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Abstract

In this paper we consider a two-dimensional model of a copolymer consisting of a
random concatenation of hydrophilic and hydrophobic monomers, immersed in a micro-
emulsion of random droplets of oil and water. The copolymer interacts with the micro-
emulsion through an interaction Hamiltonian that favors matches and disfavors mis-
matches between the monomers and the solvents, in such a way that the interaction with
the oil is stronger than with the water.

The configurations of the copolymers are directed self-avoiding paths in which only
steps up, down and right are allowed. The configurations of the micro-emulsion are square
blocks with oil and water arranged in percolation-type fashion. The only restriction im-
posed on the path is that in every column of blocks its vertical displacement on the block
scale is bounded. The way in which the copolymer enters and exits successive columns of
blocks is a directed self-avoiding path as well, but on the block scale. We refer to this path
as the coarse-grained self-avoiding path. We are interested in the limit as the copolymer
and the blocks become large, in such a way that the copolymer spends a long time in each
block yet visits many blocks. This is a coarse-graining limit in which the space-time scales
of the copolymer and of the micro-emulsion become separated.

We derive a variational formula for the quenched free energy per monomer, where
quenched means that the disorder in the copolymer and the disorder in the micro-emulsion
are both frozen. In a sequel paper we will analyze this variational formula and identify
the phase diagram. It turns out that there are two regimes, supercritical and subcritical,
depending on whether the oil blocks percolate or not along the coarse-grained self-avoiding
path. The phase diagrams in the two regimes turn out to be completely different.

In earlier work we considered the same model, but with an unphysical restriction: paths
could enter and exit blocks only at diagonally opposite corners. Without this restriction,
the variational formula for the quenched free energy is more complicated, but in the sequel
paper we will see that it is still tractable enough to allow for a qualitative analysis of the
phase diagram.

Part of our motivation is that our model can be viewed as a coarse-grained version of
the well-known directed polymer with bulk disorder. The latter has been studied intensively
in the literature, but no variational formula is as yet available.
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1 Introduction and main result

In Section 1.1 we define the model. In Section 1.2 we state our main result, a variational for-
mula for the quenched free energy per monomer of a random copolymer in a random emulsion
(Theorem 1.1 below). In Section 1.3 we discuss the significance of this variational formula and
place it in a broader context. Section 2 gives a precise definition of the various ingredients
in the variational formula, and states some key properties of these ingredients formulated in
terms of a number of propositions. The proof of these propositions is deferred to Section 3.
The proof of the variational formula is given in Section 4. Appendices A–D contain a number
of technical facts that are needed in Sections 2–4.

For a general overview on polymers with disorder, we refer the reader to the monographs
by Giacomin [1] and den Hollander [2].

1.1 Model and free energy

To build our model, we distinguish between three scales: (1) the microscopic scale associated
with the size of the monomers in the copolymer (= 1, by convention); (2) the mesoscopic scale
associated with the size of the droplets in the micro-emulsion (Ln � 1); (3) the macroscopic
scale associated with the size of the copolymer (n� Ln).

Copolymer configurations. Pick n ∈ N ∪ {∞} and let Wn be the set of n-step directed
self-avoiding paths starting at the origin and being allowed to move upwards, downwards and
to the right, i.e.,

Wn =
{
π = (πi)

n
i=0 ∈ (N0 × Z)n+1 : π0 = (0, 1),

πi+1 − πi ∈ {(1, 0), (0, 1), (0,−1)} ∀ 0 ≤ i < n, πi 6= πj ∀ 0 ≤ i < j ≤ n
}
. (1.1)

The copolymer is associated with the path π. The i-th monomer is associated with the bond
(πi−1, πi). The starting point π0 is located at (0, 1) for technical convenience only.

Microscopic disorder in the copolymer. Each monomer is randomly labelled A (hy-
drophobic) or B (hydrophilic), with probability 1

2 each, independently for different monomers.
The resulting labelling is denoted by

ω = {ωi : i ∈ N} ∈ {A,B}N (1.2)

and represents the randomness of the copolymer, i.e., ωi = A (respectively, ωi = B) means
that the i-th monomer is of type A (respectively, B); see Fig. 1.

Mesoscopic disorder in the micro-emulsion. Fix p ∈ (0, 1) and Ln ∈ N. Partition
(0,∞)× R into square blocks of size Ln:

(0,∞)× R =
⋃

x∈N0×Z
ΛLn(x), ΛLn(x) = xLn + (0, Ln]2. (1.3)
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Figure 1: Microscopic disorder ω in the copolymer. Dashed edges represent monomers of type
A (hydrophobic), drawn edges represent monomers of type B (hydrophilic).

L 

L 

n

n

Figure 2: Mesoscopic disorder Ω in the micro-emulsion. Light shaded blocks represent droplets
of type A (oil), dark shaded blocks represent droplets of type B (water). Drawn is also the
copolymer, but without an indication of the microscopic disorder ω attached to it.
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Each block is randomly labelled A (oil) or B (water), with probability p, respectively, 1− p,
independently for different blocks. The resulting labelling is denoted by

Ω = {Ω(x) : x ∈ N0 × Z} ∈ {A,B}N0×Z (1.4)

and represents the randomness of the micro-emulsion, i.e., Ω(x) = A (respectively, Ω(x) = B)
means that the x-th block is of type A (repectively, B); see Fig. 2. The size of the blocks Ln
is assumed to be non-decreasing and to satisfy

lim
n→∞

Ln =∞ and lim
n→∞

Ln
n = 0, (1.5)

i.e., the blocks are large compared to the monomer size but (sufficiently) small compared to
the copolymer size. For convenience we assume that if an A-block and a B-block are on top
of each other, then the interface belongs to the A-block.

Path restriction. We bound the vertical displacement on the block scale in each column
of blocks by M ∈ N. The value of M will be arbitrary but fixed. In other words, instead of
considering the full set of trajectories Wn, we consider only trajectories that exit a column
through a block at most M above or M below the block where the column was entered (see
Fig. 3). Formally, we partition (0,∞)× R into columns of blocks of width Ln, i.e.,

(0,∞)× R = ∪j∈N0Cj,Ln , Cj,Ln = ∪k∈ZΛLn(j, k), (1.6)

where Cj,Ln is the j-th column. For each π ∈ Wn, we let τj be the time at which π leaves the
(j − 1)-th column and enters the j-th column, i.e.,

τj = sup{i ∈ N0 : πi ∈ Cj−1,n} = inf{i ∈ N0 : πi ∈ Cj,n} − 1, j = 1, . . . , Nπ − 1, (1.7)

where Nπ indicates how many columns have been visited by π. Finally, we let v−1(π) = 0
and, for j ∈ {0, . . . , Nπ − 1}, we let vj(π) ∈ Z be such that the block containing the last step
of the copolymer in Cj,n is labelled by (j, vj(π)), i.e., (πτj+1−1, πτj+1) ∈ ΛLN (j, vj(π)). Thus,
we restrict Wn to the subset Wn,M defined as

Wn,M =
{
π ∈ Wn : |vj(π)− vj−1(π)| ≤M ∀ j ∈ {0, . . . , Nπ − 1}

}
. (1.8)

Hamiltonian and free energy. Given ω,Ω,M and n, with each path π ∈ Wn,M we associate
an energy given by the Hamiltonian

Hω,Ω
n,Ln

(π) =
n∑
i=1

(
α 1
{
ωi = ΩLn

(πi−1,πi)
= A

}
+ β 1

{
ωi = ΩLn

(πi−1,πi)
= B

})
, (1.9)

where ΩLn
(πi−1,πi)

denotes the label of the block the step (πi−1, πi) lies in. What this Hamiltonian

does is count the number of AA-matches and BB-matches and assign them energy α and β,
respectively, where α, β ∈ R. (Note that the interaction is assigned to bonds rather than
to sites, and that we do not follow the convention of putting a minus sign in front of the
Hamiltonian.) Similarly to what was done in our earlier papers [3], [4], [5], [6], without loss
of generality we may restrict the interaction parameters to the cone

CONE = {(α, β) ∈ R2 : α ≥ |β|}. (1.10)
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entrance

zone ofblock of
exit

Ln

Ln

Figure 3: Example of a trajectory π ∈ Wn,M with M = 2 crossing the column C0,Ln with
v0(π) = 2.

For n ∈ N, the free energy per monomer is defined as

fω,Ωn (M ;α, β) = 1
n logZω,Ωn,Ln

(M ;α, β) with Zω,Ωn,Ln
(M) =

∑
π∈Wn,M

eH
ω,Ω
n,Ln

(π), (1.11)

and in the limit as n→∞ the free energy per monomer is given by

f(M ;α, β) = lim
n→∞

fω,Ωn,Ln
(M ;α, β), (1.12)

provided this limit exists.

Henceforth, we subtract from the Hamiltonian the quantity α
∑n

i=1 1 {ωi = A}, which by
the law of large numbers is α

2n(1 + o(1)) as n → ∞ and corresponds to a shift of −α
2 in the

free energy. The latter transformation allows us to lighten the notation, starting with the
Hamiltonian, which becomes

Hω,Ω
n,Ln

(π) =
n∑
i=1

(
β 1 {ωi = B} − α 1 {ωi = A}

)
1
{

ΩLn
(πi−1,πi)

= B
}
. (1.13)

1.2 Variational formula for the quenched free energy

Theorem 1.1 below is the main result of our paper. It expresses the quenched free energy
per monomer in the form of a variational formula. To state this variational formula, we need
to define some quantities that capture the way in which the copolymer moves inside single
columns of blocks and samples different columns. A precise definition of these quantities will
be given in Section 2.

Given M ∈ N, the type of a column is denoted by Θ and takes values in a type space VM ,
defined in Section 2.2.1. The type indicates both the vertical displacement of the copolymer in
the column and the mesoscopic disorder seen relative to the block where the copolymer enters
the column. In Section 2.2.1 we further associate with each Θ ∈ VM a quantity uΘ ∈ [tΘ,∞)
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that indicates how many steps on scale Ln the copolymer makes in columns of type Θ, where
tΘ is the minimal number of steps required to cross a column of type Θ. These numbers are
gathered into the set

BVM =
{

(uΘ)Θ∈VM ∈ RVM : uΘ ≥ tΘ ∀Θ ∈ VM , Θ 7→ uΘ continuous
}
. (1.14)

In Section 2.2.2 we introduce the free energy per step ψ(Θ, uΘ;α, β) associated with the
copolymer when crossing a column of type Θ in uΘ steps, which depends on the parameters
α, β. After that it remains to define the family of frequencies with which successive pairs of
different types of columns can be visited by the copolymer. This is done in Section 2.3 and is
given by a family of probability laws ρ in M1(VM ), the set of probability measures on VM ,
forming a set

Rp,M ⊂M1(VM ), (1.15)

which depends on M and on the parameter p.

Theorem 1.1 For every (α, β) ∈ CONE, M ∈ N and p ∈ (0, 1) the free energy in (1.12) exists
for P-a.e. (ω,Ω) and in L1(P), and is given by

f(M ; α, β) = sup
ρ∈Rp,M

sup
(uΘ)Θ∈VM

∈BVM

V (ρ, u) (1.16)

with

V (ρ, u) =

∫
VM uΘ ψ(Θ, uΘ;α, β) ρ(dΘ)∫

VM uΘ ρ(dΘ)
if

∫
VM

uΘ ρ(dΘ) =∞, (1.17)

and V (ρ, u) = −∞ otherwise.

1.3 Discussion

Structure of the variational formula. The variational formula in (1.16) has a simple
structure: each column type Θ has its own number of monomers uΘ and its own free energy
per monomer ψ(Θ, uΘ;α, β) (both on the mesoscopic scale), and the total free energy per
monomer is obtained by weighting each column type with the frequency ρ1(dΘ) at which it
is visited by the copolymer. The numerator is the total free energy, the denominator is the
total number of monomers (both on the mesoscopic scale). The variational formula optimizes
over (uΘ)Θ∈VM ∈ BVM and ρ ∈ Rp,M . The reason why these two suprema appear in (1.16)
is that, as a consequence of assumption (1.5), the mesoscopic scale carries no entropy : all
the entropy comes from the microscopic scale, through the free energy per monomer in single
columns.

In Section 2 we will see that ψ(Θ, uΘ;α, β) in turn is given by a variational formula that
involves the entropy of the copolymer inside a single column (for which an explicit expression
is available) and the quenched free energy per monomer of a copolymer near a single linear
interface (for which there is an abundant literature). Consequently, the free energy of our
model with a random geometry is directly linked to the free energy of a model with a non-
random geometry. This will be crucial for our analysis of the free energy in the sequel paper.

Removal of the corner restriction. In our earlier papers [3], [4], [5], [6], we allowed the
configurations of the copolymer to be given by the subset ofWn consisting of those paths that
enter pairs of blocks through a common corner, exit them at one of the two corners diagonally
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opposite and in between stay confined to the two blocks that are seen upon entering. The
latter is an unphysical restriction that was adopted to simplify the model. In these papers we
derived a variational formula for the free energy per step that had a simpler structure. We
analyzed this variational formula as a function of α, β, p and found that there are two regimes,
supercritical and subcritical, depending on whether the oil blocks percolate or not along the
coarse-grained self-avoiding path. In the supercritical regime the phase diagram turned out
to have two phases, in the subcritical regime it turned out to have four phases, meeting at
two tricritical points.

In a sequel paper we will show that the phase diagrams found in the restricted model are
largely robust against the removal of the corner restriction, despite the fact that the variational
formula is more complicated. In particular, there are again two types of phases: localized
phases (where the copolymer spends a positive fraction of its time near the AB-interfaces)
and delocalized phases (where it spends a zero fraction near the AB-interfaces). Which of
these phases occurs depends on the parameters α, β, p. It is energetically favorable for the
copolymer to stay close to the AB-interfaces, where it has the possibility of placing more than
half of its monomers in their preferred solvent (by switching sides when necessary), but this
comes with a loss of entropy. The competition between energy and entropy is controlled by
the energy parameters α, β (determining the reward of switching sides) and by the density
parameter p (determining the density of the AB-interfaces).

Figure 4: Picture of a directed polymer with bulk disorder. The different shades of black,
grey and white represent different values of the disorder.

Comparison with the directed polymer with bulk disorder. A model of a polymer
with disorder that has been studied intensively in the literature is the directed polymer with
bulk disorder. Here, the set of paths is

Wn =
{
π = (i, πi)

n
i=0 ∈ (N0 × Zd)n+1 : π0 = 0, ‖πi+1 − πi‖ = 1 ∀ 0 ≤ i < n

}
, (1.18)

where ‖ · ‖ is the Euclidean norm on Zd, and the Hamiltonian is

Hω
n (π) = λ

n∑
i=1

ω(i, πi), (1.19)

where λ > 0 is a parameter and ω = {ω(i, x) : i ∈ N, x ∈ Zd} is a field of i.i.d. R-valued
random variables with zero mean, unit variance and finite moment generating function, where
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N is time and Zd is space (see Fig. 4). This model can be viewed as a version of a copolymer
in a micro-emulsion where the droplets are of the same size as the monomers. For this model
no variational formula is known for the free energy, and the analysis relies on the application
of martingale techniques (for details, see e.g. den Hollander [2], Chapter 12).

In our model (which is restricted to d = 1 and has self-avoiding paths that may move north,
south and east instead of north-east and south-east), the droplets are much larger than the
monomers. This causes a self-averaging of the microscopic disorder, both when the copolymer
moves inside one of the solvents and when it moves near an interface. Moreover, since the
copolymer is much larger than the droplets, also self-averaging of the mesoscopic disorder
occurs. This is why the free energy can be expressed in terms of a variational formula, as in
Theorem 1.1. In the sequel paper we will see that this variational formula acts as a jumpboard
for a detailed analysis of the phase diagram. Such a detailed analysis is lacking for the directed
polymer with bulk disorder.

The directed polymer in random environment has two phases: a weak disorder phase
(where the quenched and the annealed free energy are asymptotically comparable) and a
strong disorder phase (where the quenched free energy is asymptotically smaller than the
annealed free energy). The strong disorder phase occurs in dimension d = 1, 2 for all λ > 0
and in dimension d ≥ 3 for λ > λc, with λc ∈ [0,∞] a critical value that depends on d and
on the law of the disorder. It is predicted that in the strong disorder phase the copolymer
moves within a narrow corridor that carries sites with high energy (recall our convention of
not putting a minus sign in front of the Hamiltonian), resulting in superdiffusive behavior in
the spatial direction. We expect a similar behavior to occur in the localized phases of our
model, where the polymer targets the AB-interfaces. It would be interesting to find out how
far the coarsed-grained path in our model travels vertically as a function of n.

2 Key ingredients of the variational formula

In this section we give a precise definition of the various ingredients in Theorem 1.1. In Sec-
tion 2.1 we define the entropy of the copolymer inside a single column (Proposition 2.1) and
the quenched free energy per monomer for a random copolymer near a single linear interface
(Proposition 2.2), which serve as the key microscopic ingredients. In Section 2.2 these quan-
tities are used to derive variational formulas for the quenched free energy per monomer in
a single column (Proposition 2.4). These variational formulas come in two varieties (Propo-
sitions 2.5 and 2.6). In Section 2.3 we define certain percolation frequencies describing how
the copolymer samples the droplets in the emulsion (Proposition 2.8), which serve as the key
mesoscopic ingredients. Propositions 2.4–2.6 will be proved in Section 3. The results in Sec-
tions 2.2–2.3 will be used in Section 4 to prove our variational formula in Theorem 1.1 for the
copolymer in the emulsion, which is our main macroscopic object of interest.

2.1 Path entropies and free energy along a single linear interface

Path entropies. We begin by defining the entropy of a path crossing a single column. Let

H = {(u, l) ∈ [0,∞)× R : u ≥ 1 + |l|},
HL =

{
(u, l) ∈ H : l ∈ Z

L , u ∈ 1 + |l|+ 2N
L

}
, L ∈ N, (2.1)
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and note that H ∩ Q2 = ∪L∈NHL. For (u, l) ∈ HL, denote by WL(u, l) (see Fig. 5) the set
containing those paths π = (0,−1) + π̃ with π̃ ∈ WuL (recall (1.1)) for which πuL = (L, lL).
The entropy per step associated with the paths in WL(u, l) is given by

κ̃L(u, l) = 1
uL log |WL(u, l)|. (2.2)

u.L steps

l.L

L

(0,0)

Figure 5: A trajectory in WL(u, l).

The following proposition will be proved in Appendix A.

Proposition 2.1 For all (u, l) ∈ H ∩Q2 there exists a κ̃(u, l) ∈ [0, log 3] such that

lim
L→∞

(u,l)∈HL

κ̃L(u, l) = sup
L∈N

(u,l)∈HL

κ̃L(u, l) = κ̃(u, l). (2.3)

An explicit formula is available for κ̃(u, l), namely,

κ̃(u, l) =

{
κ(u/|l|, 1/|l|), l 6= 0,
κ̂(u), l = 0,

(2.4)

where κ(a, b), a ≥ 1 + b, b ≥ 0, and κ̂(µ), µ ≥ 1, are given in [3], Section 2.1, in terms of
elementary variational formulas involving entropies (see [3], proof of Lemmas 2.1.1–2.1.2).

Free energy along a single linear interface. To analyze the free energy per monomer in
a single column we need to first analyse the free energy per monomer when the path moves in
the vicinity of an AB-interface. To that end we consider a single linear interface I separating
a liquid B in the lower halfplane from a liquid A in the upper halfplane (including the interface
itself).

For L ∈ N and µ ∈ 1 + 2N
L , let WIL(µ) = WL(µ, 0) denote the set of µL-step directed

self-avoiding paths starting at (0, 0) and ending at (L, 0). Define

φω,IL (µ) =
1

µL
logZω,IL,µ and φIL(µ) = E[φω,IL (µ)], (2.5)

with
Zω,IL,µ =

∑
π∈WIL(µ)

exp
[
Hω,I
L (π)

]
,

Hω,I
L (π) =

µL∑
i=1

(
β 1{ωi = B} − α 1{ωi = A}

)
1{(πi−1, πi) < 0},

(2.6)
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where (πi−1, πi) < 0 means that the i-th step lies in the lower halfplane, strictly below the
interface (see Fig. 6).

The following proposition was derived in [3], Section 2.2.2.

Proposition 2.2 For all (α, β) ∈ CONE and µ ∈ Q∩ [1,∞) there exists a φI(µ) = φI(µ;α, β)
∈ R such that

lim
L→∞
µ∈1+ 2N

L

φω,IL (µ) = φI(µ) = φI(µ;α, β) for P-a.e. ω and in L1(P). (2.7)

It is easy to check (via concatenation of trajectories) that µ 7→ µφI(µ;α, β) is concave. For
technical reasons we need to assume that it is strictly concave, a property which we believe
to be true but are unable to verify:

Assumption 2.3 For all (α, β) ∈ CONE the function µ 7→ µφI(µ;α, β) is strictly concave on
[1,∞).

Solvent A

Solvent B Interface

µL steps

L

Figure 6: Copolymer near a single linear interface.

2.2 Free energy in a single column and variational formulas

In this section we use Propositions 2.1–2.2 to derive a variational formula for the free energy
per step in a single column (Proposition 2.4). The variational formula comes in three varieties
(Propositions 2.5 and 2.6), depending on whether there is or is not an AB-interface between
the heights where the copolymer enters and exits the column, and in the latter case whether
an AB-interface is reached or not.

In what follows we need to consider the randomness in a single column. To that aim, we
recall (1.6), we pick L ∈ N and once Ω is chosen, we can record the randomness of Cj,L as

Ω(j, · ) = {Ω(j,l) : l ∈ Z}. (2.8)

We will also need to consider the randomness of the j-th column seen by a trajectory that
enters Cj,L through the block Λj,k with k 6= 0 instead of k = 0. In this case, the randomness
of Cj,L is recorded as

Ω(j,k+ · ) = {Ω(j,k+l) : l ∈ Z}. (2.9)

10



Pick L ∈ N, χ ∈ {A,B}Z and consider C0,L endowed with the disorder χ, i.e., Ω(0, ·) = χ.
Let (ni)i∈Z ∈ ZZ be the successive heights of the AB-interfaces in C0,L divided by L, i.e.,

· · · < n−1 < n0 ≤ 0 < n1 < n2 < . . . . (2.10)

and the j-th interface of C0,L is Ij = {0, . . . , L} × {njL} (see Fig. 7). Next, for r ∈ N0 we set

kr,χ = 0 if n1 > r and kr,χ = max{i ≥ 1: ni ≤ r} otherwise, (2.11)

while for r ∈ −N we set

kr,χ = 0 if n0 ≤ r and kr,χ = min{i ≤ 0: ni ≥ r + 1} − 1 otherwise. (2.12)

Thus, |kr,χ| is the number of AB-interfaces between heigths 1 and rL in C0,L.

n

n 

n 

1

0

-1

0

1

2

3

-1

-2

-3

Figure 7: Example of a column with disorder χ = (. . . , χ(−3), χ(−2), χ(−1), χ(0), χ(1), χ(2),
. . . ) = (. . . , B,A,B,B,B,A, , . . . ). In this example, for instance, k−2,χ = −1 and k1,χ = 0.

2.2.1 Free energy in a single column

Column crossing characteristics. Pick L,M ∈ N, and consider the first column C0,L. The
type of C0,L is determined by Θ = (χ,Ξ, x), where χ = (χj)j∈Z encodes the type of each block
in C0,L, i.e., χj = Ω(0,j) for j ∈ Z, and (Ξ, x) indicates which trajectories π are taken into
account. In the latter, Ξ is given by (∆Π, b0, b1) such that the vertical increment in C0,L on
the block scale is ∆Π and satisfies |∆Π| ≤ M , i.e., π enters C0,L at (0, b0L) and exits C0,L

at (L, (∆Π + b1)L). As in (2.11) and (2.12), we set kΘ = k∆Π,χ and we let Vint be the set
containing those Θ satisfying kΘ 6= 0. Thus, Θ ∈ Vint means that the trajectories crossing
C0,L from (0, b0L) to (L, (∆Π + b1)L) necessarily hit an AB-interface, and in this case we set
x = 1. If, on the other hand, Θ ∈ Vnint = V \Vint, then we have kΘ = 0 and we set x = 1 when
the set of trajectories crossing C0,L from (0, b0L) to (L, (∆Π + b1)L) is restricted to those that
do not reach an AB-interface before exiting C0,L, while we set x = 2 when it is restricted to
those trajectories that reach at least one AB-interface before exiting C0,L. To fix the possible
values taken by Θ = (χ,Ξ, x) in a column of width L, we put VL,M = Vint,L,M ∪Vnint,L,M with

Vint,L,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z×
{

1
L ,

2
L , . . . , 1

}2 × {1} :

|∆Π| ≤M, k∆Π,χ 6= 0
}
,

Vnint,L,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z×
{

1
L ,

2
L , . . . , 1

}2 × {1, 2} :

|∆Π| ≤M, k∆Π,χ = 0
}
.

(2.13)

11



Thus, the set of all possible values of Θ is VM = ∪L≥1VL,M , which we partition into VM =
Vint,M ∪ Vnint,M (see Fig. 8) with

Vint,M = ∪L∈N Vint,L,M

=
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× (Q(0,1])
2 × {1} : |∆Π| ≤M, k∆Π,χ 6= 0

}
,

Vnint,M = ∪L∈N Vnint,L,M

=
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× (Q(0,1])
2 × {1, 2} : |∆Π| ≤M, k∆Π,χ = 0

}
,

(2.14)

where, for all I ⊂ R, we set QI = I∩Q. We define the closure of VM as VM = V int,M ∪Vnint,M

with

V int,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× [0, 1]2 × {1} : |∆Π| ≤M, k∆Π,χ 6= 0
}
,

Vnint,M =
{

(χ,∆Π, b0, b1, x) ∈ {A,B}Z × Z× [0, 1]2 × {1, 2} : |∆Π| ≤M, k∆Π,χ = 0
}
.

(2.15)

0
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 n 
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n
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1

Δ π=6

b 

b Δ π=-3

b

b 

1

4

3

2

1

0

0

0

1

Figure 8: Labelling of coarse-grained paths and columns. On the left the type of the column
is in Vint,M , on the right it is in Vnint,M (with M ≥ 6).

Time spent in columns. We pick L,M ∈ N, Θ = (χ,∆Π, b0, b1, x) ∈ VL,M and we specify
the total number of steps that a trajectory crossing the column C0,L of type Θ is allowed to
make. For Θ = (χ,∆Π, b0, b1, 1), set

tΘ = 1 + sign(∆Π) (∆Π + b1 − b0) 1{∆Π 6=0} + |b1 − b0| 1{∆Π=0}, (2.16)

so that a trajectory π crossing a column of width L from (0, b0L) to (L, (∆Π + b1)L) makes
a total of uL steps with u ∈ tΘ + 2N

L . For Θ = (χ,∆Π, b0, b1, 2) in turn, recall (2.10) and let

tΘ = 1 + min{2n1 − b0 − b1 −∆Π, 2|n0|+ b0 + b1 + ∆Π}, (2.17)
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so that a trajectory π crossing a column of width L and type Θ ∈ Vnint,L,M from (0, b0L) to
(L, (∆Π + b1)L) and reaching an AB-interface makes a total of uL steps with u ∈ tΘ + 2N

L .

b L
0

b L1

L

L

uL steps

∆ ∏

Figure 9: Example of a uL-step path inside a column of type (χ,∆Π, b0, b1, 1) ∈ Vint,L with
disorder χ = (. . . , χ(0), χ(1), χ(2), . . . ) = (. . . , A,B,A, . . . ), vertical displacement ∆Π = 2,
entrance height b0 and exit height b1.

b
0

L

b1 L

L L

L

uL steps

Figure 10: Two examples of a uL-step path inside a column of type (χ,∆Π, b0, b1, 1) ∈
Vnint,L (left picture) and (χ,∆Π, b0, b1, 2) ∈ Vnint,L (right picture) with disorder χ =
(. . . , χ(0), χ(1), χ(2), χ(3), χ(4), . . . ) = (. . . , B,B,B,B,A, . . . ), vertical displacement ∆Π = 2,
entrance height b0 and exit height b1.

At this stage, we can fully determine the set WΘ,u,L consisting of the uL-step trajectories
π that are considered in a column of width L and type Θ. To that end, for Θ ∈ Vint,L,M we
map the trajectories π ∈ WL(u,∆Π+ b1− b0) onto C0,L such that π enters C0,L at (0, b0L) and
exits C0,L at (L, (∆Π + b1)L) (see Fig. 9), and for Θ ∈ Vnint,L,M we remove, dependencing on
x ∈ {1, 2}, those trajectories that reach or do not reach an AB-interface in the column (see
Fig. 10). Thus, for Θ ∈ Vint,L,M and u ∈ tΘ + 2N

L , we let

WΘ,u,L =
{
π = (0, b0L) + π̃ : π̃ ∈ WL(u,∆Π + b1 − b0)

}
, (2.18)
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and, for Θ ∈ Vnint,L,M and u ∈ tΘ + 2N
L ,

WΘ,u,L =
{
π ∈ (0, b0L) +WL(u,∆Π + b1 − b0) : π reaches no AB-interface

}
if xΘ = 1,

WΘ,u,L =
{
π ∈ (0, b0L) +WL(u,∆Π + b1 − b0) : π reaches an AB-interface

}
if xΘ = 2,

(2.19)

with xΘ the last coordinate of Θ ∈ VM . Next, we set

V∗L,M =
{

(Θ, u) ∈ VL,M × [0,∞) : u ∈ tΘ + 2N
L

}
,

V∗M =
{

(Θ, u) ∈ VM ×Q[1,∞) : u ≥ tΘ
}
,

V∗M =
{

(Θ, u) ∈ VM × [1,∞) : u ≥ tΘ
}
, (2.20)

which we partition into V∗int,L,M ∪ V∗nint,L,M , V∗int,M ∪ V∗nint,M and V∗int,M ∪ V
∗
nint,M . Note that

for every (Θ, u) ∈ V∗M there are infinitely many L ∈ N such that (Θ, u) ∈ V∗L,M , because
(Θ, u) ∈ V∗qL,M for all q ∈ N as soon as (Θ, u) ∈ V∗L,M .

Restriction on the number of steps per column. In what follows, we set

EIGH = {(M,m) ∈ N× N : m ≥M + 2}, (2.21)

and, for (M,m) ∈ EIGH, we consider the situation where the number of steps uL made by a
trajectory π in a column of width L ∈ N is bounded by mL. Thus, we restrict the set VL,M
to the subset V mL,M containing only those types of columns Θ that can be crossed in less than
mL steps, i.e.,

V mL,M = {Θ ∈ VL,M : tΘ ≤ m}. (2.22)

Note that the latter restriction only conconcerns those Θ satisfying xΘ = 2. When xΘ = 1 a
quick look at (2.16) suffices to state that tΘ ≤ M + 2 ≤ m. Thus, we set V mL,M = V mint,L,M ∪
V mnint,L,M with V mint,L,M = Vint,L,M and with

V mnint,L,M =
{

Θ ∈ {A,B}Z × Z×
{

1
L ,

2
L , . . . , 1

}2 × {1, 2} :

|∆Π| ≤M, kΘ = 0 and tΘ ≤ m
}
. (2.23)

The sets V mM = V mint,M ∪ V mnint,M and V mM = V mint,M ∪ V
m
nint,M are obtained by mimicking (2.14–

2.15). In the same spirit, we restrict V∗L,M to

V∗,mL,M = {(Θ, u) ∈ V∗L,M : Θ ∈ V mL,M , u ≤ m} (2.24)

and V∗L,M = V∗int,L,M ∪ V∗nint,L,M with

V∗,mint,L,M =
{

(Θ, u) ∈ V mint,L,M × [1,m] : u ∈ tΘ + 2N
L

}
,

V∗mnint,L,M =
{

(Θ, u) ∈ V mnint,L,M × [1,m] : u ∈ tΘ + 2N
L

}
.

(2.25)

We set also V∗,mM = V∗,mint,M ∪V
∗,m
nint,M with V∗,mint,M = ∪L∈NV∗,mint,L,M and V∗,mnint,M = ∪L∈NV∗,mnint,L,M ,

and rewrite these as

V∗,mint,M =
{

(Θ, u) ∈ V mint,M ×Q[1,m] : u ≥ tΘ
}
,

V∗,mnint,M =
{

(Θ, u) ∈ V mnint,M ×Q[1,m] : u ≥ tΘ
}
. (2.26)
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We further set V ∗M = V ∗,mint,M ∪ V
∗,m
nint,M with

V ∗,mint,M =
{

(Θ, u) ∈ V mint,M × [1,m] : u ≥ tΘ
}
,

V ∗,mnint,M =
{

(Θ, u) ∈ V mnint,M × [1,m] : u ≥ tΘ
}
.

(2.27)

Existence and uniform convergence of free energy per column. Recall (2.18), (2.19)
and, for L ∈ N, ω ∈ {A,B}N and (Θ, u) ∈ V ∗L,M , we associate with each π ∈ WΘ,u,L the
energy

Hω,χ
uL,L(π) =

uL∑
i=1

(
β 1 {ωi = B} − α 1 {ωi = A}

)
1
{
χL(πi−1,πi)

= B
}
, (2.28)

where χL(πi−1,πi)
indicates the label of the block containing (πi−1, πi) in a column with disorder

χ of width L. (Recall that the disorder in the block is part of the type of the block.) The
latter allows us to define the quenched free energy per monomer in a column of type Θ and
size L as

ψωL(Θ, u) =
1

uL
logZωL(Θ, u) with ZωL(Θ, u) =

∑
π∈WΘ,u,L

eH
ω,χ
uL,L(π). (2.29)

Abbreviate ψL(Θ, u) = E[ψωL(Θ, u)], and note that for M ∈ N, m ≥M + 2 and (Θ, u) ∈ V ∗,mL,M

all π ∈ WΘ,u,L necessarily remain in the blocks ΛL(0, i) with i ∈ {−m + 1, . . . ,m − 1}.
Consequently, the dependence on χ of ψωL(Θ, u) is restricted to those coordinates of χ indexed
by {−m+ 1, . . . ,m− 1}. The following proposition will be proven in Section 3.

Proposition 2.4 For every M ∈ N and (Θ, u) ∈ V∗M there exists a ψ(Θ, u) ∈ R such that

lim
L→∞

(Θ,u)∈V∗
L,M

ψωL(Θ, u) = ψ(Θ, u) = ψ(Θ, u;α, β) ω − a.s. (2.30)

Moreover, for every (M,m) ∈ EIGH the convergence is uniform in (Θ, u) ∈ V∗,mM .

Uniform bound on the free energies. Pick (α, β) ∈ CONE, n ∈ N, ω ∈ {A,B}N, Ω ∈
{A,B}N0×Z, and let W̄n be any non-empty subset ofWn (recall (1.1)). Note that the quenched
free energies per monomer introduced until now are all of the form

ψn = 1
n log

∑
π∈W̄n

eHn(π), (2.31)

where Hn(π) may depend on ω and Ω and satisfies −αn ≤ Hn(π) ≤ αn for all π ∈ W̄n (recall
that |β| ≤ α in CONE). Since 1 ≤ |W̄n| ≤ |Wn| ≤ 3n, we have

|ψn| ≤ log 3 + α =def Cuf(α). (2.32)

The uniformity of this bound in n, ω and Ω allows us to average over ω and/or Ω or to let
n→∞.
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2.2.2 Variational formulas for the free energy in a single column

We next show how the free energies per column can be expressed in terms of two variational
formulas involving the path entropy and the single interface free energy defined in Section 2.1.
Note that M ∈ N is given until the end of the section.

Free energy in columns of class int. Pick Θ ∈ Vint,M and put

l1 = 1{∆Π>0}(n1 − b0) + 1{∆Π<0}(b0 − n0),

lj = 1{∆Π>0}(nj − nj−1) + 1{∆Π<0}(n−j+2 − n−j+1) for j ∈ {2, . . . , |kΘ|},
l|kΘ|+1 = 1{∆Π>0}(∆Π + b1 − nkΘ

) + 1{∆Π<0}(nkΘ+1 −∆Π− b1), (2.33)

i.e., l1 is the vertical distance between the entrance point and the first interface, li is the
vertical distance between the i-th interface and the (i + 1)-th interface, and l|kΘ|+1 is the
vertical distance between the last interface and the exit point.

Denote by (h) and (a) the triples (hA, hB, h
I) and (aA, aB, a

I). For (lA, lB) ∈ (0,∞)2 and
u ≥ lA + lB + 1, put

L(lA, lB;u) =
{

(h), (a) ∈ [0, 1]3 × [0,∞)3 : hA + hB + hI = 1, aA + aB + aI = u

aA ≥ hA + lA, aB ≥ hB + lB, a
I ≥ hI

}
. (2.34)

With the help of (2.33) and (2.34) we can now provide a variational characterization of the
free energy in columns of type Θ of class int. Let lA(χ,∆Π, b0, b1) and lB(χ,∆Π, b0, b1)
correspond to the minimal vertical distance the copolymer must cross in blocks of type A and
B, respectively, in a column with disorder χ when going from (0, b0) to (1,∆Π + b1), i.e.,

lA(χ,∆Π, b0, b1) = 1{∆Π>0}

|kΘ|+1∑
j=1

lj1{χ(nj−1)=A} + 1{∆Π<0}

|kΘ|+1∑
j=1

lj1{χ(n−j+1)=A},

lB(χ,∆Π, b0, b1) = 1{∆Π>0}

|kΘ|+1∑
j=1

lj1{χ(nj−1)=B} + 1{∆Π<0}

|kΘ|+1∑
j=1

lj1{χ(n−j+1)=B}. (2.35)

The following proposition will be proven in Section 3.

Proposition 2.5 For (Θ, u) ∈ V∗int,M ,

ψ(Θ, u) = ψint(u, lA, lB)

= sup
(h),(a)∈L(lA, lB ;u)

aA κ̃
(
aA
hA
, lAhA

)
+ aB

[
κ̃
(
aB
hB
, lBhB

)
+ β−α

2

]
+ aI φI( a

I

hI
)

u
. (2.36)

Free energy in columns of class nint. Pick Θ ∈ Vnint,M . In this case, there is no AB-
interface between b0 and ∆Π + b1, which means that ∆Π < n1 if ∆Π ≥ 0 and ∆Π ≥ n0

if ∆Π < 0 (n0 and n1 being defined in (2.10)). Let lnint(∆Π, b0, b1) be the vertical distance
between the entrance point (0, b0) and the exit point (1,∆Π + b1), i.e.,

lnint(∆Π, b0, b1) = 1{∆Π≥0}(∆Π− b0 + b1) + 1{∆Π<0}(|∆Π|+ b0 − b1) + 1{∆Π=0}|b1 − b0|,
(2.37)
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and let lint(χ,∆Π, b0, b1) be the minimal vertical distance a trajectory has to cross in a column
with disorder χ, starting from (0, b0), to reach the closest AB-interface before exiting at
(1,∆Π + b1), i.e.,

lint(χ,∆Π, b0, b1) = min{2n1 − b0 − b1 −∆Π, 2|n0|+ b0 + b1 + ∆Π}. (2.38)

The following proposition will be proved in Section 3.

Proposition 2.6 For (Θ, u) ∈ V∗nint,M such that xΘ = 1,

ψ(Θ, u) = κ̃(u, lnint) + β−α
2 1{χ(0)=B}. (2.39)

For (Θ, u) ∈ V∗nint,M such that xΘ = 2,

ψ(Θ, u) = ψnint(u, lint; χ(0))

= sup
hI∈[0,1],

uI∈[hI ,u+hI−1−lint]

(u− uI)
[
κ̃
(
u−uI
1−hI ,

lint

1−hI
)

+ β−α
2 1{χ(0)=B}

]
+ uIφI(u

I

hI
)

u
. (2.40)

The importance of Propositions 2.5–2.6 is that they express the free energy in a single
column in terms of the path entropy in a single column κ̃ and the free energy along a single
linear interface φI , which were defined in Section 2.1 and are well understood.

2.3 Mesoscopic percolation frequencies

In this section, we define a set of probability laws providing the frequencies with which each
type of column can be crossed by the copolymer.

Coarse-grained paths. For x ∈ N0 × Z and n ∈ N, let cx,n denote the center of the block
ΛLn(x) defined in (1.3), i.e.,

cx,n = xLn + (1
2 ,

1
2)Ln, (2.41)

and abbreviate
(N0 × Z)n = {cx,n : x ∈ N0 × Z}. (2.42)

Let Ŵ be the set of coarse-grained paths on (N0×Z)n that start at c0,n, are self-avoiding and
are allowed to jump up, down and to the right between neighboring sites of (N0 × Z)n, i.e.,

the increments of Π̂ = (Π̂j)j∈N0 ∈ Ŵ are (0, Ln), (0,−Ln) and (Ln, 0). (These paths are the

coarse-grained counterparts of the paths π introduced in (1.1).) For l ∈ N ∪ {∞}, let Ŵl be
the set of l-step coarse-grained paths.

Recall, for π ∈ Wn, the definitions of Nπ and (vj(π))j≤Nπ−1 given below (1.7). With π

we associate a coarse-grained path Π̂ ∈ ŴNπ that describes how π moves with respect to
the blocks. The construction of Π̂ is done as follows: Π̂0 = c(0,0), Π̂ moves vertically until it
reaches c(0,v0), moves one step to the right to c(1,v0), moves vertically until it reaches c(1,v1),

moves one step to the right to c(2,v1), and so on. The vertical increment of Π̂ in the j-th

column is ∆Π̂j = (vj − vj−1)Ln (see Figs. 8–10).
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Figure 11: Example of a coarse-grained path.

To characterize a path π, we will often use the sequence of vertical increments of its
associated coarse-grained path Π̂, modified in such a way that it does not depend on Ln
anymore. To that end, with every π ∈ Wn we associate Π = (Πk)

Nπ−1
k=0 such that Π0 = 0 and,

Πk =
k−1∑
j=0

∆Πj with ∆Πj =
1

Ln
∆Π̂j , j = 0, . . . , Nπ − 1. (2.43)

Pick M ∈ N and note that π ∈ Wn,M if and only if |∆Πj | ≤M for all j ∈ {0, . . . , Nπ − 1}.

Percolation frequencies along coarse-grained paths. Given M ∈ N, we denote by
M1(VM ) the set of probability measures on VM . Pick Ω ∈ {A,B}N0×Z, Π ∈ ZN0 such that
Π0 = 0 and |∆Πi| ≤M for all i ≥ 0 and b = (bj)j∈N0 ∈ (Q(0,1])

N0 . Set Θtraj = (Ξj)j∈N0 with

Ξj =
(
∆Πj , bj , bj+1

)
, j ∈ N0, (2.44)

let
XΠ,Ω =

{
x ∈ {1, 2}N0 : (Ω(i,Πi + ·),Ξi, xi) ∈ VM ∀ i ∈ N0

}
, (2.45)

and for x ∈ XΠ,Ω set

Θj =
(
Ω(j,Πj + ·),∆Πj , bj , bj+1, xj

)
, j ∈ N0. (2.46)

With the help of (2.46), we can define the empirical distribution

ρN (Ω,Π, b, x)(Θ) =
1

N

N−1∑
j=0

1{Θj=Θ}, N ∈ N, Θ ∈ VM , (2.47)

Definition 2.7 For Ω ∈ {A,B}N0×Z and M ∈ N, let

RΩ
M,N =

{
ρN (Ω,Π, b, x) with b = (bj)j∈N0 ∈ (Q(0,1])

N0 ,

Π = (Πj)j∈N0 ∈ {0} × ZN : |∆Πj | ≤M ∀ j ∈ N0,

x = (xj)j∈N0 ∈ {1, 2}N0 :
(
Ω(j,Πj + ·),∆Πj , bj , bj+1, xj

)
∈ VM

} (2.48)

and
RΩ
M = closure

(
∩N ′∈N ∪N≥N ′ RΩ

M,N

)
, (2.49)

both of which are subsets of M1(VM ).
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Proposition 2.8 For every p ∈ (0, 1) and M ∈ N there exists a closed set Rp,M (M1(VM )
such that

RΩ
M = Rp,M for P-a.e. Ω. (2.50)

Proof. Note that, for every Ω ∈ {A,B}N0×Z, the set RΩ
M does not change when finitely

many variables in Ω are changed. Therefore RΩ
M is measurable with respect to the tail σ-

algebra of Ω. Since Ω is an i.i.d. random field, the claim follows from Kolmogorov’s zero-one
law. Because of the constraint on the vertical displacement, Rp,M does not coincide with
M1(VM ). �

3 Proof of Propositions 2.4–2.6

In this section we prove Propositions 2.4 and 2.5–2.6, which were stated in Sections 2.1–2.3 and
contain the precise definition of the key ingredients of the variational formula in Theorem 1.1.
In Section 4 we will use these propositions to prove Theorem 1.1.

In Section 3.1 we associate with each trajectory π in a column a sequence recording the
indices of the AB-interfaces successively visited by π. The latter allows us to state a key
proposition, Proposition 3.1 below, from which Propositions 2.4 and 2.5–2.6 are straightfor-
ward consequences. In Section 3.2 we give an outline of the proof of Proposition 3.1, in
Sections 3.3–3.5 we provide the details.

3.1 Column crossing characteristic

3.1.1 The order of the visits to the interfaces

Pick (M,m) ∈ EIGH. To prove Proposition 2.4, instead of considering (Θ, u) ∈ V∗,mM , we will
restrict to (Θ, u) ∈ V∗,mint,M . Our proof can be easily extended to (Θ, u) ∈ V∗,mnint,M .

Pick (Θ, u) ∈ V∗,mint,M , recall (2.10) and set JΘ,u = {N ↓Θ,u, . . . ,N
↑
Θ,u}, with

N ↑Θ,u = max{i ≥ 1: ni ≤ u} and N ↑Θ,u = 0 if n1 > u. (3.1)

N ↓Θ,u = min{i ≤ 0: |ni| ≤ u} and N ↓Θ,u = 1 if |n0| > u.

Next pick L ∈ N so that (Θ, u) ∈ V∗int,L,M and recall that for j ∈ JΘ,u the j-th interface of the
Θ-column is Ij = {0, . . . , L} × {njL}. Note also that π ∈ WΘ,u,L makes uL steps inside the

column and therefore can not reach the AB-interfaces labelled outside {N ↓Θ,u, . . . ,N
↑
Θ,u}.

First, we associate with each trajectory π ∈ WΘ,u,L the sequence J(π) that records the
indices of the interfaces that are successively visited by π. Next, we pick π ∈ WΘ,u,L, and
define τ1, J1 as

τ1 = inf{i ∈ N : ∃j ∈ JΘ,u : πi ∈ Ij}, πτ1 ∈ IJ1 , (3.2)

so that J1 = 0 (respectively, J1 = 1) if the first interface reached by π is I0 (respectively, I1).
For i ∈ N \ {1}, we define τi, Ji as

τi = inf
{
t > τi−1 : ∃j ∈ JΘ,u \ {Ji−1}, πi ∈ Ij

}
, πτi ∈ IJi , (3.3)
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so that the increments of J(π) are restricted to −1 or 1. The length of J(π) is denoted by
m(π) and corresponds to the number of jumps made by π between neighboring interfaces

before time uL, i.e., J(π) = (Ji)
m(π)
i=1 with

m(π) = max{i ∈ N : τi ≤ uL}. (3.4)

Note that (Θ, u) ∈ V∗,mint,M necessarily implies kΘ ≤ m(π) ≤ u ≤ m. Set

Sr = {j = (ji)
r
i=1 ∈ ZN : j1 ∈ {0, 1}, ji+1 − ji ∈ {−1, 1} ∀ 1 ≤ i ≤ r − 1}, r ∈ N, (3.5)

and, for Θ ∈ V, r ∈ {1, . . . ,m} and j ∈ Sr, define

l1 = 1{j1=1}(n1 − b0) + 1{j1=0}(b0 − n0),

li = |nji − nji−1 | for i ∈ {2, . . . , r},
lr+1 = 1{jr=kΘ+1}(nkΘ+1 −∆Π− b1) + 1{jr=kΘ}(∆Π + b1 − nkΘ

), (3.6)

so that (li)i∈{1,...,r+1} depends on Θ and j. Set

AΘ,j = {i ∈ {1, . . . , r + 1} : A between Iji−1 and Iji}, (3.7)

BΘ,j = {i ∈ {1, . . . , r + 1} : B between Iji−1 and Iji},

and set lΘ,j = (lA,Θ,j , lB,Θ,j) with

lA,Θ,j =
∑

i∈AΘ,j
li, lB,Θ,j =

∑
i∈BΘ,j

li. (3.8)

For L ∈ N and (Θ, u) ∈ V∗,mint,L,M , we denote by SΘ,u,L the set {J(π), π ∈ WΘ,u,L}. It is not
difficult to see that a sequence j ∈ Sr belongs to SΘ,u,L if and only if it satisfies the two
following conditions. First, jr ∈ {kΘ, kΘ + 1}, since jr is the index of the interface last visited
before the Θ-column is exited. Second, u ≥ 1 + lA,Θ,j + lB,Θ,j because the number of steps
taken by a trajectory π ∈ WΘ,u,L satisfying J(π) = j must be large enough to ensures that all
interfaces Ijs , s ∈ {1, . . . , r}, can be visited by π before time uL. Consequently, SΘ,u,L does
not depend on L and can be written as SΘ,u = ∪mr=1SΘ,u,r, where

SΘ,u,r = {j ∈ Sr : jr ∈ {kΘ, kΘ + 1}, u ≥ 1 + lA,Θ,j + lB,Θ,j}. (3.9)

Thus, we partition WΘ,u,L according to the value taken by J(π), i.e.,

WΘ,u,L =
m⋃
r=1

⋃
j∈SΘ,u,r

WΘ,u,L,j , (3.10)

where WΘ,u,L,j contains those trajectories π ∈ WΘ,u,L for which J(π) = j.

Next, for j ∈ SΘ,u, we define (recall (2.28))

ψωL(Θ, u, j) =
1

uL
logZωL(Θ, u, j), ψL(Θ, u, j) = E

[
ψωL(Θ, u, j)

]
, (3.11)

with
ZωL(Θ, u, j) =

∑
π∈WΘ,u,L,j

eH
ω,χ
uL,L(π). (3.12)

For each L ∈ N satisfying (Θ, u) ∈ V∗,mint,L,M and each j ∈ SΘ,u, the quantity lA,Θ,jL (respec-
tively, lB,Θ,jL) corresponds to the minimal vertical distance a trajectory π ∈ WΘ,u,L,j has to
cross in solvent A (respectively, B).
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3.1.2 Key proposition

Recalling (2.36) and (3.8), we define the free energy associated with Θ, u, j as

ψ(Θ, u, j) = ψint(u, lΘ,j) (3.13)

= sup
(h),(u)∈L(lΘ,j ;u)

uA κ̃
(
uA
hA
,
lA,Θ,j
hA

)
+ uB

[
κ̃
(
uB
hB
,
lB,Θ,j
hB

)
+ β−α

2

]
+ uI φ(u

I

hI
)

u
.

Proposition 3.1 below states that limL→∞ ψL(Θ, u, j) = ψ(Θ, u, j) uniformly in (Θ, u) ∈ V∗,mint,M

and j ∈ SΘ,u.

Proposition 3.1 For every M,m ∈ N such that m ≥M + 2 and every ε > 0 there exists an
Lε ∈ N such that∣∣ψL(Θ, u, j)− ψ(Θ, u, j)

∣∣ ≤ ε ∀ (Θ, u) ∈ V∗,mint,L,M , j ∈ SΘ,u, L ≥ Lε. (3.14)

Proof of Propositions 2.4 and 2.5–2.6 subject to Proposition 3.1. Pick ε > 0, L ∈ N
and (Θ, u) ∈ V∗,mint,L,M . Recall (2.35) and note that lA(Θ)L and lB(Θ)L are the minimal vertical
distances the trajectories of WΘ,u,L have to cross in blocks of type A, respectively, B. For
simplicity, in what follows the Θ-dependence of lA and lB will be suppressed. In other words,
lA and lB are the two coordinates of lΘ,f (recall (3.8)) with f = (1, 2, . . . , |kΘ|) when ∆Π ≥ 0
and f = (0,−1, . . . ,−|kΘ|+ 1) when ∆Π < 0, so (2.36) and (3.13) imply

ψint(u, lA, lB) = ψ(Θ, u, f). (3.15)

Hence Propositions 2.4 and 2.5 will be proven once we show that limL→∞ ψL(Θ, u) = ψ(Θ, u, f)
uniformly in (Θ, u) ∈ V∗,mint,L,M . Moreover, a look at (3.13), (3.15) and (2.36) allows us to assert
that for every j ∈ SΘ,u we have ψ(Θ, u, j) ≤ ψ(Θ, u, f). The latter is a consequence of the
fact that l 7→ κ̃(u, l) decreases on [0, u− 1] (see Lemma A.5(ii) in Appendix A) and that

lA = lA,Θ,f = min{lA,Θ,j : j ∈ SΘ,u},
lB = lB,Θ,f = min{lB,Θ,j : j ∈ SΘ,u}. (3.16)

By applying Proposition 3.1 we have, for L ≥ Lε,

ψL(Θ, u, j) ≤ ψ(Θ, u, f) + ε ∀ (Θ, u) ∈ V∗,mint,L,M , ∀ j ∈ SΘ,u,

ψL(Θ, u, f) ≥ ψ(Θ, u, f)− ε ∀ (Θ, u) ∈ V∗,mint,L,M . (3.17)

The second inequality in (3.17) allows us to write, for L ≥ Lε,

ψ(Θ, u, f)− ε ≤ ψL(Θ, u, f) ≤ ψL(Θ, u) ∀ (Θ, u) ∈ V∗,mint,L,M . (3.18)

To obtain the upper bound we introduce

AL,ε =
{
ω : |ψωL(Θ, u, j)− ψL(Θ, u, j)| ≤ ε ∀ (Θ, u) ∈ V∗,mint,L,M , ∀ j ∈ SΘ,u

}
, (3.19)

so that

ψL(Θ, u) ≤ E
[
1AcL,ε ψ

ω
L(Θ, u)

]
+ E

[
1AL,ε ψ

ω
L(Θ, u)

]
(3.20)

≤ Cuf(α)P(AcL,ε) + 1
uLE

[
1AL,ε log

∑
j∈SΘ,u

euL(ψL(Θ,u,j)+ε)
]
,
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where we use (2.32) to bound the first term in the right-hand side, and the definition of AL,ε
to bound the second term. Next, with the help of the first inequality in (3.17) we can rewrite
(3.20) for L ≥ Lε and (Θ, u) ∈ V∗,mint,L,M in the form

ψL(Θ, u) ≤ Cuf(α)P(AcL,ε) + 1
uL log | ∪mr=1 Sr|+ ψ(Θ, u, f) + 2ε. (3.21)

At this stage we want to prove that limL→∞ P(AcL,ε) = 0. To that end, we use the concen-
tration of measure property in (C.3) in Appendix C with l = uL, Γ = WΘ,u,L,j , η = εuL,
ξi = −α1{ωi = A}+ β1{ωi = B} for all i ∈ N and T (x, y) = 1{χLn(x,y) = B}. We then obtain

that there exist C1, C2 > 0 such that, for all L ∈ N, (Θ, u) ∈ V∗,mint,L,M and j ∈ SΘ,u,

P
(
|ψωL(Θ, u, j)− ψL(Θ, u, j)| > ε

)
≤ C1 e

−C2 ε2 uL. (3.22)

The latter inequality, combined with the fact that |V∗,mint,L,M | grows polynomialy in L, allows
us to assert that limL→∞ P(AcL,ε) = 0. Next, we note that | ∪mr=1 Sr| <∞, so that for Lε large
enough we obtain from (3.21) that, for L ≥ Lε,

ψL(Θ, u) ≤ ψ(Θ, u, f) + 3ε ∀ (Θ, u) ∈ V∗,mint,L,M . (3.23)

Now (3.18) and (3.23) are sufficient to complete the proof of Propositions 2.4–2.5. The proof
of Proposition 2.6 follows in a similar manner after minor modifications. �

3.2 Structure of the proof of Proposition 3.1

Intermediate column free energies. Let

Gm
M =

{
(L,Θ, u, j) : (Θ, u) ∈ V∗,mint,L,M , j ∈ SΘ,u

}
, (3.24)

and define the following order relation.

Definition 3.2 For g, g̃ : Gm
M 7→ R, write g ≺ g̃ when for every ε > 0 there exists an Lε ∈ N

such that
g(L,Θ, u, j) ≤ g̃(L,Θ, u, j) + ε ∀ (L,Θ, u, j) ∈ Gm

M : L ≥ Lε. (3.25)

Recall (3.11) and (3.13), set

ψ1(L,Θ, u, j) = ψL(Θ, u, j), ψ4(L,Θ, u, j) = ψ(Θ, u, j), (3.26)

and note that the proof of Proposition 3.1 will be complete once we show that ψ1 ≺ ψ4 and
ψ4 ≺ ψ1. In what follows, we will focus on ψ1 ≺ ψ4. Each step of the proof can be adapted
to obtain ψ4 ≺ ψ1 without additional difficulty.

In the proof we need to define two intermediate free energies ψ2 and ψ3, in addition to ψ1

and ψ4 above. Our proof is divided into 3 steps, organized in Sections 3.3–3.5, and consists
of showing that ψ1 ≺ ψ2 ≺ ψ3 ≺ ψ4.

Additional notation. Before stating Step 1, we need some further notation. First, we
partition WΘ,u,L,j according to the total number of steps and the number of horizontal steps
made by a trajectory along and in between AB-interfaces. To that end, we assume that
j ∈ SΘ,u,r with r ∈ {1, . . . ,m}, we recall (3.6) and we let

DΘ,L,j =
{

(di, ti)
r+1
i=1 : di ∈ N and ti ∈ di + liL+ 2N0 ∀ 1 ≤ i ≤ r + 1

}
,

DIr =
{

(dIi , t
I
i )ri=1 : dIi ∈ N and tIi ∈ dIi + 2N0 ∀ 1 ≤ i ≤ r

}
, (3.27)
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where di, ti denote the number of horizontal steps and the total number of steps made by
the trajectory between the (i − 1)-th and i-th interfaces, and dIi , t

I
i denote the number of

horizontal steps and the total number of steps made by the trajectory along the i-th interface.
For (d, t) ∈ DΘ,L,j , (dI , tI) ∈ DIr and 1 ≤ i ≤ r, we set T0 = 0 and

Vi =
i∑

j=1

tj +
i−1∑
j=1

tIj , i = 1, . . . , r,

Ti =
i∑

j=1

tj +
i∑

j=1

tIj , i = 1, . . . , r, (3.28)

so that Vi, respectively, Ti indicates the number of steps made by the trajectory when reaching,
respectively, leaving the i-th interface.

Next, we let θ : RN 7→ RN be the left-shift acting on infinite sequences of real numbers
and, for u ∈ N and ω ∈ {A,B}N, we put

Hω
u (B) =

u∑
i=1

[
β 1{ωi=B} − α 1{ωi=A}

]
. (3.29)

Finally, we recall that
ψ1(L,Θ, u, j) = 1

uL E[logZω1 (L,Θ, u, j)], (3.30)

where the partition function defined in (2.29) has been renamed Z1 and can be written in the
form

Zω1 (L,Θ, u, j) =
∑

(d,t)∈DΘ,L,j

∑
(dI ,tI)∈DIr

A1B1C1, (3.31)

where (recall (3.7) and (2.5))

A1 =
∏

i∈AΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

) ∏
i∈BΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

)
eH

θ
Ti−1 (w)
ti

(B), (3.32)

B1 =

r∏
i=1

e
tIi φ

θVi (w)

dI
i

( tIi
dIi

)
,

C1 = 1{∑r+1
i=1 di+

∑r
i=1 d

I
i =L

} 1{∑r+1
i=1 ti+

∑r
i=1 t

I
i =uL

}.
It is important to note that a simplification has been made in the term A1 in (3.32). Indeed,
this term is not κ̃di(·, ·) defined in (2.2), since the latter does not take into account the vertical
restrictions on the path when it moves from one interface to the next. However, the fact that
two neighboring AB-interfaces are necessarily separated by a distance at least L allows us
to apply Lemma A.6 in Appendix A.3, which ensures that these vertical restrictions can be
removed at the cost of a negligible error.

To show that ψ1 ≺ ψ2 ≺ ψ3 ≺ ψ4, we fix (M,m) ∈ EIGH and ε > 0, and we show that
there exists an Lε ∈ Ns such that ψk(L,Θ, u, j) ≤ ψk+1(L,Θ, u, j) + ε for all (L,Θ, u, j) ∈ Gm

M

and L ≥ Lε. The latter will complete the proof of Proposition 3.1.
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3.3 Step 1

In this step, we remove the ω-dependence from Z ω
1 (L,Θ, u, j). To that aim, we put

ψ2(L,Θ, u, j) =
1

uL
logZ2(L,Θ, u, j) (3.33)

with
Z2(L,Θ, u, j) =

∑
(d,t)∈DΘ,L,j

∑
(dI ,tI)∈DIr

A2 B2 C2, (3.34)

where

A2 =
∏

i∈AΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

) ∏
i∈BΘ,j

e
ti κ̃di

(
ti
di
,
liL
di

)
e
β−α

2 ti , (3.35)

B2 =

r∏
i=1

e
tIi φdI

i

(
tIi
dIi

)
,

C2 = C1.

Next, for n ∈ N we define

Aε,n =
{
∃ 0 ≤ t, s ≤ n : t ≥ εn,

∣∣Hθs(ω)
t (B)− β−α

2 t
∣∣ > εt

}
,

Bε,n =
{
∃ 0 ≤ t, d, s ≤ n : t ∈ d+ 2N0, t ≥ εn,

∣∣φθs(w)
d ( td)− φd( td)

∣∣ > ε
}
. (3.36)

By applying Cramér’s theorem for i.i.d. random variables (see e.g. den Hollander [2], Chapter
1), we obtain that there exist C1(ε), C2(ε) > 0 such that

P
(∣∣Hθs(w)

t (B)− β−α
2 t
∣∣ > εt

)
≤ C1(ε) e−C2(ε)t, t, s ∈ N. (3.37)

By using the concentration of measure property in (C.3) in Appendix C with l = t, Γ =WId ( td),
T (x, y) = 1{(x, y) < 0}, η = εt and ξi = −α1{ωi = A} + β1{ωi = B} for all i ∈ N, we find
that there exist C1, C2 > 0 such that

P
(∣∣φθs(w)

d ( td)− φd( td)
∣∣ > ε

∣∣) ≤ C1 e
−C2 ε2t, t, d, s ∈ N, t ∈ d+ 2N0. (3.38)

With the help of (2.32) and (3.30) we may write, for (L,Θ, u, j) ∈ Gm
M ,

ψ1(L,Θ, u, j) ≤ Cuf(α)P
(
Aε,mL ∪ Bε,mL

)
+ 1

uL E
[
1{Acε,mL∩B

c
ε,mL} logZω1 (L,Θ, u, j)

]
. (3.39)

With the help of (3.37) and (3.38), we get that P(Aε,mL)→ 0 and P(Bε,mL)→ 0 as L→∞.
Moreover, from ((3.31)-(3.36)) it follows that, for (L,Θ, u, j) ∈ Gm

M and ω ∈ Acε,mL ∩ Bcε,ML,

Zω1 (L,Θ, u, j) ≤ Z2(L,Θ, u, j) eεuL. (3.40)

The latter completes the proof of ψ1 ≺ ψ2.
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3.4 Step 2

In this step, we concatenate the pieces of trajectories that travel in A-blocks, respectively,
B-blocks, respectively, along the AB-interfaces and replace the finite-size entropies and free
energies by their infinite-size counterparts. Recall the definition of lA,Θ,j and lB,Θ,j in (3.8)
and define, for (L,Θ, u, j) ∈ Gm

M , the sets

JΘ,L,j =
{(
aA, hA, aB, hB

)
∈ N4 : aA ∈ lA,Θ,jL+ hA + 2N0, aB ∈ lB,Θ,jL+ hB + 2N0

}
,

(3.41)

J I =
{(
aI , hI

)
∈ N2 : aI ∈ hI + 2N0

}
,

and put ψ3(L,Θ, u, j) = 1
uL logZ3(L,Θ, u, j) with

Z3(L,Θ, u, j) =
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

A3B3C3, (3.42)

where

A3 = e
aA κ̃

(
aA
hA

,
lA,Θ,jL
hA

)
e
aB κ̃

(
aB
hB

,
lB,Θ,jL
hB

)
e
β−α

2 aB ,

B3 = e
aI φ
(
aI

hI

)
,

C3 = 1{aA+aB+aI=uL} 1{hA+hB+hI=L}. (3.43)

In order to establish a link between ψ2 and ψ3 we define, for (a, h) ∈ JΘ,L,j and (aI , hI) ∈ J I ,

P(a,h) =
{

(t, d) ∈ DΘ,L,j :
∑

i∈AΘ,j
(ti, di) = (aA, hA),

∑
i∈BΘ,j

(ti, di) = (aB, hB)
}
,

Q(aI ,hI) =
{

(tI , dI) ∈ DIr :
∑r

i=1(tIi , d
I
i ) = (aI , hI)

}
. (3.44)

Then we can rewrite Z2 as

Z2(L,Θ, u, j) =
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

C3

∑
(t,d)∈P(a,h)

∑
(tI ,dI)∈Q

(aI ,hI)

A2B2. (3.45)

To prove that ψ2 ≺ ψ3, we need the following lemma.

Lemma 3.3 For every η > 0 there exists an Lη ∈ N such that, for every (L,Θ, u, j) ∈ Gm
M

with L ≥ Lη and every (d, t) ∈ DΘ,L,j and (dI , tI) ∈ DIr satisfying
∑r+1

i=1 di +
∑r

i=1 d
I
i = L

and
∑r+1

i=1 ti +
∑r

i=1 t
I
i = uL,

ti κ̃
(
ti
di
, liLdi

)
− ηuL ≤ ti κ̃di

(
ti
di
, liLdi

)
≤ ti κ̃

(
ti
di
, liLdi

)
+ ηuL i = 1, . . . , r + 1, (3.46)

tIi φ(
tIi
dIi

)− ηuL ≤ tIi φdIi (
tIi
dIi

) ≤ tIi φ(
tIi
dIi

) + ηuL i = 1, . . . , r.

Proof. By using Lemmas A.1 and B.2 in Appendix A, we have that there exists a L̃η ∈ N
such that, for L ≥ L̃η, (u, l) ∈ HL and µ ∈ 1 + 2N

L ,

|κ̃L(u, l)− κ̃(u, l)| ≤ η, |φIL(µ)− φI(µ)| ≤ η. (3.47)
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Moreover, Lemmas 2.1, A.5(ii–iii), B.1(ii) and B.2 ensure that there exists a vη > 1 such that,
for L ≥ 1, (u, l) ∈ HL with u ≥ vη and µ ∈ 1 + 2N

L with µ ≥ vη,

0 ≤ κ̃L(u, l) ≤ η, 0 ≤ φL(µ) ≤ η. (3.48)

Note that the two inequalities in (3.48) remain valid when L = ∞. Next, we set rη =
η/(2vηCuf) and Lη = L̃η/rη, and we consider L ≥ Lη. Because of the left-hand side of (3.47),
the two inequalities in the first line of (3.46) hold when di ≥ rηL ≥ L̃η. We deal with the
case di ≤ rηL by considering first the case ti ≤ ηuL/2Cuf, which is easy because κ̃di and κ̃
are uniformly bounded by Cuf (see (2.32)). The case ti ≥ ηuL/2Cuf gives ti/di ≥ uvη ≥ vη,
which by the left-hand side of (3.48) completes the proof of the first line in (3.46). The same
observations applied to tIi , d

I
i combined with the right-hand side of (3.47) and (3.48) provide

the two inequalities in the second line in (3.46). �

To prove that ψ2 ≺ ψ3, we apply Lemma 3.3 with η = ε/(2m + 1) and we use (3.35) to
obtain, for L ≥ Lε/(2m+1), (d, t) ∈ DΘ,L,j and (dI , tI) ∈ DIr ,

A2 ≤
∏

i∈AΘ,j

e
ti κ̃
(
ti
di
,
liL
di

)
+

εuL
2m+1

∏
i∈BΘ,j

e
ti κ̃
(
ti
di
,
liL
di

)
+ti

β−α
2 +

εuL
2m+1 , (3.49)

B2 ≤
r∏
i=1

e
tIi φ

(
tIi
dIi

)
+

εuL
2m+1 .

Next, we pick (a, h) ∈ JΘ,L,j , (aI , hI) ∈ J I , (t, d) ∈ P(a,h) and (tI , dI) ∈ Q(aI ,hI), and we

use the concavity of (a, b) 7→ aκ̃(a, b) and µ 7→ φI(µ) (see Lemma A.5 in Appendix A and
Lemma B.1 in Appendix B) to rewrite (3.49) as

A2 ≤ e
aA κ̃
(
aA
hA

,
lA,Θ,jL
hA

)
+aB κ̃

(
aB
hB

,
lB,Θ,jL
hB

)
+
β−α

2 aB+
ε(r+1)uL

2m+1 = A3 e
ε(r+1)uL

2m+1 , (3.50)

B2 ≤ ea
I φI
(
aI

hI

)
+
εruL
2m+1 = B3 e

εruL
2m+1 .

Moreover, r, which is the number of AB interfaces crossed by the trajectories in WΘ,u,j,L, is
at most m (see (3.10)), so that (3.50) allows us to rewrite (3.45) as

Z2(L,Θ, u, j) ≤ eεuL
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

C3 |P(a,h)| |Q(aI ,hI)|A3B3. (3.51)

Finally, it turns out that |P(a,h)| ≤ (uL)8r and |Q(aI ,hI)| ≤ (uL)8r. Therefore, since r ≤ m,
(3.42) and (3.51) allow us to write, for (L,Θ, u, j) ∈ Gm

M and L ≥ Lε/2m+1,

Z2(L,Θ, u, j) ≤ (mL)16mZ3(L,Θ, u, j). (3.52)

The latter is sufficient to conclude that ψ2 ≺ ψ3.

3.5 Step 3

For every (L,Θ, u, j) ∈ Gm
M we have, by the definition of L(lA,Θ,j , lB,Θ,j ;u) in (2.34), that

(a, h) ∈ JΘ,L,j and (aI , hI) ∈ J I satisfying aA + aB + aI = uL and hA + hB + hI = L also
satisfy ((

aA
L ,

aB
L ,

aI

L

)
,
(
hA
L ,

hB
L ,

hI

L

))
∈ L(lA,Θ,j , lB,Θ,j ;u). (3.53)
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Hence, (3.53) and the definition of ψI in (2.36) ensure that, for this choice of (a, h) and
(aI , hI),

A3B3 ≤ euLψI(u, lA,Θ,j , lB,Θ,j). (3.54)

Because of C3, the summation in (3.42) is restricted to those (a, h) ∈ JΘ,L,j and (aI , hI) ∈ J I
for which aA, aB, a

I ≤ uL and hA, hB, h
I ≤ L. Hence, the summation is restricted to a set of

cardinality at most (uL)3L3. Consequently, for all (L,Θ, u, j) ∈ Gm
M we have

Z3(L,Θ, u, j) =
∑

(a,h)∈JΘ,L,j

∑
(aI ,hI)∈J I

A4B4C4 ≤ (mL)3L3 euLψI(u, lA,Θ,j , lB,Θ,j). (3.55)

The latter implies that ψ3 ≺ ψ4 since ψ4 = ψI(u, lA,Θ,j , lB,Θ,j) by definition (recall (3.13)
and (3.26)).

4 Proof of Theorem 1.1

This section is technically involved because it goes through a sequence of approximation steps
in which the self-averaging of the free energy with respect to ω and Ω in the limit as n→∞
is proven, and the various ingredients of the variational formula in Theorem 1.1 that were
constructed in Section 2 are put together.

In Section 4.1 we introduce additional notation and state Propositions 4.1, 4.2 and 4.11
from which Theorem 1.1 is a straightforward consequence. Proposition 4.1, which deals with
(M,m) ∈ EIGH, is proven in Section 4.2 and the details of the proof are worked out in
Sections 4.2.1–4.2.5, organized into 5 Steps that link intermediate free energies. We pass to
the limit m → ∞ with Propositions 4.2 and 4.3 which are proven in Section 4.3 and 4.4,
respectively.

4.1 Proof of Theorem 1.1

4.1.1 Additional notation

Pick (M,m) ∈ EIGH and recall that Ω and ω are independent, i.e., P = Pω × PΩ. For
Ω ∈ {A,B}N0×Z, ω ∈ {A,B}N, n ∈ N and (α, β) ∈ CONE, define

fω,Ω1,n (M,m;α, β) = 1
n logZ ω,Ω

1,n,Ln
(M,m) with Z ω,Ω

1,n,Ln
(M,m) =

∑
π∈Wm

n,M,

eH
ω,Ω
n,Ln

(π), (4.1)

where W m
n,M contains those paths in Wn,M that, in each column, make at most mLn steps.

We also restrict the set Rp,M in (2.7) to those limiting empirical measures whose support is
included in V mM , i.e., those measures charging the types of column that can be crossed in less
than mLn steps only. To that aim we recall (2.48) and define, for Ω ∈ {A,B}N0×Z and N ∈ N,

RΩ,m
M,N =

{
ρN (Ω,Π, b, x) with b = (bj)j∈N0 ∈ (Q(0,1])

N0 ,

Π = (Πj)j∈N0 ∈ {0} × ZN : |∆Πj | ≤M ∀ j ∈ N0,

x = (xj)j∈N0 ∈ {1, 2}N0 :
(
Ω(j,Πj + ·),∆Πj , bj , bj+1, xj

)
∈ VmM

} (4.2)

which is a subset of RΩ
M,N and allows us to define

RΩ,m
M = closure

(
∩N ′∈N ∪N≥N ′ RΩ,m

M,N

)
, (4.3)
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which, for P-a.e. Ω is equal to Rmp,M ( Rp,M .

At this stage, we further define,

f(M,m;α, β) = sup
ρ∈Rm

p,M

sup
(uΘ)Θ∈VmM

∈BVmM

V (ρ, u), (4.4)

where

V (ρ, u) =

∫
VmM

uΘ ψ(Θ, uΘ;α, β) ρ(dΘ)∫
VmM

uΘ ρ(dΘ)
, (4.5)

where (recall (2.23))

BVmM =
{

(uΘ)Θ∈VmM
∈ RV

m
M : Θ 7→ uΘ ∈ C0

(
V mM ,R

)
, tΘ ≤ uΘ ≤ m ∀Θ ∈ V mM

}
, (4.6)

and where V mM is endowed with the distance dM defined in (B.3) in Appendix B.2.

Let W∗,mn,M ⊂ W m
n,M be the subset consisting of those paths whose endpoint lies at the

boundary between two columns of blocks, i.e., satisfies πn,1 ∈ NLn. Recall (4.1), and define

Z∗,ω,Ωn,Ln
(M) and f∗,ω,Ω1,n (M,m;α, β) as the counterparts of Zω,Ωn,Ln

(M,m) and fω,Ω1,n (M,m;α, β)

when W m
n,M is replaced by W∗,mn,M . Then there exists a constant c > 0, depending on α and β

only, such that

Zω,Ω1,n,Ln
(M,m)e−cLn ≤ Z∗,ω,Ω1,n,Ln

(M,m) ≤ Zω,Ω1,n,Ln
(M,m),

n ∈ N, ω ∈ {A,B}N, Ω ∈ {A,B}N0×Z.
(4.7)

The left-hand side of the latter inequality is obtained by changing the last Ln steps of each
trajectory in W m

n,M to make sure that the endpoint falls in LnN. The energetic and entropic
cost of this change are obviously O(Ln). By assumption, limn→∞ Ln/n = 0, which together
with (4.7) implies that the limits of fω,Ω1,n (M,m;α, β) and f∗,ω,Ω1,n (M,m;α, β) as n → ∞ are
the same. In the sequel we will therefore restrict the summation in the partition function to
W∗,mn,M and drop the ∗ from the notations.

Finally, let

fΩ
1,n(M,m;α, β) = Eω

[
fω,Ω1,n (M,m;α, β)

]
,

f1,n(M,m;α, β) = Eω,Ω
[
fω,Ω1,n (M,m;α, β)

]
,

(4.8)

and recall (1.11) to set fΩ
n (M ;α, β) = Eω[fω,Ωn (M ;α, β)].

4.1.2 Key Propositions

Theorem 1.1 is a consequence of Propositions 4.1, 4.2 and 4.3 stated below and proven in
Sections 4.2.1–4.2.5, Sections 4.3.1–4.3.3 and Section 4.4, respectively.

Proposition 4.1 For all (M,m) ∈ EIGH,

lim
n→∞

fΩ
1,n(M,m;α, β) = f(M,m;α, β) for P− a.e.Ω. (4.9)

Proposition 4.2 For all M ∈ N,

lim
n→∞

fΩ
n (M ;α, β) = sup

m≥M+2
f(M,m;α, β) for P− a.e.Ω. (4.10)
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Proposition 4.3 For all M ∈ N,

sup
m≥M+2

f(M,m;α, β) = sup
ρ∈Rp,M

sup
(uΘ)Θ∈VM

∈BVM

V (ρ, u), (4.11)

where, in the righthand side of (4.11), we recognize the variational formula of Theorem 1.1
and with BVM defined in (2.13).

Proof of Theorem 1.1 subject to Propositions 4.1, 4.2 and 4.3. The proof of Theo-
rem 1.1 will be complete once we show that for all (M,m) ∈ EIGH

lim
n→∞

|fω,Ωn (M,m;α, β)− fΩ
n (M,m;α, β)| = 0 for P− a.e. (ω,Ω). (4.12)

To that aim, we note that for all n ∈ N the Ω-dependence of fω,Ωn (M,m;α, β) is restricted to{
Ωx : x ∈ Gn

}
with Gn = {0, . . . , n

Ln
} × {− n

Ln
, . . . , n

Ln
}. Thus, for n ∈ N and ε > 0 we set

Aε,n = {|fω,Ωn (M ;α, β)− fΩ
n (M ;α, β)| > ε)}, (4.13)

and by independence of ω and Ω we can write

Pω,Ω(Aε,n)=
∑

Υ∈{A,B}Gn Pω,Ω(Aε,n ∩ {ΩGn = Υ})

=
∑

Υ∈{A,B}Gn Pω(|fω,Υn (M ;α, β)− fΥ
n (M ;α, β)| > ε) PΩ({ΩGn = Υ}). (4.14)

At this stage, for each n ∈ N we can apply the concentration inequality (C.3) in Appendix C
with Γ =W m

n,M , l = n, η = εn,

ξi = −α 1{ωi = A}+ β 1{ωi = B}, i ∈ N, (4.15)

and with T (x, y) indicating in which block step (x, y) lies in. Therefore, there exist C1, C2 > 0
such that for all n ∈ N and all Υ ∈ {A,B}Gn we have

Pω(|fω,Υn (M ;α, β)− fΥ
n (M ;α, β)| > ε) ≤ C1e

−C2ε2n, (4.16)

which, together with (4.14) yields Pω,Ω(Aε,n) ≤ C1e
−C2ε2n for all n ∈ N. By using the Borel-

Cantelli Lemma, we obtain (4.12). �

4.2 Proof of Proposition 4.1

Pick (M,m) ∈ EIGH and (α, β) ∈ CONE. In Steps 1–2 in Sections 4.2.1–4.2.2 we introduce an
intermediate free energy fΩ

3,n(M,m;α, β) and show that

lim
n→∞

|fΩ
1,n(M,m;α, β)− fΩ

3,n(M,m;α, β)| = 0 ∀Ω ∈ {A,B}N0×Z. (4.17)

Next, in Steps 3–4 in Sections 4.2.3–4.2.4 we show that

lim sup
n→∞

fΩ
3,n(M,m;α, β) = f(M,m;α, β) for P− a.e. Ω, (4.18)

while in Step 5 in Section 4.2.5 we prove that

lim inf
n→∞

fΩ
3,n(M,m;α, β) = lim sup

n→∞
fΩ

3,n(M,m;α, β) for P− a.e. Ω. (4.19)
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Combing (4.17–4.19) we get

lim inf
n→∞

fΩ
1,n(M,m;α, β) = lim sup

n→∞
fΩ

1,n(M,m;α, β) = f(M,m;α, β) for P− a.e. Ω, (4.20)

which completes the proof of Proposition 4.1.

In the proof we need the following order relation.

Definition 4.4 For g, g̃ : N3 × CONE 7→ R, write g ≺ g̃ if for all (M,m) ∈ EIGH, (α, β) ∈
CONE and ε > 0 there exists an nε ∈ N such that

g(n,M,m;α, β) ≤ g̃(n,M,m;α, β) + ε ∀n ≥ nε. (4.21)

The proof of (4.17) will be complete once we show that fΩ
1 ≺ fΩ

3 and fΩ
3 ≺ fΩ

1 for all
Ω ∈ {A,B}N0×Z. We will focus on fΩ

1 ≺ fΩ
3 , since the proof of the latter can be easily

adapted to obtain fΩ
3 ≺ fΩ

1 . To prove fΩ
1 ≺ fΩ

3 we introduce another intermediate free energy
fΩ

2 , and we show that fΩ
1 ≺ fΩ

2 and fΩ
2 ≺ fΩ

3 .

For L ∈ N, let

DML =
{

Ξ = (∆Π, b0, b1) ∈ {−M, . . . ,M} × { 1
L ,

2
L , . . . , 1}

2
}
. (4.22)

For L,N ∈ N, let

D̃ML,N =
{

Θtraj = (Ξi)i∈{0,...,N−1} ∈ (DML )N : b0,0 = 1
L , b0,i = b1,i−1 ∀ 1 ≤ i ≤ N − 1

}
, (4.23)

and with each Θtraj ∈ D̃ML,N associate the sequence (Πi)
N
i=0 defined by Π0 = 0 and Πi =∑i−1

j=0 ∆Πj for 1 ≤ i ≤ N . Next, for Ω ∈ {A,B}N0×Z and Θtraj ∈ D̃ML,N , set

XM,m
Θtraj,Ω

=
{
x ∈ {1, 2}{0,...,N−1} : (Ω(i,Πi + ·),Ξi, xi) ∈ VmM ∀ 0 ≤ i ≤ N − 1

}
, (4.24)

and, for x ∈ XM,m
Θtraj,Ω

, set

Θi = (Ω(i,Πi + ·),Ξi, xi) for i ∈ {0, . . . , N − 1} (4.25)

and

U M,m,L
Θtraj,x,n

=
{
u = (ui)i∈{0,...,N−1} ∈ [1,m]N : ui ∈ tΘi + 2N

L ∀ 0 ≤ i ≤ N − 1,
N−1∑
i=0

ui = n
L

}
.

(4.26)
Note that U M,m,L

Θtraj,x,n
is empty when N /∈

[
n
mL ,

n
L

]
.

For π ∈ W m
n,M , we let Nπ be the number of columns crossed by π after n steps. We

denote by (u0(π), . . . , uNπ−1(π)) the time spent by π in each column divided by Ln, and we
set ũ0(π) = 0 and ũj(π) =

∑j−1
k=0 uk(π) for 1 ≤ j ≤ Nπ. With these notations, the partition

function in (4.1) can be rewritten as

Z ω,Ω
1,n,Ln

(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A1, (4.27)

with (recall (2.29))

A1 =

N−1∏
i=0

Z
θũiLn (ω)
Ln

(Ω(i,Πi + ·),Ξi, xi, ui). (4.28)
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4.2.1 Step 1

In this step we average over the disorder ω in each column. To that end, we set

fΩ
2,n(M,m;α, β) = 1

n logZΩ
2,n,Ln(M,m) (4.29)

with

ZΩ
2,n,Ln(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A2, (4.30)

where

A2 =

N−1∏
i=0

eEω
[

logZ
θũi (ω)
Ln

(Ω(i,Πi+·),Ξi,xi,ui)
]

=
N−1∏
i=0

euiLnψLn (Ω(i,Πi+·),Ξi,xi,ui). (4.31)

Note that the ω-dependence has been removed from ZΩ
2,n,Ln

(M,m).

To prove that fΩ
1 ≺ fΩ

2 , we need to show that for all ε > 0 there exists an nε ∈ N such
that, for n ≥ nε and all Ω,

Eω
[

logZ ω,Ω
1,n,Ln

(M,m)
]
≤ logZΩ

2,n,Ln(M,m) + εn. (4.32)

To this end, we rewrite Z ω,Ω
1,n,Ln

(M,m) as

Z ω,Ω
1,n,Ln

(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A2
A1

A2
, (4.33)

where we note that

A1

A2
=

N−1∏
i=0

euiLn
[
ψ
θũiLn (ω)
Ln

(Ω(i,Πi+·),Ξi,xi,ui)−ψLn (Ω(i,Πi+·),Ξi,xi,ui)
]
. (4.34)

In order to average over ω, we apply a concentration of measure inequality. Set

Kn =

n/Ln⋃
N=n/mLn

⋃
Θtraj∈D̃MLn,N

⋃
x∈XM,mΘtraj,Ω

⋃
u∈UM,m,LnΘtraj,x,n

{
| logA1 − logA2| ≥ εn

}
, (4.35)

and note that ω ∈ Kcn implies that Z ω,Ω
1,n,Ln

(M,m) ≤ eεnZΩ
2,n,Ln

(M,m). Consequently, we can
write

Eω
[

logZ ω,Ω
1,n,Ln

(M,m)
]

= Eω
[

logZ ω,Ω
1,n,Ln

(M,m) 1{Kn}
]

+ Eω
[

logZ ω,Ω
1,n,Ln

(M,m) 1{Kcn}
]

≤ Eω
[

logZ ω,Ω
1,n,Ln

(M,m) 1{Kn}
]

+ logZ Ω
2,n,Ln(M,m) + εn. (4.36)

We can now use the uniform bound in (2.32) to control the first term in the right-hand side
of (4.36), to obtain

Eω
[

logZ ω,Ω
1,n,Ln

(M,m)
]
≤ logZ Ω

2,n,Ln(M,m) + εn+ Cuf(α)nPω(Kn). (4.37)

Therefore the proof of this step will be complete once we show that Pω(Kn) vanishes as n→∞.
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Lemma 4.5 There exist C1, C2 > 0 such that, for all ε > 0, n ∈ N, N ∈
{

n
mLn

, . . . , n
Ln

}
,

Ω ∈ {A,B}N0×Z, Θtraj ∈ D̃MLn,N , x ∈ XM,m
Θtraj,Ω

and u ∈ U M,m,Ln
Θtraj,x,n

,

Pω(| logA1 − logA2| ≥ εn) ≤ C1e
−C2ε2n. (4.38)

Proof. Pick Θtraj ∈ D̃MLn,N , x ∈ XM,m
Θtraj,Ω

and u ∈ U M,m,Ln
Θtraj,x,n

, and consider the subset Γ of

W m
n,M consisting of those paths of length n that first cross the (Ω(0, ·),Ξ0, x0) column such

that π0 = (0, 1) and πũ1Ln = (1,Π1 + b1,0)Ln, then cross the (Ω(1, ·),Ξ1, x1) column such that
πũ1Ln+1 = (1 + 1/Ln,Π1 + b1,0)Ln and πũ2Ln = (2,Π2 + b1,1)Ln, and so on. We can apply the
concentration of measure inequality stated in (C.3) to the set Γ defined above, with l = n,
η = εn,

ξi = −α 1{ωi = A}+ β 1{ωi = B}, i ∈ N, (4.39)

and with T (x, y) indicating in which block step (x, y) lies in. After noting that Eω(logA1) =
logA2, we obtain that there exist C1, C2 > 0 such that, for all n ∈ N, N ∈

{
n

mLn
, . . . , n

Ln

}
,

Ω ∈ {A,B}N0×Z, Θtraj ∈ D̃MLn,N , x ∈ XM,m
Θtraj,Ω

and u ∈ U M,m,Ln
Θtraj,x,n

,

P
(
| logA1 − logA2| ≥ ε n

)
≤ C1 e

−C2 ε3 n. (4.40)

�

It now suffices to remark that∣∣{(N,Θtraj, x, u) : N ∈ { n
mLn

, . . . , n
Ln
},Θtraj ∈ D̃MLn,N , x ∈ X

M,m
Θtraj,Ω

, u ∈ U M,m,Ln
Θtraj,x,n

}
∣∣ (4.41)

grows subexponentially in n to obtain that fΩ
1 ≺ fΩ

2 for all Ω.

4.2.2 Step 2

In this step we replace the finite-size free energy ψLn by its limit ψ. To do so we introduce a
third intermediate free energy,

fΩ
3,n(M,m;α, β) = E

[
1
n logZΩ

3,n,Ln(M,m)
]
, (4.42)

where

ZΩ
3,n,Ln(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

A3 (4.43)

with

A3 =

N−1∏
i=0

euiLnψ(Ω(i,Πi+·),Ξi,xi,ui). (4.44)

For all Ω,

A2

A3
=

N−1∏
i=0

euiLn
[
ψLn (Ω(i,Πi+·),Ξi,xi,ui)−ψ(Ω(i,Πi+·),Ξi,xi,ui)

]
, (4.45)

and, for all i ∈ {0, . . . , N − 1}, we have (Ω(i,Πi + ·),Ξi, xi, ui) ∈ V∗,mM , so that Proposition 2.4
can be applied.
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4.2.3 Step 3

In this step we want the variational formula (4.4) to appear. Recall (2.47) and define, for
n ∈ N, (M,m) ∈ EIGH, N ∈ { n

mLn
, . . . , n

Ln
}, Θtraj ∈ D̃MLn,N and x ∈ XM,m

Θtraj,Ω
,

Θj = (Ω(j,Πj + ·),Ξj , xj), j = 0, . . . , N − 1, (4.46)

and

ρΩ
Θtraj,x

(
Θ,Θ

′)
=

1

N

N∑
j=1

1{
(Θj−1,Θj)=(Θ,Θ′ )

}, (4.47)

and, for u ∈ U M,m,Ln
Θtraj,x,n

,

HΩ(Θtraj, x, u) =

N−1∑
j=0

uj ψ(Θj , uj). (4.48)

In terms of these quantities we can rewrite ZΩ
3,n,Ln

(M,m) in (4.43) as

ZΩ
3,n,Ln(M,m) =

n/Ln∑
N=n/mLn

∑
Θtraj∈D̃MLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,x,n

eLnH
Ω(Θtraj,x,u). (4.49)

For n ∈ N, denote by

NΩ
n , ΘΩ

traj,n ∈ D̃MLn,NΩ
n
, xΩ

n ∈ X
M,m

ΘΩ
traj,n,Ω

, uΩ
n ∈ U

M,m,Ln
ΘΩ

traj,n,x
Ω
n ,n
, (4.50)

the indices in the summation set of (4.49) that maximize HΩ(Θtraj, x, u). For ease of notation
we put

ΘΩ
traj,n = (Ξnj )

NΩ
n−1

j=0 , xΩ
n = (xnj )

NΩ
n−1

j=0 , uΩ
n = (unj )

NΩ
n−1

j=0 , (4.51)

and

cn =
∣∣{(N,Θtraj, x, u) : n

mLn
≤ N ≤ n

Ln
, Θtraj ∈ D̃MLn,N , x ∈ X

M,m
Θtraj,Ω

, u ∈ U M,m,Ln
Θtraj,x,n

}
∣∣. (4.52)

Then we can estimate

1

n
logZΩ

3,n,Ln(M,m) ≤ 1

n
log cn + Ln

n

NΩ
n−1∑
j=0

unj ψ(Θn
j , u

n
j ). (4.53)

We next note that u 7→ uψ(Θ, u) is concave for all Θ ∈ VM (see Lemma B.4). Hence, after
setting

vnΘ =

NΩ
n−1∑
j=0

1{Θnj =Θ} u
n
j , dnΘ =

NΩ
n−1∑
j=0

1{Θnj =Θ}, Θ ∈ V mM , (4.54)

we can estimate

NΩ
n−1∑
j=0

1{Θnj =Θ} u
n
j ψ(Θn

j , u
n
j ) ≤ vnΘ ψ

(
Θ,

vnΘ
dnΘ

)
for Θ ∈ V mM : dnΘ ≥ 1. (4.55)
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Next, we recall (4.47) and we set ρn = ρΩ
ΘΩ

traj,n,x
Ω
n

, so that ρn,1(Θ) = dnΘ/N
Ω
n for all Θ ∈ V mM .

Since {Θ ∈ V mM : dnΘ ≥ 1} is a finite subset of V mM , we can easily extend Θ 7→ vnΘ/d
n
Θ from

{Θ ∈ VM : dnΘ ≥ 1} to V mM as a continuous function. Moreover,
∑NΩ

n−1
j=0 unj = n/Ln implies

that NΩ
n

∫
VmM

vnΘ/d
n
Θ ρn,1(dΘ) = n/Ln, which, together with (4.53) and (4.55) gives

1
n logZΩ

3,n,Ln(M,m) ≤ sup
u∈BVmM

∫
VmM

uΘ ψ(Θ, uΘ) ρn(dΘ)∫
VmM

uΘ ρn(dΘ)
+ o(1), n→∞, (4.56)

where we use that limn→∞
1
n log cn = 0. In what follows, we abbreviate the first term in the

right-hand side of the last display by ln. We want to show that lim supn→∞
1
n logZΩ

3,n,Ln
(M,m)

≤ f(M,m;α, β). To that end, we assume that 1
n logZΩ

3,n,Ln
(M,m) converges to some t ∈ R

and we prove that t ≤ f(M,m;α, β). Since (ln)n∈N is bounded and V mM is compact, it follows
from the definition of ln that along an appropriate subsequence both ln → l∞ ≥ t and
ρn → ρ∞ ∈ Rm

p,M as n→∞. Hence, the proof will be complete once we show that

l∞ ≤ sup
u∈BVmM

V (ρ∞, u), (4.57)

because the right-hand side in (4.57) is bounded from above by f(M,m;α, β).

Recall (2.16) and, for Θ ∈ V mM and y ∈ R, define

uM,m
Θ (y) =


tΘ if ∂+

u (uψ(Θ, u))(tΘ) ≤ y,
m if ∂−u (uψ(Θ, u))(m) ≥ y,
z otherwise, with z such that ∂−u (uψ(Θ, u))(z) ≥ y ≥ ∂+

u (uψ(Θ, u))(z),
(4.58)

where z is unique by strict concavity of u→ uψ(Θ, u) (see Lemma B.2).

Lemma 4.6 (i) For all y ∈ R and (M,m) ∈ EIGH, Θ 7→ uM,m
Θ (y) is continuous on (V mM , dM ),

where dM is defined in (B.3) in Appendix B.
(ii) For all (M,m) ∈ EIGH and Θ ∈ V mM , y 7→ uM,m

Θ (y) is continuous on R.

Proof. The proof uses the strict concavity of u→ uψ(Θ, u) (see Lemma B.2).

(i) The proof is by contradiction. Pick y ∈ R, and pick a sequence (Θn)n∈N in V mM such
that limn→∞Θn = Θ∞ ∈ V

m
M . Suppose that uM,m

Θn
(y) does not tend to uM,m

Θ∞
(y) as n → ∞.

Then, by choosing an appropriate subsequence, we may assume that limn→∞ u
M,m
Θn

(y) = u1 ∈
[tΘ∞ ,m] with u1 < uM,m

Θ∞
(y). The case u1 > uM,m

Θ∞
(y) can be handled similarly.

Pick u2 ∈ (u1, u
M,m
Θ∞

(y)). For n large enough, we have uM,m
Θn

(y) < u2 < uM,m
Θ∞

(y). By the

definition of uM,m
Θn

(y) in (4.58) and the strict concavity of u 7→ uψ(Θn, u) we have, for n large
enough,

∂+
u (uψ(Θn, u))(uM,m

Θn
(y)) >

uM,m
Θ∞

(y)ψ(Θn, u
M,m
Θ∞

(y))− u2ψ(Θn, u2)

uM,m
Θ∞

(y)− u2

. (4.59)

Let n→∞ in (4.59) and use the strict concavity once again, to get

lim inf
n→∞

∂+
u (uψ(Θn, u))(uM,m

Θn
(y)) > ∂−u (uψ(Θ∞, u))(uM,m

Θ∞
(y)). (4.60)
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If uM,m
Θ∞

(y) ∈ (tΘ∞ ,m], then (4.58) implies that the right-hand side of (4.60) is not smaller

than y. Hence (4.60) yields that ∂+
u (uψ(Θn, u))(uM,m

Θn
(y)) > y for n large enough, which

implies that uM,m
Θn

(y) = m by (4.58). However, the latter inequality contradicts the fact

that uM,m
Θn

(y) < u2 < uM,m
Θ∞

(y) for n large enough. If uM,m
Θ∞

(y) = tΘ∞ , then we note that

limn→∞ tΘn = tΘ∞ , which again contradicts that tΘn ≤ uM,m
Θn

(y) < u2 < uM,m
Θ∞

(y) for n large
enough.

(ii) The proof is again by contradiction. Pick Θ ∈ V mM , and pick an infinite sequence (yn)n∈N
such that limn→∞ yn = y∞ ∈ R and such that uM,m

Θ (yn) does not converge to uM,m
Θ (y∞). Then,

by choosing an appropriate subsequence, we may assume that there exists a u1 < uM,m
Θ (y∞)

such that limn→∞ u
M,m
Θ (yn) = u1. The case u1 > uM,m

Θ (y∞) can be treated similarly.

Pick u2, u3 ∈ (u1, u
M,m
Θ (y∞)) such that u2 < u3. Then, for n large enough, we have

tΘ ≤ uM,m
Θ (yn) < u2 < u3 < uM,m

Θ (y∞) ≤ m. (4.61)

Combining (4.58) and (4.61) with the strict concavity of u 7→ uψ(Θ, u) we get, for n large
enough,

yn > ∂+
u (uψ(Θ, u))(u2) > ∂−u (uψ(Θ, u))(u3) > y∞, (4.62)

which contradicts limn→∞ yn = y∞. �

We resume the line of proof. Recall that ρn,1, n ∈ N, charges finitely many Θ ∈ V mM .
Therefore the continuity and the strict concavity of u 7→ uψ(Θ, u) on [tΘ,m] for all Θ ∈ V mM
(see Lemma B.4) imply that the supremum in (4.56) is attained at some uM,m

n ∈ BVmM that

satisfies uM,m
n (Θ) = uM,m

Θ (ln) for Θ ∈ V mM . Set uM,m
∞ (Θ) = uM,m

Θ (l∞) for Θ ∈ V mM and note
that (ln)n∈N may be assumed to be monotone, say, non-decreasing. Then the concavity of
u 7→ uψ(Θ, u) for Θ ∈ V mM implies that (uM,m

n )n∈N is a non-increasing sequence of functions
on V mM . Moreover, V mM is a compact set and, by Lemma 4.6(ii), limn→∞ u

M,m
n (Θ) = uM,m

∞ (Θ)
for Θ ∈ V mM . Therefore Dini’s theorem implies that limn→∞ u

M,m
n = uM,m

∞ uniformly on V mM .
We estimate∣∣∣∣∣ln −

∫
VmM

uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ))ρ∞(dΘ)

∣∣∣∣∣
≤
∫
VmM

∣∣∣uM,m
n (Θ)ψ(Θ, uM,m

n (Θ))− uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ))
∣∣∣ ρn(dΘ) (4.63)

+
∣∣∣ ∫
VmM

uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ)) ρn(dΘ)−
∫
VmM

uM,m
∞ (Θ)ψ(Θ, uM,m

∞ (Θ)) ρ∞(dΘ)
∣∣∣.

The second term in the right-hand side of (4.63) tends to zero as n→∞ because, by Lemma
4.6(i), Θ 7→ uM,m

∞ (Θ) is continuous on V mM and because ρn converges in law to ρ∞ as n→∞.
The first term in the right-hand side of (4.63) tends to zero as well, because (Θ, u) 7→ uψ(Θ, u)
is uniformly continuous on V ∗,mM (see Lemma B.3) and because we have proved above that
uM,m
n converges to uM,m

∞ uniformly on V mM . This proves (4.57), and so Step 3 is complete.

4.2.4 Step 4

In this step we prove that

lim sup
n→∞

fΩ
3,n(M,m;α, β) ≥ f(M,m;α, β) for P− a.e. Ω. (4.64)
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Note that the proof will be complete once we show that

lim sup
n→∞

fΩ
3,n(M,m,α, β) ≥ V (ρ, u) for ρ ∈ Rmp,M , u ∈ BVmM . (4.65)

Pick Ω ∈ {A,B}N0×Z, ρ ∈ RΩ,m
p,M and u ∈ BVmM . By the definition of RΩ,m

p,M , there exists a

strictly increasing subsequence (nk)k∈N ∈ NN such that, for all k ∈ N, there exists an

Nk ∈
{

nk
mLnk

, . . . ,
nk
Lnk

}
, (4.66)

a Θk
traj ∈ D̃MLnk ,Nk and a xk ∈ XM,m

Θktraj,Ω
such that ρk =def ρΩ

Θktraj,x
k (see (4.47)) converges in law

to ρ as k →∞. Recall (4.23), and note that

Ξkj =
(
∆Πk

j , b
k
j , b

k
j+1

)
, j = 0, . . . , Nk − 1, (4.67)

with ∆Πk
j ∈ {−M, . . . ,M} and bkj ∈ (0, 1] ∩ N

Lnk
for j = 0, . . . , Nk. For ease of notation we

define

Θk
j =

(
Ω(j,Πk

j + ·),Ξkj , xkj
)

with Πk
j =

j−1∑
i=0

∆Πk
i , j = 0, . . . , Nk − 1, (4.68)

and

vk = Nk

∫
Θ∈VmM

uΘ ρk,1(dΘ) =

Nk−1∑
j=0

uΘkj
, (4.69)

where we recall that u = (uΘ)Θ∈VmM
was fixed at the beginning of the section.

Next, we recall that limn→∞ n/Ln =∞ and that Ln is non-decreasing. Together with the
fact that limn→∞ Ln/n = 0, this implies that Ln is constant on intervals. On those intervals,
n/Ln takes constant increments. The latter implies that there exists an ñk ∈ N satisfying

0 ≤ vk − ñk
Lñk
≤ 1

Lñk
and therefore 0 ≤ vkLñk − ñk ≤ 1. (4.70)

Next, for j = 0, . . . , Nk − 1 we pick bkj ∈ (0, 1] ∩ N
Lñk

such that |bkj − bkj | ≤
1

Lñk
, define

Ξkj =
(
∆Πk

j , b
k
j , b

k
j+1

)
, Θk

j =
(
Ω(j,Πk

j + ·),Ξkj , x
k
j

)
, (4.71)

and pick

skj ∈ tΘkj
+

2N
Lñk

such that |skj − uΘkj
| ≤ 2/Lñk . (4.72)

We use (4.69) to write

Lñk

Nk−1∑
j=0

skj = Lñk

(
vk +

Nk−1∑
j=0

(skj − uΘkj
)

)
= Lñk(I + II). (4.73)

Next, we note that (4.70) and (4.72) imply that |LñkI − ñk| ≤ 1 and |LñkII| ≤ 2Nk. The
latter in turn implies that, by adding or subtracting at most 3 steps per colum, the quantities
skj for j = 0, . . . , Nk − 1 can be chosen in such a way that

∑Nk−1
j=0 skj = ñk/Lñk .
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Next, set

Θk
traj = (Ξkj )

Nk−1
j=0 ∈ D̃MLñk ,Nk , sk = (skj )

Nk−1
j=0 ∈ UM,m,Lñk

Θktraj, x
k,ñk

, (4.74)

and recall (4.43) to get fΩ
3 (ñk,M) ≥ Rk with

Rk =
Lñk H

Ω
(

Θk
traj, x

k, sk
)

ñk
=

∑Nk−1
j=0 skj ψ

(
Θk
j , s

k
j

)
∑Nk−1

j=0 skj
=
Rknu

Rkde

. (4.75)

Further set

R
′
k =

R
′k
nu

R
′k
de

=

∫
VmM

uΘ ψ(Θ, uΘ)ρk(dΘ)∫
VmM

uΘ ρk(dΘ)
, (4.76)

and note that limk→∞R
′
k = V (ρ, u), since limk→∞ ρk = ρ by assumption and Θ 7→ uΘ is

continuous on V mM . We note that R
′
k can be rewritten in the form

R
′
k =

R
′k
nu

R
′k
de

=

∑Nk−1
j=0 uΘkj

ψ
(
Θk
j , uΘkj

)
∑Nk−1

j=0 uΘkj

. (4.77)

Now recall that limk→∞ nk = ∞. Since Nk ≥ nk/MLnk , it follows that limk→∞Nk = ∞
as well. Moreover, Nk ≤ ñk/Lñk with limk→∞ ñk = ∞. Therefore (4.69–4.70) allow us to
conclude that Rkde = ñk/Lñk = R

′k
de[1 + o(1)].

Next, note that HM is compact, and that (Θ, u) 7→ uψ(Θ, u) is continuous on HM and
therefore is uniformly continuous. Consequently, for all ε > 0 there exists an η > 0 such that,
for all (Θ, u), (Θ

′
, u
′
) ∈ HM satisfying |Θ−Θ

′ | ≤ η and |u− u′ | ≤ η,

|uψ(Θ, u)− u′ψ(Θ
′
, u
′
)| ≤ ε. (4.78)

We recall (4.71), which implies that dM (Θk
j ,Θj) ≤ 2/Lñk for all j ∈ {0, . . . , Nk−1}, we choose

k large enough to ensure that 2/Lñk ≤ η, and we use (4.78), to obtain

Rknu =

Nk−1∑
j=0

skj ψ
(

Θk
j , s

k
j

)
=

Nk−1∑
j=0

uΘkj
ψ
(
Θk
j , uΘkj

)
+ T = R

′k
nu + T, (4.79)

with |T | ≤ εNk. Since limk→∞R
′
k = V (ρ, u) and

∑Nk−1
j=0 uΘkj

= vk ≥ ñk/Lñk (see (4.70)), if

V (ρ, u) 6= 0, then
∣∣R′knu

∣∣ ≥ Cst. ñk/Lñk , whereas |T | ≤ εNk ≤ εñk/Lñk for k large enough.

Hence T = o(R
′k
nu) and

Rknu

Rkde

=
R
′k
nu [1 + o(1)]

R
′k
de [1 + o(1)]

→ V (ρ, u), k →∞. (4.80)

Finally, if V (ρ, u) = 0, then R
′k
nu = o(R

′k
de) and T = o(R

′k
de), so that Rk tends to 0. This

completes the proof of Step 4.
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4.2.5 Step 5

In this step we prove (4.19), suppressing the (α, β)-dependence from the notation. For Ω ∈
{A,B}N0×Z2

, n ∈ N, N ∈ {n/mLn, . . . , n/Ln} and r ∈ {−NM, . . . , NM}, we recall (4.23)
and define

D̃M,m,r
L,N =

{
Θtraj ∈ D̃M,m

L,N : ΠN = r
}
, (4.81)

where we recall that ΠN =
∑N−1

j=0 ∆Πj . We set

fΩ
3,n(M,m,N, r) = 1

n logZΩ
3,n,Ln(N,M,m, r) (4.82)

with
ZΩ

3,n,Ln(N,M,m, r) =
∑

Θtraj∈D̃M,m,rLn,N

∑
x∈XM,mΘtraj,Ω

∑
u∈UM,m,LnΘtraj,n

A3, (4.83)

where A3 is defined in (4.44). We further set f3(·) = EΩ

(
fΩ

3 (·)
)
.

4.2.6 Concentration of measure

In the first part of this step we prove that for all (M,m,α, β) ∈ EIGH × CONE there exist
c1, c2 > 0 (depending on (M,m,α, β) only) such that, for all n ∈ N, N ∈ {n/(mLn), . . . n/Ln}
and r ∈ {−NM, . . . , NM},

PΩ

(∣∣fΩ
3,n(M,m)− f3,n(M,m)

∣∣ > ε
)
≤ c1 e

− c2ε
2n

Ln , (4.84)

PΩ

(∣∣fΩ
3,n(M,m,N, r)− f3,n(M,m,N, r)

∣∣ > ε
)
≤ c1 e

− c2ε
2n

Ln .

We only give the proof of the first inequality. The second inequality is proved in a similar
manner. The proof uses Theorem C.1. Before we start we note that, for all n ∈ N, (M,m) ∈
EIGH and Ω ∈ {A,B}N0×Z, fΩ

3,n(M,m) only depends on

CΩ
0,Ln , . . . , C

Ω
n/Ln,Ln

with CΩ
j,Ln = (Ω(j, i))

n/Ln
i=−n/Ln . (4.85)

We apply Theorem C.1 with S = {0, . . . , n/Ln}, with Xi = {A,B}{−
n
Ln

,..., n
Ln
} and with µi

the uniform measure on Xi for all i ∈ S. Note that |fΩ1
3,n(M,m)− fΩ2

3,n(M,m)| ≤ 2Cuf(α)mLn
n

for all i ∈ S and all Ω1,Ω2 satisfying CΩ1
j,n = CΩ2

j,n for all j 6= i. After we set c = 2Cuf(α)m we

can apply Theorem C.1 with D = c2Ln/n to get (4.84).

Next, we note that the first inequality in (4.84), the Borel-Cantelli lemma and the fact
that limn→∞ n/Ln log n =∞ imply that, for all (M,m) ∈ EIGH,

lim
n→∞

[
fΩ

3,n(M,m)− f3,n(M,m)
]

= 0 for P− a.e. Ω. (4.86)

Therefore (4.19) will be proved once we show that

lim inf
n→∞

f3,n(M,m) = lim sup
n→∞

f3,n(M,m). (4.87)

To that end, we first prove that, for all n ∈ N and all (M,m) ∈ EIGH, there exist an Nn ∈
{n/mLn, . . . , n/Ln} and an rn ∈ {−MNn, . . . ,MNn} such that

lim
n→∞

[
f3,n(M,m)− f3,n(M,m,Nn, rn)

]
= 0. (4.88)
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The proof of (4.88) is done as follows. Pick ε > 0, and for Ω ∈ {A,B}N0×Z, n ∈ N and
(M,m) ∈ EIGH, denote by NΩ

n and rΩ
n the maximizers of fΩ

3,n(M,m,N, r). Then

fΩ
3,n

(
M,m,NΩ

n , r
Ω
n

)
≤ fΩ

3,n(M,m) ≤ 1
n log( n

2

L2
n

) + fΩ
3,n

(
M,m,NΩ

n , r
Ω
n

)
, (4.89)

so that, for n large enough and every Ω,

0 ≤ fΩ
3,n(M,m)− fΩ

3,n

(
M,m,NΩ

n , r
Ω
n

)
≤ ε. (4.90)

For n ∈ N, N ∈ {n/mLn, . . . , n/Ln} and r ∈ {−NM, . . . , NM}, we set

An,N,r = {Ω: (NΩ
n , r

Ω
n ) = (N, r)}. (4.91)

Next, denote by Nn, rn the maximizers of P(An,N,r). Note that (4.88) will be proved once we
show that, for all ε > 0, |f3,n(M,m) − f3,n(M,m,Nn, rn)| ≤ ε for n large enough. Further
note that P(An,Nn,rn) ≥ L2

n/n
2 for all n ∈ N. For every Ω we can therefore estimate

|f3,n(M,m)− f3,n(M,m,Nn, rn)| ≤ I + II + III (4.92)

with

I = |f3,n(M,m)− fΩ
3,n(M,m)|, (4.93)

II = |fΩ
3,n(M,m)− fΩ

3,n(M,m,Nn, rn)|,
III = |fΩ

3,n(M,m,Nn, rn)− f3,n(M,m,Nn, rn)|.

Hence, the proof of (4.88) will be complete once we show that, for n large enough, there exists
an Ωε,n for which I, II and III in (4.93) are bounded from above by ε/3.

To that end, note that, because of (4.84), the probabilities P({I > ε/3}) and P({III >
ε/3}) are bounded from above by c1e

−c2ε2n/9Ln , while

P({II > ε}) ≤ P(Acn,Nn,rn) ≤ 1− (L2
n/n

2), n ∈ N. (4.94)

Since limn→∞ n/Ln log n =∞, we have P({I, II, III ≤ ε/3}) > 0 for n large enough. Conse-
quently, the set {I, II, III ≤ ε/3} is non-empty and (4.88) is proven.

4.2.7 Convergence

It remains to prove (4.87). Assume that there exist two strictly increasing subsequences
(nk)k∈N and (tk)k∈N and two limits l2 > l1 such that limk→∞ f3,nk(M,m) = l2 and limk→∞
f3,tk(M,m) = l1. By using (4.88), we have that for every k ∈ N there exist Nk ∈ {nk/mLnk ,
. . . , nk/Lnk} and rk ∈ {−MNk, . . . ,MNk} such that limk→∞ f3,nk(M,m,Nk, rk) = l2. Denote
by

(Θk,Ω
traj,max, x

k,Ω
max, u

k,Ω
max) ∈ D̃M,rk

Lnk ,Nk
×XM,m

Θk,Ωtraj,max,Ω
× U M,m,Ln

Θk,Ωtraj,max,x
k,Ω
max,nk

(4.95)

the maximizer of HΩ(Θtraj, x, u). We recall that Θtraj, x and u take their values in sets that
grow subexponentially fast in nk, and therefore

lim
k→∞

Lnk
nk

EΩ

[
HΩ(Θk,Ω

traj,max, x
k,Ω
max, u

k,Ω
max)

]
= l2. (4.96)
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Since l2 > l1, we can use (4.96) and the fact that limk→∞ nk/Lnk =∞ to obtain, for k large
enough,

EΩ

[
HΩ(Θk,Ω

traj,max, x
k,Ω
max, u

k,Ω
max)

]
+ (β − α) ≥ nk

Lnk

(
l1 + l2−l1

2

)
. (4.97)

(The term β−α in the left-hand side of (4.97) is introduced for later convenience only.) Next,
pick k0 ∈ N satisfying (4.97), whose value will be specified later. Similarly to what we did in
(4.72) and (4.73), for Ω ∈ {A,B}N0×Z and k ∈ N we associate with

Θk0,Ω
traj,max =

(
∆Πk0,Ω

j , bk0,Ω
0,j , b

k0,Ω
1,j

)Nk0
−1

j=0
∈ D̃M,rk0

Lnk0
,Nk0

(4.98)

and
xk0,Ω

max =
(
xk0,Ω
j

)Nk0
−1

j=0
∈ XM,m

Θ
k0,Ω
traj,max,Ω

(4.99)

and

uk0,Ω
max =

(
uk0,Ω
j

)Nk0
−1

j=0
∈ U

M,m,Lnk0

Θ
k0,Ω
traj,max,x

k0,Ω
max ,nk0

(4.100)

the quantities

Θ
k,Ω
traj =

(
∆Πk0,Ω

j , b
k,Ω
0,j , b

k,Ω
1,j

)Nk0
−1

j=0
∈ D̃M,rk0

Ltk ,Nk0
(4.101)

and
u k,Ω =

(
u k,Ωj

)Nk0
−1

j=0
∈ UM,m,Ltk

Θ
k,Ω
traj ,x

k0,Ω
max ,∗

(4.102)

(where ∗ will be specified later), so that∣∣b k,Ω0,j −b
k0,Ω
0,j

∣∣ ≤ 1
Ltk

,
∣∣b k,Ω1,j −b

k0,Ω
1,j

∣∣ ≤ 1
Ltk

,
∣∣u k,Ωj −uk0,Ω

j

∣∣ ≤ 2
Ltk

, j = 0, . . . , Nk0−1. (4.103)

Next, put sΩ
k = Ltk

∑Nk0
−1

j=0 u k,Ωj , which we substitute for ∗ above. The uniform continuity
in Lemma B.3 allows us to claim that, for k large enough and for all Ω,∣∣∣u k,Ωj ψ

(
Θ
k,Ω
j , u k,Ωj

)
− uk0,Ω

j ψ
(

Θk0,Ω
j , uk0,Ω

j

)∣∣∣ ≤ l2−l1
4 , (4.104)

where we recall that, as in (4.68), for all j = 0, . . . , Nk0 − 1,

Θ
k,Ω
j =

(
Ω
(
j,Πk0,Ω

j + ·
)
, ∆Πk0,Ω

j , b
k,Ω
0,j , b

k,Ω
1,j , x

k0,Ω
j

)
, (4.105)

Θk0,Ω
j =

(
Ω
(
j,Πk0,Ω

j + ·
)
, ∆Πk0,Ω

j , bk0,Ω
0,j , b

k0,Ω
1,j , x

k0,Ω
j

)
.

Recall (4.48). An immediate consequence of (4.104) is that∣∣HΩ(Θ
k,Ω
traj , x

k0,Ω
max , u

k,Ω)−HΩ(Θk0,Ω
traj,max, x

k0,Ω
max , u

k0,Ω
max )

∣∣ ≤ Nk0
l2−l1

4 . (4.106)

Hence we can use (4.97), (4.106) and the fact that Nk0 ≤ nk0/Lnk0
, to conclude that, for k

large enough,

EΩ

[
HΩ(Θ

k,Ω
traj , x

k0,Ω
max , u

k,Ω)
]

+ (β − α) ≥ nk0
Lnk0

(
l1 + l2−l1

4

)
. (4.107)

At this stage we add a column at the end of the group of Nk0 columns in such a way that

the conditions b̂k,Ω1,Nk0
−1 = b̂k,Ω0,Nk0

and b̂k,Ω1,Nk0
= 1/Ltk are satisfied. We put

Ξ̂k,ΩNk0
=
(
∆Πk0,Ω

Nk0
, b̂k,Ω0,Nk0

, b̂k,Ω1,Nk0

)
=
(
0, b̂k,Ω1,Nk0

−1,
1
Ltk

)
, (4.108)
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and we let Θ̂k,Ω
traj ∈ D̃

M, rk0
Ltk , Nk0

+1 be the concatenation of Θ
k,Ω
traj (see (4.101)) and Ξ̂k,ΩNk0

. We let

x̂k0,Ω ∈ XM,m

Θ̂k,Ωtraj,Ω
be the concatenation of xk0,Ω

max and 0. We further let

ŝΩ
k = sΩ

k +
[
1 + bk,Ω1,Nk0

−1 −
1
Ltk

]
Ltk , (4.109)

and we let ûk,Ω ∈ UM,m,Ltk
Θ̂k, Ω

traj , x̂
k0,Ω, ŝΩ

k

be the concatenation of u k,Ω (see (4.102)) and

ûk,ΩNk0
= 1 + (bk,Ω1,Nk0

−1 −
1
Ltk

). (4.110)

Next, we note that the right-most inequality in (4.103), together with the fact that

Nk0
−1∑

j=0

uk0,Ω
j = nk0/Lnk0

, (4.111)

allow us to asset that |sΩ
k − Ltknk0/Lnk0

| ≤ 2Nk0 . Therefore the definition of ŝΩ
k in (4.109)

implies that

ŝΩ
k = Ltk

nk0

Lnk0

+ m̂Ω
k with |m̂Ω

k | ≤ 2Nk0 + 2Ltk . (4.112)

Moreover,

HΩ
(
Θ̂k,Ω

traj, x̂
k0,Ω, ûk,Ω

)
≥ HΩ

(
Θ
k,Ω
traj , x

k0,Ω
max , u

k,Ω
)

+ (β − α), (4.113)

because ûk,ΩNk0
≤ 2 by definition (see (4.110)) and the free energies per columns are all bounded

from below by (β − α)/2. Hence, (4.107) and (4.113) give that for all Ω there exist a

Θ̂k,Ω
traj ∈ D̃

M, rk0
Ltk , Nk0

+1 : b1,Nk0
= 1

Ltk
, (4.114)

an x̂k0,Ω ∈ XM,m

Θ̂k,Ωtraj,Ω
and a ûk,Ω ∈ UM,m,Ltk

Θ̂k,Ωtraj , x̂
k0,Ω, ŝΩ

k

such that, for k large enough,

EΩ

[
H(Θ̂k,Ω

traj, x̂
k0,Ω, ûk,Ω)

]
≥ nk0

Lnk0

(
l1 + l2−l1

4 ). (4.115)

Next, we subdivide the disorder Ω into groups of Nk0 + 1 consecutive columns that are
successively translated by rk0 in the vertical direction, i.e., Ω = (Ω1,Ω2, . . . ) with (recall (2.8))

Ωj =
(
Ω(i, (j − 1) rk0 + ·)

) j(Nk0
+1)−1

i=(j−1)(Nk0
+1), (4.116)

and we let qΩ
k be the unique integer satisfying

ŝΩ1
k + ŝΩ2

k + · · ·+ ŝ
Ωqk
k ≤ tk < ŝΩ1

k + · · ·+ ŝ
Ωqk+1

k , (4.117)

where we suppress the Ω-dependence of qk. We recall that

fΩ
3,tk

(M,m) = E

[
1

tk
log

tk/Ltk∑
N=tk/mLtk

∑
Θtraj∈D̃MLtk ,N

∑
x∈XM,mΘtraj,Ω

∑
u∈U

M,m,Ltk
Θtraj, x, tk

eLtk H
Ω(Θtraj,x,u)

]
,

(4.118)
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set t̃Ω
k = ŝΩ1

k + ŝΩ2
k + · · ·+ ŝ

Ωqk
k , and concatenate

Θ̂k,Ω
traj,tot =

(
Θ̂k,Ω1

traj , Θ̂
k,Ω2

traj , . . . , Θ̂
k,Ωqk
traj

)
∈ D̃M,

Ltk , qk(Nk0
+1), (4.119)

and
x̂k,Ωtot =

(
x̂k0,Ω1 , x̂k0,Ω2 , . . . , x̂k0,Ωqk

)
∈ XM,m

Θ̂k,Ωtraj,totΩ
. (4.120)

and
ûk,Ωtot =

(
ûk,Ω1 , ûk,Ω2 , . . . , ûk,Ωqk

)
∈ UM,m,Ltk

Θ̂k,Ωtraj,tot,x̂
k,Ω
tot ,t̃

Ω
k

. (4.121)

It still remains to complete Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot such that the latter becomes an element

of UM,m,Ltk
Θ̂k,Ωtraj,tot,x̂

k,Ω
tot ,tk

. To that end, we recall (4.117), which gives tk − t̃Ω
k ≤ ŝ

Ωqk+1

k . Then, using

(4.112), we have that there exists a c > 0 such that

tk − t̃Ω
k ≤ cLtk

nk0
Lnk0

. (4.122)

Therefore we can complete Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot with

Θrest ∈ DMLtk , gΩ
k
, xrest ∈ XM,m

Θrest,Ω
, urest ∈ U

M,m,Ltk
Θrest,xrest,tk−t̃Ω

k

, (4.123)

such that, by (4.122), the number of columns gΩ
k involved in Θrest satisfies gΩ

k ≤ cnk0/Lnk0
.

Henceforth Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot stand for the quantities defined in (4.119) and (4.121), and

concatenated with Θrest, xrest and urest so that they become elements of

DM
Ltk , qk(Nk0

+1)+gΩ
k
, XM,m

Θ̂k,Ωtraj,tot,Ω
, UM,m,Ltk

Θ̂k,Ωtraj,tot,x̂
k,Ω
tot ,tk

, (4.124)

respectively. By restricting the summation in (4.42) to Θ̂k,Ω
traj,tot, x̂

k,Ω
tot and ûk,Ωtot , we get

f3,tk(M,m) ≥ Ltk
tk

EΩ

[ qk∑
j=1

HΩj (Θ̂
k,Ωj
traj , x̂

k0,Ωj , ûk,Ωj ) +H(Θrest, xrest, urest)

]
, (4.125)

where the term H(Θrest, xrest, urest) is negligible because, by (4.122), (tk − t̃Ω
k )/tk vanishes as

k →∞, while all free energies per column are bounded from below by (β − α)/2. Pick ε > 0
and recall (4.112). Choose k0 such that 2Lnk0

/nk0 ≤ ε/2 and note that, for k large enough,

ŝΩ
k ∈

[
Ltk

nk0
Lnk0

(1− ε), Ltk
nk0
Lnk0

(1 + ε)
]
. (4.126)

By (4.117), we therefore have

qk ∈
[ tkLnk0
Ltknk0

1
1+ε ,

tkLnk0
Ltknk0

1
1−ε

]
= [a, b]. (4.127)

Recalling (4.125), we obtain

f3,tk(M,m) ≥ Ltk
tk

EΩ

[ a∑
j=1

HΩj (Θ̂
k,Ωj
traj , x̂

k0,Ωj , ûk,Ωj )−
b∑

j=a

∣∣∣HΩj (Θ̂
k,Ωj
traj , x̂

k0,Ωj , ûk,Ωj )
∣∣∣],
(4.128)
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and, consequently,

f3,tk(M,m) ≥
Lnk0

nk0
(1+ε) EΩ

[
HΩ(Θ̂k,Ω

traj, x̂
k0,Ω, ûk,Ω)

]
− Ltk

tk
(b− a)(Nk0 + 1)mβ−α

2 , (4.129)

and, by (4.115),

f3,tk(M,m) ≥ l1+
l2−l1

4
1+ε − ( 1

1−ε −
1

1+ε)(b− a)mβ−α
2 . (4.130)

After taking ε small enough, we may conclude that lim infk→∞ f3,tk(M,m) > l1, which com-
pletes the proof.

4.3 Proof of Proposition 4.2

Pick (M,m) ∈ EIGH and note that, for every n ∈ N, the set W m
n,M is contained in Wn,M .

Thus, by using Proposition 4.1 we obtain

lim inf
n→∞

fΩ
1,n(M ;α, β) ≥ sup

m≥M+2
lim inf
n→∞

fΩ
1,n(M,m;α, β)

= sup
m≥M+2

f(M,m;α, β) for P− a.e.Ω. (4.131)

Therefore, the proof of Proposition 4.2 will be complete once we show that

lim sup
n→∞

fΩ
1,n(M ;α, β) ≤ sup

m≥M+2
lim sup
n→∞

fΩ
1,n(M,m;α, β) for P− a.e.Ω. (4.132)

We will not prove (4.132) in full detail, but only give the main steps in the proof. The proof
consists in showing that, for m large enough, the pieces of the trajectory in a column that
exeed mLn steps do not contribute substantially to the free energy.

Recall (4.22–4.27) and use (4.27) with m =∞, i.e.,

Zω,Ωn,Ln
(M) =

n/Ln∑
N=1

∑
Θtraj∈D̃MLn,N

∑
x∈XM,∞Θtraj,Ω

∑
u∈UM,∞,LnΘtraj,x,n

A1. (4.133)

With each (N,Θtraj, x, u) in (4.133), we associate the trajectories obtained by concatenating
N shorter trajectories (πi)i∈{0,...,N−1} chosen in (WΘi,ui,Ln)i∈{0,...,N−1}, respectively. Thus,
the quantity A1 in (4.133) corresponds to the restriction of the partition function to the
trajectories associated with (N,Θtraj, x, u). In order to discriminate between the columns in
which more than mLn steps are taken and those in which less are taken, we rewrite A1 as
A2Ã2 with

A2 =
∏

i∈Vu,m

Z
ωIi
Ln

(Θi, ui), Ã2 =
∏

i∈Ṽu,m

Z
ωIi
Ln

(Θi, ui), (4.134)

with ũi =
∑i−1

k=0 uk, Θi = (Ω(i,Πi + ·),Ξi, xi) and Ii = {ũiLn, . . . , ũi+1Ln − 1} for i ∈
{0, . . . , N − 1}, with ωI = (ωi)i∈I for I ⊂ N, where {0, . . . , N − 1} is partitioned into

Ṽu,m ∪ Vu,m with Ṽu,m = {i ∈ {0, . . . , N − 1} : ui > m}. (4.135)

For all (N,Θtraj, x, u), we rewrite Ṽu,m in the form of an increasing sequence {i1, . . . , ik̃} and

we drop the (u,m)-dependence of k̃ for simplicity. We also set ũ = ui1 + · · ·+ui
k̃
, which is the
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total number of steps taken by a trajectory associated with (N,Θtraj, x, u) in those columns

where more than mLn steps are taken. Finally, for s ∈ {1, . . . , k̃} we partition Iis into

Jis ∪ J̃is with Jis = {ũisLn, . . . , (ũis +M + 2)Ln}, (4.136)

J̃is = {(ũis +M + 2)Ln + 1, . . . , ũis+1Ln − 1}, (4.137)

and we partition {1, . . . , n} into

J ∪ J̃ with J̃ = ∪k̃s=1J̃is , J = {1, . . . , n} \ J̃ , (4.138)

so that J̃ contains the label of the steps constituting the pieces of trajectory exeeding (M+2)Ln
steps in those columns where more than mLn steps are taken.

4.3.1 Step 1

In this step we replace the pieces of trajectories in the columns indexed in Ṽu,m by shorter
trajectories of length (M + 2)Ln. To that aim, for every (N,Θtraj, x, u) we set

Â2 =
∏

i∈Ṽu,m

Z
ωJi
Ln

(Θ
′
i,M + 2) (4.139)

with Θ
′
i = (Ω(i,Πi + ·),Ξi, 1). We will show that for all ε > 0 and for m large enough, the

event
Bn = {ω : Ã2 ≤ Â2 e

3εn for all (N,Θtraj, x, u)} (4.140)

satisfies Pω(Bn)→ 1 as n→∞.

Pick, for each s ∈ {1, . . . , k̃}, a trajectory πs in the set WΘis ,uis ,Ln . By concatenating

them we obtain a trajectory inWũLn satisfying πũLn,1 = k̃Ln. Thus, the total entropy carried
by those pieces of trajectories crossing the columns indexed in {i1, . . . , ik̃} is bounded above
by ∏k̃

s=1 |WΘis ,uis ,Ln | ≤
∣∣{π ∈ WũLn : πũLn,1 = k̃Ln}

∣∣. (4.141)

Since ũ/k̃ ≥ m, we can use Lemma A.2 in Appendix A to assert that, for m large enough, the
right-hand side of (4.141) is bounded above by eεn.

Moreover, we note that an ũLn-step trajectory satisfying πũLn,1 = k̃Ln makes at most

k̃Ln+ ũ excursions in the B solvent because such an excursion requires at least one horizontal
step or at least Ln vertical steps. Therefore, by using the inequalities k̃Ln ≤ n/m and
ũ ≤ n/Ln we obtain that, for n large enough, the sum of the Hamiltonians associated with
(π1, . . . , πk̃) is bounded from above, uniformly in (N,Θtraj, x, u) and (π1, . . . , πk̃), by

∑k̃
s=1H

ωIis
,Ω(is,Πis+·)

uisLn,Ln
(πs) ≤ max{

∑
i∈I ξi : I ∈ ∪

2n/m
r=1 En,r}, (4.142)

with En,r defined in (D.1) in Appendix D and ξi = β1{ωi=A} − α1{ωi=B} for i ∈ N. At this

stage we use the definition in (D.3) and note that, for all ω ∈ Qε/β,(α−β)/2+ε
n,m , the right-hand

side in (4.142) is smaller than εn. Consequently, for m and n large enough we have that, for

all ω ∈ Qε/β,(α−β)/2+ε
n,m ,

Ã2 ≤ e2εn for all (N,Θtraj, x, u). (4.143)
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Recalling (2.32) and noting that k̃Ln ≤ n/m, we can write

Â2 ≥ e−k̃(M+2)LnCuf(α) ≥ e−n
M+2
m Cuf(α), (4.144)

and therefore, for m large enough, for all n and all (N,Θtraj, x, u) we have Â2 ≥ e−εn.

Finally, use (4.143) and (4.144) to conclude that, for m and n large enough, Qε/β,(α−β)/2+ε
n,m

is a subset of Bn. Thus, Lemma D.1 ensures that, for m large enough, limn→∞ Pω(Bn) = 1.

4.3.2 Step 2

Let (w̃i)i∈N be an i.i.d. sequence of Bernouilli trials, independent of ω,Ω. For (N,Θtraj, x, u)

we set û = ũ− k̃(M+2). In Step 1 we have removed ûLn steps from the trajectories associated
with (N,Θtraj, x, u) so that they have become trajectories associated with (N,Θtraj, x

′
, u). In

this step, we will concatenate the trajectories associated with (N,Θtraj, x
′
, u) with an ûLn-step

trajectory to recover a trajectory that belongs to W m
n,M .

For Ω ∈ {A,B}N0×Z, t,N ∈ N and k ∈ Z, let

PΩ
A (N, k)(t) =

1

t

t−1∑
j=0

1{Ω(N+j,k)=A} (4.145)

be the proportion of A-blocks on the kth line and between the N th and the (N + t − 1)th

column of Ω. Pick η > 0 and j ∈ N, and set

Sη,j =

j⋃
N=0

m1N⋃
k=−m1N

⋃
t≥ηj

{
PΩ
A (N, k)(t) ≤ p

2

}
. (4.146)

By a straightforward application of Cramer’s Theorem for i.i.d. random variables, we have
that

∑
j∈N PΩ(Sη,j) < ∞. Therefore, using the Borel-Cantelli Lemma, it follows that for

PΩ-a.e. Ω, there exists a jη(Ω) ∈ N such that Ω /∈ Sη,j as soon as j ≥ jη(Ω). In what follows,
we consider η = ε/αm and we take n large enough so that n/Ln ≥ jε/αm(Ω), and therefore
Ω /∈ S n

Ln
, ε
αm

.

Pick (N,Θ, x, u) and consider one trajectory π̂, of length ûLn, starting from (N,ΠN +
bN )Ln, staying in the coarsed-grained line at height ΠN , crossing the B-blocks in a straight
line and the A-blocks in mLn steps. The number of columns crossed by π̂ is denoted by N̂
and satisfies N̂ ≥ û/m. If ûLn ≤ εn/α, then the Hamiltonian associated with π̂ is clearly
larger than −εn. If ûLn ≥ εn/α in turn, then

H
w̃,Ω(N+·,ΠN )
ûLn,Ln

(π̂) ≥ −αLnN̂
[
1− PΩ

A (N,ΠN )(N̂)
]
. (4.147)

Since N ≤ n/Ln, |ΠN | ≤ m1N and N̂ ≥ εn/(αmLn), we can use the fact that Ω /∈ S n
Ln

, ε
αm

to obtain
PΩ
A (N,ΠN )(N̂) ≥ p

2
. (4.148)

At this point it remains to bound N̂ from above, which is done by noting that

N̂
[
mPΩ

A (N,ΠN )(N̂) + 1− PΩ
A (N,ΠN )(N̂)

]
= û ≤ n

Ln
. (4.149)
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Hence, using (4.148) and (4.149), we obtain N̂ ≤ 2n/pmLn and therefore the right-hand side
of (4.147) is bounded from below by −α(2− p)n/pm, which for m large enough is larger than
−εn.

Thus, for n and m large enough and for all (N,Θ, x, u), we have a trajectory π̂ at which
the Hamiltonian is bounded from below by −εn that can be concatenated with all trajectories
associated with (N,Θ, x′, u) to obtain a trajectory in W m

n,M . Consequently, recalling (4.136),
for n and m large enough we have

A2Â2 ≤ eεnZ(ωJ , ω̃),Ω
n,Ln

(M,m) ∀ (N,Θ, x, u). (4.150)

4.3.3 Step 3

In this step, we average over the microscopic disorders ω, ω̃. Use (4.150) to note that, for n
and m large enough and all ω ∈ Bn, we have

Zω,Ωn,Ln
(M) ≤ e4εn

n/Ln∑
N=1

∑
Θtraj∈D̃MLn,N

∑
x∈XM,∞Θtraj,Ω

∑
u∈UM,∞,LnΘtraj,x,n

Z
(ωJ , ω̃),Ω
n,Ln

(M,m). (4.151)

We use (C.3) to claim that there exists C1, C2 > 0 so that for all n ∈ N, all m ∈ N and all J ,

Pω,ω̃
(∣∣∣ 1

n logZ
(ωJ , ω̃),Ω
n,Ln

(M,m)− fΩ
1,n(M,m)

∣∣∣ ≥ ε) ≤ C1e
−C2ε2n. (4.152)

We set also

Dn =
⋂

(N,Θtraj,x,u)

{∣∣∣ 1
n logZ

(ωJ , ω̃),Ω
n,Ln

(M,m)− fΩ
1,n(M,m)

∣∣∣ ≤ ε}, (4.153)

recall the definition of cn in (4.52) (used with (M,∞)), and use (4.152) and the fact that cn
grows subexponentially, to obtain limn→∞ Pω,ω̃(Dc

n) = 0. For all (ω, ω̃) satisfying ω ∈ Bn and
(ω, ω̃) ∈ Dn, we can rewrite (4.151) as

Zω,Ωn,Ln
(M) ≤ cn enf

Ω
1,n(M,m)+5εn. (4.154)

As a consequence, recalling (2.32), for m large enough we have

fΩ
n (M ;α, β) ≤ P(Bc

n ∪Dc
n)Cuf(α) +

log cn
n

+
1

n
E
(

1{Bn∪Dn}
(
nfΩ

1,n(M,m) + 5εn
))
. (4.155)

Since P(Bc
n ∪Dc

n) and (log cn)/n vanish when n→∞, it suffices to apply Proposition 4.1 and
to let ε→ 0 to obtain (4.132). This completes the proof of Proposition 4.2.

4.4 Proof of Proposition 4.3

Note that, for all m ≥ M + 2, we have Rmp,M ⊂ Rp,M . Moreover, any (uΘ)Θ∈VmM
∈ BVmM can

be extended to VM so that it belongs to BVM . Thus,

sup
m≥M+2

f(M,m;α, β) ≤ sup
ρ∈Rp,M

sup
(u)∈BVM

V (ρ, u). (4.156)
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As a consequence, it suffices to show that for all ρ ∈ Rp,M and (uΘ)Θ∈VM ∈ BVM ,

V (ρ, u) ≤ sup
m≥M+2

sup
ρ∈Rmp,M

sup
(u)∈BVmM

V (ρ, u). (4.157)

If
∫
VM uΘ ρ(dΘ) = ∞, then (4.157) is trivially satisfied since V (ρ, u) = −∞. Thus, we can

assume that ρ(VM \ DM ) = 1, where DM = {Θ ∈ VM : χΘ ∈ {AZ, BZ}, xΘ = 2}. Since∫
VM uΘ ρ(dΘ) < ∞ and since (recall (2.32)) ψ(Θ, u) is uniformly bounded by Cuf(α) on

(Θ, u) ∈ V ∗M , we have by dominated convergence that for all ε > 0 there exists an m0 ≥M+2
such that, for all m ≥ m0,

V (ρ, u) ≤

∫
VmM

uΘψ(Θ, uΘ)ρ(dΘ)∫
VmM

uΘρ(dΘ)
+ ε

2 . (4.158)

Since ρ(VM \ DM ) = 1 and since ∪m≥M+2V
m
M = VM \ DM , we have limm→∞ ρ(V mM ) = 1.

Moreover, for all m ≥ m0 there exists a ρ̂m ∈ Rmp,M such that ρ̂m = ρm + ρm, with ρm the

restriction of ρ to V mM and ρm charging only those Θ satisfying xΘ = 1. Since all Θ ∈ VM
with xΘ = 1 also belong to VM+2

M , we can state that ρm only charges VM+2
M . Therefore

V (ρ̂m, u) =

∫
VmM

uΘψ(Θ, uΘ)ρ(dΘ) +
∫
VM+2
M

uΘψ(Θ, uΘ)ρm(dΘ)∫
VmM

uΘρ(dΘ) +
∫
VM+2
M

uΘρm(dΘ)
. (4.159)

Since Θ 7→ uΘ is continuous on VM , there exists an R > 0 such that uΘ ≤ R for all Θ ∈ VM+2
M .

Therefore we can use (4.158) and (4.159) to obtain, for m ≥ m0,

V (ρ̂m, u) ≥ (V (ρ, u)− ε
2)

∫
VmM

uΘρ(dΘ)∫
VmM

uΘρ(dΘ) +
∫
VM+2
M

uΘρm(dΘ)
−RCuf(α) (1− ρ(V mM )). (4.160)

The fact that ρm(VM+2
M ) = ρ(VM \V

m
M ) for all m ≥ m0 impliess that limm→∞ ρm(VM+2

M ) = 0.
Consequently, the right-hand side in (4.160) tends to V (ρ, u) − ε/2 as m → ∞. Thus, there
exists a m1 ≥ m0 such that V (ρ̂m1 , u) ≥ V (ρ, u) − ε. Finally, we note that there exists a
m2 ≥ m1 + 1 such that uΘ ≤ m2 for all Θ ∈ V m1

M , which allows us to extend (uΘ)Θ∈Vm1
M

to

V m2

M such that (uΘ)Θ∈Vm2
M
∈ BVm2

M
. It suffices to note that ρ̂m1 ∈ R

m1
p,M ⊂ R

m2
p,M to conclude

that
V (ρ, u) ≤ f(M,m2; α, β) + ε. (4.161)

A Properties of path entropies

In Appendix A.1 we state a basic lemma (Lemma A.1) about uniform convergence of path
entropies in a single column. This lemma is proved with the help of three additional lemmas
(Lemmas A.2–A.4), which are proved in Appendix A.2. The latter ends with an elementary
lemma (Lemma A.5) that allows us to extend path entropies from rational to irrational pa-
rameter values. In Appendix A.3, we extend Lemma A.1 to entropies associated with sets of
paths fullfilling certain restrictions on their vertical displacement.
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A.1 Basic lemma

We recall the definition of κ̃L, L ∈ N, in (2.2) and κ̃ in (2.3).

Lemma A.1 For every ε > 0 there exists an Lε ∈ N such that

|κ̃L(u, l)− κ̃(u, l)| ≤ ε for L ≥ Lε and (u, l) ∈ HL. (A.1)

Proof. With the help of Lemma A.2 below we get rid of those (u, l) ∈ H∩Q2 with u large,
i.e., we prove that limu→∞ κL(u, l) = 0 uniformly in L ∈ N and (u, l) ∈ HL. Lemma A.3
in turn deals with the moderate values of u, i.e., u bounded away from infinity and 1 + |l|.
Finally, with Lemma A.4 we take into account the small values of u, i.e., u close to 1 + |l|. To
ease the notation we set, for η ≥ 0 and M > 1,

HL,η,M = {(u, l) ∈ HL : 1 + |l|+ η ≤ u ≤M}, Hη,M = {(u, l) ∈ H : 1 + |l|+ η ≤ u ≤M}.
(A.2)

Lemma A.2 For every ε > 0 there exists an Mε > 1 such that

1
uL log

∣∣{π ∈ WuL : πuL,1 = L}
∣∣ ≤ ε ∀L ∈ N, u ∈ 1 + N

L : u ≥Mε. (A.3)

Lemma A.3 For every ε > 0, η > 0 and M > 1 there exists an Lε,η,M ∈ N such that

|κ̃L(u, l)− κ̃(u, l)| ≤ ε ∀L ≥ Lε,η,M , (u, l) ∈ HL,η,M . (A.4)

Lemma A.4 For every ε > 0 there exist ηε ∈ (0, 1
2) and Lε ∈ N such that

|κ̃L(u, l)− κ̃L(u+ η, l)| ≤ ε ∀L ≥ Lε, (u, l) ∈ HL, η ∈ (0, ηε) ∩ 2N
L . (A.5)

Note that, after letting L→∞ in Lemma A.4, we get

|κ̃(u, l)− κ̃(u+ η, l)| ≤ ε ∀ (u, l) ∈ H ∩Q2, η ∈ (0, ηε) ∩Q. (A.6)

Pick ε > 0 and ηε ∈ (0, 1
2) as in Lemma A.4. Note that Lemmas A.2–A.3 yield that,

for L large enough, (A.1) holds on {(u, l) ∈ HL : u ≥ 1 + |l| + ηε
2 }. Next, pick L ∈ N,

(u, l) ∈ HL : u ≤ 1 + |l|+ ηε
2 and ηL ∈ (ηε2 , ηε) ∩

2N
L , and write

|κ̃L(u, l)− κ̃(u, l)| ≤ A+B + C, (A.7)

where

A = |κ̃L(u, l)− κ̃L(u+ηL, l)|, B = |κ̃L(u+ηL, l)− κ̃(u+ηL, l)|, C = |κ̃(u+ηL, l)− κ̃(u, l)|.
(A.8)

By (A.6), it follows that C ≤ ε. As mentioned above, the fact that (u + ηL, l) ∈ HL and
u + ηL ≥ |l| + ηε

2 implies that, for L large enough, B ≤ ε uniformly in (u, l) ∈ HL : u ≤
1 + |l|+ ηε

2 . Finally, from Lemma A.4 we obtain that A ≤ ε for L large enough, uniformly in
(u, l) ∈ HL : u ≤ 1 + |l|+ ηε

2 . This completes the proof of Lemma A.1. �
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A.2 Proofs of Lemmas A.2–A.4

A.2.1 Proof of Lemma A.2

The proof relies on the following expression:

vu,L =
∣∣{π ∈ WuL : πuL,1 = L}

∣∣ =
L+1∑
r=1

(
L+ 1

r

)(
(u− 1)L

r

)
2r, (A.9)

where r stands for the number of vertical stretches made by the trajectory (a vertical stretch
being a maximal sequence of consecutive vertical steps). Stirling’s formula allows us to assert
that there exists a g : [1,∞)→ (0,∞) satisfying limu→∞ g(u) = 0 such that(

uL

L

)
≤ eg(u)uL, u ≥ 1, L ∈ N. (A.10)

Equations (A.9–A.10) complete the proof.

A.2.2 Proof of Lemma A.3

We first note that, since u is bounded from above, it is equivalent to prove (A.4) with κ̃L and
κ̃, or with GL and G given by

G(u, l) = uκ̃(u, l), GL(u, l) = uκ̃L(u, l), (u, l) ∈ HL. (A.11)

Via concatenation of trajectories, it is straightforward to prove that G is Q-concave on H∩Q2,
i.e.,

G(λ(u1, l1)+(1−λ)(u2, l2)) ≥ λG(u1, l1)+(1−λ)G(u2, l2), λ ∈ Q[0,1], (u1, l1), (u2, l2) ∈ H∩Q2.
(A.12)

Therefore G is Lipschitz on every K∩H∩Q2 with K ⊂ H0 (the interior of H) compact. Thus,
G can be extended on H0 to a function that is Lipschitz on every compact subset in H0.

Pick η > 0, M > 1, ε > 0, and choose Lε ∈ N such that 1/Lε ≤ ε. Since Hη,M ⊂ H0

is compact, there exists a c > 0 (depending on η,M) such that G is c-Lipschitz on Hη,M .
Moreover, any point inHη,M is at distance at most ε from the finite latticeHLε,η,M . Lemma 2.1
therefore implies that there exists a qε ∈ N satisfying

|GqLε(u, l)−G(u, l)| ≤ ε ∀ (u, l) ∈ HLε,η,M , q ≥ qε. (A.13)

Let L′ = qεLε, and pick q ∈ N to be specified later. Then, for L ≥ qL′ and (u, l) ∈ HL,η,M ,
there exists an (u′, l′) ∈ HLε,η,M such that |(u, l) − (u′, l′)|∞ ≤ ε, u > u′, |l| ≥ |l′| and
u− u′ ≥ |l| − |l′|. We recall (2.3) and write

0 ≤ G(u, l)−GL(u, l) ≤ A+B + C, (A.14)

with

A = |G(u, l)−G(u′, l′)|, B = |G(u′, l′)−GL′(u′, l′)|, C = GL′(u
′, l′)−GL(u, l). (A.15)

Since G is c-Lipschitz on Hη,M , and since |(u, l) − (u′, l′)|∞ ≤ ε, we have A ≤ cε. By (A.13)
we have that B ≤ ε. Therefore only C remains to be considered. By Euclidean division, we
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get that L = sL′ + r, where s ≥ q and r ∈ {0, . . . , L′ − 1}. Pick π1, π2, . . . , πs ∈ WL′(u
′, |l′|),

and concatenate them to obtain a trajectory in WsL′(u
′, |l′|). Moreover, note that

uL− u′sL′ = (u− u′)sL′ + ur (A.16)

≥ (|l| − |l′|)sL′ + (1 + |l|)r = (L− sL′) + (|l|L− s|l′|L′),

where we use that L−sL′ = r, u−u′ ≥ |l|− |l′| and u ≥ 1+ |l|. Thus, (A.16) implies that any
trajectory in WL′(u

′, |l′|) can be concatenated with an (uL − u′sL′)-step trajectory, starting
at (sL′, s|l′|L′) and ending at (L, |l|L), to obtain a trajectory in WL(u, |l|). Consequently,

GL(u, l) ≥ s
L log κL′(u

′, l′) ≥ s
s+1GL′(u

′, l′). (A.17)

But s ≥ q and therefore GL′(u
′, l′) − GL(u, l) ≤ 1

qGL′(u
′, l′) ≤ 1

qM log 3 (recall that log 3 is
an upper bound for all entropies per step). Thus, by taking q large enough, we complete the
proof.

A.2.3 Proof of Lemma A.4

Pick L ∈ N, (u, l) ∈ HL, η ∈ 2N
L , and define the map T : WL(u, l) 7→ WL(u + η, l) as follows.

Pick π ∈ WL(u, l), find its first vertical stretch, and extend this stretch by ηL
2 steps. Then,

find the first vertical stretch in the opposite direction of the stretch just extended, and extend
this stretch by ηL

2 steps. The result of this map is T (π) ∈ WL(u+η, l), and it is easy to verify
that T is an injection, so that |WL(u, l)| ≤ |WL(u+ η, l)|.

Next, define a map T̃ : WL(u + η, l) 7→ WL(u, l) as follows. Pick π ∈ WL(u + η, l) and
remove its first ηL

2 steps north and its first ηL
2 steps south. The result is T̃ (π) ∈ WL(u, l), but

T̃ is not injective. However, we can easily prove that for every ε > 0 there exist ηε > 0 and
Lε ∈ N such that, for all η < ηε and all L ≥ lε, the number of trajectories in WL(u+ η, l) that
are mapped by T̃ to a particular trajectory in π ∈ WL(u, l) is bounded from above by eεL,
uniformly in (u, l) ∈ HL and π ∈ WL, (u, l).

This completes the proof of Lemmas A.2–A.4.

A.2.4 Observation

We close this appendix with the following observation. Recall Lemma 2.1, where (u, l) 7→
κ̃(u, l) is defined on H ∩Q2.

Lemma A.5 (i) (u, l) 7→ uκ̃(u, l) extends to a continuous and strictly concave function on
H.
(ii) l 7→ κ̃(u, l) is increasing on [−u+ 1, 0] and decreasing on [0, u− 1],
(iii) limu→∞ κ̃(u, 0) = 0.
(iv) u 7→ uκ̃(u, l) is strictly increasing on [1 + |l|,∞) and limu→∞ uκ̃(u, l) =∞.

Proof. (i) In the proof of Lemma A.1 we have shown that κ̃ can be extended to H0 in such
a way that (u, l) 7→ uκ̃(u, l) is continuous and concave on H0. Lemma A.4 allows us to extend
κ̃ to the boundary of H, in such a way that continuity and concavity of (u, l) 7→ uκ̃(u, l) hold
on all of H. To obtain the strict concavity, we recall the formula in (2.4), i.e.,

uκ̃(u, l) =

{
uκ(u/|l|, 1/|l|), l 6= 0,
uκ̂(u), l = 0,

(A.18)
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where (a, b) 7→ aκ(a, b), a ≥ 1 + b, b ≥ 0, and µ 7→ µκ̂(µ), µ ≥ 1, are given in [3], Section 2.1,
and are strictly concave. In the case l 6= 0, (A.18) provides strict concavity of (u, l) 7→ uκ̃(u, l)
on H+ = {(u, l) ∈ H : l > 0} and on H− = {(u, l) ∈ H : l < 0}, while in the case l = 0 it
provides strict concavity on H = {(u, 0), u ≥ 1}. We already know that (u, l) 7→ uκ̃(u, l) is
concave on H, which, by the strict concavity on H+, H− and H, implies strict concavity of
(u, l) 7→ uκ̃(u, l) on H.

(ii) This follows from concavity of l 7→ κ̃(u, l) and the fact that κ̃(u, l) = κ̃(u,−l).

(iii) This is a direct consequence of Lemma A.2.

(iv) By (i) we have that u 7→ uκ̃(u, l) is strictly concave on [1 + |l|,∞). Therefore, proving
that limu→∞ uκ̃(u, l) =∞ is sufficient to obtain that u 7→ uκ̃(u, l) is strictly increasing. It is
proven in [3], Lemma 2.1.2 (iii), that limµ→∞ uκ̂(u) =∞, so that (A.18) completes the proof
for l = 0. If l 6= 0, then we use (A.18) again and the variational formula in the proof of [3],
Lemma 2.1.1, to check that lima→∞ aκ(a, b) =∞ for all b > 0. �

A.3 A generalization of Lemma A.1

In Section 4 we sometimes needed to deal with subsets of trajectories of the following form.
Recall (2.1), pick L ∈ N, (u, l) ∈ HL and B0, B1 ∈ Z

L such that

B1 ≥ 0 ∨ l ≥ 0 ∧ l ≥ B0 and B1 −B0 ≥ 1. (A.19)

Denote by W̃L(u, l, B0, B1) the subset of WL(u, l) containing those trajectories that are con-
strained to remain above B0L and below B1L (see Fig. 12), i.e.,

W̃L(u, l, B0, B1) =
{
π ∈ WL(u, l) : B0L < πi,2 < B1L for i ∈ {1, . . . , uL− 1}

}
, (A.20)

and let

κ̃L(u, l, B0, B1) =
1

uL
log |W̃L(u, l, B0, B1)| (A.21)

be the entropy per step carried by the trajectories in W̃L(u, l, B0, B1). With Lemma A.6
below we prove that the effect on the entropy of the restriction induced by B0 and B1 in the
set W̃L(u, l) vanishes uniformly as L→∞.

Lemma A.6 For every ε > 0 there exists an Lε ∈ N such that, for L ≥ Lε, (u, l) ∈ HL and
B0, B1 ∈ Z/L satisfying B1 −B0 ≥ 1, B1 ≥ max{0, l} and B0 ≤ min{0, l},

|κ̃L(u, l, B0, B1)− κ̃L(u, l)| ≤ ε. (A.22)

Proof. The key fact is that B1 − B0 ≥ 1. The vertical restrictions B1 ≥ max{0, l} and
B0 ≤ min{0, l} gives polynomial corrections in the computation of the entropy, but these
corrections are harmless because (B1 −B0)L is large. �
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Figure 12: A trajectory in W̃L(u, l, B0, B1).

B Properties of free energies

B.1 Free energy along a single linear interface

Also the free energy µ 7→ φI(µ;α, β) defined in Proposition 2.2 can be extended from Q ∩
[1,∞) to [1,∞), in such a way that µ 7→ µφI(µ;α, β) is concave and continous on [1,∞).
By concatenating trajectories, we can indeed check that µ 7→ µφI(µ;α, β) is concave on
Q ∩ [1,∞). Therefore it is Lipschitz on every compact subset of (1,∞) and can be extended
to a concave and continuous function on (1,∞). The continuity at µ = 1 comes from the fact
that φI(1;α, β) = 0 and limµ↓1 φ

I(µ) = 0, which is obtained by using Lemma D.1 below.

Lemma B.1 For all (α, β) ∈ CONE:
(i) µ 7→ µφI(µ;α, β) is strictly increasing on [1,∞) and limµ→∞ µφ

I(µ;α, β) =∞.
(ii) limµ→∞ φ

I(µ;α, β) = 0.

Proof. (i) Clearly, φI(µ;α, β) ≥ κ̃(µ, 0) for µ ≥ 1. Therefore Lemma A.5(iv) implies that
limµ→∞ µφ

I(µ;α, β) = ∞. Thus, the concavity of µ 7→ µφI(µ;α, β) is sufficient to obtain
that it is strictly increasing on [1,∞).
(ii) See [4], Lemma 2.4.1(i). �

Recall Assumption 2.3, in which we assumed that µ 7→ µφI(µ;α, β) is strictly concave on
[1,∞). The next lemma states that the convergence of the average quenched free energy φIL
to φI as L→∞ is uniform on Q ∩ [1,∞).

Lemma B.2 For every (α, β) ∈ CONE and ε > 0 there exists an Lε ∈ N such that

|φL(µ)− φ(µ)| ≤ ε ∀µ ∈ 1 + 2N
L , L ≥ Lε. (B.1)

Proof. Similarly to what we did for Lemma A.1, the proof can be done by treating separately
the cases µ large, moderate and small. We leave the details to the reader. �
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B.2 Free energy in a single column

We can extend (Θ, u) 7→ ψ(Θ, u) from V∗M to V∗M by using the variational formulas in (2.36)
and (2.39) and by recalling that κ̃ and φI have been extended to H and [1,∞) in Appendices
A.2 and B.1.

Pick M ∈ N and recall (2.13). Define a distance dM on VM as follows. Pick Θ1,Θ2 ∈ VM ,
abbreviate

Θ1 = (χ1,∆Π1, b0,1, b1,1, x1), Θ2 = (χ2,∆Π2, b0,2, b1,2, x2), (B.2)

and define

dM (Θ1,Θ2) =
∑
j∈Z

1{χ1(j)6=χ2(j)}

2|j|
+ |∆Π1 −∆Π2|+ |b0,1 − b0,2|+ |b1,1 − b1,2| (B.3)

so that d̃M ((Θ1, u1), (Θ2, u2)) = max{|u1 − u2|, dM (Θ1,Θ2)} is a distance on V ∗,mM for which
V ∗,mM is compact.

Lemma B.3 For every (M,m) ∈ EIGH and (α, β) ∈ CONE,

(u,Θ) 7→ uψ(Θ, u;α, β) (B.4)

is uniformly continuous on V ∗,mM endowed with d̃M .

Proof. Pick (M,m) ∈ EIGH. By the compactness of V ∗,mM , it suffices to show that (u,Θ) 7→
uψ(Θ, u) is continuous on V ∗,mM . Let (Θn, un) = (χn,∆Πn, b0,n, b1,n, un) be the general term

of an infinite sequence that tends to (Θ, u) = (χ,∆Π, b0, b1, u) in (V ∗,mM , d̃M ). We want to
show that limn→∞ unψ(Θn, un) = uψ(Θ, u). By the definition of d̃M , we have χn = χ and
∆Πn = ∆Π for n large enough. We assume that Θ ∈ Vint, so that Θn ∈ Vint for n large enough
as well. The case Θ ∈ Vnint can be treated similarly.

Set
Rm = {(a, h, l) ∈ [0,m]× [0, 1]× R : h+ |l| ≤ a} (B.5)

and note that Rm is a compact set. Let g : Rm 7→ [0,∞) be defined as g(a, h, l) = a κ̃( ah ,
l
h)

if h > 0 and g(a, h, l) = 0 if h = 0. The continuity of κ̃, stated in Lemma A.5(i), ensures that
g is continuous on {(a, h, l) ∈ Rm : h > 0}. The continuity at all (a, 0, l) ∈ Rm is obtained by
recalling that limu→∞ κ̃(u, l) = 0 uniformly in l ∈ [−u+ 1, u− 1] (see Lemma A.5(ii-iii)) and
that κ̃ is bounded on H.

In the same spirit, we may set R′m = {(u, h) ∈ [0,m]× [0, 1] : h ≤ u} and define g′ : R′m 7→
[0,∞) as g′(u, h) = uφI(uh) for h > 0 and g′(u, h) = 0 for h = 0. With the help of Lemma B.1
we obtain the continuity of g′ on R′m by mimicking the proof of the continuity of g on Rm.

Note that the variational formula in (2.36) can be rewriten as

uψ(Θ, u) = sup
(h),(a)∈L(lA, lB ;u)

Q((h), (a), lA, lB), (B.6)

with
Q((h), (a), lA, lB) = g(aA, hA, lA) + g(aB, hB, lB) + aB

β−α
2 + g

′
(aI , hI), (B.7)

and with lA and lB defined in (2.35). Note that L(lA, lB; u) is compact, and that (h), (a) 7→
Q((h), (a), lA, lB) is continuous on L(lA, lB; u) because g and g′ are continuous on Rm and
R′m, respectively. Hence, the supremum in (B.6) is attained.

53



Pick ε > 0, and note that g and g′ are uniformly continuous on Rm and R′m, which
are compact sets. Hence there exists an ηε > 0 such that |g(a, h, l) − g(a′, h′, l′)| ≤ ε and
|g′(u, b) − g′(u′, b′)| ≤ ε when (a, h, l), (a′, h′, l′) ∈ Rm and (u, b), (u′, b′) ∈ R′m are such that
|a− a′|, |h− h′|, |l − l′|, |u− u′| and |b− b′| are bounded from above by ηε.

Since limn→∞(Θn, un) = (Θ, u) we also have that limn→∞ b0,n = b0, limn→∞ b1,n = b1 and
limn→∞ un = u. Thus, limn→∞ lA,n = lA and limn→∞ lB,n = lB, and therefore |lA,n− lA| ≤ ηε,
|lB,n − lB| ≤ ηε and |un − u| ≤ ηε for n ≥ nε large enough.

For n ∈ N, let (hn), (an) ∈ L(lA,n, lB,n; un) be a maximizer of (B.6) at (Θn, un), and note

that, for n ≥ nε, we can choose (h̃n), (ãn) ∈ L(lA, lB; u) such that |ãA,n−aA,n|, |ãB,n−aB,n|,
|ãIn − aIn|, |h̃A,n − hA,n|, |h̃B,n − hB,n| and |h̃In − hIn| are bounded above by ηε. Consequently,

unψ(Θn, un)− uψ(Θ, u) ≤ Q((hn), (an), lA,n, lB,n)−Q((h̃n), (ãn), lA, lB) ≤ 3ε. (B.8)

We bound uψ(Θ, u)−unψ(Θn, un) from above in a similar manner, and this suffices to obtain
the claim. �

Lemma B.4 For every Θ ∈ VM , the function u 7→ uψ(Θ, u) is continuous and strictly con-
cave on [tΘ,∞).

Proof. The continuity is a straightforward consequence of Lemma B.3: simply fix Θ and
let m→∞. To prove the strict concavity, we note that the cases Θ ∈ Vint and Θ ∈ Vnint can
be treated similarly. We will therefore focus on Θ ∈ Vint.

For l ∈ R, let

Nl = {(a, h) ∈ [0,∞)× [0, 1] : a ≥ h+ |l|}, N+
l = {(a, h) ∈ Nl : h > 0}, (B.9)

and let gl : Nl 7→ [0,∞) be defined as gl(a, h) = a κ̃( ah ,
l
h) for h > 0 and gl(a, h) = 0 for h = 0.

The strict concavity of (u, l) 7→ uκ̃(u, l) on H, stated in Lemma A.5(i), immediately yields
that gl is strictly concave on N+

l and concave on Nl. Consequently, for all (a1, h1) ∈ N+
l and

(a2, h2)Nl \ N+
l , gl is strictly concave on the segment [(u1, h1), (u2, h2)].

Let Ñ = {(u, h) ∈ [0,∞)× [0, 1] : h ≤ u} and define g̃ : Ñ 7→ [0,∞) as g̃(u, h) = uφI(uh)
for h > 0 and g̃(u, h) = 0 for h = 0. The strict concavity of u 7→ uφI(u) on [1,∞), stated in
Assumption 2.3, immediately yields that g̃ is strictly concave on Ñ+ = {(u, h) ∈ Ñ : h > 0}
and concave on Ñ . Consequently, for all (u1, h1) ∈ Ñ+ and (u2, h2) ∈ Ñ \ Ñ+, g̃ is strictly
concave on the segment [(u1, h1), (u2, h2)].

Similarly to what we did in (B.6), we can rewrite the variational formula in (2.36) as

uψ(Θ, u) = sup
(h),(a)∈L(lA, lB ;u)

Q̃((h), (a)) (B.10)

with

Q̃((h), (a)) = glA(aA, hA) + glB (aB, hB) + aB
β−α

2 + g̃(u− aA − aB, 1− hA − hB), (B.11)

and the supremum in (B.10) is attained. Next we show that if (h), (a) ∈ L(lA, lB; u) realizes
the maximum in (B.10), then (h), (a) /∈ L̃(lA, lB; u) with

L̃(lA, lB; u) = L̃A(lA, lB; u) ∪ L̃B(lA, lB; u) ∪ L̃ I(lA, lB; u) (B.12)
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and

L̃A(lA, lB; u) = {(h), (a) ∈ L(lA, lB; u) : hA = 0 and aA > lA},

L̃B(lA, lB; u) = {(h), (a) ∈ L(lA, lB; u) : hB = 0 and aB > lB},

L̃ I(lA, lB; u) = {(h), (a) ∈ L(lA, lB; u) : hI = 0 and aI > 0}. (B.13)

Assume that (h), (a) ∈ L̃(lA, lB; u), and that hA > 0 or hI > 0. For instance, (h), (a) ∈
L̃I(lA, lB; u) and hA > 0. Then, by Lemma A.5(iv), Q̃ strictly increases when aA is replaced
by aA+aI and aI by 0. This contradicts the fact that (h), (a) is a maximizer. Next, if (h), (a) ∈
L̃(lA, lB; u) and hA = hI = 0, then hB = 1, and the first case is (h), (a) ∈ L̃A(lA, lB; u),
while the second case is (h), (a) ∈ L̃I(lA, lB; u). In the second case, as before, we replace aA
by aA+aI and aI by 0, which does not change Q̃ but yields that aA > lA and therefore brings
us back to the first case. In this first case, we are left with an expression of the form

Q((h), (a)) = glB (aB, 1) + aB
β−α

2 (B.14)

with hA = hI = 0 and aA > lA. Thus, if we can show that there exists an x ∈ (0, 1) such that

glA(aA, x) + glB (aB, 1− x) > glB (aB, 1), (B.15)

then we can claim that (h), (a) is not a maximizer of (B.10) and the proof for (h), (a) /∈
L̃(lA, lB; u) will be complete.

To that end, we recall (2.4), which allows us to rewrite the left-hand side in (B.15) as

glA(aA, x) + glB (aB, 1− x) = aA κ
(
aA
lA
, xlA

)
+ aB κ

(
aB
lB
, 1−x
lB

)
+ aB

β−α
2 . (B.16)

We recall [3], Lemma 2.1.1, which claims that κ is defined on DOM = {(a, b) : a ≥ 1+b, b ≥ 0},
is analytic on the interior of DOM and is continuous on DOM. Moreover, in the proof of this
lemma, an expression for ∂b κ(a, b) is provided, which is valid on the interior of DOM. From
this expression we can easily check that if a > 1, then limb→0 ∂b κ(a, b) = ∞. Therefore, by
the continuity of κ on (aA/lA, 0) with aA/lA > 1 we can assert that the derivative with respect
to x of the left-hand side in (B.16) at x = 0 is infinite, and therefore there exists an x > 0
such that (B.15) is satisfied.

Pick u1 > u2 ≥ tΘ, and let (h1), (a1) ∈ L(lA, lB; u1) and (h2), (a2) ∈ L(lA, lB; u2) be
maximizers of (B.10) for u1 and u2, respectively. We can write

(a1), (h1) =
(
aA,1, aB,1, a

I
1 ), (hA,1, hB,1, h

I
1

)
,

(a2), (h2) =
(
aA,2, aB,2, a

I
2 ), (hA,2, hB,2, h

I
2

)
. (B.17)

Thus, (a1+a2
2 ), (h1+h2

2 ) ∈ L(lA, lB; u1+u2
2 ) and, with the help of the concavity of glA , glB , g̃

proven above, we can write

u1+u2
2 ψ(Θ, u1+u2

2 ) ≥ Q̃((a1+a2
2 ), (h1+h2

2 )) ≥ 1
2

(
u1 ψ(Θ, u1) + u2 ψ(Θ, u2)

)
. (B.18)

We have proven above that (a1), (h1) /∈ L̃(lA, lB; u1) and (a2), (h2) /∈ L̃(lA, lB; u2). Thus,
we can use (B.11) and the strict concavity of glA , glB , g̃ on N+

lA
,N+

lB
Ñ+, to conclude that the

right-most inequality in (B.18) is an equality only if

(aA,1, hA,1) = (aA,2, hA,2), (aB,1, hB,1) = (aB,2, hB,2),

(u1 − aA,1 − aB,1, 1− hA,1 − hB,1) = (u2 − aA,2 − aB,2, 1− hA,2 − hB,2),
(B.19)

which clearly is not possible because u1 > u2. �
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C Concentration of measure

Let S be a finite set and let (Xi,Ai, µi)i∈S be a family of probability spaces. Consider the
product space X =

∏
i∈S Xi endowed with the product σ-field A = ⊗i∈SAi and with the

product probability measure µ = ⊗i∈Sµi.

Theorem C.1 (Talagrand [7]) Let f : X 7→ R be integrable with respect to (A, µ) and, for
i ∈ S, let di > 0 be such that |f(x) − f(y)| ≤ di when x, y ∈ X differ in the i-th coordinate
only. Let D =

∑
i∈S d

2
i . Then, for all ε > 0,

µ

{
x ∈ X :

∣∣∣∣f(x)−
∫
fdµ

∣∣∣∣ > ε

}
≤ 2e−

ε2

2D . (C.1)

The following corollary of Theorem C.1 was used several times in the paper. Let (α, β) ∈
CONE and let (ξi)i∈N be an i.i.d. sequence of Bernouilli trials taking the values −α and β with
probability 1

2 each. Let l ∈ N, T : {(x, y) ∈ Z2×Z2 : |x− y| = 1} → {0, 1} and Γ ⊂ Wl (recall
(1.1)). Let Fl : [−α, α]l → R be such that

Fl(x1, . . . , xl) = log
∑
π∈Γ

e
∑l
i=1 xi T ((πi−1,πi)). (C.2)

For all x, y ∈ [−α, α]l that differ in one coordinate only we have |Fl(x)−Fl(y)| ≤ 2α. Therefore
we can use Theorem C.1 with S = {1, . . . , l}, Xi = [−α, α] and µi = 1

2(δ−α + δβ) for all i ∈ S,
and D = 4α2l, to obtain that there exist C1, C2 > 0 such that, for every l ∈ N, Γ ⊂ Wn and
T : {(x, y) ∈ Z2 × Z2 : |x− y| = 1} → {0, 1},

P
(
|Fl(ξ1, . . . , ξm)− E(Fl(ξ1, . . . , ξm))| > η

)
≤ C1e

−C2η2

l . (C.3)

D Large deviation estimate

Let (ξi)i∈N be an i.i.d. sequence of Bernouilli trials taking values β and −α with probability
1
2 each. For N ≤ n ∈ N, denote by En,N the set of all ordered sequences of N disjoint and
non-empty intervals included in {1, . . . , n}, i.e.,

En,N =
{

(Ij)1≤j≤N ⊂ {1, . . . , n} : Ij = {min Ij , . . . ,max Ij} ∀ 1 ≤ j ≤ N,
max Ij < min Ij+1 ∀ 1 ≤ j ≤ N − 1 and Ij 6= ∅ ∀ 1 ≤ j ≤ N

}
. (D.1)

For (I) ∈ En,N , let T (I) =
∑N

j=1 |Ij | be the cumulative length of the intervals making up (I).

Pick γ > 0 and M ∈ N, and denote by Ê γn,M the set of those (I) in ∪1≤N≤(n/M) En,N that have
a cumulative length larger than γn, i.e.,

Ê γn,M = ∪n/MN=1

{
(I) ∈ En,N : T (I) ≥ γn

}
. (D.2)

Next, for η > 0 set

Qγ,ηn,M =
⋂

(I)∈Ê γn,M


N∑
j=1

∑
i∈Ij

ξi ≤ (β−α2 + η)T (I)

 . (D.3)
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Lemma D.1 For all (α, β) ∈ CONE, γ > 0 and η > 0 there exists an M̂ ∈ N such that, for

all M ≥ M̂ ,
lim
n→∞

P ((Qγ,ηn,M )c) = 0. (D.4)

Proof. An application of Cramér’s theorem for i.i.d. random variables gives that there
exists a cη > 0 such that, for every (I) ∈ Ê γn,M ,

Pξ
( N∑
j=1

∑
i∈Ij

ξi ≥ (β−α2 + η)T (I)

)
≤ e−cηT (I) ≤ e−cηγn, (D.5)

where we use that T (I) ≥ γn for every (I) ∈ Ê γn,M . Therefore

Pξ((Qγ,ηn,M )c) ≤ |Ê γn,M |e
−c(η)γn, (D.6)

and it remains to bound |Ê γn,M | as

Ê γn,M =

n/M∑
N=1

∣∣{(I) ∈ En,N : T (I) ≥ γn
}∣∣ ≤ n/M∑

N=1

(
n

2N

)
, (D.7)

where we use that choosing (I) ∈ En,N amounts to choosing in {1, . . . , n} the end points of
the N disjoint intervals. Thus, the right-hand side of (D.7) is at most (n/M)

(
n

2n/M

)
, which

for M large enough is o(ec(η)γn) as n→∞. �
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[4] F. den Hollander and N. Pétrélis, On the localized phase of a copolymer in an emulsion:
supercritical percolation regime, Commun. Math. Phys. 285 (2009) 825–871.
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