates of a marker is by
means of a magnetic tracking device [10]. The 3Space Isotrak sys-
tem from McDonnell Douglas uses low-frequency magnetic fields
which are send by active markers and detected by sensors. The sys-
tem is sensitive to metallic objects in the scene.

Kinematics: Systems and Algorithms 85

9.5

Detection device for Sybar

Design Decision:

9.6

Sybar uses video for the visualization of human motion. There are
several reasons why we prefer to use the video information that is
already available to detect kinematics over using an additional kine-
matic detection device. Using an additional kinematic detection
device causes the measurement system to become a lot more com-
plex, since such devices have to be integrated with the other mea-
surement devices. Complex measurement settings are user-
unfriendly for the operator, and are also less patient-friendly.

Furthermore, using existing commercial systems has the disadvan-
tage that:

e they are not ‘open’: it is very difficult to integrate them together
with Sybar in a single system.

¢ they are expensive. Not using them reduces the total cost of
Sybar.

We therefore choose to develop a proprietary kinematics detection
system, based on the image processing of video images.

We first discuss some basics of computer vision. Next, we review

the research on kinematics detection that has already been done.
Finally, we choose an approach for Sybar.

Computer vision basics

The field of computer vision is concerned with the recovery of use-
ful information about a scene from its two-dimensional projections
[75]. Computer vision deals with digital images, that are acquired
by digitizing analog images directly from a camera or via a record-
ing device. Digital images consist of two dimensional arrays of
color or grey values. Points in these arrays are called pixels. In addi-
tion to image (or pixel-) coordinates, an arbitrary image and view
point independent coordinate system, known as the world coordi-
nate system, is often used.

86

Kinematics: Systems and Algorithms

9.6.1 Camera model

For images generated with cameras, the pin-hole model is usually
used. A point p is projected via the centre of projection to the image
plane point p’, as in Figure 21.

FIGURE 21

Camera model:

image plane . y

behind center of image plane

projection

ZV

This model does not take lens-distortions into consideration. Also
note that the 2D coordinate system of the pixels is reversed with
respect to that of the camera. For this reason, it is customary to
assume that the image plane is in front of the centre of projection
instead of behind, as in Figure 22.

FIGURE 22 i

Camera model:

image plane

before center of

projection

image plane

Using a world coordinate system, the following parameters deter-
mine the image produced by the camera:

® camera position in space (X, Y, ¥;)
® camera orientation given by a rotation matrix R, with elements rij
e focal distance: f

Kinematics: Systems and Algorithms 87

Given a point (X,Y,Z) in world coordinates, its projection (x,) is
given by

1 ruX=Xp) +rp(Y-Yy) +r;3(Z- Zy)

= . EQ 1
T XXy Frp(T Ty + roaZ—Zg) (EQ1)

1 (X =Xp) +rypy(Y-Y)+r,(Z- Zy)

= EQ2
YT (X=X trp (YY) + ro(Z - Z5) (EQ2)

9.6.2 Camera calibration

Computer vision algorithms often assume that the camera parame-
ters are given. There are also special camera calibration algorithms
to determine the camera parameters. Camera calibration algorithms
need ‘world knowledge’ to determine the camera parameters. Usu-
ally, this world knowledge is provided by means of a calibration
object with a known structure. An image is then taken of the cali-
bration object, and the camera parameters are determined from the
calibration image.

The rotation matrix has three degrees of freedom. Therefore, the
pinhole camera model has seven parameters: three for the camera
position, three for the orientation and one for the focal distance. It is
however not possible to determine these 7 parameters solving linear
equations. It is therefore customary to use 11 parameters, based on
regrouped versions of (EQ 1) and (EQ 2).

LiX+L,Y+L,Z+L, LiX+LgY+L,Z+ Ly
x = , =

LX+ Lo+l z+1 LoX+LyY+LZ+1

The parameters Ly, Ly, . . . , Ly are called the DLT (direct linear
transformation) parameters. A disadvantage of using more parame-
ters then necessary is that the algorithm that is rather sensitive to
noise on the input ([61]). However, using this redundant parameter-
ization, we avoid non-linear equations.

Each calibration point, which is given in 3D world coordinates and
2D image coordinates leads to two equations. Therefore, to deter-
mine the 11 DLT parameters with linear equation solving, at least 6
points are necessary.

88

Kinematics: Systems and Algorithms

9.6.3

9.7

More advanced camera models also take lens distortions into con-
sideration, which leads to more complex calibration algorithms. An
overview of camera calibration algorithms is given by Tsai in [61].

3D reconstruction

Since the mapping from a world coordinate point p to an image
coordinate point p’ is a projection, it is not possible to reconstruct p
solely from p: a point in 2D can be the projection of any point on
the line through p-p’. To reconstruct a point in 3D, more informa-
tion is necessary. This information can come either from having
more projections of the same 3D point (for example by using more
cameras or by using mirrors) or from having knowledge of the
object that the point to be reconstructed is part of, in the form of a
model.

General issues on retrieving human motion
from images

9.71

The retrieval of human-motion kinematics from images is a topic
that has received a lot of attention in the computer vision field. It is
a very difficult problem, and a general solution has not yet been
suggested. A distinction can be made between algorithms that use
markers to determine the kinematics and those that retrieve kine-
matics by matching the image with a so-called matching model.

There are a number of issues that are common to all the algorithms.
These will be described in this section. First, we describe the
approaches that do not use markers. Next, we describe the
approaches that do use markers.

The scene

Human motion takes place in a certain environment, also known as
the scene. Algorithms that do not use markers usually require that
the scene is static: the human subject is the only thing that moves in
the scene. Another common requirement is that there is enough
contrast between the subject and the background. Some algorithms
require ‘featureless’ backgrounds (empty scenes).

Kinematics: Systems and Algorithms 89

9.7.2

9.7.3

9.7.4

9.7.5

9.8

Number of views and point of view

Some algorithms use multiple views, obtained via a number of cam-
era’s. Others retrieve kinematics from a single view. Processing of
images also depends very much on the point of view of the camera.
Two views are often used: the sagital (side) view and the coronal
(frontal) view.

Motion and occlusion

Humans are capable of an enormous variety of motions. Most algo-
rithms are restricted in that only a small subset of motions is
allowed. Some algorithms focus on walking gait, others more on
gymnastic motions. Another distinction that can be made, is that
between algorithms that analyze individual images (posture detec-
tion) and algorithms that analyze motion through a sequence of
images. A re-occurring problem is that body parts (including mark-
ers) are frequently obscured by other body parts, a phenomenon that
is known as occlusion.

Appearance

Most algorithms make assumptions on what the subject looks like.
Some algorithms require that the subject wears a certain outfit. A
number of algorithms use the marker approach, where markers are
attached near joints. Algorithms that are not based on markers,
require the subject to wear tight clothes.

Models

Kinematics retrieval algorithms use a human model for their kine-
matic description. Both stick figure models and models consisting
of solid primitives are used. Sometimes, a 2D model is used. There
are also algorithms that result in the retrieval of only a part of the
human body, for example only the upper part.

Approaches without markers

In this section, we discuss algorithms that do not require markers to
be attached to the subject. Most of these algorithms work in two
steps. First, some ‘low-level” image processing is performed. Next,

90

Kinematics: Systems and Algorithms

9.8.1

the processed images are matched with an algorithm-specific
human model, which we call the matching model. In Section 9.10, a
classification of methods is given in Table 2.

2D stick figures of ‘gymnastic motions’

Leung and Yang describe an algorithm that determines 2D stick fig-
ures of humans performing certain ‘gymnastic motions’ [29]. Their
algorithm first determines an outline of the human for each image.
These outlines are matched with a ‘ribbon’ model, from which the

_ stick figure is determined. A single view is used for each image

- 9.8.2

9.8.3

sequence. The point of view is chosen optimally for each motion.

2D stick figures of a walking person

Several approaches have been suggested for retrieving 2D stick fig-
ures from a sequence of images of a walking person [26,27,28].
Guo, Xu and Tsuji describe an algorithm that uses an image pro-
cessing filter that determines a skeleton from a person’s silhouette.
This skeleton is matched with the stick figure model using neural
networks [26,27]. Niyogi and Adelson determine an ‘armless’ stick-
figure by searching for patterns in the spatio-temporal volume. This
spatio-temporal volume is the complete XYT-space consisting of a
number of images of one or more walking persons [28]. The algo-
rithms both use a single view, namely the sagital view of the sub-
ject.

3D models of ‘gymnastic motions’

In an early article on human motion retrieval, O‘Rourke and Badler
describe an algorithm that detects simple gymnastic motions from a
coronal view [30]. It is based on a prediction-interpretation loop.
Positions of body segments are predicted and the predictions are
compared with images. Furthermore, constraints are used to rule out
certain positions. The matching model used is based on 600 inter-
secting spheres. The algorithm was only tested on simulation data.

Akita describes an algorithm that was tested on real data [32]. In his
algorithm, particular gymnastic motions, that have to be described
in advance, are analyzed. The algorithm first determines outlines of
figures, and next determines the positions of the body parts using
the image outlines and a predicted outline. The matching model is
based on generalized cones.

Kinematics: Systems and Algorithms 91

9.8.4 3D model of a walking person

9.8.5

9.9

Rohr describes an algorithm to retrieve a 3D model of a walking
person from images using the sagital view [35]. First, an algorithm
determines the difference between an image and its predecessor.
Using this change detection filter, the part of the image that belongs
to the walking person is determined.

Rohr uses a model that not only describes the human body, but also
incorporates a model of human walking. The model of human walk-
ing is based on averages obtained from medical data of healthy per-
sons. Using Kalman-filter prediction and comparison of predicted
values with image values, the parameters of the model for each
frame are determined. The matching model is based on cylinders.

3D model of upper body motion

Gavrila and Davis describe an algorithm that tracks upper body
motion [36]. Their algorithm is unique in the sense that it uses a
multi-camera approach without markers. It is again required that the
scene is static. The matching model is based on ‘tapered super-
quadrics’.

The algorithm searches the parameter space of the model using a
heuristic approach (‘best-first’), starting at a predicted value {based
on previous frames). The similarity between model views and the
actual images is determined with a image processing technique
called chamfer matching.

Approaches that use markers

Commercial human motion analysis systems use markers that are
attached to the human body. Most marker systems are model inde-
pendent: the fact that the markers are attached to a mechanical sys-
tem (e.g. 2 human subject) is not used. Usually, a two stage
approach is followed:

1. Low-level detection of markers. The result of this stage is a set
of marker-coordinates for an image. The first marker systems
required a human operator to indicate the locations of the mark-

92

Kinematics: Systems and Algorithms

FIGURE 23

general approach
for kinematics
detection with the
aid of markers

ers. Most modern systems can perform the detection automati-
cally.

2. Combination of low-level results into a description of 2D or 3D
trajectories of model points. For this purpose, the markers
detected in stage 1 need to be matched with model points (corre-
spondence). In some systems, there is a one-to-one relation
between markers and joints. Other systems use sets of markers
from which joint positions are calculated, to get a higher accu-
racy. Some systems are capable of correcting errors of stage 1 in
stage 2. Some systems are also capable of estimating positions of
temporarily invisible (occluded) points.

Stage 1 Stage 2
Images —» image processing Correspondence > Kinematics
Low-level detection Occlusion
3Dcalculations

9.9.1 Lowe-level detection

Automatic low-level detection algorithms usually first convert the
digitized grey or color images to a binary image using a threshold
operation. A threshold operation sets a grey value pixel to 1 if it has
a greater intensity than a given value T and to 0 if the grey value of
that pixel is smaller than 7. The value T is called the threshold.

The idea behind using a threshold algorithm is that markers gener-
ally have the highest grey level intensity in images. In the next step
of the marker detection, an algorithm that searches for markers is
applied to the thresholded binary images. The search algorithms
search for shapes that resemble markers, for example using a
method known as template matching [75]. In template matching, a
template of the object is compared with a part of the image. The dis-
similarity between the template and the image is usually defined as
the sum of the squared differences between intensities of image
points and template points. It is possible to achieve sub pixel accu-
racy by also testing template positions located in between pixels.

Although several improvements to this general approach have been
suggested, none of the algorithms is perfect. Depending on the
quality of the input images, markers can be missed, and other

Kinematics: Systems and Algorithms 93

9.9.2

9.9.3

objects can be incorrectly identified as being markers. Furthermore,
markers that are not visible can obviously not be detected.

2D model using a single camera

From the results of low-level detection, a 2D model can be deter-
mined. For this purpose, the marker coordinates in each image need
to be identified as being model points. This is known as the corre-
spondence problem. Correspondence can be solved with tracking
algorithms. These algorithms determine the trajectories of model
points, using the fact that marker motion is smooth [43]. Some
tracking algorithms also deal with occlusion [50,51]: invisible
points can be estimated by interpolation between known values.

Errors in detection can be corrected by a human operator, resulting
in semi-automatics systems. Occlusion can also be solved by a
human operator.

Ferrigo and Gussoni describe an algorithm that determines a 2D
mode] for several sport activities. They use a single leg, single arm
model and a sagital view to determine correspondence and solve
(limited) occlusion [24].

3D model using multi camera’s

Most motion analysis systems are able to determine the 3D position
of a marker by combining the results of several camera’s. Assuming
that the camera parameters are known, and that marker detection for
each image has been performed without errors, it is possible to
reconstruct the 3D position of a marker with two cameras, without
using any additional information. Using the camera model of Figure
22, Figure 24 shows that a point p that is projected onto two camera
image points q; and g, can be reconstructed by calculating the
intersection of the rays from the centers of projection through the
respective image points.

94

Kinematics: Systems and Algorithms

FIGURE 24

reconstruction of
marker
coordinates with
two camera’s

camera 1

camera 2

In practice, the camera model is not perfect and the marker position
q; and g, can not be calculated without some errors. Therefore the
two rays will not intersect and an approximation has to be made, for
example the midpoint of the midperpendicular of both lines is taken
as the intersection [9, 56].

Occlusion is often solved by using more than two cameras, to make
sure that the marker is visible in a least two images. The correspon-
dence problem has to be solved for every camera view. It is possible
to solve the correspondence for each view separately. An alterna-

 tive is to solve the correspondence by considering the data of all the

views simultaneously. If the correspondence is correct, there is a
3D point that projects onto each of the pixels by applying the corre-
sponding viewing transformation. In the case of imperfect data, the
projections are close to the pixels.The 3D point can be recon-
structed from the pixel data, by generalizing the 2D midperpendicu-
lar approach. For each pixel, the difference between the projection
of the reconstructed 3D point and the pixel can be determined. The
sum of these differences is an indication for the validity of the
match.

A rigid body segment in 3D has six degrees of freedom: three for
the position, and three for the orientation. The systems described so
far, determine only two parameters for the orientation. The possible
rotation of a segment around its own axis, as in Figure 25, is not
considered.

Kinematics: Systems and Algorithms 95

FIGURE 25

The orientation
of a segment
has 3 degrees
of freedom

9.94

9.10

When more than two markers are used for a single body segment, it
is possible to determine the rotation of a segment around its own
axis. The calculation of the position and orientation of a segment in
3D from a set of points on the segment, has been the topic of the
studies reported in [55,57,58,59]. In particular, the accuracy and
sensitivity to noise in marker data is addressed in these articles.

3D model using a single camera

Chen and Lee describe an algorithm to determine 3D kinematics of
a stick figure from a sequence of single view images [33,34]. They
assume that low-level marker detection is performed correctly. Fur-
thermore, they assume that the correspondence problem and the
occlusion problem are solved. Their algorithm uses model informa-
tion and constraints to reconstruct 3D kinematics for a stick figure
model. The algorithm was tested on synthetic data.

Classification of approaches

This section summarizes the previous two sections by giving a clas-
sification of approaches with and without markers to retrieve kine-
matics from images. The first row in Table 2 gives the literature
reference of the approach. In two cases, the approach can not be
directly related to a single publication:

® The detection of kinematics with markers using a 2D model and
a single view, described in Section 9.9.2. This approach is shown
in as [*] in Table 2.

96

Kinematics: Systems and Algorithms

® The detection of kinematics with markers using a 3D model and
multiple cameras, described in Section 9.9.3. This approach is

shown as [**].

TABLE 2 Classification of approaches to retrieve kinematics from images
Reference |[29] . [26],[27] [28] [30] [32] [35] [36] 1 1 [33],[34]
Scene static static dynamic empty empty static empty dynamic dynamic dynamic
numberof (! 1 1 1 1 1 several 1 several 1
views
point of several sagital sagital several coronal sagital several several several coronal
view
type of gymnastic gait (walk- gait gymnas- gymnas- healthy any upper any any gait
motion ing and run- tic tic, pre- gait part

ning) scribed motion
human different different no equalto different no different markers markers markers
appearance intensity intensity restric- model intensity restric-* intensity
from back- from back- tions from back- tions from back-
ground ground ground ground
model 2D stick 2D stick fig- 2D stick 3D 3D gener- 3Dcyl- 3D 2D 3D 3D stick
figure ure figure spheres alized inder tapered stick stick figure
cones super figure figure
quadrics
part of whole whole (arm- armless whole whole whole upperpart whole whole whole
body less when orpart or part
retrieved running)
testedon |Y Y Y N Y Y Y Y Y N
real data

9.11 Approach for Sybar

Two requirement definitions that are important with respect to the

kinematics subsystem:

® Ease of use for the lab operator (see Section 3.3)

e Patient friendliness (see Section 3.4)

An ideal kinematics subsystem is transparent to both the lab opera-
tor and the patient. Therefore, an approach that uses the video
images that are recorded for the visualization, would be ideal.

Kinematics: Systems and Algorithms

97

Design Decision:

These video images are usually made with a single camera and do
not contain markers.

However, when one reviews the algorithms described in the section
on approaches that do not use markers, it is quite clear that these
algorithms are still largely experimental. There are a number of rea-
sons why they are not suitable for our application. First of all, we
are primarily interested in 3D kinematics detection (see Section
4.3.1). Therefore, approaches that produce 2D stick figures are not
suitable [26,27,28,29]. Furthermore, the algorithm should be able to
detect kinematics in walking gait, since it the most important type
of analysis for rehabilitation medicine (see Section 4.3). Therefore,
approaches that do not deal with gait can not be used [30,32].
Finally, the motion patterns of patients typically do not resemble
historical averages from healthy persons. Therefore, Rohr’s algo-
rithm is also unsuitable [35].

We therefore choose to use an approach that uses markers. The
attachment of markers is a relatively small burden on the patient.
Using such an approach, it is possible to choose either a single or a
multiple camera approach. A single camera approach is to be pre-
ferred from the lab operator’s point of view, since it means that no
additional video equipment will have to be operated: the video that
is recorded for the visualization can be used. In the following chap-
ter, we therefore investigate the possibility of using a single view
approach for Sybar. We use Chen and Lee’s work as a starting point
[33,34].

98

Kinematics: Systems and Algorithms

CHAPTER 10

Kinematics
from a Single
View

| Kinematics
| from a single
| view

10.1

This chapter deals with the possibility of retrieving 3D kinematics
Jfrom a single camera view for Sybar. First, Chen and Lee’s
approach is summarized and discussed. Next, the 3D reconstruction
is formulated as a minimization problem, to be solved with the
SVD-technique. Finally, some test results of the approach are
presented and conclusions are drawn.

Introduction

Human motion takes places in three dimensions. Therefore, a
human-motion analysis system should preferably be able to gener-
ate and work with 3D data. The commercial systems that provide
3D kinematics use a multi-camera approach. Multi-camera motion-
analysis systems are expensive and cumbersome. In the Sybar
project, a single camera video is already available for the purpose of
visualizing the patient’s movement. An approach that uses only this
video information is therefore to be preferred, since it does not
require any additional equipment.

In the field of computer vision, a lot of research has been done on
acquiring 3D data from single-view images. In the previous chapter,
we presented an overview of the kinematics detection literature and
we investigated the possibility of using a single camera approach to
retrieve 3D data for Sybar. It was concluded that the marker

Kinematics from a Single View 99

10.2

approach followed by Chen and Lee [33,34], is the most suitable for
Sybar. We will now describe their algorithm is greater detail.

Chen and Lee’s approach to 3D reconstruction

In Chen and Lee’s papers, an algorithm is described that recon-
structs 3D stick figures from single view images, using the marker
approach. In this approach, markers are attached to the human
body. Joint positions are determined from these markers.

In Chen and Lee’s algorithm, a number of assumptions regarding
the input are made. It is assumed that the complete set of projected
body joints that form the stick figure is available in each of the
images. This means that:

1. Low-level marker detection has already taken place.

2. The occlusion problem is not considered: markers can become
temporarily invisible if body parts obscure the view. Chen and
Lee assume that this does not occur (or that perfect estimates of
obscured marker points are available).

3. The correspondence problem has been solved. This means that
each projected point is already identified as being the projection
of a certain stick figure model point.

Furthermore, it is assumed that:

4. The length of all rigid segments is known.

5. Six points on the head are available. The head is considered to be
arigid object. The camera is calibrated (see Section 9.6.2) using
the head as a calibration object.

In Section 9.6.3, it is mentioned that is not possible to reconstruct a
3D point p solely from its 2D projection. However, additional
model information, in the form of segment lengths, can make this
reconstruction possible. Assume that p and g are projected points of
respectively P and Q. If p, ¢ and P are given and the length [of seg-
ment PQ is given, then two candidates for Q can be reconstructed,
by casting a ray from the centre of projection through ¢. The points
of intersection of this ray with the sphere with radius / which has P
as its centre are the candidates. This is shown in Figure 26.

100

Kinematics from a Single View

FIGURE 26

Reconstruction
candidates

candidates

@ view point

By choosing the correct candidate and repeating the procedure for
the connected points in the stick figure, the entire model can be
reconstructed. The choice between the two candidates will be called
the hither-yon choice. As a starting point, the neck, which is one of
the six markers located on the head, is used. If there are n model
points outside of the head, there are # hither-yon choices to be
made. This leads to 2" possible stick diagram configurations, that
should comply with the detected 2D marker positions.

The method of choosing the correct configuration is based on elim-
inating incorrect configurations, until only the correct configuration
is left. Configurations are eliminated by checking a number of con-
straints:

® Angle constraints: the angles that segments can make in joints
are limited. Chen and Lee define a number of angles in the
human model, and use constraints on these angles to eliminate
impossible configurations.

® Distance constraints: points on rigid objects have a fixed dis-
tance to each other. When more than two markers are attached to
a single rigid object, this leads to additional distance constraints.
In Chen and Lee’s stick figure, this is the case at the pelvis. Fur-
thermore, in invalid configurations, the rays that are cast as in

Kinematics from a Single View 101

10.3

Figure 26, can miss the sphere. This can also be seen as a viola-
tion of distance constraints.

Collision-free constraints: it is not possible that segments inter-
sect with each other. This is expressed in the collision-free con-
straints.

Correctness rules: Chen and Lee use additional information on
gait, as performed by healthy persons. This is done in the form of
a number of knowledge rules. For example, it is assumed that it
is not possible that both arms are in front of or behind the torso
simultaneously. These rules restrict the algorithm to gait of
healthy persons.

Smoothness of motion. In [33], constraints that can be applied to
a single position of the stick figure are defined. In [34], the algo-

- rithm is extended to include information from multiple frames to

eliminate incorrect configurations. The constraint that is added is
based on the fact that human motion is relatively smooth: config-
urations that would result in unsmooth motion are not allowed.

Using these criteria, Chen and Lee find unique configurations for
their simulation data. '

Problems with Chen and Lee’s approach

Chen and Lee’s algorithm basically deals with the case were the
data obtained by the marker detection system is perfect. However,
in practical circumstances, there are a number of complications:

The stick figure is a very simple model of the human body. The
human body’s behavior is more complex and cannot be mapped

~ exactly to the stick figure model. In particular, the behavior of

the spine is more complex than can be modeled with a simple
stick diagram.

The skeleton, on which the stick figure is based, is not visible.
Markers, placed on the skin, only approximate the location of
joints. The accuracy particularly suffers from skin movements
relative to the underlying bone during movement.

Segment lengths can not be determined exactly.

Marker detection is not perfect due to limitations of image reso-
lution and image noise.

102

Kinematics from a Single View

FIGURE 27

Error caused by
incorrect
segment length
information

® Markers can be completely invisible due to other body parts that
obscure the view: the occlusion problem.

® Itis impossible to attach and detect six visible points on the head
outside of a simulated environment.

¢ It is very difficult to acquire a first correct frame, necessary to
apply ‘smoothness of motion’ information.

Chen and Lee only give results for simulation data, and from the
above it is obvious that a practical implementation is anything but
trivial. It is also quite clear from the above, that errors in the input
for the algorithm will appear. Chen and Lee have not given an anal-
ysis of the robustness of their algorithm.

We believe that their method is very sensitive to errors in the input.
This follows from the following example: the result of an error in
segment length information.

brojection plane
p P
L/ ¢
Z el
Q

For simplicity, we assume a parallel projection and we consider the
case where a segment is parallel to the viewing plane. Segments
that are parallel to the viewing plane are quite common. For
instance, in the sagital view, both arm and leg segments are
(almost) parallel to the viewing plane all of the time during a
healthy person’s gait cycle.

Let ¢ be the relative error in length /, caused by marker misplace-
ment and marker detection errors, and let ¢ be the resulting error in
angle.

Kinematics from a Single View 103

Then cosd = (1-¢)-

The most significant error in marker systems is the movement of
the marker relative to the joints as a result of skin movement. These
errors are in the range of 10-30 mm. Considering a body segment of
40 cm, errors can be in the range of 5%. Assuming an error of 5% (e
= 0.05), this leads to an error of 18.2 degrees in ¢!

The case where the segment is parallel to the viewing plane is the
worst case. If the segment is perpendicular to the viewing plane, an
error in segment length does not cause an angle error.

- The algorithm is also sensitive to other types of errors, such as

104

errors in joint projections. Another problem is that of accumulation
of errors: the reconstruction method causes errors to propagate
through the reconstruction, since new points are constructed using
previous ones that contain errors.

Reconstruction using a linearized set of
equations

Chen and Lee focus on finding the correct configuration in their
tree of configurations for each frame. However, in practical circum-
stances, it is not possible to acquire perfect input data. Input data
will contain errors. As we have shown in the previous section, sim-
ply ignoring the input errors can lead to unacceptable errors in the
oufput.

This essentially changes the discrete problem of eliminating illegal
configurations from a tree into a continuous minimization problem
of finding a solution with a minimal error, using a suitable cost
function. We will now define the problem in terms of a continuous
minimization problem. We are no longer looking for the ‘correct’
configuration from a discrete set of configurations. We want to find
the configuration that has a minimal cost from an infinite set of con-
figurations.

104

Kinematics from a Single View

10.4.1

The following information is available for the cost function:

1. The set of 2D projections of 3D model points for each frame.

2. An estimate of the length of each body segment.

3. The fact that human motion is smooth, in other words there is
limited movement between two adjacent frames.

4. The fact that the human body is limited in what it can do. Certain
positions are physically impossible.

We drop the assumption that six model points on the rigid head are
available, since this assumption is very unpractical. Furthermore,
we will not use Chen and Lee’s “correctness rules’, since these only
seem to apply to healthy gait. We do assume that the camera param-
eters are known (see Section 9.6).

For computational reasons, it is preferable that the cost function can
be given as an overdetermined set of linear equations that have to

be solved, using the least-squares criterion. We will now first try to
represent the information as a number of linear equations. Next, we

will show how the optimization problem can be solved using singu-
lar value decomposition.

Projection information

Definitions:

N = the number of points in the model

M = the number of segments in the model

The relation between a point in 3D world coordinates and its pro-
jection in 2D image coordinates is given by and from Section
9.6.2. In the case of 3D reconstruction, the DLT parameters and the
2D projections are given, and the 3D originals are the unknowns.
We can rewrite the projection equations as:

X(Ly~Lox)+ Y(Ly—Lygx) + Z(L;—Ly;x) = x—1L, (EQ3)

X(Ls—Loy)+ Y(Lg—Lygy) + Z(Ly~Lyyy) = y—Lg (EQ4)

Kinematics from a Single View 1 05

where X, Y,Z are the unknowns. We now combine all 3N unknowns
(three for each point) into the unknown vector x.

We can then combine the 2N projection equations in one set of
equations:

Ax = b (EQ5)

where 4 is a 2N x 3N matrix, and b consists of the right-hand sides
of the equations 3 and 4.

10.4.2 Adding segment length information

Segment length information can best be added by making a change
in variables. Instead of describing the reconstruction problem in
terms of 3 unknown cartesian coordinates for each marker point, we
will now describe the problem in terms of a 3D point for one partic-
ular marker point, and 2 angles for the remaining marker points.
The 3D point is a the starting point for the reconstruction, and will
be called the root.

An alternative approach is to add the segment length information by
adding additional equations for each length. However, this does not
reduce the amount of unknowns and therefore we choose to make a
change in variables.

Changing to these variables reduces the number of variables from
3N to 2(N-1) + 3. Changing variables also means that the projec-
tion equations (EQ 5) have to be rewritten in terms of the new vari-
ables. This will be the topic of the remainder of this section.

We start by showing how the cartesian coordinates can be recon-
structed from the root and angles variables.

Let P and O be 3D model points connected via a segment PQ of
length / that has P and Q as end points. Then the 3D vector repre-
senting the segment PQ can be written as a function fe R >R
with angles o, B as argument:

fi(c, B) = I[cosacosB, sino.cosP, sinf] (DEF 1)

where a and B are defined as in Figure 28.

106

Kinematics from a Single View

FIGURE 28

Definition of
angles

FIGURE 29

The stick
diagram as a
labeled graph

y

The angles are o and B defined relative to the world coordinates.

The stick diagram that represents the human model is a graph,
where vertices correspond to model points and edges correspond to
segments:

8 1"
9 12
1 T4 13
1 5
2 6
3 7

In Figure 29, we have labeled each vertex in the graph with a num-
ber, indicating the sequence number of the vertex in the reconstruc-
tion process. The root has number 0. We now define r as the
reconstruction row: the row that starts with the root, followed by the
other vertices in the order that they are to be reconstructed accord-
ing to the labeling. For the i+1-th element, we will use the notation:
r;. Therefore, the root is r. Note that the labeling is chosen in such
a way that every point in the reconstruction order row » can be
reached from the root via a subset of its row predecessors. This
means that for every point 7;, a path of predecessors of #; can be
constructed that starts at the root 7y and ends at ;. We choose such a

Kinematics from a Single View 107

path for every point 7;. Let w(r;), be the chosen path of points that
reconstructs »;. We call w(r;) the root path of r;,

We now define a vector a as: [x, y, z, Oyyeees Oy 15 B s By_ 115
where (x,y,2) is the root »(, and a; and p; are the angles that are
defined for model point 7;. The angles o; and B; define the orienta-
tion of the segment that connects #; to its predecessor along the
root-path. The vector a consists of the set of position dependent
parameters of our model (see Section 9.2).

From now on we assume that the order of the elements of x (intro-
duced in (EQ 5)), is such that:

X =[rg.X, 0.y, 10.Z0ees PN-1% PNCLYs TNC12]

We will transform the projection equations for x into projection
equations for the vectors Aa, which consist of the differences of the
root coordinates and the differences of all corresponding angles
between two adjacent frames.

First, we define:

lLifp e w(r)

u,(p) = { (DEF 2)

0ifp & w(r,)

The point 7; can then be reconstructed by starting at the root ro and
adding the segment vectors f for those segments that are part of the
root path of r;:

=gt 2 u,(r)- £, (o B (EQ 6)

k=1

Since f is a non-linear function, it has to be linearized using first
order Taylor expansion yielding partial derivatives, before we can
use it in our system of linear equations:

of; (o, By)
o, = [[-sino;cosB;, cosa;cos P, 0] (EQ7)

108

Kinematics from a Single View

o, (o, By) o
—5— = [;[~cosa;sin B, —sina,;sin,, cosBj] (EQ8)

It follows from (EQ 6) that:

or; aflk(ak, By
Tt = 1) as)
or o (s B)

Note that B&Lk is equal to ———
4

if r; is an element of the rootpath of ; and 0 otherwise.
or;
A similar tion can be derived for .
ilar equa a5,

Recall that:

¢ Xx is the vector of model coordinates (three for each point), placed
in the reconstruction order » defined by labeling of the model.

® aisthe vector consisting of the root coordinates, followed by the
o’s and B’s.

We define the Jacobian J as:
Jy = 72 (DEF 3)

We now go back to our initial set of equations Ax = b, that represent
projection information.

We define:

a = the previous frame value of a,
b = the previous frame value of b,
x = the previous frame value of x,

Ad=a-a,Ab=b-band Ax = x-x

Kinematics from a Single View 109

We can now change from cartesian coordinates x to angle differ-
ences Aa as follows:

Linearizing g around a, we have: J(a) - Aa = Ax :

We define H = 4J(a). Then we get:

H-Aa = AJ(a)-Aa=A-Ax = Ax~Ax = b-b = Ab (EQ10)
Hence,
H-Aa = Ab (EQ 11)

is the set of equations to be solved, and A« is the unknown vector.
The difference between this set of equations and the original set

Ax = b, is that the new set of equations contains segment length
information and consists of fewer unknown variables than the origi-
nal set of equations.

10.4.3 Smoothness of motion information

Smoothness of motion can be enforced by adding equations that
require each variable to be close to a predicted value. The predicted
value can be computed by using information from the previous
frames. We choose a simple prediction scheme based on the two
previous frames: the predicted value is equal to the difference
between those two frames Aa . This leads to a set of equations:

I-Aa = Ad (EQ 12)

The equations from (EQ 11) and (EQ 12) can be combined into a sin-
gle set of equations, by extending the matrix & and the vector »
into H',b':

H b
H - Aa = -Aa = = b (EQ13)
Al AAG

The weight factor A is a measure of the relative importance of the
smoothness information compared to the projection and length
information. By giving A a higher value, the bottom half of A"

110

Kinematics from a Single View

becomes more important when a least squares solution is computed.
This will be explained in Section 10.5.

In the following sections, we will refer to H' as H and to b' as b.

10.4.4 Physical constraint information

Design Decision:

10.5

Physical constraints are constraints that describe limitations of the
human body. In particular, angles between segments that can be
made in joints are limited to certain ranges. Unfortunately, it is not
easy to add the physical constraint information to our set of equa-
tions, since it requires inequalities instead of equations. Further-
more, the information that physical constraints give us, does not
add much to the cost function. It eliminates ‘regions’ of the solution
space, but usually is does not help us to determine which of two
similar solutions is better.

Therefore, we do not use this information in our set of equations.
The physical constraint information could be used to check the
results of the reconstruction process. However, this approach was
not followed in our research.

Solving the equations using singular value
decomposition

10.5.1

Definition of SVD

Singular Value Decomposition (SVD) is a powerful mathematical
tool to find a numerical solution of a set of equations [78].

Any matrix H of dimension M x N, M> N, can be decomposed as
follows:

H=UDv"

where the matrices U,D, and ¥ have the following properties:

® Vis a square matrix of size N x N
® Uhassize MxN
e [and ¥ have orthonormal columns

Kinematics from a Single View 111

® D is a diagonal matrix. Its diagonal entries are non-negative and
can be chosen to be increasing, independent of the particular
choice of U and ¥, and are called the singular values of H. The
singular values are denoted by «,:

o, 0 ... 0

0 w,... 0
D = 2

0 0. o,

_If H is singular, there are not enough singular values unequal to

zero to fill D. In that case, SVD finds ’s equal to zero for the
remaining diagonal elements.

10.5.2 Solving equations with SVD

The SVD of H can be used to analyze a set of equations H x = b.

If H has full column rank (i.e. if none of the »’s is equal to Zero), a
‘least square solution’ for the set of equations is given by:

1
x = V-diag - (U"-b) (EQ 14)
J

A ‘least square solution’ is a vector x, that minimizes the value:

M
> ((Hx);-b,)? (EQ 15)

i=1

If the set of equations H x = b has a unique solution, it is also the
‘least square solution’, so (EQ 14) gives an exact solution if possi-
ble.

If there are singular values that are equal to zero, a least square
solution can be found by using (EQ 14), with 1/ ; replaced by 0 for
every o; = 0.

If the least square (or exact) solution is not unique then (EQ 14)
gives the solution with the smallest norm.

112

Kinematics from a Single View

SVD can also be used to evaluate the robustness of a problem. If
there is a large difference between the smaller and larger singular
values, the system is not robust. This can be determined via the con-
dition number, which is defined as the ratio of the highest and low-
est singular value of a matrix. The number of small singular values
gives the dimension of the subspace of the solution space that is
sensitive to errors in the input.

10.5.3 Application of SVD

In the previous sections, we have determined a set of equations that
represent the information necessary to reconstruct a 3D model from
its 2D projection. This resulted in a set of equations H-Aa = Ab.
We perform the SVD on the matrix H. Using the method described
in Section 10.5.2, a (least square) solution to H - Ae = Ab can be
found. From the analysis of the singular values (the matrix D), fur-
ther conclusions about the robustness of the set of equations can be
drawn: small condition numbers indicate that the set of equations is
robust, while large condition numbers indicate that the set of equa-
tions is sensitive to errors,

10.5.4 Scaling and weights

Each of the equations of the set H- Aa = Ab represents informa-
tion. If the set - Aa = Ab does not have an exact solution, a solu-
tion can be given using the least squares criterion. The least squares
criterion can be ‘manipulated’ in two ways: by scaling and by giv-
ing weights.

As was described in Section 10.4.3, the relative importance of the
smoothness information can be set with a weight factor A. When
computing a solution using the least squares criterion, it is clear that
equations which are given a higher weight, contribute more to the
squares sum of (EQ 15), and therefore these equations gain in
importance.

Each component of the unknown vector a can be scaled before the
SVD-operation and the scaled back after this operation. This way,
certain components gain significance. Recall that the first 3 ele-
ments of a represent root coordinates, the others represent angles.
Using scaling, the relative importance of errors in the root coordi-
nate components with respect to errors in the angle components can

Kinematics from a Single View 113

10.6

be given. For this we introduce p, the relative importance of the
root coordinates.

Results of our approach

FIGURE 30

Example of a stick
figure generated by the
WALT system

We have tested our algorithm on simulation data provided by the
WALT-system [41]. The WALT system is an animation system
developed by the computer graphics group of the Eindhoven Uni-
versity of Technology.

The test data consists of an animation of a walking person. The
WALT system delivers both 3D coordinates and 2D projections.
This enables us to test the reconstruction algorithm: the 2D projec-
tion are the input data, the output can be checked with the 3D origi-
nals. The chosen frame rate is equal to that given in the
specification (see Section 4.6). The frame rate is important for the
reconstruction since higher frame rates imply smoother motion.

The input provided to the reconstruction algorithm consists of:

¢ the previous 2 frames in 3D
o the correct segment lengths

o the projection values for the current frame

Like Chen and Lee, we use simulation data to test our algorithm.
However, we use not only perfect data, but also data that contains
realistic errors. In this section, a number of examples are given.
These examples are based on reconstruction of a single frame using
the previous frames. This means that propagation errors are not
taken into consideration. A single camera view is used, unless oth-
erwise stated. We give average and maximal errors in the angles (in

114

Kinematics from a Single View

10.6.1

degrees). Furthermore, the condition number is given, to indicate
sensitivity to errors.

We used two image resolutions to test our algorithm: ‘infinite’ and
751 x 576 . Infinite resolution indicates that all calculations were
performed with floating point calculations. In case of a resolution of
751 x 576, all projected image points are rounded to grid points on a
grid of 751 x 576 pixels. In practical circumstances, an image reso-
lution of 751 x 576 is realistic. This limitation of the resolution is a
potential cause of errors.

Projection information

In an initial test, we only used projection information and left out
smoothness information. Analysis of the singular values showed
that one singular value was very close to zero, and therefore the
condition number of matrix H is very large. This corresponds to the
fact that there is one more variable than there are equations: there
are 2- (N-1)+3 variables and 2 - N equations. As was mentioned
in Section 10.5.2, in this case SVD gives the solution vector with
the smallest norm.

Since in our case, the unknown variable consists of root coordinates
and angle differences, this means that the solution that is chosen is
the one which corresponds to the smallest amount of motion.

Smoothness Resolution Length error View
none infinite none sagital
Average Maximal

Angle error Angle error Condition

(degrees) (degrees) number

2.1 13.7 6.1¥10%0

Example 16 no smoothness

In our first example, we have assumed an ‘infinite’ image resolu-
tion. In real marker detection systems, there is always a limited
number of scan lines and pixels in the images. As a first error-intro-
duction, we add a limited resolution of 751 x 576 . Apparently, the

Kinematics from a Single View 115

influence of using a limited resolution of 751 x 576 is relatively
small. The average error even dropped in some cases.

Length
Smoothness Resolution error View
none 751 x576 none sagital
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
1.8 23.9 1.0x10%0

Example 17 limited image resolution

Next we added random length errors of up to 5%, picked using a
homogenous distribution function. The results show large angle
errors. The largest error was found in joints with large displace-
ments (elbow and knee). '

Length
Smoothness Resolution error View
none 751 x 576 5% sagital
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
10.4 137.0 8.0*10%0

Example 18 segment length errors

10.6.2 Adding smoothness information

Next we added smoothness information. Smoothness information
uses a predicted value, normally based on previous frame values. In
our simulation, the 3D data of the frame to be reconstructed was
also available. From this data, we computed the ‘real’ solution and
used this to test the effects of adding smoothness information. We
call this perfect prediction (it is also known as cheating). In this

116

Kinematics from a Single View

test, we gave smoothness information a relatively large weight
compared to the weight of the projection information.

Length
Smoothness Resolution error View
perfect 751 x 576 none sagital
prediction
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
0.48 2.2 2.5%10%

Example 19 smoothness with perfect prediction

The singular value decomposition showed no singular values close
to zero. This is obvious, since the number of (independent) equa-
tions is now much larger than the number of variables. As a result,
the condition number is much lower. Because of the perfect predic-
tion, the errors are small. The remaining errors result from limited
image resolution and the errors in the linearization of the projection
equations.

Next, we tested the algorithm by using information from the two
previous frames. The weight of the smoothness information had to
be reduced because the smoothness information was no longer per-
fect. As aresult the condition number was larger, but still much
lower than in the case were no smoothness was used. The results
show only a slight improvement over the case were no smoothness
information was used (example 17).

Length
Smoothness Resolution error View
normal 751 x 576 none sagital
prediction
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
1.4 13.9 2.3*10°

Example 20 smoothness with normal prediction

Kinematics from a Single View

Next, we also add segment errors. Again, the results are only
slightly better than the case where no smoothness information was
added (example 18).

Length
Smoothness Resolution error View
normal predic- 751 x576 5% sagital
tion
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
9.3 116.3 1.8*10°

Example 21 smoothness with normal prediction and length errors

10.6.3 Other views

We also tested the effect of changing the camera position, using a
front view and a top view.

Length
Smoothness Resolution error View
normal predic- 751 x576 5% front
tion
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
7.9 72.8 1.3*10°

Example 22 front view

Length
Smoothness Resolution error View
normal predic- 751 x576 5% top
tion
Average Maximal
Angle error Angle error Condition
(degrees) (degrees) number
1.9 13.2 3.4*10°

Example 23 top view

118

Kinematics from a Single View

The best results were found when the camera took a top or bottom
view. The reason for this is that in these cases there are only two

. segments, the shoulder and hip segments, that perform their motion
more or less parallel to the viewing plane (see Section 10.3).

=l

1 1 Vi

R

Sagital view Front view Top view

) Moot

10.6.4 lterative approach

One source of errors in our calculations is caused by the lineariza-
tion of the non-linear equations, as performed in (EQ 10). Lineariza-
tion is necessary to transform the projection equations based on
cartesian coordinates (x) into equations based on angles (a). Linear-
ization takes place around a, the previous frame value of a.

An iterative approach was followed in order to minimize these lin-
earization errors. In general, linearization errors are small when the
solution for Aa in (EQ 11) has a small value. Therefore, we try to
minimize Aaq, by changing the point to linearize around. This is sim-
ilar to the Newton-Raphson root finding algorithm. A new point to
linearize around is found by adding the solution Aa. This leads to
the following algorithm:
a_linearize = a;
number_of iterations = 0,
do
begin

compute H, Ab using a_linearize;

solve H-Aa = Ab;

a_linearize = a_linearize + Aa;

number_of iterations = number_of iterations + 1;
end while (Aa > threshold and

number_of iterations < max_iterations)

a = a_linearize;

Kinematics from a Single View : 119

In the algorithm, linearization occurs around a_linearize, which at
the start is equal to the value of the previous frame @ and then is
changed each iteration using the result Aa of (EQ 11). Note that H
and Ab have to be recomputed each time, since they depend on the
point that is linearized around. This procedure is continued until Aa
is lower than a given threshold or the number of iterations exceeds a
given number.

The results from the iterative approach show that when the SVD
provided good results in the first place, the results after iteration
were even better. In fact, when no errors were introduced and per-
fect prediction was used, the solution converged towards the real
solution.

Length
Smoothness precision error View
perfect float none sagital
prediction
Average Maximal Condition
Angle error Angle error number
0.0 0.0 2.4%10°

Example 24 iterative approach with infinite resolution (10 iterations)

However, when errors were introduced, the iteration process did not
lead to a better solution. Unfortunately, even adding only imperfect
prediction and a limited resolution of 751 x 576 was enough to dis-
turb the convergence process.

Length
Smoothness precision error - View
normal integer none sagital
prediction
Average Maximal Condition
Angle error Angle error number
1.7 23.6 1.6*10°

Example 25 iterative approach with a limited resolution of 751 x 576
(10 iterations)

120

Kinematics from a Single View

10.7 Conclusion

In this chapter, the possibility of retrieving kinematics from a single
view was investigated. Chen and Lee’s algorithm was taken as a
starting point. It was concluded that their algorithm is too sensitive
to errors to be used for Sybar. An alternative approach was tried by
setting up a set of equations, to be solved by singular value decom-
position. The algorithm was tested by adding length errors in the
range of 5%, which is a realistic value. Unfortunately, the results
show that the system of equations is still too sensitive to be useful
in the sagital view.

Better results were found using the top view. However, it is not
practical to perform the low level marker detection from the top
view, since markers are occluded almost all the time. Furthermore,
in Sybar, it is the sagital view that physicians want to see and that
view therefore is available.

Amaya, Hara and Aoki have published an interesting article after
the Sybar project was finished [39]. They follow an approach that is
very similar to ours, although there are also some differences. In
order to solve the 3D reconstruction problem, they make a few
additional assumptions:

® They assume that the foot does not slip.
¢ They assume that the body center is located above the stance.

These assumptions may be violated in the gait of patients with
motion disorders. Furthermore, results were published for ‘Sumo
motion’, and not for walking gait. We think that this algorithm does
not solve the problems we encountered with our own algorithm.

Concluding, our research shows that 3D reconstruction using only
one camera leads to a system that is either very sensitive to errors,
or uses an unpractical camera view point. We will therefore drop
the single camera restriction and investigate how 3D analysis can
best be performed using more than one camera. This is the topic of
the next chapter.

Kinematics from a Single View 121

122 Kinematics from a Single View

CHAPTER 11

Kinematics
Subsystem

Kinematics
subsystem
S
d

1.1

This chapter describes the kinematics subsystem. It uses the results
of the research of the previous chapters. First, the system is divided
into three subsystems. Next, a description of each the subsystems is
given.

Introduction

11.2

In chapter 9, an overview of the currently used kinematics detection
methods was given. A marker approach turned out to be the best
approach for Sybar. Furthermore, it was concluded that an algo-
rithm that uses a single camera to obtain the 3D kinematics is to be
preferred. However, in chapter 10, it was concluded that such an
approach is not feasible for Sybar.

The next best option is an approach that uses more than one camera
to obtain 3D kinematics. This chapter describes the design of the
kinematics subsystem. It is based on the multi-camera approach, as
described in section 9.9.3

Kinematics subsystem design

The kinematics subsystem acquires a kinematic description of
human movement through the analysis of video images. The video
images are provided by the recording subsystem. The kinematics

Kinematics Subsystem 123

FIGURE 31

subsystem input
and output

Design Decision:

Design Decision:

subsystem is able to draw human models as a service to objects of
the display subsystem. The kinematics subsystem needs a human
operator to perform some tasks. Figure 31 shows the system input
and output.

kinematics

video daqt Kinematics subsystem ____pdr awings

1 lab operator

The relevant requirement definition for this subsystem is: The lab
operators should find the system easy to use and should be able to
perform data acquisition and data processing quickly (requirement
definition 3, Section 3.3). The video data consists of a set of
images. The kinematics output is given in the form of drawings of
the position of the stick figure at a certain moment in time.

As mentioned in the specification in Section 4.3.1, the accuracy of
the system is not our main concern. To keep things simple, we
attach two markers to each segment, and assume that they corre-
spond to joints. A more accurate (possibly future) approach is to use
larger number of markers for each segment. The result of the cur-
rent setup is that the third degree of freedom of the orientation of a
segment can not be determined (see Section 9.9.3).

The information available to the kinematics system consists of a
large amount of data. For reasons of efficiency, a two stage
approach is followed, as described in Figure 23 of chapter 9. First,
low-level marker detection is performed for each image. Next, the
correspondence and occlusion problems are solved and the resulting
3D kinematics data is stored in a model. A disadvantage of this
approach is that the marker detection does not take advantage of
model information.

124

Kinematics Subsystem

The kinematics system is functional of nature; it basically carries
out an algorithm that takes input and produces output. We therefore
first give a functional model of the system.

FIGURE 32

Functional .

7y
Feature detection HEBA:IG_L_
Video Features Muscle editin

v

The following processes can be distinguished:

1. Feature detection: the first step is the low-level detection of
markers. Markers can be seen as features of the image. These
image features are detected with an algorithm that will described
later on. The features are not only detected, but also given a
quality, which can be used during the tracking. The quality of a
features indicates the likelihood that a feature is indeed the pro-
jection of a real marker. Finally, the size of the features is also
determined.

2. Tracking: the detected features have to be tracked and matched
with the correct model points. In case of a 3D kinematic analy-
sis, 3D marker positions have to be calculated from features of
different camera views. The 3D reconstruction is considered part
of the tracking (although it is strictly speaking a separate pro-
cess). The result of the tracking process is a description of the
position dependent parameters of the model.

3. Drawing: the model can be drawn in various ways. Drawing is
performed on the request of the display subsystem.

4. Muscle editing: the model consists not only of a kinematic
description of joints and body segments, but also of muscles.
The locations of muscles can not be retrieved from video images
directly. Therefore, their position relative to the segment of the
matched stick figure has to be set by the lab operator.

Kinematics Subsystem 125

11.3

We subdivide the kinematics system into subsystems:

videodata—b{ feature detectoi

feature description

tracke;]

y
model info, kinematics

y
human model f———» model drawings

The feature detector takes care of the feature detection process. The
output is a feature description of the video (a list of features for
each frame). The tracker matches the features to model points. For
this, it uses the human model. The kinematics are stored in the
human model. The human model provides services to draw itself.
These services are used by the display subsystem.

The remainder of this chapter describes the three subsystems.

The feature detector

11.3.1

Marker detection algorithm

The feature detection subsystem detects markers in images. A gen-
eral method for detecting objects in images is known as template
matching (see Section 9.9.1). Searching the image space for the best
template match is computationally expensive, especially if the
shape of the template is not exactly known. In our case, the size of
the marker is an additional variable that needs to be taken into con-
sideration. Sometimes, search windows based on previous frame
object locations are used to restrict the area of the template search.
However, this approach cannot be used in the presence of occlu-
sion.

Most marker detection systems start by first thresholding the image
and then search for markers in the resulting binary (black and
white) image. If the lighting conditions are good and a high thresh-
old can be set, for example in infrared systems, it may be assumed

126

Kinematics Subsystem

Design Decision:

Design Decision:

that only markers show up in the thresholded image. Markers can
then be found by searching the binary image for regions of white
points, and marker centroids can be found by taking the average of
the coordinates of all pixels in a marker. The marker position can
also be used as a starting position for more accurate template
matching.

We found that under the conditions that could be set at the motion
analysis lab at the VU Hospital, there is rather a lot of noise that
shows up in the thresholded image. One of the reasons that the con-
ditions are not optimal is that the images are also to be used for
observational analysis. There is a trade-off between conditions that
are optimal for marker detection and conditions that are optimal for
human observation.

To perform a template match with a variable size on the entire
image is computationally too expensive. We therefore first search
the thresholded image for connected white pixels, which we call
candidate markers. Candidate markers are found by using a stan-
dard fill algorithm starting at white pixels in the thresholded image.
The next step is to determine for each candidate region whether or

not it represents a marker. This leads to the following algorithm:

threshold the image;

for every pixel p in the thresholded image

if “p is white” and “p is not yet used” then

begin
candidate_marker= fill_pixel_area (p);
determine feature_quality(candidate_marker),

end

We have chosen to use white markers shaped as spheres on top of a
black base. The base allows the marker to be attached to the skin,
and ensures that the marker’s surrounding has a high contrast with
the marker itself. Because the marker is shaped as a sphere, it has
the same appearance, independent of the view point.

Kinematics Subsystem 127

FIGURE 33

average intensity
against radius

To determine the feature quality, we first determine the center of
the candidate marker by taking the average of the coordinates of all
pixels. Then we go back to the original image and examine the
average intensity on circles with a variable radius, with respect to
the center of the marker candidate. The graph that shows average
intensity against radius typically has the following form:

average
intensity

radius

Given a candidate marker position, the radius and a quality can be
defined by considering the intensity/radius graph. As an estimate
for the marker radius in the image, the radius with minimum inten-
sity can be taken. As a measure for the quality, we take the differ-
ence between the minimum and the maximum intensity. Using
these values, the marker recognition can be performed relatively
efficiently, while still using the grey value information of the origi-
nal image.

The accuracy of the marker detection depends on the lighting con-
ditions, and the distance between the camera and the marker. Under
ideal lighting conditions, pixel averaging results in sub-pixel accu-
racy. However, in our case, an accuracy of one pixel is more realis-
tic. Assuming a sagital view, a resolution of 751 x 576, and a
marker with a diameter of 35 mm, the image diameter of a marker is
about 10 pixels. Assuming an accuracy with an error not larger than
a single pixel, this results in an accuracy of about 3.5 mm. The inac-
curacy that is the result of skin movement is in the range of 10-30
mm [18]. Therefore, the accuracy obtained for the. 2D marker detec-
tion is reasonable.

The algorithm’s accuracy may be improved, at the cost of effi-
ciency, by trying other points than the average marker pixel coordi-
nates as marker center candidates. The algorithm’s robustness may
be improved by using a more sophisticated quality function.

128

Kinematics Subsystem

Design Decision: Since the algorithm’s performance was reasonably satisfactory, it
was decided not too improve it further (considering the limited
available resources).

We now describe the classes involved in the marker detection pro-
cess. ' i

11.3.2 System design
Figure 34 shows the object design for the feature detector sub-

system.
FIGURE 34 FeatureDetectionDialog—|
Feature
Detector
subsystem sgts options
Videodata ———‘ analy Zes | FeatureDetector |__P ro__vid_es > Tracker
finds
v
l Feature| Trajectory
The purpose of the feature detector subsystem is to determine the
marker positions for each of the video images. The most important
class for this subsystem is the FeatureDetector. The FeatureDetec-
for analyzes images, provided by the VideoData from the recording
subsystem. Images are analyzed, using the algorithm described in
the Section 11.3.1. This result is a number of Features.
The feature detection algorithm requires a number of parameters, to
be set by the user. The parameters can be set via the FeatureDetec-
tionDialog. We will now describe the individual classes of the fea-
FeatureDetector ture detector subsystem.
parameters
image
detect_features 11.3.3 FeatureDetector
f:rte—::;;meters The FeatureDetector manages the feature detection process. It has a
detect features number of operations that are used to implement the feature detec-
fill_pixel_area tion algorithm.
determine_feature_
quality

Kinematics Subsystem 129

The detect_features operation performs the feature detection, using
the algorithm described in Section 11.3.1.

® For each image, a copy is made, by creating an instance of the
image class. The image class is a library class part of the toolkit.

® A threshold operation is performed on each image. The thresh-
old operation performs a threshold with a given threshold level,
which results in a black and white version of the image.

® Thefill_pixel_area performs a standard fill operation and results
in a candidate marker. The determine_feature_quality gives a
quality for the similarity of the candidate with an ideal marker.
Furthermore, an estimate for the marker radius is given

The results are used by the Tracker, from the tracker subsystem.
The set_parameters operation starts a FDParametersDialog allow-
ing the user to set the parameters for the feature detection.

11.3.4 Feature

The Feature class is a simple class that represents a detected or esti-
mated marker. A feature has a position and a radius, corresponding

F
p:;ttil;r: to the center and radius of the marker. Furthermore, a Feature has a
radius quality. A low quality indicates that the feature may be a false fea-
quality ture, meaning that it does not correspond to a real marker. Because

markers can be temporarily invisible, feature positions are also
sometimes estimated.

130 Kinematics Subsystem

FeatureDetection
Dialog

preview
ok_button
apply_button
cancel_button

11.3.5 FeatureDetectionDialog

The FeatureDetectionDialog is a dialog that allows the user to set
the parameters for the marker detection:

The following parameters can be set:

1. The threshold level, which can be set with thé scroll bar. The
preview button creates a window with the thresholded image.

2, The size: for reasons of efficiency, it is possible to discard fea-
tures that are not within a given range of size. The size is mea-
sured as the number of pixels in an area. The margin indicates
the range that the size of the features should be in. The margin is
given as a percentage of the size. The margin is usually chosen
rather large (about 75%), to make sure that no real features are
thrown away.

3. The search radius: the maximum radius that is used for the
intensity/radius graph of Figure 33.

4. Quality threshold: features with a lower quality are discarded.
Features with a higher quality are the input for the tracking pro-
cess.

If the ‘Show Algorithm Window’ option is chosen, a window that
shows an image with the results of the marker detection is gener-
ated during the marker detection. The difference between OK and
Apply is that the dialog remains open when Apply is pressed,
whereas the dialog is closed when OK is pressed.

Kinematics Subsystem o 131

Design Decision: The selection of parameters is a design decision. The trade-off is
between ease of use and flexibility: the more parameters, the more
flexibility there is to tweak the parameters, and the more difficult it
becomes to use the system.

11.4 The human model

11.4.1 System design

Design Decision: The model subsystem consists of two parts: The basic model and
the muscle editor. The latter provides the user interface for editing
the muscles. The model does not often need to be edited. Therefore,
model editing is done via file. Muscle editing needs to be performed
by the lab operator for each measurement. Therefore, a graphical
user interface is provided.

Figure 35 shows the object design of the model subsystem. The ele-
ments from this subsystem are described in the remainder of this

chapter.

E “—-——3— VideoDisplay
FIGURE 35 ! ——— | Model : KinematicsDisplay
Object design 1 g Tracker
human model :) : EmgData

5 il a

: ’——-'——— 1| edits

; Vertex | 2 Edge)

; (L - 2 EmgData

' Track3D describes i+~ EmgDa

‘ Muscle i | videoDisplayUser

! Track2D :

i model :

s il "
Edito.-sweki’ﬂ.!iﬂuscleEdltor

Default DeleteMusc11 AddMuscle || SetEMG DragPoinq

.
|
.
.
.
;
i
!
[[| | | :
;
.
.
,
,
.
:
,
.
;

132 Kinematics Subsystem

Basic model elements

As has been discussed in the previous chapters, kinematic descrip-
tions of human motion are always based on a model. Our model is
the stick figure model (see section 9.2). The stick figure model con-
sists of a number of vertices and edges. Vertices correspond to
joints and edges to rigid body segments.

A Model consists of a number of Vertices and Edges. Vertices are
descriptions of joint positions in space though time. Edges are
objects that have references to two vertices.

During a measurement, joints move through space. In our model,
the Vertices can describe a path through space. Since both 2D mod-
els and 3D models are supported, there are 2D trajectories and 3D
trajectories. A Track2D consists of an ordered list of Point2Ds, a
Track3D corresponds to an ordered list of Point3Ds. Point2D and
Point3D are basic classes (not shown in the object diagram) corre-
sponding to pairs and triples of coordinates respectively. A Vertex
can be associated with several Track2Ds, one for each video chan-
nel. If 3D reconstruction has taken place, a Vertex is associated with
a Track3D.

Muscles

One of the purposes of the kinematics subsystem, is to determine
the approximate location of muscles in video images, in order to be
able to display EMG values. As was mentioned in the specification,
EMGs are shown as gauges. Therefore, a muscle can be modeled as
an edge with two end points. The location of this edge can be deter-
mined from a reference edge of the stick figure model:

reference edge changed x
reference edge \4
muscle 2 c/mu)scle updated

To incorporate the muscles in our object model, we introduce the
Muscle class, which inherits from Edge. The muscle has an addi-
tional association with its reference edge. The end points of Mus-
cles are Vertices: they can describe both 2D and 3D trajectories.

Kinematics Subsystem 133

We will now describe the most interesting classes of the model sub-
system: The Model, MuscleEditor and EditorState.

11.4.2 Model

Model
add_vertex
add_segment
add_muscle
delete_muscle
edit_muscle
draw

empty

save

load

The Model object is the container for all the model elements. Model
elements can be created with the operations add_vertex,
add_segment, and add_muscle. Muscles can be deleted with the
delete_muscle operation.

The edit_muscle operation changes the relative position of the mus-
cle with respect to its reference edge. This operation is used by the
MuscleEditor.

The Model can draw itself in one of two ways:

1. The 2D model can be drawn directly. Each of the available 2D
tracks is shown.

2. The 3D model can be drawn from a given camera position.

The first option is used by the VideoDisplay to draw muscle annota-
tion on top of the video image.The second option is used by the
KinematicsDisplay, which lets the user determine the point of view
(see Section 8.2.12).

The Model also has the ability to empty and save itself. Finally, a
model can be loaded from disk with the load operation.

11.4.3 MuscleEditor

Design Decision:

MuscieEditor
add_muscle
drag_muscle_point
delete_muscle

The MuscleEditor allows the user to add, delete, and edit muscles.
The MuscleEditor is in a certain state, which depends on the user
action that is expected. We choose a state machine solution to
model the editor: we define a separate class for each state. The
states all inherit from EdiforState. This means that external events
can all be delegated to the current state (using polymorphism). The
alternative is to check the state for each event. This solution needs
less classes, but requires a large number of switch statements, and

set_EMG results in a less clear design.
mouse_click
134 Kinematics Subsystem

Design Decision:

Design Decision:

The MuscleEditor responds to user events by sending them to the
current state. After dealing with the event, the current state returns
the new state of the MuscleEditor. In the default state, a mouse click
starts the dragging of a muscle point.

Muscles are defined with respect to a reference edge. When the user
indicates that a new muscle is required (via the menu), the
add_muscle operation is called. The user is requested to select an
edge in the VideoDisplay.

The muscle is then created at a default location with respect to this
edge. Creating the muscle at a default location makes defining a
new muscle easy for the user.

The location can be altered by the user by dragging muscle points,
for which the drag_muscle_point operation is available. The muscle
points are then redefined and automatically altered for each of the
frames. This means that the user can alter the position in a single
frame, and does not have to change them in each frame. In case of a
3D view, the user can set the muscle positions for both camera
views independently of each other. A best matching 3D muscle
point is then calculated from the two views, using the same algo-
rithm that determines the 3D position of a marker point from two
projections.

The two design decisions mentioned above are easily mistaken for
requirements. However, because only the lab operator will use this
part of the user interface, these user-interface aspects are considered
internal to the system (see system boundaries, Section 4.2).

Muscles can be deleted by the user in a similar way: after the user
has indicated that he wants to delete a muscle, the user is requested
to select a muscle in the VideoDisplay.

The EMG channel that corresponds to a muscle can be set with the
set_EMG operation. For this purpose, the MuscleEditor is associated
with an EMGdata object. The MuscleEditor uses the VideoDisplay as
a background and therefore is a VideoDisplayUser, see Section
8.2.10.

Kinematics Subsystem 135

EditorState

cursor

button_up
button_down
set_cursor

The MuscleEditor has the following states:

menu menu
AddMuscle] [Default)X
select_edge select_muscle

11.4.4 EditorState

1.5

The EditorState is a base (parent) for all the classes that correspond
to states of the MuscleEditor. It has operations to react to button_up
and button_down events. These operations are not abstract. In the
EditorState, they provide the behavior of doing nothing. This means
that if a state does not want to react to a mouse button event, it sim-
ply does not overrule it. The EditorState also has a function
set_cursor that sets the cursor to the cursor attribute. Each state has
its own cursor which provides feedback to the user. The children of
EditorState are not described here, since they have a simple struc-
ture.

Tracker

11.5.1

The tracker subsystem takes care of determining the position depen-
dent model parameters for each image, using the features as
detected by the feature detector. We first consider the 2D, single
camera, problem of determining the features corresponding to a
model point and then extend this to the 3D, multiple camera, recon-
struction,

2D correspondence via smoothness of motion
In the 2D case, the problem can be divided into two sub problems:

1. Determine the trajectories of the features in the image sequence
2. Determine which trajectories correspond to which model points

136

Kinematics Subsystem

Design Decision:

Trajectories can be found by assuming that the motion of the fea-
tures is smooth. Finding trajectories of feature points can be formu-
lated as an optimization problem: find the set of trajectories that has
the highest global smoothness. Given N feature points and F
frames, this leads to (V!)F possible sets of trajectories. The problem
is too complex to compute an exact solution for. However, there are
a number of heuristic tracking algorithms that efficiently compute
an approximation of the solution: see for instance [43, 50,51].

An additional problem is that in general, due to imperfect feature
detection, there are both temporarily missing features and ‘false
features’, i.e. points incorrectly identified as features.

One approach that has been used to reconstruct 3D objects is
described in [45, 46, 55]. In this approach, large sets of markers are
attached to the surface of a deformable object, such as the heart.
The 3D trajectories are reconstructed with high accuracy using an
‘SVD model’. Unfortunately, this approach can not easily be
extended to the entire body.

We found Hwang’s tracking algorithm [51], which deals with
imperfect feature detection, most suitable for our problem.

We therefore choose Hwang’s tracking algorithm as a basis for our
tracking algorithm.

11.5.2 Hwang's tracking algorithm

Hwang’s tracking algorithm analyzes sets of feature points from an
image sequence. The algorithm generates trajectories using a frame
by frame approach. The following approach is followed (n_frames
is the number of frames): -
“generate initial trajectories”;
for i=0 to n_frames-2
begin
“generate plausible extended trajectories to frame i+1”;
“select best n trajectories for each feature in frame i+1%

end

“determine best trajectory for each feature point of the final frame™;

Kinematics Subsystem . 137

Plausible trajectories are found by extending the existing trajecto-
ries. For each trajectory, a prediction is made where the next trajec-
tory point will be. Feature points in the frame under investigation
that are within a given distance from the predicted value lead to
new extended plausible trajectories. This means that a feature point
can be part of several plausible trajectories. Furthermore, a single
trajectory can lead to several extended trajectories, if more than a
single feature point is within close range of the prediction. The pre-
dicted point is calculated by extending the trajectory using the cur-
rent speed and acceleration.

To reduce the number of trajectories during the algorithm, only the
best trajectories for each of the feature points in the current frame
are stored. The quality of the trajectories is determined by examin-
ing the smoothness. Furthermore, each feature point gives a vote to
the trajectory with the best quality containing that feature point. The
number of votes for each trajectory is stored. Trajectories with a
large number of votes are selected over those with few votes.

The algorithm deals with occlusion in the following way: if a trajec-
tory can not be extended via a feature point, a new ‘phantom’ fea-
ture point is created. The coordinates of that feature point are those
of the predicted value. In the next frame, the trajectory can find a
real feature point, or create another one via prediction. The number
of times in a row that a real feature point could not be found is
called the age of the trajectory. Trajectories are not allowed to
become too old. This prevents that too many trajectories consisting
of phantom points are kept.

Let T'be a trajectory, consisting of points (P, Py,....Py). Let v; be
the velocity of P; and 6, be the direction of the speed of P;. Smooth-
ness is then defined as [51]:

k

NVivici
2wy (1-cos(8,-6;)+ w,- 1-2555—| (EQ2)
i=max(k-2,2) o

where w) and w, are weight factors.

The smoothness, such as it is defined in [51], that corresponds with
a totally smooth trajectory is zero. A higher smoothness indicates a

138

Kinematics Subsystem

less smooth trajectory. Therefore, the name ‘roughness’ would have
been more appropriate.

11.5.3 Extension of Hwang’s algorithm for Sybar

Several extensions were added to Hwang’s algorithm to improve
the performance. Additional information that is provided by the fea-
ture detector is the size and radius of the features. This information
is used by adding components to the quality function: the sum of
the qualities of the elements and the sum of the size differences are
added (with weight factors) to (EQ 26). We define g; as the quality
and s; as the size of feature i.

A problem we encountered during the implementation is that if fea-
tures move with low speed, for example with a speed of one or two
pixels, the change of the direction of the speed is no longer smooth.

- Since slow motion is quite common, we therefore had to lower the

weight of the direction component. We also added an additional
component, the distance component, which favors trajectories with
slow moving features. Our final quality function has the following
components and experimentally determined weight factors:

TABLE 3

Components of the quality function, with weight factors

weight
Component | Calculated as factor
direction Sum of direction differences .10
k
> (1-cos(8,-6,_,))
x =max(k-2,2)
velocity Sum of velocity differences 200
k
2 N VeVx-1
Z - Yx + Vet
x =max(k-2,2)
distance Sum of distances: -1
k
DI
x=max(k-1,1)

Kinematics Subsystem 139

TABLE 3

Components of the quality function, with weight factors

weight
Component | Calculated as factor
marker qual- | Sum of marker qualities: 20
ity k
A
x=1
marker size | Sum of marker size differences: -6

k

Z (sx_sx—l)

x =max(k-1,1)

feature votes | Number of times trajectory was cho- | 250
sen by feature as best trajectory

phantom Total number of phantom points used | -75
points in the trajectory

11.5.4 Matching trajectories with model points

Design Decision:

Hwang’s tracking algorithm results in a number of trajectories. We
are interested in matching these trajectories with model points. For
this, it is enough to know the correspondence of trajectory elements
to model points for a single frame. This can be solved by letting the
user indicate the correspondence for a single frame, a process which
we call labeling. This leads to the following setup:

1. The user labels a frame which contains all the markers. This
gives us a labeled frame, for which the correspondence is
known. '

2. Perform Hwang’s tracking algorithm.
3. Translate the result to the position dependent model parameters.

A problem with this approach is that there is no guarantee that the
features in the labeled frame are all used in one of the trajectories
that are found: Hwang’s algorithm does not use the fact that the
labeled markers are correct features. We therefore modify Hwang’s
algorithm in the following way: instead of keeping the best trajecto-
ries for each of the features in the current frame, we keep the best
trajectories for each of the features in the labeled frame. This

140

Kinematics Subsystem

ensures that at least one trajectory is available for each of the
labeled features.

11.5.5 Generalization to 3D tracking

Design Decision.

As was shown in Section 9.9.3, it is possible to reconstruct a 3D
point via two 2D projections. In order to perform this 3D recon-
struction, the features corresponding to a marker from each of the
views should be matched.

The algorithm described in the previous section can easily be
extended to 3D in the following way:

1. The user labels each of the camera views.
2. Perform the tracking algorithm for each of the views.

3. Use the tracks corresponding to the same model points to recon-
struct the 3D marker positions.

In this approach, the tracking algorithm is identical to the tracking
algorithm for 2D correspondence. Points are reconstructed as
shown in Figure 24 of Section 9.9.3.

As described in Section 9.9.3 the algorithm can be improved by
using the 3D information for tracking. The shortest distance
between the rays through the feature points in the images that corre-
spond to the same feature can be computed. If two image features
really correspond to the same marker, this distance is small. There-
fore, the distance is a measure for the likelihood that two points
from two views correspond to the same model point. This adds
another component to the quality function.

Because the added accuracy of the improvement is limited, com-

" pared to the added complexity of the algorithm, we choose to use

the simple version of the 3D tracking algorithm.

11.5.6 System design

The object model for the tracking system is simple, since the

tracker’s main task is to perform the tracking algorithm. There is a
Tracker class, that uses the features collected by the FeatureDetec-
tor and a Model to determine position dependent model parameters.

Kinematics Subsystem 141

As an intermediate result, there are also Trajectories. Trajectories
consist of an ordered list of features.

VideoDisplayUser
FIGURE 36
Object model
Tracker
| Tracker Trajectory
MOLSI Feature
FeatureDetector
Tracker 11.5.7 Tracker
parameters . .
starl_labeling The Tracker takes care of finding tracks of feature points and
mouse_click matching them with model points. For this purpose, it uses the
clear_labeling extension of Hwang’s tracking algorithm described earlier in this
track chapter (Section 11.5.3).
generate_plausible
_trajectories
select best First, the user is required to label a frame in the video. The labeling
reconstruct3D is started via the start_labeling operation. During the labeling, the
Tracker uses the VideoDisplay as a background and therefore is a
VideoDisplayUser, see Section 8.2.10. Each mouse_click leads to an
additional point that is labeled. If all the model points are labeled,
then there is a labeled frame, and the tracking can take place. The
labeling can be canceled via the clear_labeling operation.
The track operation uses the generate_plausible_trajectories and
select_best, as described in the previous sections. The
reconstruct3D operation matches the trajectories with model points
and reconstructs the 3D model points.
This leads to the following dynamic model:
clear_labeling
./v(Default) Reconstructed
7y
start labeling/n=0 { >
clear_labeling
Labeling Labeled
add label and n=n_labels
(add label and n<n_labels) / n=n+1
142 Kinematics Subsystem

— Uy
Methodology

“A good scientist is a person with good ideas, a good designer is a
person who makes a design that works with as few original ideas a

possible.”

- Freeman Dyson

This chapter discusses the choice of a design method for Sybar.
First, we discuss design and design methods in general. Next, we
Jocus on several aspects of software design methods. Finally, the
choice for a particular method and design strategy for Sybar is
motivated.

12.1 Design & design methods

A characteristic of an engineering discipline is that the design pro-
cess is structured by means of a design method. In this chapter, we
discuss the choice of a design method for Sybar. We start, however,
with the meaning of the word design itself.

12.1.1 What exactly is (a) design?
The word ‘design’ is used in a number of ways. According to the
Oxford dictionary, a design is a:
1. drawing or outline from something to be made, the art of making
such drawings
2. general arrangement or planning
3. pattern; arrangement of lines, shapes, details, as ornament
4. purpose; intention; mental plan

Design Methodology 143

In engineering, there are two rather different uses for the word
design. Usually, a design is a plan, drawing or outline that can be
used to make a product. However, the word design is also used to
indicate the style or appearance of a product (similar to definition 3
from Oxford).

For instance in software, the ‘design of an application’ can mean
the fundamental structure or plan on which the software is built, or
the ‘look and feel’ of the application. In the context of a Ph.D.
designers project, the emphasis is on the first meaning.

12.1.2 Phases of the design process

One of the fundamental abilities that is taught in engineering educa-
tion, is the ability to develop a product in a structured and system-
atic way. For this, every discipline has its own methodologies and
design languages. However, in general, it can be stated that the
development of a product involves the following activities:

® analysis of the problem domain

® determination of the requirements
® design

® realization of the design

Most development methods define phases that correspond to these
activities. The method then consists of carrying out each of the
phases in a specified order. In practice, this is an idealized descrip-
tion of the design process and there are often many iterations neces-
sary between the phases. The amount of iteration depends on the
discipline and the innovative character of the design. Versions of
the realization of a design that are not final are called prototypes.

Design can be seen as a phase in the development of a product.
However, because design is considered the most important part of
the process, a development method is also often referred to as a
design method.

144

Design Methodology

12.2 Software design methods

A problem of software design is, that it is still not clear what level
of detail a software design should have. Should a design describe a
computer program to the level of programming code? The general
consensus in software design methodology seems to be that it is
sufficient to design systems up to a level were writing the code
becomes a routine job. However, this border between design and
implementation is at best arbitrary. In practice, the detail of the
design is often limited by what can be expressed in the language of
the design method.

According to Sommerville, a software design method consists of
[69]:

® A process model, describing the activities in the method
® System modeling notations and rules

® Design guidelines

® Report templates

Programming in a specific programming language can be seen as a
(primitive) design method: there are activities to do, there are nota-
tions, rules, guidelines and a print-out of the code can be made. The
step from global to detail is made by starting with ‘abstract’ or
‘pseudo’-code, and then filling in more and more final code. Pro-
gramming methods were the first software design methods to be
used, and they were (and are) adequate for small systems.

However, when software systems became more and more complex

-in the early seventies, it was realized that methods were required
that took a more abstract high level view of system design. These
methods introduced graphical notations to describe designs. The
methods were based on the popular programming languages of the
particular era (Fortran, Cobol, C). These first-generation design
methods are now known as functional design methods. Examples
are Structured Design, SSADM and Jackson Structured Program-
ming.

In 1967, the concept of object oriented programming was intro-
duced in the language Simula. It was not until the early eighties that
object oriented programming language became widely used (in par-
ticular C++ and Smalltalk). These languages were the inspiration

Design Methodology : 145

for a new generation of design methods: object oriented design
methods. As with the functional methods, the first object oriented
design methods were very closely language related [62]. These
were followed by more general, and more graphical, methods.
Examples are OMT [66], and Booch [67].

There are a number of concepts in object oriented development, that
work very well together and explain the success of object orienta-
tion. The biggest difference with functional development is that the
system under development is not structured into functions, but into
classes of objects, containing both data and functions. Well
designed object-oriented software is more flexible in the sense that
a small change in the required behavior of the system is likely to
have only local impact. This leads to faster development, increased
quality, easier maintenance, and enhanced modifiability. A short
introduction to object oriented development is given in

Appendix A.

It is often claimed by design method developers that their method is
‘program language independent’. However, we feel that there is a
strong relation between design methods and program languages. In
particular, the design method and the language have to match in two
ways:

1. The design must be relatively straightforward to translate into
programming code.

2. It should be easy to express the programming concepts and fea-
tures that are available in the programming language in the
design language.

As a general rule, the number of design decisions that still have to
be made during implementation should be minimal.

For example, OMT does not support the concept of parameterized
types, a feature that is available in Eiffel and C++. In the follow-up
to OMT, it was realized that parameterized types are an important
concept, that should be taken into consideration during the design
phase. Therefore, in the Unified Modeling Language (UML), sup-
port for parameterized types is included.

146

Design Methodology

12.3

However, when using a programming language that does not sup-
port parameterized types, such as Java, they should not be used in
the design. Using parameterized types in a Java design leads to the
postponing of design decisions to the implementation phase. Of
course, the lack of a concept in a design language is more serious
than the availability of a concept that should not be used for the
implementation in a particular language. Therefore, design methods
often try to generalize the concepts of a number of languages.

Choosing a toolset

124

There are many aspects that determine the choice of the design
method for a project. A method can be seen as a part of the toolset
of the software engineer. The choice of a toolset is an important
design decision. It can have a large influence on the design.

The choices of the tools in the toolset often depend on each other.
We have already mentioned that there is a relation between pro-
gramming language and design method. Other parts of the toolset to
take into consideration may include:

 the development platform

® compilers

® computer aided software engineering (CASE) tools
® specific libraries

There are also external factors that play a role in choosing a
method: '

® Available knowledge of project members: learning a new
method is often seen as overhead.

¢ Company standards may require specific choices.

Toolset for Sybar

The following requirements for a design method were determined
for Sybar:

® It should be a method that can deal with the many aspects of
Sybar: user interface, hardware connectivity, image processing,
computer graphics, etc.

Design Methodology 147

® The method should be able to cope with unclear and changing
requirements

® A good CASE tool should be available

Furthermore, requirements for the programming language were:

® The language must be supported by a good development envi-
ronment

® Graphical user interface libraries should be available
e It should be easy to interface with hardware equipment

® The market position of the language should be good: using a lan-
guage can be seen as a strategic investment. It is not a good idea
to choose a language with a small user-base for a large project.

The Object Modeling Technique (OMT), described in [66], was
chosen as the design method. OMT is one of the most frequently
used object oriented methods (together with Booch [67]). The
choice was based on the fact that the method is accompanied by a
well-written book, and experiences of other people were, in general,
positive. It is difficult to make an accurate judgement of a method
without using it for at least a couple of months. However, OMT
seemed a safe choice at the time.

The choice for a programming language was relatively simple:
C++. The object oriented language C++ is becoming a de facto
standard in object-oriented programming (although it now has a
competitor in Java). The main disadvantages of C++, its difficult
syntax and its unsafeness, were outweighed by its advantages in
terms of compiler and tool support, particular on the Windows plat-
form, the platform that was chosen for Sybar. Furthermore, OMT
and C++ are often used in combination and they seem to match
well. Our evaluation of the design method is given in Section 14.4.

Other choices were based on availability and experience in the hos-
pital:

® Platform: Microsoft Windows 3.11

e Compiler: Borland C++

® Windows Toolkit: Borland Object Windows Library

148

Design Methodology

12,5

® CASE tool: unfortunately, a suitable CASE tool could not be
found

The use of a Silicon Graphics workstation as a platform, instead of
PC/Windows was considered. However, it was not possible to
acquire a Silicon Graphics workstation with sufficient hardware
capabilities within the budget constraints of the project.

Design strategy

12.5.1

Phasing

As we described earlier in this chapter, phasing is an important
aspect of design methods. There are two ways to approach phasing:
one is that the phases should be carried out one after the other. This
is known as the waterfall model, since you can not ‘go up’ in a
waterfall. The other approach is to allow iterations between phases.
Methods that fall in this category are called incremental or rapid
prototyping methods.

In describing a method, it is much easier to assume that a waterfall
approach is followed, since the activities of each phase lead to clear
results that are the input for the next phase. In practice, the waterfall
approach is rarely followed. There are two reasons for this:

1. Errors are found that lead to necessary changes in earlier phases

2. It is often not possible to complete a phase without doing some
work that belongs to a next phase.

The OMT does not prescribe a phasing strategy. However, in our
case, it was quite clear that we would not be able to follow a water-
fall approach. The user requirements were unclear and prototypes
were necessary to determine them. It was therefore decided to use
an iterative approach.

There are two types of iterative approaches: incremental develop-
ment and throw-away rapid prototyping. In throw-away prototyp-
ing, prototypes are developed purely for the purpose of gaining
knowledge which is used in the ‘final version’. In incremental
development, some parts of the application are developed, and
increments are added based on preliminary results.

Design Methodology 149

Incremental development is to be preferred, because work does not
have to be re-done. However, the danger of incremental develop-
ment is that the system becomes unstructured, because not all
changes that have to be made can be foreseen. In practice, this often
leads to a well-known trade-off: ‘restart and do it properly’ or do a
‘quick and dirty’ fix.

For Sybar, we chose incremental development as a phasing strat-
egy. This choice has implications for the design: incremental devel-
opment requires a well-structured global design that is flexible
enough to include the required increments. Object oriented methods
are particularly well suited for incremental development, because of
the ‘enhanced modifiability’ property.

During the Sybar project, there were a large number of small incre-
ments that led to the final system. In the chapter structure of this
design, we use the phasing terminology, which may give the false
impression that the project followed the waterfall strategy. The
phasing structure was chosen because it corresponds to OMT and
because it leads to a better understanding of the design.

12.5.2 Formal versus informal design process

As we have mentioned, it is difficult to manage a design process,
because it is a creative process. However, when there are a large
number of developers working on a project in an industrial environ-
ment, it is absolutely necessary to somehow formalize procedures.
Formalization can be achieved:

® via tools, for example version control systems, configuration
management tools, and automatic testing tools

® via procedures, for example bug reports and change requests
procedures

Tools and procedures are frequently used for coding. However,
such tools and procedures are rarely used for high level design. For-
malization is usually perceived by designers as annoying and dis-
tracting from the creative aspect of the design. When the scale of
the projects permits, it is advisable to use informal procedures
whenever possible.

150

Design Methodology

The Sybar project is a small scale project in terms of number of
developers. Therefore, an informal approach was followed for the
entire development process. For example, no special tools were
used and testing was performed during code development. Some
simple procedures were introduced to deal with multi-developer
aspects.

Design Methodology 151

152 Design Methodology

CHAPTER 13

Design
Process

131

This chapter describes the design process of the Sybar project.
First, the process is divided into subprocesses. Next, these
processes are described, including some of the problems that were
encountered. Finally, the project team and the contributions of the
members of the team ar described.

Subprocesses of the design process

The design process is a creative process that is difficult to describe.
A description of a design process is almost inevitably a simplifica-
tion. Nevertheless, this chapter tries to give an impression of the
design process that lead to Sybar.

In Figure 37, development process is divided into a number of sub-
processes, similar to the structure of the thesis. An arrow indicates
the flow of information from one process to another. Only the most
important dependencies are shown.

In the remainder of this section, each process is described in more
detail. A description of the process is given, including the field that
most design aspects were related to. The implementation and test-
ing of subsystems are not distinguished as separate processes. The
design, implementation, and testing of a subsystem were very much
related. They are described as a single process.

Design Process 153

FIGURE 37)
Domain

Process Analysis

dependencies s 4

Requirement "\
Specification
Engineering

Analysis
Design
13.1.1 Analysis processes (total time 25%)
‘ Resuit Time
Process Design area described in spent
Domain analy- Chapter 2 2%
sis

Domain analysis took place by studying medical literature, and by
studying current practice in the hospital. A lot of knowledge was
available via Jaap Harlaar, a biomedical engineer who has a back-
ground in electrical engineering. He has been working at the reha-
bilitation department for over ten years. These ten years were
obviously not counted within the 2%.

154 Design Process

Resuit Time
Process Design area described in spent
Problem deter- Chapter 2 1%
mination

The basic problem is well known in biomedical literature: why are
biomedical measurement techniques not successful in clinical prac-
tice? The problem determination can be seen as the first step from a
general knowledge building process (domain analysis) to a project
specific analysis. It answers the question: what is the purpose of the
project?

Result Time
Process Design area described in spent
Problem anal- Biomechanics, Chapter 2 3%

ysis Rehabilitation
medicine, Com-
puter Science

The problem analysis led to the initial approach. Most of the ideas
in the initial approach came from Harlaar, who wrote the first \
project proposal. The initial approach did not change a lot during

* the project. It is the first process that involves design aspects. In
particular, the whole idea of solving the problem by means of a
multi-media system is a major design decision.

Result Time
Process Design area described in spent
Requirement rehabilitation med- Chapter 3 3%
definition icine, computer
engineering science

The initial approach was translated into a set of general require-
ments. These requirements were used as guidelines in the design
process. The guidelines were developed and improved during the

Design Process 155

project, as more and more it became clear what the major issues in
the project were.

Result Time
Process Design area described in spent
Requirement rehabilitation med- Chapter 4 10%
specification icine, user interface
engineering

The requirement specification is a more detailed description that
has many user-interface design decisions. This specification was
continuously improved via user feedback of the prototypes. Deter-
mining the hardware configuration is considered to be part of the
design phase. Therefore, it is not part of the requirements.

Resuit Time
Process Design area described in spent
0.0. Analysis Chapter 5 6%

An important aspect of object oriented software development is
modeling the system as it is seen from the outside. We found that
the object oriented analysis (OOA) had little impact on the require-
ments (see Section 14.4.1). The analysis model was useful as a
starting point for design. We used OOA to describe the complete
system, not just the software system.

13.1.2 Design processes: total time (75%)

) Result Time
Process Design area described in spent
Toplevel software engineer- Chapter 6 3%

design ing, electronics

The first ‘pure’ design activity was the design of a basic hardware
configuration that could be used as a basis for the software design
and for developing the prototypes. The hardware design was
changed a number of times because of problems in the implementa-

156

Design Process

tion. The toplevel software design was reasonably stable during the
project.

Resulit Time
| Process Design area described in spent
Recording software engineer- Chapter 7 24%

design ing, electronics

Most of the problems encountered while designing the recording
subsystem were in the area of controlling the hardware devices.
Controlling the video card was much more difficult than antici-
pated. The problems were caused by unclear specifications and
‘strange behavior’ of the hardware.

Result Time

Process Design area described in spent
Display design software engineer- Chapter 8 17%

ing

‘The display subsystem had the most iterations resulting from
updated requirements. These requirements were mostly in the area
of data presentation and user interaction. Implementing the new
requirements was relatively straightforward.

Result " Time
Process Design area described in spent
Kinematics biomechanics, ~ Chapters 9,10,11 24%
design computer vision,
software engineer-
ing

In order to retrieve kinematics from the video, a marker detection
algorithm had to be developed. This was more difficult than antici-
pated. The initial algorithm was very sensitive to changes in the
lighting conditions, and was only suitable for the analysis of a sin-
gle leg in the sagital view. It was therefore decided to develop a
more advanced algorithm This is the algorithm described in Section
11.3.1. Furthermore, the possibility was added to manually correct
the marker detection algorithm by pointing at missed markers with
the mouse.

Camera calibration consists of determining the parameters of the
camera view (position, orientation, focal distance) from one or

Design Process 157

more video images, see Section 9.6.2. The camera calibration for
Sybar was first developed and tested for the purpose of displaying
the force vector at the correct position in the video display. How-
ever, camera calibration was also necessary for determining 3D
kinematics. During the development of the 3D kinematics part, it
was concluded that although the accuracy of the calibration was
suitable for force vector display, it was not sufficient for 3D kine-
matics detection. In order to improve the accuracy, a more stable
calibration algorithm was implemented. Furthermore, a calibration
structure consisting of 15 ‘known’ points was developed by the
mechanical engineering group.

For reasons described in Section 9.11, the first intention was to
develop an algorithm that could perform kinematics using a single
camera view. As described in Chapter 10, it was decided that this
was not feasible. This was a major setback in the project. Next, a
multi-camera approach, as described in Chapter 11, was followed.

Result Time
Process Design area described in spent
Hardware electronics Appendix B 7%
implementa-
tion

Hardware implementation and maintenance took place during the
entire project. It took a long time to realize a properly functioning
hardware implementation, because components had to be selected
and bought. Furthermore, it turned out that in the initial implemen-
tation, synchronization of data could not be achieved because the
video digitizer could not interpret the time stamps. This lead to the
solution described in Appendix B. The synchronization problems
led to a delay in the introduction of the first version into the clinical
practice. Another problem caused by hardware malfunction resulted
in buying a new data-acquisition board.

158

Design Process

13.2 People

In Table 4, an overview is given of the activities that were per-
formed by various team members. Most team members were
employees of the VU Hospital and worked in department of Clini-
cal Physics and Engineering. Two students from the Hogeschool
Amsterdam also worked on the project as part of their studies.

TABLE 4 Development and support activities of team members
Team Member Function Topic of process Period
Peter Tump Software Data acquisition part of Last quarter
Engineer recording subsystem, devel- 1994, First
opment of 3D kinematics quarter
display 1995, Fourth
quarter 1996
Rob Peters Software Data acquisition part of the Full project
Engineer recording subsystem
Ronald Software Force data visualization Second
Bonneveld Engineer quarter 1995
(student)
Andre Visser Software A more advanced marker Second
Engineer detection algorithm quarter 1996
(student)
Cor Klok, Mechanists Markers and calibration Fourth quar-
Danny Koops frame ter 1996
Rob de Bree, Computer Hardware Support Full project
Jan Rutger Technicians
Kuiper
Edwin Hautus Software Worked on everything Full project
Engineer/
Project Man-
ager

Design Process 159

160 Design Process

CHAPTER 14

Evaluation

"

14.1

This chapter evaluates the Sybar project. Both the developed
product and the design process are evaluated. Finally, some
lessons learned during the project are described.

Evaluation of Sybar

14.2

The evaluation of Sybar is divided into the following three parts:
® Evaluation of the main goal: did we succeed in building a system
that is useful for the clinical practice?

® Evaluation of the system with respect to the requirements defini-
tion. To what extent did we meet these requirements?

® Evaluation of the design method. What have we learned with
respect to the software design process itself?

Evaluation of the main goal: clinical usefulness

The main goal of Sybar was to build a system that would find
acceptance within the clinical practice. A proof of the fact that we
succeeded in achieving this is that a preliminary version of the sys-
tem was used during the last year of the project. Furthermore, the
responses of the physicians were very positive (“I could not do
without it anymore!”). The system was used intensively by two
physicians of the rehabilitation department. Furthermore, demon-

Evaluation 161

strations were given to many other physicians in and outside the
hospital. The reactions were, in general, very positive.

Since the end of the Ph.D. project, plans have been developed to
introduce a second system in another rehabilitation centre. Further-
more, a special teleconferencing version of Sybar will be devel-
oped. This is further evidence that the system is valued within the
medical community. There are also plans to develop a commercial
version together with an external company.

The main advantages of using Sybar that are mentioned by the phy-
sicians:

e [t supports the clinical decision process by providing objective
information

® It is very useful for communication purposes: it used to be diffi-
cult to discuss a patient’s condition without the patient actually
being there. Now, it is much easier to discuss the condition of
patients which are difficult to diagnose, together with colleagues
in front of the computer.

® It is very useful as an education tool, to show certain cases to
medical students, and sometimes to show patients what is caus-
ing their problems.

Of course, the comments of the physicians do not prove that using
the system results in a better diagnosis of the patients. In order to
really prove the clinical usefulness, a large test would have to be
performed resulting in statistical evidence that a better diagnosis
can be made by using the system. However, such a test was obvi-
ously not within the scope of the project.

The physicians have very few comments on the usability. Once they
got used to the user interface, it was very easy for them to use it. It
must be said however, that the physicians that have used the system
up to now, have a relatively positive attitude towards new technol-

ogy.

There are also a number of ‘wishes’ for extensions of Sybar: the
most important ones are a printing facility and a measurement data-
base.

162

Evaluation

14.3 Evaluation of the system with respect to the
requirement definition

Measurement information is to be presented in a way that is
useful for physicians

The physicians are satisfied with the way the information is pre-
sented in the final version. Particular useful is the EMG graph in
combination with the video. Experienced physicians learn to inter-
pret the graphs. Their interpretations are tested by watching the
movement in the video together with the graph.

Navigation through measurement data should be simple and
intuitive for novice computer users

The physicians are very pleased with the way they can navigate
through the data. The control panel is used for viewing the video at
normal speed, usually at the beginning of a session. The control
panel is also used to navigate frame by frame. The graphs are used
to jump to interesting points. The EMG gauges are used a lot for
showing and hiding EMG channels in the displays.

The lab operators should find the system easy to use and
should be able to perform data acquisition and data processing
quickly

The usability of the system from the point of the lab operator still
needs improvement. One of the problems is the complexity of the
hardware configuration. A new hardware setup is currently under
investigation. Another problem is the amount of work necessary to
make a 3D measurement.

The measurement system has to be patient friendly and safe
The system complies to the hospitals safety rules. There is still
room for improvement in the area of patient friendliness: the
recording of measurements still takes about half an hour and
involves a lot of intimidating technology. Most of the technology is
part of the measurement system which was not the focus of the
project.

The system should be reliable
The physicians were satisfied with the reliability of the system. The
system does occasionally crash. The crashes are attributed to hard-

Evaluation 163

14.4

ware failures of the video digitizer. A new ‘next generation’ digital
video card is planned.

The system should be maintainable.

Maintainability during the project was not a big problem. The big-
gest problem with regard to maintenance was keeping the documen-
tation up to date. This was caused by the lack of an integrated
design and implementation environment. There is a lot of overhead
in keeping the requirements, design, and implementation up to date.
In the next section, we have more comments on the design methods.
Currently, the maintainability of the system is tested by the request
to adapt it to new hardware and a multi-user option.

Evaluation of the design methods

14.4.1

The design method OMT

As mentioned before, we used OMT as our general design method.
In general, we are positive about the method. In particular, the use
of diagrams helps to keep a good overview of the design. The dia-
grams definitely give a better insight in the system than program-
ming code. Furthermore, the diagrams are an aid in the
communication between developers. We have some criticism on the
OMT/C++ combination. Some of the points that caused this criti-
cism are solved in the follow-up to OMT, the new modeling method
UML (Unified Modeling Language), which is currently under
development [73].

We found that the distance between design and implementation is
too large. The object diagram and the programming code have a
clear relation. However, the object diagram describes only the static
behavior of the system. We found the state diagrams insufficient to
show the global dynamic behavior resulting from object interac-
tions. UML provides sequence diagrams and collaboration dia-
grams for this purpose.

Furthermore, the functional model was of little use to us. Appar-
ently, we are not the first to notice this, since the functional model
has been dropped in UML, the follow-up method.

164

Evaluation

In OMT, associations (use-relations) have no direction. The direc-
tion of an association is considered to be an implementation issue.
We feel that the direction of associations is a design issue, espe-
cially when designing for re-use. It is important to decide which
objects know of other objects. In UML, an association can be given
a direction.

Another problem encountered was the lack of a subsystem concept
in OMT. At a certain level of detail, it becomes impossible to show
all the classes in a single diagram. However, OMT has no way of
structuring systems of classes. Again, this problem is fixed in UML
with the package concept.

One of the most serious problems we had with the OMT/C++ com-
bination was that there is such a large step between design and
implementation. It is a lot of work to keep the design and the imple-
mentation up to date during the many iterations. This is also caused
by the lack of an integrated environment that deals with both the
design and the implementation aspects of the development. Most
existing environment have either a strong focus on design or a
strong focus on implementation.

Finally, we found the object oriented analysis of little use in deter-
mining requirements in our case. Requirements were almost exclu-
sively determined via informal conversations and via the use of
prototypes. We think that OMT analysis might be more useful for
determining requirements in (pure) information systems. May be,
the UseCase models introduced in UML are of more use for deter-
mining requirements.

14.4.2 Evaluation of the design strategy

In Section 12.5.1, we motivated our choice for incremental devel-
opment as the phasing strategy. Basically, a waterfall approach was
not possible, and incremental development was considered more
desirable than throw-away prototyping. We found that we managed
reasonably well in following the incremental approach. The global
design of the toplevel, the recording subsystem and the display sub-
system was defined within the first year of the project, and it did not -
have to be changed very much.

However, for the kinematics subsystem, we decided to use a throw-
away prototyping approach. The main reason was the uncertainty

Evaluation 165

whether the algorithms would actually work correctly. We devel-
oped a simulation environment to test algorithms for the single
camera approach. This eventually lead to the ‘throw-away’ of the
prototype, because it was concluded that this approach was not fea-
sible. We managed to obtain this result with a subsystem that was
not ‘production-quality’. If we had built a production quality sub-
system, it would have taken much more effort to figure out that the
approach was not feasible. Therefore, we think that the phasing
strategy was the best choice.

In section 12.5.2, we motivated our choice for using an informal
design approach. In practice, the informal approach worked fine. At
certain times, we did have to be careful with sharing code between
developers. A source code control system might have been handy,
although there were no major problems in this area during the three
years of development.

The lack of an integrated design and implementation environment
was felt as a major problem. It was a lot of work to keep the analy-
sis, design documentation, and implementation up to date. For
example, it was quite common that a new name for a class was cho-
sen, because the name was thought to be a better description of
what the class represented. A perfect designer in an ideal world may
be able to determine exactly the correct concepts and represent
them in class names that do not need to be changed. However, in
our experience, new roles for objects lead to new insights and name
changes. Even simple name changes are a lot of work if there is no
case tool support.

14.4.3 Lessons learned

Note: since the following comments are personal, a switch is made
from ‘we’ (the development team) to ‘I’ (Edwin Hautus).

Having studied the theory of object oriented analysis, design and
programming, my idea was that these three activities are clearly
defined and can easily be distinguished during development. How-
ever, this view clearly changed during the project.

166

Evaluation

A lot of design takes place during analysis

Software development is often separated in analysis, design, and
implementation. During the project, it became more and more clear
to me, that there are many design aspects involved in the analysis.
For example, determining the high level requirement definitions,
and the design of the user interface, were some of the most interest-
ing design activities in the project. Both activities clearly have the
purpose to determine what the system should do, and therefore are
analysis activities.

The gap between design methods and programming languages
is too large

The use of a specific design method, next to a programming lan-
guage, is still not yet completely accepted in the object oriented
world. Interestingly enough, the programming language designers,
such as Meyer[71] and Stroustrup[72], are those who question its
use. They claim that the design language distracts from the pro-
gramming language itself, which has enough possibilities to
describe a high level design.

At the start of the project, I was clearly in the camp of the design
methodologists. However, during the project, my view changed. I
still think object oriented design methods are very useful for design.
However, I also think that the distance between design methods and
programming languages is currently too large. Too much work has
to be done during coding. Either the programming languages need
to incorporate design method concepts, or the design methods need
to be able to describe the design to the level of detail of the code. In
particular, the amount of (design) work to implement an OMT
design into C++ is too large.

This problem is related to the lack of good CASE (computer aided
software engineering) tools. However, as long there is a ‘conceptual
gap’ between the design method and the implementation language,
CASE tools can not really solve the problem. There are simply
some important decisions that have to be made when implementing
an OMT design that can not be easily automated.

The possibilities of structuring the design process is limited by
organizational aspects

The intention was to involve physicians in the design process from
the beginning, since they are the end-users. It would seem that the

Evaluation . 167

location where the project took place, a hospital, would be ideal to
achieve this. However, because of organizational aspects this was
not feasible. Physicians have no time and no interest in participating
in the design process. This seems to be a re-occurring problem in
hospitals. Furthermore, when a number of people are involved in a
project, it is not possible to force them all into a different (more
structured) way of working. The changes have to be introduced
gradually.

The ability to make the right abstractions is the most important
skill for an object oriented developer

Abstractions have always been a key aspect of computer science.
Abstractions have become even more important with the rise of
object oriented development. Object orientation allows software to
be structured in a much nicer way, if and only if the right abstrac-
tions are made. If the right abstractions are not made, object orien-
tation becomes a burden in stead of a help.

168

Evaluation

APPENDIX A

Object Oriented
Methods & OMT

1.1

This appendix gives a short introduction to object oriented methods
and the Object Modeling Technique (OMT). Furthermore, it
introduces two small extensions of the notation that are used in the
thesis.

A very shbrt introduction to object oriented
methods

FIGURE 38
Graphical
representation of a

class and an
object of that class

In traditional programming, datastructures and functions/proce-
dures are seen as the basic building blocks: functions act upon data-
structures. In object oriented programming, the object is the basic
building block. Objects consist of both data and functions, and are
organized in classes. The objects in a class are identical in structure,
but each object in a class, called an instance of that class, has its
own data.

Patlent (Patient)
name

date of birth name=Jimi
give_name date of birth=27-11-1942

give_age

Class Object

Object Oriented Methods & OMT 169

One advantage of Object Orientation (0.0.) is that real world
objects can be modeled more easily. We will show this using a
(simplified) Patient class as an example. The data elements, or
attributes, of a patient are name and date of birth. Furthermore, the
Patient class has two functions, or operations, to inspect these
attributes. The operation give_age returns the age of the patient and
the operation give_name returns the name of the patient.

Another key-concept of O.0. is encapsulation. The idea of encap-
sulation is to make a clear distinction between operations and
attributes of an object that can be used by other objects and those
which are private to the object. Ini our example, the age of the
patient, which can be requested with the give_age operation, is not
stored in a patient object. The age is calculated using the private
date of birth attribute. However, the way that the age is calculated
internally is irrelevant to other classes and may be changed without
effecting those other classes.

Another key issue is inheritance: subclasses can inherit from super-
classes. Classes that inherit from other classes have all the attributes
and operations from the superclasses, but can add their own. An
example for our patient class is a special class for patients with a
certain disease. Additional information common to these patients
can then be stored and operated on. Subclasses can also redefine
functions of superclasses, allowing for more efficient implementa-
tions of certain specialized cases.

Sometimes, classes are introduced that can not be instantiated.
These abstract classes contain operations or attributes that are com-
mon to a number of subclasses. For example, in Sybar we have the
class Display. A Display shows part of the measured data in a cer-
tain way. Two subclasses of Display are EmgGraph and VideoDis-
play. A Display cannot be instantiated: it is an abstract class. It
contains information common to EmgGraph and VideoDisplay, for
instance each display can be either on or off.

A final characteristic we mention is polymorphism: operations and
attributes can be given the same name, but a different behavior,
depending on the class that is involved. For instance, both the
patient class and the recording class can have a load function, to
load a patient or a recording from disk.

170

Object Oriented Methods & OMT

1.2 The object modeling technique

1.21

The object modeling technique (OMT) described in [62], is a meth-
odology for the object-oriented development of software systems.
The methodology consists of building a model of an application
domain during analysis and then adding implementation details to it
during the design. OMT consists of the following phases:

® Analysis: In this stage, the problem statement is determined. Fur-
thermore an analysis model is developed that describes a specifi-
cation of the system.

® System Design: In this stage, the global architecture of the sys-
tem is determined.

® Object Design: In this stage, the analysis model is developed in
greater detail, with objects added for implementation.

® Implementation: In this stage, the design model is translated into
computer code, usually an object oriented language.

Ideally, each phase is completely finished before the next one is
started. In practice, an evolutionary approach is usually followed.
There can be overlap between stages: objects can be in different
stages of development.

OMT diagrams

The OMT methodology uses three models to describe a system: the
object model, the dynamic model and the functional model. The
object model describes the classes and objects in the system and
their (static) relationships. The dynamic model describes the states
an object can be in and the interactions between objects. The func-
tional model describes data value transformations in the system.
The object model is considered to be the most important in most
applications. We will now describe the concepts and notations of
the three models.

Object model notation

.The object model describes the static structure of a system. It

describes classes, relationships between classes, and attributes and
operations of the classes.

Object Oriented Methods & OMT 171

Classes are drawn as rectangles:

Class name

Attributes and operations can optionally be displayed in classes as
follows:

Class name
Attributes
Operations

Inheritance (an object of class A is a special type of an object of
class B) is shown by means of a triangle:

Class A

&

Class B

Aggregation (an object of class A consists of parts B and C) is
shown as:

Class A

Class B Class C

External classes are shown as rectangles with dotted lines.

Associations between classes indicate there is a relationship
between two classes. Names of associations can optionally be
shown in the diagram.

172 Object Oriented Methods & OMT

Dots indicate the multiplicity of the association:
Class A | exactly one A

Class A | zero ormore A’s

d Class A| zerooroneA

™ Glass A] one or more A's

Dynamic model notation

The dynamic model describes the states that an object can be in.
Transitions between states are triggered by events, that are pro-
duced elsewhere in the system or that are received from the envi-
ronment of the system. States are indicated by rounded rectangles,
events by arrows:

event]

States can have sub-states and superstates, forming a hierarchical
structure.

state 1.1

The arrows contain an inscription of the following form: event
Afguard Bj/event C. This transition occurs when event A occurs
and guard B holds. As a result of the transition, event C is gener-
ated.

Object Oriented Methods & OMT - 173

Initial and final states of objects are shown as:

o ®

Initial state Final State

1.3

A default state is entered when a arrow ends at the boundary of the
superstate.

Functional model notation

The functional model describes the functional behaviour of the sys-
tem in terms of input and output values and data-dependencies. Pro-
cesses are used to indicate computations:

Data flows, necessary for computations, are shown by means of
arrows:

analog vide -@ digital video

A data store is a passive object that stores information for later use.
They are shown as:

Video

Actor objects are objects that drive the dataflow by producing or
consuming data values. They are drawn as rectangles:

User

Two small extensions of OMT

In order to improve readability, two extensions of OMT are used in
the object diagrams of this thesis:

174

Object Oriented Methods & OMT

® The direction of association names is indicated with a black tri-
angle. In standard OMT, the direction has to be determined by
the reader, which can sometimes lead to confusion. This is solu-
tion is also used in the Unified Modeling Language (UM L).

® Associations to classes that are not in the diagram, are shown by
smaller text without a class box:

Trajectory

Feature

Trajectory has an association with the Feature class, which is
described in another diagram. This extension is a ‘patch’ for the
lack of a subsystem concept in OMT.

Object Oriented Methods & OMT 175

176 Object Oriented Methods & OMT

APPENDIX B Hﬂrdwqre
Implementation

Most of the hardware that was to be used for the Sybar project was
bought specifically for the project. This appendix describes the
hardware components and the way they are connected.

2.1 Measurement devices

The Sybar system uses the following measurement devices:

e An EMG measurement system, developed by K_Lab.

® An AMTI Biomechanics Platform, manufactured by Advanced
Mechanical Technology, Inc.

® Two camera’s for recording the video.

Multiple camera support is realized via a video mixing device as
described in Section 6.3.1.

2.2 Synchronization

The synchronization module, see Section 6.3.2, is realized with the
Vertical Time Code (VITC) standard. The VITC is a signal that can
be added to analog video.

The video is first send to the synchronizer, which adds the time
code to the video. Next, the video data is doubled by a video dou-

Hardware Implementation : 177

FIGURE 38

Synchronization
setup

2.3

bler device. One copy of the video stream is recorded by the video

recorder. The other copy of the video stream is presented to the data
acquisition system. The data acquisition unit records the time code

simultaneously with the EMG and the force plate. This leads to two
datasets with a common time scale.

The hardware setup for the synchronization is shown in Figure 39.

Data acquisition
Tvideo+VITC
video . video+VITC]
—® Synchronizer Video doubler
‘video+VlTC
Video recorder
Video recorder

24

The video recorder is controlled by the computer via a video
recorder controller device. The video recorder controller provides a
link between a computer and a video recorder. The computer can
communicate via a serial port, while the video recorder is controlled
by sending infrared signals, which are also used by the remote con-
trol. There are also video recorders that can be controlled via a com-
puter directly. However, by using the video recorder controller, it
possible to use an ordinary video recorder.

Video digitizing and hardware compression

Digitizing video involves large amounts of data. For example, one
second of PAL video (25 frames per second) stored with 24 bit
color depth costs about 32 Mega bytes. In order to deal with such
large amounts of data, it is necessary to compress the video with a
dedicated hardware compression device.

178

Hardware Implementation

After extensive market research, it was concluded that the Video-
logic Mediaspace video digitizer provided the best possible video
quality that could be afforded. The Videologic Mediaspace is a
hardware extension for IBM compatible PCs, that allows analog
video to be viewed on the PC. Furthermore, video can be digitized,
stored on hard disk and played back.

For the compression, the Videologic Mediaspace uses a MJPEG
compression scheme. MJPEG compression is a video compression
scheme based on the single image compression standard JPEG
(Joint Photographic Experts Group). The MIPEG standard applies
JPEG compression on each of the frames of the video. Unlike
MPEG compression, MJPEG does not use similarity between
frames to further compress the data. MJPEG is a lossy compression
scheme. This means that information is lost during compression.
The restored video is therefore not exactly the same as the original
video. The effect of JPEG compression is that the whole picture
loses some contrast, although the effect is not noticeable with low
compression rates. The effect for the marker detection is that in
some images, certain markers can no longer be detected. However,
this only takes place in cases that are difficult in the first place. It
~ can be compensated by better lighting conditions.

In order to synchronize the video data with the other measurement
data, the time code signal has to be retrieved during the digitizing of
the video. Unfortunately, the Videologic digitizer card does not
support time codes. Furthermore, it is not possible to have any con-
trol over the video digitizer during the digitizing.

The first solution to this problem that was tried was to read the time
code with a special device, a timecode reader. By storing the time
code just before the digitizing starts, the time code of the first frame
is known. Since the video is recorded with a fixed sample rate, the
time codes of the other frames can then be calculated. However,
this approach is not fail proof, since the video digitizer has a delay
of a variable length before it actually starts recording the first
frame.

We therefore had to add another device, a time code displayer, that
writes the time code into the video image. Using this time code, the
lab operator has to check and, if necessary, correct the synchroniza-

Hardware Implementation ‘ 179

2.5

tion. If a new video digitizer is found which includes support for
VITC, the synchronization can be performed fully automatically.

Data acquisition

2.6

For the data acquisition of the measurement data, an A/D converter
device is used. The A/D converter digitizes EMG and force plate
data. To retrieve the time code signals from the video stream, a
timecode retriever is used.

List of devices and overview

In Table 5, a list of the hardware devices is given.

TABLE 5 List of devices
Function Device Manufacturer
EMG recorder K_Lab M108 K_Lab Amsterdam
Force plate recorder AMTI force plate AMTI
A/D converter PCL 818 Advantech
Synchronization TC 30 G generator Alpermann+Velte
module
Timecode displayer =~ TC 30 reader/ Alpermann+Velte .
inserter
Video doubler DV-101 Video JvC
Distributor
Timecode retriever =~ PCL-10 Alpermann+Velte
Camera 1 CL352 Camera Panasonic
Camera 2 CR-6200S Camera Blaupunkt
Video recorder RTV-925 Hifi Blaupunkt
Video recorder
Video recorder con- PE 800 Motion Alpermann+Velte
troller Link
Video mixer WIJ-5500 Special Panasonic
Effects Generator
Video Digitizer Mediaspace/ DVA Videologic
4000
180 Hardware Implementation

Figure 40 gives an overview of all the devices.

FIGURE 40 f:‘::’e"g:'a‘e g
Hardware overview
AD
converter oo
/ Acquisition
EMG recorder Ti d o
retriever oo
AV
AV | Timecode |AVY | Video
Synchronizer || displayer [doubler
AV
Camera A\VA AV Video ov
o AV digitizer
mixer y ’
Video AV Timecode | DD - Viewing
£ retriever i
Camers recorder . station
Video
recorder
controfler

= input device

Hardware Implementation

AD = Analog Data
DD = Digital Data

AV = Analog Video
DV = Digitat Video

181

182 Hardware Implementation

Bibliography

TABLE 6

Abreviations

Al International Journal on Artificial Intelligence

CVPR Proceedings Computer Vision Pattern Recognition

CVGIP Computer Vision Graphics & Image Processing

CVIU Computer Vision, Image Understanding

CGIP Computer Graphics & Image Processing

ECAI European Conference on Artificial Intelligence

Iccv International Conference on Computer Vision

ICPR International Conference on Pattern Recognition

vC Image and Vision Computing

JOOP Journal of Object Oriented Programming

JVCIR Journal of Visual Communication and Image Represen-
tation

PAMI IEEE Transactions on Pattern Analysis and Machine
Intelligence

PR Pattern Recognition

PRL Pattern Recognition Letters

SIGGR ACM Computer Graphics

Bibliography 183

TABLE 6

(1

[2]

3l

(4]

[5]
(6]

{7

(8]

91

Abreviations

SMC IEEE Transactions on Systems, Machines and“Cyber-
netics

MBEC Medical & Biological Engineering & Computing

JB Journal Biomechanics

APMR Arch Phys Medical Rehabilitation

BIO Biolocomotion: a century of research using moving pic-
tures

BRMI Behavior Research Methods & Instrumentation

JIMET Journal of Medical Engineering & Technology

PT Physical Therapy

Human Motion Analysis - Biomechanics

Tait, J.H., Rose, G.K., The real time video vector display of ground reaction forces
during ambulation, IMET 3 no.5, 1979, p.252-255

Boccardi, S., Pedotti, A., Rodano, R., Santambrogio, G.,C., Evaluation of Muscular
Moments at the lower limb joints by an on-line processing of kinematic data and
ground reaction, JB 14 1981, p.35-45

Brand, R.A., Crowninshield, R.D., Comment on criteria for patient evaluation tools,
JB 14 1981, p.655

Taylor, Mottier, Simmons, Cohen, Pavlak, Cornell and Hankins, An automated
motion measurement system for clinical gait analysis, JB 1982

Cappozzo, A., Considerations on clinical gait evaluation, JB 16 1983 , p-302

Winter, D.A. Pathologic gait diagnosis with computer-averaged electromygraphic
profiles, APMR vol 65, 1984, p.393-398

Quanbury, O.A., The clinical gait lab: form and function, in Winter, D. A., Norman,
R. W,, Wells, R. P., Hayes, K. C., Patla; A. E., Biomechanics IX-A, Human Kinetics
Press, Champaign, IL., 1985, p.509-512

Krebs, D.E., Edelstein J.E., Fishman S., Reliability of Observational Kinematic Gait
Analysis, FT 65, no.7, 1985, p.1027-1033

Woltring, H.)., Data Acquisition and Processing Systems in Functional Movement
Analysis

[10] An K.N, Jacobsen, M.C., Berglund, L.J. and Chao, E.Y.S., Application of a magnetic

tracking device to kinesiologic studies, JB 21 1988, p.613-620

184

Bibliography

[11] Olsson, E., Methods of Studying Gait, in: G. Smidt (ed.), Gait in Rehabilitation,
Churchill Livingstone, New York, 1990, p.21-41

[12] Eastlack, M.E., Arvidson J., Snyder-MacKler, L., Danoff, J.V., McGarvey, C.L.,
Interrater reliability of videotaped observatonal gait-analysis assessements, PT 71
no.6, 1991, p.465-472

[13] Whittle, M., Gait Analysis: An Introduction, Butterworth-Heinemann, Oxfort and
Toronto 1991

[14] Harris, G.F., Wertsch, J.J., Procedures for Gait Analysis, APMR 75 1994, p.216-225

[15] Johanson, M.E., Gait Laboratory: structure and data gathering, in: Rose, J., Gam-
ble, G., Human Walking, Williams & Wilkins, 2nd edition 1994, p.201-223

[16] Malouin F., Observational gait analysis, in : Craik, R.L., Oatis, C.A. (ed.), Gait
Analysis: Theory and Application, Mosby, 1995, p.112-124

[17] Koff, D., Joint kinematics: camera based systems, in: Craik, R.L., Oatis, C.A. (ed.),
Gait Analysis: Theory and Application, Mosby, 1995, p.183-204

[18] Cappello, A.,Cappozzo A., Leo, T., Paul, J.P., 3D Reconstruction of Human Motion,
Theoretical and practical aspects, Notes of a tutorial held at the XV Congress of the
international society of Biomechanics, 1995

[19] Harlaar, J., Kleissen, R.F.M., Lankhorst, G.J., Clinical assessment of movement dis-
orders with kinesiological EMG visualized by multi-media-technology, submitted for
publication to Gait & Posture, 1997

Human Motion Analysis - Computer Vision - General

[20] Cédras, C., Shah, M., 4 Survey of Motion Analysis from Moving Light Displays,
CVPR 1994, 214-221

[21] Young, Handbook of Pattern Recognition and Image Processing: Computer Vision,
Chapter 12, Academic Press, 1994

Human Motion Analysis - Computer Vision - 2D

[22] Leung, M.K., Yang, Y.H., 4 Region Based Approach for Human Body Motion Anal-
ysis, PR 1987

[23] Leung, M.K., Yang, Y.H., Human Body Segmentation in a Complex Scene, PR 1987

[24] Ferrigno, G., Gussoni, M., Procedure to automatically classify markers in biome-
chanical analysis of whole-body movement in different sport activities, MBEC 1988

[25] O’Malley, Lynn, de Paor, Kinematic analysis of human walking gait using digital
image processing, MBEC 1993

[26] Guo, Y., Xu, G., Tsuji, S., Understanding Human Motion Patterns, ICPR941994

[27] Guo, Y., Xu, G., Tsuji, S., Tracking Human Body Motion Based on a Stick Figure
Model, JVCIR 1994

[28] Niyogi, S.A., Adelson, E.H., Analyzing and Recognizing Walking Figures in XYT,
CVPR1994

Bibliography 185

[29] Leung, M.K., Yang, Y .H., First Sight: A Human Body Outline Labeling System,
PAMI 1995

Human Motion Analysis - Computer Vision - 3D

[30] O’Rourke, J., Badler, N.I, Model-based analysis of human motion using constraint
propagation, PAMI 1980

[31] Hogg, D., Model based vison: A program to see a walking person, IVC 1983

[32] Akita, K., Image sequence analysis of real world human motion, PR 17, 1984, p.73-
83

[33] Chen, Z., Lee, H.J., Determination of 3D body postures from a single view, CVGIP
1985

[34] Chen, Z., Lee, H.J., Knowledge-Guided Visual Perception of 3-D Human Gait from a
Single Image Sequence, SMC 1992

[35] Rohr, K., Towards Model-Based Recognition of Human Movements in Image
Sequences, CVGIP IU 1994

[36] Gavrila, D.M., Davis, L.S., 3-D model-based tracking of human upper body move-
ment: a multi-view approach, Intemet document, University of Maryland (http:/
www.umd.edw/)

[37] Rehg, J.M., Kanade, T., DigitEyes: Vision-Based Human Hand Ti racking, Technical
Report, Canegie Mellon University, CMU-CS-93220

{38] Kakadiaris, LA, Metaxas, D., 3D Human Body Model Acquisition from Multiple
Views, Internet document

[39] Amaya, K., Hara, Y., Aoki, S., Reconstruction of 3D movement using inverse analy-
sis, Proceedings of Graphics InterfaceNision Interface, 19-23 May 1997, Kelowna,
British Columbia, Canada, 1997

Human Movement Synthesis

[40] Cutting, J.E., 4 program to generate synthetic walkers as dynamic point-light dis-
plays, BRMI 1978

[41] van Nieuwenhoven, M.S.E., WALT, an interactive computer animation system, Mas-
ter’s Thesis Eindhoven University of Technology, 1992

Feature tracking

[42] Rashid, R.F., Towards a system for the interpretation of moving light displays, PAMI
1980

[43] Sethi, LK., Jain, R., Finding Trajectories of Feature Points in a Monocular Image
Sequence, PAMI 1987 ‘

[44] Mori, S., and Doh, M., 4 Sequential Tracking Extraction of Shape Features and its
Constructive Description, CGIP vol. 19, 1982, p.349-366.

186

Bibliography

[45] Muijtjens,, A.M.M., Roos, J.M.A., Prinzen, T.T., Hasman, A., Reneman, R.S. and
Arts, T., Noise reduction in estimating cardiac deformation from marker tracks, Am
J Physiol 1990, p.599-605.

[46] Muijtjens, A.M.M., Roos, J.M.A., Arts, T., Hasman, A., Reneman, R.S., Extrapola-
tion of incomplete marker tracks by lower rank approximation, Int J Biomed Com-
put., no. 33, 1993, p.219-239,

[47] Lai, J.Z.C, Tracking multiple features using relaxation, PR, vol. 26, no. 12, 1993,
p.1827-1837

[48] Sethi, LK., Tracking multiple features using relaxation - Comments, PR vol. 27, no.
6, 1994, p.865.

[49] Krishnan, S., Raviv, D., 2D feature tracking algorithm for motion analysis, PR vol.
28, no. 8, 1995, p.1103-1126

[50] Salari, V., Sethi, LK., Feature point correspondence in the presence of occlusion,
PAMI vol. 12, no. 1, 1990, p.87-91.

[51] Hwang, V.S.8., Tracking feature points in time-varying images using an opportunis-
tic selection approach, PR vol. 22, no. 3, 1989, p.247-256.

[52] Zhang, Z.Y ., Token tracking in a cluttered scene, Image and Vision Computing, vol.
12, no. 2, 1994, p.110-120.

[53] Yao, Y.S., Chellappa, R., Tracking a dynamic set of feature points, IEEE Transac-
tions on Image Processing, vol. 4, no. 10, 1995, p.1382-1395.

[54] Muijtiens, A.M.M.,, Roos, JM.A., Arts, T., Hasman, A., Reneman. R.,S., Tracking
markers with missing data by lower rank approximation, JB 30, 1997, p.95-98.

Determining kinematics from marker positions

[55] Spoor, C., Veldpaus, F., Rigid body motion calculated from spacial coordinates of
markers, JB 13 1980

[56] Miller, N.R., Shapiro, R., McLaughlin, T.M., 4 technique for obtaining spatial kine-
matic parameters of segments of biomechanical systems from cinematographic data,
JB 13 1980, p.535-547

[57] Veldpaus, F.E., Woltring, H.J., Dortmans, M.G., 4 least-squares algorithm for the
equiform transformation from spatial marker co-ordinates, JB 21 1988, p.45-54

[58] Séderkvist, 1., Wedin, P.A., Determining the movements of the skeleton using well
configured markers, JB 26 1993, p.1473-1477

[59] Cheze, L., Fregly, B. J., Dimnet, J., 4 solidification procedure to facilitate kinematic
analysis based on video system data, JB 28 1995, p.879-884

Camera Calibration

[60] Wood, G.A., Marshall, R.N., The accuracy of DLT extrapolation in three-dimen-
sional film analysis. JB 19 1986, p.781-785

Bibliography : 187

[61] Tsai, R.Y. An Efficient and Accurate Camera Calibration Technique for 3D Machine
Vision, CVPR 1986, p.364-374

Software Engineering and Object Oriented Methods
[62] Meyer, B. Object-oriented software construction, Prentice Hall, 1988

[63] Rumbaugh, J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object-Oriented
Modeling and Design, Prentice-Hall Inc., 1991

[64] Jacobson, 1., Christeron, M., Jonsson, P., Overgaard, G., Object oriented software
engineering - a use case driven approach. Addison-Wesley, 1992

[65] Harmon, P. , Objects In action: commercial applications of object-oriented technolo-
gies, Addison-Wesley Publishers, 1993

[66] Rumbaugh, J., Getting started, using use cases to capture requirements, JOOP, sept.
1994, p. 8-23.

[67] Booch, G., Object-Oriented Analysis And Design With Applications, Benjamin Cum-
mings, 1994

[68] Eligns, A., Principles of object-oriented sofiware development, Addison-Wesley
Publishers, 1995

[69] Sommerville, L, Software Engineering, Addison-Wesley Publishers, 1996

[70] Rumbaugh, J., To form a more perfect union, unifying the OMT and Booch methods,
JOOP, jan. 1996, p. 14-18.

[71) Object-Oriented Languages in the Industry: A Comparison, intemet document from
the Eiffel Web site, see http://www.eiffel.com

[72] Object orientation FAQ, What Is 0OA/00D?, FAQ of the comp.object newsgroup.

[73] UML version 1.0, internet document, see http://www.rational.com

Computer Vision, Image Processing and Computer Graphics

[74] Foley, J.D., van Dam, A., Feiner, S K., Hughes, J.F., Computer graphics, principles
and practice, Addison-Wesley Publishing, 1990

[75] Jain, R., Katuri, R., Schunck, B.G., Machine Vision, McGraw-Hill, Inc., 1995

Scientific Visualization

[76] Yu, Chong Ho, Visualization Techniques of Different Dimensions, intemet docu-
ment. Arizona State University, (http:/www.asu.edu)

[77] Bertin, J., Graphics and graphic'injbnnation-prbcessing, De Gruyter, 1981.

188

Bibliography

Mathematics

[78] Press, Teukolsky, Vettering, Flannery, Numerical Recipes in C, Cambridge Univer-
sity Press, 1994

Bibliography 189

190 Bibliography

Acknowledgments

I thank Jaap Harlaar for identifying the problem that kept me busy
for more than three years, and for the pleasant cooperation during
my time at the hospital. I also thank Kees van Overveld for his sup-
port and his many creative ideas that kept the project going.

I would like to thank all my colleagues at the department of Clinical
Physics and Engineering, who provided a pleasant working atmo-
sphere and who actively contributed to the project. In particular,
Peter ‘Sybar assistant’ Tump and Rob Peters contributed to the soft-
ware development. Hardware support was provided by the com-
puter boys: Rob de Bree and Jan Rutger Kuiper. Ronald van
Schijndel contributed a lot during brainstorm sessions. Even the
mechanists Cork Klok, and Danny Koops contributed to the project
by developing a calibration frame with great expertise.

I also thank Ronald Bonneveld and André Visser, two students
from the Hogeschool Amsterdam, who participated via school
projects. I also thank Isabelle Reymen, who gave some valuable
comments on the manuscript in the area of design methodology.

I would also like to thank the management of the department,
Albert-Jan Spruyt, Jan Arie Groot, and Michiel Sprenger for believ-
ing in the project and providing adequate resources. Furthermore, I
would like to thank Onno van Roosmalen (TUE) and Rob Roelofs
(VU Hospital) for making the project possible in the first place. In
addition, I would like to thank the promotors Dieter Hammer and
Klaas Kopinga and the other members of the committee.

Finally, I would like to thank my parents for their support during
my entire education. My dad never pressured me into a certain
direction or expected too much. However, he was always there
whenever there were problems, in particular when they were of a
mathematical nature. My mother made sure that I kept on going
whenever I felt like quitting.

Acknowiedgments 191

192 Acknowledgments

Samenvatting

Dit proefschrift beschrijft het Sybar-project. Sybar is een Systeem
voor bewegingsanalyse bij revalidatie. Het is ontwikkeld op het
VU Ziekenhuis in Amsterdam, in het kader van een promotie op
proefontwerp aan de Technische Universiteit Einhoven.

Menselijke bewegingen kunnen geanalyseerd worden met biome-
chanische meetsystemen. Hiervoor zijn in de loop der tijd een groot
aantal verschillende methoden en technieken ontwikkeld. De meet-
systemen kunnen belangrijke informatie geven over patiénten met
bewegingsstoornissen. In de klinische praktijk wordt echter nog
weinig gebruik gemaakt van de meetsystemen, omdat ze niet goed
aansluiten op de werkwijze van de artsen.

Het doel van het Sybar-project is de ontwikkeling van een bewe-
gingsanalysesysteem, specifiek voor de klinische praktijk. Net zoals
in de klinische praktijk, wordt de menselijke observatie als
uitgangspunt genomen. De bewegingen van de patiént worden op
video opgenomen. De gegevens van de meetsystemen worden niet
apart gepresenteerd, maar geintegreerd met de videobeelden. Deze
combinatie van meetgegevens en videobeelden maakt het de artsen
veel gemakkelijker de gegevens direct te relateren aan de bewe-
gingen van de patiént.

Sybar is ontwikkeld met object-georiénteerde methoden. De ont-

werpmethode OMT (Object Modeling Technique) is als basis

gebruikt. Interessante aspecten vanuit het oogpunt van software-

ontwikkeling zijn:

® De specificatie van Sybar kan alleen bepaald worden met behulp
van rapid prototyping.

¢ De omgeving waarin Sybar moet functioneren, is complex en
dynamisch.

¢ De systeemeisen met betrekking to digitale video en beeldbe-
werking zijn op de grens van wat technisch mogelijk is.

Samenvatting 193

194 Samenvatting

Carriculam Vitae

Edwin Hubertus Hautus

ehautus@xs4all.ni

15 november 1969 Geboren te Eindhoven

1982 - 1988 Atheneum B,
Strabrecht Colllege te Geldrop

1988 - 1992 Ingenieursopleiding,
Technische Informatica,
Technische Universiteit Eindhoven

- 1992 - 1994 Ontwerpersopleiding,
Technische Informatica,
Technische Universiteit Eindhoven

1995 - 1997 . Promotie op proefontwerp,
Technische Universiteit Eindhoven,
uitgevoerd in het VU Ziekenhuis te
Amsterdam

1997 - Werkzaam bij Compuware’s
Uniface Lab te Amsterdam

Curriculum Vitae

195

196 Curriculum Vitae

9.

Stellingen

Edwin Hautus

Bij het weergeven van biomechanische meetgegevens voor revalidatie-artsen is
het essentieel dat deze gegevens geintegreerd zijn met videobeelden.

(dit proefschrift, paragraaf 2.4)

Over de betekenis van 'ontwerpen' zal binnen de informatica voorlopig nog geen
overeenstemming worden bereikt.

. De vele CAD (Computer Aided Design)-gereedschappen, die voor de

verschillende disciplines beschikbaar zijn, moeten het in het begin van het
ontwerpproces nog steeds afleggen tegen pen en papier.

Hoe meer informatie er tijdens het ontwerpen beschikbaar komt, hoe belang-
rijker het is eigenwijs te blijven.

Het kenmerk van een instabiel software-product is dat het zich op allerlei
ongewenste momenten bijzonder stabiel gaat gedragen.

Sommige ontwerpers hebben de neiging om alles wat technisch mogelijk is ook
toe te passen. Bij het ontwerp van webpagina's heeft dit ertoe geleid dat het web
met elke nieuwe versie van de taal HTML minder gebruikersvriendelijk is
geworden.

(stellingen 2-6 zijn geinspireerd door het werk aan dit proefontwerp)

Murphy's law 1ijdt aan het demo-effect: als men wil demonstreren dat iets
vanwege Murphy's law fout gaat, zal het goed gaan.

De bewegingen die gepaard gaan met het salsa-dansen, kunnen zowel
therapeutische waarde hebben, als tot verslaving leiden.

De snelste manier om op vrijwillige basis de rijkdom te herverdelen in een land
waar iedereen even rijk is, is door middel van een piramidespel.

10. Mensen die zeggen 'laten we eerlijk zijn', zijn dat kennelijk gewoonlijk niet.

11. Het gebruik van ondertitels bij Nederlandstalige programma's is niet alleen

gunstig voor doven en slechthorenden, maar ook voor hen die onder een
aanvliegroute op Schiphol wonen.

12. De tijd die vroeger besteed werd aan de jacht naar voedsel, wordt tegenwoordig

door veel mensen besteed aan het uitzoeken van wat de voordeligste
spaarzegelactie is.

	Summary
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Appendix A
	Appendix B
	Bibliography
	Acknowledgements
	Samenvatting
	Curriculum vitae
	Stellingen

