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The Impact of Product Complexity on Ramp-Up Performance 

Abstract 

Fast product ramp-ups are crucial in consumer electronics because short product lifecycles prevail and 

profit margins diminish rapidly over time. Yet many companies fail to meet their volume, cost and 

quality targets and the ramp-up phase remains largely unexplored in new product and supply chain 

management research. This study identifies the key product characteristics that affect ramp-up 

performance using operational data from the cell phone industry. We investigate three research 

questions: (1) How to measure software and hardware complexity characteristics of consumer 

electronics products – and specifically cell phones? (2) To what extent drive product complexity 

characteristics manufacturing performance? and (3), in turn, to what extent drive manufacturing 

performance and complexity characteristics ramp up performance? The findings contribute to 

operations management literature in three ways: First, our model reflects the growing importance of 

software characteristics in driving hardware complexity, an aspect that prior empirical ramp-up 

studies have not yet addressed. Second, specific hardware and software complexity characteristics 

(i.e., component count, parts coupling and SW code size) primarily drive the performance of the 

manufacturing system in terms of final yield and effective capacity. And finally, effective capacity 

together with the novelty aspects of both software and hardware complexity (i.e., SW novelty and 

product novelty) are the key determinants of ramp-up performance. 

 

Keywords 

New product development, production ramp-up, product complexity 

1 Introduction 

New product development (NPD) is particularly challenging in the high-technology sector, 

increasingly characterized by shortening product lifecycles, rising market fragmentation, and rapid 

technological changes (Bowersox et al. 1999, Mallick and Schroeder 2005, Wildemann 2007). If 

firms want to succeed in this environment, they must be effective and efficient in their introduction of 

new products or product updates. According to Bowersox et al. (1999), new product introductions 

involve two major activities: product development (conceptualization, design, promotion, and pricing) 

and product launch (physical positioning in the market). Traditionally, the marketing literature has 

addressed positioning decisions (Cooper and Kleinschmidt 1995, Bowersox et al. 1999, Benedetto 

1999) whereas the operations management literature has considered supply chain decisions (Clark and 

Fujimoto 1991, Tatikonda and Montoya-Weiss 2001). 

 

In this study, we adopt an operations management perspective and focus on the final phase of the 

NPD process, namely, the ramp-up phase. This phase links product development to mass production, 
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or as Wheelwright and Clark (1992, p. 8) detail: “In ramp-up the firm starts commercial production at 

a relatively low level of volume; as the organization develops confidence in its (and its suppliers’) 

abilities to execute production consistently and marketing’s abilities to sell the product, the volume 

increases. At the conclusion of the ramp-up phase, the production system has achieved its target levels 

of volume, cost and quality.” Yet many companies fail to meet their targets regarding product volume, 

cost, and quality. Schuh et al. (2005) show that 47% of automotive new product ramp-ups were 

neither technically nor economically successful. Kuhn et al. (2002) indicate that not a single company 

in their study claimed its production ramp-up was under control. Thus, the ramp-up phase remains a 

major challenge, even as it provides a significant opportunity for competitive advantages. In addition, 

the complex relationships that constitute the ramp-up phase have been investigated only partially and 

insufficiently developed (Kuhn et al. 2002). Therefore, there is strong motivation to gain a more 

thorough understanding of the influential factors that affect the ramp-up phase and how they relate to 

success or failure. Previous studies have identified several characteristics that affect ramp-up 

performance. Clark and Fujimoto’s (1991) global field study in the automotive industry reveals that 

the transition management between new and existing products (ramp-up scenario), the rate of 

production in terms of line speed, the number of products in the line and the operation time per day 

(operational pattern) as well as the manufacturing capabilities relate closely to superior product 

development and ramp-up performance. In addition, Pisano and Wheelwright (1995) reinforce the 

link between manufacturing process innovation, productive product launches and enhanced product 

functionalities. In their large German case study, Kuhn et al. (2002) confirm the importance of 

manufacturing and logistics capabilities and further identify the product, organization, cooperation 

and the tools used as crucial factors for ramp-up success. To analyze the types and sources of 

disturbances that affect manufacturing start-up phases, Almgren (2000) categorizes the different 

sources into four groups: product architecture, material flow, production technology, and work 

organization. A longitudinal study in the data storage industry also reveals organizational patterns and 

suggests that previous ramp-up experience, such as through product platforms, influences the ramp-up 

of new products (Terwiesch et al. 1999). Langowitz (1987) observes that the success of ramp-ups 

depends on the management of the development process and how well the requirements of the new 

product and factory capabilities fit together. Finally, van der Merwe (2004) proposes a conceptual 

model that supports the association between different types of novelty (product, personnel, supplier, 

and process) and learning types that drive ramp-up performance. 

 

Despite these multiple studies that have identified a vast number of influential factors, we know very 

little about the quantitative and causal relationships between these factors and ramp-up performance. 

Krishnan and Ulrich (2001) argue that essentially no work has investigated the relationship between 

the rate of production ramp-up and product design decisions. In response, we use operational data to 

develop new quantitative measures for these characteristics and extend the current understanding of 
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product attributes by including software-related elements to investigate three general research 

questions: (1) How to measure software and hardware complexity characteristics of consumer 

electronics products – and specifically cell phones? (2) To what extent drive product complexity 

characteristics manufacturing performance? and (3), in turn, to what extent drive manufacturing 

performance and complexity characteristics ramp up performance? 

 

The remainder of the paper is organized as follows: in the next section, we provide an overview of the 

research domain and study environment. Subsequently, we present our conceptual model in section 3. 

After the formal presentation of our Hypotheses in section 4 and the illustration of our data and 

methodology in section 5, we present our results. In section 7, we discuss our results and provide 

managerial insights and conclude with some limitations of our study and implications for further 

research in section 8. 

2 Research Setting 

The unit of analysis for our study is a single cell phone, developed, manufactured, and sold by Nokia 

Corporation, a leading supplier of a wide range of cell phones, services, and software. Headquartered 

in Espoo, Finland, Nokia employs approximately 120,000 employees, maintains an R&D presence in 

10 countries, and currently runs 9 cell phone manufacturing locations worldwide. Typically, one of its 

R&D centers develops new products, according to the fit between the individual capability of that 

center and existing product requirements, such as customer proximity, estimated sales volume, or 

innovativeness. After the center selection process, a cross-functional project management team of 

project managers from R&D, product marketing, sourcing, product validation, logistics, and 

manufacturing gets allocated to the project. Cell phone projects generally follow a highly structured, 

milestone-controlled development process: after the planning and concept development phase, design 

activities proceed until the point that physical prototypes can be manufactured. These prototypes 

emerge from a special production line that has equipment and other characteristics resembling those 

of the ramp-up line. The purpose of this procedure is to prove product functionality and to verify/fine-

tune the production process - still in a controlled manufacturing environment. After the product has 

proven its functionality through several validation procedures and after the material supply has been 

guaranteed, the commercialization phase begins. In this phase, the new product gets introduced into 

the lead factory and the surrounding distribution network. It is typically called the ramp-up phase and 

it is defined within Nokia as the time between the project milestone “start of production” and the 

moment when production output switches from a push plan (based on sales estimates) to a pull plan 

that is consumer demand driven. In contrast with many other companies and industries, Nokia applies 

a “shut down” approach to the operational pattern, such that old products get completely ramped 

down before a new product is ramped up on an existing, converted manufacturing line.  
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3 Conceptual Model 

Our conceptual model as shown in Figure 1 suggests that manufacturing and ramp-up performance 

depend on the level of product complexity, which we define in terms of software and hardware 

complexity. While our conceptualization of complexity is consistent with existing literature, it 

represents a refinement because it reflects the growing importance of software in a product 

development and ramp-up context, a topic that was generally ignored in prior empirical ramp-up 

studies (e.g., Langowitz 1987, Almgren 2000, van der Merwe 2004).  

 

 
Figure 1. Conceptual Model 

 

Before we state our Hypotheses we first introduce the variables that constitute our conceptual model. 

3.1 Software Complexity Variables 

With the term “software”, we refer to the operating software and any application software under the 

direct control of the firm, which gets programmed into the logic board of the product during the 

production process and is entirely necessary for a successful launch. We do not include software 

modules or subroutines that are an inseparable part of any advanced component or application 

software from third-party suppliers. For example games, special ring tones, or other third-party 

applications can be introduced in subsequent software releases if they are not on a sufficiently mature 

level at ramp-up start. In contrast, in-house developed core-software elements must be available and 

error free for product launch, such as operating software functions (e.g., protocol stack routines). 

Errors in such functions may prevent regulatory approvals and potentially delay the ramp-up phase. 
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Generally, software complexity refers to the characteristics of the data structures and procedures 

within the software that make it difficult to understand and change (Curtis et al. 1979, Zuse 1991). 

Many software engineering studies rely on code and structure metrics as quantitative measures of 

software complexity. The former entail the individual system components (procedures and modules) 

and require detailed knowledge of their internal mechanisms, whereas the latter consider the product 

as a component of a larger system and focus on the interconnections of the system components 

(Kafura and Reddy 1987, Banker et al. 1998). However, previous research into multiple proposed 

software complexity metrics indicates high correlations among the various metrics (Banker et al. 

1993, Munson and Koshgoftaar 1991). Our analysis has revealed three major groups that vary in 

different orthogonal dimensions and thus overcome this limitation: SW novelty, SW code size, and 

SW error count. Due to the fact that software development is standardized within Nokia, it allows for 

the collection of reliable data regarding these software characteristics. 

 

First, SW novelty represents the number of new requirements/features in the software specification for 

each product and is derived from the requirements management database. Understanding and 

managing new functions, for which the behavior and interactions with other elements is not known in 

advance, adds uncertainty, risk, and effort to the team’s responsibilities, which could provoke 

difficulties before and during the ramp-up phase. Krishnan and Zhu (2006) claim that adding more 

features usually increases complexity and reduces the software’s ease of use. On the other hand, 

existing software code that gets used and tested across many products, all else being equal, should 

have greater design integrity and quality than new software code developed for a single, particular 

product. Therefore, we posit that the greater use of new software elements influences the integrity of 

the existing software structure and increases risks related to on-time readiness. In our study, SW 

novelty therefore refers to the number of new software features/requirements for the product that are 

not used by any other product. In other words, it is the number of new requirements/features in a cell 

phone that have not been included in previous products or the existing software baseline.  

 

Our second software complexity variable measures the source SW code size in terms of executable 

lines of code as provided by the compiler log files. Source code size metrics, though common ways to 

describe software complexity, are particularly important in embedded systems that suffer from 

memory restrictions. Although software engineering literature often uses a lines of code measure, its 

problems are well known (Krishnan et al. 2000), especially related to the inaccurate and inconsistent 

definition of “a line of code” in various programming languages and the tools used to count the 

number of source lines. To ensure the consistency and accuracy of this measurement across products, 

we used a common analysis tool that measures the number of lines of executable code and excludes 

comment statements. According to Krishnan et al. (2000), counting executable statements offers a 

more accurate measure than counting the number of physical lines. Because the products in our 
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sample share the same programming languages (i.e., a proprietary language for lower-level signaling 

functions and C/C++ for higher-level code) and are based on the same programming tools, our 

measure of SW code size is not biased by the programming language or environment. 

 

Finally, and because SW novelty and SW code size do not sufficiently account for differences in the 

individual product configuration (both measures assume that software components have in-built 

complexities that are static and independent of their context) we include SW error count as a third 

variable to our software complexity framework. Even a small share of SW novelty and a small SW 

code size may lead to a disproportionate amount of development effort if the particular configuration 

results in a large number of errors due to interactions and side effects. Also, SW error count can be 

estimated a priori during the later development phases to predict the remaining development effort. 

Unlike other metrics (e.g., McCabe’s (1976) cyclomatic complexity, Wood’s (1986) 

component/coordination/dynamic dimensions, Halstead’s (1977) effort metric) it can also be used by 

management as a means to monitor product maturity. Consumer electronics products must typically 

pass a series of standardized software acceptance tests, hence SW error count can reveal the progress 

of software development and the readiness for product launch. We measure it as the number of 

reported errors during the software acceptance/verification phase. 

3.2 Hardware Complexity Variables 

To quantify hardware complexity we consider products in physical terms and hence assume 

complexity to be a property of a product (Rodriguez-Toro et al. 2004). According to Novak and 

Eppinger (2001), it can be measured as (1) the number of product components to specify and produce, 

(2) the extent of interactions to manage between these components (parts coupling), and (3) the 

degree of product novelty. Please note that we consider hardware complexity at the macro level, that 

is, the first layer of abstraction, which is under managerial control and technically observable. We do 

not consider the internal structures of the lower levels (e.g., subsystems, advanced components) such 

as cameras, displays, or speakers. 

 

Our first hardware complexity variable - component count - covers the total number of components in 

a complete cell phone, as reported from the product data management system (see Table 1). This 

definition does not include components that are inseparably embedded in advanced components, such 

as the single glass layers of display modules or the lens elements of camera components. Variety in 

the component count results from the growing diversity in the cell phone customer base which forces 

companies to offer tailored models with various functionality levels for different target groups. 

However, different functionalities cannot be integrated into the same architecture without altering the 

number of components needed. A product that offers dual display functionality, hands-free stereo 

audio, global positioning services (GPS), and sophisticated connectivity options must integrate more 
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physical components into its architecture than a featureless counterpart. Adding more components to a 

product raises product complexity in terms of a more difficult manufacturing process (Boothroyd et 

al. 1987, Coughlan 1992), more complex supply logistics (Fisher et al. 1999) and greater verification 

effort (Novak and Eppinger 2001).  

 

For our parts coupling variable, we note that modern cell phones exhibit diverse interdependencies 

among the embedded components. As Novak and Eppinger (2001) state, the more interconnected the 

parts in a system are, the more difficult it is to coordinate their development. To quantify the level of 

parts coupling, we use the report functionality of a circuit board design tool and count the number of 

signal networks across all electrical and electromechanical components in a product, (i.e., components 

that carry any electrical functionality like resistors, capacitors, integrated circuits, antennas, audio 

components). This group of components accounts for more than 70% of the total components in a 

product. Our rationale for this definition of parts coupling stems from discussions with R&D experts, 

who confirmed that the effective integration of components does not only require knowledge about 

the components but also about their simultaneous interactions. Many components are delivered fully 

functional and pretested, hence the key challenge of development lies in the mastering of coupling 

effects. Measuring the number of networks is a more reasonable approach to account for the 

difficulties that developers encounter than measuring the number of pairs (i.e., direct connections 

between electrical and electromechanical components). Development engineers must consider the 

electrical structure of the various subsystems as an arrangement of interlinked connections rather than 

a collection of individual point-to-point connections. The number of networks also is unbiased with 

regard to those aspects that increase pair count (e.g., test points) without adding interaction 

complexity.  

 

Finally, the existing literature has conceptualized product novelty in several ways. Coughlan (1992) 

defines newness as the degree of similarity of a product to other members of its family, or the degree 

to which preexisting product parts get altered. Swink (1999) refers to newness as the percentage of 

new designs in the product. We build on these definitions though we use a richer operationalization: 

we define product novelty as the percentage material value of physical components in a cell phone 

that is new to the responsible development center, compared with previous products that have already 

been developed at this development center. Our observations have led us to conclude that this 

percentage material value offers a better operationalization than the percentage number of new parts – 

especially considering our macro perspective that considers certain advanced components (e.g., 

cameras, displays, speakers) as single components. Thus, definitions of product novelty that are based 

on the percentage of new parts regard each component’s contribution to novelty as equal, even though 

new displays, cameras, or processors require considerably more effort during integration and testing 

phases and entail more supply risk during the ramp-up phase than simple parts like new screws, 
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foams, or stickers. This variance in complexity within single components supports our use of their 

monetary value as a measure of product novelty. Based on the officially filed product development 

documentation and specification we were able to identify all lead components for each product. 

Together with the sourcing parts list we were consequently able to calculate the product novelty 

measure. 

3.3 Manufacturing Performance Variables 

Despite the many proposals on how to quantify manufacturing performance (Neely et al. 1995, White 

1996, Slack et al. 2001, de Toni and Tonchia 2001), most of the ramp-up specific studies use capacity 

and/or final yield measures (Matsuo et al. 1997, Terwiesch et al. 1999, Hatch and Mowery 1998, 

Almgren 2000). We follow this approach and use effective capacity together with final yield as 

variables to measure manufacturing performance. This combination acknowledges that the actual 

output of any manufacturing system is only a fraction of the planned allocated capacity (see Figure 2) 

and the particular type of lost capacity may be of importance (e.g., yield losses may be different from 

other losses as they can be reworked and fed back into production). 

 

 
Figure 2. Determinants of Manufacturing and Ramp-up Performance 

 

Final yield. In consumer electronics, manufacturing usually takes place on multistage production lines 

with different control or test phases. Typically, a first test phase takes place after the components are 

installed on the circuit board (i.e., commonly known as the logic board). The series of electronic tests 

at this point ensure that the circuit board is functional, that all parts are operational, and that all parts 

are correctly installed. Yield losses at this stage relate to soldering defects, material deficiencies and 
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test system failures. After this stage, the assembly work begins and electromechanical parts are added 

to the circuit board before it is mounted between structural frames and undergoes a detailed functional 

test. Yield losses at both test phases identify product and process instabilities, which is why final yield 

frequently appears in manufacturing literature (Hatch and Mowery 1998, Terwiesch and Bohn 1998, 

Terwiesch et al. 1999, van der Merwe 2004, Keil et al. 2007).  

 

Effective capacity is quantified as 1 minus the ratio of lost capacity to its planned allocated capacity. 

Although capacity measures are subject to criticism for its negative long-term implications (Slack et 

al. 2001, Goldratt and Cox 2004), effective capacity is sensitive to ramp-up specific disturbance 

factors that may result in various capacity losses, such as product and equipment readiness issues, 

product manufacturability concerns, material availability/quality problems, unscheduled engineering 

trials, or neglected operator training. Ultimately, these disturbance factors have a negative influence 

on effective capacity because they impede that the entire allocated capacity can be used to 

manufacture end products. Effective capacity and final yield are both based on data from a production 

database system and their calculations are summarized in Table 1. 

3.4 Ramp-Up Performance 

According to Mallick and Schroeder (2005), high-tech firms use their technology to create value for 

their customers and to capture value for their shareholders. Thus, any metric used to measure ramp-up 

performance in high-tech manufacturing should reflect the objective of value creation. In line with 

existing studies that focus on time, cost and quality (Kuhn et al. 2002, Schuh et al. 2005, Wildemann 

2007); quantity, cost and quality (Almgren 2000); or missed targets for output, quality and delivery 

(Langowitz 1987), we posit that all activities surrounding the dependable delivery of products – 

provided they fulfill the set quality criteria – are significant drivers of customer value and hence 

ramp-up performance for high-tech products. Dependable sales volume deliveries are particular 

crucial before seasonal peaks (e.g., Christmas or the Chinese New Year) when strong consumer 

demand must be satisfied in a very short period of time (possibly at the expense of higher unit costs, 

compromises on inventory levels, or manufacturing effort) as lost sales and customer loyalty cannot 

be recaptured at a later phase. Hence, we measure ramp-up performance as the actual invoiced 

quantity during the ramp-up execution phase divided by the confirmed volume plan quantity for the 

same period. In other words, we measure sales volume fulfillment rather than absolute ramp-up speed. 

According to Voigt and Thiell (2005) the focus on pure ramp-up speed is economically inefficient, 

because quality and other cost drivers may accumulate and ultimately affect overall company 

competitiveness. Ramp-ups with expansion rates greater than planned may reveal strong output 

performance but do not necessarily contribute to profitability or increased value creation if they only 

fill outbound buffers. For the execution phase (TRU_EXE) we chose a time horizon of 12 weeks since it 

reflects the (product-independent) short-term planning cycle that prevails at Nokia. During this time 
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frame, capacity and most resource availability is considered fixed, because of equipment and material 

procurement lead time limitations. We detail this period in Figure 3. 

 

 
Figure 3. Ramp-Up Phase Time Parameters 

3.5 Control Variables 

First, we include a control variable that captures linear time effects. Consistent with learning curve 

studies, we define learning as the increase in ramp-up performance by a firm as its experience 

increases over time. We must differentiate between learning from experience and changes in ramp-up 

performance independent of experience, hence we include a linear trend (LT) control variable, which 

is the number of days between the ramp-up start of each product versus the ramp-up start of the first 

product in the study. 

 

Second, empirical studies report influences of several factory characteristics on manufacturing and 

ramp-up performance (Hayes and Clark 1986, Langowitz 1987, Clark and Fujimoto 1991, Kuhn et al. 

2002). Although the facilities in our study represent a relatively standardized and homogeneous 

capacity pool, we consider four variables that may account for effects in ramp-up performance. 

 

Years in operation (YiO) measures the time a plant has been in operation prior to the ramp-up start of 

each product. This measure serves as a proxy for the accumulated experience level of any given plant. 

Factory ownership (FO) is a dummy variable, for which 1 indicates in-house facilities and 0 means 

contracted facilities. In our sample, three of the nine facilities were owned by contract manufacturers, 

which were responsible for manufacturing up to a generic product level, before the units were shipped 

to in-house facilities for the final configuration and distribution. This variable might explain 
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differences in the internal learning curve, problem-solving capability and supply logistics. Factory 

location (FL) captures differences in work force cultures and supply network structures. The measure 

is another dummy variable, divided into facilities located in Asia (China and Korea = 1) and facilities 

located in Europe (Germany, Hungary, Finland = 0). 

 

The relationship between the complexity variables and manufacturing/ramp-up performance might 

also be influenced by the extent to which management adjusts sales plans and sales forecasts during 

the ramp-up preparation phase. In order to control for these effects, we introduce sales forecast 

change (SFC) and excess capacity (EC). The former is the ratio between the sales forecast quantity at 

the start of the ramp-up period and the sales forecast quantity 12 weeks before the start of this period. 

The latter is similar to the construct from organizational theory (Nohria and Gulati 1996): the capacity 

and availability of materials in excess of the necessary minimum to produce a needed level of output. 

Thus, we calculate excess capacity (EC) as 1 minus the ratio between the confirmed volume plan and 

the planned allocated capacity – both captured at the start of the ramp-up period and calculated for the 

entire ramp-up execution period. 

 

Table 1. Summary of Variables and Definitions 

Hardware complexity variables 

 component count = number of components in a complete cell phone, as on a bill of materials parts 

list, down to the level of single parts that can be purchased separately 

 parts coupling = number of signal networks between all electrical and electromechanical 

components in the product 

  

 

Software complexity variables 

 SW novelty = number of requirements/features in a cell phone, not been included in previous 

products or the existing software baseline 

 SW code size = source code size in terms of executable lines of code 

 SW error count = number of observed errors during the software acceptance/verification phase  

 

Manufacturing performance and ramp-up performance variables 

 

RU_EXE

RU_START RU_EXE

over period 

at  over period 
 = 1 - T

t T

lost capacity
effective capacity

planned allocated capacity
 

RU_EXE

RU_EXE

average over period 

average over period 

material value of new physical components in the product

total material value of the product
T

T

product novelty =
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RU_EXE RU_EXE

RU_EXE

at test phase 1 over period at test phase 2 over period 

at test phase 1 over period at test phase 2 over per
 = *T T

T

passed units passed units
final yield

all tested units all tested units
RU_EXE

RU_EXE

RU_EXE

iod 

at test phase 1 over period 

at test phase 2 over period 

Note:
 - 

T

T

T

all tested units planned allocated capacity lost capacity

passed units actual production output

=

=

 

  
 

Control variables 

 LT = number of days between ramp-up start of each product versus ramp-up start of the first 

product in the study 

 YiO = number of years a plant was in operation until the ramp-up start of each product 

 
1 if in-house facility
0 otherwise              

FO


= 
  

 

1 in case of Asian factories (China, Korea)                                           
0 in case of European factories (Germany, Hungary, Finland)              

FL


= 
  

 

 

RU_START RU_EXE

PREP_START RU_EXE

at  over period 

at  over period 
 = t T

t T

sales forecast quantity
SFC

sales forecast quantity
 

 

RU_START RU_EXE

RU_START RU_EXE

at  over period 

at  over period 
 = 1- t T

t T

confirmed volume plan
EC

planned allocated capacity  

4 Hypotheses 

In the previous discussion (see also Figure 1), we note that the co-design of software and hardware is 

a central system characteristic of cell phones or embedded systems in general (Wolf 1994). For 

example, the integration of personal navigation in cell phones requires not only the development of a 

large share of dedicated software code but also the inclusion of additional components into the 

product (e.g., GPS receiver with discrete circuitry and antenna). However, there is a shift towards 

software-based implementations as most of the new innovations in cell phones are software-related 

(e.g., augmented reality, games, video processing, social networking clients), since hardware release 

cycles are more expensive and time consuming. Thus, hardware modifications and extensions often 

emerge as a side effect when new software features – for example a social networking client – 

demand more processor power, memory size, or connectivity speed. Consequently, higher levels of 

software complexity are counterproductive for preserving hardware integrity as they may increase 

RU_EXE

RU_START RU_EXE

over period 

at  over period 
 = T

t T

actuals invoiced
ramp - up performance

confirmed volume plan
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hardware complexity in terms of component count, parts coupling, or product novelty. We 

accordingly state our first Hypothesis: 

 

HYPOTHESIS 1. Higher levels of software complexity are associated with higher levels of hardware 

complexity. 

 

As outlined above, embedded software represents a core integration activity for cell phone projects 

and most observers acknowledge the difficulty of ensuring the completion of software-intensive 

projects in budget and on time (Austin 2001, Lindstrom and Jeffries 2004). For example, 

manufacturing cannot be executed as planned if the required software or customer specific 

configuration files are missing, for instance due to delayed regulatory or customer approvals (e.g., 

from large operators). In addition, cell phone production entails complex automatic test systems to 

calibrate wireless protocols, power management, or to control the manufacturing process. New or 

complex software features or interfaces can cause these tests to fail, resulting in reduced 

manufacturing output. Hence, we formally state: 

 

HYPOTHESIS 2. Greater software complexity is associated with lower manufacturing performance. 

 

Decisions about the number of components to be incorporated into a design and decisions about how 

much novelty to impose on a new product also relate closely to several important issues for 

operations. Ambitious products provide a fundamental source of difficulty for manufacturing 

(Langowitz 1987, Kuhn et al. 2002, van der Merwe 2004, Keil et al. 2007). Since complex product 

designs make specific demands on factories and since factories have unique sets of skills that they can 

use to meet those demands, initial manufacturing performance is a matter of accurate product–factory 

fit (Langowitz 1987). Typically, more complex products require more process steps and thus create 

more opportunities for process failure (Swink 1999). In addition, complex product design 

specifications frequently require more engineering change orders which may also affect performance 

in a negative way. Likewise, upstream supply operations face similar difficulties and affect 

manufacturing performance via material supply shortages and mismatches (Almgren, 2000).  

 

HYPOTHESIS 3. Greater hardware complexity is associated with lower manufacturing performance. 

 

Several studies have identified a relationship between product characteristics and ramp-up 

performance (Langowitz 1987, Almgren 2000, Kuhn et al. 2002, van der Merwe 2004, Schuh et al. 

2005). Complex products – whether they involve hardware or software complexity – are less likely to 

accomplish customer acceptance because the lack of experience in the use of a new, complex product 

reduces the user’s ability to describe its needs (Thomke and Bell 2001). This complicates project 
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management as customers revise their requirements more often, request new customization options, or 

even find new errors after pretesting the new product. In addition, there is consensus that material 

problems (e.g., dimensional variations or delayed deliveries) and quality issues (visual defects or 

software variant difficulties) are more likely to occur in complex designs (Clark and Fujimoto 1991, 

Almgren 2000, Kuhn 2002). As a result, delivery commitments have to be lowered or shipments will 

lag behind planned schedules. Hence, we state: 

 

HYPOTHESIS 4. Higher levels of software complexity are associated with lower ramp-up performance. 

HYPOTHESIS 5. Higher levels of hardware complexity are associated with lower ramp-up 

performance. 

 

Cell phones are manufactured with delayed customization (i.e., postponement), thus the final 

customization does not take place until real customer orders are known. As a result, manufacturing 

performance represents how well the generic part of a cell phone is manufactured and how well 

aggregate production plans are met. Ramp-up performance instead measures how well the generic 

products can be converted into customer-specific cell phones that are subsequently distributed and 

invoiced. While these items are distinct in nature, previous research states a relationship between 

superior manufacturing performance and successful ramp-ups (Clark and Fujimoto 1991, Wildemann 

2007). In other words, product availability is a pre-condition for product sales which leads us to our 

last Hypothesis. 

 

HYPOTHESIS 6. Higher levels of manufacturing performance are associated with higher ramp-up 

performance. 

5 Data and Methodology 

The data for our study pertain to 46 products that were developed at R&D centers in four countries 

between 2005 and 2008. The sampling and selection process covered a wide variety of price points, 

customer segments, form factors and total sales volume ranges. Our method of data collection was 

guided primarily by our conceptual model and employed multiple data sources, including project 

documentation systems, production databases, management information system reports, data archives 

and company reports. All operational definitions of the variables were additionally validated on the 

basis of interviews with several project managers and senior managers, as well as with a written 

questionnaire targeted toward the product ramp-up managers. These data provided additional insights 

into the many qualitative disturbance issues during the ramp-up phase. In addition, we collected 

longitudinal data over the course of four projects, through the efforts of one of the authors who is 

employed as a ramp-up manager by Nokia. Our unique database thus features highly reliable 

quantitative and qualitative information about the characteristics of each product; its development, 
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production, and logistics process and the results of interviews and observations with key informants. 

Whenever possible, we triangulated the qualitative data with mandatory milestone review documents 

and expert opinions to confirm their accuracy and consistency. Table A-1 in the Appendix presents 

descriptive statistics and correlations for our variables. Correlations are generally as expected and 

moderate in magnitude. For confidentiality, we normalized the SW error count variable to have a 

mean equal to 1,000. 

 

We use multiple linear regression models to test our Hypotheses. To enable comparison of effect 

sizes, we standardized all variables (mean = 0, variance = 1) before running the regression 

calculations. This is useful as our data is a mixture of different scales (e.g., component count uses 

pieces, linear trend uses days). The assumptions of our multiple regression models were tested by 

several statistical methods. First, all data panels were screened for abnormal observations to avoid 

bias in the regression calculations. Next, predicted values were plotted against standardized residuals 

to show a random scattered pattern, supporting the assumption of linearity and homoscedasticity. For 

each regression, we calculated variance inflation factors to rule out multicollinearity problems. 

Resulting variance inflation factors (≤ 7) indicated no significant multicollinearity effects for any of 

the models (Hair et al. 2006). Also, normality of the error term is supported by the appropriate 

histograms and normal probability plots. 

6 Results 

The analysis was divided into three stages. First, we used multiple regression models to test the 

effects of software complexity variables (i.e., SW novelty, SW code size and SW error count) on each 

of the three variables of hardware complexity separately (Table 2). In the second stage of the analysis, 

we used the regression results to test for Hypotheses 2 and 3 – the effect of complexity variables on 

the manufacturing performance variables (i.e., final yield and effective capacity). In the final stage, 

we employed multiple regression (Table 4) to test the combined effect of the complexity and 

manufacturing performance variables on ramp-up performance (Hypotheses 4-6). For brevity we only 

discuss the full models (including controls). 
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Table 2. Regression Results (H1) 

 
Notes: N = 46, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests. 

 

The results of Table 2 largely support Hypothesis 1. Six out of nine possible relationships show strong 

and significant positive effects of software complexity variables on hardware complexity variables, 

where each software complexity variable significantly relates to at least one hardware complexity 

variable. We also observe the strongest relationship between SW novelty and product novelty (β = 

0.734, p = 0.000). Overall, increasing levels of software complexity are associated with higher levels 

of hardware complexity. 

 

The results of Table 3 provide partial support for Hypotheses 2 and 3, stating that increased software 

and hardware complexity are negatively associated with final yield and effective capacity. Component 

count provides the strongest effect on both, final yield (β = -0.410, p = 0.022; β = -0.519, 0.007) and 

effective capacity (β = -0.429, p = 0.016; β = -0.393, p = 0.031). We also find a significant negative 

effect of SW code size on final yield (β = -0.305, p = 0.078), indicating that final yield of cell phone 

manufacturing seems to be a function of the number of components and its SW code size. This is 

plausible as both variables are likely to increase the failure opportunities in production. For effective 

capacity we observe parts coupling in addition to component count to be strong and significant (β = -

0.399, p = 0.029), revealing that manufacturing performance in the form of good output increases as 

component count and parts coupling decreases. All other variables do not significantly relate to final 

yield or effective capacity at the 0.10 level. 

 

Predictor variables

SW novelty
0.198 

(0.128)
0.020

(0.119)
0.734

(0.081)
***

SW code size
0.460 

(0.120)
*** 0.571

(0.111)
*** -0.006

(0.076)

SW error count
0.269 

(0.127)
** 0.351

(0.118)
*** 0.278

(0.081)
***

R-Sq(adj) 36.40% 45.40% 74.30%

product 
novelty

Dependent variables

component 
count

parts 
coupling
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Table 3. Regression Results (H2 and H3)) 

 
Notes: N = 46, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests. 
 

Table 4 contains the results for ramp-up performance and provides the tests for Hypotheses 4–6. 

Contrary to our expectation, SW novelty appears to have a positive effect on ramp-up performance (β 

= 0.646, p = 0.027). Hence, we do not find support for Hypothesis 4. One possible explanation is the 

unpredictable implementation and testing effort of novel software features that frequently results in 

late project schedule slips. Factories appear to benefit from the extra waiting time for the approved 

software release, as this enables them to build up semi-finished product buffers and, consequently, 

achieve higher performance levels during the subsequent ramp-up phase.  

In addition, product novelty has a negative effect on ramp-up performance (β = -0.447, p = 0.089) 

providing support for Hypothesis 5. New physical elements are more likely to cause material supply 

problems and product quality issues, which both result in ramp-up performance drops compared to 

proven ones. While the effect of final yield on ramp-up performance is not significant (β = -0.093, p = 

Predictor variables

SW novelty
-0.271

(0.213)
0.148

(0.271)
-0.349

(0.211)
0.098

(0.262)

SW code size
-0.075

(0.143)
-0.305

(0.168)
* 0.071

(0.141)
-0.126

(0.162)

SW error count
-0.260

(0.147)
* -0.188

(0.151)
-0.034

(0.146)
-0.007

(0.146)

component count
-0.410

(0.172)
** -0.519

(0.181)
*** -0.429

(0.170)
** -0.393

(0.175)
**

parts coupling
0.035

(0.182)
0.008

(0.182)
-0.342

(0.180)
* -0.399

(0.175)
**

product novelty
-0.005

(0.229)
-0.241

(0.240)
0.317

0.226)
0.118

(0.232)

Control variables

LT
0.363

(0.223)
0.242

(0.215)

YiO
-0.298

(0.179)
0.042

(0.173)

FL
0.093

(0.194)
0.282

(0.187)

FO
0.065

(0.152)
-0.140

(0.147)

SFC
0.213

(0.128)
-0.136

(0.123)

R-Sq(adj) 46.4% 50.6% 47.6% 54.1%

Dependent variables

final yield effective capacity
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0.608), the results show a strong and significant positive effect of effective capacity on ramp-up 

performance (β = 0.836, p = 0.000). Again, these mixed results provide partial support for Hypothesis 

6 and yield some interesting insights. Advances in capacity management are rather likely to pay off 

during the ramp-up phase than investments in yield improvement activities. 
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Table 4. Regression Results (H4-H6) 

 
Notes: N = 46, *** p ≤ .01, ** p ≤ .05, * p ≤ .10, two-tailed tests. 

 

Of the control variables, only SFC (β = 0.263, p = 0.063) and EC (β = 0.393, p = 0.015) have a 

significant positive relationship with ramp-up performance.  

Predictor variables

SW novelty 0.375
(0.246)

0.646
(0.278)

**

SW code size 0.105
(0.158)

-0.083
(0.177)

SW error count 0.197
(0.168)

0.027
(0.158)

component count 0.269
(0.214)

0.175
(0.217)

parts coupling -0.032
(0.210)

-0.180
(0.197)

product novelty -0.527
(0.258)

** -0.447
(0.255)

*

final yield -0.075
(0.178)

-0.093
(0.179)

effective capacity 0.895
(0.180)

*** 0.836
(0.178)

***

Control variables

LT 0.260
(0.263)

YiO -0.039
(0.195)

FL 0.103
(0.208)

FO -0.191
(0.155)

SFC 0.263
(0.137)

*

EC 0.393
(0.153)

**

R-Sq(adj) 35.1% 50.8%

ramp-up 
performance

Dependent variable
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The effect of SFC suggests that when the demand for a product increases – compared to the fixed 

production plan at tRU_START – management will do anything in their span of control to boost output up 

to material or capacity limitations, which will in turn lead to higher performance levels. On the other 

hand, management will respond with a decrease in output if demand weakens (to avoid excess 

inventories) with the consequence that ramp-up performance will drop. 

The effect of excess capacity (EC) suggests that higher levels of planned allocated capacity 

(compared to the confirmed volume plan) dampens the negative impact of ramp-up disturbances (e.g., 

equipment breakdowns, material quality problems, customer rejections) but with the downside of 

creating idle capacity under steady or weak demand. 

 

7 Discussion 

The key objective of this study has been to investigate the effect of product complexity characteristics 

on manufacturing and ramp-up performance using operational data from the cell phone industry. 

 

To begin with, the significant and directional coupling between software and hardware characteristics 

supports our view that most of the new innovations in cell phones are primarily enabled by software 

and by the way in which software and hardware designs are integrated throughout Nokia’s product 

development process. As already pointed out in section 2, Nokia’s product development approach is 

based on the premise that design activities are best divided into a number of sequential project 

“stages” separated by milestones reviews. After a requirements analysis, functionality is split into 

features that are implemented in software, in hardware or in a combination of both. In an iterative 

process, based on the fabrication of a series of prototypes, software/hardware integration is 

synchronized and feedback on whether the design meets customer requirements is gathered. As a new 

project proceeds through these successive prototype rounds, the design evolves in increasing levels of 

maturity, from early engineering samples to salable products that contain the final hardware. Finally, 

extensive testing and fine tuning activities take place in the course of which software releases are 

introduced in frequent intervals and tested on the final hardware. During that phase, product 

development managers focus mainly on software stability as most of the remaining errors arise from 

the realized software features or hardware problems that are corrected in software to save time and 

money (software release cycles are shorter and more flexible than hardware release cycles). This 

uniqueness of embedded systems and traditional cell phones stands in contrast to other products 

groups (e.g., personal computers, high-end smartphones), that show decoupled architectures and 

platform structures in the software and hardware development.  

 

A second important finding is that the novelty variables of both software and hardware complexity are 

the most influential drivers of ramp-up performance. Interestingly, software novelty appears to be 
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positively associated with ramp-up performance. Our explanation for this finding is in line with 

studies that found a positive relationship between increased software newness and the determinants of 

software development time (Callahan and Moretton 2001, Griffin 1997). The ongoing growth in 

software content, it’s coding and testing effort as well as the flexibility of software to quick-fix 

detected hardware errors make software schedules increasingly unpredictable and vulnerable to late 

schedule slips. Hence, several studies acknowledge the difficulties of ensuring software-intensive 

projects to be completed within budget and on time (Austin 2001, Lindstrom and Jeffries 2004). 

Rather than suffering from delayed software readiness (as a result of higher SW novelty), firms may 

profit from it by starting the production gradually – despite rising inventory levels of semi-finished 

products – until the approved software release can be used for the re-programming of these product 

buffers and starting the regular ramp-up. Since the re-programming step is straightforward, quick and 

does not occupy any regular ramp-up production resources, it allows for higher output levels during 

the initial ramp-up phase. The practical significance of this result is that firms need to make a trade-

off between the gains in ramp-up performance that are enabled through gradual production ahead of 

the delayed ramp-up start and the negative consequences of missed schedule adherence and hence 

delayed deliveries. 

 

In contrast, we find that greater product novelty has a negative effect on ramp-up performance. 

Apparently, novel product designs increase the number of uncertain issues that development teams, 

suppliers and even customers must cope with. Hence, they require more training/learning effort by 

production engineers and operators (in-house and at suppliers) as well as by customers to achieve 

ramp-up performance levels similar to those of less novel designs. In other words, the more novel the 

product, the more learning effort is needed and the slower is the increase in manufacturing 

performance during ramp-up (van der Merwe 2004). Furthermore, we find that ramp-ups with large 

levels of product novelty are particularly slow at the beginning, forcing the ramp-up steepness to rise 

disproportionately towards the end of the ramp-up execution period in order to achieve the planned 

output levels. Thus, effective capacity may still reach planned levels but final configuration and 

distribution activities suffer due to the timely shifted and compressed availability of products for the 

final configuration and distribution stage.. 

 

Another important finding of our results shows that manufacturing performance has a strong impact 

on ramp-up performance. However, this effect is due to effective capacity and not due to final yield. 

The absence of a significant effect of final yield suggests that yield losses are compensated through 

repair activities and therefore have a negligible effect on the output. This is in line with our 

observations that repair resources are allocated to production lines on a need basis and most of these 

failures are easy to fix.  
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On the other hand the effect of effective capacity suggests that capacity losses apart from yield losses 

like unscheduled downtime, scheduled maintenance, setup changes and reduced speed are more 

disruptive in ramp-up environments. Since these losses cannot be absorbed by repair activities, 

subsequent final configuration and distribution activities may not proceed as planned, customer 

shipments are delayed and finally ramp-up performance decreases. More specifically, unscheduled 

downtime as the key contributor of effective capacity is the result of external (e.g., missing 

components or material) and internal (e.g., equipment downtime) factors. 

For example, most of the external disturbances are related to the inability of suppliers to deliver the 

right material on time and in the required quantity. This frequently leads to line stops as buffer stocks 

are not available during the early ramp-up phase. Various reasons are described in the literature (e.g., 

Langowitz 1987, Terwiesch et al. 1999, Almgren 2000, Pfohl and Gareis 2000) but our results suggest 

that the key contributors to material issues are related to the number of components and their 

interactions (parts coupling). This is because material management is a complex process and the 

number of unique parts thereby drives complexity which in turn negatively affects performance 

(Fisher et al. 1999). It requires considerable resources to forecast and coordinate the timely arrival of 

the many parts that go into a cell phone product in the required quantity. This process remains error-

prone and is likely to be exposed to more engineering changes the more components are involved.  

With regard to capacity losses that are the result of internal factors, we find test system downtime as 

the most frequent source of disturbance during ramp-ups. That is because these systems are among the 

most complex in the factory and require the highest level of product specific adaptation and 

maintenance. For this reason, products with a large number of components and complex interactions 

are more likely to cause instabilities, failures and damages in these systems. 

The practical significance of this result is that the careful management of product design, with an 

understanding of the effect that component count and parts coupling have on effective capacity 

instead of final yield, is highly relevant for ramp-up success.  

 

Finally, the effect of our last control variable, excess capacity (EC) holds an important managerial 

implication. Recall that excess capacity represents the percentage difference between the planned 

allocated capacity and the confirmed volume plan. The former represents all of the materials and 

capacity that is reserved for the production of a particular product. Ramp-up teams use the input from 

sales teams that intend to sell the product to define this quantity. The latter represents the volume plan 

used by sales teams to confirm customer orders. Hence, the confirmed volume plan is a balance 

between material supply risks, production capacity risks, schedule risks and anticipated sales 

projections steered by management. Decisions, such as allowing for higher levels of excess capacity – 

given a certain level of planned allocated capacity – and being more restrictive with initial sales 

volumes, are therefore likely to improve ramp-up performance but at the expense of total output, cost, 

and thus profit. Finding the optimal level of excess capacity is linked to the managerial actions 
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regarding incentives and rewards to product development teams. If management demands high levels 

of profits, it needs to design incentive systems that reward product development teams for achieved 

ramp-up performance but in relation to the chosen level of excess capacity. This relationship is 

complex and deserves further research attention with particular focus on the strategic priority of the 

firm with regard to output dependability against overall profit. 

8 Conclusions 

We have developed a set of regression models that relate quantitative product complexity 

characteristics – represented by software and hardware complexity variables – and manufacturing 

performance variables to ramp-up performance. With operational data from the cell phone industry, 

our models explain most of the variation in ramp-up performance. Beyond the growing importance of 

software characteristics in driving hardware complexity, we find that certain hardware and software 

characteristics (i.e., component count, parts coupling and SW code size) impact the performance of 

the manufacturing system in terms of final yield and effective capacity. Finally, we find that effective 

capacity together with the novelty aspects of both software and hardware complexity (i.e., SW novelty 

and product novelty) are the key determinants of ramp-up performance.  

 

This study also highlights the importance of a novelty versus ramp-up performance trade-off and the 

relevance to distinguish between software and hardware novelty in order to properly deal with this 

trade-off. Because it is the main objective of the high-tech industry to achieve full-scale production 

and thereby time-to-volume targets, our study underscores the importance of the trade-off between 

implementing more product novelty (that may create surplus consumer attraction) and achieving 

ramp-up performance targets. Furthermore, advances in information and communication technologies 

will presumably lead to further growth in software novelty across products. Hence, effective software 

engineering with the focus on schedule adherence is becoming a central capability for launching new 

products quickly onto the market.  

 

We contribute to the field of operations management by demonstrating the relevant product and 

manufacturing characteristics associated with ramp-up performance by offering a substantially 

enhanced and more detailed understanding of the ramp-up process and by validating the results of 

previous exploratory and qualitative studies. For managers, our findings underscore the importance of 

managing effective capacity instead of final yield and highlight the potential for firms to influence 

ramp-up performance through deliberate product design decisions. Another contribution is our 

application specific and quantitative definition of product complexity in the domain of cell phones. 

We are confident that our definition – which combines hardware and software characteristics – can be 

extended to other areas and industries. For example, products such as hi-fi systems, game consoles, 
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cameras and flat screens share similar product characteristics with cell phones and even modern 

automobiles have some comparable properties.  

 

Although we have attempted to build a comprehensive model with precise observations and 

argumentation based on existing literature, we also note some limitations. First, the relationships 

derived from the variables studied here capture only half of the overall variability in ramp-up 

performance. Additional factors may explain and contribute to ramp-up performance, such as product 

development lead times and late project schedule slips. Further research should identify and specify 

these factors in detail, particularly with regard to schedule performance. Also, the relationships 

obtained may not reflect the magnitude of their effects at certain firms. In particular, the magnitude of 

the effects of product complexity on ramp-up performance would be expected to be larger at firms 

that launch a smaller number of products per year but with progressive complexity upgrades. 

 

Second, we identified excess capacity as a managerial decision variable that strongly relates to ramp-

up performance. This raises the possibility to use this variable as managerial instrument to gauge 

performance against profit. Ideally, a newsvendor type model would guide management action to set 

the optimal level of excess capacity according to the strategic priority of the firm. 

 

Finally, our conclusions are based on an analysis carried out within a single company; a wider 

analysis with different firms from within the consumer electronics industry would enhance our 

capability to generalize. Nevertheless, we believe our results are generalizable to the consumer 

electronics industry because our data (1) came from different geographical development centers with 

different cultural and managerial properties; (2) included a variety of customer groups, ranging from 

direct shipments to operator-exclusive agreements; and also (3) confirm existing models from other 

areas, such as the car industry.  
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Appendix A: 

 



Table A-1. Descriptive Statistics and Correlations (Pearson) Between Variables 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
1 SW novelty 1.00                             
2 SW code size 0.14 1.00                           
3 SW error count 0.36 0.08 1.00                         
4 component count 0.36 0.51 0.38 1.00                       
5 parts coupling 0.22 0.60 0.40 0.73 1.00                     
6 product novelty 0.83 0.12 0.54 0.28 0.24 1.00                   
7 final yield -0.52 -0.32 -0.51 -0.62 -0.48 -0.49 1.00                 
8 effective capacity -0.32 -0.37 -0.28 -0.69 -0.63 -0.19 0.51 1.00               
9 LT -0.48 0.47 0.03 0.11 0.34 -0.29 0.12 0.11 1.00             
10 YiO -0.18 -0.28 -0.09 -0.45 -0.35 -0.24 0.15 0.26 0.09 1.00           
11 FL -0.46 0.25 -0.31 -0.17 -0.06 -0.29 0.41 0.34 0.53 -0.12 1.00         
12 FO 0.15 0.09 -0.11 -0.15 -0.09 0.12 0.07 0.09 0.03 0.34 0.33 1.00       
13 SFC -0.08 -0.08 -0.11 -0.07 -0.17 -0.15 0.16 -0.12 -0.27 0.20 -0.02 0.00 1.00     
14 EC 0.01 0.36 0.37 0.38 0.52 0.03 -0.37 -0.28 0.43 -0.15 -0.09 -0.18 -0.21 1.00   
15 ramp-up performance -0.14 -0.08 -0.07 -0.21 -0.26 -0.16 0.16 0.58 0.23 0.10 0.17 -0.14 0.02 0.23 1.00 
                                  
Mean 51.5 6.2M 1000 500.0 555.4 0.16 0.92 0.88 624.0 6.62 0.72 0.87 1.11 0.22 0.85 
S.D. 61.5 0.4M 2185 97.2 134.3 0.19 0.04 0.40 295.9 3.08 0.46 0.34 0.43 0.21 0.28 
Min 0 0.7M -1214 268 287 0 0.83 0.33 0 2.80 0 0 0.36 -0.14 0.33 
Max 242 20.2M 7215 694 842 0.73 0.98 2.36 1147 12.50 1 1 2.62 0.79 1.44 

Note: Significance levels are omitted as the underlying data does not fulfill the requirements for parametric tests. 
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