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Process mining, which aims at extracting process-related information from event logs,
has become an important tool for modern organizations that need to manage non-
trivial operational processes. Today, we see an exponential growth of available data
that can be used for analysis purposes. The volume of data and the complexity
of processes creates many challenges for process mining. Chapter 1 highlights the
motivating factors behind the research presented in this thesis and presents a unifying
view of the contributions made in this thesis. Chapter 2 presents the basic concepts
and notations that are needed for the rest of the thesis.



Chapter 1

Introduction

Process mining has made significant progress in less than a decade since its in-
ception. Process mining techniques attempt to extract non-trivial process related
knowledge and interesting insights from event logs. Process mining was welcomed
with skepticism on its applicability in real-world situations with questions raised
regarding the availability of event logs (data). The strides in technology over the
last decade had turned the tables around with exponential growths in data, e.g., the
decreasing costs of storage has fueled the creation of more and more information.
Figure 1.1 depicts the projection of storage costs and the growth of data over the
next decade. Many of today’s information systems are recording an abundance of
event logs. Process mining is now perceived as a critical link in the Business Process
Management (BPM) life-cycle, and has been adopted in various commercial BPM
systems (BPMSone, Futura Reflect, ARIS PPM, Fujitsu, Interstage, Businesscape,
Iontas PDF, QPR PA, etc.).

Figure 1.1: The decreasing cost of managing information is perceived to be an incentive to create
more information. Source: IDC Digital Universe Study, Sponsored by EMC, May 2010 [79].

Today, we see an unprecedented growth of data from a wide variety of sources
and systems across many domains and applications. The opportunities of data col-
lection is going beyond traditional information systems to also include sensor and
machine data. High-tech systems such as X-ray machines, vehicles, factory automa-
tion systems, and other devices are routinely instrumented to generate streams of
data on their activities. For example, Boeing jet engines can produce 10 terabytes
(TB) of operational information for every 30 minutes they turn. In just one Atlantic
crossing, a four-engine jumbo jet can generate 640 terabytes of data [185]. Such
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voluminous data is emanating from many areas such as banking, insurance, finance,
retail, healthcare, and telecommunications. For example, Walmart is logging one mil-
lion customer transactions per hour and feeding information into databases estimated
at 2.5 petabytes in size [185], a global Customer Relationship Management (CRM)
company is handling around 10 million calls a day with 10–12 customer interaction
events associated with each call [165]. The term “big data” has emerged to describe
this phenomenon of data growth [147]. Organizations are raring to achieve new
levels of insights from this data so that they can optimize and reinvent their business
processes and provide better services to their customers. The complexity of data
demands powerful tools to mine useful information and discover hidden knowledge.
Process mining has become all the more relevant in this era of “big data” than ever
before.

We are at the cross roads of an increasing number of domains and new applica-
tions willing to apply and adopt process mining. Process mining is being looked at
even in applications that are atypical of workflow systems. Analysis of event logs
of high-tech systems such as X-ray machines and CT scanners (medical systems),
copiers and printers, mission-critical information systems, etc., are a few examples
illustrating this trend. To give a specific example, Philips Healthcare has enabled the
monitoring of its medical equipment (X-ray machines, MR machines, CT scanners,
etc.) across the globe. Each of these systems records event logs capturing the op-
erational events during its usage. Philips is interested in analyzing these event logs
to understand the needs of their customers, identify typical use case scenarios (to
test their systems under realistic circumstances), diagnose problems, service systems
remotely, detect system deterioration, and learn from recurring problems.

Remarkable success stories have been reported on the applicability of process mining
based on event logs from real-life workflow management/information systems. While
these successes are certainly convincing, replicating this imposes certain requirements
on the quality of event logs and the nature of processes to which one can apply process
mining to. For example, contemporary process discovery algorithms have problems
in dealing with fine-grained event logs and less structured processes, and generate
spaghetti-like process models that are hard to comprehend [221]. They work well on
high-quality event logs containing only events of interest with decently structured
processes executed in a controlled environment, e.g., the event logs of a workflow
management system. This is clearly in stark contrast to the characteristics of event
logs and processes of high-tech systems. Event logs from high-tech systems are
huge and tend to be fine-granular, heterogenous, and voluminous (cf. Section 1.2).
For example, each Cardio-Vascular (CV) X-ray machine of Philips Healthcare logs
around 350 KB of event data in compressed format (5 MB in uncompressed format)
every day. Currently Philips has event logs from 2500 systems installed across the
globe. This implies that Philips stores around 875 MB of compressed data every
day. Figure 1.2(a) depicts the projection of cumulative data growth1 even with a
very conservative assumption of 3% growth in the number of CV systems every
year. However, in reality, the complexity of systems increases steadily (owing to

1In reality, Philips may not be interested in logs older than 5 years for most of the analysis.
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new requirements and added functionalities). This leads to more events and more
data being logged. Figure 1.2(b) depicts the projection of cumulative data growth
assuming a 10% increase in the number of events logged every two years. These
figures illustrate the sheer volume of data that process mining techniques need to
cope with and still produce meaningful results.
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Figure 1.2: Projection of growth of data from cardio-vascular X-ray machines. (a) cumulative
data growth with a 3% increase in the number of systems deployed every year (b) cumulative data
growth with a 3% increase in the number of systems deployed every year and a 10% increase in the
number of events logged every two years.

In addition to the characteristics of event logs, processes executed on high-tech
systems tend to be flexible and/or less-structured, e.g., application of a medical
procedure for a patient on an X-ray machine. This calls for additional techniques
and approaches to augment the repertoire of process mining techniques. Therefore,
this thesis focusses on enabling process mining for large scale event logs.

This chapter starts with an overview of process mining (Section 1.1). Then, the
characteristics of event logs from high-tech systems are discussed (Section 1.2) fol-
lowed by the three main challenges in process mining that we address in this thesis
(Section 1.3). Finally, the chapter concludes with an overview of the contributions
(Section 1.4) and the structure of this thesis (Section 1.5).

1.1 Process Mining

Process mining serves as a bridge between data mining and business process mod-
eling. The goal of process mining is to extract process-related knowledge from event
data recorded by a variety of systems (ranging from sensor networks to enterprise
information systems). The starting point for process mining is the concept of an
event. An event refers to a process instance, sometimes referred to as a case. An
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event e may have different properties, e.g., a timestamp (e occurred on January 1st
2011 at 10:00:20 EST), resource information (e was executed by John), activity (e
corresponds to fluoroscopy procedure), transaction type (e is a start event, i.e., the
start of the fluoroscopy procedure by John), and various data elements (e is done
for a patient who is undergoing treatment for left coronary with a prescribed dosage
of 1.25 units). All of these properties are optional. The only requirement is that
events are ordered (i.e., no explicit timestamp is needed) and that each event belongs
to a particular class (e.g., an activity name). Each process instance is described by
a sequence of events referred to as a trace. If we use activity names as a classifier,
then the trace corresponds to a sequence of activities. An event log is a multi-set of
traces, i.e., a collection of traces where same traces may appear multiple times.

Figure 1.3 depicts an overview of process mining. The topics in process mining
can be broadly classified into three categories (i) discovery, (ii) conformance, and
(iii) enhancement. Process discovery deals with the discovery of models from event
logs. These models may describe control-flow, organizational aspects, time aspects,
etc. Today there are dozens of process discovery techniques generating process
models using different notations (Petri nets, EPCs, BPMN, heuristic nets, etc.)
[221]. Figure 1.4 illustrates the basic idea of process discovery. An event log con-
taining detailed information about events is transformed into a multiset of traces
L � �abcdjkln,aefjkmn, abgchdjkln,agefjkmin, . . . �. Process discovery techniques
are able to discover process models such as the Petri net shown in Figure 1.4.

(process)
models

event logs

business
processes

people machines

components
organizations

“world” software
system

supports/
controls

records events,
e.g., messages,
transactions, etc.

discovery

conformance
conformance

enhancement

models
analyzes

specifies
configures

implements
analyzes

Figure 1.3: An overview of process mining (adapted from [221]). The thicker arcs indicate the
positioning of the three main topics in process mining, viz., discovery, conformance, and enhance-
ment.

Conformance deals with comparing an apriori model with the observed behavior
as recorded in the log and aims at detecting inconsistencies/deviations between a
process model and its corresponding execution log. In other words, it checks for
any violation between what was expected to happen and what actually happened.
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case id event id properties
time stamp activity resource cost . . .

10001001 01-10-2010:09:32 register Bob 10 . . .
10001002 02-10-2010:11:17 high insurance check Alice 15 . . .
10001003 02-10-2010:16:43 high medical history check Alice 15 . . .

1 10001004 03-10-2010:13:54 contact hospital Alice 20 . . .
10001005 04-10-2010:18:32 decide Wil 150 . . .
10001006 05-10-2010:09:05 prepare notification Bob 10 . . .
10001007 05-10-2010:10:13 send notification by email Bob 10 . . .
10001008 05-10-2010:10:44 archive Bob 10 . . .
10002001 01-10-2010:11:01 register Anita 10 . . .
10002002 04-10-2010:14:23 low insurance check Anu 12 . . .
10002003 05-10-2010:10:37 low medical history check Anu 12 . . .

2 10002004 08-10-2010:08:16 decide JC 50 . . .
10002005 10-10-2010:14:05 prepare notification Anita 10 . . .
10002006 11-10-2010:15:13 send notification by post Anita 10 . . .
10002007 14-10-2010:09:41 archive Anita 10 . . .
10001231 11-11-2010:10:32 register Mike 11 . . .
10001232 12-11-2010:12:13 high insurance check Kate 17 . . .
10001233 12-11-2010:13:14 send questionnaire Mike 23 . . .
10001234 22-11-2010:14:23 high medical history check Kate 17 . . .
10001235 22-11-2010:15:41 receive response Sara 17 . . .

3 10001236 03-12-2010:06:54 contact hospital Peter 23 . . .
10001237 04-12-2010:08:12 decide Chase 100 . . .
10001238 15-12-2010:13:05 prepare notification Sasha 10 . . .
10001239 15-12-2010:17:13 send notification by email Sasha 10 . . .
10001240 17-12-2010:18:14 archive Mike 10 . . .
10006711 03-01-2011:13:01 register Tom 10 . . .
10006712 04-01-2011:11:33 send questionnaire Harry 12 . . .
10006713 06-01-2011:09:43 low insurance check Mika 12 . . .
10006714 15-01-2011:11:17 low medical history check Mika 12 . . .

4 10006715 18-01-2011:19:16 decide Mark 80 . . .
10006716 20-01-2011:17:05 prepare notification Dash 10 . . .
10006717 31-01-2011:05:13 send notification by post Kim 10 . . .
10006718 04-02-2011:17:23 skip response Tom 12 . . .
10006719 14-02-2011:09:41 archive Kate 10 . . .

. . . . . . . . . . . . . . . . . . . . .

a - register
b-high insurance check
c-high medical history check
d-contact hospital
e-low insurance check
f-low medical history check
g-send questionnaire
h-receive response
i-skip response
j-decide
k-prepare notification
l-send notification by email
m-send notification by post
n-archive

a b c d j k l n

a e f j k m n

a b g c h d j k l n

a g e f j k m i n

. . .

start

a

register

b c d

high
insurance

check

high
medical
history
Check

contact
hospital

e f

low
insurance

check

low
medical

history Check

j

decide

k

l

m
prepare

notification

send
notification

by email

send
notification

by post

g

send
questionnaire

i

h

skip
response

receive
response

n

archive

end

Figure 1.4: Process discovery aims to learn a process model (in this case, a Petri net) from traces
of activities.

Enhancement deals with extending or improving an existing model based on infor-
mation about the process execution in an event log. For example, annotating a
process model with performance data to show bottlenecks, throughput times, etc.,
by exploiting the timestamps in the event log.
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1.2 Characteristics of High-Tech System Event
Logs

In this section, we discuss some of the characteristics of event data from high-tech
systems.

� Event granularity: Event logs from high-tech systems are very fine grained and
too detailed for most stakeholders. The granularity at which events are logged
varies widely (across domains/applications) without any specific consideration
for the contexts of analysis. More often than not, the events in an event log
are at different levels of granularity. This problem is compounded by the lack
of any standard/guideline on logging specifications. Viewing the process at the
right abstraction level is important for the end-user/analyst.

� Case heterogeneity: High-tech systems are complex large scale systems sup-
porting a wide range of functionality. For example, medical systems support
medical procedures that may have hundreds of potential variations. Further-
more, these systems are typically designed to be quite flexible in their operation.
This results in event logs containing a heterogeneous mix of usage scenarios
with more diverse and less structured behavior. Although it is desirable to also
record the exact variant of the use case, it is often not available, and in some
cases, it is infeasible to define all the variants. Another source of heterogeneity
stems from operational processes that change over time to adapt to changing
circumstances, e.g., new legislation, extreme variations in supply and demand,
seasonal effects, etc. For example, a new medical regulation might force the
medical equipment manufacturers to alter their machines. This might have an
influence in the way a particular procedure is applied. As another example, an
experienced physician who has been newly recruited in a hospital might apply
a medical procedure in a more efficient manner. One can notice a difference in
the way the same procedure had been applied before and after the arrival of
this physician. Diversity in an event log can also be attributed to such changes.

� Voluminous data: High-tech systems produce large amounts of data, because
they typically capture very low-level events such as the events executed by the
system components, application level events, network or communication events,
and sensor data (indicating status of components etc.). Each atomic event in
these environments has a short life-time and hundreds of events can be triggered
within a short time span (even within a second). This poses the challenge on the
availability and scalability of analysis techniques to cope with such voluminous
data.

� Unreliable timestamps: The ordering of events from high-tech system logs may
not always be reliable. For example, an X-ray machine has dozens of com-
ponents with each component having a local clock and a local buffer. There
could be a mismatch between the times when an event is actually triggered and
when an event is recorded (an event is first queued in the internal buffer of a
component before it is logged). Moreover, the recording of events across differ-
ent components is done in a distributed manner. Furthermore, discrepancies in
timestamps can also occur in cases where the clocks across different components
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are not synchronized. Such discrepancies add to the complexity of analysis and
more importantly can lead to incorrect insights if not handled properly. For
example, cause and effect may be swapped because of the incorrect ordering of
events.

� Scoping: Another issue is concerned with defining what constitutes a case and
in being able to generate/identify a case from the data sources. The definition
of a case can have different connotations based on the contexts and purpose of
analysis. There are two modes in which event data is typically made available:
(i) centralized or monolithic mode, where a single log captures every thing
related to a particular system on a single day, and (ii) distributed mode where
the data related to a system is stored across disparate data sources. Appropriate
scoping is essential to discover correct insights or to be able to answer questions.
For example, in an X-ray machine event data, completely different aspects need
to be considered when it comes to gaining insights on (i) the real usage of the
system and (ii) recurring problems and system diagnosis, the former requiring
the analysis of commands/functions invoked on the system while the latter
needing error and warning events. Domain knowledge is needed in defining
such an appropriate scope.

There are two important points to bear in mind with respect to the above list. Firstly,
the above mentioned aspects are neither exhaustive nor orthogonal. There exists con-
siderable overlap between some the items, e.g., fine granularity of events is one of the
contributing factors to voluminous data. Secondly, though the problems mentioned
above are more pronounced in high-tech system event logs, it is not uncommon to no-
tice these even in event logs of other systems, e.g., traditional enterprise information
systems [147]. Henceforth, we refer to logs with the above characteristics as large
scale event logs.

1.3 Challenges in Process Mining

Existing process mining techniques have shown their applicability in workflow-like
processes [221]. However, analyzing event logs from less structured processes as seen
in the context of high-tech systems is more difficult. Recently, the IEEE Task Force on
Process Mining has articulated a list of challenges in process mining in its manifesto
[167]. In this thesis, we address the following three challenges, which are related to
the characteristics mentioned in Section 1.2:

� Dealing with less-structured processes: most processes mined from real-life logs
tend to be less structured than what stakeholders expect. The discovered
process models are often spaghetti-like and are hard to comprehend. Many
factors lead to such a behavior. The heterogeneity of cases and fine granular
events are two of the primary factors. Another dimension to this problem stems
from the limitations of the existing process discovery algorithms. The majority
of process discovery techniques in the literature pertain to the discovery of
control-flow models that are “flat” [229, 238, 246, 264]. A notable exception is
the Fuzzy miner [94]. Flat models have inherent limitations and are one of the
primary sources of spaghettiness, especially when it comes to dealing with large
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scale logs and less structured and flexible processes. For a log with SAS event
classes (activities), a flat model can be viewed as a graph containing SAS nodes
with edges corresponding to the causality defined by the execution behavior
in the log. Graphs become quickly overwhelming and unsuitable for human
perception and cognitive systems even if there are just a few dozens of nodes
[83]. This problem is compounded if the graph is dense (which is often the
case in unstructured processes) thereby compromising the comprehensibility of
models. Figure 1.5 shows an example of a typical spaghetti process discovered
using conventional process mining techniques [221]. The complexity of the
diagram illustrates the problems and challenges.

Figure 1.5: Spaghetti process describing the diagnosis and treatment of 1143 patients of the
Gynaecology department in a Dutch hospital. The process model was constructed based on an event
log containing 150,291 events. There are 624 different activities (taking event types into account).
This event log is provided for the first business process intelligence challenge doi:10.4121/uuid:

d9769f3d-0ab0-4fb8-803b-0d1120ffcf54.

Process models can be seen as “maps” describing the operational processes.
There is a need for techniques that enable the discovery of navigable process
maps with seamless zoom-in/zoom-out facility (i.e., hierarchical process models
with different perspectives).

� Dealing with process changes: Contemporary process mining techniques as-
sume the processes to be in steady state. For example, when discovering a
process model from event logs, it is assumed that the process at the beginning
of the recorded period is the same as the process at the end of the recorded pe-
riod. However, as mentioned earlier, processes may change to adapt to changing
circumstances, e.g., new legislation, extreme variations in supply and demand,
seasonal effects, etc. Concept drift refers to the situation in which the pro-
cess is changing while being analyzed [22]. There is a need for techniques that
deal with such “second order dynamics”. Analyzing such changes is of utmost

doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
doi:10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
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importance to get an accurate insight on process executions at any instant of
time.

� Provisions for process diagnostics: lion’s share of process mining research has
been devoted to control-flow discovery. Process diagnostics, which encompasses
process conformance checking, auditing, process performance analysis, anomaly
detection, diagnosis, inspection of interesting patterns and the like, is gaining
prominence in recent years [3, 4, 15, 26, 191, 217, 222, 230, 235, 237, 241, 271].
Organizations are interested in uncovering answers to a variety of diagnostic
questions such as: are there any bottlenecks in the process?, where do process
instances deviate?, are there any common patterns of execution in the process
instances?, are there any symptomatic patterns that lead to a failure?, who
typically work together?, etc. Techniques such as conformance checking [191]
and process performance analysis [241] have inherent limitations. They assume
the availability of process models. However, in reality, models are either not
present or even if they are present they are not up-to-date or too complex (as
in Figure 1.5). Looking inside of such processes to find answers is implausible.
Techniques such as LTL checker [230] can assist in addressing this problem only
to a certain extent (they are not suitable for explorative analysis) and do not
scale up to dealing with large scale event logs. Therefore, there is a need for
complementary techniques to assist auditors and analysts in their diagnostic
efforts.

1.4 Contributions of this Thesis

In this thesis, we hypothesize that the problems arising in analyzing large scale event
logs can be attacked from two fronts: (i) event log simplification and (ii) advancements
in process mining. The following subsections provide a high-level summary on these
two aspects.

1.4.1 Event Log Simplification

We propose that some of the problems highlighted earlier in applying process mining
on large scale event logs can be addressed through systematic pre-processing in order
to simplify the event log (scope, filter, etc.).

Dealing with fine-granular event logs

In an event log, there can be scenarios where the system is subjected to similar exe-
cution patterns and behavior within and across cases. Figure 1.6 depicts an example
showing common execution patterns among the traces. Such commonalities are not
without a reason and they typically carry a strong conceptual relationship (of do-
main significance) between the events involved in the behavior. We exploit some of
the sequence patterns, such as tandem arrays and maximal repeats familiar in the
string-processing and bioinformatics literature [97, 98, 130, 131] and adapt them to
the process mining domain. We establish a relation between the manifestation of
some of the process model constructs and the sequence patterns. Furthermore, we
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define various metrics that assist in assessing the significance of the patterns uncov-
ered and propose a means to form abstractions over these patterns. The abstractions
thus formed can act as high-level activities representing the low-level events captured
underneath it. Event logs can be simplified by replacing the low-level events with
these abstract activities thereby mitigating the problem with event granularity.

Figure 1.6: Common execution patterns within and across traces in an event log.

Dealing with heterogeneity in event logs

Heterogeneity in event logs can be dealt with trace clustering, which pertains to the
grouping together of homogenous sets of cases. Figure 1.7(a) depicts a heterogenous
mix of traces (distinguished by color). The objective of trace clustering is to partition
the traces into clusters such that traces within a cluster are similar to each other and
traces that belong to different clusters are dissimilar. For the above example, this
implies grouping together of traces of the same color as illustrated in Figures 1.7(b)-
(f). Trace clustering has been reported to be an effective approach when dealing with
diversity in an event log resulting from less-structured and flexible processes. It has
been argued that process mining results can be improved by partitioning an event
log into subsets of homogenous cases and analyzing these subsets independently
[54, 86, 87, 89, 209]. Figure 1.8 illustrates the significance of trace clustering in
process mining. The process model on the top of Figure 1.8 is a process model mined
from an entire event log. This model is quite complex to comprehend. The bottom
rectangles of Figure 1.8 depict the process models mined from the clustered traces.
It is evident that clustering enables the comprehension of process models by reducing
the spaghettiness.

Most of the arguments on ‘improved results’ through trace clustering, though
convincing, are subjective in nature. There are three factors that influence the
partitioning of an event log into clusters of homogenous cases: (i) the features used
to characterize a case, (ii) the distance or similarity metrics used, and (iii) the choice
of clustering algorithm (and its parameters). Interpretation of the formed clusters
is always relative to the choices made for each of the three factors. In this thesis,
we highlight some of these issues. We analyze feature selection and distance (or
similarity) metrics in contemporary approaches to trace clustering and propose new
feature sets that are process-centric. Process-centric feature sets enable the inter-
pretation of the formed clusters from a process perspective. In addition, we propose
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trace

(a)

(b) (c) (d) (e) (f)

Figure 1.7: Objective of trace clustering: (a) an event log containing a heterogenous mix of traces.
Traces represented by the same color are similar to each other and traces of different colors are
dissimilar, (b) segregating all red traces, (c) segregating all blue traces, (d) segregating all green
traces, (e) segregating all brown traces, and (f) segregating all magenta traces.

complete
event log

partition 1 partition 2

. . .

partition k

Figure 1.8: Significance of trace clustering in process mining.

a context-aware approach to trace clustering that alleviates the need for defining
features and feature selection. Furthermore, we propose objective metrics to compare
and assess the goodness of the formed clusters from a process mining point of view.
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Figure 1.9: An event log containing traces from different process variants along with the points of
change.

Dealing with process changes

As mentioned earlier, it is not uncommon for operational processes to adapt to chang-
ing circumstances. Although flexibility and change have been studied in-depth in the
context of WFM and BPM systems, contemporary process mining techniques assume
the process to be in steady state. Obviously, this is often not the case due to the
phenomenon known as concept drift. An idealistic requirement is to record the se-
quence of process changes performed, in the form of a change log, so that event logs
can be analyzed appropriately [95]. However, such a change log will not be available
in most cases. As a result, process changes manifest themselves only latently in the
event logs (in the way which activities are executed when, how, and by whom). In
this thesis, we introduce various facets of concept drift and propose approaches to
detect drifts. Figure 1.9 depicts an event log containing cases from a process that
has undergone four changes and the points when those changes have taken place.
One of the objectives of handling concept drifts in process mining is to be able to
detect when the processes have changed. Once the change points are uncovered, one
can consider the cases between the points of change as belonging to one concept and
those across the points to be diverse. In other words, detecting drifts addresses the
issue of case heterogeneity and enables the grouping of cases. Trace clustering and
handling concept drifts are complementary approaches and can be applied together
to exploit their advantages.

1.4.2 Advancements in Process Mining

The above three topics, viz., abstractions of events, trace clustering, and handling
concept drifts, mitigate some of the issues identified in dealing with large scale event
logs through log simplification. Though log simplification is a critical step, it alone
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is not sufficient to address the questions with which process mining is sought after
as a means to provide answers to. Inability to provide answers is primarily either
due to the unavailability of an appropriate technique or due to the limitations with
existing techniques in process mining. As process mining is a relatively young field,
several challenging problems remain to be addressed [167, 221]. In this thesis, we take
a step forward towards this and propose techniques for dealing with less-structured
processes and for assisting analysts in process diagnostics.

Dealing with less-structured processes

We highlighted the issues with current techniques in process discovery in Figure 1.5.
Process modelers and business analysts typically attack large, complex, and un-
structured processes using hierarchies. Hierarchical process modeling is a modeling
paradigm where a process is modeled on multitude levels of detail, such that lower
levels or subprocesses are included in higher level processes. However, attempts at
process simplification in process mining are mostly confined to techniques that retain
highly significant information while discarding less significant ones [175]. A notable
exception is the Fuzzy miner [94]. Taking cartography as a metaphor, Fuzzy miner
attempts to provide a hierarchical model, but limited to one level of hierarchy. Less
significant activities and edges are either removed or clustered together in the model.
The cluster can be zoomed-in to uncover the abstraction captured underneath it.
However, Fuzzy miner poses a danger of clustering activities/edges having no domain
significance. One can imagine this to a scenario where some streets in Amsterdam
are combined with streets in Eindhoven in a map.

In this thesis, we provide a new dimension to hierarchical process discovery. As
mentioned earlier, process models can be seen as the “maps” describing the opera-
tional processes of organizations. Analogous to cartography, process models should
allow for various context-dependent views. Typically, different stakeholders would
be involved in a process and only some of them would be interested in knowing the
entire process in detail. Each stakeholder would be more interested to see the por-
tions of the process falling in the realm of his/her area of concern or responsibility in
great detail and the rest of the process in abstract notions. We propose a two-phase
approach to process map discovery. In the first phase, called the pre-processing
phase, we exploit the concepts proposed in dealing with fine-granular event logs, i.e.,
abstractions of events, and select those activities and abstractions that are relevant in
the context of analysis. We transform the original event log using these abstractions
into an abstract event log and create a sub-log for each abstraction. The sub-log
of an abstraction captures the sub-traces corresponding to the abstraction. In the
second phase, a process model is mined from the abstract event log. The node corre-
sponding to an abstraction in this model can be seamlessly zoomed-in to reveal the
subprocess captured by it. Multiple levels of hierarchy can be achieved by employing
the pre-processing phase repeatedly.

Figure 1.10 highlights the difference between the traditional approach to process
discovery and the two-phase approach. In the two-phase approach, we first identify
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common execution patterns in the event log and define abstractions over them, e.g.,
the activity subsequence sam is represented by the abstract activity X, the activity
subsequences cudn, cdnu, and dcnu are captured by the abstract activity Z. The event
log is then transformed using these abstractions and a process model is mined on the
transformed log. The abstract activities can be zoomed in to see the subprocesses
captured underneath them as depicted in the figure. Note that the process model
(map) mined using the two-phase approach is simpler. The exploitation of common
execution patterns and its relationship to process discovery can be summarized as
depicted in Figure 1.11.

Event Log
s a m b c u d n j e
s a m q f h l l h g i k e
s a m f g h l h i k q e
s a m b c d n u j e
s a m f h l g i h l h k q e
s a m q f g i h l h k e
s a m q f g h l h i k e
s a m p c u d n r e
s a m b d n c u j e
s a m p d n c u r e

Traditional
Approach

Two-phase
Approach

Abstractions defined over
common execution patterns

Transformed
Log
X b Z j e
X q Y Y e
X Y Y q e
X b Z Z j e
X Y Y Y q e
X q Y Y Y e
X q Y Y Y e
X p Z r e
X b Z j e
X p Z r e

Figure 1.10: Traditional approach versus our two-phase approach to process discovery. The two-
phase approach enables the mining of hierarchical process models by defining abstractions. The
blue-colored (dark) nodes in the process model depict abstract activities, which can be zoomed in
to view the subprocesses captured by them.

Provisions for process diagnostics

As mentioned earlier, process diagnostics encompasses process conformance checking,
auditing, process performance analysis, anomaly detection, diagnosis, inspection of
interesting patterns and the like. Process discovery serves as the starting point of
process mining. As shown in Figure 1.3, the discovered model can be combined
with the event logs to extract further insights. Discovered process models reflect the
“as-is” execution behavior of a process from a control-flow perspective. A compre-
hensive picture about the reality can be obtained by annotating the process models
with additional information such as timing information and resource information.
Furthermore, such enhancements are essential to assist in diagnostic efforts, e.g.,
to identify the bottlenecks in a process. These annotations can be obtained by
replaying the event log on the model and gathering relevant statistics such as the
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Figure 1.11: Repeating subsequences of activities define the common execution patterns and carry
some domain (functional) significance. Related patterns and activities pertaining to these patterns
define abstractions that correspond to micro-structures (or subprocesses). The top-level process
model can be viewed as a macro-structure that subsumes the micro-structures.

number of executions and the average execution time. Contemporary approaches to
performance analysis in process mining are confined to flat models [241] and cannot
be applied to process maps that support multiple levels of hierarchy. In this thesis,
we present a technique to replay an event log onto the process map and compute
various KPIs (key performance indicators).

Process performance analysis based on replay (as mentioned above) and confor-
mance checking (as discussed in Section 1.3) both require the availability of a process
model. However, in reality, models are either not present or even if present are not
up-to-date or can be too complex (as in Figure 1.5). Looking inside of such processes
to find diagnostic information such as deviations and performance bottlenecks is
implausible. There is a need for complementary techniques to assist auditors and
analysts in their diagnostic efforts. Given an event log, we would like to answer a
variety of diagnostic questions:

1. What is the most common (likely) process behavior that is executed? For
a given event log, it would be interesting to know which process compo-
nents are essential/critical for this process. Such essential components/func-
tions form the backbone of the process and should be conserved. Process
re-design/improvement efforts should focus on improving such critical compo-
nents.

2. Where do process instances deviate? In practice, there is often a significant gap
between what is prescribed or supposed to happen, and what actually happens.
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There is a need to augment process diagnostics with techniques that can assist
in finding deviations by analyzing raw traces in the event logs. There are
many domains/applications where this requirement is felt, e.g., fault diagnosis,
anomaly detection, etc. Given an event log containing a mix of traces where
the system (process) functioned normally and where it malfunctioned, analyzing
these traces to find deviations in malfunctioned/anomalous traces from normal
traces would give cues in understanding the cause of malfunction/anomaly.

3. Are there any common patterns of execution in the traces? Event logs may
contain data indicating the health of a process or the status of a case, etc.
One can consider such health indicators as class labels. For example, an X-ray
machine event log might contain information on system failures and broken
parts/components; an insurance claim event log might contain information on
whether a claim is fraudulent or not. Organizations are interested in gaining
further insights on such health indicators such as learning whether there are
any common patterns among the cases with a certain class label or whether
there are any discriminatory patterns between cases of different classes. For
example, understanding the contexts in which an X-ray machine breaks down,
the symptoms before a failure, etc.

4. What are the contexts in which an activity or a set of activities is executed in
an event log? Dependencies exist between activities in a process, and activities
are expected to be executed within a certain context. There can be short-range
and long-range dependencies between activities. Long-range dependencies are
difficult to discover. An analyst is interested in understanding the contexts of
execution of activities and/or activity sequences.

5. What are the process instances that share/capture a desired behavior either ex-
actly or approximately? Often in diagnostics, an analyst is interested in finding
process instances that share/comply to a particular desired behavior; the de-
sired behavior can be expressed as a manifestation of some pattern of activity
sequences or some complex form (combination) of these patterns. Although
temporal logic approaches [142, 230] can assist in addressing this problem to
a certain extent (by discovering process instances that capture the desired be-
havior exactly), one might also be interested in discovering process instances
that share the desired behavior approximately.

6. Are there particular patterns (e.g., milestones, concurrent activities, etc.) in
the process? Workflow patterns [228] refer to recurring forms/structures ad-
dressing business requirements. For example, milestones indicate specific ex-
ecution points in the process model and provide a mechanism for supporting
the conditional execution of a task or a subprocess. An analyst is interested in
discovering the presence of, and in analyzing milestone patterns in the process
event log. Similarly, discovery of process models with concurrency is one of the
challenging problems in process mining. The presence of concurrent activities
creates different permutations of activities in the event log that adds to the
complexity of discovery algorithms. Detection of the presence of concurrent
activities also helps in pre-processing the logs.
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trace
class label event pattern

Figure 1.12: An example of finding signature patterns that can discriminate between different
classes of behavior.

In this thesis, we propose techniques to address the above diagnostic questions. We
model the problem of finding patterns that are common within a particular class
or discriminatory across different classes as a classification problem in data min-
ing. As a result, we discover symptomatic signature patterns in the form of rules.
Figure 1.12 depicts a high-level view of this problem. There are three classes of
behavior (indicated by the class label for each trace) and we are interested in finding
patterns (if any) in traces that can distinguish between the three classes. We propose
techniques that can uncover such patterns, e.g., the event patterns represented by
circles are specific to traces labeled with the class 6, the event patterns represented
by bars are specific to traces labeled as ', etc. Such signature patterns can be used
in applications such as fault diagnosis and prediction.

Furthermore, we hypothesize that if processes are less structured and event logs
are far from complete, then it is better to carefully inspect the event log by grouping
and aligning the traces found in the event log. We propose an approach called trace
alignment whose goal is to align traces in such a way that event logs can be explored
easily. Figure 1.13 depicts the result of trace alignment along with annotations indi-
cating how trace alignment can assist in answering some of the diagnostic questions
raised above. By aligning traces we can see the common and frequent behavior,
and distinguish this from the exceptional behavior. For example, given an event log
containing a mix of traces where the system process functioned normally and where it
malfunctioned, aligning the traces can help in finding the deviations in malfunctioned
traces when compared to normal traces. Such deviations give cues in understanding
the cause of malfunction. Trace alignment complements existing process mining
techniques focusing on discovery and conformance checking. It creates an altogether
new dimension to conformance checking; deviations and violations are uncovered by
analyzing just the raw event traces (thereby avoiding the need for process models).
This is illustrated by Figure 1.3, which shows two types of conformance checking.

The concepts presented in this thesis have been published in leading journals and
conferences/workshops (see Appendix B for the list of publications).
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Common execution patterns
are captured in the form of
well conserved regions

Concurrent activities manifest
in mutually exclusive traces
across different columns

The consensus sequence rep-
resents the backbone of the
process

Deviations, exceptional behavior and rare
event executions are captured in regions
that are sparsely filled i.e., regions with lots
of gap symbols ‘-’ or in regions that are well
conserved with a few rare gaps.

Figure 1.13: An example of trace alignment. Each row refers to a trace. Columns describe
positions in traces. Consider now the cell in row y and column x. If the cell contains an activity
name a, then a occurred for case y at position x. If the cell contains no activity name (i.e., a gap
“-”), then nothing happened for y at position x.

1.5 Structure of this Thesis

This thesis is structured as depicted in Figure 1.14 and is divided into four main
parts. Part I constitutes the introduction to the thesis, which includes the current
chapter and concludes with the Preliminaries (Chapter 2) where we introduce the
concepts and notations such as sets, graphs, sequences, process models, and event
logs that are needed for this thesis. Part II deals with the systematic pre-processing
leading to the simplification of event logs (Chapters 3–5). Chapter 3 on abstractions
of events deals with the issue of fine-granular event logs. We present techniques
to form abstractions by exploiting the common execution patterns in an event log.
Chapter 4 is dedicated to trace clustering as a means of dealing with heterogeneity in
event logs. We argue that considering contexts is important to forming good clusters
and present context-aware approaches to trace clustering. We also present metrics
to assess the goodness of clusters from a process mining point of view. Chapter 5 on
concept drift caters to the analysis of process changes in event logs. We introduce the
topics in handling concept drift in process mining and present techniques to detect
change points in an event log.
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Figure 1.14: Structure of this thesis.

Part III of the thesis deals with the advancements in process mining (Chapters 6–9).
It starts with Chapter 6 on discovering process maps via a two-phase approach to
deal with less structured processes. This chapter utilizes the abstractions of low-level
events defined in Chapter 3 and presents an event log transformation algorithm
that replaces manifestations of common execution patterns with abstract activities.
Chapters 7–9 focuses on techniques for process diagnostics. Chapter 7 on process
map performance analysis deals with enriching the discovered process maps with
performance metrics. This chapter presents a replay technique that facilitates the
computation of key performance indicators and thereby assist in the identification
of bottlenecks in a process. In Chapter 8, we present an approach to align traces in
such a way that event logs can be explored easily. Trace alignment can be used to
explore the process in the early stages of analysis and to answer specific questions
in later stages of analysis. Chapter 9 on signature discovery deals with discovering
symptomatic patterns that can be correlated to different classes of cases in an event
log.

One can look at the advancements in process mining proposed in this thesis from
two perspectives as depicted in Figure 1.15. Chapters 6 and 7 take a process centric
approach and deal with the discovery of process models and the enhancement of
process models for additional insights. Chapters 8 and 9, on the other hand, take a
case-centric approach and are concerned with uncovering insights by looking at event
logs as raw traces. Figure 1.16 depicts the positioning of these chapters using the
classification of Figure 1.3.
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Figure 1.15: Core chapters of the thesis and their perspective of analysis.
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Figure 1.16: Positioning of chapters on advancements in process mining within the facets of process
mining.

Part IV (Chapters 10–12) deals with applications and conclusions. It starts with
Chapter 10 on tool support where we provide information on the ProM plug-ins
that are developed within the context of this thesis. We present a few case studies
substantiating the applicability of the various techniques proposed in this thesis in
Chapter 11. Finally, Chapter 12 concludes the thesis and points out directions for
future work.



Chapter 2

Preliminaries

In this chapter we introduce the necessary concepts and notations used in the re-
mainder of this thesis.

2.1 Sets, Lists, Relations and Functions

Definition 2.1 (Set). A set is an unordered collection of unique objects, called
elements of the set. An element of a set is sometimes called a member of the set. -
A set can be represented by listing its elements between curly braces, e.g., A ��a1, a2, a3, . . . , an�. The order of the elements is irrelevant; thus, �a, b, c� � �c, a, b�.
The symbol > is used to express that an element belongs to a set while its negation
is represented by ¶, e.g., a2 > A and x ¶ A.

We use the following standard set representations

� N is the set of all natural numbers �1,2,3, . . . ,�
� N0 is the set of all natural numbers including zero

� R is the set of all real numbers. R� and R� denote the set of all positive and
negative real numbers respectively. R�

0 is the set of all positive real numbers
including zero, i.e., R�

0 � R�
8 �0�.

An alternative way to define a set, called set builder notation, is by stating a prop-
erty or a predicate that holds true only for the elements of the set, e.g., A � �x >

NSx is divisible by 5� denotes the set of all multiples of 5. A set is called finite if it
has finitely many elements. Otherwise, we say that the set is infinite.

Definition 2.2 (Null Set and Singleton). A set with no elements is called an
empty set or a null set, and is represented by g or ��. A set with only one element
is called a singleton. -
Definition 2.3 (Set Cardinality). If A is a finite set, then SAS denotes the cardi-
nality of A and is equal to the number of elements in A. For example, if A � �a, b, c�,
then SAS � 3. -
Definition 2.4 ((Proper) Subset and Equality). A set A is a subset of B,
denoted by A b B, if and only if every element in A is also a member of set B. For
example, if A � �a, b, c� and B � �a, b, c, d, e� then A b B.
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Two sets, A and B, are equal, denoted by A � B, if and only if every element
in A belongs to the set B and every element in B belongs to the set A, i.e., A b B
and B b A. For example, the sets A � �a, b, c, d� and B � �c, a, d, b� are equal.

A set A is a proper subset of B, denoted by A ` B, if and only if A b B and
A x B. -
Definition 2.5 (Union, Intersection, and Difference). The union of two sets
A and B, denoted by A 8 B, is the set containing all elements in either A or B or
both, i.e., A 8B � �xSx > A or x > B�. For example, if A � �a, b, c� and B � �c, d, e�
then A 8B � �a, b, c, d, e�.

The intersection of two sets A and B, denoted by A 9 B, is the set containing
all elements in both A and B, i.e., A 9 B � �xSx > A and x > B�. For example, if
A � �a, b, c� and B � �c, d, e� then A 9B � �c�.

The difference between two sets A and B, denoted by A � B, is the set contain-
ing all elements of A that are not elements of B. For example, if A � �a, b, c� and
B � �c, d, e�, then A �B � �a, b�. -
Definition 2.6 (Disjoint Sets). Two sets, A and B, are said to be disjoint or
mutually exclusive if there are no common elements between them, i.e., if A9B � g.-
Definition 2.7 (Powerset). The collection of all subsets of a set A is called the
power set of A and is represented by 2A. For example, if A � �a, b, c�, then 2A ��g,�a�,�b�,�c�,�a, b�,�a, c�,�b, c�,A�. If SAS � n then S2AS � 2n. -
Definition 2.8 (Partitioning). A partitioning of a set A is a collection C of non-
overlapping non-empty subsets of A whose union is the set A. In other words, g ¶ C,

�P >C P � A and for any P1, P2 > C, if P1 x P2, then P1 9 P2 � g. For example, a
partitioning of A � �a, b, c, d, e, f� could be C � ��a, e�,�c�,�b, d, f��. -
Definition 2.9 (Ordered Pair and Cartesian Product). The Cartesian prod-
uct of two sets A and B, denoted by A � B, is the set of all ordered pairs �a, b�
such that a > A and b > B. In other words, A � B � ��a, b�Sa > A and b > B�.
For example, the Cartesian product of the sets A � �a, b� and B � �1,2,3� is��a,1�, �a,2�, �a,3�, �b,1�, �b,2�, �b,3��.

Two ordered pairs �a, b� and �b, a� are not equal unless a � b, i.e., �a, b� � �a�, b�� if
and only if a � a� and b � b�.

The Cartesian product of n sets A1,A2, . . . ,An defines the n-tuples over them.

A1 �A2 � � � � �An � ��a1, a2, . . . , an�S�a1 > A1� , �a2 > A2� , � � � , �an > An��
-

Definition 2.10 (Relation). A binary relation R on a set A is a set of ordered pairs,
usually defined by some sort of a rule, i.e., R b A �A. For example, if A � �1,2,3�,
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then the ‘less-than’ relation on A is defined as @ � ��1,2�, �1,3�, �2,3��. We also
write a R b for �a, b� > R and a�R b for �a, b� ¶ R. -
Definition 2.11 ((Ir-)Reflexive, Symmetric, Transitive and Equivalence Re-
lation). A binary relation R on a set A is said to be reflexive if every element is
related to itself, i.e., a R a for all a > A. R is irreflexive or anti-reflexive if no element
is related to itself. R is symmetric if for all a and b in A, if a is related to b, then b is
related to a, i.e., ¦a, b > A,a R b� b R a. R is said to be transitive if for any three
elements a, b, c > A,a R b and b R c� a R c. R is an equivalence relation if and only
if it is reflexive, symmetric, and transitive. -
Definition 2.12 (Partial Order). A partial order on A is a irreflexive and transitive
binary relation on A. In other words, a binary relation h on a set A is called a partial
order on A if for every a > A,a à a and for every a, b, c > A, if a h b and b h c then
a h c. -
Definition 2.13 (Function). A (total) function f from a set A into a set B,
denoted f � A � B, is a mapping that assigns to each element a of A an element
f�a� > B.

The set A is called the domain of the function f � A � B and is denoted by
Dom�f�; the set B is called the codomain of f , and is denoted by CoDom�f�. The
range of f is defined as Range�f� � �f�a�Sa > A�. If A� b A and f � A � B is a
function, then f�A�� � �f�a�Sa > A��. -
Definition 2.14 (Function Equality). Two total functions are equal if they have
the same domain, the same codomain, and if they take the same value on any element
of the domain. In other words, two functions f � A � B and g � X � Y are equal
if and only if A � X, B � Y , and f�x� � g�x� for all x > A. For example, the two
functions f�x� � x

x2 and g�x� � 1
x

defined over R � �0� are equal. -
Definition 2.15 (Multiset or Bag). A multiset or a bag is an unordered collection
of objects with repetitions allowed, e.g., A � �a, a, a, b, b, c�. The same multiset can
also be represented as �a3, b2, c1� where the superscript signifies the multiplicity of an
element. Given a set A, a multiset is defined as a cardinal valued function M � A� N0

such that for each x > A,M�x� denotes the number of times x occurs. For a multiset
M � A � N0 , we define M�x� � 0 if x ¶ A. B�A� � A � N0 is the set of all multisets
(bags) over A. -
Definition 2.16 (Addition and Subtraction of Bags). Let X � A1 � N0 and
Y � A2 � N0 be two bags. The sum of two bags, denoted by S � X > Y , is defined
as S � A1 8 A2 � N0 such that for all a > A1 8 A2, S�a� � X�a� � Y �a�. The
difference of two bags, denoted by S � X � Y , is defined as S � A�

� N0 where
A� � �a > A1SX�a��Y �a� A 0� and for all a > A�, S�a� �X�a��Y �a�. The cardinality
of a bag X, denoted by SX S, is defined as SX S � Pa>A1

X�a�. -
Definition 2.17 (Tuple (or List)). A tuple (or list) is an ordered collection of
elements. An n-tuple is an ordered list of n elements. We represent a tuple by listing
its elements between ` and e, e.g., `a, be, `a, a, ce. -
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Sequences

A sequence of length n, s � `s1, s2, . . . , sne > A�, is an ordered list of symbols. Given
a sequence s,

� SsS denotes the length of the sequence s

� s�i� represents the ith symbol of s

� s�i, j� represents the contiguous subsequence of s that starts at position i and
ends at position j of s for 1 B i B j B SsS. If i A j, s�i, j� is the empty sequence `e

� si represents the prefix of length i of s, i.e., si � s�1, i�. The prefix is also
referred to as the head of a sequence.

� s�i, SsS� represents the suffix of s that begins at position i. The suffix is also
referred to as the tail of a sequence.

� A proper prefix, suffix, or subsequence of s is respectively, a prefix, suffix, or
subsequence that is neither the entire sequence s nor the empty sequence

� The concatenation of two sequences s � `s1, s2, . . . , sme and t � `t1, t2, . . . , tne is
a new sequence p, denoted by p � s l t, of length m � n such that p�i� � s�i�
for 1 B i Bm and p�i� � t�i �m� for m � 1 B i Bm � n

Given a set A, A� is the set of all finite sequences over A. An is the set of all
finite sequences of length n over A. An b A�. For convenience, we often represent a
sequence s � `s1, s2, . . . , sne as a string s � s1s2 . . . sn.

2.2 Vectors and Matrices

Definition 2.18 (Matrix). A matrix A of dimension m by n (or m � n) is a
rectangular array of numbers written in the form

A �

<@@@@@@@>

a11 a12 . . . a1n

a21 a22 . . . a2n

�

am1 am2 . . . amn

=AAAAAAA?
or A � �aij�, for i � 1,2, . . . ,m and j � 1,2, . . . , n

The numbers aij are referred to as the elements of A. A�i, j� denotes the number
that is found in the ith row and the jth column. If m � n, the matrix is square. A
m�1 matrix is a column vector and a 1�n matrix is a row vector. We use lower case
arrowed letters to denote vectors, e.g., Ñv. -
Definition 2.19 (Matrix Transposition). The transpose of an m � n matrix A,
denoted by AT , is an n �m matrix obtained by interchanging the rows and columns
of A, i.e., A�i, j� � AT �j, i� for all i � 1,2, . . . ,m and j � 1,2, . . . , n. -
Definition 2.20 (Matrix Equality). Two matrices A and B are said to be equal,
denoted by A � B, if they have the same dimension and their corresponding elements
are equal, i.e., aij � bij for all i and j. -
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Definition 2.21 (Scalar Multiplication and Division). The scalar multiplica-
tion of a matrix A and a real number α is defined to be a new matrix B, denoted
by B � αA or B � Aα, whose elements bij are given by bij � αaij . The division of a
matrix A by a scalar α x 0 is equivalent to multiplication by 1~α. -
Definition 2.22 (Matrix Addition and Subtraction). The addition of two m�n
matrices A and B is a new m�n matrix C, denoted by C � A�B, whose elements cij
are given by cij � aij �bij , for all i � 1,2, . . . ,m and j � 1,2, . . . , n. Matrix subtraction
is defined similarly by replacing � with �. If the dimension of the matrices A and B
are different, then A �B and A �B are undefined. -
Definition 2.23 (Matrix Product). The product of an m � n matrix A and an
n� p matrix B is a new m� p matrix C, denoted by C � AB, whose elements cij are
defined by cij � P

n
k�1 aikbkj . The product of two matrices A and B is not defined if

the number of columns of A is not equal to the number of rows of B. -
Definition 2.24 (Inner Product, Norm and Length). The inner product (or dot
product or interior product) of two n-dimensional column vectors Ñu and Ñv, denotedÑu Y Ñv, is a scalar defined by

Ñu Y Ñv � ÑuT Ñv � ÑvT Ñu � n

Q
i�1

uivi

The Euclidean norm or 2-norm of an n-dimensional vector Ñv is a scalar obtained by
taking the inner product of the vector with itself, i.e., YÑvY � Ñv Y Ñv � Pni�1 v

2
i

The Euclidean length or simply length of a vector Ñv is the positive square root
of its Euclidean norm, i.e., �

»YÑvY -
2.3 Graphs and Trees

Graphs play an important role in the representation, design, and analysis of process
models. In this section, we introduce the basic concepts of graph theory.

Definition 2.25 (Graph). A directed graph G � �V,E� consists of two finite sets
V and E b V � V . The elements of V are the vertices or nodes of G, and those of
E, the edges or links of G. An edge �u, v� > E is directed from the source u to the
destination v. The graph G can be considered to be undirected if the relation E is
symmetric.

� Two vertices u and v of a graph G are said to be adjacent if there is an edge
between u and v, i.e., �u, v� > E.

� The adjacency matrix of a graph G � �V,E� with vertex set V � �v1, v2, . . . , vn�
is a binary n � n matrix A � �aij� such that aij � 1 if �vi, vj� > E and aij � 0
otherwise.

-
Definition 2.26 (Walk, Path, and Cycle). Let G � �V,E� be a graph. A sequence
of vertices w � `v1, v2, . . . , vke > V � of length k A 0 is a directed walk if �vi�1, vi� > E
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for 1 @ i B k. It is an undirected walk if either �vi�1, vi� > E or �vi, vi�1� > E for all
1 @ i B k.

A walk w � `v1, v2, . . . , vke is

� closed, if �vk, v1� > E
� a path, if vi x vj for all i x j and 1 B i, j B k

� a cycle, if it is closed, and vi x vj for all i x j and 1 B i, j B k

� A graph is said to be acyclic, if it has no cycles

-
Definition 2.27 (Connected Graph). A graph G � �V,E� is said to be connected
if there exists a path from u to v in G, for every u, v > V without taking the direction
of edges into account. G is said to be strongly connected if this property holds while
respecting the direction of the edges. G is said to be disconnected if it is not connected.-
Definition 2.28 (Subgraph). A graph G� � �V �,E�� is a subgraph of G � �V,E� if
V � b V and E� b E, i.e., G� can be obtained from G by deleting some vertices (along
with all its incident edges) and some edges. -
Definition 2.29 (Tree). A (rooted) directed tree T � �V,E�, is a directed graph
with a special vertex r > V , designated as the root of the tree, such that for every
v > V , there is a directed path from r to v in T . We refer to a rooted directed tree as
a directed tree henceforth. -
Definition 2.30 (Parent, Child, Leaf, Ancestor, and Descendent). Given a
directed tree T � �V,E� and an edge �u, v� > E, u is called the parent of v, and v
is called the child of u. All nodes except the root have a unique parent. A leaf is a
vertex with no children. For any path from u to v, u is an ancestor of v and v is a
descendent of u. -
Definition 2.31 (Height, Depth, and Degree). The height of a node in a tree
is the length of the longest path from that node to a leaf. The height of a tree is the
height of its root node. The depth or level of a node is the length of the path from
the root to that node. The degree of a node is the number of children it has. -
2.4 Suffix Tree

A trie is a rooted tree used for storing one or more sequences defined over an alphabet.
Each edge in a trie is labeled by a symbol (in the alphabet) and every path from the
root to a leaf corresponds to an input sequence. The concatenation of the edge labels
from the root to a node is referred to as the path label of that node. A suffix trie is a
trie storing all possible suffixes of a sequence s, i.e., every path from the root to a leaf
of a suffix trie corresponds to some s�i, SsS� for 1 B i B SsS. A suffix tree is a compact
suffix trie, where nodes with only one child are merged and the edge label replaced
with the concatenation of labels of the merged edges. More formally, a suffix tree can
be defined as
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Definition 2.32 (Suffix Tree). A suffix tree for a sequence s > Σ� of length n is a
rooted directed tree ST � �V,E� with the following properties:

� ST has exactly n leaves labeled 1 to n

� Every internal node of ST is branching, i.e., has at least two children

� Every edge of ST is labeled with a non-empty subsequence s�i, j� for 1 B i B
j B n

� Edges leaving some node are labeled with subsequences starting with different

symbols, i.e., for every node u > V , there is only one a-edge u
alα
� v for some

symbol a > Σ and some subsequence s�i, j� � α.

� The concatenation of edge labels on the path from the root to a leaf labeled i
(1 B i B n� equals the suffix of the sequence s starting at i, i.e., s�i, n�

-
Figure 2.11 depicts the suffix trie and the suffix tree for the sequence s � `m,i,n,i,n,g,$e.
The leaf nodes are depicted as squares while the internal nodes are depicted as circles.
The label inside a leaf node indicates the starting position of the suffix (correspond-
ing to the path label of the leaf) in the sequence. For example, ining$ is the suffix
starting at position 2 in mining$ while the one starting at position 6 is g$.
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Figure 2.1: The suffix trie and suffix tree for the sequence `m,i,n,i,n,g,$e.

2.5 Event Logs

The starting point for process mining is the notion of an event and an event log.
An event log captures the manifestation of events pertaining to the instances of a
single process. A process instance is also referred to as a case. Each event in the log

1the sequence is represented as a string here
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corresponds to a single case and can be related to an activity or a task. Events within
a case need to be ordered. An event may also carry optional additional information
like time, transaction type, resource, costs, etc. Timing information such as date and
timestamp of when an event occurred is required to analyze the performance related
aspects of the process. Resource information such as the person executing the activity
is useful when analyzing the organizational perspective. We refer to these additional
properties as attributes. To summarize,

� an event log captures the execution of a process.

� an event log contains process instances or cases.

� each case consists of an ordered list of events.

� each event can be associated exactly to a single case.

� events can have attributes such as activity, time, resource, etc.

We now formalize the various notions

Definition 2.33 (Event, Attribute, Classifier). Let E be the set of all event
identifiers and AN be the set of all attributes. For an attribute x > AN, let Xx denote
its universe, i.e., the set of all possible values of x. Given E and an attribute x > AN,
#x � E � Xx 8 ��� denotes the value of attribute x for any event e > E . #x�e� � � for
all attributes x not defined for e. -
We use the standard attributes activity, time, resource, and transaction type for
an event e. Let A be the set of activities, T be the time domain, R be the set
of resources and TT be the set of transaction types: #activity�e� > A signifies the
activity associated with event e, #time�e� > T indicates the timestamp of event e,
#resource�e� > R indicates the resource performing event e, and #trans�e� > TT in-
dicates the transaction type associated with event e. The transaction type attribute
refers to the life-cycle that an activity undergoes at various instances of time. A
transaction life-cycle model that typically involves the state transitions schedule,
start, suspend, complete, etc., is used.

Depending on the type of analysis, one can consider only one or a subset of at-
tributes as a representation of an event. For example, in process model discovery,
one can consider only the activity attribute or the activity attribute in conjunction
with the transaction type as a representation for each event. As another example, one
may consider only the resource attribute of an event for discovering organizational
models. Thus, the same event log can be used for different types of analysis.

Definition 2.34 (Classifier). A classifier is a function that maps an event onto a
representative name used for a particular type of analysis. For any event e > E , let
e be the name of the event. For example, if events are identified by their activity
names, then e � #activity�e�. -
Definition 2.35 (Case, Trace, Event log). Let C be the set of all case identifiers
and AN be the set of all attributes (just like events, cases can also have attributes).
For any case c > C and attribute x > AN, Â#x � C � Xx 8 ��� indicates the value of
attribute x for case c. A trace is a mandatory attribute of a case and represents a
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finite sequence of events t > E� such that no two events in a trace are the same, i.e.,
for 1 B i @ j B StS, t�i� x t�j�. Furthermore, the events in a trace should follow a
non-descending temporal order with respect to its time attribute if present, i.e., for
1 B i @ j B StS,#time�t�i�� B #time�t�j��.
For a case c, Ec denotes the set of events belonging to c, i.e., Ec � Â#trace�c�.
An event log is a set of cases L b C such that each event occurs only once, i.e., for
any two cases c1, c2 > C , c1 x c2 � Ec1 9 Ec2 � g.

If the activity name is used as a classifier, then a trace corresponds to a sequence of
activities. In such a scenario, two or more cases can correspond to the same activity
sequence. Therefore, an event log is a multi-set of traces. -
Definition 2.36 (Simple Event log). Let A be the set of activities. A simple
trace t is a sequence of activities, i.e., t > A�. A simple event log L is a multi-set of
traces over A, i.e., L > B�A��. -
One can convert an event log specified as per Definition 2.35 to a simple event log
using classifiers. Figure 2.2 depicts an example of an event log. All cases in an
event log L can be converted into sequences of activity names by using the classifier,
#activity�e�. If we apply this classifier to the cases in Figure 2.2, then we obtain the
simple event log:

L � �`register,high insurance check,high medical history check, contact hospital,

decide,prepare notification, send notification by email,archivee,
`register, low insurance check, low medical history check,decide,prepare-

notification, send notification by post,archivee,
`register,high insurance check, send questionnaire,high medical history check,

receive response, contact hospital,decide,prepare notification, send notification-

by email,archivee,
`register, send questionnaire, low insurance check, low medical history check,

decide,prepare notification, send notification by post, skip response,archivee,
. . . �

Instead, if we had chosen the resource classifier #resource�e�, the simple event log
turns out to be:

L � �`Bob,Alice,Alice,Alice,Wil,Bob,Bob,Bobe,
`Anita,Anu,Anu,JC,Anita,Anita,Anitae,
`Mike,Kate,Mike,Kate,Sara,Peter,Chase,Sasha,Sasha,Mikee,
`Tom,Harry,Mika,Mika,Mark,Dash,Kim,Tom,Katee,
. . . �

Projection using the resource classifier can be used in mining organizational models,
social networks, etc.
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case id event id properties
time stamp activity resource cost . . .

10001001 01-10-2010:09:32 register Bob 10 . . .
10001002 02-10-2010:11:17 high insurance check Alice 15 . . .
10001003 02-10-2010:16:43 high medical history check Alice 15 . . .

1 10001004 03-10-2010:13:54 contact hospital Alice 20 . . .
10001005 04-10-2010:18:32 decide Wil 150 . . .
10001006 05-10-2010:09:05 prepare notification Bob 10 . . .
10001007 05-10-2010:10:13 send notification by email Bob 10 . . .
10001008 05-10-2010:10:44 archive Bob 10 . . .
10002001 01-10-2010:11:01 register Anita 10 . . .
10002002 04-10-2010:14:23 low insurance check Anu 12 . . .
10002003 05-10-2010:10:37 low medical history check Anu 12 . . .

2 10002004 08-10-2010:08:16 decide JC 50 . . .
10002005 10-10-2010:14:05 prepare notification Anita 10 . . .
10002006 11-10-2010:15:13 send notification by post Anita 10 . . .
10002007 14-10-2010:09:41 archive Anita 10 . . .
10001231 11-11-2010:10:32 register Mike 11 . . .
10001232 12-11-2010:12:13 high insurance check Kate 17 . . .
10001233 12-11-2010:13:14 send questionnaire Mike 23 . . .
10001234 22-11-2010:14:23 high medical history check Kate 17 . . .
10001235 22-11-2010:15:41 receive response Sara 17 . . .

3 10001236 03-12-2010:06:54 contact hospital Peter 23 . . .
10001237 04-12-2010:08:12 decide Chase 100 . . .
10001238 15-12-2010:13:05 prepare notification Sasha 10 . . .
10001239 15-12-2010:17:13 send notification by email Sasha 10 . . .
10001240 17-12-2010:18:14 archive Mike 10 . . .
10006711 03-01-2011:13:01 register Tom 10 . . .
10006712 04-01-2011:11:33 send questionnaire Harry 12 . . .
10006713 06-01-2011:09:43 low insurance check Mika 12 . . .
10006714 15-01-2011:11:17 low medical history check Mika 12 . . .

4 10006715 18-01-2011:19:16 decide Mark 80 . . .
10006716 20-01-2011:17:05 prepare notification Dash 10 . . .
10006717 31-01-2011:05:13 send notification by post Kim 10 . . .
10006718 04-02-2011:17:23 skip response Tom 12 . . .
10006719 14-02-2011:09:41 archive Kate 10 . . .

. . . . . . . . . . . . . . . . . . . . .

Figure 2.2: An example event log.

In the remainder, we will use whatever notion is appropriate. Definition 2.35
specifies a generic description of an event log that can be used for various purposes,
e.g., mining organizational models, performance analysis, etc. Definition 2.36 on
the other hand specifies a simple description of an event log without any attributes.
This format is adequate for explaining most of the concepts in this thesis (e.g.,
abstractions of events, trace clustering, trace alignment, etc.) that are not using the
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information stored in additional attributes. As mentioned earlier, one can convert
any event log L into a simple event log. Simple event logs focus on a single attribute,
with the attribute typically being the activity name. However, the simple format
does not allow us to point at a specific event.

2.6 Representing and Storing Event Logs

Event logs from different systems and organizations can be stored in different formats,
e.g., databases, plain text files, etc. For process mining applications, a common event
log format based on a process meta model, called the MXML format [244], has been
proposed. This has been followed by a more recent advancement, called the XES [92].
XES is adopted as the standard by the IEEE Task Force on Process Mining. In this
section, we give a brief description of these two formats for storing and representing
event logs.

2.6.1 The MXML Format

In order to store event logs, the MXML (MiningXML) format has been defined [244].
Figure 2.3 depicts the schema of the MXML format as an UML 2.0 class diagram. An
event log corresponds to the element WorkflowLog and can contain event data per-
taining to one or more processes (element Process). A workflow log can optionally
have a Source element, which describes the system from which the log has been im-
ported, e.g., X-ray machine Y in hospital Z at Eindhoven, Staffware system, etc. Each
Process in a workflow log can contain an arbitrary number of ProcessInstances.
Each ProcessInstance captures an ordered sequence of events pertaining to that
case. Events are recorded as AuditTrailEntries and should contain two mandatory
elements, viz., WorkflowModelElement and EventType. WorkflowModelElement

corresponds to the activity or task name to which this event corresponds to and
EventType corresponds to the transaction type of the activity. An AuditTrailEntry

may optionally also contain additional information such as the Timestamp indicating
the date and time when the event actually happened and Originator indicating the
resource that performed this task. All elements (WorkflowLog, Source, Process,
ProcessInstance, and AuditTrailEntry) can in addition have an optional data el-
ement, which basically groups all attributes in the form of key-value pairs of strings.

Figure 2.4 depicts a fragment of a log pertaining to an X-ray machine in MXML
format. The events here correspond to the commands that were executed on the
machine. We can see attributes such as Group, MainMenu and Procedure defined
under the Data element for AuditTrailEntries (i.e., events). These attributes
define abstractions over the commands at different levels of granularity and satisfy
the following ordering relation Command j Group j Procedure j MainMenu. Domain
knowledge such as this as well as additional information relevant to the event can be
stored as data elements. It is important to note that these attributes are optional and
that different events can have different subset of these attributes, e.g., the audit trail
entries corresponding to the WorkflowModelElement ‘Login’ has two data attributes
while the one corresponding to ‘Select Procedure’ has no data element.
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Figure 2.3: Schema of the MXML format as an UML 2.0 class diagram [93].

Limitations of MXML: While MXML tries to capture the basic notions of an
event log, it suffers from a few limitations as highlighted in [91].

� The nomenclature used as elements and attributes has an inherent inclina-
tion towards capturing an event log emanating from well-structured processes
and workflow like environments. The basic entities of event logs generated
from flexible environments and non-workflow like environments such as high-
tech system logs and product usage may not have a direct mapping to the
elements of MXML. For example, when analyzing the system failures, the er-
ror/warning events of an X-ray machine event log need to be accommodated
as a WorkflowModelElement (which usually captures the notion of a task or
an activity). Such a non-intuitive mapping can lead to misinterpretations and
compromises on the comprehensibility.

� MXML has no concept for hierarchies and taxonomies thus making it hard to
translate logs with hierarchies and expressing domain knowledge, e.g., incor-
porating the various levels of abstraction over commands in an X-ray machine.

The Semantically Annotated MXML format (SA-MXML) [55] is an exten-
sion of the MXML format that allows for the provision of references between
elements in the log and domain concepts, in the form of ontologies, for the
logged information. This enables the analysis of the log at different levels of
abstraction albeit at an additional overhead in the analysis. However, defining
ontologies is not a trivial task.

� MXML has no straightforward extensibility to incorporate additional knowledge.
Additional information is often encoded as data elements in the form of key-
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<WorkflowLog ...>

<Source program="X-ray machine"/>

<Process id="FieldService\FSCommands">

<ProcessInstance id="3439242_2007-04-03_2007-04-03_1">

<AuditTrailEntry>

<Data>

<Attribute name="Main Menu">Field Service Window</Attribute>

<Attribute name="Procedure">Service Login</Attribute>

</Data>

<WorkflowModelElement>Login</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2007-04-03T15:48:09.000+01:00</Timestamp>

</AuditTrailEntry>

<AuditTrailEntry>

<Data>

<Attribute name="Group">SelectFluoFlavour</Attribute>

<Attribute name="Main Menu">Acquisition Presetting</Attribute>

</Data>

<WorkflowModelElement>SelectFluoFlavour</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2007-04-03T15:48:13.000+01:00</Timestamp>

</AuditTrailEntry>

:

:

<AuditTrailEntry>

<WorkflowModelElement>SelectProcedure</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2007-04-03T16:28:14.000+01:00</Timestamp>

</AuditTrailEntry>

:

:

<AuditTrailEntry>

<Data>

<Attribute name="Group">ClinicalUI</Attribute>

<Attribute name="Main Menu">Field Service Window</Attribute>

<Attribute name="Procedure">Exit</Attribute>

</Data>

<WorkflowModelElement>LogOff</WorkflowModelElement>

<EventType>start</EventType>

<Timestamp>2007-04-03T17:52:40.000+01:00</Timestamp>

</AuditTrailEntry>

</ProcessInstance>

:

</Process>

</WorkflowLog>

Figure 2.4: A log fragment in MXML format.

value attributes. However, this additional information is less usable and is often
lost due to the lack of any specific semantics associated to these attributes.
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Figure 2.5: Meta model of XES [92].

2.6.2 The XES Standard

To overcome the shortcomings mentioned above, a new event log standard, called
the eXtensible Event Stream (XES) [92], that is less restrictive and highly extensible
has been proposed. Figure 2.5 depicts the XES meta model expressed as an UML
class diagram. An XES log contains any number of traces from a single process2.
Each trace captures the sequential list of events corresponding to a particular case.
Attributes can be defined for a log, trace, and event and can be nested, i.e., an
attribute can contain other attributes. XES supports five core data types, viz.,
String, Date, Int, Float, and Boolean corresponding to standard XML built-in data
types xs:string, xs:dateTime, xs:int, xs:float, and xs:boolean respectively.
Attributes that are mandatory need to be declared as global attributes.

Semantics for attributes are specified through extensions. XES defines five stan-
dard extensions:

� Concept: The concept extension is defined for traces and events and captures
their name. For traces, it typically represents the case identifier while for events
it represents the activity name, i.e., #activity�e� for all e > E . This extension

2MXML allows multiple processes to be specified in a single file while XES restricts this to only
one process.
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can also define an instance attribute to distinguish between different instances
of an activity.

� Time: The time extension is defined for events and captures their timestamp
of type xs:dateTime (both the date and time need to be specified). This
corresponds to #time�e� for all e > E .

� Organization: The organization extension is defined for events and captures the
organizational perspective of a process. Three attributes, viz., resource, role,
and group are defined for this extension. Role characterizes the capabilities of
resources while group classifies the position of resources in an organization.

� Lifecycle: The lifecycle extension is defined for events and signifies their trans-
action type, i.e., #trans�e� for all e > E .

� Semantic: The semantic extension caters to the enhancements proposed in SA-
MXML and defines the modelReference attributes for all the elements in the
log.

Furthermore, XES supports the concept of classifiers defined earlier. The reader is
referred to [92] for a detailed description of the XES standard. Figure 2.6 depicts a
log fragment in XES format.
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<log xes.version="1.0" xes.features="nested-attributes">

<extension name="Concept" prefix="concept" uri="http://.../concept.xesext"/>

<extension name="Semantic" prefix="semantic" uri="http://.../semantic.xesext"/>

<extension name="Time" prefix="time" uri="http://.../time.xesext"/>

<extension name="Organizational" prefix="org" uri="http://.../org.xesext"/>

<extension name="Lifecycle" prefix="lifecycle" uri="http://.../lifecycle.xesext"/>

<global scope="trace">

<string key="concept:name" value="name"/>

</global>

<global scope="event">

<string key="concept:name" value="name"/>

<string key="time:timestamp" value="2007-04-03T16:00:00.000+00:00"/>

</global>

<classifier name="Activity" keys="concept:name"/>

<trace>

<string key="concept:name" value="3439242_207-04-03_2007-04-03_1"/>

<event>

<string key="concept:name" value="Login"/>

<string key="lifecycle:transition" value="complete"/>

<date key="time:timestamp" value="2007-04-03T15:48:09.000+01:00"/>

<string key="Group" value="Service Login"/>

<string key="Main Menu" value="Field Service Window"/>

<string key="Procedure" value="Service Login"/>

</event>

<event>

<string key="concept:name" value="SelectFluoFlavour"/>

<string key="lifecycle:transition" value="complete"/>

<date key="time:timestamp" value="2007-04-03T15:48:13.000+01:00"/>

<string key="Group" value="SelectFluoFlavour"/>

<string key="Main Menu" value="Acquisition Presetting"/>

</event>

:

<event>

<string key="concept:name" value="SelectProcedure"/>

<string key="lifecycle:transition" value="complete"/>

<date key="time:timestamp" value="2007-04-03T16:28:14.000+01:00"/>

</event>

:

<event>

<string key="concept:name" value="LogOff"/>

<string key="lifecycle:transition" value="complete"/>

<date key="time:timestamp" value="2007-04-03T17:52:40.000+01:00"/>

<string key="Group" value="ClinicalUI"/>

<string key="Main Menu" value="Field Service Window"/>

<string key="Procedure" value="Exit"/>

</event>

</trace>

:

:

</log>

Figure 2.6: A log fragment in XES format.
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2.7 Process Modeling Formalisms

Processes can be represented (modeled) using many different techniques/languages,
e.g., BPMN (Business Process Modeling Notation), UML activity diagrams, EPCs
(Event-driven Process Chains), Petri nets, etc. These techniques/languages differ in
their expressive power and formal semantics. In this section, we briefly present four
different process modeling notations that are used in this thesis. Note that we only
provide an informal introduction for these modeling languages; however, we provide
pointers for their formal definitions. The workflow modeling language Yet Another
Workflow Language (YAWL) is used to represent the running examples used in this
thesis (cf. Chapters 3 and 5). Colored Petri nets (CPNs) are also used to model
these running examples. Moreover, the CPNs are used to generate event logs using
simulation for our experiments. Fuzzy models are used when discovering process
maps (cf. Chapter 6). Fuzzy models are also extended with performance annotations
(cf. Chapter 7).

2.7.1 Petri Nets and Workflow Nets

Petri nets [172], named after Carl Adam Petri, are one of the commonly used process
modeling formalisms. A (classical) Petri net is a directed bipartite graph with two
types of nodes, places and transitions. Places are depicted by circles while transitions
are depicted by rectangles. A place may contain zero or more tokens, depicted as
black dots. Places and transitions in a Petri net are connected by directed arcs with
a constraint that connections between nodes of the same type are not permitted. In
other words, places can be connected to transitions and transitions can be connected
to places, but places cannot be connected to places and transitions cannot be con-
nected to transitions. A place p is called an input place of a transition t if and only if
there is a directed arc from p to t. If a directed arc exists from t to p then p is called
an output place of the transition t. Petri nets are much more than simple graphs.
They have execution semantics. The distribution of tokens over places indicates the
state of the Petri net. A transition t is said to be enabled if each of its input places
contains a token. Transitions that are enabled may fire. If a transition t fires, then
a token is consumed from each of its input places and a token is produced in each
of its output places. Thus the firing of transitions changes the state of the net. The
behavior of a Petri net can be analyzed for interesting properties, e.g., soundness,
deadlocks, etc. The interested reader is referred to [157] for an extensive review on
Petri nets.

The modeling capability combined with analyzability make Petri nets a powerful
formalism for modeling business processes. Workflow nets (WF-nets) are a subclass
of Petri nets that are typically used to model business processes. A WF-net is a
Petri net that has (a) a single start place, (b) a single end place, and (c) every node
is on some path from start to end. In the context of business processes, places signify
conditions and transitions signify tasks or activities. Figure 2.7 depicts an example
WF-net model of an insurance claim process. The place p0 is the start place and
the place p13 is the end place. Initially, there is one token in the place p0, indicating
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Figure 2.7: Petri net modeling of an insurance claim process.

that there is a case to be processed. Once the transition with the label Register
fires, the token from the left most place will be consumed, and another token will
be produced and put in the output place of transition Register, i.e., p1. The next
transition, highlighted in the figure as parallelism split, activates multiple branches at
the same time. As soon as this transition fires, two tokens are produced (one for each
of the output places p2 and p3), which enables the independent (concurrent) action
flow in these two branches. Once a token is in place p2, there is a race between the
transitions Low Insurance Check and High Insurance Check, because both the
transitions are enabled but only one of them can consume this token. Choice con-
structs are modeled in this fashion in Petri nets. The response for the questionnaire
can be skipped only after the customer is notified about the status (i.e., when there
is a token in p9). This corresponds to the milestone pattern. A case is considered
to be completed if a token reaches the place p13. The interested reader is referred
to [223] for a rigorous introduction on the modeling of business processes using Petri
nets.

2.7.2 Yet Another Workflow Language (YAWL)

It was observed that most existing workflow languages had a poor support for the
workflow patterns [228]. Workflow patterns refer to the essential and recurring form-
s/structures addressing business requirements. Workflow patterns can be divided
into four perspectives:

� control flow: The control-flow patterns [195] capture aspects related to control-
flow dependencies between various tasks, e.g., sequence, parallelism (AND),
choice (such as XOR and deferred choice), etc.
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� data: The data patterns [193] deal with data-related issues such as the scope
(e.g., task data, case data, etc.), interaction (e.g., task-to-task, case-to-case,
etc.), and transfer (e.g., transfer by value, transfer by reference, etc.). In addi-
tion, data-routing patterns exist that deal with the influence of data on routing
the process execution (e.g., pre-condition, post-condition, etc.).

� resource: The resource patterns [194] capture the various ways in which re-
sources are represented and utilized in workflows, e.g., capability-based distri-
bution, random allocation, etc.

� exception handling: The exception handling patterns [196] deal with the various
causes of exceptions and the various actions that ought to be taken as a result
of exceptions, e.g., deadline expiry, resource unavailability, etc.

YAWL [224] is an executable workflow language that has been specifically designed
with an objective to support most of the workflow patterns using a language as sim-
ple as possible. The genesis of YAWL lies with Petri nets but it is more expressive
than Petri nets with several constructs added to the formalism to extend for the
pattern support. Some of the notable extensions are the OR-join [269], cancelation
set, and multi-instance tasks (execute the task multiple times). In addition, YAWL
provides some syntactical elements to intuitively capture workflow patterns, e.g.,
simple choice/merge is represented with an XOR split/join.

Figure 2.8 depicts the YAWL model of the insurance claim process. We can see
that the YAWL model is compact in its representation when compared to the Petri
net model. This is due to the various syntactic elements defined in YAWL. Unlike
Petri nets, YAWL allows two tasks to be connected directly. Most places have thus
disappeared. Furthermore, YAWL allows for the specification of perspectives other
than the control-flow perspective, viz., data and resource perspectives. For example,
we can specify resources or roles (of resources) that can execute a task. Tasks that
need to be performed by human resources can be represented with the ‘manual icon’
as indicated in Figure 2.8.

AND-split

XOR-split XOR-join

AND-join

deferred
choice

Figure 2.8: YAWL model of the insurance claim process.
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2.7.3 Colored Petri Nets (CPNs)

Colored Petri Nets [117] are a modeling formalism that extend Petri nets with data,
time, and hierarchy. CPNs extend classical nets with the power of programming
languages. For example, CPN Tools3 [117, 118, 180] uses the functional programming
language Standard ML (SML), to describe place types, guards, and arc inscriptions.
There are three primary differences between classical Petri nets and CPNs:

� Unlike Petri nets where the tokens in a place are indistinguishable, each token
in a CPN is associated with a data type and value (the data value is called the
color of the token), which makes them distinguishable. The assignment of a
value to a token is called a binding. The number of tokens and the token colors
on the individual places together represent the state of the system, which is also
called as the marking of the CPN model.

� Arcs can have expressions, which are written in SML and built from variables,
constants, operators, and functions. All arc expressions should evaluate to a
single token color or a multiset of token colors. The arc expressions on the
input arcs of a transition determine whether the transition is enabled, i.e., is
able to occur in a given marking.

� Transitions can have a guard, which is a boolean expression. Guards put extra
constraints on the enabling of bindings for the transition. The guard must
evaluate to true for the binding to be enabled, otherwise the binding is disabled
and cannot occur.

The hierarchy extension supported by CPN is extremely handy when dealing with
large and/or complex models. Models can be decomposed into smaller manageable
modules that can be reused. The time extension allows for the analysis of perfor-
mance aspects via simulation. Figure 2.9 depicts an example of a system modeled as
a colored Petri net.

CPN Tools is a tool for editing, simulating, and analyzing colored Petri nets.
Two modes of simulation are supported in CPN tools (i) interactive mode and (ii)
automated mode. In the interactive mode, the simulator calculates the set of all en-
abled transitions in each marking encountered. The user can then choose an enabled
transitions and one of its bindings and thus fire transitions step-by-step. In the
automated mode, which is analogous to program execution, the simulator performs
all the calculations and makes all the choices randomly. The automated mode also
allows the user to specify breakpoints (as the number of steps of execution). The
simulator stops once the breakpoint is reached and the user can inspect the marking
reached by the model or look at the simulation report.

2.7.4 Fuzzy Models

The motivation for Fuzzy models [91] emanated from the need for representing highly
unstructured and flexible processes. The goal is to have models that are comprehen-
sible rather than being precise. Precise representations of flexible and unstructured

3http://cpntools.org
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Figure 2.9: Example of a CPN model (adapted from [117]).

processes often tend to be spaghetti-like. Fuzzy models, designed using the map
metaphor, borrow universal concepts such as aggregation, abstraction, emphasis, and
customization from cartography. In Fuzzy models, coherent clusters of low-level in-
formation are grouped together as an aggregate node while insignificant information
is abstracted (omitted) and significant information is emphasized (highlighted by
thickness, color, etc.) [94].

Fuzzy models do not distinguish between AND-split (parallelism), XOR-split (simple
choice), and OR-split (multi-choice). If a task (represented as a node) in a Fuzzy
model has multiple successor tasks, then all of these successors will be activated
once the task has been executed. However, they need not be executed. The relaxed
execution semantics [91] for Fuzzy models are defined as follows:

� Initialization: The process, captured as a Fuzzy model, can start at any node
in the model. Different cases may start at different nodes.

� Termination: The process is considered to be terminated whenever no further
nodes are executed, i.e., there are no explicit ending point(s) and remaining
enabled nodes (if any) are ignored.
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� Branch Semantics: Every node in a Fuzzy model has an AND-split semantics,
i.e., upon execution of a node, all its successors are enabled.

� Join Semantics: Every node in a Fuzzy model has memory-less XOR-join se-
mantics, i.e., it can be executed as soon as it has been enabled by any of its
predecessor nodes (but it does not “remember” how often it has been enabled).

The reader is referred to [91] for a detailed description of the semantics and evaluation
of Fuzzy models with respect to the workflow patterns. Figure 2.10 depicts the Fuzzy
model (mined using the Fuzzy miner plug-in in ProM) of the insurance claim process.
The YAWL model of the process in Figure 2.8 specifies that the prepare notification
task is an XOR-split (simple choice). This implies that only one of the two tasks,
viz., By e-mail or By Post, would be enabled. However, according to the relaxed
Fuzzy semantics both tasks are enabled (see Figure 2.10).

one of the two
branches needs
to be activiated

one of the two
branches needs
to be activiated

Figure 2.10: Fuzzy model of the insurance claim process.
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After providing the motivation for the work done in this thesis and the preliminaries
needed for a good understanding of the concepts (to be) presented in this thesis, we
focus on the first aspect: preprocessing of event logs. First, in Chapter 3, we describe
a means of dealing with fine-granularity in event logs by defining abstractions of
(low-level) events. Then, in Chapter 4, we advocate trace clustering as a means
of dealing with heterogeneity in event logs. We propose context-aware approaches
to trace clustering and show that considering contexts helps in improving process
mining results. Finally, in Chapter 5, we propose techniques for dealing with process
changes.



Chapter 3

Abstractions of Events

For process mining analysis, it would be ideal to have event logs emanating from
well-structured processes at an appropriate level of abstraction. However, most real-
life logs are far from ideal; the processes may not be well-structured (they can be
flexible or less structured) and the events recorded can be too fine grained. This issue
is more pronounced in high-tech system event logs as the logs are mostly generated
by output statements that developers insert into the software supporting the system.
Analysts and end users prefer a higher level of abstraction without being confronted
with low level events stored in raw event logs. One of the major challenges in process
mining is to bridge the gap between the higher level conceptual view of the process
and the lower level implementation view.

In this chapter, we propose an event abstraction technique that exploits common
execution patterns in event logs. This approach, inspired from techniques used in
bioinformatics, comprises of

� identifying common execution patterns manifested in an event log

� assessing the significance of patterns and filtering insignificant ones

� establishing relationships between patterns and forming clusters of related pat-
terns

� defining abstractions over the grouped patterns

In bioinformatics, a DNA sequence motif is defined as a nucleic acid sequence pattern
that has some biological significance (both structural and functional) [48]. These mo-
tifs are usually found to recur in different genes or within a single gene. For example,
tandem repeats (tandemly repeating DNA) are associated with various regulatory
mechanisms such as protein binding [131]. More often than not, sequence motifs are
also associated with structural motifs found in proteins thus establishing a strong
correspondence between sequence and structure. Likewise, common subsequences of
activities in an event log that are found to recur within a process instance or across
process instances have some domain (functional) significance. We use some of the
sequence patterns proposed in the string processing and bioinformatics literature
[97, 98, 130, 131, 205] and adopt them to the process mining domain.

This chapter is organized as follows: Section 3.1 presents the workflow of a sim-
ple digital copier that we will use as a running example to explain the concepts
in this thesis. The event logs simulated from this workflow will be used in our
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experiments throughout the thesis. Related work is presented in Section 3.2. In
Section 3.3, we define a few interesting common execution patterns and correlate
them to some of the process model constructs. Section 3.4 presents a few metrics
that assist in assessing the significance of the patterns while Section 3.5 presents an
approach to capture the relationships between patterns and create suitable abstrac-
tions. Section 3.6 presents and discusses some experimental results. We discuss the
limitations of the proposed approach in Section 3.7. Finally, Section 3.8 concludes
this chapter.

3.1 Running Example:- A Simple Digital Photo
Copier

In order to illustrate the concepts in this thesis, we consider a simple digital photo
copier as our running example. The copier supports photocopying, scanning, and
printing of documents in both color and gray modes. The scanned documents can
be sent to the user via email or FTP. Upon receipt of a job, the copier first generates
an image of the document and subsequently processes the image to enhance its
quality. Depending on whether the job request is for a copy/scan or print, dedicated
procedures are used to generate an image. For print requests, the document is first
interpreted and then a rasterization procedure is followed to form an image. The
image is then written on the drum, developed, and fused on to the paper.

Figure 3.1 depicts the high-level workflow of the digital photo copier represented
as a YAWL [224] model. This high-level workflow contains the composite tasks
(subprocesses) Capture Image, Rasterize Image, Image Processing, and Print Image.
Figure 3.2 depicts the Capture Image subprocess that is used to generate an image
for copy or scan jobs while Figure 3.3 describes the Rasterize Image subprocess for
generating an image of the documents submitted for printing. The Image Processing
subprocess shown in Figure 3.4 performs some image quality enhancements and
operations such as zooming and rotation on images. This subprocess contains a
subprocess called Half Toning which is detailed in Figure 3.5. Figure 3.6 depicts the
Print Image subprocess while the subprocesses Writing, Developing, and Fusing within
Print Image are depicted in Figures 3.7, 3.8 and 3.9 respectively.

Figure 3.1: High-level model of the digital photo copier. The digital copier supports two function-
alities, viz., copy/scan and print. Documents are interpreted and converted into an image before
they are printed. Scanned images of the copy/scan jobs are sent to the user via email or ftp.
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Figure 3.2: The capture image subprocess for copy or scan requests. Each page in the document
is scanned separately and the scanned images are accumulated (combined) together. The scanning
of each page is modeled using a loop construct. The combination of images can start as soon as the
first page is scanned and can happen in parallel with the scanning of subsequent pages.
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Figure 3.3: The rasterize image subprocess for print requests. Each page in the document is inter-
preted separately and rendered. The interpretation of each page is modeled using a loop construct.
Three types of document interpretation are supported, viz., text, Adobe postscript and page control
language (modeled using the XOR construct). The rendering can happen in parallel to the inter-
pretation as soon as the first page is interpreted. The rendered images are accumulated (combined)
together.

Figure 3.4: The image processing subprocess. This subprocess supports operations such as zoom-
ing, rotating, and overlay and attempts at improving the quality of images. The rotating and overlay
functions are modeled using the OR (multi-choice) construct while the zooming functionality is mod-
eled using the AND construct.
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Figure 3.5: The half-toning subprocess for image representation. Half toning is a technique that
simulates continuous tone imagery through the use of equally spaced dots of varying size.

Figure 3.6: The print image subprocess for print job requests. The basic steps involved are the
transfer of the image onto the drum (writing), application of toner (developing), pressing of the
toner onto the paper (fusing), and cleaning the toner on the drum. The developing, fusing, and
cleaning steps are repeated multiple times, once for each copy of the page. The while print image
subprocess is executed as many times as the number of pages in the document.

Figure 3.7: The writing subprocess within print image for writing the image on to the drum.

Figure 3.8: The developing subprocess within print image.

We have modeled this workflow of the copier in CPN tools [180] and generated event
logs by simulation.
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Figure 3.9: The fusing subprocess within print image.

3.2 Related Work

Several attempts have been reported in the literature on grouping events to create
higher levels of abstraction. One such attempt is the use of semantic ontologies
[29, 55]. The basic idea here is to define ontologies for the business and IT perspec-
tive and translate the tasks between the two models using reasoning techniques. Of
specific interest is the EVents Ontology (EVO) [29] that captures the events taking
place during the life-cycle of both business and IT processes at different levels of
abstraction. The basis lies in the classification of events into management events,
execution events, message events, process events, etc. Similarly, process models are
linked to organizational information through organizational ontologies that capture
concepts like organization, department, team or employee and the relationships be-
tween them. Although abstraction mechanisms based on semantics are interesting
from a theoretical point of view, developing ontologies is a difficult task thereby
making this approach less practical.

Another class of techniques pertains to the grouping of activities into clusters with
each cluster defining an abstraction [96, 241, 254]. The activity-cluster association
can be many-to-many in that an activity can belong to more than one cluster and a
cluster can have multiple activities. In [254], this association is established by first
creating a transition system based on the complete (or partial) prefix (or postfix)
of the activities in a trace and then by synthesizing a process model (Petri net)
from it using the well-known concept of the “theory of regions” [44, 58]. The theory
of regions has a worst case complexity that is exponential in the size of the state
space thereby making this approach less applicable in real-life logs. Van Dongen and
Adriansyah [241] proposed an approach of mining a SPD model (Simple Precedence
Diagram) wherein activities are grouped together based on their similarity using the
Fuzzy k-Medoids algorithm [178]. The similarity between activities is defined based
on the direct succession relationship between the events related by these activities in
the event log. However, SPDs suffer from a few limitations, e.g., in the worst case,
activities can be associated to all the clusters without any direct domain significance
thereby making the interpretation of the clusters extremely hard. SPDs also lack
guidelines to select a suitable number of clusters.

Günther et al. [96] proposed a means of forming hierarchical abstractions based
on event correlations. The approach is based on the agglomerative hierarchical clus-
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tering technique [113] using the correlation of activities as a similarity metric. This
results in a hierarchical model. Although the authors do not explicitly state it, they
adopt a less restricted form of frequent episodes. Frequent episodes proposed by
Manilla et al. [145] is a generic method to discover temporal patterns in time series
data. An episode is a partially ordered set of events that occur relatively close to
each other. The degree of closeness is guided by a window of fixed size provided by
the user. Furthermore, the user needs to specify the number of windows in which an
episode has to occur for it to be considered as frequent.

Window based techniques are most often used in episode mining and sequence
mining. Even in process mining, classic algorithms such as the α-algorithm [229]
uses the immediately follows relationship (window of length 2) to infer the control-
flow between a pair of activities. Other techniques such as the Heuristics miner [264]
and Fuzzy miner [94] use a larger window size as look-ahead to infer the control-flow
between a pair of activities. These methods more often than not pick a fixed length
window. The results are strongly influenced by the choice of the window length. The
patterns considered in this chapter alleviate some of these problems. The length of
the patterns is automatically determined by their contextual manifestation in the
event log. Furthermore, the patterns capture the manifestation of commonly used
control-flow constructs in process modeling and can be uncovered in linear time with
respect to the size (total number of events) of the log. In contrast, the algorithms
to discover frequent episodes have a polynomial time complexity with respect to the
number of frequent episodes [145].

3.3 Common Execution Patterns

In this section, we define some of the sequence patterns and correlate them to the
manifestation of process model constructs. We use these patterns as the basis for
creating abstractions.

A pattern is a regularity in an event log. Such a regularity implies a sense of
strong correlation between the elements (e.g., activities, resources, etc.) involved in
the pattern and signify some interesting structures regarding a few aspects of the pro-
cess rather than a summary about the whole process. In this thesis, we confine such
regularities to sequence patterns (and not to partial orders like in frequent episodes
[145]). Figure 3.10 depicts a few sequence patterns. Simple loops (loops over an
individual activity or a sequence of activities) manifest as a repeated occurrence of
an activity or subsequence of activities in tandem in the traces. The discovery of
such manifestations in an event log would assist in identifying loop constructs in the
process. Tandem repeats and tandem arrays [98] nicely capture such occurrences.

Definition 3.1 (Tandem Repeat). A tandem repeat (or square) in a sequence s is
a subsequence s�i, j� � α l α where α, called the tandem repeat type, is a non-empty
sequence. Two occurrences of tandem repeats s�i, j� � α l α and s�i�, j�� � β l β are
of the same type if and only if α � β. -
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tandem patterns
(within a trace)

maximal repeat
patterns (within
a trace)

maximal repeat
patterns (across
traces)

Figure 3.10: Common execution patterns.

Definition 3.2 (Tandem Array). A tandem array in a sequence s is a subsequence
s�i, j� of the form αlαlk times. . . lα, where α, called the tandem repeat type, is a non-
empty sequence, and k C 2. We denote a tandem array by the triple �i, α, k� where the
first element of the triple corresponds to the starting position of the tandem array,
the second element corresponds to the tandem repeat type, and the third element
corresponds to the number of repetitions. A tandem repeat is a special case of tandem
array where the number of repetitions, k, is two. -
Definition 3.3 (Maximal Tandem Array). A tandem array in a sequence s,
s�i, j� � α lα l k times. . . lα �k C 2�, is a maximal tandem array if and only if there are
no additional copies of α immediately before or after s�i, j�. -
Definition 3.4 (Primitive Tandem Repeat Type). A tandem repeat type α is
called a primitive tandem repeat type if and only if α is not a tandem array, i.e., there
are no β and k C 2 such that α � β l β l k times. . . l β. -
Definition 3.5 (Primitive Tandem Array). A tandem array s�i, j� � α l α l
k times. . . l α (k C 2), is a primitive tandem array if and only if α is a primitive tandem
repeat type. -
Consider a simple event log L � �ghabcabcabcabcafxca, abxcdxedfxgdxeh, bbbcdb-
bbccaa, abxcdxefygh, abxcfxgdxefdxeh, abxcdxefxgfygh�. The trace t1 = ghabca-
bcabcabcafxca contains a tandem repeat abcabc abcabc with the tandem repeat
type abcabc (see Figure 3.11(a)). Some of the tandem arrays in t1 are �3,abc,2�,�6,abc,2�, �3,abc,4�, �3,abcabc,2�, �4,bca,4�, �4,bcabca,2�, and �5,cab,3� (see
Figure 3.11). The tandem repeat type abcabc is not a primitive tandem repeat type
since it is a tandem array of abc with two repetitions. The tandem array �3,abc,2�
is not a maximal tandem array because there exist four copies of abc starting at po-
sition 3 (see Figure 3.11(b)). Similarly, the tandem array �6,abc,2� is not a maximal
tandem array because one copy of abc exists before and after the tandem array at
position 6 (see Figure 3.11(b)). The tandem array �3,abcabc,2� is not a primitive
tandem array because abcabc is not a primitive tandem repeat type: abcabc can be
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split into abc abc.

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(a)

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(b)

Figure 3.11: Tandem arrays in the trace t1 � ghabcabcabcabcafxca.

The maximal primitive tandem arrays in t1 are �3,abc,4�, �4,bca,4�, and �5,cab,3�
while the ones in t3 are �1,b,3�, �6,b,3�, �9,c,2�, and �11,a,2� (see Figure 3.12).
The traces t2, t4, t5, and t6 do not contain any tandem arrays.

b b b c d b b b c c a a
1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.12: Tandem arrays in the trace t3 � bbbcdbbbccaa.

For any primitive tandem array �i, α, k�, if k C 3, then there would be SαS primi-
tive tandem arrays where the tandem repeat types are the cyclic permutations of
α as illustrated in Figure 3.13. In the above example, the primitive tandem array�3,abc,4� in t1 led to two other tandem arrays �4,bca,4� and �5,cab,3� (see Fig-
ure 3.11(b)).

α

a1a2a3 . . . an

k ≥ 3

Primitive
Tandem Repeat Types

a1a2a3 . . . an
a2a3a4 . . . a1
a3a4a5 . . . a2

...
ana1a2 . . . an−1

Figure 3.13: Redundant tandem repeat types owing to cyclic permutations.

Another class of patterns is formed by subsequences that do not manifest in tandem
but nonetheless repeat within a single trace or across multiple traces. Such regu-
larities signify some set of common functionality (often abstracted as a subprocess)
accessed by the process. Regularities manifested within a single trace might indicate
multiple invocations of a subprocess within the corresponding case. We consider
maximal repeating subsequences as defined below.

Definition 3.6 (Maximal Pair). A maximal pair in a sequence s is a subsequence
α that manifests in s at two distinct positions i and j such that the element to the
immediate left (right) of the manifestation of α at position i is different from the
element to the left (right) of the manifestation of α at position j, i.e., s�i, i� SαS�1� �
s�j, j � SαS � 1� � α, and s�i � 1� x s�j � 1� and s�i � SαS� x s�j � SαS�, for 1 B i @ j B SsS



3.3. Common Execution Patterns 55

(s�0� and s�SsS � 1� are considered to be null, i.e., `e). A maximal pair is denoted
by the tuple ��i, j�, α� where i and j correspond to the starting positions of the two
manifestations of α in s with i x j. -
Definition 3.7 (Maximal Repeat). A maximal repeat in a sequence s is defined
as a subsequence α that occurs in a maximal pair in s. -
Figures 3.14(a)-(e) depict the maximal pairs in the trace t1 � ghabcabcabcabcafxca.
The set of maximal repeats in this trace is {a, ca, abca, abcabca, abcabcabca}.

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(a)

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(b)

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(c)

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(d)

g h a b c a b c a b c a b c a f x c a
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(e)

Figure 3.14: Maximal pairs in the trace t1 = ghabcabcabcabcafxca.

Definition 3.8 (Super Maximal Repeat). A super maximal repeat in a sequence
is defined as a maximal repeat that never occurs as a proper subsequence of any other
maximal repeat. -
For the maximal repeats depicted in Figure 3.14, only the maximal repeat abcabcabca
qualifies to be a super maximal repeat because all other maximal repeats happen to
be a subsequence of abcabcabca.

Definition 3.9 (Near Super Maximal Repeat). A maximal repeat α in a se-
quence s is said to be a near super maximal repeat if and only if there exist at least
one instance of α at some location in the sequence s where it is not contained in
another maximal repeat. -
The manifestation of the maximal repeat ca at position 18 in Figure 3.14(b) is not
contained in any other maximal repeat manifestation. Hence the maximal repeat ca
qualifies to be a near super maximal repeat. All instances of manifestation of the
maximal repeats a, abca, and abcabca in Figures 3.14(a), (c), and (d) respectively
are contained in the manifestations of the maximal repeats ca (for a) and abcabcabca

(for abca and abcabca) in Figures 3.14(b) and (e). Hence, they do not qualify to be
near super maximal repeats.

Near super maximal repeats are a hybrid between maximal repeats and super
maximal repeats in that it contains all super maximal repeats and those maximal
repeats that can occur in isolation in the sequence without being part of any other
maximal repeat. Near super maximal repeats can assist in identifying potential
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Table 3.1: Maximal, super maximal, and near super maximal repeats in each trace of the event
log L.

Id Trace Maximal Repeats Super
Maximal
Repeats

Near Super
Maximal
Repeats

t1 ghabcabcabcabc-

afxca

{a, ca, abca, abcabca,
abcabcabca}

{abcabcabca} {ca,
abcabcabca}

t2 abxcdxedfxgdxeh {d, x, dxe} {dxe} {d, x, dxe}
t3 bbbcdbbbccaa {a, b, c, bb, bbbc} {a, bbbc} {a, c, bbbc}
t4 abxcdxefygh {x} {x} {x}
t5 abxcfxgdxefdxeh {f, x, dxe} {f, dxe} {f, x, dxe}
t6 abxcdxefxgfygh {f, g, x} {f, g, x} {f, g, x}

choice constructs in the process model. Let us denote the set of maximal repeats,
super maximal repeats, and near super maximal repeats by M , SM , and NSM re-
spectively. The repeat sets satisfy the relation SM b NSM bM . The set NSM � SM
(the set difference) depicts all maximal repeats that occur both in isolation and are
also subsumed in some other maximal repeat. For any repeat r > NSM �SM , a super
maximal repeat rs which contains (subsumes) r can be either of the form α l r or
r l β or α l r l β (where α and β are subsequences of activities). This indicates that
r can be a common functionality which might occur in conjunction with α and/or β.
In other words, it indicates that α and β can potentially be optional (sequence of)
activities in the context of r.

Table 3.1 depicts the maximal, super maximal, and near super maximal repeats
present in each trace of the event log. The maximal repeat abcabcabca in t1 is
not subsumed in any other maximal repeat and hence it qualifies to be a super
maximal repeat. All other maximal repeats are subsumed in this maximal repeat.
The maximal repeats {ca, abcabcabca} are near super maximal repeats because the
last instance of ca at position 18 in t1 (see Figure 3.14(b)) is not contained in any
other maximal repeat while both the instances of abcabcabca are not contained in
any other maximal repeat.

Table 3.2 depicts the maximal, super maximal, and near super maximal repeats
present in the entire event log, L. In order to find the repeats across all the traces in
the event log (as in Figure 3.10), we first construct a single sequence by concatenating
all the traces in the event log with a distinct delimiter between the traces1. Repeats
are then discovered in this concatenated sequence.

The patterns discussed above can all be uncovered using suffix trees. Suffix trees
can be constructed in linear time with respect to the length of the sequence [214].
We can adopt efficient suffix tree construction techniques such as [35] to handle very

1For the example event log, the concatenated sequence corresponds to
ghabcabcabcabcafxca�1abxcdxedfxgdxeh�2bbbcdbbbccaa�3abxcdxefygh�4abxcfxgdxefdxeh�5
abxcdxefxgfygh (here, �i’s (for 1 B i B 5) are used as distinct delimiters between the traces)
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Table 3.2: Maximal, super maximal, and near super maximal repeats across all traces in the event
log, L.

Maximal
Repeat

{a, b, c, d, f, g, h, x, ab, bb, bc, ca, cd, fx, gh, xc, dxe, fxg,
abca, abxc, bbbc, dxef, dxeh, fygh, fxgdxe, abcabca, abxcdxe,
abxcdxef, abcabcabca}

Super Maxi-
mal Repeat

{bbbc, dxeh, fygh, fxgdxe, abxcdxef, abcabcabca}

Near Super
Maximal
Repeat

{a, d, ca, cd, fx, gh, xc, fxg, abxc, bbbc, dxef, dxeh, fygh,
fxgdxe, abxcdxe, abxcdxef, abcabcabca}

long sequences. Gusfield and Stoye [98] proposed a linear time algorithm based on
suffix trees to detect tandem repeats. Discovering tandem arrays takes O�n�z� time,
where n is the length of the trace and z is the number of primitive tandem repeat
types in the trace. Maximal, super maximal, and near super maximal repeats can
be efficiently discovered in linear time using suffix trees [97, 130].

3.4 Assessing the Significance of Patterns

Large event logs and event logs defined over a large alphabet might contain abundant
repeats. Not all of them might be characteristically significant. Henceforth, we refer
to all recurring sequences (be it tandem repeat type or variants of maximal repeat)
as a pattern. Metrics that assess the significance of patterns are required to filter out
insignificant patterns. One of the fundamental measures is the frequency of a pattern
(that estimates how often a pattern occurs in the event log). We need to consider
only those patterns that appear much more often than they would be predicted to
happen by chance alone. This measurement can be done in multiple ways. In this
section, we define a few ways of estimating the frequency and thus the significance
of a pattern.

We have seen earlier (see Figure 3.13) that primitive tandem arrays with at least
three repetitions induce multiple tandem arrays that are cyclic permutations of the
tandem repeat type sequence. Furthermore, a primitive tandem array �i, α, n� gen-
erates n � 1 maximal repeats, α l α l k times. . . l α, for 1 B k B n � 1, as illustrated in
Figure 3.15. Similarly, manifestation of parallelism constructs can induce maximal
repeats that are permutated sequences as illustrated in Figure 3.16. These can con-
tribute significantly to the vast amount of uncovered patterns. We propose the use
of pattern alphabets and the grouping together of patterns with the same pattern
alphabet as a means of mitigating the abundance of patterns.

Definition 3.10 (Pattern Alphabet). Let PL denote the set of all patterns un-
covered in an event log L. The pattern alphabet, Γ�p�, of a pattern, p > PL, is the
set of activities that appear in p. -
Definition 3.11 (Equivalence Class of a Pattern Alphabet). The equivalence
class of a pattern alphabet PA, is defined as BPAG � �p S p is a pattern and Γ�p� �
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Maximal, super-maximal, and near-super-maximal repeats can be uncovered using
suffix trees. The figure below depicts the suffix tree ST for the trace t = bbbcdbbbccaa.
Recall from Section 2.4 that the leaves of a suffix tree represent the index position
of suffixes in the trace. Let the left symbol of a leaf of ST denote the left symbol
of the suffix position represented by that leaf, i.e., if a leaf contains a label i, then
the left symbol of that leaf is t�i � 1�. A node v of ST is said to be left diverse
if at least two leaves in v’s subtree have different left symbols. The node n1 is
left diverse because the left symbols of its leaves 11 and 12 are c and a respec-
tively. The node n7 is not left diverse because the left symbol of both its leaves 7
and 2 is b. It is imperative that if a node v is left diverse then all its ancestors are
left diverse as well. The left diverse nodes in the suffix tree are n0, n1, n2, n3, n4, and n6.
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11 12
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� Maximal repeats correspond to the path labels of all left diverse nodes in the suffix
tree. Therefore, the maximal repeats are a, b, c, bb, and bbbc. There can be at
most n maximal repeats in any sequence of length n.

� The path label corresponding to a left diverse internal node v in ST represents
a near-super-maximal repeat if and only if one of v’s children is a leaf and its left
symbol is the left symbol of no other leaf of v. Only the left diverse nodes n1,
n3, and n6 satisfy this condition. Hence, the near super maximal repeats are a,
c, and bbbc.

� The path label corresponding to a left diverse internal node v in ST represents
a super-maximal repeat if and only if all of v’s children are leaves and each has a
distinct left symbol. Only the left diverse nodes n1 and n6 satisfy this condition.
Therefore, the super maximal repeats are a and bbbc.

PA� -
For example, for the patterns abba, abdgh, and adgbh, the pattern alphabets corre-
spond to {a, b}, {a, b, d, g, h}, and {a, b, d, g, h} respectively. The equivalence class
of the pattern alphabet {a, b, d, g, h} is B�a,b,d,g,h�G � �abdgh,adgbh�.
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tandem array

Xααα . . . . . . . . . αααY
n times

maximal repeats

Xααα . . . . . . . . . αααY

Xααα . . . . . . . . . αααY

Xααα . . . . . . . . . αααY

...

Xααα . . . . . . . . . αααY

Figure 3.15: Tandem arrays lead to redundant maximal repeats. Every tandem repeat type α
with n iterations that occur within the context of elements X and Y not in α leads to n�1 maximal
repeats. The n�1 maximal repeats correspond to the k copies of α for 1 B k B n�1. The k successive
copies of α taken from either end form the maximal pairs because the left symbol of the sequence,
α l α l � � � l α (k times), taken from the left end, X, differs from the left symbol, α�SαS�, of the
sequence, αlαl � � � lα (k times), taken from the right end, (since X does not occur in α). Similarly,
the right symbols also differ.

. . . a

b

c

d

e . . .

Figure 3.16: A process fragment with a parallelism construct. This parallelism construct can lead
to manifestations such as abcde, acdbe, abdce, etc., in the event log, with a possibility for all or
some of them to be uncovered as maximal repeats.

Definition 3.12 (Base Pattern). A base pattern is a pattern that does not contain
any other pattern within it. In other words, a base pattern is one whose length is the
same as that of the size of its alphabet. -
The pattern abba is not a base pattern because it contains the patterns a (as a
maximal repeat) and b (as a primitive tandem array as well as a maximal repeat)
within it. In this case, the size of the pattern alphabet (S�a,b�S � 2) is not equal to
the length of the pattern (SabbaS � 4). The pattern abdgh is a base pattern.

The frequency or count of a pattern is a measure of how often it occurs in the event log.
We define the pattern alphabet count to be the sum of counts of the patterns captured
in its equivalence class. For example, consider the trace t � abxcdxedfxgdxeh and the
pattern alphabet equivalence classes B�a,b,c,x�G � �abxc�, B�a,b,c,d,x�G � �abxcd�,
and B�d,e,x�G � �dxe,dxed�. If we consider each of the patterns separately, the
(pattern, frequency) pairs for the above trace correspond to �abxc,1�, �abxcd,1�,�dxe,2�, and �dxed,1� (see Figure 3.17). The (pattern alphabet, frequency) pairs
are ��a,b,c,x�,1�, ��a,b,c,d,x�,1�, and ��d,e,x�,3�. It is imperative to see that
selected segments of the trace are contributing to more than one pattern (alphabet).
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The activities in the subsequence t�5,7� contributed to two patterns, viz., dxe and
dxed (see Figures 3.17(c) and (d)). Similarly, the activities in the subsequence t�1,4�
contributed to two patterns, viz., abxc and abxcd (see Figures 3.17(a) and (b)). We
call this method of computing pattern (alphabet) counts as Overlapping Alphabet
Count (OAC). To define OAC we first need the definition of pattern indices, i.e., the
positions where a pattern manifests in a trace.

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a)

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b)

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c)

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(d)

Figure 3.17: An example of overlapping alphabet counts.

Definition 3.13 (Pattern Indices). Given a pattern p and a trace t of length l
(i.e., StS � l�, the indices of the pattern p in trace t is defined as PI �p, t� � �i S 1 B

i B l , p is a prefix of t�i, l��. The indices of a set of patterns P in the trace t is
defined as PI �P, t� � �p>P PI �p, t�. -
Definition 3.14 (Overlapping Alphabet Count (OAC)). Let PA be a pattern
alphabet and L be an event log. The overlapping alphabet count of PA in L is defined
as OAC �PA,L� � Pt>LL�t�Pp>BPAG SPI �p, t�S -
For example, the pattern indices sets of the patterns dxe and dxed in the trace
t � abxcdxedfxgdxeh are �5,12� and �5� respectively (see Figures 3.17(c) and (d)).
The OAC of the pattern alphabet �d,e,x� in the trace is 3. Computing the pattern
indices refers to the classic exact string matching problem in sequence mining [97].
Suffix trees can be used to efficiently compute the pattern indices and the overlapping
count of a pattern. For a pattern p of length m and an event log or a trace of length
n, this can be computed in O�n�m� k� where k denotes the number of occurrences
of p in the event log or the trace (O�n� time to construct the suffix tree of the event
log or the trace and O�m� time to preprocess the pattern). We can optimize this
time for a set of patterns P . The trick lies in the fact that the event log or trace is
fixed and we need to construct the suffix tree of the event log or trace only once and
not for each pattern in the set. Thus all occurrences of each pattern p > P can be
found in O�m � k� time where m is the length of the pattern p and k is the number
of occurrences of p.

A pattern can be considered significant if it appears frequently often. The sig-
nificance computed using overlapping alphabet counts may be misleading as regions
in a trace can contribute to many patterns thus bloating their frequency. There is a
need for restricting the kinds of occurrences to count when defining the frequency of
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a pattern alphabet. We define two such frequencies based on non-overlapping pat-
tern counts, one considering non-overlap counts for each pattern alphabet separately
(local) and the other considering non-overlap counts across all pattern alphabets
(global) in the event log. Conflicts arise when more than one pattern can potentially
contribute to the count at a region in a trace. One can assign preference to say,
shorter (longer) patterns to resolve such conflicts. We define the shortest (longest)
non-overlapping pattern at any index in a trace below.

Definition 3.15 (Shortest and Longest Non-overlapping Pattern at Index).
Let t be a trace and P be a set of patterns. The shortest non-overlapping pattern in
P at index i in trace t is defined as shortest�P, t, i� � �p > P S i > PI �p, t� ,¦p�

>P
p�
xp

�i >
PI �p�, t�� SpS @ Sp�S��.

Similarly, the longest non-overlapping pattern in P at index i in trace t is de-
fined as longest�P, t, i� � �p > P S i > PI �p, t� , ¦p�

>P
p�
xp

�i > PI �p�, t� � SpS A Sp�S��.

-

shortest�P, t, i� and longest�P, t, i� for 1 B i B StS is either empty or a singleton.
Let Sshortest�P, t, i�S and Slongest�P, t, i�S denote the length of the shortest and
longest patterns respectively. If no pattern exists at position i, then the length of
the shortest (longest) pattern at index i is 0.

For example, consider the trace t � abxcdxedfxgdxeh and the set of patterns
P � �dxe,dxed�. The shortest non-overlapping pattern at index 5 in trace t is dxe

while the longest non-overlapping pattern at index 5 is dxed (see Figure 3.18(a)).
The instance of dxe at index 12 corresponds to both the shortest and the longest non-
overlapping pattern (see Figure 3.18(b)). The shortest and longest non-overlapping
pattern sets correspond to the empty set for all indices other than 5 and 12 for this
trace and pattern set.

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) at index 5

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) at index 12

Figure 3.18: An example of the shortest and longest patterns at an index.

Definition 3.16 (Non-overlapping Pattern Indices). Given a set of patterns P
and a trace t, the non-overlapping pattern indices of the set of patterns in the trace,
NPI �P, t�, is defined as

NPI �P, t� � �X b PI �P, t� S ¦i,j>X
j@i

i C j � Sshortest�P, t, j�S�.
Here, it is assumed that shorter patterns are preferred over longer patterns at any
index j in the trace. If longer patterns are preferred, shortest�P, t, j� needs to be
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replaced with longest�P, t, j� -
Definition 3.17 (Non-overlapping Alphabet Count (NOAC)). Given a pat-
tern alphabet PA and a trace t, let ÅNPI �BPAG, t� denote the maximal set of all non-
overlapping pattern indices of the patterns under the equivalence class of the pattern
alphabet, BPAG, in the trace t, i.e., ÅNPI �BPAG, t� is an X > NPI �BPAG, t� such that
X � arg maxX�>NPI �BPAG,t� SX �S. The non-overlapping alphabet count of a pattern al-

phabet PA in the event log L is defined as NOAC �PA,L� � Pt>LL�t�SÅNPI �BPAG, t�S-
Consider again the trace t � abxcdxedfxgdxeh and the pattern alphabets with
equivalence classes B�a,b,c,x�G � �abxc�, B�a,b,c,d,x�G � �abxcd�, and B�d,e,x�G ��dxe,dxed�. The NOAC (with preference to shorter patterns) for given example
is ��a,b,c,x�,1�, ��a,b,c,d,x�,1�, and ��d,e,x�,2� (see Figures 3.19(a)–(c)). Note
that the conflict at position 5 in t for pattern alphabet �d,e,x� is resolved in favor
of the pattern dxe thereby making t�5,7� contribute to only one pattern (see Fig-
ure 3.19(c)).

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) pattern alphabet {a, b, c, x}

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) pattern alphabet {a, b, c, x, d}

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(c) pattern alphabet {d, e, x}

Figure 3.19: An example of non-overlapping pattern alphabet counts.

Though NOAC addresses the contribution of a region in a trace to only one of
the patterns in the equivalence class of a given pattern alphabet, it still might lead
to situations where a region contributes to more than one pattern when a set of
pattern alphabets is considered. For example, the activities in the subsequence at
t�1,5� contributed to all the three pattern alphabets in the above example: t�1,4�
to �a,b,c,x�, t�1,5� to �a,b,c,d,x� and t�5� to �d,e,x�. In order to alleviate this
problem, we consider the non-overlapping global alphabet counts (global over a set
of pattern alphabets). Let PAG be a set of pattern alphabets (e.g., set of all pattern
alphabets in an event log) and let PG denote the set of all patterns defined by PAG ,
i.e., PG � �PA>PAG

BPAG.
Definition 3.18 (Non-overlapping Global Alphabet Count (NOGAC)).
Given a global set of pattern alphabets PAG, a global set of patterns PG defined by
it, and a pattern alphabet PA > PAG, let ÆNPIG�BPAG, t, PG� denote the maximal set
of all non-overlapping pattern indices of the patterns under the equivalence class of
the pattern alphabet PA in the trace t with respect to the global pattern set PG and
is defined as

ÆNPIG�BPAG, t, PG� � �i >ÅNPI �PG, t� S shortest�PG, t, i� > BPAG�.
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The non-overlapping global alphabet count of the pattern alphabet PA in an event
log L � T� N0 is defined as NOGAC �PA,L, PG� � Pt>LL�t�SÆNPIG�BPAG, t, PG�S -
For the above example, the NOGAC across all alphabets with preference to shorter
patterns is ��a,b,c,x�,1�, ��a,b,c,d,x�,0�, and ��d,e,x�,2� (see Figure 3.20(a))
while the NOGAC with preference to longer patterns is ��a,b,c,x�,0�, ��a,b,c,d,x�,1�,
and ��d,e,x�,1� (see Figure 3.20(b)).

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) preference to shorter patterns

a b x c d x e d f x g d x e h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) preference to longer patterns

Figure 3.20: An example of non-overlapping global alphabet count.

Definition 3.19 (Conservedness (CON)). The conservedness of a pattern al-
phabet PA, measures the degree to which the individual activities involved in the
pattern alphabet manifest as the patterns defined by the alphabet and is defined

as CON �PA,L� � NOAC�PA,L�
µ

�1 � σ
µ
� � 100% where µ and σ denote the mean and

standard deviation of the frequency of activities defined by PA in the event log L2. -
The factor σ

µ
is the coefficient of variation and measures the dispersion of the distri-

bution of activities in the log. For example, consider three pattern alphabets {a,b,c},
{a,b,c,d}, and {a,b,c,e}. Let the equivalence classes of these pattern alphabets be
{abc}, {abcd}, and {abce} respectively. Let the non-overlap alphabet count of these
pattern alphabets be ��a,b,c�,100�, ��a,b,c,d�,60�, and ��a,b,c,e�,40� and the
frequency of activities be �a,100�, �b,100�, �c,100�, �d,60�, and �e,40�. The mean
frequencies of the activities involved in the pattern alphabets {a, b, c}, {a, b, c,
d}, and {a, b, c, e} are 100, 90, and 85 respectively while the standard deviations
correspond to 0, 20, and 30 respectively. It is to be noted that not all occurrences
of a, b, c manifest as abcd (or abce); however, all occurrences of a, b, c manifest as
abc. Hence, the conservedness values of the pattern alphabets {a, b, c}, {a, b, c,
d}, and {a, b, c, e} are 100

100
�1 � 0

100
� � 100 � 100%, 60

90
� �1 � 20

90
� � 100 � 51.8%, and

40
90

� �1 � 30
90
� � 100 � 29.6% respectively.

Concurrency in process models affects the manifestation of patterns. For example,
let us assume that a sequence involving two activities a and b occuring in parallel
with another branch. One can notice the pattern ab manifested in some of the traces
in the event log. In other traces, the activities involved in the parallel subprocess
might manifest in between a and b thus making the NOAC of the pattern alphabet
{a,b} (with ab as the pattern under its equivalence class) considerably lower when
compared to their mean count. Accordingly the conservedness value would be low for
this pattern alphabet. However, it is to be noted that a and b are highly correlated

2Although we have defined conservedness using only the NOAC , one can define variants by
substituting NOAC with other count metrics, viz., OAC and NOGAC .
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with σ � 0. In order to compensate for pattern manifestations affected due to concur-
rency in process models, we introduce a weighted variant of conservedness, WCON ,

defined as WCON �PA,L� � �1 � σ
µ
���η � �1 � η�NOAC�PA,L�

µ
��100% where 0 B η B 1.

We recommend that pattern alphabets with a high (weighted)conservedness value be
considered as candidates for abstraction.

One can also consider the percentage of instances in which a pattern is manifested
as a measure of assessing the significance of a pattern. The instance percentage of a
pattern alphabet is defined as in Definition 3.20.

Definition 3.20 (Instance Percentage). The instance percentage of a pattern al-
phabet PA in an event log L, IP�PA,L�, is the percentage of instances in which
at least one pattern defined by the equivalence class of the pattern alphabet is
manifested. In other words, let LPA b L be the set of all traces t > L such that
PI �PA, t� x g. IP�PA,L� � 1~SLSPt>LPA

L�t� � 100% where L�t� is the multiplicity
of the trace t in L and SLS is the total number of traces in L. -

3.5 Capturing Relationships Between Patterns

Relationships exist between patterns. For example, consider the patterns dxefxg,
dxe, and fxg. It could be the case that dxe and fxg are sub-functionalities used
also in a larger context dxefxg. As another example, consider the patterns abcd and
abd. It is most likely for activity c to represent a functionality similar to that of a,
b, and d, since c occurs within the context of a, b, and d. Subprocess abstractions
can be defined by considering a partial ordering on the pattern alphabets. We use
subsumption as the cover relation. By defining a partial order on the pattern alpha-
bets, one can construct a Hasse diagram. The Hasse diagram, henceforth referred
to as a pattern graph, over pattern alphabets can be used as a means for defining
abstractions of events. Figure 3.21 depicts the pattern graph over the pattern al-
phabets defined by the base maximal repeats in Table 3.2. The pattern alphabets�a,b,c,x�,�d,e,f,x�,�d,e,h,x�,�f,g,h,y�, and �f,g,x� are the maximal elements
of the partial ordering.

a b c d x e f g h y

{a,b} {a,c} {f,x}
{b,c} {c,x} {c,d}

{g,h}

{d,e,x} {f,g,x}

{a,b,c,x} {d,e,h,x}{d,e,f,x} {f,g,h,y}

Figure 3.21: A pattern graph. Shaded nodes represent the maximal elements of the pattern graph.
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Nodes (signifying pattern alphabets) in a pattern graph, which capture common
execution patterns in an event log, form the basis for abstraction. One can use
these abstractions to preprocess the event log and transform it into an event log
with higher levels of abstraction. The basic idea is to replace all manifestations of
patterns defined by the pattern alphabets with the abstract activity defined for the
pattern alphabet. In this chapter, we look at only the criteria for selection of nodes
for abstraction and the basic idea on how to utilize them for transforming logs. The
transformation technique will be presented in detail in Chapter 6. Two types of node
selection modes can be considered:

� Single Node Mode: All manifestations of patterns under the equivalence class
of this node’s pattern alphabet are represented by the same abstract activity
in the transformed log.

� Sub-graph Mode: All manifestations of patterns under the equivalence class
of pattern alphabets defined by the induced subgraph at any selected node are
substituted by the abstract activity of the selected node during transformation.
For example, one can consider the maximal elements and its induced sub-graph
in the pattern graph as a candidate for abstraction.

For example, let us assume that the pattern alphabets �a,b,c,x�, �d,e,h,x�, and�f,g,x� in Figure 3.21 are chosen for abstractions. Let the pattern alphabet equiv-
alent classes corresponding to these pattern alphabets be B�a,b,c,x�G � �abxc�,B�d,e,h,x�G � �dxeh�, and B�f,g,x�G � �fxg�. Let W, V, and U respectively be the
abstract activities chosen for these three pattern alphabets. If these pattern alpha-
bets are considered under the single node mode, then only the patterns defined by
these alphabets are considered. Consider the two traces t1 � abxcdxedfxgdxeh and
t2 � abxcdxefxg. Figure 3.22(a) highlights the traces with the pattern manifesta-
tions and Figure 3.22(b) depicts the transformed traces after replacing the pattern
manifestations with their corresponding abstract activities, e.g., since the pattern
alphabet �a,b,c,x� is associated with the abstract activity W, the pattern manifesta-
tion abxc is replaced with W.

a b x c d x e d f x g d x e h

a b x c d x e f x g

(a) original traces

W d x e d U V

W d x e U

(b) transformed traces

Figure 3.22: Transformation of traces with abstractions based on single node selection mode.

However, if the pattern alphabets are considered under the sub-graph mode, we
also consider all the pattern alphabets subsumed under the three pattern alphabets,
e.g., �d,e,x�, �d�, �e�, and �x� subsumed under the pattern alphabet �d,e,h,x�.
Let dxe and dxed be the patterns under the equivalent class of the pattern alphabet
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�d,e,x�, i.e., B�d,e,x�G � �dxe,dxed�. Now the pattern manifestations of all pattern
alphabets in the sub-graph of the selected node are processed and replaced with its
abstract activity. Figure 3.23(a) highlights the traces with the pattern manifesta-
tions and Figure 3.23(b) depicts the transformed traces after replacing the pattern
manifestations with their corresponding abstract activities. Unlike the single node
mode, the pattern manifestation dxed in t1 and the pattern manifestation dxe in t2

are also processed under the sub-graph mode because their pattern alphabet {d, e,
x} is subsumed in {d, e, h, x}.

a b x c d x e d f x g d x e h

a b x c d x e f x g

(a) original traces

W V U V

W V U

(b) transformed traces

Figure 3.23: Transformation of traces with abstractions based on sub-graph selection mode.

When considering abstractions using the sub-graph mode, there could be scenar-
ios where certain pattern alphabets contribute to more than one abstraction. Such
pattern alphabets can either be put in one of the abstractions (based on their con-
texts of manifestation in the event log) or can define an abstraction in itself. Such
alphabets can be considered as a (sub-)functionality that is used in different contexts.
For example, assuming that the maximal elements are chosen to define abstractions
using the sub-graph mode, the pattern alphabet {f, x} is subsumed in two maximal
elements {f, g, x} and {d, e, f, x}.

In order to reduce the total number of abstract activities introduced, one can
define extended joins on the maximal elements. There can be instances where two
maximals of the partial ordering on the pattern alphabets have a lot of activities in
common, e.g., the maximal elements {d, e, f, x} and {d, e, h, x}. It could be the
case that f and h are activities under a choice construct within the context of d,
e, and x. The two maximal elements can be extended to join at {d, e, f, h, x} as
depicted in Figure 3.24. Different criteria for extending the maximal elements can
be defined. Let PAm

1 and PAm
2 be the pattern alphabets corresponding to two max-

imal elements in a pattern graph; one can choose to extend two maximal elements
provided they share a set of common elements above a particular threshold and
also when the differences between them is less. In other words, extend the maximal
elements only if SPAm

1 9 PAm
2 S C δc and S�PAm

1 � PAm
2 � 8 �PAm

2 � PAm
1 �S B δd. δc

corresponds to the threshold on the number of common elements which can either be
a fixed constant or a fraction of the cardinality of the participating maximal elements
such as 0.75 �min�SPAm

1 S, SPAm
2 S�. δd corresponds to the threshold on the number of

differences between the two maximal elements.
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a b c d x e f g h y

{a,b} {a,c} {f,x}
{b,c} {c,x} {c,d}

{g,h}

{d,e,x} {f,g,x}

{a,b,c,x} {f,g,h,y}{d,e,h,x}{d,e,f,x}

{d,e,f,h,x}

Figure 3.24: A pattern graph with extended joins (indicated by dashed lines). Shaded nodes
represent the maximal elements of the pattern graph.

3.6 Experiments and Discussion

In this section, we present some of the patterns and abstractions uncovered using
an event log of the simple digital copier example. As described in Section 3.1, we
have modeled the workflow of the copier in CPN tools [180] and generated event
logs using simulation. We consider one such event log for our analysis. The event
log consists of 100 cases, 40,995 events, and 76 event classes (distinct activities). As
specified in the YAWL models the workflow of the copier contains abstract activities
(composite tasks) in the form of subprocesses (see Figures 3.1, 3.4, and 3.6) whereas
the simulated event log contains low level events. An ideal output would be to un-
cover the abstractions with domain significance as specified by the abstract activities
in the YAWL models. We have implemented the discovery of patterns, computation
of pattern metrics, and the determination of abstractions as the Pattern Abstractions
plug-in in ProM (cf. Chapter 10).

We first identify the tandem arrays in the event log. Table 3.3 depicts the pat-
tern alphabets corresponding to the maximal primitive tandem arrays in the event
log. Pattern alphabets 1 and 2 correspond to the loop construct in the Developing
subprocess (see Figure 3.8). Pattern alphabet 3 corresponds to the loop construct
in the Writing subprocess (see Figure 3.7). Pattern alphabets 4 and 5 pertain to the
Rasterize Image subprocess (see Figure 3.3). This loop construct is not explicit in this
subprocess. The rasterize image subprocess is invoked for print job requests and each
page in the document submitted for print is first interpreted, rendered, screened,
and converted into an image. The rendering and screening can start as soon as an
interpreted page is available and subsequently can be done in parallel to interpreta-
tion. In the copier, rendering and screening takes more time than the interpretation.
Hence, there could be scenarios where all the pages have been interpreted but some
of them yet to be rendered and screened. In such cases, the rendering and screening
being the only tasks left manifest as tandem arrays in the event log. This is what
is uncovered in this pattern alphabet. Pattern alphabets 6 and 7 correspond to the
Capture image (see Figure 3.2) and Half Toning subprocesses (see Figure 3.5).
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Table 3.3: Pattern alphabets corresponding to the maximal primitive tandem arrays in the simple
digital copier event log.

S.No Pattern Alphabet Abstraction

1 {Drum Spin Start, Coat Toner on Drum, Drum Spin
Stop} Coat Toner

2 {Drum Spin Start, Coat Light Toner on Drum, Drum
Spin Stop}

3 {Emit Laser, Photons Travel to Drum, Reverse
Charges}

Charge Drum

4 {Rendering, Screening Start, FM Screening, Screening
Complete, Current Page Image, Accumulate Images} Render and Screen

5 {Rendering, Screening Start, FM Screening, Screening
Complete, Current Page Image, Accumulate Images}

6 {Illuminate Page, Move Scan Head, Focus Light Beam,
A/D Conversion, Interpolate, Filtered Image, Collect
Image}

Capture Image

7 {Error Diffusion Method Start, Load Quantization
Pixel, Neighbor Quantization Error Packing, Calculate
Total Neighbor Quantization Error, Subtract, Table
Based Multi-level Quantizer, Store Quantization Pixel,
Calculate Quantization Error, Error Diffusion Method
Complete }

Half Toning

Let us now consider these pattern alphabets and form abstractions. Since none
of the pattern alphabets in Table 3.3 subsumes another one, all seven pattern alpha-
bets are maximal elements in the pattern graph. However, the pattern alphabets 1
and 2 and the pattern alphabets 4 and 5 share a majority of activities between them
and can be merged. Thus we have 5 maximal elements as candidates for abstraction.
One can give meaningful names to these abstractions as depicted in Table 3.3, e.g.,
({1,2}, Coat Toner), ({3}, Charge Drum), ({4,5}, Render and Screen), ({6}, Capture
Image), and ({7}, Half Toning). It is important to note that the abstractions being
based on common execution patterns have a strong domain significance from a func-
tionality point of view. Likewise, one can consider the maximal repeat patterns to
define abstractions.

One can use the approach presented in this chapter in an iterative way to form
multiple levels of abstraction. The basic idea is to uncover the patterns and de-
termine abstractions from an event log and use these abstractions to transform the
event log. In the transformation process (we will look at it in detail in Chapter 6),
the manifestations of patterns defined by the pattern alphabets involved in the ab-
straction are replaced with the abstract activity. The transformed log can then be
used as the input for the next iteration and this process can be repeated.

In the next two subsections, we discuss on the scalability of the approach and
report the influence of the size of the log (total number of events) and the size of the
alphabet on pattern discovery.
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Figure 3.25: The number of tandem arrays and the amount of time to uncover them for varying
log sizes. The 95% confidence intervals are also indicated.

3.6.1 Influence of Log Size

We have simulated multiple event logs of the digital copier example with varying
number of cases (and thereby the total number of events). Figure 3.25(a) depicts
the average computational time along with the 95% confidence intervals (over five
independent runs) taken to discover all tandem arrays for different event logs3. We
can see that the time required to uncover all tandem arrays varies linearly with
respect to the size of the event log as expected. Figure 3.25(b) depicts the number
of distinct primitive tandem repeat types and pattern alphabets over the different
logs. The notable difference between the number of patterns and the pattern alpha-
bets can be attributed to the cyclic permutations of the tandem repeat types (cf.
Section 3.3 and Figure 3.13). We can see that after a certain size of the log, the
number of pattern alphabets stabilizes indicating a sense of completeness of the log
with respect to the loop construct manifestations. Figure 3.26 depicts the average
computation time along with the 95% confidence intervals (over five independent
runs) required to compute the overlapping and non-overlapping counts of the tan-
dem repeat patterns for varying sizes of the event log. Estimating the counts varies
linearly with respect to the size of the event log and the number of distinct patterns.

Figure 3.27(a) depicts the average computation time along with the 95% confidence
interval (over five independent runs) required to construct a suffix tree for varying
sizes of the event log. The suffix tree is constructed on the sequence obtained by

3All the computation times reported in this chapter are measured on an i3 Core CPU M350 @
2.27 GHz with 4GB RAM running a 64-bit Windows 7 OS.
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Figure 3.26: Computational time required to estimate the various count metrics for the tandem
repeat patterns. The 95% confidence intervals are also indicated.

concatenating all the traces with a distinct delimiter between them. Recall that this
suffix tree is necessary to discover the maximal repeats in an event log. Figure 3.27(b)
depicts the average time and 95% confidence intervals (over five independent runs)
required to compute all maximal repeats in these event logs. As expected, we can
see that the construction time of suffix tree varies linearly with respect to the length
of the sequence (size of the event log) while the uncovering of maximal repeats varies
linearly with respect to the number of distinct maximal repeats, which in turn is
linear to the size of the event log. At first inspection one might be alarmed by the
number of maximal repeats uncovered. However, it is to be noted that a lot of these
maximal repeats contain redundant information (recall from Figures 3.15 and 3.16).

Figure 3.28(a) depicts the average time along with the 95% confidence intervals
(on five independent runs) required to compute the various count metrics over the
maximal repeat patterns. The computation time is linear to the size of the event
log and the number of patterns and the computation of different count metrics takes
almost the same time. Also indicated in Figure 3.28(a) are the number of pattern
alphabets and the number of base pattern alphabets. Figure 3.28(b) depicts the
number of pattern alphabets and the corresponding number of patterns under its
equivalence class that are not individual activities (alphabet size A 1) and having
a conservedness value of at least 50%. It is to be noted that although the number
of patterns uncovered in the event log are overwhelming, the number of significant
patterns is just a small fraction (less than 5%) of the total number. One can exploit
this factor and further reduce the time for computing the count metrics if all the
three metrics, viz., OAC, NOAC, and NOGAC are to be computed. One can first
estimate only the overlapping counts for all the patterns and filter those that are not
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Figure 3.27: Computational time to construct the suffix tree for the combined sequence obtained
by concatenating all traces and to discover all maximal repeats for varying sizes of the event log.
The 95% confidence intervals are also indicated.
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Figure 3.28: Computational time required to compute various count metrics and the number of
significant patterns (and pattern alphabets). The 95% confidence intervals are also indicated.

significant. The NOAC and NOGAC metrics can then be computed for the reduced
set of the patterns thereby saving time. Figure 3.29 depicts the time taken to com-
pute the NOAC and NOGAC metrics when the patterns are filtered based on their
instance percentage count and conservedness value obtained after the estimation of
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the overlapping alphabet counts.
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Figure 3.29: Computational time required to compute the various count metrics. The computa-
tional time can be reduced by apriori filtering of insignificant patterns.

3.6.2 Influence of Alphabet Size

In order to study the influence of alphabet size on pattern discovery, we considered
a log L with 500 cases and 176,153 events referring to 77 activities. We randomly
selected alphabets of varying sizes (15,25,35,45,55, and 65) from this log and filtered
the rest. For each alphabet size, we generated five different logs each corresponding
to a different random selection of activities. The patterns are uncovered for each
such filtered log and the experiment is repeated five times. In other words, for each
alphabet size, we have data generated from 25 runs. Figure 3.30(a) depicts the aver-
age time taken along with the 95% confidence intervals to construct the suffix tree.
Recall that the construction of suffix tree of a sequence varies linearly with the size of
the sequence and this is reflected in Figure 3.30(a). The size of the event log is bound
to change with the alphabet size and hence the trend observed in Figure 3.30(a) is a
result of the dual effect of both the alphabet size and the size of the event log.

In order to investigate the influence of just the alphabet size, we consider the
adjusted time that is an extrapolation of time for a fixed size log. The adjusted time
for a run is computed by multiplying the time to construct the suffix tree in that run
by a scale factor, SLS~SL�S where SLS is the size of the event log (176,163) and SL�S is the
size of the filtered log considered in that run. We can see that the alphabet size does
not have a significant influence on the suffix tree construction time (the adjusted
time for the alphabet sizes of 15 and 25 are outliers owing to a high scaling factor).
Figure 3.30(b) depicts the average time along with the 95% confidence intervals to
uncover the maximal repeats over logs with varying alphabet size. Recall that the
discovery of maximal repeats varies linearly with the number of repeats and this
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Figure 3.30: Computational time required to construct the suffix tree and uncover maximal repeats
over logs with varying alphabet size. The 95% confidence intervals are also indicated.

is clearly reflected in Figure 3.30(b). In order to isolate the influence of just the
alphabet size, we consider the adjusted time as above. The influence of alphabet size
on pattern discovery is on expected lines in that it is proportional to the differences
in the repeats induced by the increase in activities.

3.7 Limitations and Extensions

In the previous section, we have seen the promise of the proposed approach in form-
ing meaningful abstractions at a manageable computational complexity even for ex-
tremely large logs. Nonetheless, the approach suffers from a few limitations. In this
section, we highlight the limitations and propose extensions to address some of these
limitations.

3.7.1 Demarcation of Functional Boundaries

The pattern definitions considered in this chapter lack the ability to clearly demarcate
boundaries between functionalities. In other words, a pattern α � β1 l β2 might
contain activity subsequences β1 and β2 belonging to two different subprocesses that
are executed one after the other. This is due to the fact that a subsequence constitutes
a maximal repeat only if it has distinct contexts. This can be partially mitigated by
semi-automated means where an analyst can split a pattern or remove activities from
a pattern, e.g., in the above pattern, an analyst can split α into two patterns β1 and
β2. This feature is supported in the Pattern Abstractions plug-in (cf. Chapter 10).
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3.7.2 Robust Pattern Metrics and Pruning Techniques

The conservedness metric proposed in this chapter is biased towards base patterns,
i.e., patterns where no activity repeats itself. A high conservedness value is assigned
to those patterns whose frequency is close to the mean frequency of the individual
activities defined by it. In cases where a pattern has some activities repeating within
it, the count of the pattern can be much lower than the mean. Hence, there is a need
for additional robust metrics to assess the significance of patterns.

There is also a need for additional pruning techniques to extract all significant
patterns. There could be scenarios where a significant pattern is not explicitly cap-
tured as a pattern but subsumed within a larger pattern. For example, consider a
pattern α � x l β l y where the activities x and y do not occur in the subsequence
β. Let us also assume that the subsequence β always occurs in the context of x and
y but the activities x and y can also occur in different contexts. The subsequence
β cannot be captured as a maximal repeat because its context to the left and right
is always x and y. However, the conservedness value of the pattern α can be low
because the frequency of occurrence of x and y is different from that of β. One can
tackle such patterns by pruning the activities at the boundaries provided there is an
improvement in the conservedness value.

3.7.3 Patterns in the Manifestation of Complex Process Model
Constructs

The pattern definitions defined in Section 3.3 (both tandem arrays, maximal repeats
and its variants) capture some important manifestations of the process model con-
structs, but they are not sufficient enough to cater to complex model constructs, e.g.,
a parallelism or choice within other constructs such as loops. We call the above pat-
tern definitions to be exact. The merging of maximal elements in the Hasse diagram
addresses this to a certain extent. In order to deal with complex constructs, the
pattern definitions need to be more flexible and robust. In this section, we address
some of these pattern definitions and call these approximate.

Definition 3.21 (Approximate Tandem Arrays). An approximate tandem array
in a sequence t is a concatenation of sequences α � s1 l s2 l s3 l � � � l sk for which
there exists a sequence sc such that each si (1 B i B k) is approximately similar to sc.
Here, sc can be different from each and every si; alternatively, we may constrain that
sc be equal to at least one si (1 B i B k). The sequence sc is called as the primitive
approximate tandem repeat type, and the approximate tandem array α is represented
by the triple �j, sc, k� where j signifies the starting position of α in t. -
The notion of similarity can be defined in multiple ways (such as the Hamming
distance and string edit distance). For example, two sequences with a string edit
distance [184] less than δ (for some threshold, δ > N) can be considered to be similar.

Approximate tandem arrays can be used to detect choices within loops. For ex-
ample, consider the process model construct depicted in Figure 3.31(a). In this
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example, we have a choice construct over the activities b and c inside the loop. s =
abdacdacdabd is one manifestation of the construct that constitutes an approximate
tandem array with abd or acd as an approximate primitive tandem repeat type. Here,
the Levenshtein string edit distance [136] with a threshold of 2 is used as the notion
of approximation. Parallelism within loops can also be handled in a similar fashion
by approximate tandem arrays. However, defining an appropriate notion of similarity
is crucial for the success of this approach. A too lenient notion might generate too
many false positives while a stringent notion will miss certain constructs. This prob-
lem is compounded by the number of activities involved in the parallelism construct.

. . . a

b

c

d

. . .

(a)

. . . a

b

c

d

e . . .

(b)

Figure 3.31: Complex process model constructs (a) choice within loops (b) parallelism within
loops.

Just like the approximate tandem arrays, we can define notions of approximation
for non-tandem repeats (maximal repeats, super-maximal, and near-super maximal
repeats). Approximate repetitions are specified by allowing some number of “errors”
between repeated copies. The set of allowed errors can be defined under the Hamming
distance and the edit distance framework. If replacements alone are allowed, this
yields the classic Hamming distance, defined as the number of mismatches between
the two sequences; if both replacements and insertions/deletions are permitted, then
we are operating in the edit distance framework.

Definition 3.22 (Approximate Repeat). A repeat pair �α,α�� is a k�approximate
repeat if and only if the distance between them d�α,α�� B k (for some k > N). -
Consider Figure 3.31(b) that contains a parallelism construct. s1 = abcde, s2 =
acdbe, s3 = adcbe are some of the manifestations of the construct. The pairs
(abcde, acdbe), (acdbe, adcbe), and (abcde, adcbe) are all 2�approximate under
the Levenshtein edit distance.

Sokol et al. [205] proposed an approach for a variant of approximate tandem
arrays under the edit distance with O�nk log k log�n~k�� time and O�n � k2� space
complexity (where n is the length of the sequence and k is the threshold on the edit
distance for similarity).



76 Chapter 3. Abstractions of Events

3.8 Conclusions

Current approaches to process mining suffer from the gap between the granularity of
events recorded by an information system and an analysts’ perspective of a business
process. In this chapter, we made an attempt at paving a way to bridge this gap.
We exploited the common execution patterns manifested in an event log, correlated
them to commonly used process model constructs, and proposed a means of forming
abstractions of activities. The patterns can be efficiently discovered in linear time
and space. Hence, they can be applied to challenging real-life event logs. The ab-
stractions thus formed can be used to simplify the log and lift them to a desired level
of granularity (low-level events in the log are replaced with abstract activities). We
will look at this transformation in more detail in Chapter 6.



Chapter 4

Trace Clustering

In the previous chapter, we looked at techniques for dealing with fine-granular
event logs. In this chapter, we look at techniques to deal with the heterogeneity in
event logs. Process mining techniques have problems dealing with variability, which
is caused by heterogeneity, i.e., different usage scenarios are merged into a single
spaghetti-like process. In such scenarios, multiple comprehensible models capturing
different classes of behavior are preferred over a single spaghetti-like model. One
means of achieving this is to preprocess an event log to segregate/cluster homogenous
sets of cases and analyzing each set of homogenous cases separately. Figure 4.1 illus-
trates the significance of this approach. The process model on the top of Figure 4.1 is
a process model mined from a heterogenous event log. This model is quite complex to
comprehend. The bottom rectangles of Figure 4.1 depict the process models mined
from the clustered traces. It is evident that clustering enables the comprehension
of process models by reducing the spaghettiness. Such a segregation also assumes
importance in dealing with voluminous data, going by the adage of “divide and
conquer”. Furthermore, event logs may contain anomalous, outlier and/or noisy
traces. The presence of such impurity in logs can also impact the goodness of the
mined results.

complete
event log

partition 1 partition 2

. . .

partition k

Figure 4.1: Significance of trace clustering in process mining.
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Clustering is an unsupervised data mining technique focusing on grouping together
of homogenous objects [104]. The objective of clustering is to retrieve groups, or
clusters, of data objects such that the objects within a cluster are as similar as possi-
ble to each other while the objects belonging to two different clusters are dissimilar,
as illustrated in Figure 4.2. In process mining, the objects are the process instances
(i.e., cases) in an event log. It is imperative that a notion of (dis-)similarity between
process instances needs to be defined to enable the formation of clusters.

Figure 4.2: An example of segregating objects into three clusters.

There are two primary approaches to defining the (dis-)similarity between cases.
One approach, called the vector-based approach, defines a feature space (e.g., activ-
ities, data attributes, transitions, resources, etc.) and transforms each case into a
vector in the feature space. Once cases are represented as vectors, several measures
to calculate the distance/similarity1 between them can be used and the choice of
the measures largely depends on the type of features composing the data [104].
Another approach is the syntactic approach, where the cases are viewed as traces,
i.e., sequences composed of symbols belonging to an alphabet (where the alphabet
corresponds to some character encoding of the activities or resources etc.). One can
then use edit distance measures [184] to define the (dis-)similarity between sequences
and, thereby, between traces.

In this chapter, we emphasize the significance of considering the contexts of exe-
cution in clustering. In the vector based approach, such contexts need to be captured
in the feature sets while the edit distance measures do that through a cost/score
function for the edit operations. We propose a few feature sets based on common
execution patterns (defined in Chapter 3) in an event log. The common execution
patterns in addition to being context-aware also reflect the manifestation of some
process model constructs thereby easing the interpretation of the resulting clusters.
For the edit distance measure, we propose an automated approach to derive the
scores for the edit operations. We also propose objective metrics to compare and
assess the goodness of the formed clusters from a process mining point of view.

The remainder of this chapter is organized as follows. Section 4.1 presents the

1Distance measures are often used to capture the notion of dissimilarity.
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related work on clustering event logs in process mining applications. Section 4.2
presents well-known and often used feature sets and their pitfalls, and proposes
context-aware process-centric feature sets. Section 4.3 discusses the syntactic ap-
proach to clustering traces. Section 4.4 presents an automated approach to derive the
scores for the edit operations. Section 4.5 presents an overview of the hierarchical
clustering algorithm while Section 4.6 discusses the computational complexity of
trace clustering. Section 4.7 presents a few evaluation metrics to assess the goodness
of clusters from a process mining point of view. The experimental results and scal-
ability issues are discussed in Section 4.8. Section 4.9 presents some extensions for
the proposed techniques. Finally, Section 4.10 concludes the chapter.

4.1 Related Work

Data clustering is one of the most important topics in data mining and many al-
gorithms exist in the literature [104, 113]. The significance of trace clustering to
process mining has been first discussed in [54, 87]. Greco et al. [87] capture structural
properties (parallelism and precedence relations between activities) manifested in an
event log as constraints and use them as features. The traces are projected onto
these features and transformed into a vector space. Standard clustering algorithms
can then be applied to cluster the traces. Alves de Medeiros et al. [54] use a sim-
ilar approach to cluster an event log iteratively until each of the resulting clusters
can be adequately represented by a process model. Greco et al. [88] extend their
work on using structural information to also consider performance measures such as
the duration of activity executions in traces and propose an information theoretic
framework based on co-clustering techniques. More recently, Greco et al. [72, 80]
have extended the work on using structural patterns by proposing new patterns, viz.,
FORK and JOIN that also consider the effects of interleaving of parallel branches
and showed its applicability in detecting outlier traces. In contrast to transforming
the traces into a vector space, they use co-clustering techniques [59] by looking at
associations between traces and patterns. Song et al. [208, 209] have proposed the
idea of clustering traces by considering a combination of different perspectives of the
traces (such as activities, transitions, data, performance, etc.) to define the feature
space. From a control-flow perspective, Song et al. [209] use the bag-of-activities and
transitions between activities as the feature sets. Transitions can be considered as a
special case of k-grams (sequences of k activities) where the value of k is 2. We dis-
cuss the pitfalls of considering the bag-of-activities and k-grams later in this chapter.

The feature sets proposed in this chapter capture constraints between activities
by exploiting common execution patterns that are related to the manifestation of
some process model constructs such as loops and choice constructs. Furthermore,
variations resulting from parallelism are captured under equivalence classes of pat-
tern alphabets. Other perspectives of the traces such as data, organization and
performance as proposed in [208, 209] can be seamlessly integrated and used com-
plementarily to the feature sets proposed in this chapter. Moreover, the proposed
feature sets can be efficiently discovered in linear time making it amenable to large
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scale event logs.

Diogo et al. [69, 70, 249] use a sequence clustering algorithm [30] to partition
an event log. The adopted approach is a model-based clustering technique that relies
on the Expectation-Maximization procedure [56]. The basic idea is to represent a
cluster by a Markov chain and assign each input sequence to that cluster that is
most likely to produce the sequence. The cluster model is iteratively updated until
convergence from the set of sequences assigned to it. This approach is sensitive to the
initialization of the cluster models and is computationally expensive. In Section 4.8,
this is discussed in more detail.

4.2 Vector Based Approaches to Trace Clustering

As mentioned earlier, in the vector-based approach to trace clustering, one needs to
define a feature space and transform each trace in the event log into a vector in this
feature space. During this transformation, one can either use a binary representation
or a numeric representation for a trace. In the binary representation, we consider
only the presence or absence of a feature in a trace and represent the value for that
feature as 1 or 0 respectively, whereas in the numeric representation, the value for a
feature corresponds to the frequency of occurrence of that feature in a trace.

4.2.1 A Critical Analysis of Contemporary Feature Sets

Several approaches have been proposed in the literature to transform the cases into
a vector-space [208, 209] pertaining to the different perspectives of process mining,
viz., the control-flow, data, organization, and time perspectives. In this section, we
consider only the feature sets defined on the control-flow perspective.

Bag-of-activities (BOA)

One of the most often used feature sets for trace clustering is the bag-of-activities.
This feature set corresponds to the set of all activities (or tasks) present in the event
log. For example, the traces abaac and badca correspond to the vectors (3, 1, 1, 0)
and (2, 1, 1, 1) respectively in the numeric representation and to (1, 1, 1, 0) and (1,
1, 1, 1) in the binary representation; the dimensions of the vector being (a, b, c, d).
The numeric representation of the traces using this feature set corresponds to the
Parikh vectors. The bag-of-activities feature set has a few drawbacks:

� Lack of context information: Process execution is characterized by contexts.
The bag-of-activities representation does not capture the dynamics of process
execution. As an example, consider a process model with a notification activity.
The different instances of notification within a trace might have different con-
notations based on the context in which it is invoked. For example, a broadcast
notification, notification requesting a response, etc.

� Order of execution: The bag-of-activities representation also looses the infor-
mation on the order of execution of events. Any permutation of the sequence of
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activities of a given trace has the same vector representation and thereby has
a distance of 0 with each other, thus being less robust to noise and exceptional
behavior. However, in reality, a lot of these permutations do not make any
sense from a process definition point of view. For example, in the digital copier
example, we cannot have a Send by email activity (for scanned documents)
before the Image Processing is done.

One means of incorporating context is to consider subsequences of activities. These
subsequences capture the order of execution as well. However, it is important to
note that the notion of context can be much more than a mere order of execution of
activities.

k-grams

Another commonly used feature set is the k-gram. A k-gram refers to a subsequence
of k activities. For the trace abacaab, the set of 2-grams (also called bi-grams)
corresponds to {ab, ba, ac, ca, aa} while the set of 3-grams (tri-grams) corresponds
to {aba, bac, aca, caa, aab}. It is to be noted that the size of this feature set
increases drastically with an increase in the size of the alphabet SAS and/or k. For
example, considering 3-grams in an event log with 100 activities can potentially lead
to 106 features. Although in reality one may not see all combinations of 3-grams in
the event log, working in the k-gram space incurs a huge computational overhead.
In addition, selecting a suitable value for k is non-trivial.

Because of the problems just mentioned, we propose alternative feature sets tai-
lored towards process mining.

4.2.2 Process-Centric Feature Sets

In this section, we propose new feature sets for the vector-space model that are
context-aware. The basic idea is to explore whether traces in an event log can
be grouped based on recurring patterns (common subsequences of activities). The
premise is that the distribution of the patterns indicate similarity between the traces
that incorporate them. Unlike the k-gram approach where we consider subsequences
of k-activities (for a fixed k), these feature sets are based on subsequences of differ-
ent lengths. In the previous chapter, we have presented some sequence patterns and
established their relationship to some process model constructs, e.g., tandem arrays
capture the manifestation of loop constructs. We exploit this correspondence and
define multiple feature sets. The feature sets can be classified into two categories:
(i) sequence features, and (ii) alphabet features. Sequence features enforce a strict
constraint on the order of activities while alphabet features, derived from sequence
features, relax the ordering within similar sequence features, e.g., two common subse-
quences of activities abc and bac would be considered different in sequence features
whereas they would be grouped together into one under the alphabet features. Given
an event log L, we define the following feature sets:

� Tandem Repeats (TR): The features correspond to the primitive tandem repeat
types in the event log L. Those primitive tandem repeat types that are indi-
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vidual activities are removed. Including repeats that are individual activities
lead to the drawbacks mentioned for the bag of activities approach.

TR � �r S r is a primitive tandem repeat type in L and SrS A 1�
� Maximal Repeats (MR): The features correspond to the maximal repeats in the

event log L.

MR � �r S r is a maximal repeat in L and SrS A 1�
� Near Super Maximal Repeats (NSMR): This feature set is based on the near

super maximal repeats in the event log L and is defined as

NSMR � �r S r is a near super maximal repeat in L and SrS A 1�
� Super Maximal Repeats (SMR): This feature set is based on the super maximal

repeats in the event log L and is defined as

NSMR � �r S r is a super maximal repeat in L and SrS A 1�
� Tandem Repeat Alphabet (TRA): This is a derived feature set of TR and is

defined as
TRA � �Γ�r� S r > TR and SΓ�r�S A 1�2

� Maximal Repeat Alphabet (MRA): This is a derived feature set of MR and is
defined as

MRA � �Γ�r� S r > MR and SΓ�r�S A 1�
� Near Super Maximal Repeat Alphabet (NSMRA): This is a derived feature set

of NSMR and is defined as

NSMRA � �Γ�r� S r > NSMR and SΓ�r�S A 1�
� Super Maximal Repeat Alphabet (SMRA): This is a derived feature set of SMR

and is defined as

SMRA � �Γ�r� S r > SMR and SΓ�r�S A 1�
As discussed in Chapter 3, the alphabet variants capture variations in the manifes-
tation of activities arising due to parallelism. There is no thumb rule or guideline
on the appropriateness of a feature set and the choice of a feature set is largely
dependent on the context of analysis. For example, if we want to cluster a log based
on whether a particular loop construct is invoked or not, then choosing either TR
or TRA as the feature set is recommended. The above feature sets are not orthogo-
nal and are closely related, e.g., SMR b NSMR b MR and SMRA b NSMRA b MRA.

Consider the event log L � �jgcflebd,jgclebdfkahbd,jgcahbd,sampcudn,samcupdn�.
The maximal repeat feature set in the event log corresponds to MR � �bd, cu, dn,
jgc, sam, ahbd, lebd�. The traces in the event log can be transformed into vectors
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L

t1 = jgcflebd

t2 = jgclebdfkahbd

t3 = jgcahbd

t4= sampcudn

t5= samcupdn

vector
representation

(1, 0, 0, 1, 0, 0, 1)

(2, 0, 0, 1, 0, 1, 1)

(1, 0, 0, 1, 0, 1, 0)

(0, 1, 1, 0, 1, 0, 0)

(0, 1, 1, 0, 1, 0, 0)

Euclidean
distance

[t1] [t2] [t3] [t4] [t5]

[t1] 0 1.41 1.41 2.45 2.45

[t2] 0 1.41 3.16 3.16

[t3] 0 2.45 2.45

[t4] 0 0

[t5] 0

Figure 4.3: Transformation of traces into vector space and computation of the Euclidean distance
between them. The dimensions of the vector correspond to (bd, cu, dn, jgc, sam, ahbd, lebd).

where the dimensions are defined by the maximal repeats. Figure 4.3 depicts the
transformation of the traces in the event log L using the MR feature set and the
computation of the Euclidean distance between the traces.

Having discussed the vector-based approaches to trace clustering, we next look
at the syntactic approaches.

4.3 Syntactic Approaches to Trace Clustering

A trace in an event log corresponds to the sequence of activities executed in a process
instance. While the vector-space model falls under the statistical processing domain,
syntactic approaches to clustering consider the sequences as is and define the distance
between sequences in terms of error transformations [73, 74]. The advantage of using
syntactic methods is that it considers a trace in totality thereby preserving the context
and ordering. Before presenting our approach, we first discuss standard measures for
defining the distance based on error transformations.

Levenshtein Distance

A fundamental measure of (dis-)similarity between two sequences is the Levenshtein
distance, also called as the edit distance. Levenshtein distance between two sequences
is defined as the minimum number of edit operations needed to transform one se-
quence into the other, where an edit operation is an insertion, deletion, or substitu-
tion of an element [136]. Consider an alphabet A and two sequences s and t > A�.
s and t may contain (i) symbols common to both of them, (ii) symbols present only
in s, and (iii) symbols present only in t. For example, consider the two sequences s
= abcac and t = acacad, SsS � 5 and StS � 6. s and t have the symbols a and c in
common while the symbol b occurs only in s and the symbol d occurs only in t. There
are many possibilities in which one can transform s into t. One can delete symbols
that occur only in s and insert symbols that occur only in t or one can replace certain

2Recall from Chapter 3 that Γ�p� correponds to the pattern alphabet of the pattern p.
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symbols in s with symbols in t. During the transformation of s to t, for any 1 B i B SsS
and 1 B j B StS, we can use the following three operators:

� �s�i�, t�j�� denotes the replacement/substitution of the element s(i) with t(j).

� �s�i�,�� denotes the deletion of the element s(i).

� ��, t�j�� denotes the insertion of the element t(j).

The sequence s = abcac can be transformed into t = acacad through the edit op-
erations defined by �s�2�,��, ��, t�5��, ��, t�6��, i.e., by deleting the second symbol
in s and inserting the last two symbols of t at the end of s. The transformation
between the sequences can be visualized as an alignment as depicted in Figure 4.4 (s
and t correspond to the transformed sequences of s and t defined over the alphabet
A 8 ���).

s a b c a c - -

t a - c a c a d

Figure 4.4: Transformation of sequences visualized as an alignment.

It is important to note that the transformation of one sequence to another can
be done in many different ways, e.g., Figure 4.5 depicts three of the many ways of
transforming s to t. In Figure 4.5(b), s is transformed into t using four substitution
operations3, �b,c�, �c,a�, �a,c�, �c,a� and an insertion operation, ��,d�. Levenshtein
distance corresponds to the minimum number of edit operations required to transform
one sequence into the other. The Levenshtein distance between the above two traces
is 3.

s a b c a c - -

t a - c a c a d

(a)

s a b c a c -

t a c a c a d

(b)

s a b c a c - - - - - -

t - - - - - a c a c a d

(c)

Figure 4.5: Three of the many ways of transforming s = abcac to t = acacad.

Levenshtein distance, though noteworthy for its simplicity, does not fit in many
application scenarios. Consider the digital copier example and the following scenar-
ios of copy/scan jobs:

� for the event traces t1 � `Heat Roller Spin Start, Apply Heat, Heat Roller

Spin Stop, Pressure Roller Spin Start, Apply Pressure, Pressure Roller

Spin Stope and t2 � `Pressure Roller Spin Start, Heat Roller Spin

Start, Apply Pressure, Apply Heat, Pressure Roller Spin Stop, Heat

Roller Spin Stope, the Levenshtein distance between t1 and t2 is 6 corre-
sponding to the transformation depicted in Figure 4.6. However, it is to be

3Note that the error transformation considers only the substitution or replacement of unlike
symbols, i.e., (x, y) with x x y.
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noted that, from an application point of view, the sequence of activities in
the traces t1 and t2 are similar in that both correspond to the Fusing subpro-
cess where the application of pressure and heat are in parallel branches (cf.
Figure 3.9).

� now, consider another trace t3 � `Writing, Developing, Fusing, Wipe Toner

on Drum, Erase Toner on Drume corresponding to the subprocess, Print Image
(cf. Figure 3.6). The Levenshtein distance between t1 and t3 is 6, the trans-
formation of which is depicted in Figure 4.7; so is the Levenshtein distance
between t2 and t3. It is obvious that t1 is more similar to t2 (both belong to
the Fusing subprocess) than t3 is, which belongs to the Print Image subprocess.
However, this is blurred by the equal Levenshtein distance measures.

Pressure
Roller
Spin Start

Heat Roller
Spin Start

Heat Roller
Spin Start

Apply
Pressure

Apply
Heat

Apply
Heat

Pressure
Roller Spin
Stop

Heat Roller
Spin Stop

Heat Roller
Spin Stop

Pressure
Roller
Spin Start

Apply
Pressure

Pressure
Roller Spin
Stop

Figure 4.6: Transformation with a Levenshtein distance of 6 between the traces t1 and t2.

Heat Roller
Spin Start

Writing

Apply
Heat

Developing

Heat Roller
Spin Stop

Fusing

Pressure
Roller
Spin Start

Wipe
Toner on
Drum

Apply
Pressure

Erase
Toner on
Drum

Pressure
Roller Spin
Stop

Figure 4.7: Transformation with a Levenshtein distance of 6 between the traces t1 and t3.

In other words, the Levenshtein distance does not consider the functional validity of
any edit operation. Also, two sequences of lengths l1 and l2, irrespective of their simi-
larity, will always have a Levenshtein distance of at least Sl1� l2S, where SlS denotes the
absolute value of l. It is quite natural for event log traces to be of different lengths.
For example, consider the two traces t4 = abacd and t5 = abacacacacd. These two
traces are similar in that they would have been generated from the same process
model where there is a loop construct over the activities ac. Ideally, one would like
to put these two traces in the same cluster. If we apply the Levenshtein metric, we
get a distance of 6. Now consider another trace t6 = jgcle, which corresponds to
a totally different functionality. The Levenshtein distance between t4 and t6 is 5,
which is lesser than that of t4 and t5. This poses a danger of preferring t6 over t5 to
be clustered together with t4. Therefore, one should consider the manifestations of
process model constructs to alleviate such problems.

One means of alleviating the problems with the Levenshtein distance is to con-
sider costs or weights for the edit operations. The generic edit distance framework
captures such cost structures.
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Generic Edit Distance

The generic string edit distance is characterized by a triple `A,B,Ce consisting of finite
alphabets A and B and the primitive cost function C � E � R�

0 where E � Es8Ei8Ed
is the set of primitive edit operations on the alphabets. Es � A � B is the set of
substitutions, Ed � A � ��� is the set of deletions, and Ei � ��� � B is the set of
insertions. In many applications A � B. The generic edit distance over a bag of
sequences T is a function, ged � T � T � R�

0 . The distance between two sequences s
and t is defined under the generic edit distance as

ged�s, t� � min

¢̈̈̈̈
¦̈̈̈
¤̈
C�s�SsS�, t�StS�� � ged�sSsS�1, tStS�1�,
C�s�SsS�,�� � ged�sSsS�1, t�,
C��, t�StS�� � ged�s, tStS�1�

(4.1)

When either s � `e or t � `e, i.e., when either of the sequences is empty, only insertions
or deletions are allowed. Thus,

ged�s, `e� � C�s�SsS�,�� � ged�sSsS�1, `e�,
ged�`e, t� � C��, t�StS�� � ged�`e, tStS�1�,

ged�`e, `e� � 0

(4.2)

It is important to note that insertions and deletions are complementary in that an
insertion in one trace can be considered as a deletion in another trace. Henceforth,
we refer to insertion and deletion operations as an indel operation. Furthermore,
unlike the error transformations [73, 74], the generic edit distance framework also
considers the substitution of ‘like’ symbols as an edit operation. Edit distance can
be efficiently computed using dynamic programming [150, 255]. The Levenshtein
distance is a special case of the generic edit distance where a unit cost function is
used for the edit operations. In other words, under Levenshtein distance, C�a,a� �
0,C�a,�� � C��,a� � 1, and C�a,b� � 1 for a x b. In order to avoid edit operations
that do not make sense in a certain context, the cost function, C, needs to be more
robust: substitution of uncorrelated/constrasting activities or insertion/deletion of
activities not conforming to a context should be penalized heavily. On the other
hand, ‘related’ events should be allowed to be replaced/inserted at a minimal cost.
However, deriving such costs is nontrivial unless provided by a domain expert. In
the next section, we propose an approach to derive the edit operation costs from
event log traces and show that the derived costs have statistical as well as semantic
significance.

4.4 Deriving Substitution and Indel Scores

Distance and similarity measures are interchangeable in the sense that a small dis-
tance means high similarity, and vice versa. For two sequences, s and t, the edit
distance in Equations (4.1) and (4.2) defined earlier can be transformed to a similar-
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ity function defined as

sim�s, t� � max

¢̈̈̈̈
¦̈̈̈
¤̈
S�s�SsS�, t�StS�� � sim�sSsS�1, tStS�1�,
I�s�SsS�,�� � sim�sSsS�1, t�,
I��, t�StS�� � sim�s, tStS�1�

(4.3)

sim�s, `e� � I�s�SsS�,�� � sim�sSsS�1, `e�,
sim�`e, t� � I��, t�StS�� � sim�`e, tStS�1�,

sim�`e, `e� � 0

(4.4)

S � A � B � R defines the substitution scores over the set of symbols and I � �A �����8 �����B�� R defines the indel scores. In most applications A � B. Before we
discuss the algorithm, we mention some of the desirable characteristics of substitution
and indel scoring functions:

� substitution of uncorrelated activities should be discouraged

� substitution of contrasting activities (e.g., start and complete transaction types)
should be penalized

� insertion of activities out of context should be discouraged

� substitution of correlated/similar activities should be encouraged in proportion
to their degree of similarity

4.4.1 Substitution Scores

Algorithm 4.1, adapted from [8, 105, 121], depicts an approach to generate the sub-
stitution scores. The algorithm tries to maximize the score of two sequences based on
similarity. In other words, it derives scores for substitution such that sequences that
are similar attain a high score and sequences that are not similar get a low score.
In contrast, the edit-distance assigns a lower value for similar sequences4. The basic
idea of the algorithm is to consider pairs of symbols that occur in similar contexts
and compare their observed frequencies in the event log to their expected frequencies
if occurred independently. We assign high scores for substitution of those pairs of
activities whose frequency of occurrence within certain contexts is more common
than by chance.

Let us discuss the algorithm with an example. Consider the event log L � �aabcdbb-
cda, dabcdabcbb, bbbcdbbbccaa, aaadab, aacdbcbadbdebd� defined over the alpha-
bet A � �a, b, c, d, e�. The set of 3-grams in L is G3 � �aaa, aab, aac, aad, abc,
acd, ada, adb, bad, bbb, bbc, bcb, bcc, bcd, bde, caa, cba, cbb, cca, ccc, cda, cdb,
dab, dbb, dbc, dbd, deb, ebd�. The corresponding frequencies of the 3-grams are
represented by the vector ÑF3 � �1,1,1,1,3,1,1,1,1,2,3,2,1,4,1,1,1,1,1,1,2,3,3,2,
1,1,1,1� (Step 2, Algorithm 4.1). Let us define a context of a symbol a > A to be the
concatenation of the symbols to the immediate left and right of a manifested in the
event log. In other words, the context of a symbol a is the subsequence x l y such

4We will later define a transformation between the similarity score and the distance value.
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Algorithm 4.1 Algorithm to derive substitution scores

1: Let A be the alphabet; x,y,a,b > A
2: Let G3 denote the set of all 3-grams present in the event log L, and let F3 � G3 � N

denote their corresponding frequencies
3: Define Xa to be the set of all contexts of the symbol a. A context of a symbol a

is the subsequence xy (x l y) such that x l a l y > G3

4: Define X�a,b� to be the set of contexts common to the symbols a and b, i.e.,
X�a,b� � Xa 9Xb

5: Define Cxy�a,b� to be the count of pair-wise combinations of symbols a and b in
the given 3-gram context, xy > X�a,b�

Cxy�a,b� � F3�xay�F3�xby�, if a x b

� F3�xay��F3�xay� � 1�~2, if a � b

6: Define C�a,b� to be the count of pair-wise combinations of the symbols a and b

over all contexts X�a,b�

C�a,b� � Q
xy>X�a,b�

Cxy�a,b�
7: Define NC to be the norm of the count of pair-wise combinations

NC � Q
a,b>A

C�a,b�
8: Define matrix M over A �A to be, M�a,b� � �C�a,b�~NC�
9: Define pa to be the probability of occurrence of the symbol a > A

pa � Q
x>A

M�a,x�; Q
x>A

px � 1

10: Define matrix E to be the expected probability of pairs of symbols over A �A

E�a,b� � �p2
a�, if a � b

� �papb�, otherwise

11: Define the matrix of substitution scores S over A �A to be the log-odds ratio

S�a,b� � log2 �M�a,b�
E�a,b� � , if M�a,b� A 0

� � log2 � 1

E�a,b�� , if M�a,b� � 0
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that x l a l y > G3. In the above event log L, the set of contexts of the symbol a is
Xa � �aa, ab, ac, ad, bd, ca, db�. Similarly, the set of contexts of the symbol
b, Xb � �ac, bb, bc, ca, cb, db, dc, dd, ed� (Step 3, Algorithm 4.1). The common set
of contexts for the symbols a and b is X�a,b� � �ac, ca, db� (Step 4, Algorithm 4.1).

Symbols that share a context can be favored to be substituted or aligned together.
Each occurrence of a symbol in a particular context can potentially be aligned with
every other occurrence of a symbol in the same context. We estimate the number of
such possibilities for every pair of symbols in the given event log, which constitute
the observed frequencies. Step 5 of Algorithm 4.1 computes the number of pair-wise
combinations between two symbols having common contexts. To compute the pair-
wise combinations of two symbols a and b within a particular context db, we need
to consider the 3-grams with db as the context for symbols a and b, i.e., the 3-grams
dab and dbb, and their frequencies. We have 3 occurrences of dab and 2 occurrences
of dbb in the event log. Each occurrence of a can be aligned with each occurrence of
b in the context db as shown in Figure 4.8(a). The number of such combinations for
this case is Cdb�a,b� � 6. Similarly, to calculate Cdb�a,a�, we need to consider the
3-gram dab. There are 3 occurrences of dab in the event log and each occurrence of
a in the context of db can be aligned with every other occurrence of a other than
itself as shown in Figure 4.8(b). Thus, the number of pair-wise combinations for this
case is Cdb�a,a� � 3.

dab

dab

dab

dbb

dbb

(a)

dab

dab

dab

(b)

Figure 4.8: Pair-wise combinations of symbols with the same context. The count of pair-wise
combinations Cdb�a,b� � 3.2 � 6 and Cdb�a,a� � 3.�3 � 1�~2 � 3.

In general, if the estimation of pair-wise combinations is for ‘like’ symbols, then the

count of such combinations Cxy�a,a� � �n2� � n�n�1�
2

, where n is the frequency of the
3-gram xay. The count of pair-wise combinations for ‘unlike’ symbols Cxy�a,b� �mn
where m and n correspond to the frequency of the 3-grams xay and xby respectively.

Proceeding further, we can estimate the count of pair-wise combinations of two
symbols over all contexts thereby completing Step 6 of the algorithm. Steps 7 and 8
of the algorithm normalize the counts thus calculated for every pair of symbols. Step
9 calculates the probability of occurrence of a particular symbol in the alphabet5

while Step 10 calculates the normalized pair-wise combination frequencies that can

5
Px>A px � Px>APy>AM�x,y� � 1~NC Px,yC�x,y� � NC~NC � 1.
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happen by chance (random). Step 11 computes the ratio of the actual frequency
and the chance frequency with which the pair occurs. Such a ratio compares the
probability of an event occurring under two alternative hypotheses and is called a
likelihood or odds ratio. Scores that are the logarithm of odds ratios are called the
log-odds score. If the actual frequency is more than the frequency by chance (which
implies some statistical significance), then we get a positive score thus encourag-
ing the substitution and viceversa. If two symbols never share a context, i.e., the
observed frequency is zero, then we should not encourage the substitution of these

symbols. Therefore, we assign a negative score (� log � 1
E�a,b��).

Table 4.1 depicts the substitution scores for some of the activity pairs in the digital
copier example derived using Algorithm 4.1. We have used a log with 100 traces
and 40,995 events to generate these scores. The activities Send FTP and Send SMTP,
modeled using a choice construct (see Figure 3.1), have the same context in the pro-
cess and therefore can be allowed to be substituted. This is reflected in a relatively
high substitution score of 8 for these two activities. The scores for two other activ-
ity pairs, viz., (FM Screening, AM Screening) and (Coat Light Toner on Drum,
Coat Toner on Drum) modeled using a choice construct follow on similar lines. The
substitution scores for like activities have a relatively high score, e.g., substituting
Coat Light Toner on Drum with itself takes a score of 17. In contrast, the substi-
tution of activities that do not occur in the same context have a negative score, e.g.,
the activities Apply Heat and Apply Pressure are in parallel branches and do not
share the same contexts and hence is not encouraged to be substituted. Similarly,
the activity pairs Drum Spin Start and Fusing Complete takes a relatively high
negative score of �6 because they occur in two different subprocesses, viz., develop-
ing and fusing. It is important to note that although the activities Apply Heat and
Apply Pressure do not share the same context, they belong to the same subprocess,
viz., Fusing. The scores for substituting these activities is relatively better than that
of Drum Spin Start and Fusing Complete, which pertain to completely different
subprocesses. Thus, the substitution scores derived are in proportional to their
degree of similarity. The negative scores just reflect the degree of dissimilarity. Since
Equation 4.3 involves only the addition of scores, one can easily shift the substitution
scores to make them all positive (just add SδS, i.e., the absolute value of δ, to all the
scores where δ is the minimum of the scores over all activity pairs).

Table 4.1: Substitution scores for a few activity pairs of the digital copier example.

Activity 1 Activity 2 Substitution Score
Send FTP Send SMTP 8
FM Screening AM Screening 4
Coat Light Toner on Drum Coat Light Toner on Drum 17
Coat Toner on Drum Coat Light Toner on Drum 1
Apply Heat Apply Pressure -1
Drum Spin Start Fusing Complete -6
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4.4.2 Insertion Scores

Just like substitution, insertion/deletion of activities cannot take place at random. It
is natural to see insertion of activities pertaining to a functionality between activities
related to the same or similar functionality than otherwise. Even within a func-
tionality, the presence/absence of an activity largely depends on its neighbors. For
example, it is highly unlikely to see an image processing activity between activities
pertaining to printing (the image should have been processed before the printing can
happen). Therefore, one should have different scores for insertion of activities based
on the context.

We define two kinds of insertion operations: (i) insertion of an activity to the
right of an activity and (ii) insertion of an activity to the left of an activity. For
example, in the activity subsequence abc, activity b can be considered as an insertion
to the right of activity a or to the left of activity c. We now define an approach to
determine the scores of insertion. We define two sets of scores

a. Insertion Right Given Left, IR � A �A � R. IR�a,b� is the score of inserting
activity b to the right of activity a.

b. Insertion Left Given Right, IL � A �A � R. IL�a,b� is the score of inserting
activity a to the left of activity b.

Algorithm 4.2 generates the scores for the insertion of activities to the right of an-
other activity, i.e., IR, and is straightforward following on similar lines to that of
Algorithm 4.1. The insertion scores for IL can be derived in a similar fashion.

Algorithm 4.2 Algorithm to derive insertion scores

1: Let A be the alphabet; x,y,a,b > A
2: Let G3 denote the set of all 3-grams present in the event log L, and let F3 � G3 � N

denote their corresponding frequencies
3: Define Xa to be the set of all contexts of the symbol a. A context of a symbol a

is the subsequence xy (x l y) such that x l a l y > G3

4: For every pair of symbols a,x > A, let CR�x,a� denote the frequency of occurrence
of the symbol a to the right of x

CR�x,a� � Q
ySxy>Xa

F3�xay�
5: Define the normalization factor, N�a� � Px>ACR�x,a�
6: For all a > A, let pa denote the probability of occurrence of a
7: The insertion scores are defined as the log-odds ratio

IR�x,a� � log2 �CR�x,a�~N�a�
papx

� , if CR�x,a� A 0

� � log2 � 1

papx
� ,otherwise



92 Chapter 4. Trace Clustering

Table 4.2 depicts the insertion scores (for insertion of Activity 2 to the right of
Activity 1) for a few activity pairs of the digital copier example generated using
an event log containing 100 traces and 40,995 events. Since Send SMTP is one of
the two activities that can immediately follow Transfer Image in the process (cf.
Figure 3.1), a relatively high score of 20 is assigned. The activities X-Zoom and
Y-Zoom are modeled using a parallel construct in the Image Processing subprocess (cf.
Figure 3.4). Hence either of the activities can follow each other and accordingly the
score for inserting Y-Zoom after X-zoom takes a positive score. In contrast, the activ-
ities FM Screening and AM Screening are modeled using a choice construct and can
never co-occur. Hence it is discouraged to insert AM Screening after FM Screening

by assigning a high negative score.

Table 4.2: Insertion scores for a few activity pairs of the digital copier example.

Activity 1 Activity 2 Insertion Right Given Left
Score

Transfer Image Send SMTP 20
X-Zoom Y-Zoom 16
Coat Toner on Drum Drum Spin Stop 3
Apply Heat Heated Roller Spin Stop 6
AM Screening Screening Complete 11
FM Screening AM Screening -12

The algorithms defined above derive scores for substitution/indel operations such
that similar traces attain a high score. One can convert a similarity measure into a
distance measure. The scores for substitution and indel derived using the approaches
presented in Sections 4.4.1 and 4.4.2 can be negative and, thus, there is a possibility
for the similarity measure computed using Equation (4.3) to be negative. However,
the distance measures should be positive. We can easily ensure this by shifting the
derived substitution and indel scores by adding SsminS to the substitution scores of
all activity pairs (where smin is the minimum of the substitution scores) and SiminS to
the indel scores of all activity pairs (where imin is the minimum of the indel scores).
One can compute the similarity between traces using these updated scores and take
the reciprocal of that as a measure of distance, i.e., for two traces s and t, the generic
edit distance, ged , between them can be defined as

ged�s, t� � SsS � StS
sim�s, t�

where the numerator denotes the normalization factor [263]. However, other nor-
malizations [149, 273] can also be adopted. Since edit distance is influenced by the
lengths of the traces, we use the above normalization scheme to compensate for
scores contributed by the variation in lengths.
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Having discussed ways of estimating the (dis-)similarity between traces, let us now
look at algorithms for clustering.

4.5 Algorithms for Clustering

Given an event log containing a bag of traces and a selected distance/similarity
function, the objective of clustering is to partition the event log into bags of ho-
mogenous traces (for a chosen number of clusters/partitions, k > N). To achieve this,
many clustering algorithms exist [104, 113, 114]. k-means clustering, hierarchical
clustering, and self-organizing maps [129] are some of the commonly used techniques.
Here, we focus on the hierarchical clustering algorithm.

The hierarchical clustering algorithm initially places all data elements in single
clusters and then merges these clusters into larger clusters in a bottom-up fash-
ion. Different criteria can be used during this merging process, e.g., single linkage,
complete linkage, minimum variance, etc. [113]. The agglomerative hierarchical
clustering (AHC) algorithm is informally described in Algorithm 4.3.

Algorithm 4.3 Agglomerative Hierarchical Clustering

1: Determine all inter-object dissimilarities, i.e., determine the distance between
every pair of traces

2: Form a cluster from two closest traces or clusters
3: Redefine dissimilarities between new cluster and other traces or clusters (all other

inter-object dissimilarities remain unchanged)
4: Return to Step 2 until all traces are in one cluster

Figure 4.9 illustrates an example of applying this on five traces using the single
linkage and complete linkage join criteria. At the top of the figure is the distance
matrix between the traces (one can use either the vector-based approaches or the
syntactic approaches to obtain this matrix). Since there are five traces, four iter-
ations of the algorithm are needed. In this example, the traces �t2� and �t3� are
the most similar (have the least distance) and hence clustered first. The distance
between the newly formed cluster G1 � �t2, t3� and the rest of the traces are up-
dated. The updations are guided by the join criteria. For example, let �p� and�q� be the two objects that are grouped together in this iteration, denoted by [p,
q]; the distance between an object �r� and the newly formed cluster is updated as
dist��r�, �p, q�� � min�dist��r�, �p��,dist��r�, �q��� in the single linkage criteria and as
dist��r�, �p, q�� � max�dist��r�, �p��,dist��r�, �q��� in the complete linkage criteria.
Thus, the distance between the trace �t1� and the cluster G1 � �t2, t3� is updated to
1.4 (min�1.4,2.1�) and 2.1 (max�1.4,2.1�) respectively under the single linkage and
complete linkage criteria. The updated distance matrices according to both these
criteria are as illustrated in Figure 4.9.

In the next iteration, the traces �t4� and �t5� are the most similar and hence
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Figure 4.9: Example of distance matrix updations using the single linkage and complete linkage
methods. The cell in the distance matrix corresponding to the pair of objects that are the most
similar in an iteration is encircled.

grouped together, in both the single linkage and complete linkage criteria. The
distance between this newly formed cluster, G2 � �t4, t5�, and the other objects, viz.,
cluster G1 � �t2, t3�, and the trace �t1� is to be updated. The updated matrices are as
illustrated in Figure 4.9. In the third iteration, under the single linkage criteria, the
objects G1 � �t2, t3� and the trace �t1� are the most similar, and hence are grouped
together. However, under the complete linkage criteria, the objects G1 � �t2, t3�
and G2 � �t4, t5� have the least distance. Therefore, we get two different groupings
under these two criteria, viz., G3 � �t1, t2, t3� under the single linkage criteria and
G3 � �t2, t3, t4, t5� under the complete linkage criteria. Proceeding futher, the dis-
tance matrices are updated. In the fourth (and final) iteration, the two clusters G3

and G2 are grouped together under the single linkage criteria while the cluster G3 is
grouped with the trace �t1� in the complete linkage criteria. The hierarchical group-
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ing of objects can be visualized using a so-called dendrogram as shown in Figure 4.9.
Concrete clusters can be obtained by cutting through the dendrogram horizontally
at any point. Figure 4.9 shows one such horizontal line that results in two clusters.
The two clusters formed under the single linkage criteria are �t1, t2, t3� and �t4, t5�.
In contrast, complete linkage produces the two clusters as �t1� and �t2, t3, t4, t5�.
The number of clusters can be varied by moving the horizontal line.

We adopt the AHC algorithm for our studies because of its (a) embedded flexi-
bility on the level of abstraction and (b) ease in handling any form of similarity
or distance. k-means clustering, for example, generates only a single partition and
cannot be applied for syntactic methods based on edit distance.

Figure 4.10 depicts the framework for trace clustering. The framework identifies
the following steps:

� Feature Extraction and Selection: This is applicable for the vector-based ap-
proaches to trace clustering and corresponds to the transformation of traces into
vector space. We can choose one or more (union) of the feature sets presented
in Section 4.2. In addition, we can choose to filter features that are insignificant
(e.g., features that are less frequent) during this transformation process.

� Compute Scoring Matrices: As discussed earlier, syntactic approaches based
on edit distance require a cost/scoring function. This step corresponds to the
derivation of scores for substitution and insertion/deletion using the techniques
presented in Section 4.4. For the Levenshtein distance, a unit scoring function
is used.

� Compute Distance or Similarity: This step corresponds to the estimation of
distance or similarity between every pair of traces. Distance metrics such as
the Euclidean distance and Mahalanobis distance [144] and similarity metrics
such as the F-Score [62] can be used for the vector-based approaches. For
the syntactic approaches, one can use measures such as the Levenshtein edit
distance and the generic edit distance.

� Group Objects: This step corresponds to the grouping of traces into clusters.
We adopt the Agglomerative Hierarchical Clustering algorithm as discussed
earlier for grouping traces.

� Interactive Visualization: The AHC algorithm generates a hierarchy of clusters
that can be visualized as a dendrogram. This step corresponds to providing in-
teractive means of visualizing and exploring the dendrogram. The dendrogram
can be annotated with additional information characterizing the traces grouped
under a node.

4.6 Computational Complexity

We now discuss the computational complexity of the AHC algorithm. The AHC
algorithm involves the construction of n � 1 clusters, and so n � 1 iterations (Steps
2, 3, and 4 of Algorithm 4.3). Step 1 requires O�n2� calculations, i.e., n�n � 1�~2
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Figure 4.10: Framework for trace clustering.

inter-trace dissimilarities, where n is the number of traces. As mentioned earlier,
the distance between the traces can be computed either by defining some features
and transforming each trace into a vector space or by using syntactic edit distance
approaches. Edit distance approaches are time consuming in that it takes quadratic
time (with respect to the length of the traces) to compute the distance between a pair
of traces, i.e., O�pq� where p and q are the lengths of the two traces. In the vector-
space approach, the number of variables (features) obviously affects the calculation
time required, but they are usually considered constant for any set of data, e.g.,
computing the Euclidean distance between two traces varies linearly to the number
of features. A naive attempt at Step 2 will make the algorithm O�n3� complex as the
minimum of an n � n matrix must be found in each of the n � 1 iterations. However,
this can be reduced to O�n2� by maintaining a pointer to the minimum value in each
row of the matrix. Step 3 can be carried out in O�n� time for each iteration using
the Lance–Williams combinatorial formula [133, 158]. Thus, the overall complexity
of the AHC algorithm is quadratic, i.e., O�n2�, with respect to the number of traces.

4.7 Evaluating the Goodness of Clusters

The interpretation of the formed clusters is subjective in nature and the goodness
of the resulting clusters is largely influenced by choice of the feature space, dis-
tance/similarity measures, and the clustering algorithm adopted. Statistical metrics
such as the Dunn’s index [60], silhouette width [188], etc., have been proposed in the
literature to evaluate the goodness of the clusters. The underlying motive for these
metrics is to prefer clusters that are compact and well separated; such metrics are
categorized as internal metrics. Compact clusters have a lot of significance in pattern
classification where the objective is to enable the discovery of decision boundaries
between classes of data. Clusters with good scores for such metrics do not necessarily
imply effective clusters in an application. An alternative set of metrics, called as
external metrics, employs external class information called gold standard classes.



4.7. Evaluating the Goodness of Clusters 97

The gold standard on the class association of each data element is to be given ideally
by a domain expert. Once such external class information is available, one can use
metrics such as the Rand Index [179] or supervised classification metrics such as
the F-measure [104] to evaluate the goodness of clusters. The reader is referred to
[100, 101] for a review of cluster validation metrics.

The objective for clustering event logs in process mining is to ease the discovery
of process models and analysis of process execution behavior by grouping together
traces that conform to similar execution patterns/behavior. To evaluate the signifi-
cance of the clusters formed, one can compare the process models that are discovered
from the traces within each cluster. We propose two hypotheses to evaluate the
goodness of clusters from a process mining point of view. Good clusters tend to have
traces such that:

1. the process models mined show a high degree of fitness, and

2. the process models mined have low complexity

The rationale behind these evaluation criteria is that if the clusters formed are mean-
ingful (all traces belonging to related cases are in the same cluster and traces that are
unrelated are not), then the process models resulting from the traces in each cluster
should be less complex (more comprehensible and less spaghetti-like) and be able to
describe the traces in the cluster better (which is captured by the fitness measure).
The actual fitness measure adopted for the process model can vary based on the dis-
covery algorithm, e.g., it could be the continuous semantics [49, 53] or the improved
continuous semantics [49] measure for the Heuristic Miner [264]. We propose two
derived fitness measures, viz., average fitness and weighted average fitness defined as
follows:

� Average Fitness, favg, is defined as the average of the fitness of the process

models mined from each of the clustered traces, i.e., favg � Pki�1 fi~k, where k
is the number of clusters and fi is the fitness of the process model mined from
traces belonging to cluster i.

� Weighted Average Fitness, wf avg, takes into account the number of traces in

each of the clusters and is defined as wf avg � P
k
i�1 nifi~Pki�1 ni, where k is the

number of clusters, fi is the fitness of the process model mined from traces
belonging to cluster i, and ni is the number of traces in cluster i.

Weighted average fitness balances the fitness over imbalanced clusters6. For exam-
ple, consider the scenario where 100 traces are partitioned into four clusters with
n1 � 5, n2 � 6, n3 � 9, and n4 � 80 instances. Assume that the process mod-
els mined from the first three clusters have a fitness value of 1.0 while the model
from the fourth cluster has a fitness value of 0.8. The average fitness value would be�1.0�1.0�1.0�0.8�~4 � 0.95. However, the distribution of traces is skewed in the clus-
ters and the average fitness value does not reflect the reality. The weighted average
fitness value for this partitioning would be �5�1.0�6�1.0�9�1.0�80�0.8�~100 � 0.84,
a better summarization of the goodness of clusters.

6scenarios where the partitioning of traces is skewed, i.e., the number of traces in some clusters
is much less compared to the others.
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Mendling et al. [152–154, 183] have discussed a comprehensive list of metrics that
influence the understandability of process models. We propose three metrics, viz.,
average number of nodes, average number of arcs, and average number of arcs per
node to assess the complexity of a process model based on their structural properties.
The intuition is that clustering should enable the partitioning of traces based on
functionality and that the resulting clusters should have event classes pertaining only
to those events that constitute the functionality. Good clusters tend to form clusters
such that the number of event classes is minimal per cluster. The average number
of arcs and average number of arcs per node are measures of spaghettiness of the
process model.

4.8 Experiments and Discussion

In this section, we report the experimental results of the various approaches pre-
sented in this chapter. We simulated multiple events logs for the digital photo copier
using CPN tools [180]. The copier has two primary functions, viz., copy/scan and
printing of documents. The two functionalities have enough discriminatory activities
to clearly differentiate them. Any clustering technique on the event log would easily
segregate the two classes when asked to partition a log into two clusters. To study
the effectiveness of the techniques proposed in this chapter, we consider only those
cases pertaining to copy/scan job requests. We add noise in some of the copy/scan
cases by randomly reordering certain activities. We use one such event log (after
adding noise) that contains 116 cases and 10,560 events referring to 35 activities.
97 of these cases are valid (V) while 19 cases are outliers/noisy (O). Figure 4.11
depicts the Petri net mined using the α-algorithm [229] implemented in ProM 5.2.
The copy/scan subprocess is a well-structured process but the presence of outliers
disturbs the discovery algorithm leading to an incomprehensible spaghetti-like pro-
cess. We evaluate the goodness of the context-aware approaches and compare them
with contemporary approaches to trace clustering using this event log. Ideally, when
we split the event log into two clusters, we expect the valid and outlier cases to be
segregated in the two clusters.

Figure 4.12 depicts the transposed matching matrix (confusion matrix)7 for the
various feature sets and the syntactic methods. The event log was split into two
clusters using the Agglomerative Hierarchical Clustering (AHC) algorithm with the
minimum variance [259] as the join criteria. For the vector based feature sets, Eu-
clidean distance was adopted to define the distance between the traces. The formed
clusters are assigned labels such that the sum of the values in the leading diagonal
is maximum. Figure 4.12 also depicts the results of clustering using the sequence
clustering algorithm [70, 249] (see column SeqClus). We can see that the best per-
formance is achieved by the process-centric feature sets MRA and NSMRA, where

7The result of each feature set/technique is denoted by a 2�2 rectangular matrix. The value in a
cell �i, j� under a particular feature set/technique denotes the number of traces of the class labeled
in column j that are assigned to a cluster labeled with the class in row i.
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Figure 4.11: Petri net mined using the α-miner plug-in in ProM on the event log containing a mix
of valid and outlier traces.

a perfect segregation of valid and outlier traces is obtained. The worst performance
is achieved by the super maximal repeat alphabet feature set, SMRA. This can be
attributed to the fact that there were only 125 SMRA features, the majority of which
are features involving just two activities that do not possess any discriminatory in-
formation. In contrast, there were 278 NSMRA features. Recall that super maximal
repeats are those maximal repeats that are not subsumed in any other maximal
repeat. Discriminatory maximal repeats that are subsumed in less frequent longer
maximal repeats are all ignored thereby leading to the poor performance of SMRA.
The k-gram, MR, NSMR and SMR feature sets are able to form clusters such that
at least one cluster contains only the valid traces with the other containing all the
outlier traces in addition to some valid traces. For the rest of the feature sets, the
outlier traces are distributed across both the traces.

For the sequence clustering approach [70, 249] we use the implementation available as
the ‘Sequence Clustering’ plug-in in ProM 5.2. The plug-in behaves non-determinist-
ically in that the formed clusters are sensitive to the random initialization of the
clusters. This leads to different partitionings in different iterations. The values
provided in Figure 4.12 are the best out of five independent runs. Although sequence
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clustering is unable to produce a perfect partitioning, it forms reasonable clusters
that are able to segregate most of the outlier traces. We could not assess the perfor-
mance of outlier detection techniques [72, 80] due to inaccessibility of their software
implementation (the authors mentioned that the software is currently proprietary).

Figure 4.13 depicts the Petri net mined using the α-algorithm on the traces captured
in the valid cluster using the MRA feature set (recall that MRA feature set leads to
a perfect segregation of valid and outlier traces). Thus by segregating homogenous
cases, we are able to obtain a comprehensible model that can be analyzed further.
Unlike the α-algorithm, the Heuristic miner [264] is relatively more robust to noise
and is able to discover structured processes on this event log even in the presence
of outliers, albeit with a low fitness. Figure 4.14 depicts the heuristic net mined
using the Heuristic miner on the original event log (with outliers). Figure 4.14 is
well-structured when compared to Figure 4.11.

Figure 4.13: Petri net mined on the valid cluster generated by the MRA feature set using the
α-algorithm.

Figure 4.15(a) depicts the continuous semantics [49, 53] measure computed on the
process model mined using the Heuristic miner [264] on the traces belonging to the
valid cluster8. We can see that techniques that consider contexts (k-grams, process-
centric feature sets, edit distance, and sequence clustering) largely outperform the
BOA feature set that does not capture any context information. Figure 4.15(a) also
depicts the weighted continuous semantics measure computed on the process models
mined using both the clusters. It can be seen that the context-aware approaches
outperform the BOA feature set. Moreover, the process-centric feature sets perform
better than the k-gram, edit distance, and sequence clustering. Within the syntactic
approaches to trace clustering, the generic edit distance performs better than the
Levenshtein distance. This is to be expected because the generic edit distance uses a
cost function that is sensitive to the activities unlike the Levenshtein distance, which
uses a unit cost function (cf. Section 4.3).

8Since the super maximal repeat alphabet feature set almost retained the event log as is, we did
not consider that feature.



102 Chapter 4. Trace Clustering

Figure 4.14: Heuristic net mined on the event log with outliers.

Computational Complexity and Scalability Analysis

The total time required to cluster an event log using AHC algorithm can be di-
vided into the time to (a) extract the features (for vector-based approaches), (b)
compute the inter-trace distance/similarity (Step 1 of Algorithm 4.3), and (c) form
the hierarchy, i.e., grouping of objects (Steps 2, 3, and 4 of Algorithm 4.3). The
process-centric feature sets can all be efficiently discovered in linear time using suf-
fix trees as discussed in Chapter 3. Figure 4.15(b) depicts the average time9 (along
with the 95% confidence intervals over five independent runs) required to compute
the distance/similarity between all pairs of traces and the grouping of objects using
AHC algorithm. It can be seen that using the process-centric feature sets is com-
putationally efficient too. As discussed in Section 4.2, the k-gram feature set may

9All the computational times reported in this chapter are measured on an i3 Core CPU M350 @
2.27 GHz with 4GB RAM running a 64-bit Windows 7 OS.
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Figure 4.15: Fitness as a measure of cluster efficiency and computational time required to form
the clusters using AHC algorithm. The process models are discovered using the Heuristic miner
[264] and continuous semantics metric [49, 53] is adopted as the fitness measure. 95% confidence
intervals are also depicted for the computation time.

lead to an excessive number of features as the number of activities and the value of
k increase. The time to compute the distance between every pair of traces in the
vector-based approach is proportional to the number of features. The syntactic ap-
proaches to computing the distance/similarity between the traces is computationally
expensive as it takes quadratic time to compute the distance between every pair of
traces (with respect to the length of the traces). The average time (over 5 indepen-
dent runs) required to compute the Levenshtein distance between all pairs of traces
was 1595 � 42 msecs while the generic edit distance took 26542 � 5745 msecs. The
generic edit distance takes relatively more time due to the fact that the contexts need
to be considered at each edit operation. The grouping of objects only depends on the
number of traces; therefore, the time to group objects is the same for all the feature
sets. Furthermore, the grouping of objects takes just a fraction of the time required
to compute the distance. The sequence clustering algorithm took 3352� 1205 msecs.

4.8.1 Influence of the Number of Traces and Feature Set Size

We now study the influence of the number of traces and the number of features
on the computational time. We have simulated multiple event logs with varying
number of cases for the digital copier example and considered the copy/scan jobs.
In order to isolate the influence of the number of traces, we keep the feature set
and the number of features constant. For this study, we chose the maximal repeat
alphabet (MRA) as the feature set and considered only the top 200 (most frequent)
features. Figure 4.16(a) depicts the influence of the number of traces on computing
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the distance and the grouping of traces. The average time taken over 5 independent
runs along with the 95% confidence intervals is depicted in Figure 4.16(a). As ex-
pected, the distance computation varies quadratically with respect to the number
of traces. The grouping of traces varies sub-quadratically. In order to study the
influence of the feature set size, we considered a log containing 586 distinct traces
and 58,665 events distributed over 35 event classes. We chose the MRA feature set
and varied the number of features by considering only the top ‘q’ frequent features.
Figure 4.16(b) depicts the average time (along with the 95% confidence intervals
over 5 independent runs) required to compute the Euclidean distance between all
pairs of traces for varying number of features. As expected, computing the Euclidean
distance varies linearly with respect to the number of features. However, one needs
to exercise caution when removing features as this may impact the goodness of the
resulting clusters.
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Figure 4.16: Influence of the number of traces and the feature set size on distance computation.

In a realistic scenario as the size of the log changes, both the number of traces
and the number of features may change. Figure 4.17(a) depicts the average time
(along with the 95% confidence intervals over five independent runs) required to
compute the distance/similarity between all pairs of traces and the grouping of ob-
jects using AHC algorithm for different logs in the realistic scenario using the MRA
feature set. We can see that computing the distance varies quadratically with the
number of traces while the grouping of traces varies sub-quadratically. Figure 4.17(b)
depicts the feature extraction time for the different logs and the total time, which
is basically the sum of the times taken for feature extraction, distance computation,
and the grouping of traces, for clustering event logs. It can be seen that the feature
extraction, which is the discovery of maximal repeats, varies linearly with the size of
the log (number of events) as discussed in Chapter 3. The total time to cluster an
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Figure 4.17: Computational time required to cluster different logs of varying size using the MRA
feature set.

event log is dominated by the time to compute the similarity/distance between the
traces.

Figure 4.18 depicts the time taken to cluster various event logs of different sizes
for the AHC and sequence clustering [69, 70, 249] approaches. We considered the
MRA feature set and the Euclidean distance with minimum variance as the join crite-
ria for the AHC algorithm. The sequence clustering algorithm becomes prohibitively
expensive as the number of traces increases. This, combined with the need for mul-
tiple runs of the algorithm to decide on good clusters (due to its non-deterministic
behavior) makes it less attractive for large event logs.

4.8.2 Influence of the Number of Traces and Trace Length

The computation time of edit distance is sensitive to the length of the traces and
varies quadratically with respect to the length of the traces. For an event log with n
traces and an average trace length of l, the time complexity for computing the edit
distance between all pairs of traces is O�l2n2�. Figure 4.19(a) depicts the average
time taken (over 5 independent runs) along with the 95% confidence intervals to
compute the Levenshtein edit distance for varying number of traces. The average
trace length is also depicted. The polynomial variation of the computational time can
be noticed. Figure 4.19(b) depicts the average time along with the 95% confidence
intervals taken (over 5 independent runs) to compute the generic edit distance for
varying number of traces. The trend is as expected. However, it is to be noted that
using the generic edit distance is much more expensive than that of the Levenshtein
distance. This can be attributed to the fact that the contexts for each edit operation
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Figure 4.18: Comparison of the computational time required to cluster different logs of varying
size using the AHC algorithm considering MRA as the feature set, and the sequence clustering
algorithm.

need to be considered during the computation. Syntactic approaches take orders of
magnitude longer than vector-based approaches and hence should only be preferred
when the event logs are small and the traces are short.
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Figure 4.19: Computational time required to compute distance between the traces using syntactic
approaches for different logs of varying size.
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4.9 Extensions

In this chapter, we looked at trace clustering only from a control-flow point of view.
We can extend the techniques proposed in this chapter with additional perspectives
just like in [88, 209]. For the vector-based approaches, additional feature sets cater-
ing to the data, organizational, and time perspectives can be seamlessly combined
with the process-centric feature sets proposed in this chapter. Furthermore, the
process-centric feature sets can be directly applied on traces formed by considering
the resource attribute as a classifier, i.e., traces correspond to the sequence of re-
sources rather than activities. One can either use traditional clustering techniques
such as the AHC and k-means as in [209] or co-clustering techniques as in [88] on
this augmented feature set.

For the syntactic approaches, the trick is achieved through the score or cost functions
by incorporating contexts into them. For example, one can reward or penalize the
substitution of activities at some position depending on how close their execution
times are. Equation (4.1) can be modified as

ged�s, t� � min

¢̈̈̈̈
¦̈̈̈
¤̈
C�s�SsS�, t�StS�� � ψ�s�SsS�, t�StS�� � ged�sSsS�1, tStS�1�,
C�s�SsS�,�� � ged�sSsS�1, t�,
C��, t�StS�� � ged�s, tStS�1�

(4.5)

where the cost function ψ � E � E � R defined over the events in an event log rewards
the substitution of two events, e1, e2 > E , if their activity execution times are closer to
each other. The larger the difference between their execution times, the larger is the
cost (penalty), thus discouraging their substitution. Extending syntactic approaches
with additional perspectives is an interesting topic of research that deserves further
exploration.

4.10 Conclusions

In this chapter, we advocated the use of clustering to deal with heterogeneity and
noise. Process mining results can be improved by partitioning the event log into
homogenous sets of cases and analyzing each subset independently. We argued that
considering contexts of execution is important in deriving good clusters. We extended
the current work on trace clustering by defining process-centric feature sets and syn-
tactic methods based on edit distance. In order to tackle the sensitivity of the cost
function (of edit operations) in the generic edit distance framework, we proposed
an algorithm that automatically derives the scores for edit operations. Experiments
show that the scores derived using this approach are effective. The proposed methods
outperform contemporary approaches to trace clustering. Furthermore, we showed
that the process-centric feature sets, especially the maximal repeat alphabet, are not
only effective but also computationally efficient. This makes our approach amenable
for large scale event logs.



108 Chapter 4. Trace Clustering



Chapter 5

Concept Drift

In this chapter, we look at techniques for dealing with process changes. Operational
processes need to change to adapt to changing circumstances, e.g., new legislation,
extreme variations in supply and demand, seasonal effects, etc. For example, a new
medical regulation might have an influence on the way a particular procedure is
applied by the physicians using a hospital information system. In case of a disaster,
hospitals and banks may change their operating procedures, etc. Furthermore, in
today’s dynamic marketplace, it is increasingly necessary for enterprises to streamline
their processes so as to reduce costs and to improve performance. The challenge
to keep a step ahead of competitors forces organizations to adapt their processes
continuously [123]. The power of modern information systems is a major impetus
for designing flexible business processes and facilitating business process change or
reengineering [90]. For example, process-aware information systems (PAIS) have
been extended to be able to flexibly adapt to changes in the process. State-of-the-art
Workflow Management (WFM) and BPM systems provide such flexibility, e.g., one
can easily release a new version of a process. Moreover, in processes not driven
by WFM/BPM systems (such as the usage of medical systems) there is even more
flexibility as processes are controlled by people rather than information systems.

Although flexibility and change have been studied in-depth in the context of WFM
and BPM systems, existing process mining techniques assume processes to be in
steady state. For example, when discovering a process model from event logs, it is
assumed that the process at the beginning of the recorded period is the same as the
process at the end of the recorded period. However, this is a very unrealistic assump-
tion to make as process changes could have taken place. An idealistic requirement is
to record the sequence of process changes performed, in the form of a change log, so
that event logs can be analyzed appropriately [95]. However, such a change log will
not be available in most cases. As a result, process changes manifest themselves only
latently in the event logs (in the way which activities are executed when, how, and
by whom). Analyzing such changes is of the utmost importance to get an accurate
insight on process executions at any instant of time.

In the data mining and machine learning communities, such second-order dynamics
are referred to as concept drift. Concept drift refers to changes in the target vari-
able(s)/concept induced by contextual shifts over time [267]. We use the term of
concept drift to refer to changes in processes as well. When dealing with concept
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drifts in process mining, the following three main challenges emerge:

1. Change (Point) Detection: The first and most fundamental problem is to detect
concept drift in processes, i.e., to detect that a process change has taken place.
If so, the next step is to identify the time periods at which changes have taken
place.

2. Change Localization and Characterization: Once a point of change has been
identified, the next step is to characterize the nature of change, and identify
the region(s) of change (localization) in a process. Uncovering the nature of
change is a challenging problem that involves both the identification of change
perspective (e.g., control-flow, data, resource, sudden, gradual, etc.) and the
identification of the exact change itself.

3. Unravel Process Evolution: Having identified, localized, and characterized the
changes, it is necessary to put all of these in perspective. There is a need
for techniques/tools that exploit and relate these discoveries. Unraveling the
evolution of a process should result in the discovery of the change process
describing the second order dynamics.

One can differentiate between two broad classes of dealing with concept drifts when
analyzing event logs.

� offline analysis: this refers to the scenario where the presence of changes or the
occurrence of drifts need not be uncovered in real-time. This is appropriate in
cases where the detection of changes is mostly used in postmortem analysis,
the results of which can be considered when designing/improving processes for
later deployment.

� online analysis: this refers to the scenario where the presence of changes or the
occurrence of drifts need to be discovered in near real-time. This is appropriate
in cases where an organization would be more interested in knowing a change in
behavior of their customers or a change in demand as and when it is happening.
Such near real-time triggers (alarms) will enable organizations to take quick
remedial actions and avoid any repercussions.

In this chapter, we focus on two of the challenges, viz., change (point) detection and
change localization and characterization in an offline setting. We propose features
and techniques to detect changes (drifts), change points, and change localization in
event logs from a control-flow perspective. Detection of such change points enables
the selection of cases and putting the analysis results in perspective to process vari-
ants.

The remainder of this chapter is organized as follows. Section 5.1 presents a running
example to explain the concepts presented in this chapter. Related work is presented
in Section 5.2. Section 5.3 describes the various aspects and nature of change. Sec-
tion 5.4 introduces various features and techniques for detecting drifts in event logs.
Section 5.6 describes the effectiveness of the features and techniques proposed in this
chapter in discovering change points and localization of changes. In Section 5.7, we
provide an outlook on some of the open research questions and directions for future
research in this area. Finally, Section 5.8 concludes the chapter.
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5.1 Running Example

The digital copier example that we described in Chapter 3 captures the workflow of
a copier for copy/scan and print job requests. The workflow of the copier can change
over time, e.g., new features may be added, existing features may be optimized for
performance, etc. However, the activities involved in the workflow are all automated
tasks executed by the various components in the copier. In order to make the topic
of concept drift more interesting, we consider a different process, viz., an insurance
claim process which contains tasks executed by people, as our running example. We
revisit the digital copier example in Section 5.6.

The insurance claim process that we use as our running example corresponds to
the handling of health insurance claims in a travel agency. Upon registration of
a claim, a general questionnaire is sent to the claimant. In parallel, a registered
claim is classified as high or low. For low claims, two independent tasks, viz., check
insurance and check medical history need to be executed. For high claims, three
tasks need to be executed, viz., check insurance, check medical history, and contact
doctor/hospital for verification. If one of the checks shows that the claim is not valid,
then the claim is rejected; otherwise, it is accepted. A cheque and acceptance decision
letter is prepared in cases where a claim is accepted while a rejection decision letter
is created for rejected claims. In both cases, a notification is sent to the claimant.
Three modes of notification are supported, viz., by email, by telephone (fax), and by
postal mail. The case should be archived upon notifying the claimant. This can be
done with or without the response for the questionnaire. However, the decision of
ignoring the questionnaire can only be made after a notification is sent. The case is
closed upon completion of archiving task.

Figure 5.1 depicts five variants of this process represented in YAWL [224] nota-
tion. The dashed rectangles indicate regions where a change has been done in the
process model with respect to its previous variant. The changes can have various
reasons. For example, in Figure 5.1(a), the different checks for high insurance claims
are modeled using a parallel (AND) construct. However, a claim can be rejected if
any one of the checks fail. In such cases, the time and resources spent on other checks
go waste. To optimize this process, the agency can decide to enforce an order on
these checks and proceed on checks only if the previous check results are positive. In
other words, the process is modified with a knockout strategy [216] adopted for the
process fragment involving the different checks for high insurance claims as depicted
in Figure 5.1(b). As another example, the OR-construct pertaining to the sending
of notification to claimants in Figure 5.1(c) has been modified to an exclusive-or
(XOR) construct in Figure 5.1(d). The organization could have taken a decision
to reduce their workforce as a cost-cutting measure. Due to availability of limited
resources, they would like to minimize the redundancy of sending the notification
through different modes of communication and restrict it to only one of the modes.
Considering an event log containing cases that belong to such a mix of process
variants, the objective of change point detection is to detect when the processes have
changed as illustrated in Figure 5.2.
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(a) M1

the checks for high
insurance claims
is modeled using a
knockout strategy

(b) M2

the sending of noti-
fications is modeled
using a multi-choice
construct

(c) M3

Figure 5.1: Variants 1-3 (of 5) of an insurance claim process of a travel agency represented in
YAWL notation. The dashed rectangles indicate the regions of change from its previous model.
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the sending of noti-
fications is modeled
using an exclusive
choice (XOR) con-
struct

(a) M4

notification by
email is mandatory

(b) M5

Figure 5.1: Variants 4-5 (of 5) of an insurance claim process (cont.).

5.2 Related Work

Over the last two decades many researchers have been working on process flexibility,
e.g., making workflow systems adaptive. In [156, 261] collections of typical change
patterns are described. In [181, 201] extensive taxonomies of the various flexibil-
ity approaches and mechanisms are provided. Ploesser et al. [174] have classified
business process changes into three broad categories, viz., sudden, anticipatory, and
evolutionary. This classification is used in this chapter, but now in the context of
event logs.

Despite the many publications on flexibility, most process mining techniques assume
a process to be in steady state. A notable exception is the approach by Günther et
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Figure 5.2: An event log containing traces from different process variants along with the points of
change.

al. [95]. This approach uses process mining to provide an aggregated overview of all
changes that have happened so far. However, this approach assumes that change logs
are available, i.e., modifications of the workflow model are recorded. At this point in
time very few information systems provide such change logs. Therefore, this chapter
focuses on concept drift in process mining assuming only an event log as input.

The topic of concept drift is well-studied in various branches of the data mining
and machine learning community over the last decade. Concept drift research pri-
marily has been focusing on two directions: (a) how to detect drifts (changes)
online (e.g., [16, 78, 162, 187, 248]); (b) how to keep predictive models up to date
(e.g., [64, 132, 151, 267]). Concept drift has been studied in both supervised and
unsupervised settings and has been shown to be important in many applications
[168, 199, 213, 252, 253, 257]. However, the problem of concept drift has not been
studied in the process mining community. Unlike in data mining and machine learn-
ing, where concept drift focusses on changes in simple structures such as variables,
concept drift in process mining deals with changes to complex artifacts such as
process models describing concurrency, choices, loops, cancelation, etc. Although ex-
periences from data mining and machine learning can be used to investigate concept
drift in process mining, existing techniques cannot be used due to the complexity of
process models and the nature of process change.

5.3 Change in Business Processes

In this section, we discuss on the various aspects of process change.

5.3.1 Perspectives of Change

There are three important perspectives in the context of business processes, viz.,
control-flow, data, and resource. One or more of these perspectives may change over
time.

� Control-flow/Behavioral Perspective: This class of changes deals with the
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behavioral and structural changes in a process model. Just like the design
patterns in software engineering, there exist change patterns capturing the
common control-flow changes [261]. Control-flow changes can be classified into
operations such as insertion, deletion, substitution, and reordering of process
fragments. For example, an organization which used to collect a fee after
processing and acceptance of an application can now change their process
to enforce payment of that fee before processing an application. Here, the
reordering change pattern had been applied on the payment and application
processing process fragments. As another example, with the addition of new
product offerings, a choice construct is inserted into the product development
process of an organization. In the context of PAISs, various control-flow change
patterns have been proposed in [156, 261]. Most of these control-flow change
patterns are applicable to traditional information/workflow systems as well.

Sometimes, the control-flow structure of a process model can remain intact
but the behavioral aspects of a model change. For example, consider an insur-
ance agency that classifies claims as “high” or “low” depending on the amount
claimed. An insurance claim of e1000 which would have been classified as
high last year is categorized as a low insurance claim this year due to the
organization’s decision to increase the claim limit. The structure of the process
remains intact but the routing of cases changes.

� Data Perspective: This class of changes refer to the changes in the production
and consumption of data and the effect of data on the routing of cases. For
example, it may no longer be required to have a particular document when
approving a claim.

� Resource Perspective: This class deals with the changes in resources, their roles,
and organizational structure, and their influence on the execution of a process.
For example, there could have been a change pertaining to who executes an
activity. Roles may change and people may change roles. As another example,
certain execution paths in a process could be enabled (disabled) upon the avail-
ability (non-availability) of resources. Furthermore, resources tend to work in
a particular manner and such working patterns may change over time, e.g., a
resource can have a tendency of executing a set of parallel activities in a spe-
cific sequential order. Such working patterns could be more prominent when
a limited number of resources are available; the addition of new resources can
remove this bias.

5.3.2 Nature of Drifts

Based on the duration for which a change is active, one can classify changes into
momentary and permanent. Momentary changes are short-lived and affect only a
very few cases while permanent changes are persistent and stay for a while [201].
Momentary changes correspond to the notion of outliers in statistics. In this chapter,
we consider only permanent changes. Changes are perceived to induce a drift in the
concept (process behavior). As depicted in Figure 5.3, we identify four classes of
drifts.
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Figure 5.3: Different types of drifts. X-axis indicates time and Y-axis indicates process variants.
Shaded rectangles depict process instances.

� Sudden Drift: This corresponds to a substitution of an existing process M1

with a new process M2 as depicted in Figure 5.3(a). M1 ceases to exist from
the moment of substitution. In other words, all cases (process instances) from
the instant of substitution emanate from M2. This class of drifts is typically
seen in scenarios such as emergencies, crisis situations, and change of law. As
an example, a new regulation by the finance ministry of India mandates all
banks to procure and report the customer’s Personal Account Number (PAN)
in their transactions.

� Gradual Drift: This refers to the scenario as depicted in Figure 5.3(b) where
a current process M1 is replaced with a new process M2. Unlike the sudden
drift, here both processes coexist for some time with M1 discontinued gradu-
ally. For example, a supply chain organization might introduce a new delivery
process. However, this process is applicable only for orders taken henceforth.
All previous orders still have to follow the former delivery process.

� Recurring Drift: This corresponds to the scenario where a set of processes reap-
pear after some time (substituted back and forth) as depicted in Figure 5.3(c).
It is quite natural to see such a phenomenon with processes having a seasonal
influence. For example, a travel agency might deploy a different process to
attract customers during Christmas period. The recurrence of processes may
be periodic or non-periodic. An example of a non-periodic recurrence is the de-
ployment of a process subject to market conditions. The point of deployment
and the duration of deployment are both dependent on external factors (here,
the market conditions).
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� Incremental Drift: This refers to the scenario where a substitution of pro-
cess M1 with MN is done via smaller incremental changes as depicted in Fig-
ure 5.3(d). This class of drifts is more pronounced in organizations adopting
agile business process management methodology and in processes undergoing
quality improvements (most Total Quality Management (TQM) initiatives are
examples of incremental change [103]).

Recurring and incremental drifts in Figure 5.3 are depicted as drifts occurring with a
sudden phenomenon. However, though uncommon, they can also occur in a gradual
phenomenon. In the remainder, we propose approaches to detect potential control-
flow changes in a process manifested as sudden drifts over a period of time by an-
alyzing its event log. Detecting drifts in data and resource perspectives and in the
contexts of gradual drifts is beyond the scope of this thesis.

5.4 Approaches to Detecting Drifts in Event Logs

In this section, we propose techniques that enable the detection of changes and the
points of change by analyzing event logs.

One can consider an event log L as a time series of traces (traces ordered based
on the timestamp of the first event). Figure 5.4 depicts such a perspective on an
event log along with change points in the sudden drift scenario. The basic premise
in handling concept drifts is that the characteristics of the traces before the change
point differ from the characteristics of the traces after the change point. The problem
of change point detection is then to identify the points in time where the process has
changed, if any. Change point detection involves two primary steps:

1. capturing the characteristics of the traces, and

2. identifying when the characteristics change

We refer to the former step as feature extraction and the latter step as drift detection.
The characteristics of the traces can either be defined for each trace separately or can
be done at a sub-log level. An event log can be split into sub-logs of s traces (s > N is
the split size). One can consider either overlapping or non-overlapping windows when
creating such sub-logs. Figure 5.4 depicts the scenario where two subsequent sub-
logs do not overlap. In this case, we have k � �n

s
� sub-logs for an event log of n traces.

As mentioned earlier, dealing with concept drifts involves two primary steps. First,
we need to capture the characteristics of traces; we propose a few feature sets that
address this in Section 5.4.1. Second, we need to identify when these characteristics
change; we look at techniques that address this in Section 5.4.2.

5.4.1 Features Capturing the Manifestation of Activity Rela-
tionships

Event logs are characterized by the relationships between activities. Dependencies
between activities in an event log can be captured and expressed using the follows (or
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Figure 5.4: An event log visualized as a time series of traces along with change points. The basic
premise of change (point) detection is that characteristic differences exist in the traces before and
after the change.

precedes) relationship, also referred to as causal footprints. For any pair of activities,
a, b > A, one can determine whether they exhibit either always, never, or sometimes
follows/precedes relationship. If b follows a in all the traces in an event log, then
we say that b always follows a; if b follows a only in some subset of the traces or
in none of the traces, then we say that b sometimes follows a, and b never follows
a respectively. Consider an event log L � �acaebfh,ahijebd,aeghijk� containing
three traces defined over A �{a, b, c, d, e, f, g, h, i, j, k}. The following relations
hold in L: e always follows a, e never follows b, and b sometimes follows a. Fig-
ure 5.5(a) depicts the relationship between every pair of activities in A. The value
in a cell �i, j� is either A, S, or N corresponding to the relation whether the activity
represented by column j always, sometimes, or never follows the activity represented
by row i respectively.

The variants of precedes relation can be defined along similar lines. The follows/pre-
cedes relationship is rich enough to reveal many control flow changes in a process.
We exploit this relationship and define various features for change detection.

We distinguish between two classes of features: (i) global features and (ii) local
features. Global features are defined over an event log while local features can be
defined at a trace level. Based on the follows (precedes) relation, we propose two
global features, viz., Relation Type Count and Relation Entropy, and two local
features, viz., Window Count and J-measure. These features are defined as follows:

� Relation Type Count (RC): The relation type count with respect to the follows
(precedes) relation is a function, fRC � A� N3

0, defined over the set of activities
A. fRC of an activity, x > A, with respect to the follows (precedes) relation
over an event log L is the triple `cA, cS , cN e where cA, cS , and cN are the
number of activities in A that always, sometimes, and never follows (precedes)
x, respectively, in the event log L. For the event log L mentioned above,
fRC�a� � `2,9,0e since e and h always follows a while all other activities in
A � �e,h� sometimes follows a. fRC�i� � `1,4,6e since only j always follows
i; b, d, e, and k sometimes follows i while a, c, f, g, h, and i never follows
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0.994
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0.946

0.000

(c)

Figure 5.5: (a) Causal footprint matrix for all activity pairs – A: Always follows, N : Never follows
and S: Sometimes follows (b) Relation type count for all activities, and (c) Relation entropy for all
activities.

i. Figure 5.5(b) depicts the relation type counts for all the activities in A

(the value in a row corresponds to the relation type counts of the activity
represented by that row in Figure 5.5(a)).

For an event log containing SAS activities, this results in a feature vector
of dimension 3� SAS (if either the follows or the precedes relation is considered)
or 2 � 3 � SAS (if both the follows and the precedes relations are considered).

� Relation Entropy (RE): The relation entropy with respect to the follows (pre-
cedes) relation is a function, fRE � A � R�

0 , defined over the set of activities.
fRE of an activity, x > A with respect to the follows (precedes) relation is
the entropy of the relation type count metric. In other words, fRE�x� �

�pA log2�pA� � pS log2�pS� � pN log2�pN� where pA � cA~SAS, pS � cS~SAS, and
pN � cN ~SAS and `cA, cS , cN e is the relation count value of the activity x.

For the above example event log L, fRE�a� � 0.684 (corresponding to fRC�a� �`2,9,0e) and fRE�i� � 1.322 (corresponding to fRC�i� � `1,4,6e). Figure 5.5(c)
depicts the relation entropy for all the activities in A (the value in a row
corresponds to the relation entropy of the activity represented by that row in
Figure 5.5(a)).



120 Chapter 5. Concept Drift

For an event log containing SAS activities, this results in a feature vector
of dimension SAS or 2 � SAS depending on whether either or both of the fol-
lows/precedes relations are considered.

� Window Count (WC): Given a window of size l > N, the window count with
respect to follows (precedes) relation is a function, f lWC � A �A � N0, defined
over the set of activity pairs. Given a trace t and a window of size l, let
Sl�a� be the bag of all subsequences t�i, i � l � 1�, such that t�i� � a1. Let
F l�a,b� � �s > Sl�a� S §1@kBSsS s�k� � b�, i.e., the bag of subsequences in t
starting with a and followed by b within a window of length l. The window
count of the relation b follows a, f lWC�a,b� � SF l�a,b�S.
Figure 5.6 depicts the window count values for the relation b follows a in
the event log L using a window of length 4.

a c a e b f h

S4(a) = [acae, aebf]

F4(a, b) = [aebf]

f 4
WC(a, b) = 1

a h i j e b d

S4(a) = [ahij]

F4(a, b) = [ ]

f 4
WC(a, b) = 0

a e g h i j k

S4(a) = [aegh]

F4(a, b) = [ ]

f 4
WC(a, b) = 0

Figure 5.6: Window count values for the relation b follows a for the different traces in the event
log.

� J-Measure: Smyth and Goodman [204] have proposed a metric called J-measure
based on [18] to quantify the information content (goodness) of a rule. We
adopt this metric as a feature to characterize the significance of relationship
between activities. The basis lies in the fact that one can consider the relation
b follows a as a rule: “if activity a occurs, then activity b will probably oc-
cur”. The J-measure with respect to follows (precedes) relation is a function
f lJ � A �A � R� defined over the set of activity pairs and a given window of
length l > N.

Let p�a� and p�b� denote the probability of occurrence of activities a and
b respectively in a trace t. Let pl�a,b� denote the probability that b follows
a within a window of length l, i.e., pl�a,b� � SF l�a,b�S~SSl�a�S. Then the J-
measure for a window of length l is defined as f lJ�a,b� � p�a�CEl�a,b� where

CEl�a,b� denotes the cross-entropy of a and b (b follows a within a window of
length l) and is defined as2

CEl�a,b� � pl�a,b� log2 �pl�a,b�p�b� � � �1 � pl�a,b�� log2 �1 � pl�a,b�
1 � p�b� �

The J-measure of a relation, b follows a, captures the dissimilarity between
the apriori and aposteriori beliefs about b. In other words, it measures the

1if i � l � 1 A StS, then t�i, i � l � 1� � t�i, StS�, i.e., the suffix of the trace t starting at i.
2log2�0~x� and log2�x~0� for any x > R�

0 is taken as 0.
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difference between the priori distribution of b (i.e., probability that b occurs in
a trace and the probability that b does not occur), and the posteriori distribu-
tion of b (i.e., probability that b occurs in a trace given that a occurred and
the probability that b does not occur in a trace given that a occurred).

Figure 5.7 depicts the J-measure for the relation b follows a in the event
log L using a window of length 4.

a c a e b f h

p(a) = 2/7 = 0.286

p(b) = 1/7 = 0.143

p4(a, b) = 0.5

CE4(a, b) = 0.514

f 4
J (a, b) = 0.147

a h i j e b d

p(a) = 1/7 = 0.143

p(b) = 1/7 = 0.143

p4(a, b) = 0

CE4(a, b) = 0.514

f 4
J (a, b) = 0.032

a e g h i j k

p(a) = 1/7 = 0.143

p(b) = 0

p4(a, b) = 0

CE4(a, b) = 0

f 4
J (a, b) = 0

Figure 5.7: J-measure values for the relation b follows a for the different traces in the event log.

Having defined the features, we next look at the second step in change point detection,
i.e., drift detection.

5.4.2 Statistical Hypothesis Tests to Detect Drifts

An event log can be transformed into a data set D by choosing one of the feature sets
defined in the previous section. The dataset D of feature values can be considered as a
time series as depicted in Figure 5.8. Each di > D corresponds to the feature value(s)
for a trace (or sub-log) and can be a scalar or a vector (depending on the choice of fea-
ture)3. Comparing with Figure 5.4, m � n or m � k depending on whether the feature
values are computed for each trace or for each sub-log respectively. As mentioned
earlier, we expect a characteristic difference in the manifestation of feature values
in the traces (sub-logs) before and after the change points with the difference being
more pronounced at the boundaries. In order to detect this, we can consider a series
of successive populations of values (of size w) and investigate if there is a significant
difference between the two populations. The premise is that differences are expected
to be perceived at change points provided appropriate characteristics of the change
are captured as features. A moving window of size w is used to generate the popula-
tions. Figure 5.8 depicts a scenario where two populations P1 � `d1,d2, . . . ,dwe and
P2 � `dw�1,dw�2, . . . ,d2we of size w are considered. In the next iteration, the popula-
tions correspond to P1 � `d2,d3, . . . ,dw�1e and P2 � `dw�2,dw�3, . . . ,d2w�1e. Given
a data set of m values, the number of population pairs (iterations) will be m�2w�1.

We propose the use of statistical hypothesis testing to discover these change points.

3The RE, WC, and J-measure feature sets proposed in Section 5.4.1 generate univariate (scalar)
and multi-variate (vector) data depending on whether we consider an individual activity/activity-
pair or a set of activities/activity pairs respectively. The RC feature set always generates multi-
variate data.
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d1 d2 . . . . . . . . .dw dw+1 dw+2 . . . . . .d2w d2w+1 . . . . . . dm

P1 P2

. . . . . .
Figure 5.8: Basic idea of detecting drifts using hypothesis tests. The data set of feature values is
considered as a time series for hypothesis tests. P1 and P2 are two populations of size w.

Hypothesis testing is a procedure in which a hypothesis is evaluated on a sample
data. One of the important uses of hypothesis testing is to evaluate and compare
groups of data. Numerous varieties of hypothesis tests exist [120, 202]. The choice of
a particular test is largely dependent on the nature of the data and the objectives of
an experiment. For example, hypothesis tests can be classified into parametric and
non-parametric tests. Parametric tests assume that the data have a particular dis-
tribution, e.g., normal, while the non-parametric tests do not make any assumption
with regards to the data distribution. Since we do not know the apriori distribution
of the feature values in an event log, we consider only the non-parameteric tests.
Another perspective of classification is based on the number of samples (populations)
on which the hypothesis is defined. One can classify the hypothesis tests into (i)
one-sample, (ii) two-sample, and (iii) multi-sample tests. Since we need to analyze
two populations for detecting drifts, we are interested in two-sample hypothesis tests.
Another classification of hypothesis tests is concerned with the dimensionality of each
data element in a sample. Tests dealing with scalar data elements are called as uni-
variate tests while those dealing with vector data elements are called as multi-variate
tests. If only a particular activity or activity pair is considered, then every data item
di > D is a scalar value corresponding to the trace/sub-log i. However, if we consider
sets of activities or activity pairs, then each data item is a vector. Therefore, we
need to consider both univariate and multi-variate hypothesis tests.

We will use the univariate two-sample Kolmogorov-Smirnov test (KS test) and
Mann-Whitney U test (MW test) as hypothesis tests for univariate data, and the
two sample Hotelling T 2 test for multivariate data. The KS test evaluates the
hypothesis “Do the two independent samples represent two different cumulative
frequency distributions?” while the MW test evaluates the hypothesis “Do the two
independent samples have different distributions with respect to the rank-ordering of
the values?”. The multi-variate Hotelling T 2 test is a generalization of the t-test and
evaluates the hypothesis “Do the two samples have the same mean pattern?”. All
of these tests yield a significance probability assessing the validity of the hypothesis
on the samples. The MW test is computationally more expensive than the KS test
as the data has to be sorted (to estimate the rank ordering). We refer the reader to
[202] for a classic introduction to various hypothesis tests.
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Figure 5.9: Framework for handling concept drifts in process mining.

5.5 Framework

We propose the framework depicted in Figure 5.9 for handling concept drifts in pro-
cess mining. The framework identifies the following steps:

� Feature Extraction and Selection: This step pertains to defining the charac-
teristics of the traces in an event log. In this chapter, we have defined four
features that characterize the control-flow perspective of process instances in
an event log. Depending on the focus of analysis, one may define additional
features, e.g., if we are interested in analyzing changes in organizational/re-
source perspective, we may consider features derived from social networks as a
means of characterizing the event log. In addition to feature extraction, this
step also involves feature selection. Feature selection is important when the
number of features extracted is large. One may consider dimensionality reduc-
tion techniques [71, 99] such as PCA [119] and random projection [17] to deal
with high-dimensionality.

� Generate Populations: An event log can be transformed into a data stream
based on the features selected in the previous step. This step deals with defining
the sample populations for studying the changes in the characteristics of traces.
Different criteria/scenarios may be considered for generating these populations
from the data stream. In Section 5.4.2, we have considered non-overlapping,
continuous, and fixed-size windows for defining the populations. One may also
consider, for example, non-continuous windows (there is a gap between two
populations), adaptive windows (windows can be of different lengths) [16], etc.,
which are more appropriate for dealing with gradual and recurring drifts.

� Compare Populations: Once the sample populations are generated, the next
step is to analyze these populations for any change in characteristics. In this
chapter, we advocate the use of statistical hypothesis tests for comparing pop-
ulations. The null hypothesis in statistical tests states that distributions (or
means, or std. deviations) of the two sample populations are equal. Depending
on desired assumptions and the focus of analysis, different statistical tests can
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be used.

� Interactive Visualization: The results of comparative studies on the populations
of trace characteristics can be intuitively presented to an analyst. For example,
the significance probabilities of the hypothesis tests can be visualized as a drift
plot. Troughs in such a drift plot signify a change in the significance probability
thereby implying a change in the characteristics of traces.

� Analyze Changes: Visualization techniques such as the drift plot can assist
in identifying the change points. Having identified that a change had taken
place, this step deals with techniques that assist an analyst in characterizing
and localizing the change and in discovering the change process.

5.6 Experiments and Discussion

We now put the ideas proposed for handling concept drifts in practice. We illustrate
change point detection and change localization in an event log containing the process
variants discussed as the running example in Section 5.1. We have modeled each
of these five process variants in CPN tools [180] and simulated 1200 traces for each
model. We created an event log L consisting of 6000 traces by juxtaposing each set
of the 1200 traces. The event log contains 15 activities or event classes (i.e., SAS � 15)
and 58,783 events.

5.6.1 Change Point Detection

Given this event log L, our first objective is to detect the four change points pertaining
to these five process variants as depicted in Figure 5.10(a). Global features can be
applied only at the log level; to facilitate this, we have split the log into 120 sub-logs
using a split size of 50 traces. In this scenario, the four change points corresponding
to the five process variants are as depicted in Figure 5.10(b).

1 1200 2400 3600 4800 6000

M1 M2 M3 M4 M5

change
points

(a) trace level

1 24 48 72 96 120

M1 M2 M3 M4 M5

change
points

(b) sub-log level

Figure 5.10: Event log with traces from each of the five models juxtaposed. Also indicated are
change points between models both at the trace level and at the sub-log level. The event log is split
into 120 sub-logs, each containing 50 traces.

We have computed the follows relation type count (RC) of all 15 activities thereby
generating a multi-variate vector of 45 features for each sub-log. We have applied the
Hotelling T 2 hypothesis test on this multi-variate dataset using a moving window
population of size, w � 10. For this hypothesis test, we have randomly chosen 12 of
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the 45 features with a 10-fold cross validation4. Figure 5.11(a) depicts the average
significance probability of the Hotelling T 2 test for the 10 folds on this feature set.
The troughs in the plot signify that there is a change in the distribution of the
feature values in the log. In other words, they indicate that there is drift (change)
in the concept, which here corresponds to the process. It is interesting to see that
the troughs are observed around indices 24, 72, and 96 which are indeed the points
of change (remember that we have split the log into 120 sub-logs with the change
points at indices 24, 48, 72, and 96). The change at index 48 corresponding to the
transition from M2 to M3 could not be uncovered using this feature set due to the
fact that the relation type counts would be alike for logs generated from these two
process variants.

We have considered the J-measure for each sub-log and for every pair of activi-
ties, a and b in A (b follows a within a window of length l � 10). The univariate
Kolmogorov-Smirnov (KS) and the Mann-Whitney U (MW) tests using a population
of size w � 10 are applied on the J-measure of each activity pair. Figure 5.11(b)
depicts the average significance probability of the KS -test on all activity pairs while
Figure 5.11(c) depicts the same for the MW -test. We can see that significant troughs
are formed at indices 24, 48, 72, and 96 which correspond to the actual change points.
Unlike the relation type count feature, the J-measure feature is able to capture all
the four changes in the models. This can be attributed to the fact that the J-measure
uses the probability of occurrence of activities and their relations. In M2, there could
be cases where all the modes of notification are skipped (XOR construct). However,
in M3 at least one of the modes need to be executed (OR construct). This results
in a difference in the distribution of activity probabilities and their relationship
probabilities which is elegantly captured by the J-measure. As mentioned earlier,
the MW-test is computationally more expensive than the KS-test as the values in
each population need to be sorted (to estimate the rank-ordering).

We have considered the J-measure for each trace separately instead of at the sub-log
level. Each activity pair generates a vector of dimension 6000 corresponding to the
J-measure of that activity pair in each trace. The univariate Kolmogorov-Smirnov
test using a population size of w � 400 is applied to the vector corresponding to each
activity pair in A � A. Figure 5.12(a) depicts the average significance probability
of KS -test on all activity pairs while Figure 5.12(b) depicts the average significance
probability of KS -test on all activity pairs using the window count feature set (WC).
We can see that significant troughs are formed at indices 1200, 2400, 3600, and 4800.
These are indeed the points where the models have been changed.

Influence of Population Size

It is imperative to see that the goodness of the results of hypothesis tests depends
on the population size. The statistical analysis assumes that each population is

4The random selection of a subset of features is primarily for two reasons (i) to deal with the
curse of dimensionality and (ii) the changes being centered around a few activities are prominently
reflected only in those features corresponding to these activities.
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Figure 5.12: Average significance probability (over all activity pairs) of KS -test on the J-measure
and WC feature sets estimated for each trace. X-axis represents the trace index. Y -axis represents
the significance probability of the test. Troughs signify change points.

independent. A good population size is largely dependent on the application and the
focus of analysis. In order to study the influence of population size, we have considered
the J-measure for every pair of activities and the univariate KS-test for change point
detection. Figure 5.13 depicts the results for varying sizes of the population. We see
a lot of noise for small populations and the drift tends to be smooth as the population
size increases. This can be attributed to the fact that as the population size increases
(i.e., as we consider more cases), the variability in the nature of cases reduces and
attains a stability, e.g., there can be a flux of low-insurance claims initially and after
a certain time period the proportion stabilizes.

5.6.2 Change Localization

Our second objective in handling concept drifts is that of change localization. In
order to localize the changes (identify the regions of change), we need to con-
sider each activity pair individually or a subset of activity pairs. For example, the
change from M1 to M2 is localized in the region pertaining to high insurance claim
checks. We expect characteristic changes in features pertaining to these activities
and other activities related to these activities. For example, in M1, the activities
High Medical History Check and Contact Hospital always follow the activity
Register whenever a claim is classified as high. In contrast, in M2, these activ-
ities need not always follow Register due to the fact that both these activities
are skipped if High Insurance Check fails while Contact Hospital is skipped if
High Medical History Check fails. During simulation, we have set the probability
of success of a check to 90%. We have considered the window count (WC) feature
for the activity relation Contact Hospital follows Register on a window length of
l � 10 in each trace separately. Figure 5.14(a) depicts the significance probability of
the univariate KS -test using a population size of w � 200 on this feature. We can
see that one dominant trough is formed at index 1200 indicating that there exists
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Figure 5.13: Average significance probability (over all activity pairs) for different population sizes
of KS -test on the J-measure estimated over all activity pairs in each trace. X-axis represents the
trace index. Y -axis represents the significance probability of the test. Troughs signify change points.

a change in the region between Register and Contact Hospital. No subsequent
changes with respect to this activity pair can be noticed, which is indeed the case in
the sequence of models used.

As another example, we have considered the activity Prepare Notification along
with all the three Send Notification activities. There exists a change pertaining
to these activities between models M2 and M3, M3 and M4, and M4 and M5. More
specifically, we have considered the window count feature on the activity relations
Send Notification By Phone follows Prepare Notification, Send Notification

By email follows Prepare Notification and Send Notification By Post follows
Prepare Notification. Figure 5.14(b) depicts the average significance probability
of the univariate KS -tests using a population size of w � 200 on the WC feature
of these three activity pairs. We see three dominant troughs around indices 2400,
3600, and 4800 signifying the changes in the models. Certain false alarms (minor
troughs) can also be noticed in this plot. One means of alleviating this is to consider
only those alarms with an average significance probability less than a threshold,
δ. Another means is to consider a larger population size. Figure 5.15 depicts the
average significance probability of the univariate KS -tests using a population size of
w � 400 on the WC feature set. We can see that the noise has subsided significantly.
In this fashion, by considering activities (and/or activity pairs) of interest, one can
localize the regions of change. Furthermore, using this approach, one can get answers
to diagnostic questions such as “Is there a change with respect to activity a in the
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Figure 5.14: (a) Significance probability of KS -test on WC feature estimated for the relation,
Contact Hospital follows Register. Trough indicates change point w.r.t this feature. (b) Aver-
age significance probability (over activity pairs) of KS -test on WC feature estimated for the various
modes of Send Notification follows Prepare Notification relation. Troughs indicate change point
w.r.t these activities. X-axis represents the trace index. Y -axis represents the significance proba-
bility of the test.
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Figure 5.15: (a) Significance probability of KS -test on WC feature estimated for the relation,
Contact Hospital follows Register. Trough indicates change point w.r.t this feature. (b) Aver-
age significance probability (over activity pairs) of KS -test on WC feature estimated for the various
modes of Send Notification follows Prepare Notification relation. Troughs indicate change point
w.r.t these activities. X-axis represents the trace index. Y -axis represents the significance proba-
bility of the test.

process at time period t?”.

The window count feature (WC) performs better in change localization in com-
parison to the J-measure. This is due to the fact that the J-measure uses the
probability of activities which can be affected due to changes anywhere in the pro-
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Figure 5.16: (a) Significance probability of KS -test on the J-measure estimated for the relation,
Contact Hospital follows Register. (b) Average significance probability (over activity pairs) of
KS -test on the J-measure estimated for the various modes of Send Notification follows Prepare

Notification relation.

cess irrespective of our region of focus. For example, consider the J-measure for
the relation Contact Hospital follows Register. The probability of occurrence
of both Register and Contact Hospital is affected by the changes in the process
model corresponding to the sending of notifications as well, e.g., in M3 since all
the modes of send notification are executed, the probability of Contact Hospital

in a trace is smaller than a corresponding trace (Contact Hospital is executed)
in M4 where only one of the notifications is possible. Figure 5.16(a) depicts the
significance probability of the univariate KS -test on the J-measure for the activity
relation Contact Hospital follows Register while Figure 5.16(b) depicts the aver-
age significance probability of the univariate KS -tests on the J-measure of various
Send Notification modes following Prepare Notification using a population
size of w � 400. As we can see, using the J-measure leads to identifying any change
happened in the process and not clearly in localization. Therefore, we recommend
the use of window count feature for change localization.

Digital Copier Example

As another example, we report the results of applying the concepts proposed in this
chapter on the simple digital copier. For this purpose, let us assume that the first
version of the digital copier did not have the support for the zooming functionality
(in Image Processing); the product was enhanced with this functionality in its
second version. We consider the copy/scan subprocess of the copier for these two
versions. Note that this process has a lot more variability than the insurance claim
process, e.g., loop constructs with the number of iterations depending on the number
of pages to copy/scan (in Capture Image) or until the error reaches a threshold (in
Half Toning), parallelism constructs, etc. We have modeled the two variants using
CPN tools [180] and simulated 750 and 300 traces respectively. The traces pertain
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Figure 5.17: (a) Significance probability of the Hotelling T 2 test on the RC feature on the sub-logs
using a split size of 25 traces (b) Significance probability of the KS -test on WC feature estimated
for the relation, Zooming Complete follows Photo Quality Reproduction in each trace.

to copy/scan requests with up to five pages. We create an event log containing 1050
traces by juxtaposing the traces corresponding to the two variants. This event log
contains 47,726 events distributed over 35 activities. We have considered the follows
relation type count feature over the sub-logs with a split size of 25 traces. This
feature type generates 105 features (3 � 35) for each sub-log. Therefore, the data set
contains a multi-variate vector of 42 elements (for the 42 sub-logs) with each element
containing 105 features. We randomly considered five features with a 20-fold cross
validation. Figure 5.17(a) depicts the average significance probability of the Hotelling
T 2 test for the 20 folds on this feature set using a population size of w � 5. As we
can see, a drift has been clearly detected around index 30 corresponding to the point
where the first 750 traces have been executed. In order to localize the change, we
considered the WC feature for the activity pair Photo Quality Reproduction and
Zooming Complete (in the Image Processing subprocess) in each trace. The data
set contains 1050 elements with each element being a scalar value (corresponding to
the window count of the chosen activity pair). Figure 5.17(b) depicts the result of
applying the KS-test on this data set using a population of size 50. We can see that
a drift has been detected with respect to this activity pair, which is indeed the case
(recall that the first version of the copier does not support zooming functionality).

Our experiments substantiate that the proposed feature sets and the framework
for handling concept drifts has significant promise in detecting changes and change
points, and in identifying the regions of change.
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5.7 Outlook

Dealing with concept drifts raises a number of scientific and practical challenges. In
this section, we highlight some of these challenges.

� Change-pattern Specific Features: In this chapter, we presented very generic
features (based on follows/precedes relation). These features are neither com-
plete nor sufficient to detect all classes of changes. An important direction of
research would be to define features catering to different classes of changes and
investigate their effectiveness. A taxonomy/classification of change patterns
and the appropriate features for detecting changes with respect to those pat-
terns is needed. For example, if we would like to detect changes pertaining to a
loop construct (insertion/removal/modification of loops as changes in process
variants), tandem arrays (cf. Chapter 3) would be an appropriate feature to
consider.

� Feature Selection: The feature sets presented in this chapter result in a large
number of features. For example, the activity relation count feature type gen-
erates 3 � SAS features whereas the window count and J-measure generate SAS2
features (corresponding to all activity pairs). On the one hand, such high di-
mensionality makes analysis intractable for most real-life logs. On the other
hand, changes being typically concentrated in a small region of a process make
it unnecessary to consider all features. There is a need for dimensionality reduc-
tion techniques [71, 99] that can efficiently select the most appropriate features.

� Holistic Approaches: In this chapter, we discussed ideas on change detection
and localization in the context of sudden changes to the control-flow perspec-
tive of a process. However, as mentioned in Section 5.3, the data and resource
perspectives are also equally important. So are the contexts of gradual drifts.
Features and techniques that can enable the detection of changes in these other
perspectives need to be discovered. Furthermore, there could be instances where
more than one perspective (e.g., both control and resource) change simultane-
ously. Hybrid approaches considering all aspects of change holistically need to
be developed.

� Techniques for Drift Detection: In this chapter, we explored just the Hotelling’s
T 2 test to deal with multi-variate data. In addition, we have dealt with multiple
features by considering univariate hypothesis tests on each feature separately
and averaging the test results over all features. However, further investigation
needs to be done on hypothesis tests devised naturally for multi-variate data.
Also, alternatives to hypothesis testing that can uncover drifts and diagnose
the changes are a welcome addition to the repertoire of techniques for handing
concept drifts in process mining.

� Unraveling Process Evolution: As mentioned earlier, after detecting the change
points and the regions of change, it is necessary to put them together in perspec-
tive. Organizations would be interested in discovering the evolution of change
(for example, as an animation depicting how the process has changed/evolved
over time). In addition, there are other applications such as deriving a config-
urable model for the process variants. A configurable process model describes



5.8. Conclusions 133

a family of similar process models [233]. The process variants discovered using
concept drift can be merged to derive a configurable process model.

� Sample Complexity: Sample complexity refers to the number of traces (size
of the event log) needed to detect, localize, and characterize changes within
acceptable error bounds. This should be sensitive to the variability in pro-
cesses (in the manifestation of various process model constructs used), nature
of changes, their influence and manifestation in traces, and the feature space
and algorithms used for detecting drifts. On a broader note, the topic of sample
complexity is relevant to all facets of process mining and is hardly addressed.
For example, it would be interesting to know the lower bound on the number
of traces required to discover a process model with a desired fitness.

� Online (On-the-fly) Drift Detection: In this chapter, we have looked at detect-
ing drifts in an offline setting, i.e., for postmortem analysis. Although detecting
concept drifts is important for off-line analysis, it is more interesting and ap-
propriate for online analysis, e.g., an organization would be more interested in
knowing a change in behavior of their customers or a change in demand as and
when it is happening. Such near real-time triggers (alarms) will enable organi-
zations to take quick remedial actions and avoid any repercussions. We believe
the proposed framework to be applicable even for online analysis. However, few
new challenges emerge, e.g., the number of samples required remains an issue.
In addition, one needs additional computational power and efficient techniques
to do such analysis in real-time.

5.8 Conclusions

This chapter introduced the topic of concept drift in process mining, i.e., analyzing
process changes based on event logs. We proposed feature sets and techniques to
effectively detect the changes in event logs and identify the regions of change in a
process. Our initial results show that heterogeneity of cases arising due to process
changes can be effectively dealt with by detecting concept drifts. Once change points
are identified, the event log can be partitioned and analyzed. This is the first step in
the direction of dealing with changes in any process monitoring and analysis efforts.
We have considered changes only with respect to the control-flow perspective man-
ifested as sudden drifts. Therefore, our analysis should only be seen as the starting
point for a new subfield in the process mining domain.
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In the previous part, we focused on preprocessing techniques leading to simplifica-
tion of event logs. Though log simplification is important and necessary, it alone
may not be sufficient. In this part, we focus on the second aspect, advancements
in process mining, which addresses some of the challenges in process mining, viz.,
dealing with less-structured processes and provisions for process diagnostics. Chap-
ter 6 presents a two-phase approach that enables the discovery of hierarchical process
models. Chapter 7 presents techniques that assist in identifying bottlenecks in pro-
cesses by replaying an event log on a process model and computing performance
measures. Chapter 8 presents a technique of aligning traces so that event logs can be
explored easily. Trace alignment assists in answering a variety of diagnostic questions
and extends the scope of conformance checking to also cover the direct inspection of
traces. Chapter 9 presents a diagnostic technique of finding signature patterns that
can discriminate between different classes of behavior in event logs.



Chapter 6

Discovering Process Maps

In the previous chapters, we have seen techniques for dealing with fine granular
events, heterogeneity in event logs, and process changes. Such characteristic features
are highly relevant for large scale event logs. Our techniques help in simplifying
event logs through preprocessing and, thus, assist in improving process mining re-
sults. Though log simplification is a critical step, it alone is not sufficient to provide
direct and comprehensible answers to analysts exploring process mining, e.g., process
models mined from simplified event logs can still be spaghetti-like. The inability
to provide answers is due to the unavailability of a suitable technique, e.g., dealing
with less structured processes, provisions for process diagnostics such as uncovering
patterns that can discriminate between different classes of behavior, for instance,
patterns that can discriminate between good insurance claims and fraudulent in-
surance claims, etc. In the coming chapters, we focus on extending process mining
research to deal with some of the shortcomings (e.g., dealing with less-structured
and spaghetti-like processes, provisions for process diagnostics, etc.) and explore
new techniques in analyzing event logs. In this chapter, we focus on one of the three
pillars of process mining, viz., process discovery.

Process discovery is one of the three main types of process mining [221]. A dis-
covery technique takes an event log and produces a model without using any apriori
information, e.g., the α-algorithm discovers a Petri net based on sequences of events
[229]. Practical experiences of applying traditional process discovery techniques re-
vealed two problems: (a) processes tend to be less structured than what stakeholders
expect and (b) events logs contain fine-grained events whereas stakeholders would
like to view processes at a more coarse-grained level. These problems are more
pronounced in event logs from high-tech systems. More often than not the mined
models are complex and unsatisfactory (spaghetti-like). This can be attributed to
the fact that the majority of process discovery techniques in the literature pertain
to the discovery of control-flow models that are “flat” [229, 238, 246, 264]. A no-
table exception is the Fuzzy miner [94]. Flat (and complex) models have a negative
influence on model comprehension and analysis. For a log with SAS event classes
(activities), a flat model can be viewed as a graph containing SAS nodes with edges
corresponding to the causality defined by the execution behavior in the log. Graphs
become quickly overwhelming and unsuitable for human perception and cognitive
systems even if there are a few dozens of nodes [83].
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Process models can be seen as “maps” describing the operational processes of
organizations. Analogous to cartography, process discovery techniques should allow
for various context-dependent views on these process maps. For example, the per-
spective of analysis may be different depending on someone’s role and expertise; a
manager may be interested in a high level view while a specialist may be interested
in a detailed analysis of some process fragment. Process discovery techniques should
facilitate the extraction of process maps eliciting the respective desired traits and
hiding the irrelevant ones for various users. Furthermore, these techniques should
uncover comprehensible models by providing hierarchical views with a facility to
seamlessly zoom-in and/or zoom-out.

In Chapter 3, we showed that common execution patterns (e.g., tandem arrays,
maximal repeats, etc.) manifested in an event log can be used to create powerful
abstractions. In this chapter, we use these abstractions and propose a two-phase
approach to process discovery. The first phase comprises of pre-processing the event
log based on abstractions (bringing the log to the desired level of granularity), and
the second phase deals with discovering the process maps while providing a seamless
zoom-in/out facility. We demonstrate that we can use this approach to create maps
that (i) depict desired traits, (ii) eliminate irrelevant details, (iii) reduce complexity,
and (iv) improve comprehensibility. Figure 6.1 summarizes the overall approach.

event logs

pat
ter

n

tra
ce

common
execution patterns

relationships
between patterns

micro
structures

macro
structure

Figure 6.1: Repeating subsequences of activities define the common execution patterns and carry
some domain (functional) significance. Related patterns and activities pertaining to these patterns
define abstractions that correspond to micro-structures (or subprocesses). The top-level process
model can be viewed as a macro-structure that subsumes the micro-structures.

The remainder of this chapter is organized as follows. Related work on mining
process models from event logs is presented in Section 6.1. Section 6.2 discusses the
two-phase approach to process discovery. Section 6.3 utilizes the abstractions defined
over common execution patterns (as discussed in Chapter 3) and presents an algo-
rithm to transform an event log to a desired level of granularity. Section 6.4 describes
how the transformation of logs can be used to derive a process model at a particular
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level. We present and discuss some experimental results in Section 6.5. The scala-
bility of the proposed approach is discussed in Section 6.6. Section 6.7 presents the
limitations and extensions of the proposed approach. Finally, Section 6.8 concludes
the chapter.

6.1 Overview of Approaches to Process Discovery

Process discovery is concerned with discovering a process model from example behav-
ior recorded in an event log. In this chapter, we focus on the control-flow perspective
and propose a two-phase approach to process discovery that enables the mining of
hierarchical process models. Dozens of techniques have been proposed for control-
flow mining since the late nineties. We review these techniques in this section.
The techniques primarily differ in two aspects: (i) the formalism used to represent
processes and (ii) the specific algorithms used to discover them. Process models
can be represented in several ways, ranging from directed graphs to more expressive
formalisms such as the ones presented in Section 2.7.

Process discovery from event logs has been investigated by Cook et al. [38, 39, 41]
in the context of software engineering. They extended and developed algorithms to
mine sequential patterns from event logs (capturing the software development pro-
cesses) and proposed three methods, viz., RNet, KTail, and Markov, for representing
them as Finite State Machines (FSMs). Their objective was to mine a model that
expresses the most frequent patterns in the log rather than a model that is complete
and precise. The RNet algorithm, based on neural nets, considers a window of
predecessor events and statistically determines the succession of events in the FSM.
In contrast, the KTail algorithm analyzes a window of successor events to create
the process model. The Markov algorithm takes the advantages of both worlds, i.e.,
considers both the predecessors and successors of events, for determining the order of
tasks in the process model. In [40, 42], Cook et al. extend their Markovian approach
to mine concurrent process models. They propose four metrics to identify the nature
of splits/join (XOR and AND constructs are tackled). These algorithms are robust
to noise due to their probabilistic nature. The main drawback of their work is that
it does not yield explicit process models, but rather a set of dependency relations
between event types.

Process discovery in the context of business process management was first explored
by Agrawal et al. [6]. They call it workflow mining and discover workflow graphs
that indicate the dependencies between tasks in the process. The algorithm assumes
the log to contain atomic events (single event type) and that the process model has
an unique start task and an unique end task. Furthermore, the algorithm does not
handle duplicate tasks and assumes that no task appears more than once in a process
instance. However, loops are tackled by a combination of re-labeling the log prior to
mining and folding explicitly detected iterations in the end. There is no indication
of the semantics of the split/join points. However, there exists edge (arc) and join
conditions, which can be discovered through data mining classification algorithms.
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Two types of tokens, viz., true and false, are propagated through the graph. Only
true tokens can trigger the execution of a task, while false tokens are simply passed
through. The types of tokens produced by a task execution are specified by arc and
join conditions. The mined workflow graph is able to generate the sequences of events
found in the event log. Pinter et al. [81, 173] extended the work of Agrawal et al. [6].
They allow event logs with two event types, indicating the start or completion of a
task, and use this information to derive explicit parallel relations between activities.
They analyze the interleaving of time spans in which activities have been executed
to infer concurrency/parallelism.

Herbst et al. [106–108] propose three two-step inductive algorithms, viz., MergeSeq,
SplitSeq, and SplitPar for process discovery. In the first step, a Stochastic Activity
Graph (SAG) is mined that captures the dependencies between the tasks in the
workflow log. Transition probabilities indicating the probability of one task following
the other are also estimated. The second step converts the SAG to the Adonis Def-
inition Language (ADL), which is a block-structured language to specify workflow
models. The conversion from SAG to ADL aims at creating well-defined workflow
models. The mining of sequential models are dealt with MergeSeq and SplitSeq
[107] while concurrent models are dealt with SplitPar [106, 108]. A noteworthy
aspect of these algorithms is that they can deal with event logs containing duplicate
tasks, i.e. there may be multiple task nodes in the process model with the same label.

Van der Aalst et al. [225, 229, 242] have proposed the α-algorithm to discover
Petri nets from event logs. The α-algorithm is based on four binary relations derived
locally between tasks in the log, viz., follows, causal, parallel, and unrelated. Two
tasks a and b are said to have a follows relation if they appear next to each other in
the log. They are said to be unrelated, otherwise. The tasks a and b are said to have
a

� causal relation if a directly follows b, but b does not directly follow a

� parallel relation if a directly follows b and also b directly follows a

Under the assumption that the event logs are complete (with respect to the follows
relation) and noise-free, the α-algorithm has been proven to work for the subclass of
Structured Workflow Nets (SWF nets) without short loops and implicit places [229].
The α-algorithm does not consider the frequency of a relation but only checks if the
relation holds or not. This makes the approach sensitive to noise. Furthermore, the
α-algorithm cannot tackle duplicate tasks. The α-algorithm has been extended in
[51, 52, 265] to tackle short loops and in [266] to be able to mine Petri nets with
local or non-local non-free choice constructs. Weijters et al. [264] propose an algo-
rithm, called Heuristics Miner, that uses the follows relation of the α-algorithm but
infers the other three relations (causal, parallel, and unrelated) by considering the
frequency of the follows relation in the log. The mined models are called as heuris-
tic nets. Since this approach considers the frequency of relations, it can handle noise.

Alves de Medeiros et al. [49, 53, 231] propose a process discovery approach based
on genetic algorithms. The basic idea of this approach is to start from an initial
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population of individuals (process models) that are candidates for the solution.
Heuristic nets are used to represent the population of process models. From the
initial population, the genetic algorithm iteratively converges to an appropriate solu-
tion, mimicking the process of evolution in nature, by using the genetic operations,
cross-over and mutation. In each iteration, the algorithm generates candidate pop-
ulation (children) from the current population by using the cross-over and mutation
operations, and selects the best candidates for the next iteration. The selection
mechanism is guided by various quality criteria such as the fitness of the models
on the input event log. The algorithm terminates with the best individual (process
model with the highest fitness) as the result upon reaching a stop criterion. This
approach can deal with long-term dependencies and duplicate tasks and is robust to
noise.

Van Dongen et al. [243, 245] propose a multi-phase approach to mine Event Driven
Process Chains (EPCs) from event logs. The first phase consists of mining a process
model (EPC) for every trace in the event log. These models show the partial order
between the instances of tasks in a trace. The second phase involves the aggregation
(or merging) of the mined models, for every trace, during the first phase. This
approach distinguishes between three types of split/join points, viz., AND, OR, and
XOR, based on frequencies associated to the edges of the aggregated task using the
following straight forward rules:

� if a split point occurs as often as its direct successors, it is assumed to be of
type AND,

� if a split point occurs as often as the sum of occurrences of its direct successors,
it is assumed to be of type XOR,

� otherwise, the split is assumed to be of type OR.

Process discovery based on the theory of regions [11] has been proposed in [13, 31,
125, 206, 232, 238, 239]. The theory of regions deals with the construction (synthesis)
of Petri nets from a description of its observed behavior. There are two types of
regions: (i) state-based regions and (ii) language-based regions. State-based region
theory uses transition systems to express the observed behavior while language-based
region theory expresses the observed behavior in the form of a prefix-closed language
(e.g., regular language). Kindler et al. [125] first create a transition system from an
event log and then use the state-based region theory to mine Petri nets. Van der
Aalst et al. [232] extend this approach by introducing a methodology for deriving
an input transition system. Furthermore, this approach supports choosing the level
of abstraction from the observed behavior, i.e., how much the mined Petri net gen-
eralizes from the observed behavior. Bergenthum et al. [13] and Van der Werf et
al. [238] use the language-based region theory to mine Petri nets. These approaches
though efficient when compared to state-based region approaches (since we avoid the
construction of a transition system) suffer from the lack of configurability, e.g., in
terms of the desired level of abstraction.

All of the above approaches to process discovery mine models that are “flat”. Flat
models become hard to comprehend, especially in case of less structured processes,
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and large scale and heterogenous event logs. Greco et al. [86, 87, 89] proposed an
approach to mine hierarchies of process models that collectively represent the process
at different levels of granularity and abstraction. The basic idea of their approach is
to cluster the event log into different partitions based on the homogeneity of traces
and mine process models for each of the clusters. Clustering induces a hierarchy in
the form of a tree with the root node depicting the entire log and the leaf nodes
corresponding to traces pertaining to concrete usage scenarios. Two kinds of ab-
stractions, viz., is-a and part-of, is defined over activities. The abstraction type is
determined by traversing the tree bottom-up and in the process checking whether
a pair of activities can be merged without adding too many spurious control-flow
paths among the remaining activities. This approach tries to analyze the mined
process models (post-processing) for identifying activities that can be abstracted.
In contrast, the two-phase approach to process discovery that we propose in this
chapter involves analyzing the raw traces and defining abstractions (pre-processing).

Another class of approaches for the abstraction of process models deals with the
preservation of the main (significant) elements while discarding insignificant ones.
Taking cartography as a metaphor, Günther and Aalst [94] have proposed a process
mining approach to deal with the “spaghettiness” of less structured processes. The
basic idea here is to assign significance and correlation values to activities and tran-
sitions, and depict only those edges/activities whose significance/correlation is above
a certain threshold. Less significant activities/edges are either removed or clustered
together in the model. On similar lines, Polyvyanyy et al. [175] have proposed a
slider approach for enabling flexible control over various process model abstraction
criteria (such as activity effort, mean occurrence of an activity, and probability of
a transition). The slider is employed for distinguishing significant process model
elements from insignificant ones. Approaches such as [94, 175] look at abstraction
from the point of retaining highly significant information and discarding less signifi-
cant ones in the process model. In contrast, the approach that we propose looks at
abstraction from a functionality point of view.

The first step of the two-phase approach to process discovery that we propose
in this chapter is primarily a preprocessing step on the event logs to take them to a
desired level of granularity. The second phase involves the mining of process models
over the preprocessed event logs. Any discovery approach can be used to mine the
models at a given level.

6.2 Two-phase Approach to Process Discovery

In this section, we present our two-phase approach to process discovery. The first
phase involves the simplification of the log to a desired level of granularity and the
second phase involves the mining of process maps.
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Phase-1: Preprocessing Log

In this phase, the log is simplified based on the desired traits of the context of
analysis. Some notion of abstraction of the low-level events to a desired level of gran-
ularity needs to be defined. In some applications and contexts, this can be provided
by analysts based on domain knowledge, e.g., there can be certain activities that
demarcate the execution of a particular medical procedure on an X-ray machine.
The sequences of events in-between these activities pertain to an execution sequence
of this procedure, e.g., the sequence of events between Start Fluoroscopy and
Stop Fluoroscopy defines an instance of a Fluoroscopy procedure applied to a pa-
tient on an X-ray machine. Alternatively, abstractions can be defined by uncovering
common execution patterns in the log as discussed in Chapter 3. These common
execution patterns typically capture a subprocess/functionality. Such subprocess
behavior in its totality can be captured as an abstract activity. Henceforth, we refer
to activity sequences defining abstractions as patterns.

There can exist relationships between patterns that define abstractions. For ex-
ample, two or more patterns can define the same abstraction, there can be permuted
patterns, certain patterns can be subsequences of other patterns, etc. As discussed
in Chapter 3, we can establish relationships between patterns by considering their
alphabets (i.e,. the set of activities defining a pattern) and creating a Hasse diagram,
i.e., a pattern graph, using the subsumption property over pattern alphabets. Fig-
ure 6.2 depicts an example of a pattern graph. The nodes in the graph correspond
to pattern alphabets. Each pattern alphabet has a set of patterns associated to it,
e.g., pattern alphabet {b, d, e, l} contains the sequences {lebd, elbd}.

j g c l e b d a h

{e,l} {b,d}

{c,g,j}

{b,d,e,l} {a,b,d,h}

Figure 6.2: An example pattern graph establishing relationships between patterns.

Abstractions can be considered as a mapping, M b 2Σ
�2Σ�

�2A, between the original
alphabet, Σ, of the event log, sets of patterns defining abstractions, and an abstract
alphabet A. An example mapping is M � ���c,g,j�,�jgc�,�W��, ��e,l�,�le�,�Y��, ��b,d,e,l�,�lebd,elbd�,�Y���. This mapping is analogous to the grouping
and tagging of streets as a town/city in cartography and to the selection of a de-
sired perspective of viewing maps (restaurant maps vs. fuel station maps)1. Each�A,S,X� > M reflects a set of patterns S b A� defined by the alphabet A for the
abstraction X.

1One can also take the analogy of atoms and molecules from chemistry. The individual activities
in the original event log are atoms while the mapping associates groups of atoms (activities) to
molecules (abstract activities).
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Using this mapping, the original event log L, is transformed into an abstract log
L� in this phase. Each trace t > L is transformed into a corresponding trace t� > L�.
In each trace t, the manifestation of each pattern s > S captured by �A,S,X� >M
is replaced with an abstract activity, x > X, in the transformed trace. At the same
time, we create one sub-log for each abstract activity x whose process instances
correspond to the replaced pattern manifestations. Figure 6.3 depicts the general
idea on the event log transformation. D � ��A,S,X� >MA denotes the set of activities
in Σ for which a mapping is defined. The activities in Σ � D being not involved
in the definition of mapping indicate activities that are insignificant from the con-
text of analysis and are filtered from t during this transformation. We define the
transformation process in detail in Section 6.3. The transformation of logs can be
associated to the concept of artifacts [161] or proclets [226] in business processes.
Artifact-centric process models partition a monolithic process model into smaller
loosely-coupled process fragments, each describing the life-cycle of a concrete and
identifiable artifact.

(a) original log with common execu-
tion patterns

W Y

W Y W Y

Z

Z Z

W Y

YW Z

(b) transformed log and the sub-logs for each abstraction

Figure 6.3: Transformation of the original log into an abstracted log. Also, one sub-log is created
for each abstract activity. W, Y, and Z are abstract activities.

Phase-2: Mining Maps

The second phase is to mine a process model for the abstracted (transformed) log.
The mapping defined in Phase-1 induces a hierarchy over the abstract activities.
Upon zooming into an abstract activity, a process model depicting the subprocess
captured by this abstract activity can be shown. The sub-log for the abstract activity
is used to create this subprocess model. Multiple levels of hierarchy can be obtained
by a repetitive application of Phase-1, i.e., abstractions are defined over the trans-
formed log (pre-processed log with abstractions) obtained in iteration i in iteration
i � 1. This results in new abstractions to be defined over existing abstractions, thus
inducing a hierarchy. Figure 6.4 depicts this idea. The first iteration induces three
abstract activities W, Y, and Z defined over common execution patterns on the input
event log. The event log is transformed with these abstractions and sub-logs are
created for each of the abstract activities. In the second iteration, the transformed
log of iteration 1 serves as the input log. In the second iteration, an abstraction
Q is defined over a pattern involving the abstract activities W and Y defined in the
first iteration. In other words Q subsumes W and Y thereby inducing a second-level of
hierarchy. In this fashion, one can define multiple levels of hierarchy by a repeated
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application of Phase-1.

Iteration
1

W Y

W Y W Y

Z

Z Z

W Y

YW Z

Iteration
2

W Y

W Y W Y

Z

Z Z

W Y

Q

Q Q

Z

Z Z

Q

Q

W Y

W Y

W Y

W Y

...Iteration
k

Input Log Transformed Log Sub-logs

Figure 6.4: Iterative transformation of an event log induces a hierarchy of abstractions. The
abstract activity Q introduced in iteration 2 is defined over abstract activities W and Y.

Figure 6.5 highlights the difference between the traditional approach to process
discovery and our two-phase approach. Note that the process model (map) mined
using the two-phase approach is simpler and that this approach enables the abstrac-
tion of activities based on functionality and provides a seamless zooming into the
subprocesses captured in the abstractions.

6.3 Transforming a Log with Abstractions

In this section, we present and discuss the transformation of an event log with ab-
stractions. We use the abstractions defined over the common execution patterns as
discussed in Chapter 3. However, the proposed transformation approach can also be
used for abstractions defined based on domain knowledge. Recall from Chapter 3
that abstractions are defined over the nodes in the pattern graph. This needs to
be captured in the mapping M b 2Σ

� 2Σ�

� 2A defined in Section 6.2. Figure 6.6
depicts an example pattern graph and an example mapping M based on this pattern
graph. The original alphabet Σ � �a,b, c,d, e, f,g,h, i, j,k, l� and the abstract alpha-
bet A � �W,Y,Z, f, i�.

Algorithm 6.1 presents the approach of transforming an event log with abstrac-
tions. The basic idea of the algorithm is to scan each trace from left to right and
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Event Log
s a m b c u d n j e
s a m q f h l l h g i k e
s a m f g h l h i k q e
s a m b c d n u j e
s a m f h l g i h l h k q e
s a m q f g i h l h k e
s a m q f g h l h i k e
s a m p c u d n r e
s a m b d n c u j e
s a m p d n c u r e

Traditional
Approach

Two-phase
Approach

Abstractions defined over
common execution patterns

Transformed
Log
X b Z j e
X q Y Y e
X Y Y q e
X b Z Z j e
X Y Y Y q e
X q Y Y Y e
X q Y Y Y e
X p Z r e
X b Z j e
X p Z r e

Figure 6.5: Traditional approach versus our two-phase approach to process discovery.
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{b,d,e,l} {a,b,d,h}

{a,b,d,e,h,l}

W
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Pattern Patterns Abstra-
Alphabet ction

{c, g, j} {jgc} W

{j} {j} W

{g} {g} W

{c} {c} W

{b, d, e, l} {lebd, elbd} Y

{e, l} {le} Y

{a, b, d, h} {ahbd} Z

{b, d} {bd} Y, Z

{f} {f} f

{i} {i} i

Figure 6.6: An example of a pattern graph and the mapping of pattern alphabets with abstractions.

in the process determine whether there exists a pattern in the trace for which an
abstraction is defined. If such a pattern exists, the manifestation of the pattern in
the trace is replaced by its abstract activity and simultaneously the manifestation
of the pattern that is replaced is added as a trace in the sub-log corresponding to
that abstract activity. It could be the case that the manifestation of patterns is
disturbed by the presence of concurrent activities in a trace. The algorithm also
considers non-continuous manifestations to deal with such scenarios. Patterns that
are affected by noise, e.g., activities that are skipped, are dealt with by considering
approximate manifestations. We formally define the continuous, non-continuous, and
approximate manifestation of patterns as follows.

Definition 6.1 (Subsequence). A sequence t1 � t1�1�t1�2� . . . t1�k� is a sub-
sequence of another sequence t2 � t2�1�t2�2� . . . t2�n� if and only if there exists
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q1, q2, . . . , qk such that 1 B q1 @ q2 @ q3 � � � @ qk B n and t1�j� � t2�qj� for all 1 B j B k.-

Definition 6.2 (Exact Manifestation of a Pattern). A pattern p is considered
to be exactly manifested in a trace t at position i (for 1 B i B StS) if and only if §iBlBStSp
is a subsequence of t�i, l� and ¦i@mBlp is not a subsequence of t�m, l�. -

The second condition in the definition above restricts the consideration of a manifes-
tation to compact contexts. In other words, if an exact manifestation of a pattern
at position i subsumes another exact manifestation at position m, we make an as-
sumption that activity executions happen with short-range dependencies and do not
consider the manifestation at position i. Instead, the pattern is considered to be man-
ifested at position m. We will later provide some ideas on relaxing this assumption
in Section 6.7.

Definition 6.3 (Exact (Non-)Continuous Manifestation of a Pattern). An
exact manifestation of a pattern p in a trace t at position i is said to be continuous
if l � i � 1 � SpS. Otherwise, it is said to be non-continuously manifested. -

Definition 6.4 (Approximate Manifestation of a Pattern). A pattern p is
considered to be approximately manifested in a trace t at position i (for 1 B i B StS) if
and only if p is not an exact manifestation in t at position i and either

� a permutation of p is exactly manifested in t at position i or

� a subsequence p� of p having a longest common subsequence distance2 of δ > N
with p (for some user defined δ) is exactly manifested in t at position i

The longest common subsequence condition facilitates us to capture the maximal
functionality represented in p. -

2the longest common subsequence distance is a special case of Levenshtein edit distance, when
substitutions of unlike symbols are forbidden. The permissible edit operations are exact symbol
matches (substitution of like symbols), insertions, and deletions.
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Algorithm 6.1 Algorithm to Preprocess a Log with Abstractions (Part 1)

1: Let L � �t1, t2, . . . , tn� be an event log defined over the set of events E and the
set of activities Σ.

2: Let M b 2Σ
� 2Σ�

� 2A be a mapping defining the abstractions
3: Let s � A � L be a function defined over the set of abstract activities and the

sub-logs for each abstract activity; s�a� denotes the sub-log corresponding to the
abstract activity a > A

4: Let ÃPA be the set of all pattern alphabets defined byM, i.e., ÃPA � �A S �A,S,X� >
M�

5: Let I be the set of all ignorable activities, i.e., I � Σ ��PA>ÃPA PA
6: Let P be the set of patterns defined by M, i.e., P � ��A,S,X�>M S. In other

words, P defines the set of all patterns defined by the pattern alphabets involved
in abstractions

7: Let DP b N � E� be the set of all manifestations of patterns that needs to be
disambiguated at a position in a trace

8: Let DA b N�2A be the set of all abstract activities that needs to be disambiguated
at a position in a trace

9: Let L� be the transformed event log; initialize L� � � �
10: for all t > L do
11: Let t correspond to the sequence of activities in t
12: Let t� � `e be the transformed trace
13: Set DA � �� and DP � ��
14: for i � 1 to StS do
15: if t�i� > I then
16: continue
17: end if
18:

19: //Check for continuous manifestation of patterns
20: Let CP i be the set of all patterns p > P such that p has an exact continuous

manifestation at t�i�
21: Let ĉp > CP i be the longest pattern manifested at t�i�
22: if CP i � �� then ĉp � `e
23:

24: //Check for non-continuous manifestation of patterns
25: Let NP i be the set of all patterns p > P such that p has an exact non-

continuous manifestation at t�i�
26: Let n̂p > NP i be the longest pattern manifested at t�i�
27: if NP i � �� then n̂p � `e
28:

29: //Check for approximate manifestation of patterns
30: Let AP i be the set of all patterns p > P such that p has an approximate

manifestation at t�i�
31: Let âp > AP i be the longest pattern manifested at t�i�
32: if AP i � �� then âp � `e
33: Let p̂ be the longest of the patterns ĉp, n̂p and âp
34: Let X be the set of abstract activities to which p̂ can be associated to
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Algorithm 6.2 Algorithm to Preprocess a Log with Abstractions (Part 2)

35: if X is a singleton, i.e., there is no ambiguity in resolving the abstraction
for the pattern p̂ then

36: if Sp̂S � 1 and p̂ � a, a >X then
37: append t�i� to the transformed trace, i.e., t� � t� l t�i�
38: else
39: let ê be the sequence of events corresponding to the manifestation

of p̂ in t at position i
40: create a new event e with the activity name as the abstraction

a >X; set the timestamp of the event e to that of the last event in ê; append the
event e in the transformed trace, i.e., t� � t� l e

41: add ê as a new trace in the sub-log of a, i.e., s�a� � s�a� > �ê�
42: end if
43: else
44: mark that the pattern, abstract activity pair needs to be disambiguated

later at this position in the transformed trace based on the context
45: set t� � t� l �; DA � DA 8 �St�S,X�; DP � DP 8 �St�S, ê� where ê is the

manifestation of p̂ in t at position i
46: end if
47: if p̂ is either n̂p or âp then readjust the non-continuous or approximate

manifestation of the pattern p̂ in both t and t
48: Set i � i � SêS - 1
49: end for
50:

51: // Disambiguate the abstractions
52: for j � 1 to St�S do
53: if t��j� � � then
54: Let X be the set of potential abstract activities and ê > E� be the

manifestation corresponding to the abstraction at position j, i.e., �j,X� > DA
and �j, ê� > DP

55: if there exists an abstract activity a > X such that a is in the vicinity
of j in t� then

56: create a new event e with the activity name as the abstraction a;
set the timestamp of e to that of the last event in ê

57: Set t��j� � e
58: else
59: Randomly choose an a >X
60: create a new event e with the activity name as the abstraction a;

set the timestamp of e to that of the last event in ê
61: Set t��j� � e
62: end if
63: add ê as a new trace in the sub-log of a, i.e., s�a� � s�a� > �ê�
64: end if
65: end for
66: L� � L� > �t��
67: end for
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We now look at the algorithm in detail with an example. Let us consider an event
log with three traces L � �t1, t2, t3� where the simple traces (i.e., the sequences
of activities) correspond to t1 � jgclfebdkelbdkahbdi, t2 � cgjlebfdbdi, and
t3 � gclelefbd. Let us consider the abstractions and the corresponding patterns
as illustrated in Figure 6.6. Based on the mapping defined in Figure 6.6, the set of
ignorable activities I � �k� (Step 5, Algorithm 6.1). Algorithm 6.1 processes each
trace in the event log iteratively (Step 10, Algorithm 6.1). The algorithm scans each
trace from left to right (Step 14). At any position, the algorithm checks if there
exists a pattern manifestation for which an abstraction is defined. If so, the pattern
manifestation in the trace is replaced with a new event signifying its abstract activity
and the replaced manifestation is created as a new process instance for the sub-log
corresponding to the abstract activity.

Consider the simple trace t1 � jgclfebdkelbdkahbdi. At position 1 (see Fig-
ure 6.7), there are two patterns, j and jgc, that are exactly continuously manifested,
i.e., (t1�1� � j and t1�1,3� � jgc) (Step 20, Algorithm 6.1). jgc is the longest of
the two patterns, so ĉp � jgc (Step 21, Algorithm 6.1). NP1 � AP1 � �� (Steps
25–32, Algorithm 6.1). p̂ � jgc (Step 33, Algorithm 6.1). The abstraction corre-
sponding to jgc is W, i.e., X � �W� (Step 34, Algorithm 6.1). The sequence of events
e � `t1�1�, t1�2�, t1�3�e corresponds to the manifestation of this pattern in the trace
t1 (Step 39). We create a new event e whose activity name is W to capture this
abstraction. We assign the timestamp of this event to be the timestamp of t1�3�
(we consider the timestamp of the last event to signify the completion time of the
execution of the events captured by this abstraction; however, one may also choose
the timestamp of the first event to signify the start time or one may choose to have
two timestamp attributes signifying the start time (timestamp of the first event) and
the completion time (timestamp of the last event) of this instance of abstraction);
so #activity�e� � W and #time�e� � #time�t1�3��. The event e is appended to the
transformed trace and a new trace `t1�1�, t1�2�, t1�3�e is added as a process instance
to the sub-log corresponding to W. For simplicity reasons, we explain this using the
simple traces during our discussion. So, in the transformed trace, we append the
abstract activity W, i.e., t1

� � W and add a new trace jgc to the sub-log corresponding
to W (Steps 39–41, Algorithm 6.1). The position i is incremented according to the
pattern, i � 3 (Step 48, Algorithm 6.1).

trace
transformed

trace
LW LY LZ

j g c l f e b d k e l b d k a h b d i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CP1 = {j, jgc}
NP1 = {}
AP1 = {}

W [jgc] [ ] [ ]

Figure 6.7: Processing the patterns at position 1 with abstractions in the trace t1 �

jgclfebdkelbdkahbdi.

In the next iteration, i � 4. At position 4 (see Figure 6.8), no exact continuous
manifestation of any pattern exists, i.e., CP4 � ��. However, an exact non-continuous
manifestation of the pattern lebd occurs, NP4 � �lebd� and n̂p � lebd (Steps 25�27,
Algorithm 6.1). Proceeding further, the abstraction corresponding to lebd is Y. The
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sequence of events e � `t1�4�, t1�6�, t1�7�, t1�8�e corresponds to the manifestation of
this pattern in the trace t1 at position 4 (Step 39). The transformed simple trace
t1

� � WY and the sub-log corresponding to Y, LY � �lebd� (in reality, a new event
capturing the abstraction Y would be created and appended to the transformed trace
and the sequence of events `t1�4�, t1�6�, t1�7�, t1�8�e would be added as a trace in
the sub-log). Step 47 requires the adjustment of the trace corresponding to the
non-continuous manifestation of the pattern lebd. The pattern lebd is manifested
non-continuously as t1�4,8� � lfebd. The adjustment refers to the shifting of activ-
ities not belonging to the pattern. In this case, the activity f is shifted to the end of
the pattern lebd in the trace t1. Thus, the trace t1 becomes jgclebdfkelbdkahbdi
after adjustment. The position i is incremented to i � 7 (Step 48, Algorithm 6.1).

trace
transformed

trace
LW LY LZ

j g c l f e b d k e l b d k a h b d i

j g c l e b d f k e l b d k a h b d i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4

CP4 = {}
NP4 = {lebd}
AP4 = {}

WY [jgc] [lebd] [ ]

adjusted for non-
continuous match

Figure 6.8: Processing the patterns at position 4 with abstractions in the trace t1 �

jgclfebdkelbdkahbdi.

In the next iteration, i � 8. At position 8 (see Figure 6.9), there exists an ex-
act continuous manifestation of the pattern f. So, CP8 � �f�, NP8 � AP8 � ��.
Since the abstraction corresponding to this pattern is the activity itself, we append
the activity f to the transformed trace, i.e., t1

� � WYf (Steps 36–37, Algorithm 6.1)
(in reality, t�8� would be appended to the transformed trace). No sub-log would be
created for this scenario. In the next iteration, i � 9. At position 9 (see Figure 6.10),
we have the activity k > I. Since this activity is specified to be ignored, we proceed for
the next iteration (Step 15, Algorithm 6.1). Proceeding further and upon completion
(see Figure 6.11), we get the transformed trace t1

� � WYfYZi. The sub-logs after
processing this trace correspond to LW � �jgc�, LY � �lebd,elbd�, and LZ � �ahbd�.
Since the transformed trace does not contain any abstractions to be disambiguated,
Steps 52–65 are not applicable. L� � �WYfYZi�. Figure 6.11 summarizes the transfor-
mation process for this trace.

trace
transformed

trace
LW LY LZ

j g c l e b d f k e l b d k a h b d i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CP8 = {f}
NP8 = {}
AP8 = {}

WYf [jgc] [lebd] [ ]

Figure 6.9: Processing the patterns at position 8 in the trace t1 � jgclfebdkelbdkahbdi.

Let us consider another trace t2 � cjglebfdbdi. The reader is referred to Fig-
ure 6.12 for a pictorial depiction of the transformation process for this trace. At
position 1, there is a continuous manifestation of the pattern c, CP1 � �c� and an
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trace
transformed

trace
LW LY LZ

j g c l e b d f k e l b d k a h b d i
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

k ∈ I, Hence
ignored WYf [jgc] [lebd] [ ]

Figure 6.10: Processing the patterns at position 9 in the trace t1 � jgclfebdkelbdkahbdi.

approximate manifestation of the pattern jgc. The subsequence t2�1,3� � cgj corre-
sponds to the permuted manifestation of the pattern jgc. The notion of permutation
matching is discussed in [43] and efficient algorithms to detect such matches exist
[43, 97]. AP1 � �jgc� and âp � jgc (Steps 30–31, Algorithm 6.1). The longest
pattern at position 1 is p̂ � jgc and the abstraction corresponding to it is W. The
transformed trace t2

� � W. The approximate manifestation of jgc at position 1,
i.e., cgj, is added as a new trace to the sub-log LW (Steps 39–41, Algorithm 6.1).
Therefore, after Step 41, LW � �jgc,cgj� (in reality, a new event capturing the
abstraction is created and appended to the transformed trace and the sequence of
events `t2�1�, t2�2�, t2�3�e is added as a new trace in the sub-log corresponding to
W). The position i is incremented to i � 3.

In the next iteration i � 4; there exists an exact non-continuous manifestation
of the pattern lebd at position 4, NP4 � �lebd� and n̂p � lebd (Steps 25–26,
Algorithm 6.1). Proceeding further, the abstraction corresponding to lebd is Y. The
transformed trace t2

� � WY and the sub-log corresponding to Y, LY � �lebd2,elbd�.
Step 47 requires the adjustment of the trace corresponding to the non-continuous
manifestation of the pattern lebd. The pattern lebd is manifested non-continuously
as t2�4,8� � lebfd; the event sequence corresponding to the manifestation is
e � `t2�4�, t2�5�, t2�6�, t2�8�e. The adjustment refers to the shifting of activities
not belonging to the pattern. In this case, the activity f is shifted to the end of
the pattern lebd in the trace t2. Thus, the trace t2 becomes cgjlebdfbdi after
adjustment. The position i is incremented to i � 7 (Step 48, Algorithm 6.1).

In the next iteration, i � 8. At position 8, there exists an exact continuous mani-
festation of the pattern f. So, CP8 � �f�, NP8 � AP8 � ��. Since the abstraction
corresponding to this pattern is the activity itself, we append the activity f to
the transformed trace, i.e., t2

� � WYf (Steps 36–37, Algorithm 6.1). In the next
iteration, i � 9. At position 9, we have the exact continuous manifestation of bd.
So, CP9 � �bd�, NP9 � AP9 � ��. p̂ � bd and there are two abstractions, Y and
Z, corresponding to bd (Steps 44–45, Algorithm 6.1). At this moment, we cannot
disambiguate this. We postpone it until the entire trace is processed. The trans-
formed trace t2

� � WYf�, DA � ��4,�Y,Z��� and DP � ��4, `t2�9�, t2�10�e�� (Step 45,
Algorithm 6.1). The position i is incremented to i � 10. In the next iteration, i � 11
and there exists an exact continuous manifestation of the pattern i. Proceeding
further, we get t2

� � WYf�i.

Now, the unresolved abstract activities in the transformed trace need to be dis-
ambiguated (Step 51, Algorithm 6.1). The abstract activity at position 4 in the
transformed trace needs to be disambiguated. We have an abstract activity Y > �Y,Z�
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at position 2 (Step 55, Algorithm 6.1). We assume that the activity at position 4 is
in the same context as in 2 and incline towards disambiguating it to Y. In general,
we prefer the closest abstraction in the vicinity for disambiguation. We set t2

��4� � Y

and add the manifestation bd as a new trace to the sub-log corresponding to Y. Thus,
t2

� � WYfYi and LY � �lebd2,elbd,bd�. L� � �WYfYYi,WYfYi� after processing of the
second trace.

Iter Index
i

trace
transformed

trace
sub logs

LW LY LZ
Initial
State

c g j l e b f d b d i

c g j l e b f d b d i

c g j l e b f d b d i

c g j l e b d f b d i

c g j l e b d f b d i

c g j l e b d f b d i

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 10 11

〈〉 [jgc]
[lebd,
elbd ]

[ahbd]

1

2

3

4

5

1

CP1 = {c}
NP1 = {}
AP1 = {jgc}

W [jgc,
cgj]

[lebd,
elbd ]

[ahbd]

4

CP4 = {}
NP4 = {lebd}
AP4 = {}

WY
[jgc,
cgj]

[lebd2,
elbd ]

[ahbd]

8

CP8 = {f}
NP8 = {}
AP8 = {}

WYf
[jgc,
cgj]

[lebd2,
elbd ]

[ahbd]

9

CP9 = {bd}
NP9 = {}
AP9 = {}

WYf⊥ [jgc,
cgj]

[lebd2,
elbd ]

[ahbd]

11

CP11 = {i}
NP11 = {}
AP11 = {}

WYf⊥i
[jgc,
cgj]

[lebd2,
elbd ]

[ahbd]

adjusted for non-
continuous match

Disambiguation WYfYi
[jgc,
cgj]

[lebd2,
elbd,
bd ]

[ahbd]

Figure 6.12: Transforming the trace t2 � cgjlebfdbdi with abstractions.

Let us consider the third trace t3 � gclelefbd. The reader is referred to Fig-
ure 6.13 for a pictorial depiction of the transformation process for this trace. As
position 1, there is an exact continuous manifestation of the pattern g. There
is also an approximate manifestation of the pattern jgc (where the activity j is
skipped). The longest common subsequence distance between the manifestation gc

and the pattern jgc is 1. p̂ � jgc and the transformed trace t3
� � W. We add a

new trace gc corresponding to the approximate manifestation of the pattern jgc to
the sub-log of this abstraction LW (Step 41, Algorithm 6.1). In the next iteration,
i � 3. The definition of the exact non-continuous manifestation of a pattern prohibits
the consideration of the subsequence t3�3,9� � lelefbd as the manifestation for
the pattern lebd. This is due to the fact that there exists a subsuming sequence
t3�5,9� � lefbd that qualifies to be a non-continuous manifestation of the pattern
lebd. Hence, we consider the exact continuous manifestation of the pattern le at
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position 3 whose abstraction is Y. Proceeding further, the transformed trace for this
trace would be t3

� � WYYf. After the processing of the three traces, the transformed
log L� � �WYfYZi,WYfYi,WYYf� and the sub-logs for the abstract activities correspond
to LW � �jgc,cgj,gc�, LY � �lebd3,elbd,bd,le�, and LZ � �ahbd�.
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WY
[jgc,
cgj,
gc ]

[lebd2,
elbd,
bd,le]

[ahbd]

5

CP5 = {}
NP5 = {lebd}
AP5 = {}

WYY
[jgc,
cgj,
gc ]

[lebd3,
elbd,
bd,le]

[ahbd]

9

CP9 = {f}
NP9 = {}
AP9 = {}

WYYf
[jgc,
cgj,
gc ]

[lebd3,
elbd,
bd,le]

[ahbd]

adjusted for non-
continuous match

Figure 6.13: Transforming the trace t3 � gclelefbd with abstractions.

6.4 Discovering Processes at a Particular Level

In the previous section, we have seen how event logs containing low-level events can
be transformed to higher levels based on abstractions defined over low-level events.
In this section, we show how such a transformed log can be used to mine processes
at a particular level. We hypothesize that our transformation approach assists in
improving firstly, the comprehensibility, and secondly, the quality of the mined mod-
els. We illustrate this with a small example. Figure 6.14 depicts a process model
in YAWL with 11 activities, Σ � �a,b,c,d,e,f,g,h,i,j,l�. Note that activities b

and d can appear in different contexts: in a loop with l and e as alternatives and
preceded by a and h. We have modeled the process model depicted in Figure 6.14
in CPN tools [180] and generated event logs using simulation. We use one event log
containing 75 traces, 11 event classes, and 1047 events for our discussion.

Figure 6.15 depicts the process model mined using the α++ algorithm [51]3. Since
the simulated event logs correspond to a well structured model, we chose the α++
algorithm as the starting point. Many other discovery algorithms were also studied

3An artificial start and end task is added to all the traces in the log before discovering the models.
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Figure 6.14: A simple YAWL process model.

(cf. Table 6.2) but we first discuss the results from α++ algorithm. We can see from
Figure 6.15 that this event log, though generated from a simple process, resulted
in a spaghetti-model. The spaghettiness can be attributed to the difficulty of the
α++ algorithm in dealing with concurrency and duplicate tasks. Among the three
parallelism constructs in the process model (one involving the activities j, g, and
c at the beginning of the process model, one involving activities l and e, and one
involving the activity f), the execution of activity f is the most challenging one for
the α++ algorithm. Note that f can execute in parallel to another fragment that
involves a loop, XOR, and AND construct. Another issue stems from the presence
of duplicate tasks b and d. α++ algorithm is not capable of dealing with duplicate
tasks; it considers them to be the same task. In spite of its spaghettiness, this model
has a fitness of 0.91 (we use the conformance checker plug-in in ProM 5.2 to measure
the fitness [191] values).

We use the common execution patterns manifested in the event log and define
abstractions using the concepts presented in Chapter 3. Figure 6.6 depicts the
pattern graph obtained from this event log. From the pattern graph, we select the
mapping defined as in Figure 6.6 for abstractions. The event log is transformed with
these abstractions using the algorithm discussed in Section 6.3. The transformation
resulted in a transformed log, L�, with 75 traces, 5 event classes, and 408 events
and three sub-logs LW, LY, and LZ corresponding to the abstractions W, Y, and Z

respectively. Figure 6.16 depicts the first-level process model discovered using the
α++ algorithm on this transformed log. The fitness of this model is 1.0. We can
see that by transforming the log with abstractions defined over common execution
patterns, we are able to discover a model that is well-structured and comprehensible.

We can use the sub-logs created for each abstract activity to mine the processes
corresponding to them. Figure 6.17 depicts the subprocess mined using the α++
algorithm for the abstract activity W while Figures 6.18 and 6.19 depict the sub-
processes mined for the abstract activities Y and Z respectively. Thus we generated
a process model with one level of hierarchy. Abstractions can further be defined
on the transformed log L�. Table 6.1 depicts the patterns and the corresponding
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Figure 6.15: The process model mined on the raw event log using the α++ algorithm.

Figure 6.16: The process model mined using the α++ algorithm on the log obtained after one
level of transformation with abstractions. The activities W, Y, and Z are abstract activities.

abstractions defined over this transformed log. We have now defined an abstraction
over the activities that are abstractions themselves defined in the previous level.
This creates a second level of hierarchy. Upon preprocessing the log with these
abstractions, we obtain a transformed log L�� that contains 75 traces, 4 event classes,
and 394 events and a sub-log LM. Figure 6.20(a) depicts the process model mined
using the α++ algorithm on the transformed log L��. Figure 6.20(b) depicts the
process model mined using the sub-log generated for the abstract activity M. The
abstract activities Y and Z in this model correspond to the abstractions defined in
the previous iteration. Note the similarity of this model with that of the original
model in Figure 6.21. Figure 6.21 depicts the same YAWL model (as in Figure 6.14)
but annotated with regions that have been abstracted. Using the common execution
patterns, we are able to identify meaningful process fragments as abstractions.

In this fashion, one can exploit the abstractions of low level events to transform
a log to an appropriate level and use the abstracted log to mine the processes.
Furthermore, the sub-logs created for each abstraction can be used to uncover the
subprocesses captured by these abstractions. Clearly, we can see that the models
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Figure 6.17: The process model, depicting the subprocess for the abstraction W, mined using the
α++ algorithm on the sub-log generated during the transformation process for the abstract activity
W.

Figure 6.18: The process model, depicting the subprocess for the abstraction Y, mined using the
α++ algorithm on the sub-log generated during the transformation process for the abstract activity
Y.

Figure 6.19: The process model, depicting the subprocess for the abstraction Z, mined using the
α++ algorithm on the sub-log generated during the transformation process for the abstract activity
Z.

Table 6.1: Pattern alphabets and abstractions.

Pattern Alphabet Patterns Abstraction�Y,Z� �ZY,YZ� M�Y� �Y� M�Z� �Z� M�W� �W� W

{f} {f} f
{i} {i} i

(a) top-level model (b) subprocess for M

Figure 6.20: The top-level process model mined using the α++ algorithm on the log obtained
after two levels of transformation with abstractions, and the subprocess for the abstract activity M.

mined using the two-phase approach are much simpler and easily comprehensible.
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W

Y

Z
M

Figure 6.21: A simple YAWL process model with marked regions that represent process fragments
that are abstracted.

It is important to note that any process discovery algorithm can be used to mine the
(sub)-processes on the transformed log and the sub-logs. Table 6.2 depicts the fitness
measures of the process models mined using various process discovery algorithms
based on the traditional approach, and the two-phase approach (with abstractions).
We considered the discovery algorithms that can mine a Petri net from the event log.
The heuristic nets generated by the Heuristics Miner [264], Genetic Miner [53, 231],
and Genetic Miner with duplicate tasks [49] are converted to Petri nets before mea-
suring for conformance4. The ‘Raw Model’ corresponds to the model mined on the
event log without any abstractions. Since the two-phase approach generates multiple
models (the top-level model and models for the different abstractions), we consider
the average fitness of the different models as a reflection of the overall quality. As
shown in Table 6.2, the two-phase approach enables the discovery of models that
exhibit a better conformance (fitness) when compared to the traditional approach
irrespective of the discovery algorithm adopted. Furthermore, the mined models are
less complex and easily comprehensible. The ILP Miner [238] can mine a model
that guarantees a fitness of 1.0 for all event logs. Thus we see a fitness of 1.0 for
the model mined on the raw event log. Figure 6.22(a) depicts the process model
obtained on the raw event log using the ILP miner. As is evident, this model is quite
spaghetti-like. In contrast, Figure 6.22(b) depicts the process map obtained using
our two-phase approach. We can clearly see that the process map is much simpler
and more comprehensible.

Ideally, the evaluation of any process discovery approach should involve four compet-
ing quality dimensions [167], viz., fitness, simplicity, precision, and generalization.
Fitness measures the degree to which a mined model can explain the behavior
observed in the event log. Precision and generalization measures the degree of un-

4For the genetic miner variants, we have fixed the number of generations to 100. The rest of
the parameters (e.g., the number of individuals (population size), crossover type/rate, mutation
type/rate, etc.) are set to their default values.
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Table 6.2: Comparison between the quality (using fitness [191] as a measure) of the mined models
using the traditional approach and the two-phase approach (with abstractions defined over common
execution patterns). The same discovery algorithm is used across the entire row.

Discovery Algorithm Traditional Two-phase Approach
Approach

Raw Model Top Level W M Y Z Avg

α 0.82 1.00 1.00 1.00 0.83 1.00 0.966
α++ 0.91 1.00 1.00 1.00 0.96 1.00 0.992
Heuristics Miner 0.93 1.00 1.00 0.99 0.95 1.00 0.988
Genetic Miner 0.80 1.00 1.00 1.00 1.00 1.00 1.000
Genetic Miner 0.90 1.00 1.00 1.00 0.99 1.00 0.998
(with duplicate tasks)
Region miner 1.00 1.00 1.00 1.00 0.95 1.00 0.990
ILP Miner 1.00 1.00 1.00 1.00 1.00 1.00 1.000

(a) traditional approach

top-level model

subprocess W subprocess M

subprocess Y

subprocess Z

(b) our two-phase approach

Figure 6.22: The process model obtained on the raw event log and the process map obtained
by our two-phase approach using the ILP miner as the discovery algorithm. The subprocesses
corresponding to the abstract activities in the process map are depicted as a tree of models.

derfitting and overfitting while spaghattiness/comprehensibility acts as a measure
of simplicity of the mined process models. Any discovery algorithm that strikes a
balance between all of these dimensions emerges as a winner. However, this turns
out to be a challenging problem. In this thesis, we assess our techniques using only
the fitness and simplicity dimensions.

In order to have a seamless zoom-in and zoom-out facility (on the abstract ac-
tivities), the implementation of process discovery algorithms need to be aware of the
availability of the sub-log for each abstract activity, which can be used to mine and
depict a model upon zooming in on an abstract activity. We have extended the Fuzzy
miner’s [94] implementation in ProM 6.0 with this feature. We call this extension,
the Fuzzy Map Miner (cf. Chapter 10). Fuzzy models are discovered for each of the
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sub-logs and are displayed upon zooming in on its corresponding abstract activity.
Abstract activities are differentiated from other activities by means of a distinct color
(a darker shade of blue, see also Figure 6.23). Figure 6.23 depicts the process model
mined on the transformed log L��, which is at two-levels of hierarchy, along with the
tree of process models for the hierarchy of abstractions. The blue (dark) colored
nodes in the top-level model in Figure 6.23, corresponding to the activities W and
M, are abstract activities that can be zoomed in. Upon zooming in on the abstract
activity W, the model depicted in Figure 6.23 corresponding to the subprocess W is
shown (the sub-log LW is used to discover this model). Likewise, the process models
for the abstract activities M, Y, and Z can be shown upon zooming into the respective
abstract activities as depicted in Figure 6.23.

top-level model

subprocess
M

subprocess Y

subprocess Z

subprocess
W

Figure 6.23: The top-level fuzzy model and the tree of fuzzy models corresponding to the hierarchy
of abstractions obtained using our two-phase approach.

Thus, by selecting relevant and context-dependent abstractions, we can transform
a low-level event log to an event log containing higher levels of abstraction. The
transformed log along with the sub-logs generated for each abstract activity can be
used to create a hierarchical process map with multiple levels of hierarchy. We can
use this approach to create maps that are simple (less complex and more comprehen-
sible) and of high quality. A process map with hierarchies can be visualized as a tree
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as depicted in Figure 6.24. Each node in the tree represents a process model in the
process map and the depth of a node indicates the level of the corresponding process
model in the process map. The tree depicted in Figure 6.24 corresponds to the
process map depicted in Figure 6.23. In addition, the nodes signifying subprocesses
in the process map are annotated with the abstract activity they correspond to.

top-level
process model

M0

subprocesses
at level 1

M10 M11

subprocesses
at level 2

M20 M21

W M

Y Z

Figure 6.24: A process map visualized as a tree of process models. Subprocesses are annotated
with the abstract activity they correspond to. For example, the subprocess M10 corresponds to the
abstract activity W, which is a node in M0.

6.5 Experiments and Discussion

In this section, we demonstrate the discovery of process maps for the digital copier
example. We have considered a log L containing 100 traces, 76 event classes, and
40,995 events. As discussed in Chapter 3, we recommend the definition of abstrac-
tions over tandem arrays first (recall that tandem arrays capture loop constructs).
Table 6.3 depicts the pattern alphabets and the abstractions defined for them. Pat-
tern alphabet 1 corresponds to the loop construct in the Capture Image subprocess of
the digital copier example (cf. Figure 3.2 in Chapter 3). Pattern alphabet 2 captures
the Half Toning subprocess (cf. Figure 3.5 in Chapter 3), which is modeled as a
loop construct, in its entirety as a tandem array. Pattern alphabet 3 corresponds
to the loop construct within the Writing subprocess (cf. Figure 3.7 in Chapter 3).
Pattern alphabets 4 and 5 correspond to the loop construct within the Developing
subprocess (cf. Figure 3.8 in Chapter 3). This loop construct involves a XOR con-
struct and the two pattern alphabets correspond to the two branches of the XOR
construct. Pattern alphabets 6 and 7 correspond to the Rasterize Image subprocess
(cf. Figure 3.3 in Chapter 3). The process fragment involving these activities is not
explicitly modeled as a loop construct. However, we notice a tandem manifestation
of these activities. This is attributed to the following reason: for jobs that are print
requests, each page of the document is first interpreted and then rendered. The
interpretation and rendering can proceed simultaneously after the interpretation of
the first page. The interpretation of pages is relatively faster than rendering. Once
all pages in a document are interpreted, it is only the rendering process that needs
to be completed and this manifests as a tandem array. Pattern alphabets that have
a lot of commonalities are merged together and abstractions are defined over the
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merged alphabet, e.g., pattern alphabets 4 and 5, and 6 and 7 in Table 6.3.

Table 6.3: Pattern alphabets and abstractions defined using the tandem array patterns on the raw
event log L.

S.No Pattern Alphabet Abstraction

1 {Illuminate Page, Move Scan Head, Focus Light Beam,
A/D Conversion, Interpolate, Filtered Image, Collect
Image}

Capture Image

2 {Error Diffusion Method Start, Load Quantization
Pixel, Neighbor Quantization Error Packing, Calculate
Total Neighbor Quantization Error, Subtract, Table
Based Multi-level Quantizer, Store Quantization Pixel,
Calculate Quantization Error, Error Diffusion Method
Complete }

Half Toning

3 {Emit Laser, Photons Travel to Drum, Reverse
Charges}

Charge Drum

4 {Drum Spin Start, Coat Toner on Drum, Drum Spin
Stop} Coat Toner

5 {Drum Spin Start, Coat Light Toner on Drum, Drum
Spin Stop}

6 {Rendering, Screening Start, FM Screening, Screening
Complete, Current Page Image, Accumulate Images} Render and Screen

7 {Rendering, Screening Start, FM Screening, Screening
Complete, Current Page Image, Accumulate Images}

The event log is transformed based on the procedure explained in Section 6.3 using
the abstractions and pattern alphabets (along with the patterns captured by these
pattern alphabets) defined as in Table 6.3. The abstracted log L� contains 100 traces,
53 event classes and 27,060 events. In addition, five sub-logs corresponding to each
of the five abstractions defined in Table 6.3 are generated. The abstract activities
thus formed are at the first level of hierarchy. Repetitive application of this process,
viz., defining abstractions and transforming the log, enables the discovery of multiple
levels of hierarchy (new abstractions can be defined over existing abstractions). The
transformed log obtained in iteration i is used as the input event log in iteration
i � 1. We considered the maximal repeat patterns in the transformed log L� and
defined the abstractions as depicted in Table 6.4. Pattern alphabet 1 corresponds
to the Image Processing subprocess (cf. Figure 3.4 in Chapter 3). Pattern alphabet
1 in addition contains the activity ‘Store Image’ that follows Image Processing (cf.
Figure 3.1 in Chapter 3). Note that this pattern alphabet contains the activity
Half Toning, which is an abstract activity defined in the previous iteration. Pattern
alphabet 2 corresponds to the loop construct involving the activities ‘Developing’,
‘Fusing’, and ‘Wipe Toner on Drum’ in the Print Image subprocess (cf. Figure 3.6 in
Chapter 3). This pattern alphabet also contains an activity, Coat Toner, resulting
from an abstraction defined in the previous iteration. Thus the level of abstraction
(hierarchy) is two. The event log L� is transformed using the abstractions defined in
Table 6.4. This results in an abstracted log L�� and two sub-logs. The abstracted log
L�� contains 100 traces, 31 event classes and 7,036 events.
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Table 6.4: Pattern alphabets and abstractions defined using the maximal repeat patterns on the
event log L�.

S.No Pattern Alphabet Abstraction

1 {Scanner Compensation, Photo Quality Reproduction,
Zooming Start, X-Zoom, Y-Zoom, Zooming Complete,
Half Toning, Rotate, Overlay, Compression, Store Im-
age}

Image Processing

2 {Coat Toner, Drum Spin Start, Paper Roller Spin
Start, Transfer Toner, Paper Roller Spin Stop, Drum
Spin Stop, Fusing Start, Heated Roller Spin Start, Ap-
ply Heat, Heated Roller Spin Stop, Pressure Roller Spin
Start, Apply Pressure, Pressure Roller Spin Stop, Fus-
ing Complete, Wipe Toner on Drum}

Developing and
Fusing

We considered the event log L�� for further abstractions. Table 6.5 depicts the
pattern alphabets and the abstractions thus formed using the maximal repeat pat-
terns. Pattern alphabets 1, 2, and 3 correspond to the interpretation of pages for
print job requests in the Rasterize Image subprocess (cf. Figure 3.3 in Chapter 3).
There are three types of pages that can be interpreted: (a) post script, (b) unformat-
ted text, and (c) page control language. This is modeled using an XOR construct.
The three pattern alphabets correspond to the interpretation of each type of the
page. Since the patterns are similar, we merge them and define an abstraction for
the merged alphabet. Pattern alphabet 4 corresponds to the Print Image subprocess
(cf. Figure 3.6 in Chapter 3). This pattern alphabet contains the abstract activity
Developing and Fusing, which is at an abstraction level of two. Thus the abstract
activity Print Image is at a hierarchy level of three. We transform the event log
using these abstractions. The resulting abstract log L��� contains 100 traces, 18
event classes, and 1,213 events. In addition, two sub-logs corresponding to the two
abstractions are generated.

Table 6.5: Pattern alphabets and abstractions defined using the maximal repeat patterns on the
event log L��.

S.No Pattern Alphabet Abstraction

1 {Interpretation Start, Unformatted Text, Interpreta-
tion Complete} Interpret

2 {Interpretation Start, Post Script , Interpretation Com-
plete}

3 {Interpretation Start, Page Control Language, Inter-
pretation Complete}

4 {Writing Start, Drum Spin Start, Read Image, Apply
Negative Charge on Drum, Charge Drum, Drum Spin
Stop, Image Created on Drum, Writing Complete, De-
veloping and Fusing, Erase Charge on Drum }

Print Image

Having transformed the log to a desired level of granularity, we now mine the
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process maps. Figure 6.25 depicts the top-level model mined using the Fuzzy Map
miner on the abstract log L���. The nodes colored in blue (dark colored) are the
abstract nodes corresponding to the abstract activities. Again, this model is in
tune with the original model that we used to simulate the logs (cf. Figure 3.1 in
Chapter 3). Abstract nodes can be seamlessly zoomed in to view the subprocesses
underneath it. Figure 6.25 also depicts three of the subprocesses corresponding to
the abstract activities Interpret, Render and Screen, and Capture Image in the top-level
model. Figure 6.26 depicts the fuzzy model mined for Image Processing. Note that
this model is in tune with that of the original model (cf. Figure 3.4 in Chapter 3).
This fuzzy model contains an abstract activity Half Toning. Upon zooming on this
abstract node, we obtain the fuzzy model as depicted in Figure 6.26. Figure 6.27
depicts the fuzzy model for the abstract activity Print Image and the tree of fuzzy
models corresponding to the abstract activities within this subprocess. The process
fragment between ‘Writing Start’ and ‘Writing Complete’ nodes (both inclusive) in
this fuzzy model corresponds to the Writing subprocess of the original model (cf.
Figure 3.7 in Chapter 3). This process fragment contains an abstract activity Charge
Drum whose corresponding fuzzy model is as depicted in Figure 6.27. The Print
Image fuzzy model contains another abstract activity Developing and Fusing, the
fuzzy model of which is also depicted in Figure 6.27. The process fragment between
‘Coat Toner’ and ‘Drum Spin Stop’ (both inclusive) corresponds to the Developing
subprocess of the original model (cf. Figure 3.8 in Chapter 3) while the process
fragment between ‘Fusing Start’ and ‘Fusing Complete’ corresponds to the Fusing
subprocess of the original model (cf. Figure 3.9 in Chapter 3). The fuzzy model
corresponding to Developing and Fusing contains an abstract activity Coat Toner, the
fuzzy model of which is depicted in Figure 6.27.

In this fashion one can mine process maps. We have demonstrated the discov-
ery of process maps using the Fuzzy Map miner. However, as discussed earlier,
one can use any process discovery algorithm. Abstract activities can be seamlessly
zoomed in/out by depicting the processes mined using the sub-log corresponding to
that abstract activity. The approach proposed in Chapter 3 to form abstractions by
exploiting common execution patterns shows significant promise in defining domain
significant abstractions (as is evident in the digital copier example). Furthermore,
the transformation approach presented in this chapter enables the preprocessing of
event logs with abstractions and generates sub-logs for each of the abstractions.

Let us compare this with Figure 6.28(a), which corresponds to the model uncovered
using the classical Fuzzy miner [94] (with default settings) on the raw event log. As
discussed in Section 6.1, the Fuzzy miner groups activities into cluster nodes (blue
(dark) colored nodes in Figure 6.28(a)) based on their significance/correlation. Fig-
ure 6.28(b) depicts the process model obtained upon zooming in on one of the cluster
nodes containing 55 activities. As we can see, the model is spaghetti-like and hard
to comprehend. The cluster nodes formed by the classical Fuzzy miner do not have
any semantic significance with respect to the domain/application. In other words,
the classical Fuzzy miner poses the risk of aggregating unrelated nodes together in a
cluster (using the map metaphor, this is similar to streets in Eindhoven being clus-
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top-level model

subprocess Capture Image

subprocess Interpret subprocess Render and Screen

Figure 6.25: The fuzzy model of the digital copier at the highest level of abstraction. Blue (dark)
colored nodes are abstract nodes that can be zoomed in to view the subprocesses underneath.
The figure also shows the subprocesses corresponding to the abstract nodes Interpret, Render and

Screen, and Capture Image.

subprocess Image Processing

subprocess Half Toning

Figure 6.26: The fuzzy model corresponding to the abstract activity Image Processing. This
model contains an abstract activity Half Toning, the fuzzy model of which is also shown in the
figure.

tered along with streets in Amsterdam). In contrast, the abstractions formed using
common execution patterns have a strong domain significance. Furthermore, the
process map discovered using our two-phase approach is simple (as is evident struc-
turally from the various process models comprising the process map) and has good
generalization capabilities, e.g., the ability to scan/print multiple pages is elegantly
captured in the loop constructs. We next evaluate the goodness of the proposed
approach using the fitness quality dimension in great detail. We evaluate the fitness
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subprocess Print Image

subprocess Charge Drum subprocess Developing and Fusing

subprocess Coat Toner

Figure 6.27: The fuzzy model corresponding to the abstract activity Print Image and the tree of
fuzzy models corresponding to the abstract activities within Print Image. This model contains two
abstract activities Charge Drum and Developing and Fusing with the latter containing an abstract
activity Coat Toner within it.

values of the process map mined using our proposed approach and compare them
with the models mined using the traditional approaches.

(a) top-level model (b) process model upon zooming the cluster node ‘cluster 90’

Figure 6.28: Process model mined using the classical Fuzzy miner on the raw event log.

Table 6.6 depicts the quality of the mined models using various process discov-
ery algorithms based on the traditional approach, and the two-phase approach (with
abstractions). As before, we considered the discovery algorithms that can mine a
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Petri net or a model convertible to a Petri net (heuristic net) from the event log.
The ‘Raw Model’ corresponds to the model mined on the event log without any
abstractions. Since the two-phase approach generates multiple models (the top-level
model and models for the different abstractions), we consider the average fitness of
the different models as a reflection of the overall quality. As shown in Table 6.6,
the two-phase approach enables the discovery of models that exhibit a better con-
formance (fitness) when compared to the traditional approach irrespective of the
discovery algorithm adopted. Furthermore, the mined models are less complex and
easily comprehensible (scoring on the simplicity factor) and has good generalization
capabilities just like in the process map mined using the Fuzzy Map miner (e.g.,
ability to scan/print multiple pages). The ILP Miner [238] can mine a model that
guarantees a fitness of 1.0 for all event logs. Thus we see a fitness of 1.0 for the
model mined on the raw event log as well. However, this model is quite spaghetti-like
thereby performing poorly on the simplicity dimension and is not precise (allows way
too much extra behavior).

6.6 Scalability of the Approach

In this section, we study the scalability of the approach proposed for transforming
event logs with abstractions. The algorithm for the transformation of logs scans
each trace in a log and in the process checks at the current position, the patterns
that manifest continuously, non-continuously, and approximately. The total compu-
tation time required for the transformation process is influenced both by the size of
the event log (the number of traces/events) and the number of patterns. Since we
are interested in finding the longest pattern that manifests at a position in a trace,
we can optimize the process by first sorting the patterns in the descending order of
their length. By doing so, we can stop at the first match (either continuous/non-
continuous exact match or approximate match) of any pattern instead of exploring
all the patterns at the current position in the trace. We first study the influence of
log size on the transformation process by keeping the number of patterns constant.
The experiment corresponds to the transformation of the digital copier logs using
the abstractions based on the tandem array patterns (the first iteration) defined in
Table 6.3. Figure 6.29(a) depicts the average time along with the 95% confidence
intervals (over five independent runs) for the transformation of logs of different sizes.
We can see that the time for transforming logs varies linearly with respect to the
number of events. In order to study the influence of the number of patterns on the
transformation process, we keep the size of the log constant. We considered a log
containing 100 traces and 40,995 events pertaining to the digital copier example. We
considered the maximal repeat patterns and selected varying number of abstractions.
Figure 6.29(b) depicts the average time along with the 95% confidence intervals (over
five independent runs) for the transformation of logs for varying number of patterns.
The average pattern length is also depicted. We notice that the time for transfor-
mation of logs varies linearly with the number of patterns. This indicates that the
proposed approach is computationally tractable for large scale event logs.
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Figure 6.29: Computation time required for the transformation process for varying sizes of the log
and the number of patterns.

6.7 Limitations and Extensions

One of the limitations of the proposed approach is the bias introduced in the definition
of non-continuous manifestation of patterns (Definition 6.3). The definition prefers
the activities in the closest vicinity as the manifestation of a pattern. For example,
consider the trace t � lelefbd and the patterns le and lebd. Figure 6.30(a) depicts
how the pattern manifestations would be considered as per the current definition, i.e.,
the manifestation of le corresponds to `t�1�, t�2�e and that of lebd corresponds to`t�3�, t�4�, t�6�, t�7�e. One might argue that one could have considered the scenario
as depicted in Figure 6.30(b). We propose that such conflicts can be easily resolved
by considering additional attributes of the events, e.g., one can consider the data/re-
source attributes to identify whether the activities b and d are executed by the same
resources as that of the activities l and e at positions 1 and 2 or 3 and 4; if they
happen to be the same as that of 1 and 2, then we can resolve that favorably to the
scenario depicted in Figure 6.30(b). Similar argument holds for the disambiguation
of abstractions in Algorithm 6.1.

l e l e f b d
1 2 3 4 5 6 7

(a)

l e l e f b d
1 2 3 4 5 6 7

(b)

Figure 6.30: Resolving conflicts in the non-continuous manifestation of patterns.
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6.8 Conclusions

In this chapter, we addressed the problem of dealing with fine-granular event logs and
less structured processes. We proposed a two-phase approach to process discovery
that enables the discovery of navigable process maps with seamless zoom-in/zoom-
out facility. The heart of the approach lies in the first phase where we exploit the
abstractions over common execution patterns defined in Chapter 3 and transform
the event logs to a desired level of granularity. One can also alternatively use ab-
stractions defined by domain experts. The second phase deals with discovering the
process maps with seamless zoom-in/out facility. The definition of abstractions and
the transformation of logs can be repetitively applied to mine models with multiple
levels of hierarchy. The second phase is a generic phase where any process discovery
technique can be applied to mine maps. Using our experiments, we showed that
the two-phase approach enables the discovery of high quality models with improved
comprehensibility.
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Chapter 7

Process Map Performance
Analysis

In the previous chapter, we showed how to discover process maps from event logs.
Using abstractions, the process can be viewed at different levels of granularity. Pro-
cess maps play an important role in the analysis of business processes. Process maps
can be enriched with additional information such as the performance metrics, which
can help us in gaining insights into operational processes, e.g., identifying the bot-
tlenecks in a process, the activities that cause them, etc. Such diagnostics can be
used in process redesign or in process optimization. Brand and Van der Kolk [27]
have proposed four dimensions, viz., time, cost, flexibility, and quality, for analyzing
the performance of processes. These dimensions are not necessarily orthogonal, e.g.,
the cost dimension is closely related to the other dimensions (a low quality process
might influence costs through expensive rework). In this chapter, we focus only on
the time dimension as it is one of the most fundamental measures of performance
[160]. In order to estimate the performance of a process on the time dimension, we
need two inputs: (i) a process model/map describing the process and (ii) an event
log capturing the process executions, i.e., cases; we assume that the event logs con-
tain information associated with time such as the start/completion timestamp of an
event. To analyze the performance based on these inputs, three primary steps need
to be taken:

� define or select appropriate performance metrics and/or Key Performance In-
dicators (KPIs)

� compute the KPIs from event logs via replaying the logs on process maps

� project the KPIs onto process maps and highlight potential bottlenecks

In this chapter, we consider the process maps discovered using the approach presented
in Chapter 6 as the input process model. More specifically, we consider Fuzzy maps
as the representation for process maps and address all of the above three points. The
process maps can be at multiple levels of hierarchy and the input event log can be
at any level of hierarchy.

The remainder of this chapter is organized as follows. Related work is presented in
Section 7.1. We list interesting Key Performance Indicators (KPIs) in Section 7.2.
Section 7.3 discusses a technique for replaying event logs onto Fuzzy maps. Relevant
KPIs are estimated (measured) during replay. Section 7.4 presents design criteria
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for annotating Fuzzy maps with the computed KPI metrics. We present and discuss
some experimental results in Section 7.5. Finally, Section 7.6 concludes this chapter.

7.1 Related Work

Most of the commercial process monitoring tools compute the performance measures
based on either user-defined process models directly linking events in the log to
parts of the model or purely from an event log independent of any process model
[110]. Currently, very few techniques [2, 110, 225, 240, 251] are available that project
performance related information onto discovered process models. However, these
approaches are restricted to process models that are “flat”. In [225], the authors
derive performance indicator values from timed workflow logs. The authors first mine
a colored workflow (Petri) net from the log using an extension of the α algorithm
[229] and subsequently replay the log on the mined net to compute performance mea-
surements. This approach assumes that the discovered model fits the log, i.e., each
case in the log should be a trace in the discovered model. Hornix [110] extended the
approach presented in [225] by enabling invisible transitions to fire. This facilitates
the relaxation of the assumption in [225] so that the model does not have to fit the
log. The extension proposed in [110] is based on the log replay approach in [190],
although the focus of replay is on measuring conformance between the log and the
net rather than on measuring performance. For complex and/or less-structured logs,
flat models become “spaghetti-like” showing many details without distinguishing
what is important and what is not [218]. Hence, it is difficult for business analysts
to obtain/infer any useful insights out of these models.

For classical Fuzzy models [91, 94], animation techniques (based on heuristic re-
play) are available to visually represent the execution captured in an event log on
the model. One can identify potential bottleneck/deadlock activities/flows in the
model using this animation. However, this approach does not reveal any explicit
performance measures. Moreover, as discussed in the earlier chapter, Fuzzy models
support only two-level hierarchies and the user has little control over the abstraction.
Moreover, large/less structured processes can still be difficult to comprehend. Van
Dongen and Adriansyah [2, 240] have proposed an approach of clustering events to
discover a model at a desired level of abstraction and subsequently compute per-
formance measures by replaying a log onto this model. The discovered models are
called as Structural Precedence Diagrams (SPDs). Each node in a SPD represents a
set of activities performed in a process and there exists many-to-many relationship
between nodes and activities. Their replay approach is based on the replay algo-
rithms in [91, 225]. Although SPDs provide a means of dealing with less-structured
logs by means of abstractions, it nonetheless is still a flat model. In contrast, the
approach proposed in this chapter measures performance indicators and is applicable
to process maps with multiple levels of hierarchy. Furthermore, the input event log
can be at any level of hierarchy with respect to the process map. We adapt the
ideas presented in [2, 240] for the projection of performance information onto process
maps. The approach presented in this chapter is an extension of the ideas presented
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in [197].

7.2 Key Performance Indicators

Key Performance Indicators (KPIs) define a set of values that typically assist in
assessing the performance of organizations, processes, departments, resources, etc.
These metrics can be derived directly either from an event log or by replaying an
event log onto a process map. Several measurements that use timestamps in event
logs have been proposed in the literature [2, 110, 116, 182, 212, 225]. Activities in
a process can go through different states as depicted in Figure 7.1. An event log
with events capturing such fine-grained states of activities enables the estimation of
various measures such as the throughput time, service time, synchronization time,
and waiting time of cases and activities.

successful
termination

unsuccessful
termination

schedule assign

reassign

start
suspend

resume

autoskip manualskip
com

plet
e withdraw

abort activity

abort case

Figure 7.1: Standard transactional life-cycle model [221].

In this chapter, we focus on metrics relevant for annotating process models. We
consider the following KPIs, which can be broadly classified into three categories:

1. Process KPIs: Process KPIs refer to performance metrics that are measured at
the process level or at the level of cases (i.e., process instances) and comprises
of the following:

� Number of cases: the total number of cases in the event log L.

� Arrival rate of cases: the number of cases that arrive per unit time.

� Case throughput time: the amount of time it takes to handle a case. This
is basically the difference between the time when a case has completed
to the time of its creation. Throughput time is also referred to as lead
time. For a given event log, we can derive measures such as the minimum,
maximum, average, and variance of case throughput time.

� Service levels: the percentage of cases handled with a predefined time.

2. Node KPIs: Nodes in a process map correspond to event classes, e.g., the set
of activities. We measure the following metrics for nodes in a process model
based on an event log L.
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� Number of executions: the number of times a node has been invoked or
executed among the cases in the event log.

� Number of skipped executions: the number of times the execution of a node
has been skipped among the cases in the event log.

� Number of initializations: a process map can have primitive nodes and
abstract nodes. Abstract nodes capture subprocesses. The number of
initializations of a node at the top-level of the process map indicate the
number of cases in an event log that start at this node. For the nodes
inside a subprocess, this corresponds to the number of times instances of
the subprocess (within cases) start at the node.

� Number of terminations: this is analogous to the number of initializations.
For any node in the top-level process model, this metric indicates the num-
ber of cases that terminate at the node. If the node is inside a subprocess,
this metric indicates the number of times instances of a subprocess termi-
nate at the node.

� Node throughput time: the execution of nodes in a process map, which
signify event classes, are considered to be atomic. However, abstract nodes
in a process map contain a subprocess underneath it. Hence, the execution
of abstract nodes is not atomic. The throughput time of abstract nodes
corresponds to the total throughput (execution) time of all instances of
the subprocess executed in the event log. Apart from the total throughput
time, we can also measure the minimum, maximum, average, and variance
of node throughput times.

3. Edge KPIs: We measure the following KPIs for the edges in a process map

� Number of executions: for any edge in the process map, this corresponds
to the number of times the edge is executed in an event log, i.e., control
is passed from the source node to the target node of the edge.

� Number of skipped executions: for any edge in the process map, this cor-
responds to the number of times execution of the edge is skipped. This
arises when either the source node or the target node of the edge is skipped
in an event log.

� Edge throughput time: for any edge in the process map, this corresponds
to the total time spent to route control among all instances of execution of
the edge in an event log. For each instance of execution of the edge, this
corresponds to the difference between the timestamps of the event instance
associated to the target node and the event instance associated to the
source node. Apart from the total throughput time, we can also measure
the minimum, maximum, average, and variance of edge throughput times.

In the next section, we present an approach to measure these KPIs by replaying an
event log on a process map.
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7.3 Replaying Logs on Process Maps

As discussed in the previous chapter, a process map can have abstract nodes.
Abstract nodes can be zoomed-in to view the subprocesses captured by them. Sub-
processes captured by an abstract node can in turn have abstract nodes inside them
thereby inducing a hierarchy of processes. A process map with hierarchies can be
visualized as a tree as depicted in Figure 7.2. Each node in the tree represents a
process model in the process map and the depth of a node indicates the level of the
corresponding process model in the process map. The tree depicted in Figure 7.2
represents a process map with four hierarchical levels. The root node M0 indicates
the top-level process model and is considered to be at level 0. The top-level process
model contains n � 1 subprocesses M10,M11, . . . ,M1n, which are at level 1 of the hi-
erarchy. The subprocesses M11 and M1n have further abstract nodes within it, which
are captured by the process models M20,M21, and M23 at level 2 of the hierarchy.
Finally, the process model M21 has an abstract node defining the subprocess M30,
which is at level 3 of the hierarchy.

top-level process modelM0

subprocesses at level 1M10 M11 M12
. . . M1n

subprocesses at level 2M20 M21 M22

subprocess at level 3M30

A B C D

E F G

H

Figure 7.2: A process map visualized as a tree of process models. Subprocesses are depicted with
their corresponding abstract activity manifested as a node in its parent model. For example, the
subprocess M30 corresponds to the abstract activity H, which is a node in M21.

We choose Fuzzy maps as the representation for process maps. We propose an
approach using principles from graph theory for replaying an event log on the Fuzzy
maps. We assume that the process map can have any number of hierarchical levels
and that the event log can be at any level of abstraction with respect to the process
map. Furthermore, we assume that each process instance can be replayed on the
process map to a large extent, i.e., we assume that the noise (if any) in the event logs
is negligible. Before we look at the replay technique, we define a few terms.

A process map defines a set of process models (as depicted in Figure 7.2). Let
M denote the set of all process models in a process map. Let AM denote the set
of all activities in the process map (each node in a process map corresponds to an
activity). Let lm � M � N0 denote the level of a process model. Let f � M � 2AM

denote the set of activities in a process model M >M. It could be the case that there
are duplicate activities in the process map, i.e., two or more models can have some
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activities in common. A model can be unambiguously characterized by the activities
that belong exclusively to that model.

Definition 7.1 (Activities Unique to a Model). Given a process map defined
by a set of process models M and the set of activities AM, the activities unique to a
process model M >M, u �M� 2AM, is defined as the set of activities that are present
only in this process model M . In other words,

u�M� � �a > f�M� S ¦M �
>M

M �
xM

a ¶ f�M ���
-

Definition 7.2 (Level of an Event Log with Respect to a Process Map).
Given a process map defined by a set of process models M and the set of activities
AM, and an event log L > B�A��1, the level of the log L with respect to the process
map, is defined as the deepest level of a model M > M such that L contains at least
one activity from the set of activities unique to the model M . In other words,

Level of a log L � max�l S l > lm�M� ,A 9 u�M� x g for all M >M�
-

We now discuss our replay technique. The required inputs are a Fuzzy map and an
event log. The event log can be at any level of hierarchy with respect to the process
map. The basic idea of our replay technique is to process the event log iteratively
from the deepest level to the top-most level (on lines similar to the transformation of
logs defined in Section 6.3). During this process we relate manifestations of activity
sequences to flows in the process models at the corresponding level and compute the
relevant KPIs. At the same time, the event log is transformed into a higher-level of
abstraction by replacing the mapped activity sequence with its abstract activity, which
captures the process model to which the activity sequence is mapped to. In addition,
we set the start and completion timestamps of the abstract activity to the timestamps
of the first and the last event in the activity sequence respectively. The transformed
event log forms the input for the next iteration. It is important to note that at any
iteration, only the activities in the event log belonging to that level are processed
and activities at higher levels are postponed for processing at appropriate levels.
Figure 7.3 depicts the basic idea of our replay technique.

There are two core aspects of our replay technique:

1. identifying the manifestation of activity sequences

2. mapping the activity sequences to flows in a Fuzzy model

For the first step, we exploit the common execution patterns (maximal repeats and
tandem arrays defined in Chapter 3) to guide the process of replay. This is unlike
the approach presented in [2, 240] where the authors use a sliding window of fixed
size over a trace in identifying the activity manifestations. For the second step, we
take guided walks through the graph (Fuzzy model) and identify the flows; the walks

1here, we assume that all elements of A appear in L.
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Figure 7.3: The basic idea of replaying a log onto a process map. Activities in an event log
are processed from the lowest level of abstraction to the highest level. At any level, the common
execution patterns manifested in an event log are mapped onto the flows in an appropriate model
at that level and performance metrics are computed.

are guided by the activity sequence.

Algorithms 7.1 and 7.2 present a high-level overview of our approach to replay
an event log onto a Fuzzy map. We discuss the algorithm using the same example
as used to illustrate the discovery of process maps in Section 6.4. Figure 7.4 depicts
the Fuzzy map and Figure 7.5 depicts the tree of Fuzzy models in the map. The
Fuzzy map consists of three hierarchical levels. Let us consider an event log at
the deepest level L � �t1, t2, t3, t4, . . . � whose corresponding sequences of activities
are �jgclebdabdfi,jgcfahbdledi,gjahbdfi,cgjlefbdi, . . . � defined over the set of
activities A � �a,b,c,d,e,f,g,h,i,j,l� (Step 1, Algorithm 7.1). As depicted in Fig-
ure 7.5, the Fuzzy map contains the Fuzzy models M � �M0,M10,M11,M20,M21� and
contains the activities AM � �Artificial Start Task,Artificial End Task�
8 A (Step 2, Algorithm 7.1). f�M� defines the set of activities in a process model
M > M, e.g., f�M0� � �Artificial Start Task,Artificial End Task,W,M,f,i�
(Step 3, Algorithm 7.1). The level of the log L, levelL, with respect to the process
map is 2 (Step 4, Algorithm 7.1).

The algorithm iterates over the log from the deepest level to the top level and
considers only the process models at the current log level in any iteration (Step 5, Al-
gorithm 7.1). M20, and M21 are the process models at level 2 and the set of activities
in these two models areAM2 � �Artificial Start Task,Artificial End Task,a,
b,c,d,e,h,l� (Step 6, Algorithm 7.1). Step 7 of the algorithm discovers the set of
common execution patterns in the event log. As mentioned earlier, we consider the
tandem arrays and maximal repeats as the notion of common execution patterns.
P � �jgc,lebd,le,ahbd,bd,di,f,bdfi, . . .� are some of the maximal repeats in L.
We prune the patterns P to reflect only the patterns involving the activities at
this level. Pruning here refers to ignoring patterns that do not involve any activity
from this level and the removing of activities not belonging to this level from a
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Algorithm 7.1 Replay Algorithm to Compute Performance

1: Let L � �t1, t2, . . . , tn� be an event log defined over the set of events E and the
set of activities A.

2: Let M be a process map, M be the set of process models in the process map, and
AM be the set of activities in the process map. M0 > M is the top-level process
model.

3: Let f �M� 2AM define the set of activities belonging to a process model M >M.
4: Let levelL denote the level of the log with respect to the process map M
5: for l � levelL to 1 do
6: Let Ml bM be the set of process models at level l and AMl b AM be the set

of activities in Ml, i.e,. AMl � �M>Ml
f�M�

7: Let P be the set of common execution patterns in L. Prune P to reflect only
patterns involving the activities in the process models at this level. Let Pl be the
set of such pruned patterns.

8: Initialize L� � � �
9: for all t > L do

10: Let t correspond to the sequence of activities in t
11: Let t� � `e be the transformed trace corresponding to t
12: for i � 1 to StS do
13: if t�i� ¶ AMl then
14: append t�i� to the transformed trace, i.e., t� � t� l t�i�
15: end if
16:

17: Let p > P be the longest manifestation of a pattern (considering the
continuous, non-continuous, and approximate manifestations) at position i in t

18: If p is manifested either non-continuously or approximately at position
i, then readjust its manifestation in both t and t

19: Let M be the model that can be best associated to pattern p. Prune
p to contain only activities belonging to M

20:

21: Map and Update Performance(p, M , t, i, t�)
22:

23: Set i � i � SpS � 1
24: end for
25: L� � L� > �t��
26: end for
27: Set L � L�

28: end for
29:

30: Find patterns in the log at level 0, map and update performance metrics at the
top-level process model
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Algorithm 7.2 Map and Update Performance

Require: a pattern p, a model M , trace t, pattern index i in trace t, transformed
trace t�

1: get all guided walks defined by the pattern p in the model M . For subsequences
in p for which a walk does not exist, get all the individual activities

2: for each walk w defined by the pattern do
3: update the node and edge metrics
4: end for
5: for each activity in p not mapped to any walk do
6: update the node metrics
7: end for
8: if there exists multiple walks and/or activities not mapped to any walk then
9: determine the connectivity between the different walks and individual activi-

ties not mapped to any walk defined by the pattern p in M and update the node
and edge metrics pertaining to the connectivity

10: end if
11: if a new instance of M has to be created then
12: create a new event e with the activity name as the abstraction corresponding

to M ; set the start timestamp of the event e to that of the first event in p and
the complete timestamp to that of the last event in p;

13: append the event e to the transformed trace t�, i.e., t� � t� l e
14: else
15: determine the connectivity between the previous instance of M and the pat-

tern p and update the node and edge metrics pertaining to the connectivity
16: if M is a subprocess then
17: update the completion timestamp of the event e corresponding to the last

instance of M in t�

18: end if
19: end if
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top-level model

subprocess
M

subprocess Y

subprocess Z

subprocess
W

Figure 7.4: Process map of a simple example discussed in Section 6.4.

top-level
process model

M0

subprocesses
at level 1

M10 M11

subprocesses
at level 2

M20 M21

W M

Y Z

Figure 7.5: Process map depicted in Figure 7.4 visualized as a tree of process models. Subprocesses
are annotated with their corresponding abstract activity.

pattern p > P that contains some activities from this level AM2. For example, the
pattern jgc > P is ignored because it is defined over activities not in AM2, the
pattern bdfi is pruned to bd by removing f and i that do not belong to AM2. The
pruned patterns P2 � �ledb,le,bd,ahbd,d,bd�. The steps so far comprise the initial-
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index trace
model/

abstraction

pattern with
start/end

tasks

mapped
walks/

activities

transformed
trace

4 j g c l e b d a b d f i
1 2 3 4 5 6 7 8 9 10 11 12

M20/Y
ślebdź 〈ś, l, b, d, ź〉

〈e〉
jgcY #start(Y) = #time(l)

#time(Y) = #time(d)

since a subsequence is being replaced
by an abstract activity, we create two
timestamps, start and time, signifying
the start/completion of this instance
of abstraction

ś

l

b d ź

e

update node/edge metrics

〈ś, l, b, d, ź〉

ś.NoExecutions++
l.NoExecutions++
b.NoExecutions++
d.NoExecutions++
ź.NoExecutions++

ś.NoInitializations++
ź.NoTerminations++

(ś, l).NoExecutions++

(l, b).NoExecutions++

(b, d).NoExecutions++

(d, ź).NoExecutions++

(ś, l).ThroughputTime += 0

(l, b).ThroughputTime += #time(b)−#time(l)

(b, d).ThroughputTime += #time(d)−#time(b)

(d, ź).ThroughputTime += 0

since the timestamp of ś is
set to the timestamp of l

since the timestamp of ź is
set to the timestamp of d

〈e〉 e.NoExecutions++ (ś, e).NoExecutions++

(e, b).NoExecutions++

(ś, e).ThroughputTime += #time(e)−#time(ś)

(e, b).ThroughputTime += #time(b)−#time(e)

Figure 7.6: Mapping of the pattern lebd at position 4 in the trace t1 � jgclebdabdfi onto the
process model M20 and updating the node and edge metrics.

ization phases of the algorithm and the actual processing of traces starts from Step 9.

The basic idea here is to scan each trace from left to right and process the man-
ifestation of patterns at this level in the trace while postponing the processing of
activities not in this level for later stages. In the process, the pattern manifestation
is mapped onto an appropriate model at this level and the performance metrics are
updated. During this process traces in the event log are transformed into higher-levels
of abstraction. The transformed trace captures all postponed activities and the ab-
stract activity corresponding to each pattern manifestation in the original trace that
is mapped to a model. In the next iteration, the event log corresponds to the bag of
transformed traces.

Let us consider the trace t1 with the corresponding activity sequence t1 � jgcleb-

dabdfi (Step 10, Algorithm 7.1). Let t�1 denote the transformed trace corresponding
to t and t�1 be its activity sequence (Step 11, Algorithm 7.1). Since the first three
activities in t do not belong to the current log level, they are appended to the
transformed trace, i.e., t�1 � jgc (Steps 13–15, Algorithm 7.1). For simplicity reasons,

we depict only the activity sequences to explain the concept. At position 4 (see
Figure 7.6), we have a continuous manifestation of the pattern p � lebd (Step 17,
Algorithm 7.1). The process model M20, whose corresponding abstract activity is Y,
contains all of the activities involved in the pattern and hence p is best associated
to M20 (Step 19, Algorithm 7.1). We next need to map the pattern p to the flows in
the model M20 (Step 21, Algorithm 7.1).
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Since the models have artificial start/end nodes whereas the event log and pat-
terns do not, we append the artificial start/end activities to the pattern before
creating guided walks on the model. The timestamp of the artificial start task is set
to the timestamp of the first activity in p and that of the artificial end task is set to
that of the last activity in p. For ease of use, we represent the artificial start and end
tasks by ś and ź. The pattern after appending the artificial start/end tasks becomes
ślebdź. We now do a walk over the graph G � �V,E� (corresponding to M20) where
the walk is guided by the pattern. In other words, we scan the pattern from left to
right and walk along the nodes and edges in the graph corresponding to the sequence
defined by the pattern. If at any node vp > V in the graph, we do not find an edge/path
leading to the next activity in the pattern, we skip the activities in the pattern until
an activity corresponding to node vq is found such that there is an edge/path from
vp to vq. In other words, �vp, vq� > E or there exists a path `vp, vp�1, . . . , vqe in G.
If some activities have been skipped in the pattern, we try to find walks over the
sequence comprising the skipped activities. We repeat this procedure until the entire
pattern is mapped or until we are left with a sequence for which no walk exists. We
then update the edge/node metrics for each of the walks over the pattern and also
update the edge/node metrics connecting the different walks.

For the given pattern ślebdź, there exists a walk `ś,l,b,d, źe covering the pat-
tern in the graph corresponding to the process model M20 (Step 1, Algorithm 7.2).
At node l the next activity in the pattern is e. However, we do not see an edge/path
from l to e in the graph. So, we skip e from the pattern and proceed further, i.e.,
the activity b next to e for which we have an edge from l. Proceeding further, we
find a walk that covers the rest of the pattern. We now visit the skipped activities in
the pattern during the walk. In this case, we are left with only one skipped activity
e. Since we cannot find a walk involving only one activity, we terminate the process
with the walk `ś,l,b,d, źe and an individual activity `ee. We update the edge/node
metrics corresponding to the walk (flow) in the graph (Steps 2–4, Algorithm 7.2).
For the node metrics, we increment the number of executions of all nodes defined in
the walk by 1, so, the number of executions of ś, l, b, d, and ź is incremented by 1.
If a node is an abstract node, we increment its throughput time as well. Since this
walk does not contain abstract nodes, this does not apply here. We will look at this
in later stages (at subsequent log levels) for this example.

For each edge defined by the walk, we update both the number of executions
and the edge throughput time. In other words, the number of executions of the
edges �ś,l�, �l,b�, �b,d�, and �d, ź� is incremented by 1. The edge throughput
time of �ś,l� is incremented by 0 since the time of the artificial start task, ś, is set
to the timestamp of the first activity l (i.e., #time�t1�4��). The throughput times
of the edges �l,b� and �b,d� are incremented by #time�t1�6�� � #time�t1�4�� and
#time�t1�7�� � #time�t1�6�� respectively. The throughput time of the edge �d, ź�
is incremented by 0 since the timestamp of the artificial end task, ź, is set to the
timestamp of d (i.e., #time�t1�7��). We now process the activity e not mapped to
any walk in the pattern (Steps 5–7, Algorithm 7.2). From the graph, we identify
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the nodes in the graph that connect the activity to an already mapped walk. The
edges �ś,e� and �e,b� connect the skipped activity e to the walk (Steps 8–10, Algo-
rithm 7.2). We increment the number of executions of the node e and the number
of executions of the edges �ś,e� and �e,b� by 1. We also increment the throughput
times of the edges by #time�t1�5�� �#time�t1�4�� and #time�t1�6�� �#time�t1�5��
respectively.

Since this pattern corresponds to the abstract activity Y, we create an event e with ac-
tivity name as Y (Steps 11–12, Algorithm 7.2). The timestamp attribute of this event
is set to the timestamp of the last event in the pattern, i.e., #time�e� � #time�t1�7��.
Since an abstract activity captures a subsequence of events, we create an additional
attribute that signifies the start timestamp of the event sequence and set its value
to the first event’s timestamp in the pattern, i.e., #start�e� � #time�t1�4��. This is
essential when updating the throughput times of the abstract nodes and the through-
put times of the edges leading to/from the abstract node. We add the event e to the
transformed traced t�1, i.e., t�1 � jgcY (Step 13, Algorithm 7.2). i is incremented to 7

(Step 23, Algorithm 7.1).

At position 8 (see Figure 7.7), we have an approximate manifestation of the pattern
ahbd as p � abd (Step 17, Algorithm 7.1). This pattern is mapped to M21. Just like
in the above case, we add an artificial start/end task to the pattern. The pattern
after this addition becomes śabdź. We now do a walk over the graph G � �V,E�
(corresponding to M21) where the walk is guided by the pattern. There exists a walk`ś,a,h,b,d, źe capturing the pattern (Step 1, Algorithm 7.2). Note that at node a

the next activity in the pattern is b but there is no edge that directly connects a

and b. However, we have a path `a,h,be connecting a and b. Now we update the
node and edge metrics (Steps 2–4, Algorithm 7.2). The number of executions of the
nodes ś,a,b,d, and ź is incremented by 1. Since we have an activity h in the walk
that is not in the pattern, the node h is considered to be skipped. We increment the
skip frequency of h by 1. The number of executions of the edges �ś,a�, �b,d�, and�d, ź� is incremented by 1 while the edges �a,h� and �h,b� have their skip frequency
incremented by 1. The throughput time of the edges �ś,a�, �b,d�, and �d, ź� is
incremented by 0, #time�t1�10�� � #time�t1�9��, and 0 respectively (recall that the
timestamp of ś is set to that of a and the timestamp of ź is set to that of d). We
create an event e whose activity name corresponds to Z (Steps 11–12, Algorithm 7.2).
The timestamp attribute of this event is set to the timestamp of the last event in
the pattern, i.e., #time�e� � #time�t1�10�� and the start time of this event is set
to #start�e� � #time�t1�8��. The event e is appended to the transformed trace t�1,
i.e., t�1 � jgcYZ (Step 13, Algorithm 7.2). i is updated to 10 (Step 23, Algorithm 7.1).

In the next iterations, the activities f and i at positions 11 and 12 do not be-
long to this level. Therefore, we append them to the transformed trace (Steps 13–15,
Algorithm 7.1). The transformed trace after the end of processing all activities at
this level is t�1 � jgcYZfi, which is at level 1. Proceeding further, we process all the
traces in the event log.
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index trace
model/

abstraction

pattern with
start/end

tasks

mapped
walks/

activities

transformed
trace

8 j g c l e b d a b d f i
1 2 3 4 5 6 7 8 9 10 11 12

M21/Z śabdź 〈ś, a, h, b, d, ź〉 jgcYZ #start(Z) = #time(a)
#time(Z) = #time(d)

since a subsequence is being replaced
by an abstract activity, we create two
timestamps, start and time, signifying
the start/completion of this instance
of abstraction

ś a b d ź

update node/edge metrics

〈ś, a, h, b, d, ź〉

ś.NoExecutions++
a.NoExecutions++
b.NoExecutions++
d.NoExecutions++
ź.NoExecutions++

h.NoSkipped++

ś.NoInitializations++
ź.NoTerminations++

(ś, a).NoExecutions++

(b, d).NoExecutions++

(d, ź).NoExecutions++

(a, h).NoSkipped++

(h, b).NoSkipped++

(ś, a).ThroughputTime += 0

(b, d).ThroughputTime += #time(d)−#time(b)

(d, ź).ThroughputTime += 0

since the timestamp of ś is
set to the timestamp of a

since the timestamp of ź is
set to the timestamp of d

Figure 7.7: The pattern ahbd has an approximate manifestation, abd, at position 8 in the trace
t1 � jgclebdabdfi. Mapping the manifestation abd onto the process model M21 and updating the
node and edge metrics.

Now we process the traces at level 1 (Step 5, Algorithm 7.1). There are two
process models M10 and M11 corresponding to abstractions W and M respectively at
level 1. Some of the common execution patterns in the event log at this level are
P1 � �jgc,gj,YZ,Y,Z, . . .�. Consider the trace t1 � jgcYZfi at this level. At position
1 (see Figure 7.8), there exists a continuous manifestation of the pattern p � jgc in
t1 (Step 17, Algorithm 7.1). The process model M10 corresponding to the abstract
activity W contains all of the activities involved in the pattern and hence p is best
associated to M10 (Step 19, Algorithm 7.1). We next need to map the pattern p
to the flows in the model M10 (Step 21, Algorithm 7.1). Since the model contains
an artificial start/end task, we augment the pattern with these activities. The pat-
tern after adding the artificial start/end activities becomes p � śjgcź. We now do a
guided walk over the graph G � �V,E� (corresponding to M10). For the given pattern
śjgcź, there exists a walk `ś,j, źe covering the pattern (Step 1, Algorithm 7.2). At
node j the next activity in the pattern is g. However, we do not see an edge/path
from j to g in the graph. So, we skip g from the pattern and proceed further. We
do not see an edge/path from j to c either. We skip c as well. We find an edge from
j to ź thereby terminating the walk `ś,j, źe. Now, we revisit the skipped activities.
The sequence corresponding to the skipped activities is gc. We do not find a walk
corresponding to gc. Therefore, the process terminates with a walk `ś,j, źe and two
individual activities `ge and `ce.
We update the edge/node metrics corresponding to the walk (flow) (Steps 2–4,
Algorithm 7.2) and the activities in the pattern not mapped to any walk (Steps
5–7, Algorithm 7.2). In other words, we increment the number of executions of
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index trace
model/

abstraction

pattern with
start/end

tasks

mapped
walks/

activities

transformed
trace

1 j g c Y Z f i
1 2 3 4 5 6 7

M10/W śjgcź 〈ś, j, ź〉
〈g〉
〈c〉

W #start(W) = #time(j)
#time(W) = #time(c)

since a subsequence is being replaced
by an abstract activity, we create two
timestamps, start and time, signifying
the start/completion of this instance
of abstraction

ś

j

g

c ź

update node/edge metrics

〈ś, j, ź〉
ś.NoExecutions++
j.NoExecutions++

ź.NoExecutions++

ś.NoInitializations++
ź.NoTerminations++

(ś, j).NoExecutions++

(j, ź).NoExecutions++

(ś, j).ThroughputTime += 0

(j, ź).ThroughputTime += #time(c)−#time(j)

since the timestamp of ś is
set to the timestamp of j

since the timestamp of ź is
set to the timestamp of c

〈g〉 g.NoExecutions++ (ś, g).NoExecutions++

(g, ź).NoExecutions++

(ś, g).ThroughputTime += #time(g)−#time(j)

(g, ź).ThroughputTime += #time(c)−#time(g)

〈c〉 c.NoExecutions++ (ś, c).NoExecutions++

(c, ź).NoExecutions++

(ś, c).ThroughputTime += #time(c)−#time(j)

(c, ź).ThroughputTime += 0

since the timestamp of ź is
set to the timestamp of c

Figure 7.8: Mapping of the pattern jgc at position 1 in the trace t1 � jgcYZfi onto the process
model M10 and updating the node and edge metrics.

ś,j,g,c, and ź by 1. The number of executions of the edges �ś,j�, �ś,g�, and �ś,c�
is incremented by 1 while their throughput times are increment by #time�t1�1�� �
#time�t1�1��,#time�t1�2���#time�t1�1��, and #time�t1�3���#time�t1�1�� respec-
tively. Similarly, the number of executions of the edges �j, ź�, �g, ź�, and �c, ź� is
incremented by 1 while their throughput times are incremented by #time�t1�3�� �
#time�t1�1��,#time�t1�3���#time�t1�2��, and #time�t1�3���#time�t1�3�� respec-
tively. We create a new event e whose activity name is W and its start timestamp
#start�e� � #time�t1�1�� and its completion timestamp #time�e� � #time�t1�3��
(Steps 11–12, Algorithm 7.2). We append the event e to the transformed trace t�1,
i.e., t�1 � W (Step 13, Algorithm 7.2). i is updated to 3 (Step 23, Algorithm 7.1).

At the next position 4 (see Figure 7.9), we have a continuous manifestation of
the pattern p = YZ (Step 17, Algorithm 7.1). The process model M11 is best associ-
ated to p (Step 19, Algorithm 7.1). We next need to map the pattern p to the flows
in the model M11 (Step 21, Algorithm 7.1). The pattern after adding the artificial
start/end activities becomes p � śYZź. Since the first activity in the pattern Y is
an abstract activity, the timestamp of the artificial start task is set to the start
time of Y. The timestamp of the artificial end task is set to the completion time of
the last activity in the pattern, i.e., Z. We now do a guided walk over the graph
G � �V,E� (corresponding to M11). For the given pattern śYZź, the mapping termi-
nates with a walk `ś,Y, źe covering the pattern and an individual activity Z (Step 1,
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index trace
model/

abstraction

pattern with
start/end

tasks

mapped
walks/

activities

transformed
trace

4 j g c Y Z f i
1 2 3 4 5 6 7

M11/M śYZź 〈ś, Y, ź〉
〈Z〉

WM #start(M) = #start(Y)
#time(M) = #time(Z)

since a subsequence is being replaced by an
abstract activity, we create two timestamps,
start and time, signifying the start/completion
of this instance of abstraction. Since the start
activity of the pattern is an abstract activ-
ity (Y), we set the start time of M to the start
time of Y

ś

Y

Z

ź

update node/edge metrics

〈ś, Y, ź〉
ś.NoExecutions++
Y.NoExecutions++
ź.NoExecutions++

ś.NoInitializations++
ź.NoTerminations++

Y.ThroughputTime += #time(Y)−#start(Y)

(ś, Y).NoExecutions++

(Y, ź).NoExecutions++

(ś, Y).ThroughputTime += 0

(Y, ź).ThroughputTime += #time(Z)−#time(Y)

since the timestamp of ś is set to
the start timestamp of Y

since the timestamp of ź is set to
the completion timestamp of Z

since Y is an abstract activity, its throughput
time is incremented by the difference between
the completion and start time of this instance

〈Z〉 Z.NoExecutions++

Z.ThroughputTime += #time(Z)−#start(Z)

(ś, Z).NoExecutions++

(Z, ź).NoExecutions++

(ś, Z).ThroughputTime += #start(Z)−#start(Y)

(Z, ź).ThroughputTime += 0

since Z is an abstract activity, its throughput
time is incremented by the difference between
the completion and start time of this instance

since the timestamp of ś is set to
the start timestamp of Y

Figure 7.9: Mapping of the pattern YZ at position 4 in the trace t1 � jgcYZfi onto the process
model M11 and updating the node and edge metrics.

Algorithm 7.2). We update the edge/node metrics corresponding to the walk (flow)
and the activities not mapped to any walk (Steps 2–7, Algorithm 7.2). The number
of executions of the nodes ś, Y, Z, and ź is incremented by 1. Since the activities
Y and Z are abstract activities, we update the node throughput times of these two
nodes. Recall that an instance of an abstract activity captures a subsequence of
events. The start time of an abstract activity is captured under the attribute #start

while the completion time is captured in #time. The node throughput times of Y and
Z are incremented by #time�t1�4���#start�t1�4�� and #time�t1�5���#start�t1�5��
respectively.

The number of executions of the edges �ś,Y�, �Y, ź�, �ś,Z�, and �Z, ź� is incre-
mented by 1. Since Y and Z are abstract activities, the edge throughput times of the
incoming edges of abstract activities are updated considering their start timestamps
while the throughput times of their outgoing edges are updated considering the
completion timestamps. In other words, the throughput times of the edges �ś,Y� and�ś,Z� are incremented by 0 and #start�t1�5���#start�t1�4�� while that of the edges�Y, ź� and �Z, ź� are incremented by #time�t1�5�� �#time�t1�4�� and 0 respectively.
We create a new event e whose activity name is M and set its start timestamp to
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that of the start time of Y and the completion timestamp to that of the completion
time of Z, i.e., #start�e� � #start�t1�4�� and #time�e� � #time�t1�5�� (Steps 11–12,
Algorithm 7.2). We append the event e to the transformed trace t�1, i.e., t�1 � WM

(Step 13, Algorithm 7.2). i is updated to 5 (Step 23, Algorithm 7.1).

In the next iterations, the activities f and i at positions 6 and 7 do not belong
to this level. We append them to the transformed trace and the final transformed
trace is t�1 � WMfi, which is at level 0 (Steps 13–15, Algorithm 7.1). Proceeding
further, we process all the traces in the event log.

We now process the event log at the top-level (Step 30, Algorithm 7.1). Since
the top-level model contains artificial start/end tasks, we add an artificial start/end
task event at the beginning and end of each of the traces in the top-level event log.
The timestamp of the artificial start event is set to the timestamp of the first event
in the trace while that of the artificial end event is set to the last event in the trace.
Note that this is unlike the earlier iterations where we added the artificial start/end
tasks for each pattern manifestation. Some of the common execution patterns at this
level are P0 � �śW, śWM, śWMf, śWf,iź, . . .�. Consider the trace t1 � śWMfiź.

At position 1, there is a continuous manifestation of the pattern śWMf. Upon
mapping the pattern onto the top-level process model, we get a walk `ś,W,Me and
an individual activity f covering the pattern (Step 1, Algorithm 7.2). The number
of executions of the nodes ś,W,M, and f is incremented by 1 (Steps 2–10, Algo-
rithm 7.2). The throughput times of the abstract nodes W and M are incremented
by #time�t1�2�� � #start�t1�2�� and #time�t1�3�� � #start�t1�3��. The number of
executions of the edges �ś,W� and �W,M� is incremented by 1. Since the individual
activity f is connected to W, we increment the number of executions of the edge �W,f�
by 1. The throughput times of the edges �ś,W�, �W,M�, and �W,f� are incremented by
0, #start�t1�3���#time�t1�2�� and #time�t1�4���#time�t1�2�� respectively. In the
next iteration, at position 5, there exists a continuous manifestation of the pattern
iź. There exists a walk `i, źe in the top-level process model (Step 1, Algorithm 7.2).
We update the number of executions of the nodes i, ź, and the edge �i, ź� by 1.
The throughput time of the edge �i, ź� is incremented by 0 (since the timestamp of
ź is the same as that of i. Since this pattern is mapped to the same model as the
previous pattern, we look back into the trace and identify the events corresponding
to the incoming edges to the first activity i of this pattern (Step 15, Algorithm 7.2).
The incoming nodes correspond to M and f. Since we find both these activities in
the look-back, we update the number of executions of the edges �M,i� and �f,i� by
1 while their throughput times are incremented by #time�t1�5�� �#time�t1�3�� and
#time�t1�5�� � #time�t1�4�� respectively. In this fashion, the performance metrics
are computed.

In the next section, we suggest techniques that can assist in discovering interesting
diagnostic insights from these KPIs.
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7.4 Annotating Fuzzy Maps and Diagnostics

Business analysts can exploit the KPIs estimated during replay and analyze their
operational processes. These KPIs provide rich diagnostic information in identifying
the bottlenecks in a process, i.e., the activities and/or flows that hinder the per-
formance of a process. An intuitive visualization and highlighting of problematic
regions in a process can go a long way in assisting analysts in diagnosing the issues
quickly. Though different visualization means such as creating tables and charts can
be considered, they alienate the process perspective, which the analysts are most
interested in. Therefore, a simple and straightforward means is to annotate the
process models with the relevant metrics. This can be augmented with some color
coding based on certain criteria (defined later in this section) to highlight the regions
of interest such as bottlenecks.

Figure 7.10 depicts the annotation of a node and edges of a Fuzzy process map
with performance metrics. The basic visualization and exploration features of Fuzzy
models are retained for performance visualization. For example, as discussed in
Chapter 6, abstract nodes in a performance annotated process map are colored in
blue to differentiate them from primitive nodes, the width of an edge indicates the
significance, etc. However, we enrich the process map with additional information.
As depicted in Figure 7.10, a process node captures five KPIs:

� the number of times the node is the initial activity of the process for the cases
in the event log (labeled INIT),

� the number of times the node is the termination activity of the process for the
cases in the event log (labeled TERM),

� the number of times the node is executed in the event log (labeled COUNT),

� the number of times the execution of the node is skipped in the event log
(labeled SKIP), and

� the average throughput (execution) time of the node.

It is important to note that the nodes/activities in the model are considered to be
atomic. Therefore, only abstract nodes have an average throughput time, which
signifies the average time spent by the cases in the event log in the subprocesses
captured underneath that abstraction. Edges in a process map are annotated with
the number of executions. Additional information on the performance metrics can be
provided through an interactive visualization, e.g., upon selecting a node, additional
information such as the total throughput time, minimum, maximum, and standard
deviation of the throughput time can be provided. Similarly, upon selection of an
edge, one can provide information such as the minimum, maximum, average, and
standard deviation of the throughput time of the edge, the total throughput time,
and the number of times the edge is skipped.

We can further enrich the annotation of a process map with color coding to highlight
the performance of entities (nodes/edges). The basic idea in performance coloring is
to have two thresholds, a min and max for a metric such as the average throughput
time, for each entity in a process map. If the average value of a metric of an entity is
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Initialization frequency
#times this node is the ini-
tial activity in the process

Termination frequency
#times this node is the ter-
minal activity in the process

Count
#times this node is exe-
cuted in the process

Skipped frequency
#times this node is
skipped in the process

Abstract nodes are
depicted in blue color

Average throughput
time of this abstract
node

#times this edge is
taken in the process

Average node through-
put time performance
indicator (color)

Average edge through-
put time performance
indicator (color)

Figure 7.10: Annotating a node and edge in a process model with KPIs for visual inspection.

below the min threshold, we color an entity with green, if the average is between the
min and max thresholds, we color it with yellow, and if the average is above the max
threshold, we color it with red. Entities colored in red are potential bottlenecks in the
process and require critical inspection. We suggest three criteria for consideration as
the min and max thresholds of entities in a process map.

� Model Specific Averages: In this strategy, the threshold for an entity in a process
map is defined based on the global averages of the process model in which it
manifests. More specifically, for a chosen metric such as the throughput time,
we compute the average metric value for each of the models in the process
map. All nodes in the model carry the same min and max thresholds, which
are defined as percentages of the average metric value of that model. In other
words, for any model M , let NodeAvgM denote the average of the metric value
of all the nodes in the model. For some chosen percentages δmin > �0,1� and
δmax > �0,1�, the min and max thresholds for all nodes v in the model M are
defined as

min � �1 � δmin� � NodeAvgM

max � �1 � δmax� � NodeAvgM

The color coding of a node is then defined based on these min and max thresh-
olds. The basic intuition behind this coloring scheme is that we consider nodes
whose average metric value is significantly higher than that of the models’ av-
erage as potential bottlenecks (where the significance bounds are provided by
the user in terms of acceptable percentages with respect to the model average
value). The edge thresholds can be defined in a similar manner.

� Large Deviations: Considering fixed thresholds for all nodes/edges in a model
might not always be appropriate, especially in scenarios where the process ex-
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ecution time is dominated by a few activities. For example, in the insurance
claim process described in Section 5.1, the predominant time consuming activ-
ities are the ones pertaining to the checks to be done in order to determine the
validity of a claim. In such scenarios, the performance insights obtained using
global model averages are too obvious for analysts. Therefore, we propose an
alternative strategy where the thresholds are defined more locally (specific to
each entity). In this strategy, we consider entities in a model with large de-
viations as potential bottlenecks. For example, if a task has a large deviation
with respect to its execution time, it indicates that for some cases, the task can
be completed quickly but for others it takes longer. It provides an opportunity
for analysts to investigate the reasons for such a phenomenon and thereby im-
prove their processes. In this strategy, unlike the model specific averages, each
node/edge has a different threshold based on its average metric value. For some
chosen percentages δmin > �0,1� and δmax > �0,1� and δmax A δmin, The min and
max thresholds for the standard deviation metric value of an entity are defined
as

min � δmin � avg

max � δmax � avg

where avg is the average metric value of the entity. In other words, nodes/edges
whose execution time standard deviation is less than their corresponding min
threshold are colored green, while nodes/edges whose execution time standard
deviation is between their min and max thresholds are colored yellow, and
nodes/edges whose execution time standard deviation is above their max thresh-
old are colored red.

� Benchmark Thresholds: The third strategy for performance coloring is based on
user defined benchmark thresholds for each activity/edge. Such thresholds can
emanate from standard/best practices or from simulation models. For example,
in the insurance claim process, the organization might specify the expected
execution time of tasks such as the high insurance check takes between 15 and
20 minutes. If upon replaying an event log, the average metric values exceed
this range, they can be highlighted as potential bottlenecks.

7.5 Experiments and Discussion

In this section, we apply the proposed approach for performance analysis on the
digital copier example. We have considered a log L containing 100 traces, 76 event
classes, and 40,995 events. 51 traces pertain to print job requests while the remaining
49 traces pertain to copy/scan jobs. We first discover a process map using this event
log. The process map corresponds to the one depicted in Figures 6.25, 6.26, and 6.27.
Figure 7.11 depicts the tree representation of the process map. This process map
contains four hierarchical levels. The event log L is at the finest granularity, i.e., level
3. We replay the log onto this process map and compute the performance metrics.
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Figure 7.11: Process map of the digital copier example (discussed in Section 6.5) visualized as a
tree of process models. Subprocesses are annotated with their corresponding abstract activity. The
process map of the digital copier can be inspected in Figures 6.25, 6.26, and 6.27.

Figure 7.12 depicts the top-level process model annotated with performance mea-
sures. As indicated in the figure, all cases start at the activity Job–start (this is
reflected in the KPI No.Initializations=100 for this node). Similarly, all cases termi-
nate at Job–complete. The coloring of nodes and edges in Figure 7.12 is based on
model specific averages with tolerance thresholds of �10%. Nodes/edges whose aver-
age throughput time is lower than 90% of the model’s average node/edge throughput
time are colored green while those with average throughput time greater than 110%
are colored red. Nodes/edges with average throughput time between 90% and 110%
of the model’s average node/edge throughput time are colored yellow. The average
node throughput time for this model is 505.925 time units while the average edge
throughput time is 21877.607 time units. The relatively high average edge through-
put time for this model is solely due to the queuing of jobs before they are processed2,
i.e., between Job–start and Copy/Scan–complete and between Job–start and Remote
Print–complete. This is reflected in these edges acquiring a red color indicating that
their average throughput times are way above the model’s average.

Nodes that are colored blue at the center are abstract nodes. As mentioned in
Section 7.2, node throughput times are only defined for abstract nodes (as they
capture a subprocess underneath). There are five abstract nodes in this model,
viz., Interpret–complete, Render and Screen–complete, Capture Image–complete, Image
Processing–complete, and Print Image–complete. Among these, the nodes Capture
Image–complete and Print Image–complete are colored red because their average
throughput times, 888.837 and 7617.686 time units respectively, are at least 10%
over and above the model’s average node throughput time (i.e., 505.925). Further-
more, as mentioned in Chapter 3, the rendering and screening of pages is relatively

2In the copier, a new job request cannot be processed until the current job is finished.
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Edge:Job-start→Copy/Scan-complete
No.Executions=49 No.Skipped=0
Throughput Time: µ = 209221.875

σ = 143532.344

Node: Job-start
No.Executions=100
No.Skipped=0
No.Initializations=100

Node: Capture Image-complete
No.Executions=49
No.Skipped=0
Throughput Time: µ = 883.837

σ = 365.140

Node: Image Processing-complete
No.Executions=100 No.Skipped=0
Throughput Time: µ = 341.630

σ = 130.646

Node: Interpret-complete
No.Executions=202
No.Skipped=0
Throughput Time:

µ = 90.213
σ = 64.813

Node:Render and Screen-
complete

No.Executions=200
No.Skipped=0
Throughput Time:

µ = 173.280
σ = 121.686

Node: Print Image-complete
No.Executions=51
No.Skipped=0
Throughput Time: µ = 7617.686

σ = 4985.584

Node: Job-complete
No.Executions=100 No.Skipped=0
No.Terminations=100

Figure 7.12: The top-level process model of the digital copier example showing performance related
information. The coloring of nodes/edges is based on model-specific averages with tolerance limits
of �10%. The model’s average node and edge throughput times are 505.925 and 21877.607 time
units respectively.

more time consuming than the interpretation of pages. This is reflected in the average
node throughput times of Render and Screen–complete and Interpret–complete. From
the figure, we can conclude that Capture Image–complete and Print Image–complete
are the major bottleneck activities. Likewise, the colored edges indicate that the
queuing of jobs between the submission and the start of processing is causing delays.
These insights can be used to improve the process.

Figure 7.13 depicts the annotated subprocess corresponding to the abstract node
Interpret–complete. This subprocess is invoked for print job requests and pertains
to the interpretation of document pages submitted for print. Three types of inter-
pretation are supported, viz., post script, page control language, and unformatted
text. All instances of this subprocess start at the activity Interpretation–start and
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Edge:Interpretation-start→Unformatted Text-complete
No.Executions=108 No.Skipped=0
Throughput Time: µ = 14.796, σ = 5.509

Edge:Unformatted Text-complete→Interpretation-complete
No.Executions=108 No.Skipped=0
Throughput Time: µ = 17.269, σ = 7.408

Edge:Interpretation-complete→Interpretation-start
No.Executions=257 No.Skipped=0
Throughput Time: µ = 13.358, σ = 5.775

Node:Interpretation-complete
No.Executions=459
No.Skipped=0
No.Terminations=202

Node:Interpretation-start
No.Executions=459
No.Skipped=0
No.Initializations=202

Figure 7.13: The subprocess corresponding to the abstract activity Interpret–complete showing
performance related information. The coloring of nodes/edges is based on model-specific averages
with tolerance limits of �10%. The model’s average edge throughput time is 15.625 time units.

terminate at Interpretation–complete. Note that although the number of print job
requests is 51, the number of executions of Interpretation–start and Interpretation–
complete is 459. This is due to the fact that a document can have multiple pages
and each page in the document needs to be interpreted separately. Furthermore,
note that the number of initializations/terminations in this subprocess is 202. Recall
from Figure 3.3 that this subprocess can be executed in parallel with the rendering
and screening subprocess after at least one page has been interpreted. A continuous
interpretation of pages without an interleaved execution of rendering and screening
is captured within the same instance of invocation of this subprocess (reflected in the
loop construct; there are 257 executions of the edge between Interpretation–complete
and Interpretation–start).

This subprocess does not contain any abstract nodes. So this process does not
have an average node throughput time. The average edge throughput time of this
subprocess is 15.625 time units. Figure 7.13 depicts the coloring of edges using the
model’s average edge throughput time with tolerance limits of �10%. Since the
average throughput times of the edges (Unformatted Text–complete, Interpretation–
complete) and (Page Control Language–complete, Interpretation–complete), 17.269 and
17.675 time units respectively, are at least 10% over and above the model’s average
edge throughput time (i.e., 15.625), they are colored red. In contrast, as the aver-
age throughput time of the edge (Interpretation–complete, Interpretation–start) (i.e.,
13.358) is at least 10% less than the model’s average edge throughput time, it is
colored green.

Figure 7.14 depicts the annotated subprocess corresponding to the abstract ac-
tivity Coat Toner–complete at the third level of hierarchy. This is a subprocess of the
Print Image–complete subprocess. Again the colors of nodes and edges show where
most time is lost.
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Edge: Drum Spin Start-start→Coat Light Toner on Drum
-complete

No.Executions=537 No.Skipped=0
Throughput Time: µ = 14.821, σ = 5.929

Edge: Coat Light Toner on Drum -complete → Drum
Spin Stop-complete

No.Executions=537 No.Skipped=0
Throughput Time: µ = 14.885, σ = 5.930

Edge: Drum Spin Stop-complete→Drum Spin Start-complete
No.Executions=728 No.Skipped=0
Throughput Time: µ = 15.158, σ = 6.158

Node: Drum Spin Stop-complete
No.Executions=2027
No.Skipped=0
No.Terminations=1299

Node: Drum Spin Start-start
No.Executions=2027
No.Skipped=0
No.Initializations=1299

Figure 7.14: The subprocess corresponding to the abstract activity Coat Toner–complete annotated
with performance information. The coloring of nodes/edges is based on model-specific averages with
tolerance limits of �10%. The model’s average edge throughput time is 14.959 time units.

As discussed earlier, model specific averages might not always lead to useful in-
sights. This is reflected in Figure 7.12 where the model’s average edge throughput
time is dominated by just two edges (cf. red output arcs of Job–Start node). This
resulted in all other edges acquiring a green color. To alleviate this, we use the large
deviations strategy for performance coloring of the digital copier process map. Fig-
ure 7.15 depicts the top-level process model annotated with performance measures
with the coloring of nodes/edges based on the criteria of large deviations. We used
the thresholds of δmin � 0.3 and δmax � 0.6. In other words, if the ratio between the
standard deviation and the average throughput time of a node/edge is less than 0.3,
it is colored green; if the ratio is between 0.3 and 0.6, it is colored yellow; otherwise,
it is colored red. This results in additional insights on the process execution. For
example, the nodes Interpret–complete and Render and Screen–complete now acquire a
red color. This is due to the fact that these nodes exhibit a large variance among the
instances of execution, e.g., the standard deviation of Interpret–complete is 64.813,
which is approximately 72% of the node’s average throughput time; similarly, the
standard deviation of Render and Screen–complete is 121.686, approximately 70% of
the node’s average throughput time. Likewise, the node Capture Image–complete,
which has a relatively higher average throughput time when compared to the model’s
average node throughput time acquires a yellow color based on variance (its standard
deviation, which is 365.140, is 41% of its average throughput time).

Figure 7.16 depicts the annotated process model of the subprocess corresponding to
the abstract activity Interpret–complete. The ratio between the standard deviation
and the average throughput time of all edges in this model lies between 0.3 and 0.6.
Hence, all edges are colored yellow in this figure.

Figures 7.12–7.16 demonstrate that performance measures estimated by replay-



7.5. Experiments and Discussion 197

Edge:Job-start→Copy/Scan-complete
No.Executions=49 No.Skipped=0
Throughput Time: µ = 209221.875

σ = 143532.344

Node: Capture Image-complete
No.Executions=49
No.Skipped=0
Throughput Time: µ = 883.837

σ = 365.140

Node: Image Processing-complete
No.Executions=100 No.Skipped=0
Throughput Time: µ = 341.630

σ = 130.646

Node: Interpret-complete
No.Executions=202
No.Skipped=0
Throughput Time:

µ = 90.213
σ = 64.813

Node:Render and Screen-
complete

No.Executions=200
No.Skipped=0
Throughput Time:

µ = 173.280
σ = 121.686

Node: Print Image-complete
No.Executions=51
No.Skipped=0
Throughput Time: µ = 7617.686

σ = 4985.584

Figure 7.15: The top-level process model of the digital copier example annotated with performance
information. The coloring of nodes/edges is based on variance (large deviations) with tolerance limits
of δmin � 0.3 and δmax � 0.6.

ing an event log onto a process map can be used to identify potential bottlenecks.
Such insights can help us in process redesign and optimization efforts.
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Edge:Interpretation-start→Unformatted Text-complete
No.Executions=108 No.Skipped=0
Throughput Time: µ = 14.796, σ = 5.509

Edge:Unformatted Text-complete→Interpretation-complete
No.Executions=108 No.Skipped=0
Throughput Time: µ = 17.269, σ = 7.408

Edge:Interpretation-complete→Interpretation-start
No.Executions=257 No.Skipped=0
Throughput Time: µ = 13.358, σ = 5.775

Node:Interpretation-complete
No.Executions=459
No.Skipped=0
No.Terminations=202

Node:Interpretation-start
No.Executions=459
No.Skipped=0
No.Initializations=202

Figure 7.16: Annotation of the subprocess corresponding to the abstract activity Interpret–complete
with performance measures. The coloring of nodes/edges is based on variance (large deviations) with
tolerance limits of δmin � 0.3 and δmax � 0.6.

7.6 Conclusions

In this chapter, we showed that it is possible to enrich process maps with perfor-
mance information. Annotating process maps with KPI-based information provides
useful insights and helps the analyst to identify bottlenecks in the process under
consideration. We proposed an approach of replaying an event log onto a process
map and estimating key performance measures. The proposed approach is amenable
to process maps with multiple levels of hierarchy and can accustom an event log at
any level of hierarchy with respect to the process map. Furthermore, we suggested
three criteria for the automatic identification of potential bottlenecks based on the
computed performance measures.



Chapter 8

Trace Alignment

In the previous chapters, we looked at techniques that deal with less-structured pro-
cesses. Although these techniques result in improved comprehensibility of the discov-
ered processes, analyzing the models for diagnostic purposes, especially to answer the
questions raised in Chapter 1, still requires considerable effort. In this chapter, we
advocate that process diagnostics can be assisted through alternative means of care-
ful inspection of the event log by grouping and aligning the traces found in the event
log. We propose an approach, called trace alignment, which is inspired from biolog-
ical sequence alignment [260]. Trace alignment consists of two steps: first, we group
similar traces in clusters using the agglomerative hierarchical clustering technique as
discussed in Chapter 4; second, we visualize these clusters by aligning the traces. By
aligning traces we can see the common and frequent behavior, and distinguish this
from the exceptional behavior. We further show that trace alignment can be used
to answer a variety of diagnostic questions and that it is a welcome addition to the
repertoire of process mining techniques. More specifically, trace alignment can assist
in answering the following diagnostic questions raised in Chapter 1:

� What is the most common (likely) process behavior that is executed?

� Where do process instances deviate and what do they have in common?

� Are there any common patterns of execution in the traces?

� What are the contexts in which an activity or a set of activities is executed in
a event log?

� What are the process instances that share/capture a desired behavior either ex-
actly or approximately?

� Are there particular patterns (e.g., milestones, concurrent activities, etc.) in
the process?

The remainder of this chapter is organized as follows. Related work is presented in
Section 8.1. Section 8.2 introduces the concept of trace alignment and discusses the
techniques for finding alignments. We propose a framework for finding alignments
over a bag of traces in Section 8.3 and present techniques for refining alignments to
improve alignment quality in Section 8.4. Section 8.5 discusses the computational
complexity of performing alignments. The experimental results and scalability issues
are discussed in Section 8.6. We provide an outlook on some of the opportunities and
challenges in trace alignment for future research in Section 8.7. Finally, Section 8.8
concludes the chapter.
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8.1 Related Work

Trace alignment is a log visualization technique that assists in uncovering interesting
insights in process executions. Dotted chart analysis [207] is one of the most com-
monly used log visualization technique. Dotted chart analysis, analogous to Gantt
charts, present a “helicopter view” of the event log and assist in analyzing process
performance by depicting process events in a graphical way. Dotted charts primarily
focus on the time dimension of events. The dotted chart analysis also computes
some metrics for performance such as the minimum, maximum, and average inter-
val between events. A business analyst needs to manually investigate the dotted
chart to identify any potential performance issues. For logs with many activities,
the manual inspection and comprehension of the dotted chart becomes cumbersome
and often infeasible to identify interesting patterns. Trace alignment alleviates this
problem, by finding those patterns automatically and presenting them to the user.
In the parlance of dotted chart analysis, trace alignment considers the logical relative
time perspective of the event log. Furthermore, it would be simple and a natural ex-
tension to project the performance metrics proposed in [207] onto the aligned traces.

Stream scope visualization [91] is a trace visualization technique that is based
on the event class correlations. Using stream scope visualization, patterns of co-
occurring events can easily be recognized by their vicinity. However, stream scope
visualization is restricted in that it visualizes each trace separately and does not
provide a holistic view of the event log. In contrast, trace alignment enables the
visualization of multiple traces at a time and is able to uncover common execution
patterns within and across traces.

One of the applications of trace alignment is in uncovering deviations between
anomalous and normative traces. Conformance checking aims at detecting inconsis-
tencies/deviations between a process model (that captures the expected behavior)
and its corresponding execution log [191]. Several techniques for conformance check-
ing exist [3, 4, 191, 237]. However, conformance checking has inherent limitations in
its applicability, especially for diagnostic purposes. Firstly, it assumes the existence
of a process model or a set of rules. However, in reality, process models are either not
present or if present are incorrect or outdated (their quality typically leaves much
to be desired). One can argue that process models can be discovered from event
logs and conformance checking be applied on the discovered models. However, this
approach is not suitable for the analysis of highly complex and/or flexible processes,
the class of models which most of the real-life logs fall into and where the discovered
models are “spaghetti-like”. Even in cases where the process models are available, it
is difficult to look inside of the processes to identify and locate problems, especially
with models that are large. Trace alignment is complementary to this approach in
that it highlights the deviations by analyzing the raw event traces (avoiding the need
for process models).

Declarative modeling is a paradigm that lets users model a business process through
a set of rules. In this paradigm, users typically specify only the mandatory and
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undesired behavior. Many formalisms exist for specifying the rules/constraints, e.g.,
in Declare [169–171], business processes are described using Linear Temporal Logic
(LTL) constraints. Analysts can verify the satisfaction of these constraints in event
logs [142, 230]. However, this approach too suffers from the limitations mentioned
above: (a) it is not a trivial task to elicit all the constraints and (b) techniques to
mine Declare models from event logs generate too many constraints [143].

Another application of trace alignment is in uncovering common patterns of ex-
ecution. As discussed in Chapter 3, common execution patterns such as tandem
arrays and maximal repeats can be discovered in linear time. However, the patterns
uncovered are atomic and the dependencies/correlations between patterns need to be
discovered separately; in other words, the contexts of their manifestation is lost and
needs to be established separately. Common patterns of interaction between activi-
ties can also be captured using sequence diagrams [110]. However, this approach too
suffers from the limitation that the patterns discovered are atomic, thus mandating
the need for establishing correlations/dependencies between patterns separately. In
addition, the number of sequence patterns uncovered can be enormous. In contrast,
trace alignment provides a holistic view of the traces thereby enabling the discovery
of both the common execution patterns and their contexts and (long-range) depen-
dencies.

Trace alignment is largely inspired from Multiple Sequence Alignment (MSA)
[84, 260], often used in bioinformatics. However, there are challenges in adapt-
ing these techniques for trace alignment. Alignment of biological sequences typically
happen over homologous sequences and with little variation in length [163]. However,
traces in an event log in process mining need not stem from a coherent set of cases
and can be of different lengths. Variation in lengths can occur due to variation in
execution paths of the instances and due to manifestation of process model constructs
such as the choice and/or loop constructs. In biological sequence alignment, there are
standard scoring matrices for substitution that are derived based on physio-chemical
properties of the amino acids. Insertion/deletion operations are primarily considered
either with a constant gap-score (or penalty) or as an affine function. In contrast,
indel and substitution scores for trace alignment need to be context-sensitive and
either have to be derived automatically from the event log or provided by the domain
experts (see Sections 4.3 and 4.4). Furthermore, biological sequences deal with an
alphabet size of either 4 (for four nucleic acids) or 20 (for amino acids). However, the
number of distinct activities (event classes) in a typical process mining log can be of
the order of a few tens and even hundreds. This adds to the complexity of deriving
good scoring matrices and aligning traces. Inspired by MSA techniques [47, 67, 68],
this chapter provides techniques for trace alignment.

8.2 Aligning Traces

In this section, we first formally define what trace alignment is and later discuss
techniques for finding optimal alignments.
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Definition 8.1 (Trace Alignment). Trace alignment of an event log L ��t1, t2, . . . , tn� over A� is defined as a mapping of the bag of traces in L to an-
other bag of traces L � �t1, t2, . . . , tn� where each ti > �A 8 ����� for 1 B i B n
and

� there is an m > N, called the length of the alignment, such that St1S � St2S � . . . �StnS �m,

� ti is equal to ti after removing all gap symbols “�”, and

� there is no k > �1, . . . ,m� such that ¦1BiBn, ti�k� � �
-

An alignment over a bag of traces can be represented by an n �m rectangular ma-
trix, A � �aij� �1 B i B n,1 B j B m�, over A� � A 8 ��� where “�” denotes a
gap. Figure 8.1 depicts the matrix representation of an alignment of five traces
L � �jgcflebd,jgclebdfi,jgclebdf,jgclfebd,jgclefbdi�. The third condition in
the definition above implies that no column in A contains only gaps ���. It is im-
perative to note that there can be many possible alignments for a given bag of traces
and that the length of the alignment, m, satisfies the relation lmax Bm B lsum where
lmax is the maximum length of the traces in L and lsum is the sum of lengths of all
the traces in L.

j g c f l - - e b d - -

j g c - l - - e b d f i

j g c - l - - e b d f -

j g c - l - f e b d - -

j g c - l e f - b d - i

Figure 8.1: A matrix representation of aligned traces.

8.2.1 Pair-wise Trace Alignment

Before we get into the details of aligning a bag of traces, we first consider a special
case of trace alignment, where the number of traces to align is 2. Aligning a pair of
traces is referred to as pair-wise trace alignment. Consider the example of aligning
the two traces t1 = abcac and t2 = acacad. Figure 8.2 depicts three of the many
variants of aligning the two traces.

t1 a b c a c - -

t2 a - c a c a d

(a)

t1 a b c a c -

t2 a c a c a d

(b)

t1 a b c a c - - - - - -

t2 - - - - - a c a c a d

(c)

Figure 8.2: An example of pairwise trace alignments.

An alignment between a pair of traces, t1 and t2, is based on the concept of
edit distance defined in Chapter 4 and can be considered as a transformation of the
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trace t1 to t2 or vice versa through a set of editing operations applied to one of the
traces iteratively. The traces are said to be aligned after the transformation, and
can be represented by a rectangular matrix as mentioned earlier. Assuming that t1

is transformed into t2, the following edit operations are defined for any column j in
the alignment:

Y the activity pair �a,b�, a,b > A, denotes the substitution of activity a in t1 with
activity b of t2,

Y the activity pair �a,�� denotes the deletion of activity a in t1, and

Y the activity pair ��,b� denotes the insertion of activity b in t1.

It is important to note that insertion and deletion operations are complementary
in that an insertion in one trace can be considered as a deletion in another trace.
Henceforth, we refer to insertion and deletion operations as indel operations. As
discussed in Sections 4.3 and 4.4, indels should be sensitive to the context in which
the operations are performed. We can consider two notions of context for indels,
viz., Indel Right Given Left and Indel Left Given Right (cf. Section 4.4.2), which
indicates the insertion of an activity to the immediate right of another activity or to
the immediate left of another activity respectively. We consider Indel Right Given
Left as the notion of indels for trace alignment.

Furthermore, as discussed in Section 4.4, a score or cost function needs to be
defined for the substitution and indel operations to avoid edit operations that do not
make sense in a certain context. The substitution score is a function S � A �A � R
where S�a,b� denotes the score for substitution of activity a with activity b for all
a,b > A. The Indel Right Given Left score is a function IR � �A8������A8����� R
where IR�a,b� denotes the score for inserting or deleting activity b given that the
left activity is a for all a,b > A. IR��,a� � IR�a,�� � I��,�� � 0 for all a > A.

Let t1 and t2 be the aligned traces of t1 and t2 and let m be the length of the align-
ment. It could be the case that the first activity in t1 or t2 had to be inserted/deleted.
The left activity for this case does not exist; so, we define t1�0� � t2�0� � �. Given
S and IR, the score of a pair-wise alignment can be defined as the sum of the scores
of the edit operations across all columns in the alignment. In other words:

Score�t1, t2� � m

Q
j�1

ej

where

ej �

¢̈̈̈̈
¦̈̈̈
¤̈
S�a,b� if t1�j� � a and t2�j� � b

IR�a,b�
¢̈̈¦̈̈¤

if t1�j� � b, t1�j � 1� � a and t2�j� � � or

if t1�j� � �, t2�j� � b and t2�j � 1� � a

Assuming a unit score function where the substitution score function, S�a,b� �

1 if a � b and S�a,b� � �1, otherwise, and an indel score function, IR�a,b� � �1, for
all a,b > A, the alignments enumerated in Figure 8.2 have the scores 1, �4, and �9
respectively. A “best” alignment can be considered to be the one with the maximum
score. For the above example, this corresponds to Figure 8.2(a). Instead, if we
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define the indel score function as above but change the substitution score function
to S�a,b� � 2 if a � b and S�a,b� � 1, otherwise, then the alignments enumerated
in Figure 8.2 have the scores 5, 5, and �9 respectively. The maximum alignment
score is 5 and there are two best alignments corresponding to Figures 8.2(a) and (b).
As another example, if we define the substitution score as S�a,b� � 1 if a � b and
S�a,b� � �1, otherwise, and the indel score function as IR�a,b� � 1, for all a,b > A,
the alignments enumerated in Figure 8.2 have the scores 7, �2, and 9 respectively.
The maximum score is 9 and the best alignment corresponds to Figure 8.2(c). It is
imperative to note that the best scoring alignment is sensitive to the substitution
and indel score functions. We adopt the substitution and indel scores derived from
an event log as discussed in Section 4.4.

Figure 8.2 depicts just three of the many variants of aligning the two traces t1

and t2. In fact, the number of possible alignments for two traces of length l is
� �1 �

º
2�2l�1l�1~2 [260], e.g., for two traces of length 100, the number of possible

alignments is approximately 1077. Therefore, it is infeasible to enumerate all possible
alignments (even for moderate values of l), find their scores, and identify the best
alignment. In the next section, we discuss a method of finding a best alignment.

8.2.2 How to Compute Alignments?

Needleman and Wunsch [159] have proposed a dynamic programming algorithm for
finding the optimal alignment between two (amino acid) sequences. The basic idea is
to build up an optimal alignment using previous solutions for optimal alignments of
smaller subsequences. We adopt this approach to find an optimal alignment between
two traces. Let t1 and t2 be two traces. A matrix F indexed by i and j, is constructed
where the value F �i, j� is the score of the best alignment between the prefix ti1 of t1

and the prefix tj2 of t2. F �i, j� is constructed recursively by initializing F �0,0� � 0
and then proceeding to fill the matrix from top left to bottom right. It is possible
to calculate F �i, j� if F �i � 1, j � 1�, F �i � 1, j� and F �i, j � 1� are known. There are
three possible ways that the best score F �i, j� of an alignment up to ti1 and tj2 could
be obtained:

� t1�i� could be aligned to t2�j�, in which case F �i, j� � F �i � 1, j � 1� �
S�t1�i�, t2�j��; or

� t1�i� is aligned to a gap, in which case F �i, j� � F �i�1, j��IR�t1�i�1�, t1�i��;
or

� t2�j� is aligned to a gap, in which case F �i, j� � F �i, j�1��IR�t2�j�1�, t2�j��.
The best score up to �i, j� will be the largest of these three options. In other words,
we have

F �i, j� � max

¢̈̈̈
¦̈̈̈
¤
F �i � 1, j � 1� � S�t1�i�, t2�j��,
F �i � 1, j� � IR�t1�i � 1�, t1�i��,
F �i, j � 1� � IR�t2�j � 1�, t2�j��. (8.1)

The values along the top row (when i � 0) and left column (when j � 0) need to be han-
dled as follows. The values F �i,0� represent alignments of a prefix of t1 to all gaps in
t2. So, we can define F �1,0� � 0 and for i A 1, F �i,0� � F �i�1,0��IR�t1�i�1�, t1�i��.
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Similarly, we can define F �0, j�. The value in the bottom right cell of the matrix,
F �St1S, St2S�, is the best score for an alignment of t1 and t2.

To find the alignment itself, we must find a path of choices from Equation (8.1)
that led to this best score, i.e., we move from the current cell �i, j� to one of the cells�i � 1, j � 1�, �i � 1, j�, or �i, j � 1� from which the value F �i, j� was derived. While
doing so, we add a pair of symbols onto the front of the alignment: t1�i� and t2�j� if
the step was to �i� 1, j � 1�, t1�i� and the gap symbol ‘�’ if the step was to �i� 1, j�,
or ‘�’ and t2�j� if the step was to �i, j � 1�. At the end we will reach the start of the
matrix, i � j � 0. The above procedure, called traceback, will retrieve only one of the
alignments that gives the best score; there can be cases where multiple options of
Equation (8.1) are equal. In these cases, an arbitrary choice is made. The set of all
possible alignments for the best score can be enumerated by using graph traversal
techniques.

Consider the two traces t1 = abcac and t2 = acacad and the unit score func-
tion. Figure 8.3(a) depicts the F matrix for these two traces using the unit score
function. Consider the cell at row 4 and column 4, F �3,3�; the value for this cell
corresponds to the maximum of the score at F �2,2� + S�c,a� or F �2,3� + IR�b,c�
or F �3,2� + IR�c,a�. Since in the unit score function, the score of substitution of
unlike activities and the score for indels is -1, we get F �3,3� � max��1,�2,0� � 0.
The best score of the alignment is F �5,6� � 1. Figure 8.3(b) depicts the traceback
procedure pertaining to the best alignment. We start with the bottom right cell at�5,6� and identify the cells that led to the best score recursively until we reach the
top left cell at (0,0).

i

j

t2 a c a c a d

t1

a

b

c

a

c

0 0 −1 −2 −3 −4 −5

0 1 0 0 −1 −2 −3

−1 0 0 −1 −1 −2 −3

−2 −1 1 0 0 −1 −2

−3 −1 0 2 1 1 0

−4 −2 0 1 3 2 1

max score

sub

ins

del

(a) F -matrix

i

j

t2 a c a c a d

t1

a

b

c

a

c

0 0 −1 −2 −3 −4 −5

0 1 0 0 −1 −2 −3

−1 0 0 −1 −1 −2 −3

−2 −1 1 0 0 −1 −2

−3 −1 0 2 1 1 0

−4 −2 0 1 3 2 1

t2 a - c a c a d

t1 a b c a c - -

(b) traceback

Figure 8.3: The F -matrix and the traceback computing an alignment between two traces using
the unit score function.
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8.2.3 Multiple Trace Alignment

We now consider the alignment of a bag of traces where the number of traces to
align is more than 2. One of the best performing scoring mechanisms for multiple
sequence alignment of genomic sequences is the sum-of-pairs (SP) method [10, 32].
Therefore, we adopt the sum-of-pairs method for trace alignment. Let th and tk be
two distinct rows extracted from a multiple trace alignment A over a bag of n traces
(recall that trace alignment can be represented as a matrix A), and let Score�th, tk�
be the alignment score calculated in the same way as ordinary pairwise alignment of
th and tk, then the SP score of a multiple trace alignment A is defined as

ScoreSP �A� � Q
1Bh@kBn

Score�th, tk�

It is possible to generalize the pairwise dynamic programming alignment approach
to the alignment of n traces. However, it is impractical for more than a few traces.
Assuming that the traces are all of roughly the same length l, the space complexity
of the multi-dimensional dynamic programming algorithm is O�ln� and the time
complexity is O�2nln� [61]. Multiple sequence alignment that maximizes the SP
score was shown to be NP-complete [258]. Since the computation of optimal multiple
sequence alignment is prohibitively expensive, various heuristic algorithms have been
proposed in literature [163].

We adopt the most popular heuristic approach [63], viz., the progressive align-
ment approach [67, 68], for trace alignment. The basic idea of progressive alignment
is to iteratively construct a succession of pairwise alignments. Alignment is allowed
between a pair of traces, a trace and an alignment, and between alignments. The
selection of traces for alignment at each iteration is based on their similarity. Traces
that are most similar to each other are aligned first. Once similar traces have been
aligned, align the resulting clusters of traces against each other. A guide tree is built
to assist this process. We use the Agglomerative Hierarchical Clustering algorithm
(AHC) [113] (cf. Section 4.5) for generating this tree. The choice of AHC is due to
the fact that it produces the tree naturally as a dendrogram while the tree has to
be constructed subsequently if other clustering algorithms such as k-means are used.

Figure 8.4 illustrates an example of the progressive alignment strategy. In this
example, we consider 5 traces. A guide tree is generated using AHC. Based on the
guide tree, the traces t2 and t3 are aligned first using pairwise trace alignment.
Traces t4 and t5 are aligned next using pairwise trace alignment. Subsequently, trace
t1 is aligned with the alignment obtained from t2 and t3. Finally the two alignments
obtained from the bag of traces �t1, t2, t3� and �t4, t5� are aligned. While aligning
an alignment A, with another alignment B, Equation (8.1) is modified as

F �i, j� � max

¢̈̈̈
¦̈̈̈
¤
F �i � 1, j � 1� � S�CiA,CjB�,
F �i � 1, j� � IR�Ci�1

A ,CiA�,
F �i, j � 1� � IR�Cj�1

B ,CjB�.
(8.2)
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t1: j g c f l e b d

t2: j g c l e b d f i

t3: j g c l e b d f

t4: j g c l f e b d

t5: j g c l e f b d i t1 t2 t3 t4 t5

t1 t2 t3 t4 t5

j g c l e b d f i

j g c l e b d f -
j g c l - f e b d -

j g c l e f - b d i

j g c f l e b d - -

j g c - l e b d f i

j g c - l e b d f -

j g c f l - - e b d - -

j g c - l - - e b d f i

j g c - l - - e b d f -

j g c - l - f e b d - -

j g c - l e f - b d - i

Figure 8.4: An example of progressive alignment approach for multiple trace alignment.

where S�CiA,CjB� denotes the score of substituting column i of alignment A with
column j of alignment B and is defined as

S�CiA,CjB� � Q
a,b>A

niA�a� � njB�b� � S�a,b� (8.3)

where niX�a� denotes the frequency (count) of activity a in column i of alignment X.
IR�Ci�1

A ,CiA� denotes the score of inserting column i in alignment A given that its
left column is i � 1 and is defined as

IR�Ci�1
A ,CiA� � Q

a,b>A
f iA�a,b� � IR�a,b� (8.4)

where f iA�a,b� is the frequency of activity b in column i of alignment A given that
its neighboring activity is a in column i � 1. The procedure for finding the “best”
alignment is similar to that of pairwise alignment.

Note that the guide tree enables the visualization of alignments for different subsets
of the traces. The alignment at the root of the tree corresponds to the alignment of
all the traces in the event log whereas an alignment at any internal node of the guide
tree depicts the alignment corresponding to the traces constituting the leaves of the
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sub-tree at the node. It is often the case that event logs contain traces capturing
different execution behavior of a process and clustering assists in grouping together
coherent sets of traces.

8.3 Framework

We propose the framework depicted in Figure 8.5 for trace alignment. The framework
identifies the following steps:

Event Log

Preprocess Processed Log

Build Guide Tree
Compute

Scoring Matrices

Generate
Progressive Alignment

Estimate
Alignment Quality

Prune and Refine

Interactive
Visualization

Figure 8.5: Framework for multiple trace alignment.

� Preprocess: Preprocessing involves steps such as removal of outliers, removal of
loop-constructs, abstraction of activities, and transformation of log, etc. The
detection and removal of outliers (explained later in this section) is critical for
obtaining interesting alignments.

� Compute Scoring Matrices: As discussed in Section 8.2, alignments are sensitive
to the substitution and indel score functions, S and IR respectively. We use
the approach presented in Section 4.4 for deriving the substitution and indel
scores from the event log.

� Build Guide Tree: A guide tree assists in progressive alignment of multiple
traces as illustrated in Figure 8.4. We use the Agglomerative Hierarchical Clus-
tering (AHC) approach for building the guide tree. However, other approaches
such as neighbor joining [203] can be used.

� Generate Progressive Alignment: The progressive alignment approach is used
to compute the multiple trace alignment. The guide tree generated in the
above step directs the growth of progressive alignment as a series of pairwise
alignments.
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� Estimate Alignment Quality: Progressive alignment is a heuristic approach.
Therefore, the alignment that is obtained does not need to be optimal. Fur-
thermore, any error in alignment done in early stages of progressive alignment
cannot be undone (cf. advanced alignment techniques in Section 8.7). Hence
it is essential to estimate the quality of an alignment. We use the information
score as a measure of alignment quality. The information score of a column in
an alignment is defined as 1�E~Emax, where E is the entropy of activities in the
column. The entropy of a column is defined as E � Pa>A8��� �pa log2�pa� where
pa is the probability of occurrence of a in the column. Emax is the maximum
entropy which is equal to log2�SAS�1�. We discuss on an advanced metric, viz.,
misalignment score, later in Section 8.4.

� Prune and Refine: Construction of multiple trace alignment is a very complex
problem, and most heuristic algorithms usually fail to generate an optimal align-
ment. Disturbances in an alignment can creep in from many sources thereby
making the final alignment far from optimal. Disturbances here refer to the
misplacement of gaps in an alignment. Efficient techniques for pruning and
refining alignments need to be supported. We will discuss more about this in
the next section.

� Interactive Visualization: Apart from just pictorially depicting the alignment,
it is desirable to have additional interactive features for the analysts to explore
into the patterns and the alignments uncovered. Features such as editing an
alignment, sorting and/or filtering alignment columns based on activities of
interest would all lead to gaining further insights into the execution of processes.

Although the definition of what constitutes an outlier is left open, we adopt one
simple definition of outliers based on the length of the traces. It could be the case
that in an event log there are certain process instances whose lengths deviate a lot
from the average trace length in the log, e.g., an event log has an average trace length
of 50 activities (say, across 100 traces) while there are 5 traces with lengths above
250. Since an alignment is at least as long as the maximum trace length, such outlier
traces in the log can lead to an alignment with too many gap symbols. Hence the
removal of such traces is important. Note that the definition of outliers can change
based on the perspective of analysis. If we are interested in finding common execu-
tion patterns or the backbone sequence of a process, the above definition of outliers
may work fine. However, if we are interested in finding non-conforming traces or
deviations in anomalous traces from normal traces, then the above definition might
be inappropriate. Trace clustering as discussed in Chapter 4 can assist in removing
such outliers. In addition, recent efforts in detecting and dealing with outliers in
process mining such as [72, 80] can be adopted. The efficacy of these techniques in the
context of trace alignment needs to be explored and is beyond the scope of this thesis.

The presence of loop constructs and the multiple invocations of a process frag-
ment (subprocess) can all lead to variations in the lengths of the traces. Loop
constructs and multiple invocations of process fragments manifest as tandem arrays
and maximal repeats in the event logs respectively and can be detected efficiently in
linear time as discussed in Chapter 3. One can identify such patterns, define abstrac-
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t1

1p1
2p1

t2
1p2

(a)

t1

1p1
2p1

t2
1p2
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t1

1p1
2p1

t2
1p2

t3
1p3

(c)

Figure 8.6: Scenarios of misalignment in the presence of recurring patterns of execution.

tions over them, and transform the log to a higher-level as discussed in Chapter 6.
Trace alignment can then be applied on the transformed log.

8.4 Refining Alignments

Variation in the lengths of the traces, the choice of scoring functions used, the method
and parameter choices used in the generation of a guide tree, and strategies used in
resolving conflicts during traceback can all lead to disturbances or misalignments.
Furthermore, misalignments in earlier stages of progressive alignment percolate to
later stages. It is conjectured that detecting such misalignments and refining them
might improve the quality of the final alignment. Misalignments are more pronounced
in cases where there are recurring patterns of common execution behavior such as
the manifestation of loops and multiple invocations of a functionality.

Figure 8.6 depicts three scenarios resulting in a misalignment. Let p be a se-
quence pattern, i.e., a sequence of activities. kpi indicates the kth instance of the
manifestation of p in the trace ti. In Figure 8.6, there are two instances of p in trace
t1 and one instance of p in traces t2 and t3. Figure 8.6(a) depicts the scenario where
the lone instance of p in trace t2 is split up and aligned to the two instances of p in
t1. Figure 8.6(b) depicts the scenario where the lone instance of p in t2 is aligned to
the second instance of p (2p1) in t1 whereas one would have preferred it to be aligned
with 1p1 (assuming that the contexts defined by events preceding and succeeding 1p2

is similar to that of 1p1). Figure 8.6(c) depicts an even more undesirable situation
where the lone instance of p in t2 is aligned to the first instance of p in t1 and the
lone instance of p in t3 gets aligned to the second instance of p in t1. What is worse
is that although p manifests in both t2 and t3, they do not get aligned due to their
alignment conflict with t1. In this example, a desirable alignment would be the one
where the first instance of p in all the three traces are aligned together.

The above examples considered the scenario where the pattern p manifests ex-
actly as is (alike) in all the traces. However, the presence of concurrent activities
and/or optional activities in a process might disturb the manifestation of p in
a trace. In other words, there could be instances where the concurrent/optional
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activities are interspersed in the manifestation of p. For example, in the trace
t � jgclfebdklebdklebdi, the concurrent activity f is interspersed in the manifes-
tation of the first instance of the pattern lebd. Figure 8.7 depicts two scenarios of
misalignments in the presence of concurrent/optional activities. In Figure 8.7(a),
there exists a sequence of optional activities interleaved in 1p2. It could be the case
that the alignment of t1 and t2 results in the prefix of 1p2 before the optional activi-
ties to be aligned with the prefix of 1p1. The optional activities and the suffix of 1p2

following the optional activities are aligned with gaps as indicated in Figure 8.7(a),
resulting in an undesirable alignment. Instead, an ideal alignment would be the one
that is depicted under ‘preferred alignment’ in this case. Figure 8.7(b) illustrates
the existence of a sequence of concurrent activities interspersed in 1p2. A possible
misalignment and the preferred alignment are also depicted in Figure 8.7(b). For
simplicity, we illustrate the misalignment scenarios with both the traces having a
single instance of p in Figure 8.7. However, one can imagine scenarios where multiple
instances of p are manifested with uneven numbers across traces, and with some
instances having an interleaved manifestation of optional/concurrent activities. In
such cases, the misalignment scenarios depicted in both Figures 8.6 and 8.7 are
(together) possible.

t1

1p1

t2
1p2

misalignment
preferred
alignment

(a)

t1

1p1

t2
1p2

misalignment
preferred
alignment

(b)

Figure 8.7: Scenarios of misalignment in the presence of concurrent/optional activities interspersed
with recurring patterns of execution.

The information score metric defined earlier is not rich enough to capture such
misalignments. Robust metrics to assess the quality of (mis-)alignment are needed.
The definition of such quality metrics remains an open research topic in this area.
We define a pattern based misalignment metric, viz., misalignment score, to capture
the degree of misalignment with respect to the pattern.

Definition 8.2 (Misalignment Score). Let L � �t1, t2, . . . , tn� be a bag of traces
and L � �t1, t2, . . . , tn� be the corresponding bag of aligned traces of L. Given a
pattern p, let c�p, ti� denote the frequency of occurrence (considering both the exact
and interspersed/non-continuous manifestation, cf. Definitions 6.2 and 6.3) of the
pattern p in its corresponding original trace ti > L. For any two aligned traces ti and
tj > L, let tu � arg mint>�ti,tj�

c�p, t� and tv � arg maxt>�ti,tj�
c�p, t�. In other words,

among ti and tj , tu represents the one that has the lesser number of instances of the
pattern p while tv represents the one with a higher number of instances of p.
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Let IN�p, k, tu, tv� denote the set of all instance numbers of pattern p in tv to
which some activity in the kth instance of p in tu is aligned to. If the kth instance of
p in tu is not aligned to any instance of p in tv, i.e., it is aligned to only gaps, then
IN�p, k, tu, tv� � ��. The misalignment score matrix MS � �msij� �1 B i, j B n� of a
pattern p over the bag of aligned traces L is defined as

msij � msji �
c�p,tu�

Q
k�1

Q
r > IN�p,k,tu,tv�

Sr � kS � δ�k�
where δ�k� � 1 if any activity in the kth instance of the pattern p in tu is aligned to
a gap or any other activity not in p in tv; δ�k� � 0, otherwise. tu and tv correspond
to that aligned trace with the lesser and higher number of instances of p respectively
among ti and tj as defined above. The Sr � kS signifies the distance of misalignment.
msij indicates the degree of misalignment pertaining to all instances of pattern p in
tu. -

Let us look at the misalignment score metric with an example. Consider the two
aligned traces

t1 � jgcl----f---ebdklebdi

t2 � jgc-fleb-dklebdklebdi

and the pattern p � lebd. Activity f is a concurrent activity in the process1 and is
interspersed in p in t1. c�p, t1� � 2 and c�p, t2� � 3, i.e., there are two instances of
p in t1 and three instances of p in t2. tu � t1 and tv � t2. IN�p,1, tu, tv� � �2�
and IN�p,2, tu, tv� � �3�, i.e., the first instance of p in tu is partially aligned to the
second instance of p in tv and the second instance of p in tu is completely aligned
to the third instance of p in tv. δ�1� � 1 since the activity l in the first instance of
p in tu is aligned to a gap while δ�2� � 0. ms12 � S2 � 1S � δ�1� � S3 � 2S � δ�2� � 3.

As another example, let us consider the pattern p � lebd and the two aligned
traces

t3 � jgclfebdklebdklebdklebdi

t4 � jgclf-----ebdklebdklebdi

c�p, t3� � 4 and c�p, t4� � 3, i.e., there are four instances of p in t3 and three
instances of p in t4. tu � t4 and tv � t3. IN�p,1, tu, tv� � �1,2�, IN�p,2, tu, tv� � �3�
and IN�p,3, tu, tv� � �4�, i.e., the first instance of p in tu is partially aligned to
both the first and second instances of p in tv while the second and third instances
of p in tu are completely aligned to the third and fourth instances of p in tv respec-
tively. δ�1� � δ�2� � δ�3� � 0. ms34 � S1�1S�S2�1S�δ�1��S3�2S�δ�2��S4�3S�δ�3� � 3.

Once the misalignment score matrix is computed for a given alignment, the cu-
mulative misalignment score is then defined to be the sum of the elements in the

1concurrent activities manifest in different columns across mutually exclusive traces in an align-
ment.
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upper/lower triangle of the matrix (since the matrix is symmetric). An objective of
a refinement technique is then to minimize the cumulative misalignment score. In
the following subsections, we propose a few techniques of refining alignments.

8.4.1 Global vs. Semi-global Trace Alignment

The alignment procedure described in Section 8.2 is also called as global trace align-
ment. Depending on the scoring functions, global trace alignment can sometimes
penalize gaps at the beginning and/or end of the traces in the alignment. In order
to allow gaps to be inserted at the beginning/end of any trace in an alignment, a
variant of the global trace alignment called the semi-global trace alignment can be
considered. Here the best score of the alignment is defined to be the one that is
the maximum in the last row or last column of the F matrix defined in Section 8.2.
Traceback procedure starts from that cell and proceeds until it stops at the first
position it reaches in the top row or left column. Gaps can then be inserted in
the appropriate trace in the positions subsequent to the maximum value cell in the
last row/column and prior to the position it reached in the top row or left column.
Figure 8.8 depicts the difference between global trace alignment and semi-global
trace alignment of two traces aligned using the same scoring functions.

t1 j g c - a h b - - - - f d

t2 j g c f a h b d k a h b d

(a) Global trace alignment

t1 j g c - a h b f d - - - - -

t2 j g c f a h b - d k a h b d

(b) Semi-global trace alignment

Figure 8.8: An example of global trace alignment and semi-global trace alignment.

In this example, the two traces have a common execution pattern p � ahbd. t1

has one instance of ahbd while t2 has two instances. Global trace alignment leads to
the scenario depicted in Figure 8.6(a) where the lone instance of ahbd in t1 is split
up and the two splits are aligned to different instances of ahbd in t2. This problem
is mitigated with the semi-global trace alignment as depicted in Figure 8.8(b). The
misalignment score for the pattern p is ms12 � 1 for the resulting alignment using
the global trace alignment while it is 0 for the one obtained using semi-global trace
alignment. We recommend to consider semi-global trace alignment (at any iteration
of progressive alignment) in scenarios where the traces to be aligned differ vastly in
their lengths (for example, due to the manifestation of loop constructs).

8.4.2 Block Shift Refinement

Consider the bag of traces L = [jgcflebdklebdklebdi, jgcflebdklebdi, jgclfebd-
klebdklebdi, jgclfebdklebdklebdklebdi, jgclfebdklebdi, jgclebfdklebdkleb-
di, jgclebdfklebdklebdi, jgclebdklfebdklebdi]. Figure 8.9(a) depicts an align-
ment of these 8 traces. We can see that there exists a common execution pattern
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lebd in L and that there are different instances of lebd among the traces. A concur-
rent activity f has an interleaved manifestation among the traces. The misalignment
scenarios depicted in Figures 8.6 and 8.7 can be observed in Figure 8.9(a). For
example, the first instance of lebd in trace t5 is split up and aligned with the first
and third instances of lebd in t4. The first instance of lebd in trace t2 is aligned
with the second instance of lebd in t1. Figure 8.10(a) depicts the misalignment score
matrix of the alignment in Figure 8.9(a). The cumulative misalignment score is 53.

jgc-f----leb--dkl-ebdklebdi

jgc----------f--l-ebdklebdi

jgclf-----eb--dkl-ebdklebdi

jgclfebdkleb--dkl-ebdklebdi

jgcl---------f----ebdklebdi

jgcl------eb-fdkl-ebdklebdi

jgcl------ebdf-kl-ebdklebdi

jgcl------eb--dklfebdklebdi

(a)

jgc-f----lebd--kl-ebdklebdi

jgc-f----lebd--kl-ebd-----i

jgclfebdklebd--kl-ebd-----i

jgclfebdklebd--kl-ebdklebdi

jgclfebdklebd-------------i

jgcl-eb------fdkl-ebdklebdi

jgcl-ebd-----f-kl-ebdklebdi

jgcl-ebdkl---f----ebdklebdi

(b)

jgc-f----lebd--klebdklebdi

jgc-f----lebd--klebd-----i

jgclfebdklebd--klebd-----i

jgclfebdklebd--klebdklebdi

jgclfebdklebd------------i

jgcl-eb------fdklebdklebdi

jgcl-ebd-----f-klebdklebdi

jgcl-ebdkl---f---ebdklebdi

(c)

Figure 8.9: An example of block shift refinement: (a) original alignment, (b) block shifted align-
ment with a gap column, and (c) block shifted alignment after the removal of gap column in (b).
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(b) block shifted refined alignment

Figure 8.10: The misalignment score matrices (only the lower triangle is depicted).

We can see that the alignment can be improved by a mere adjustment/shifting
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of gap blocks. For example, the activity f and the first instance of lebd in t2 can be
shifted to the left so that f gets aligned to f of t1 and lebd gets aligned to the first
instance of lebd in t1. Algorithm 8.1 presents the refinement of an alignment by
shifting non-gap activities to the left. The basic idea is to consider each trace of the
alignment from left to right shifting an activity at a column preceded by a block of
gaps to the left most possible column in that trace where that activity manifests in
any other trace of the alignment. Figure 8.9(b) depicts the intermediary alignment
after Step 13 of Algorithm 8.1. The shifting of activities has resulted in an alignment
where there exists a column with only the gap symbol. Such columns can be re-
moved. Figure 8.9(c) depicts the refined alignment after block shifts. Figure 8.10(b)
depicts the misalignment score matrix of the block shifted refined alignment. It can
be noticed that the alignment shown in Figure 8.9(c) is better than the one shown
in Figure 8.9(a) (one can see that the common execution pattern lebd is much well
conserved after refinement). Accordingly, the cumulative misalignment score of the
refined alignment is 46 which is less than that of the original alignment.

Algorithm 8.1 Block Shift Refinement

Require: An alignment, A
1: Let m be the length of the alignment
2: Let Aj denote the set of activities in column j of A.
3: for all aligned traces ti in A do
4: for j � 1 to m do
5: if there exists a block of gaps of length g �g C 1� starting at j in ti then
6: if there exists a k, such that j B k @ j � g and A�i, j � g� > Ak then
7: swap A�i, k� and A�i, j � g�. set j � k.
8: else
9: set j � j � g � 1.

10: end if
11: end if
12: end for
13: end for
14: Remove any column from A that contains only the gap symbol

8.4.3 Concurrency Pruning and Realignment

Concurrent activities manifest in mutually exclusive traces across different columns
in an alignment2. The basis for this arises from the fact that concurrent activities
can have different contexts of execution. In the alignment of Figure 8.9(a), activity
f is concurrent as it manifests in columns 5, 14, and 18 and there exists no trace
that has f in more than one column. Concurrent activities are one of the primary

2This holds true only in scenarios where the concurrent activity is not involved in a loop construct.
For cases where concurrent activities are involved in a loop, one can consider a subset of consecutive
columns in an alignment demarcating an instance of the loop and then consider the manifestation
of activities in that subset.
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sources for misalignments. One can improve the quality of an alignment by iden-
tifying the presence of concurrent activities and handling them in a special way.
Algorithm 8.2 presents a procedure for pruning concurrent activities and refining
an alignment3. This algorithm only deals with the specific case of manifestation of
concurrent activities in an alignment as defined in Step 2. Dealing with the other
scenario where a concurrent activity is aligned with another (potentially concurrent)
activity is relatively complex and is beyond the scope of this thesis. Figure 8.11
depicts the manifestation of a concurrent activity a in three different alignments. In
Figure 8.11(a), the concurrent activity a is aligned to either itself or a gap in all the
columns of the alignment where it manifests whereas in Figure 8.11(b) it is aligned
to another activity c in the first column and in Figure 8.11(c) it is aligned to another
concurrent activity b. Algorithm 8.2 is applicable to concurrent activities manifested
as in the scenario shown in Figure 8.11(a) and dealing with the scenarios shown in
Figures 8.11(b) and 8.11(c) is beyond the scope of this thesis.

Algorithm 8.2 Concurrency Pruning and Realignment

Require: An alignment A
1: Let C be the set of all potentially concurrent activities in A. These are activ-

ities that manifest in different columns across mutually exclusive traces in the
alignment A.

2: Let CI b C be the set of all concurrent activities that are aligned to either only
itself or a gap in the alignment.

3: for all a > CI do
4: Let A� be the alignment obtained from A after removing the columns in which

a manifests
5: Perform block shift refinement on A�. Let A�� be the refined alignment.
6: Insert the concurrent activity a as columns at appropriate positions in the

refined alignment. Let A��� be the new alignment.
7: Set A = A���.
8: end for

a – –
a – –
– . . . a . . . –
– – a
– – a

(a)

a – –
a – –
– . . . a . . . –
c – a
– – a

(b)

a b
a b
a . . . b
b a
b a

(c)

Figure 8.11: Scenarios of manifestation of concurrent activities in an alignment. Here, we only
consider (a).

Figure 8.12(a) depicts the alignment obtained from Figure 8.9(a) after removing
the columns where the concurrent activity f manifests (Step 4, Algorithm 8.2).

3Pruning here refers to deleting the manifestation of the concurrent activity in the aligned traces.
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jgc-----leb-dklebdklebdi

jgc-----------lebdklebdi

jgcl-----eb-dklebdklebdi

jgclebdkleb-dklebdklebdi

jgcl-----------ebdklebdi

jgcl-----eb-dklebdklebdi

jgcl-----ebd-klebdklebdi

jgcl-----eb-dklebdklebdi

(a)

jgclebdklebdklebd-----i

jgclebdklebd----------i

jgclebdklebdklebd-----i

jgclebdklebdklebdklebdi

jgclebdklebd----------i

jgclebdklebdklebd-----i

jgclebdklebdklebd-----i

jgclebdklebdklebd-----i

(b)

jgcfl-eb-d-kl-ebdklebd-----i

jgcfl-eb-d-kl-ebd----------i

jgc-lfeb-d-kl-ebdklebd-----i

jgc-lfeb-d-kl-ebdklebdklebdi

jgc-lfeb-d-kl-ebd----------i

jgc-l-ebfd-kl-ebdklebd-----i

jgc-l-eb-dfkl-ebdklebd-----i

jgc-l-eb-d-klfebdklebd-----i

(c)

Figure 8.12: An example of concurrent activity pruning and realignment: (a) alignment obtained
from Figure 8.9(a) after removing the columns where concurrent activity ‘f’ manifests, (b) alignment
obtained after block shift refinement of (a), and (c) alignment obtained after inserting the concurrent
activity in (b).

Figure 8.12(b) depicts the alignment obtained after block shift refinement on the
alignment of Figure 8.12(a) (Step 5, Algorithm 8.2). It can be seen that this alignment
is the ideal alignment of the traces without activity f. The next step corresponds to
the reintroduction of the concurrent activity f into the alignment.

Let f � N � N � N0 be a function defined over the set of trace indices, i > N,
and alignment column indices, j > N, that gives the activity index k > N correspond-
ing to the trace ti at alignment column j provided A�i, j� > A (if A�i, j� � �, then
f�i, j� � 0). For example, for the alignment in Figure 8.9(a), f�1,5� � 4, because the
activity in column 5 of the aligned trace t1 is f and f is the fourth activity in t1.
Similarly, f�2,17� � 5 and f�3,19� � 11. In the concurrency pruned and block shift
refined alignment (A�� in Step 5, Algorithm 8.2), we insert a column at index j in
the alignment with the concurrent activity in all the traces i (and gaps for others)
if and only if the activity at ti�f�i, j�� corresponds to the concurrent activity. The
resulting alignment after reintroducing the concurrent activity f in all the possible
traces in the alignment of Figure 8.12(b) is as shown in Figure 8.12(c). In this refined
alignment, the kth instance of lebd (if it exists) among the traces are aligned with
each other. The misalignment score matrix for this refined alignment is a matrix
of zero’s (the cumulative misalignment score is zero) which is an improvement from
that of the original (53) and the block-shifted refined alignment (46). In this log, the
patterns are only obscured by the presence of the concurrent activity f and an appro-
priate handling of the concurrent activity during refinement led to the conservation
of the patterns in the alignment.

8.5 Computational Complexity

The major computation steps in the proposed approach pertain to the computation
of guide tree and the progressive alignment of traces. As discussed earlier, we use
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the agglomerative hierarchical clustering algorithm to build the guide tree, which
can be constructed in O�n2� time for a given log containing n traces (we discussed
the complexity of AHC in Section 4.6).

The time and space complexity of a single iteration of progressive alignment is
O�l2 � kl� [62] where l is the average length of the traces/profiles considered for
alignment and k is the number of traces involved in the alignment in that iteration.
There exists n � 1 iterations in the progressive alignment thus making the alignment
time to be polynomial. However, it is to be noted that during the initial iterations,
the value of k is much smaller than the total number of traces. Furthermore, unless
the traces to align are heterogeneous, the length of the aligned traces tends to be
closer to the average trace length of the input traces.

8.6 Experiments and Discussion

We first illustrate the significance and effectiveness of trace alignment in process
diagnostics and later expend on the scalability issues. We consider an event log con-
taining cases pertaining to copy/scan job requests with at most 2 pages to copy/scan.
This event log contains 21 distinct cases and 777 events distributed over 35 activities
(a small log was chosen for legibility issues). The event log contains 4 outlier cases
where some activities are reordered or skipped. The event log is first encoded into
activity sequences (traces) where each activity is encoded with an alpha-numeric
character. Figure 8.13 depicts the result of trace alignment. Common execution
patterns are captured in the form of well conserved regions. For example the activity
sequence syiEHDr corresponds to the Capture Image subprocess (s-Illuminate Docu-
ment, y-Move Scan Head, i-Focus Light Beam, E-A/D Conversion, H-Interpolation,
D-Filtered Image, r-Collect Image). The Capture Image subprocess contains a loop
that is executed once for each page. Since the event log contains cases with at most
2 pages to copy/scan, the Capture Image process is executed once or twice.

Concurrent activities manifest in mutually exclusive traces across different columns
in the alignment. It can be seen that the activities l (Y-Zoom), e (Load Quantizing
Pixel), w (Calculate Quantization Error), and h (Rotate) are concurrent. The activity
Y-Zoom is concurrent with another activity, X-Zoom (a), in the Image Processing
subprocess. Similarly, the activities ‘Load Quantization Pixel’ and ‘Calculate Quan-
tization Error’ are concurrent in the Half Toning subprocess. Distinct activities that
manifest in a single column share the same contexts and can potentially be activities
modeled under a choice construct. For example, the activities b (Send FTP) and
u (Send SMTP) manifest in the same column in the alignment. They are indeed
modeled using the XOR construct and hence are mutually exclusive.

Deviations, exceptional behavior and rare event executions are captured in regions
that are sparsely filled, i.e., regions with lots of gap symbol (�). Trace N8 has an
exceptional activity d (Job Complete) in column 5. The trace also has a missing
activity s (Illuminate Document) in column 6 (all the other traces have the activity
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s in column 6). The missed activity s appears in the penultimate column in N8. This
is one of the outlier cases where the activities s and d are reordered. All the traces
except N9 have activity x (Neighbor Quant Error Packing). Note that the omission
of x in N9 is a violation of the expected behavior because this is a mandatory activity
in the Half Toning subprocess. Another example: only the first trace has the activity
sequence AxeptBzwl in the columns 44 to 52. This activity sequence corresponds to
the Half Toning subprocess. This rare execution indicates that this case required two
iterations of the Half Toning procedure as part of enhancing the image quality.

As just illustrated, trace alignment can assist in uncovering extremely interest-
ing insights and can be used to probe process execution behavior. Trace alignment
provides a complete perspective of activity executions in a log including that of long
range dependencies (any dependencies between activities are reflected as common
execution patterns in the traces where they manifest). Furthermore, with rich inter-
active visualization (such as the options for filtering/sorting columns containing an
activity), trace alignment provides a flexible tool for the inspection of the log. Fig-
ure 8.14 summarizes how trace alignment assists in answering some of the diagnostic
questions raised in this chapter. In the next two sections, we report on the scalability
of the approach.

8.6.1 Influence of the Number of Traces

As discussed in Section 8.5, the computational complexity of trace alignment depends
both on the length of the traces or profiles being aligned and the number of traces. In
order to study the influence of the number of traces on trace alignment, we considered
multiple event logs pertaining to the copy/scan job requests with varying number of
traces but the same mean trace length. The length of a trace in copy/scan jobs is
primarily affected by the Capture Image and Half Toning subprocesses (due to the loop
constructs), the former depending on the number of pages to copy/scan and the latter
depending on the image quality. We fixed the number of pages to scan to at most 2
and the number of iterations of Half Toning to at most 3. We simulated multiple event
logs for varying number of cases with these characteristics. Figure 8.15(a) depicts
the average time4 along with the 95% confidence intervals (over 5 independent runs)
to compute the alignment for varying number of traces (the mean trace length is 37
in these logs). Only the time taken to perform the alignment is depicted (the time
to compute the guide tree is not considered as we have discussed this in detail in
Chapter 4). Figure 8.15(a) also depicts the final alignment length. The alignment
time is affected by the number of traces in each iteration of the progressive alignment;
the number of traces being small during the initial iterations. In the worst case, we
expect a quadratic complexity on the number of traces. However, we can observe a
quasi-linear influence of the number of traces on the alignment time. This can be
attributed to the shorter traces and less variability among them.

4All the computational times reported in this chapter are measured on an i3 Core CPU M350 @
2.27 GHz with 4GB RAM running a 64-bit Windows 7 OS.



8.6. Experiments and Discussion 221

T
ra

ce
N

a
m

e

In
fo

rm
a
ti

o
n

S
co

re

T
h

e
co

n
se

n
su

s
se

q
u

en
ce

re
p

re
se

n
ts

th
e

b
a
ck

b
o
n

e
o
f

th
e

p
ro

ce
ss

C
o
m

m
o
n

ex
ec

u
ti

o
n

p
a
tt

er
n

s
a
re

ca
p

tu
re

d
in

th
e

fo
rm

o
f

w
el

l
co

n
-

se
rv

ed
re

g
io

n
s

C
o
n

cu
rr

en
t

a
ct

iv
it

ie
s

m
a
n

if
es

t
in

m
u

-
tu

a
ll

y
ex

cl
u

si
v
e

tr
a
ce

s
a
cr

o
ss

d
iff

er
en

t
co

lu
m

n
s

D
ev

ia
ti

o
n

s,
ex

ce
p

ti
o
n

a
l

b
eh

av
io

r
a
n

d
ra

re
ev

en
t

ex
ec

u
ti

o
n

s
a
re

ca
p

-
tu

re
d

in
re

g
io

n
s

th
a
t

a
re

sp
a
rs

el
y

fi
ll

ed
i.

e.
,

re
g
io

n
s

w
it

h
lo

ts
o
f

g
a
p

sy
m

b
o
ls

‘-
’

o
r

in
re

g
io

n
s

th
a
t

a
re

w
el

l
co

n
se

rv
ed

w
it

h
a

fe
w

ra
re

g
a
p

s.

F
ig
u
r
e
8
.1
4
:

V
is

u
a
li
za

ti
o
n

o
f

th
e

a
li

g
n
ed

tr
a
ce

s
a
lo

n
g

w
it

h
a
n

n
o
ta

ti
o
n

s
in

d
ic

a
ti

n
g

h
o
w

tr
a
ce

a
li
g
n

m
en

t
ca

n
a
ss

is
t

in
a
n

sw
er

in
g

so
m

e
o
f

th
e

d
ia

g
n

o
st

ic
q
u

es
ti

o
n

s.



222 Chapter 8. Trace Alignment

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0  50  100  150  200  250  300

 0

 50

 100

 150

 200

 250

 300

tim
e 

(m
se

cs
)

A
lig

nm
en

t L
en

gt
h

No. Distinct Traces

average alignment time

final alignment length

(a) Influence of number of traces

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0  20  40  60  80  100  120  140

 0

 50

 100

 150

 200

 250

 300

tim
e 

(m
se

cs
)

A
lig

nm
en

t L
en

gt
h

Average Trace Length

average alignment time

final alignment length

(b) Influence of trace length

Figure 8.15: Influence of the number of traces and trace length on the alignment time and align-
ment length.

8.6.2 Influence of Trace Length

In order to study the influence of the lengths of the traces on trace alignment, we set
the number of traces to be the same. We vary the mean trace length by varying the
number of pages to copy/scan. We simulated the digital copier process to generate
multiple event logs, all containing 37 traces but with varying mean trace lengths.
Figure 8.15(b) depicts the average time along with the 95% confidence intervals (over
5 independent runs) to compute the alignment for varying mean lengths of the traces.
As discussed in Section 8.5, the length of the traces is expected to have a quadratic
effect on the alignment computation time. However, we observe a more moderate
increase in computation time in Figure 8.15(b). This can be attributed to the small
number of traces (just 37) and less variability among them.

In a realistic scenario, as the size of the log changes, both the number of traces
and the mean trace length change. We simulated multiple event logs to reflect a
realistic scenario (here the number of pages to copy/scan can vary between 1 and 15
and the number of iterations in Half Toning can vary until the error reaches a certain
threshold). We randomly added noise by reordering activities in the traces of this
event log (around 18% of the traces are outliers). We used the MRA feature set
along with the Euclidean distance metric to generate the guide tree. Figure 8.16(a)
depicts the average time along with the 95% confidence intervals (over 5 independent
runs) to compute the alignment for the different logs. Figure 8.16(a) also depicts the
final alignment length. Unlike Figure 8.15, we now see the alignment time increasing
quadratically. It is also to be seen that the final alignment length in these logs is
relatively much larger when compared to Figure 8.15. This is an effect of the outlier
traces present in the event log. As discussed in Chapter 4, the MRA feature set is
able to segregate the outlier and valid traces into two clusters. The two clusters are
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Figure 8.16: Influence of varying log sizes on alignment time and alignment length.

the last ones to be merged in the AHC algorithm. Assume that we stop short of
finding the alignment at the root node (i.e., we do not align the alignments obtained
over the valid and outlier traces). Figure 8.16(b) depicts the alignment time in this
scenario (we notice a quadratic behavior here as well). Figure 8.16(b) also depicts
the final alignment length over the valid traces. We can see that the majority of time
to compute the whole alignment is taken for the alignment at the root node (this is
not surprising because at the root node, the number of traces as well as the length
of the profiles to align is large). Furthermore, the final alignment length is almost
doubled by aligning the alignments over the valid and outlier traces. We recommend
that in cases where the event log is heterogenous, the alignments be performed on
smaller homogenous partitions of the event log rather than on the whole event log.

8.7 Outlook

Finding high quality alignments is notoriously complex. In this section, we high-
light some of the extensions that can be done to further improve the results of our
trace alignment approach. We also mention some of the challenges related to trace
alignment and directions for future research.

� Multi-phase approach: In order to deal with complex event logs (logs with a
large number of activities/event classes, etc.), one can try to find alignments
using a multi-phase approach. The basic idea is to first simplify the log by
defining abstractions over the activities and then transforming the log with
these abstractions as discussed in Chapter 6. Sub-logs are created for each
abstract activity during this transformation. Trace alignment is then applied to
the most abstract log with a provision to zoom into an abstract activity. Upon
zooming into an abstract activity, an alignment obtained on the traces defined
in the sub-log of the abstract activity is shown. The definition of abstractions
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and simplification of logs can be enabled by incorporating semantics in the
log specification [50, 55] or through (semi-)automated means as discussed in
Chapters 3 and 6.

� Outlier/noise detection: Noisy data poses a risk of misleading the alignment
procedure and thereby resulting in low quality alignments. There is a need
for techniques to identify difficult or even un-alignable bags of traces. For
certain perspectives of analysis such as finding common execution patterns or
backbone/critical elements of a process, such traces can be safely ignored. How-
ever, for certain other perspectives such as finding deviations/non-conforming
traces, it is a tricky proposition to filter outliers as non-conforming traces could
be treated as outliers. Techniques developed within the context of process min-
ing such as [72, 80] for noise/outlier detection and filtering, and identifying
coherency in event logs need to be explored. In addition, one can take leverage
of the techniques in data mining and machine learning community and adapt
them (if need be) by providing a process tinge to them.

� Influence of guide tree: As discussed in Section 8.3, progressive alignment suffers
from the limitation that any error in alignment occurring in early stages of
progressive alignment cannot be undone. Furthermore, the final alignment
strongly depends on the order of traces being aligned. An improper choice
of the traces to align in the initial stages might lead to misalignments which
percolate to later stages. It is important to explore how different guide trees
influence the quality of the alignment. Any ill-effects due to guide trees need
to be mitigated.

� Refinement strategies to improve the quality of an alignment: In this chapter,
we have presented three different refinement techniques to deal with misplaced
gaps. However, robust quality metrics along with realignment strategies to ef-
fectively deal with the variations that might arise due to the manifestation of
different process model constructs is highly desirable. Defining and identifying
problematic regions in an alignment is a prerequisite to any refinement tech-
nique. Automated means of identifying such problematic regions is non-trivial
and is in itself an interesting area of research.

� Advanced alignment techniques: The progressive alignment approach adopted
for trace alignment is susceptible to converging to local optima. This is due to
the fact that when aligning an individual trace or an alignment A with another
alignment B, the traces in alignment A is not aligned directly and optimally
with every internal trace within the alignment B but with the whole alignments
A and B taken as atomic entities. Gaps in the resulting alignment are inserted
as a column into the sub-alignments A and B as a whole, but are not optimally
distributed throughout the resultant alignment. This is largely related to the
influence of guide tree on final alignments. Figure 8.17 depicts an example of
this phenomenon. For this example, let us assume that S�w,x� A 1.5S�w,c�
(i.e., the substitution score of w with x is at least 1.5 times greater than the
substitution score of w with c). The alignment of w with c in the alignment A
in Figure 8.17(a) is frozen and cannot be altered in subsequent steps. When
alignment B is aligned with alignment A, we obtain the alignment C as de-
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picted in Figure 8.17(a). For the constraint on substitution scores as mentioned
above, this is not an optimal alignment of the four traces. The optimal align-
ment for these traces is as depicted in Figure 8.17(b). Since S�w,x� is greater
than S�w,c�, an alignment technique should favor the alignment of w with x.
However, in progressive alignment approach, the alignment of activities done
in earlier stages cannot be altered in later stages.

A
a b c d

a b w e

B
a c x d

a c x e
B
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a b w - e

a - c x d

a - c x e

C

(a) local optima

a b c - d

a b - w e

a - c x d

a - c x e

(b) global optima

Figure 8.17: An example of progressive alignment approach converging to local optima. If the
substitution score of w with x is at least 1.5 times greater than the substitution score of w with c,
then the SP-score of (b) is greater than the SP-score of (a).

Also, the splitting up of common patterns of execution as discussed in Sec-
tion 8.4 is an effect of such local optima. Recent advances in multiple sequence
alignment (such as the one that takes into consideration some user defined
constraints [155] while performing an alignment) need to be explored. One can
specify the conservation of common execution patterns in the final alignment as
a constraint. Such common execution patterns can be discovered automatically
as discussed in Chapter 3. Other techniques such as the partial-order align-
ment [134] and the hybrid approach combining the progressive and partial-order
alignments [85] have been shown to produce better alignments.

8.8 Conclusions

In this chapter, we proposed a novel approach of aligning traces and showed that
this approach uncovers interesting patterns and assists in getting better insights into
the actual behavior. We showed how trace alignment can help to provide new and
valuable insights and in answering some of the interesting questions in process diag-
nostics raised in this thesis. We also showed that this approach is scalable for large
event logs. Automatic generation of high-quality alignments is still challenging and
there is much to be done to fully exploit the potential of this approach.
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Chapter 9

Signature Discovery

In the previous chapter, we have looked at trace alignment as an approach for process
diagnostics. We showed that trace alignment can be used to answer several of the
diagnostic questions described in Section 1.4. In this chapter, we extend the work
on process diagnostics by addressing a specific question: can we find patterns in an
event log that can discriminate between different classes of behavior?. For example,
consider the traces depicted in Figure 9.1. The traces carry a label indicating a par-
ticular behavior, 4, 6, or '. The figure also depicts the patterns that discriminate
between ' and 6 with 4. More specifically, the three event patterns represented
by circles are specific to traces that are labeled 6 while the patterns represented
by bars are specific to traces labeled as '. The presence of these patterns clearly
distinguishes a trace from traces labeled 4.

trace
class label event pattern

Figure 9.1: Essence of signature discovery. Given an event log where the cases (traces) are
classified into different categories, the objective is to find patterns that discriminate between the
different classes.

Signature discovery is concerned with finding patterns to discriminate between
traces. Such patterns can be used to diagnose differences and predict the class of
unclassified traces. There are many applications for signature discovery. We mention
two motivating examples:

� Fault diagnosis of high-tech systems: High-tech systems such as medical de-
vices, copier machines, and wafer scanners, all generate event logs capturing
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their day-to-day operations. These systems may malfunction when they are
used abnormally (operational processes deviating significantly from their nor-
mal/intended usage). Malfunctions are also noticed when parts/components in
the system encounter faults and/or deteriorate. System event logs are often
the primary source of information for diagnosing (and predicting) the causes of
failures in these systems. Early detection and diagnosis of system malfunctions
can help avoid catastrophic failures and reduce productivity loss. For large and
complex systems such as these, there is a pressing need for better techniques
for processing, understanding, and analyzing these data [164]. We use the fault
diagnosis of X-ray machines as a case study in this chapter.

� Detecting fraudulent claims: Insurance companies across all sectors (e.g.,
healthcare, automobile, property, etc.) are plagued by fraudulent claims cost-
ing billions of dollars annually [57]. Fraud often involves complex patterns of
very minute indicators over a long period of time [192]. Detecting fraud and
abuse relies heavily on analysts/auditors inspection of claims in conjunction
with domain knowledge. There is a need for analytical techniques for effective
detection of fraud [19, 115, 127, 271]. Assuming that there exists a historical
database where we have “cases” comprising the evidence collected so far that
indicates fraud, one can try to learn patterns/characteristics of behavior in
such cases that discriminate them from normal behavior and use the uncovered
patterns for monitoring future instances.

To answer the question raised above one may use trace alignment; align the traces
and identify differences between traces of different classes. However, this requires
manual inspection of the alignment to uncover the discriminating patterns. Inspect-
ing for patterns is cumbersome for large datasets. Therefore, in this chapter, we
explore the feasibility of automatically extracting signature patterns from event logs,
which can be associated to a particular class. This assumes that the cases in an
event log have an assigned class label (at first for training purposes). We propose a
framework that incorporates well-known machine learning algorithms to derive the
signatures. These algorithms require the data to be presented in a tabular form.
Therefore, one of the steps in our framework is to translate the cases in an event log
into class labeled feature vectors. The algorithms then learn the correlations among
the features (called the training phase) and returns a classifier, which can be used
over future instances.

The remainder of this chapter is organized as follows. Section 9.1 presents the
related work on (signature) pattern discovery based on event correlations, more
specifically, in the context of fault diagnosis. Section 9.2 introduces our case study,
i.e., fault diagnosis of X-ray machines, in more detail. Section 9.3 presents the sys-
tem event logs recorded by X-ray machines and discusses the data selection process
for signature discovery. Section 9.4 presents our generic framework for signature
discovery based on machine learning techniques. Section 9.5 discusses the results of
applying the framework. Finally, Section 9.6 concludes the chapter.
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9.1 Related Work

Any framework or methodology that attempts at discovering signature patterns,
which discriminate between classes of behavior, is bound to use machine learning/-
data mining techniques. The differences between the solutions mainly stem from the
nature of application/domain, input data and its treatment, and the definition and
scope of patterns. Our proposed framework for signature discovery is no different
and is generic. It is based on two of the classical machine learning techniques, viz.,
decision trees [176, 177] and association rule mining [5, 138]. However, there are also
two distinguishing aspects: firstly, the proposed framework allows for certain input
data items to not have a class label, and secondly, the framework supports a wide
range of features that are context-aware (we adopt the features defined in Chapter 4).
Furthermore, the case study of fault diagnosis of X-ray machines makes it a unique
proposition both from an application/domain point of view (cf. Section 9.2) and
the nature of input data. The event logs from these systems need special treatment,
which we discuss in Section 9.3. In the remainder of this section, we focus on related
work in the context of fault diagnosis.

Event correlation based approaches for failure diagnosis have been proposed in
[25, 148, 189]. There are also commercial tools such as HP’s OpenView Self-Healing
Services [109] and IBM’s Trivoli [112] for network management. These methods and
tools rely on either an existing rule base (typically derived from the Failure Mode
and Effect Analysis (FMEA) [210]) or some known dependency models about the
system. Either of these is hard to obtain for complex distributed systems and/or
flexible systems such as medical systems. Automated identification of probable
causes of performance problems in large server systems was proposed in [111]. This
approach relies on the availability of well defined measurements on known metrics
relevant to performance problems. Techniques such as these work well when one
knows apriori what is to be measured; the analysis then focuses mainly on finding
correlations over the measured values. However, event logs from high-tech systems
such as X-ray machines capture all events that are trigged on/by/within the sys-
tem and are typically designed for multiple applications (e.g., understanding system
usage, debugging software bugs, etc.). These event logs tend to be fine-granular
making the analysis challenging. Such fine-grained event logs first require elaborate
preprocessing such as defining abstractions and selecting an appropriate scope for
analysis, which can vary depending on the domain and application. We will later look
at specific techniques of data selection and preprocessing for our case study on fault
diagnosis of X-ray machines. Techniques based on the assumption that deviations
exist in component interaction patterns during system/application failures have been
proposed in [34, 135, 272]. However, these techniques cannot be applied to event logs
that do not capture component interactions explicitly.

The problem of signature discovery can essentially be viewed as one aimed at
inducing a classifier for an event log with labeled traces. Folino et al. [72] have
proposed a decision tree based predictive model defined over a set of attributes. The
approach that we present in this chapter also includes decision trees. However, our
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approach differs from [72] in three aspects: (i) in addition to decision trees, our
approach also considers association rules between attributes and the class labels, (ii)
our approach also addresses the scenario where only a subset of traces in the event
log have a label, and (iii) we define several context-aware attributes over common
execution patterns manifested in the traces. The approach presented in this chapter
is an extension of the ideas presented in [139].

9.2 Fault Diagnosis of X-ray Machines

In this section, we present the case study of fault diagnosis of medical systems from
a global leader in professional and consumer healthcare. Some of the organization’s
offerings include diagnostic imaging systems, healthcare IT, patient monitoring, car-
diac devices, and customer services. An interventional X-ray (iXR) system is a large
scale (consisting of thousands of parts), complex, and flexible imaging system de-
signed to diagnose and treat cardio and vascular diseases. Although it is undesirable
for these systems to malfunction, in reality, these systems do malfunction in their
lifetime. However, when they do, it is important that these problems are quickly
and predictably corrected. Good performance and robustness of these machines are
important for a number of reasons: for clinicians to smoothly perform their inter-
ventional procedures, for hospitals to optimize healthcare costs, and above all it is
critical for patients.

Whenever a system malfunctions, customers may contact the customer service
department. Depending on the nature of the problem, the customer service person-
nel may try to resolve the issue remotely or may send a field service engineer (FSE)
to the customer site. A typical workflow of a FSE during a corrective maintenance
visit consists of the following steps: (a) diagnostics, (b) part(s) replacement, (c)
part(s) configuration and calibration, (d) system verification, and (e) miscellaneous
(e.g., ad-hoc support for other systems). Among the above steps, diagnostics stands
out to be the most difficult and the most un-predictable step, under the assumption
that all the steps are performed by trained personnel in accordance with established
maintenance procedures. The effect of this is that

� for some of the problems, large deviations1 in the Mean-Time-To-Repair
(MTTR) are observed

� some of the problems could not be fixed correctly on the first time. This implies
that false replacements are possible and/or additional visits could have been
required to fix the problem

Furthermore, for intermittent problems, diagnostics pose an even greater challenge.
The organization feels that efficient diagnostics and repair of problems could go a
long way in improving customer satisfaction and also in enhancing its growth.

iXR systems installed across the globe continuously log all major events (e.g.,

1we do not provide the quantitative values due to confidentiality reasons
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system operations, warnings, errors, etc.) during each day. Customer service person-
nel and field service engineers also make records of problems (customer complaints)
and actions performed, as job sheets. Both of these data sources make up a set
of historical service data. The organization sees an opportunity of improving their
system maintenance through log-based fault diagnosis. More specifically, they are in-
terested in investigating whether the diagnostic value of system logs can be improved
by discovering patterns that can be correlated to a known problem and/or corrective
action with high confidence. This turns out to be a non-trivial problem due to the
following reasons:

� the system logs exhibit all of the characteristics mentioned in Section 1.2 (e.g.,
fine-granular, heterogenous, voluminous, etc.) thereby making the analysis
challenging, analogous to searching for needles in a haystack, and

� iXR systems are large scale machines with many different things happening
in a distributed manner and with complex relations between parts (e.g., the
breakdown of one part could influence the behavior of other parts)

In other words, due to interactions among the system hardware and software compo-
nents, the system event logs are comprised of streams of interleaved events, and only
a small fraction of the events are relevant for the diagnosis of a given problem.

9.3 Data Selection and Preprocessing

In this section, we describe the iXR system logs and job sheets in more detail and
discuss the data preparation process for signature discovery.

9.3.1 iXR System Logs and Job Sheets

Each iXR system records events during its daily operations. There are different
types of events that are recorded, e.g., commands, errors, warnings, etc. Each entry
in the system log contains information about a particular event and is characterized
by a few attributes that provide rich information about the event. Some of these at-
tributes include event id (the identifier of this event class), unit (the unit/component
in the system that this event belongs to)2, severity (indicating whether the event is of
type error, warning, command, etc.), description (additional information pertaining
to the event), system mode (indicating the mode of the system in which the event
was trigged, e.g., start-up, shut-down, warm restart, normal, field service, etc.),
and timestamp. It is important to note that iXR systems are constantly improved
with newer versions of software (as updates). Such upgrades are meant to provide
a better experience for the customers, e.g., functionality, features, performance, etc.
At times, hardware upgrades also take place. The definition of event classes could
change when transitioning to a newer version.

While the system logs capture the execution behavior of the system and the processes

2Being a large scale machine, the iXR system is divided into sub-systems, which themselves
might be composed of other smaller building blocks (units). The different parts in the system are
categorized as belonging to one of these units.
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operating on the system, the job sheets capture information pertaining to the main-
tenance, diagnostics, and repairs. More specifically, they contain information about
the customer complaints recorded as calls, the parts replaced, and high-level textual
description of the work (jobs) performed by the FSE. Each call is characterized by
attributes such as the call id (a unique identifier for the call), customer information,
system information (the details of the system), complaint (textual description of
the problem), call open date (the date when the problem is reported and the call is
opened), call close date (the date when the issue is resolved and the call is closed),
number of hours (the billable time spent in resolving the issue), and cost (the total
cost (personnel cost, travel cost, and part(s) cost)). Each call may result in one
or more jobs, e.g., there could be one job created for fault isolation (diagnostics),
one job for replacing the part, and another job for calibration and configuration. In
addition to the calls related to customer complaints, the job sheets database also
contain information about jobs performed proactively such as planned maintenance
and software upgrades.

Parts that can be replaced in the system are called as Field Replaceable Units
(FRUs). In this case study, we confine ourselves to the task of finding symptomatic
patterns in the event logs that can be associated to a malfunction requiring the re-
placement of a FRU. In the next two sections, we look at the data preparation
process for discovering these symptomatic patterns.

9.3.2 Relating Job Sheets and System Logs

The data selection process starts with first choosing a part (FRU) of interest for
which we are interested in finding the patterns, e.g., FRUs for which the variation
in MTTR is large. This FRU could have been replaced in many systems as part of
corrective maintenance in the past. We can identify all such systems from the job
sheets database (every system across the globe is uniquely identifiable). Furthermore,
each system can have multiple calls associated with this FRU replacement, i.e., it
could be the case that the same part had to be replaced several times on a particular
system at different periods of time. Since the system could have undergone version
upgrades, it is recommended (by domain experts) that the (system, call) pairs are
segregated based on their versions. Figure 9.2 depicts this scenario.

As mentioned earlier, each call is associated with a call open date and a call close
date. Furthermore, the system event logs are recorded every day. For each call, we
consider logs from the corresponding system a few days before the call open date
and a few days after the close date for analysis. The rationale is that if there exists
a symptomatic pattern, it should have manifested in the system logs prior to and
during the life time of the complaint and that they disappear in the event logs after
the part replacement. The number of days that one should consider before (after)
the call open (close) date is largely dependent on the nature of the FRU and is to be
chosen on a trial and error basis guided by some domain knowledge. For example, a
malfunction in a critical part such as an X-ray tube is noticed immediately whereas a
malfunction in hard disk may not be noticed immediately. Thus it may be sufficient
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Figure 9.2: Selection of system event logs for signature discovery. For a chosen part, all systems
where that part had been replaced in the past are identified. The part could have been replaced in
a system several times over a period of time. Each instance of replacement is captured by a unique
call. Event logs from a few days (here, k) before/after the call open (CO) and call close (CC) date
for each call pertaining to a particular system version (here, v4.3.2) are chosen for analysis.

to consider just a couple of days before/after the call open/close date for the X-ray
tube while for the hard disk, a larger time window is recommended.

Having discussed about the selection of system logs for analysis, the next step
is to prepare the data for analysis. This requires the definition of cases (traces) and
a class label for each case as illustrated in Figure 9.1. In the next section, we discuss
on generating this from the selected system logs.

9.3.3 Defining Cases–Scoping and Filtering

As mentioned earlier, there are different modes during the operation of an iXR
system, viz., start-up, shut-down, normal, warm-restart, and field service. Events
are logged in all the system modes. Operations meant for regular use by the clini-
cians are logged under the normal operation mode while the operations specific to
field service engineers are logged under the field service mode (this is similar to the
administrator mode in an operating system). During a single day, the system could
have been (re)started or shutdown multiple times. A session of system’s operation
constitutes the sequence of events during the normal operation mode between startup
and shutdown as illustrated in Figure 9.3. Sessions form the basis for defining a case.
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Before we present means of defining a case based on sessions, we briefly present the
filtering of events.
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Figure 9.3: Events during normal operation mode signify the events during the regular usage of
the system and constitute the focus of analysis. The system could have been restarted multiple
times during a single day. Each sequence of events during the normal operation mode surrounded
by other system modes defines a session. The example illustrates the consideration of log files 3
days before/after the call open/close date of a part replacement in a particular system.

The events that are recorded in the iXR system are very fine-grained. This makes
the total number of events that are logged in a single day/session quite large, in the
order of a few thousands. Identifying the symptomatic patterns pertaining to the
malfunction of a FRU in the fine-grained event logs log is a challenging task. This
can be attributed to the fact that the events that potentially bear an indication of
the abnormality are just a few in number. Considering the whole log can induce
a huge amount of unrelated events thereby making the task of signature discovery
analogous to searching for a needle in a haystack. Domain experts suggest that a
malfunction in a FRU reflects as error and/or warning events in the log pertaining to
the component (unit) it belongs to and/or components with which it interacts with.
Accordingly, we pre-process the log as follows:

� for a given FRU for which we are interested in identifying the symptomatic
patterns in the log, we first identify (based on domain knowledge) the units
(components) that are related to the FRU, e.g., if X-ray tube is chosen as
the FRU, the units related to this are X-ray Control, X-ray Generator, and
Geometry.

� only the error/warning events pertaining to the units related to the FRU during
a session are considered

As mentioned earlier, the symptomatic patterns are expected to have manifested in
the system logs prior to and during the life time of the complaint, i.e., on/before the
call close date, and disappear in the event logs after the part replacement (call close
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date). Therefore, our problem of signature discovery is to uncover patterns consistent
across the different calls (pertaining to that part replacement), which appear only
in the event logs prior to the corresponding call close dates and disappear in the
event logs after the call close date. It is important to note that the manifestation of
patterns pertaining to a problem occurs only when that functionality or behavior is
invoked on the system. In other cases, we see a normal behavior of the system. Hence
in the time-period prior to the call-close date (i.e., the time period between which
the customer sees some abnormality and the time at which the problem is supposed
to have been resolved), it is quite possible that the system reflects a normal behavior
during some of the sessions. However, the sessions that exhibit normal behavior is
not known.

We propose two ways of transforming the system logs to labeled cases. For this
case study, we expect the cases to be labeled as normal (N) and faulty (F). The first
approach, called individual sessions approach, translates each session (in the system
logs pertaining to a single call) into a separate case. All sessions subsequent to the
call close date are labeled as normal cases. However, the sessions on/before the call
close date are labeled as ‘unknown’ (?) at this point. The class labels for these cases
are assigned later in the signature discovery framework (cf. Section 9.4). Figure 9.4
depicts this approach. The second approach, called juxtaposed sessions approach
creates two cases per call. The sessions on/before the call close date are all appended
into a single case with a distinct delimiter between them and labeled as faulty (F).
Similarly, the sessions after the call close date are appended together with a distinct
delimiter between them and labeled as Normal (N). The distinct delimiter is essential
to ensure that patterns do not overlap across sessions during the discovery process.
Figure 9.5 depicts this approach.
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Figure 9.4: Scenario where each individual session defines a case. The cases after the call close
date can be considered to be normal where as the cases on or before the call close date can either
be normal or faulty depending on whether the functionality pertaining to the broken part is invoked
or not. The labels for these cases are set ‘unknown’ (?) at this moment. The actual labels for these
cases are decided later by the framework.
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Figure 9.5: Scenario where each call defines two cases. The sessions on/before the call close date
are juxtaposed and assigned the label ‘faulty’ (F) whereas the case defined by the juxtaposed sessions
after the call close date can be considered to be ‘normal’ (N). Delimiters are used to distinguish the
boundaries between sessions.

So far, we only discussed the data selection and preparation process. At the end of
this process, we have an event log with cases that carry a class label indicating a
particular class of behavior. We now proceed to uncovering the signature patterns
in the next section.

9.4 Signature Discovery Framework

We propose the framework depicted in Figure 9.6 for discovering patterns that dis-
criminate between different classes of behavior. The proposed framework is generic
and works for any event log with labeled cases (signifying different classes of behav-
ior) with a provision for some of the cases remaining unlabeled. We now explain the
constituents of the framework.

Class Labeling

When event logs contain some cases that are unlabeled, an important question to
address is how can we assign labels to those unlabeled instances?. Efficient means to
automatically or semi-automatically derive labels need to be designed. We propose
the use of clustering and/or classification techniques, such as the k-nearest neighbor
[46] and one-class support vector machines (SVM) [200], in machine learning to assist
in class labeling. For example,

� if the unlabeled instances are to be assigned one of the class labels already
present in the event log, then one may consider the k-nearest neighbor approach.
The basic idea is to determine the k-nearest labeled instances for each of the
unlabeled instances and assign the majority class of the k instances as the class
label for the unlabeled instance. The techniques proposed in Chapter 4 can be
used to estimate the distance/similarity between instances.
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Event Log

Class Labeling

Feature Extraction
and Selection

Discover Patterns
Classification & Association

Evaluation

Reporting and
Visualization

Figure 9.6: Framework for signature discovery. The block depicted in dashed rectangle is an
optional step that is to be considered when some of the cases in an event log are unlabeled.

� if the labeled instances in the event log belong to only one class and we are
interested in labeling the unlabeled instances to utmost two-classes, e.g., normal
and faulty as in the case of iXR systems, an interesting approach is the use of
one-class support vector machines. Here, we assume that the instances of one-
class (e.g., normal) are labeled. One-class SVMs work with the assumption that
all positive (normal) instances are alike while each negative (faulty) instance
can be negative in its own way, i.e., the distribution of the negative instances
is unknown. Once a one-class SVM is built over the normal instances, any
unlabeled instance can be evaluated to either belonging to the normal class or
not and labeled accordingly.

After the execution of this step, all instances in the event log should have a class
label. We shall now proceed to discover patterns that are specific for each class and
discriminatory between the classes.

Feature Extraction and Selection

This step corresponds to extracting the features from an event log, which form the
basis for signature patterns. Once features are defined, each instance in the event log
is to be transformed into a vector space where the elements of the vector correspond
to the value of the selected feature in the instance. We argue that a wide variety
of feature types need to be considered and the choice of the feature type largely
depends on the nature of the problem and its manifestation in the event log. Domain
knowledge can assist us in selecting an appropriate feature. We recommend the
consideration of individual events, sequence features, and alphabet features defined
in Section 4.2 as features. Sequence features are important when an occurrence of a
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particular sequence of events in the system log defines a symptomatic pattern, e.g.,
when a FRU malfunctions, the units that depend on/interact with this faulty FRU
retries and seeks for a response from the FRU. Retries often manifest as loops, which
are captured with tandem arrays. As discussed in Section 4.2, alphabet features are
derived from sequence features by relaxing the ordering of events. Sequence features
that are defined over the same set of events are considered to be equivalent under an
alphabet feature. In addition to the above features, one may also consider features
catering to other perspectives such as data (e.g., data objects and their values in
each trace).

If the number of features extracted is large, then it leads to the problem of curse
of dimensionality [104]. Feature selection techniques deal with removing irrelevant
and redundant features. One can adopt simple filtering techniques such as removing
infrequent features to advanced dimensionality reduction techniques such as principal
component analysis (PCA) [119] for feature selection. Once the feature extraction
and selection is done, we transform the event log into a vector space as depicted in
Table 9.1.

Table 9.1: The labeled cases in an event log are transformed into a vector space based on the
chosen features �f1, f2, . . . , fm�. One can choose between a nominal (binary) representation (where
the value for a feature in a case corresponds to the presence/absence of the feature in that case) and
a numeric representation (where the values correspond to the frequency of the feature in the case).

Instance f1 f2 . . . fm Class
1 3 1 . . . 0 N
2 0 6 . . . 1 F
3 1 0 . . . 4 F
� � � � �

n 2 2 . . . 0 N

Discover Patterns

Given a dataset as depicted in Table 9.1, the goal of this step is to discover the
patterns over the features, which are strongly correlated to the class label (e.g.,
normal or faulty). We adopt two of the classical data mining techniques, viz., the
decision trees [176, 177] and association rule mining [5, 138]. These two learning
algorithms are chosen primarily for three reasons:

� they are non-parametric, i.e,. no specific data distribution (of the input dataset)
is assumed

� they generate simple, understandable rules that are easy to interpret by domain
experts

� they can easily handle imbalanced datasets, i.e., datasets where the instances
of each class are not approximately equally represented

For the association rule mining, we adopt the special subset called the class associa-
tion rules [138], which is an integration of classification rule mining and association
rule mining. We do not present the details of these algorithms in this thesis. The
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interested reader is referred to [5, 104, 138, 176, 177].

The result of this step are rules of the form of disjunction (OR) of conjunctions
(AND) such as

If f1 C v11 AND f3 � v31 AND f7 � v72 then F
OR

If f2 � v26 AND f4 � v47 then N
OR

If f5 � v50 then F

where the vij ’s are the values for the corresponding features.

Note: If the cases in the fault diagnosis of iXR systems are defined as juxta-
posed instances of sessions, then we need to ensure that the rules formed comprise of
feature constraints that do not span over multiple sessions. For example, consider the
case depicted in Figure 9.7 where the definition of a case is based on the juxtaposition
of sessions. Let f1 and f3 be features manifested in one session and f2 and f7 be
features manifested in another session. We need to ensure that we do not form rules
that have a combination of say, f3 and f2 together. However, one may form rules
that involve f1 and f3 or f2 and f7 together. This is because we are interested in
finding patterns that manifest in a single session.

. . .
f1 f3 f2 f7

F

Figure 9.7: Signatures with feature combinations that overlap across multiple sessions are prohib-
ited.

Evaluation

We adopt standard metrics in data mining such as the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN), and derived met-
rics from these such as accuracy, sensitivity, specificity, precision, and F1-Score to
evaluate the goodness of the discovered signatures. Models with sensitivity and
specificity both closer to 1.0 are preferred. The reader is referred to [104] for an
explanation of these metrics.

For a given dataset, one can build many classifiers. The differences mainly stem
from the choice of parameter values for the learning algorithm (e.g., split criterion in
decision trees, minimum support and minimum confidence constraints in association
rule mining, etc.). An important characteristic of any learned model is its general-
izability. Generalization refers to the performance of a learned model over unseen
examples [104]. If the entire dataset is used for learning the signatures, then there
is a danger of the uncovered signatures to be overfitting, i.e., the scenario where the
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learned model performs extremely well on the input dataset but performs poorly on
unseen examples. Therefore, we adopt the cross-validation techniques during the
learning phase in the above step.

Cross-validation [104, 128] is a model selection technique where the input dataset
is divided into two subsets, viz., a training set and a validation set. The model is
learned on the training set and evaluated on the validation set. A special case of
cross-validation is the k-folds cross validation technique where the input dataset is
split into k subsets, and the model is learned on the training data comprising of k�1
subsets and validated on the last subset. This is repeated k times with k different
splits between the training and validation data. The cross-validation performance is
the average of the results (of the metrics such as accuracy) on all the splits. We prefer
signature patterns with a better cross-validation performance. If the performance is
not satisfactory, one may change the parameter settings for the learning algorithm
and re-learn the signatures.

Reporting and Visualization

The last step in the framework deals with the reporting and visualization aspects.
Automated reports eliciting the signature patterns along with their performance met-
rics are generated. Apart from reports, one may depict the results in pictorial forms
such as pie-charts and scatter plots. For example, Figure 9.8 depicts the projection of
a two-class multi-dimensional data onto the top two principal components obtained
using the principal component analysis (PCA). Such a visualization helps in assessing
the goodness of a feature set. In the figure, we can see that the two classes (nor-
mal and faulty) are clearly separable thereby indicating that the chosen feature set
representation for the cases is good enough to find discriminatory patterns.
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Figure 9.8: Visualization of dataset using principal components.
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9.5 Experiments and Discussion

In this section, we discuss the application of the proposed framework in uncovering
signatures for two of the FRUs, which we anonymize as FRU I and FRU II, in the
iXR systems. There are different types of iXR systems, e.g., monoplane, biplane,
etc. They are uniquely identified by a system code, e.g., 722001, 722002, etc. We
analyzed the logs for one of the system types. First, we discuss the results for FRU
I. For learning the signature patterns, we considered this FRU replacements that
happened in the years 2008 and 2009. As discussed earlier, since different versions
of the system can have different signatures, we split the systems according to their
versions and discover the signatures for each version separately3. From the jobsheets,
we identified the systems and the dates when this FRU was replaced and selected
system log files between three days before the call open date and three days after
the call close date for these systems. We considered the error/warning events from
three units, which we anonymize (for confidentiality reasons) as Unit A, Unit B, and
Unit C. These three units are considered to be the most relevant for this FRU by
the domain experts. We used the juxtaposed sessions approach (cf. Section 9.3.3)
for defining the cases and class labels. Using this procedure, we created cases with
two labels, i.e., normal or faulty, for each system type and version, e.g., there are 32
instances for the system type 722006 and system version 4.3.5.

We discovered the signature patterns from these instances using the framework
described in Section 9.4. We used a combination of tandem repeat alphabet and
maximal repeat alphabet features (cf. Section 4.2) in conjunction with the class
association rules for learning the signature patterns. A couple of example signatures
for the faulty class are provided in Table 9.2. The two signatures differ in the last
two events. The interpretation for this is that this FRU has multiple failure modes
and the manifestation of failure modes differ in the system event logs. Each of the
signatures in Table 9.2 captures one of these failure modes.

Table 9.2: Example signature patterns for FRU I.

If

xxxxxxxx1 Warning from Unit A is Present AND

Then Faulty
xxxxxxxx2 Error from Unit A is Present AND

xxxxxxxx4 Warning from Unit B is Present AND

xxxxxxxx4 Warning from Unit A is Present AND

xxxxxxxx5 Error from Unit A is Present

If

xxxxxxxx1 Warning from Unit A is Present AND

Then Faulty
xxxxxxxx2 Error from Unit A is Present AND

xxxxxxxx4 Warning from Unit B is Present AND

xxxxxxxx6 Warning from Unit A is Present AND

xxxxxxxx7 Error from Unit A is Present

We have evaluated the goodness of the signature patterns on an independent test

3It could be the case that for two different versions, the signatures are the same (this implies
that there is no change between these versions with respect to this FRU)



242 Chapter 9. Signature Discovery

set of system logs between Jan 2010 and Jun 2011 (Note that the signatures were
discovered using logs from 2008 and 2009). Signatures of a particular system type
and version are evaluated against systems of the same type and version. Table 9.3
depicts the performance of the signatures for two different versions of systems. The
interpretation of the true positives, false positives, true negatives, and false negatives
are as follows:

� TP: the signature is present in one or more log instances4 of a system AND
there is a FRU replacement in the system subsequently AND the signature
disappears after the replacement

� FP: the signature is present in one or more log instances of a system BUT there
is no FRU replacement in the system (OR) the signature is present in one or
more log instances of a system AND there is a FRU replacement in the system
subsequently BUT the signature does not disappear after the replacement

� TN: the signature is not present in a log instance of a system AND there is no
FRU replacement in this system

� FN: the signature is not present in a log instance of a system BUT there is a
FRU replacement in the system.

False Negatives indicate that the discovered signatures are not complete and that
there might be other symptomatic patterns which we are not able to uncover. This
results when the training data does not represent all manifestations of failure modes
of the FRU. False Negatives are not devastating whereas false positives are. False
Positives have serious repercussions and need to be minimized. False positives can
lead to false replacements. False negatives affect the sensitivity and F1-Score metrics
while false positives affect the specificity, precision, and F1-Score metrics.

From Table 9.3, we can see that the uncovered signatures perform quite well with
a very high accuracy (above 98%). Note that our evaluation involved a large set of
independent systems (743 in number) with logs considered in a different time period
from that of the training data. The uncovered signatures for version 3.1.7 are able to
detect all but one of the required replacements and there are no false positives. The
discovered signatures for version 4.3.5 are able to indicate a problem in this FRU for
24 of the 32 replacements and could not capture the rest 8 replacements. The part
could have exhibited a failure mode different from that of the captured signatures in
these 8 replacements. Furthermore, we see just 2 false positives in this case.

As another example, we considered a different FRU, anonymized as FRU II. Just like
in the previous scenario, we considered part replacements in 2008 and 2009. Event
logs from systems with this part replacement were used for learning the signature
patterns. Signatures discovered using the class association rule mining algorithm on
the individual events (as the feature set) performed better when compared to other
features and learning algorithms on the training data. We evaluated the uncovered
signatures on an independent set of system logs between Jan 2010 and Jun 2011.
Table 9.3 depicts the performance of the discovered signatures for two different

4a log instance is one session of the system log in the normal operation mode
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versions of systems. We can see that, even in this case, the uncovered signatures
perform pretty decently with high accuracy (above 98%). The uncovered signatures
for version 3.1.7 are able to detect all but one of the required replacements and
there are no false positives. As mentioned before, false negatives potentially indicate
different failure modes, the signatures of which are not captured in our discovery
phase, primarily due to lack of representative instances for this failure mode in the
training phase. Systems of version 4.3.5 had a larger number of tube replacements
and the discovered signatures are able to detect a problem in the tube in 82% of
the cases (sensitivity metric). The discovered signatures resulted in only 2 false
positives. The discovered signatures could not cover some of the failure modes and
this is reflected in the 10 false negatives. As mentioned earlier, false negatives can
be lived with. The signatures for these failure modes also can be discovered when
event logs representing these failure modes are provided in the training dataset. To
summarize, the proposed framework for signature discovery shows significant promise
in fault diagnosis of X-ray machines.

The discovered signatures can be added to a knowledge base and the logs of systems
scanned for the presence of signature patterns. This can assist the FSEs during their
diagnostic efforts. The FSEs can be provided with log analyzer tools that checks
for the presence of signatures. The manifestations of signature patterns suggest po-
tential problematic parts (FRUs) corresponding to the signature. Since diagnostics
are considered to be the most time consuming and the most difficult task, such an
automated assistance is expected to reduce the MTTR significantly.

9.6 Conclusions

In this chapter, we explored the feasibility of automatically identifying signature pat-
terns that can discriminate between different classes of behavior. We demonstrated
that the proposed framework works well, i.e., it is able to uncover signatures with a
high accuracy, by applying it over two real-life case studies on X-ray machines. The
resulting signatures remain highly accurate even on unseen instances. This indicates
that the suggested framework has the potential to become a powerful tool for the
diagnosis of failures in iXR systems. The proposed framework is generic and can be
applied in other similar environments. We have used two of the classical algorithms,
viz., decision trees and association rule mining, for learning the signatures. However,
the framework can easily be extended with other discovery algorithms.
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Chapter 10 presents the tool support implemented as plug-ins in the ProM framework,
which realizes the techniques presented in the previous parts of this thesis. Chapter 11
presents a few case studies illustrating the application and relevance of the techniques
proposed in this thesis on real-life event logs. Chapter 12 concludes this thesis by
summarizing the contributions made in this thesis and listing some of the challenges
and directions for future work that need to be addressed to make process mining even
more amenable for large scale event logs.



Chapter 10

Tool Support

The concepts presented in this thesis have been realized as plug-ins in the ProM1

framework. ProM is a “plug-able” environment for process mining envisioned to
provide a common basis for all kinds of process mining techniques ranging from
importing, exporting, and filtering event logs (process models) to analysis and visu-
alization of results. The initial versions of ProM (versions 1.1 to 5.2) used MXML
[244] as the input format for event logs. Over years, ProM has emerged to be the
de facto standard for process mining. The architecture of ProM has been redesigned
completely when going from version 5.2 to version 6.0. The primary factors that led
to this change are two fold: (a) to enable the distributed execution of plug-ins, and
(b) to separate the user interface/visualization from the analysis techniques. ProM
6.0 is based on XES [92] rather than MXML. As discussed in Chapter 2, XES is
the new process mining standard for event logs adopted by the IEEE Task Force on
Process Mining. ProM 6.0 supports MXML as well.

The plug-ins supporting the concepts presented in this thesis are developed in
the ProM 6.0 framework (the current version is 6.1; the developed plug-ins hold
for all later versions as well). This chapter gives a brief overview of the different
plug-ins and is organized as follows. Section 10.1 presents the Pattern Abstractions
plug-in, which enables the definition of abstractions (based on common execution
patterns) and the transformation of an event log to a desirable level of granularity.
Section 10.2 presents the Guide Tree Miner plug-in, which assists in dealing with
the heterogeneity of event logs by partitioning an event log into sets of homogenous
cases. Section 10.3 presents the Concept Drift plug-in, which assists in identifying
the instants of time when a process has changed (if any) and the fragments where
a process could have undergone a change. Section 10.4 presents the Fuzzy Map
Miner plug-in that enables the discovery of hierarchical process models. Section 10.5
presents the Fuzzy Map Performance Analysis plug-in, which assists in annotating
a process map with performance metrics by replaying an event log. Section 10.6
presents the Trace Alignment With Guide Tree plug-in, which aligns the traces based
on context. Section 10.7 presents the Signature Discovery plug-in, which assists in
extracting signature patterns/rules that have a strong correlation/association to a
particular behavior.

1See www.processmining.org for more information.

www.processmining.org
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10.1 Pattern Abstractions

The Pattern Abstractions plug-in has been implemented as a log visualizer in ProM and
caters to the discovery of common execution patterns, the definition of abstractions
over them (as defined in Chapter 3), and the pre-processing of the event log with
these abstractions (as defined in Chapter 6). The basic building blocks of the Pattern
Abstractions plug-in are shown in Figure 10.1. Figures 10.2 and 10.3 illustrate these
building blocks.

Discover
Common
Execution
Patterns

Compute
Pattern
Metrics

Filter
Patterns

Derive and
Select

Abstractions

Transform
Log

Figure 10.1: Building blocks of the Pattern Abstractions plug-in.

� Discover Common Execution Patterns: The Pattern Abstractions plug-in sup-
ports the discovery of tandem arrays (loop patterns) and maximal repeats (com-
mon subsequence of activities within a process instance or across process in-
stances) (cf. Chapter 3). These can be uncovered in linear time and space with
respect to the length of the traces.

� Compute Pattern Metrics: Various metrics (e.g., overlapping and non-overlapping
frequency counts, instance percentage, etc. as defined in Chapter 3) to assess
the significance of the uncovered patterns are supported.

� Filter Patterns: It could be the case that too many patterns are uncovered from
the event log. To manage this, features to filter patterns that are less significant
are supported.

� Derive and Select Abstractions: Abstractions are defined over the filtered pat-
terns. Patterns that are closely related are grouped together to form abstrac-
tions. The approach for forming abstractions is presented in Chapter 3. Fur-
thermore, various features to edit/select abstractions such as merging two or
more abstractions and deleting activities related to a particular abstraction are
supported. Figure 10.3 depicts a few abstractions defined over loop patterns
for the copier event log, e.g., Half Toning, a procedure for enhancing the image
quality, is uncovered as an abstraction.

� Transform Log: The event log is pre-processed by replacing activity subse-
quences corresponding to abstractions. A replaced activity subsequence is cap-
tured as a process instance in the sub-log for the corresponding abstract activ-
ity. This realizes the approach presented in Chapter 6. If n abstractions are
selected, the Pattern Abstractions plug-in generates a transformed log, and n
sub-logs (one for each of the n chosen abstractions).

The Pattern Abstractions plug-in supports additional features such as visualizing pat-
terns and exporting the traces that contain the patterns.
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Discover Common
Execution Patterns

Compute
Pattern Metrics

Filter Patterns

Uncovered Patterns
Pattern

Metric Values

Figure 10.2: The discovery of common execution patterns, computation of pattern metrics, filtering
and inspection of patterns in the Pattern Abstractions plug-in.

Derive AbstractionsSelect Abstractions

Transform Log

Figure 10.3: The generation and selection of abstractions in the Pattern Abstractions plug-in.
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10.2 Guide Tree Miner

The Guide Tree Miner plug-in implements the concepts presented in Chapter 4 on
trace clustering. The basic building blocks of the plug-in are shown in Figure 10.4.

Feature
Extraction

and
Selection

Distance/
Similarity

Computation

Group
Objects
(AHC)

Visualize
Dendrogram

Figure 10.4: Building blocks of the Guide Tree Miner plug-in. Feature extraction and selection
step is optional and is applicable only for vector-based approaches to trace clustering.

� Feature Extraction and Feature Selection: The plug-in supports both the se-
quence and alphabet features presented in Chapter 4 for the vector-based ap-
proaches. The traces in an event log can be transformed into a vector space
using either the binary or numerical representation. Furthermore, the plug-in
supports options for filtering features based on their frequency, percentage of
instances in which they manifest, and alphabet size. Figure 10.5 depicts the
feature configuration step for the vector-based approaches.

� Distance or Similarity Computation: The plug-in supports different methods for
computing the (dis)-similarity between traces. For the vector-based approaches,
standard distance metrics such as the Euclidean distance are supported. We
also support a similarity measure, called F -score [62], for the vector-based ap-
proaches. For the syntactic approaches, the distance between traces can be
computed using either the Levenshtein distance or the generic edit distance.
The plug-in supports the derivation of the scores for substitution and indels au-
tomatically from an event log based on the procedure explained in Section 4.4.
Alternatively, one can provide these scores based on domain knowledge. The
plug-in loads those scores specified and uses them for computing the generic edit
distance. Figure 10.6 depicts the distance configuration step for the syntactic
approaches.

� Agglomerative Hierarchical Clustering: Once the inter-trace (dis)-similarities
are computed, the next step is to group objects using the Agglomerative Hi-
erarchical Clustering (AHC) algorithm. As discussed in Section 4.5, different
join criteria can be used when grouping objects. The plug-in supports five join
criteria, viz., single linkage, complete linkage, average linkage, centroid linkage,
and minimum variance. Though AHC has an embedded flexibility on the level
of abstraction (the number of clusters), the user can optionally specify apriori
the number of clusters to partition the log into. If specified, the plug-in gen-
erates as output, k event logs (for a chosen number of clusters k > N), each
containing the partitioned traces pertaining to that cluster. Figure 10.7 depicts
the configuration step for AHC.

� Visualization: As discussed in Chapter 4, the hierarchy obtained using AHC
can be visualized as a dendrogram. The plug-in supports the graphical depic-
tion and exploration of the dendrogram. If the number of clusters k is specified
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in the previous step, the plug-in highlights the nodes in the dendrogram cor-
responding to the root of the clusters. All leafs (traces) in the sub-tree at a
root node pertaining to a cluster belong to that cluster. Figure 10.8 depicts the
visualization of the dendrogram.

feature type selection:
sequence or alphabet

feature selection: boa, kgrams,
tandem repeats, and maximal
repeat variants

binary or numeric feature count

filter features

Figure 10.5: Feature configuration step for the vector-based approaches to trace clustering.

Levenshtein distance or
Generic edit distance

derive substitution
and indel scores

load substitution and indel scores
(to be specified by domain expert)

Figure 10.6: Configuring the distance metric in the Guide Tree Miner plug-in for the syntactic
approaches. Both the Levenshtein edit distance and the generic edit distance are supported.
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selecting the type of linkage:
single, complete, average, centroid,
and minimum variance

choose the number of
clusters (optional)

Figure 10.7: Configuring the join criteria for the agglomerative hierarchical clustering algorithm.

Figure 10.8: Visualization of the mined Guide Tree. The plug-in has been configured to split the
log into four clusters (the number of clusters was chosen to be four based on apriori knowledge on
the process). The pink nodes represent the root of the sub-tree corresponding to the four clusters.
The tree can be expanded by clicking a non-leaf node. Blue nodes indicate nodes that are expanded.
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10.3 Concept Drift

The Concept Drift plug-in realizes the ideas presented in Chapter 5. Given an event
log, this plug-in serves two purposes: (i) to detect whether a change has taken place
and if so, at what points, and (ii) to localize the regions (process fragments) where a
change could have potentially taken place. There are two configuration steps for this
plug-in

� Feature Configuration: As discussed in Chapter 5, the detection of drifts relies
on the premise that characteristic differences exist in the traces before and after
the change points. The feature configuration step lets the user choose how
to characterize the traces. Two scopes of features are supported: (a) global
features (defined at the log or sub-log level) and (b) local features (defined at
the trace level). The plug-in supports two global features (Relation Type Count
and Relation Entropy) and two local features (Window Count and J-measure)
(cf. Section 5.4.1). Figure 10.9 depicts the configuration step for the local
features. The global features are defined over each activity in the event log and
the local features are defined over every activity pair. The plug-in supports the
selection of activities (or activity pairs) of interest by the user.

� Hypothesis Test Configuration: This step enables the selection of a hypothesis
test and the population size. The plug-in supports four hypothesis tests, viz.,
KS-test, MW-test, T-test, and Gamma test (cf. Section 5.4.2 and refer to [202]).
Figure 10.10 depicts the configuration step for hypothesis tests. The plug-in
can be easily extended to support additional hypothesis tests. The plug-in uses
the java statistical classes library [14] for the statistical tests.

choose the follows/precedes
relation

choose the feature type:
Window Count, J-Measure

choose the
window size

Figure 10.9: Configuration step for the local features to characterize traces.



254 Chapter 10. Tool Support

select the hypothesis test:
KS-test, MW-test, t-test

choose the population size
for hypothesis testing

Figure 10.10: Configuration step for hypothesis testing, which comprises of choosing a statistical
test and the population size.

The plug-in supports the visualization of the significance probability for the hypoth-
esis tests as a drift plot. In order to detect the points of change, the cumulative
plot depicting the average significance probability (over the selected activities/activ-
ity pairs) needs to be considered. Fragments of change (change localization) can be
detected by considering the average significance probability for subsets of activities
or activity pairs. The plug-in provides support for an interactive exploration of these
variations. Figure 10.11 depicts an example visualization of the drift plot.

choose the activity
pair combination

drift plot

Figure 10.11: Concept drift visualization. The user can get a cumulative drift plot over all activity
pairs (for change detection) or over selected subsets of activity pairs (for change localization).
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10.4 Fuzzy Map Miner

The two-phase approach to process discovery described in Chapter 6 enables the
discovery of hierarchical process models. This can be realized using a chain of plug-
ins implemented in ProM. The chain of plug-ins and their order of application is
illustrated in Figure 10.12.

Simple
Filter(s)

Pattern
Abstractions

Fuzzy Miner

Figure 10.12: The chaining of plug-ins that enables the discovery of hierarchical process models.

The event log may first be cleansed using some simple filters (e.g., adding artificial
start/end events, filtering events of a particular transaction type such as considering
only ‘complete’ events, etc.). The Pattern Abstractions plug-in as discussed in Sec-
tion 10.1 is then applied on this filtered log one or several times. The transformed
log (pre-processed log with abstractions) obtained in iteration i is used as the input
for the Pattern Abstractions plug-in in iteration i � 1. It is this repetitive application
of the Pattern Abstractions plug-in that enables the discovery of multiple levels of
hierarchy (new abstractions can be defined over existing abstractions as described
in Chapter 6). During the pre-processing phase, for each defined abstraction, the
Pattern Abstractions plug-in generates a sub-log that captures the manifestation of
execution patterns defined by that abstraction as its process instances. The Fuzzy
Miner plug-in [94] is then applied on the transformed log obtained after the last
iteration.

The Fuzzy Miner plug-in has been implemented by several people. Günther [94]
initially developed it for earlier versions of ProM (version 5.2 or older). It has been
ported to version 6.0 by Li [137], Xia [270], and Eric [23, 24]. We have extended
it to utilize the availability of sub-logs for the defined abstractions. Process models
are discovered for each of the sub-logs and are displayed upon zooming in on its
corresponding abstract activity. Abstract activities are differentiated from other
activities by means of a distinct color (a darker shade of blue). We call this the Fuzzy
Map Miner. Fuzzy Map Miner gives the user more control over the discovery process
than the classical Fuzzy miner [94].

Figure 10.13 shows the architecture of the Fuzzy Map Miner. First, the user mines an
event log for a Fuzzy Model. The user can view different perspectives of the mined
model using a number of viewers, among which is the Fuzzy Model viewer. Second,
the user creates a Fuzzy Instance from this Fuzzy Model by either exporting it from
the Fuzzy Model viewer, or by automatically selecting the best-conforming Fuzzy
Instance. Combined, this Fuzzy Instance and the original event log can be turned
into a Fuzzy Animation, which can also be viewed by the user. The parameter
configuration steps for the Fuzzy Map Miner remain the same as that of the classical
Fuzzy miner.
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Figure 10.13: Fuzzy Map Miner Architecture.

10.5 Fuzzy Map Performance Analysis

The Fuzzy Map Performance Analysis plug-in realizes the techniques proposed in Chap-
ter 7 for replaying an event log. During replay, various performance measures are
computed. The computed measures are annotated on the Fuzzy model so that bot-
tlenecks can be identified. This plug-in takes as input an event log and a hierarchical
Fuzzy model exported from the Fuzzy Map Miner. Figure 10.14 shows the result of
the plug-in. The Fuzzy model is annotated with measures such as the number of
executions and average execution (throughput) time. Figure 10.15(a) depicts the
configuration panel for choosing the strategy for node/edge coloring. The plug-in
supports three strategies as discussed in Section 7.4. The annotated Fuzzy model
can be interactively explored. Upon selecting a node/edge, the various performance
metrics pertaining to that node/edge is shown in a separate panel as depicted in
Figure 10.15(b).
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Configuring the performance

coloring strategy

Inspecting the performance

measures of an edge/node

Global performance measures

of the event log

Annotated

Fuzzy map

Figure 10.14: Visualization of the Fuzzy map (hierarchical Fuzzy model) annotated with perfor-
mance measures.

Level specific
model averages

Large deviations

Comparing
with benchmark
thresholds

(a) Performance Coloring Configuration

No. Executions
No. Initializations
No. Terminations
No. Skipped

Avg. Execution Time
Std. Execution Time
Min. Execution Time
Max. Execution Time

(b) Selected Edge/Node Metrics

Figure 10.15: Configuration of performance coloring strategy and exploration of performance
measures of any edge/node.

10.6 Trace Alignment with Guide Tree

The Trace Alignment with Guide Tree plug-in caters to the alignment of traces as ex-
plained in Chapter 8. Figure 10.16 depicts the framework (cf. Section 8.3) for trace
alignment annotated with the plug-ins that realize each step in the framework. Some
trivial preprocessing techniques such as the filtering of traces based on their length
are available as filter plug-ins in ProM. The construction of guide tree is enabled
by the Guide Tree Miner plug-in, which is explained in Section 10.2. The rest of the
steps are handled by the Trace Alignment with Guide Tree plug-in. This plug-in takes
as input a guide tree generated by the Guide Tree Miner plug-in. Figure 10.17 depicts
the visualization of the computed alignments. The alignment visualizer provides rich
interactive functionality for the user to explore and gain insights into the process
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Event Log

Preprocess Processed Log

Build Guide Tree
Compute

Scoring Matrices

Generate
Progressive Alignment

Estimate
Alignment Quality

Prune and Refine

Interactive
Visualization

Trace Alignment
With Guide Tree

Guide Tree Miner

Filter Plugins

Figure 10.16: ProM plug-ins realizing the framework for trace alignment.

execution. For example, as illustrated in Figure 10.17, the ‘View’ menu has options
for enabling the sorting or filtering of activities in a column of an alignment and other
options pertaining to how an alignment is rendered. The analysis menu provides
options for refining alignments (based on the concepts presented in Section 8.4) as
well as for uncovering the potential concurrent activities in the process. Concurrent
activities, if any, are then notified in a separate panel. Furthermore, if the user wishes
to manually refine an alignment, there exists a functionality to do so by editing a
trace in an alignment as illustrated in Figure 10.17.

Figure 10.18 highlights some of the results of the plug-in. The left panel depicts
the process instance identifier (as in the log) and identifiers with a grey background
indicate traces that have identical duplicates. The number within parenthesis indi-
cate the number of duplicates. For example there are 7 traces identical to process
instance 1018 (corresponding to the trace jgcflebd in the event log) while there are
no identical traces for the process instance 1127. The top panel depicts a sorting
component where the traces involved in the alignment can be sorted based on the
activities in a column and the number in the column indicates the priority of sorting.
For example, in Figure 10.18, the traces are sorted based on activity f with traces
having f in column 4 having first priority and then with those having f in column 7
and finally with those having f in column 11. The bottom panel depicts the informa-
tion score metric (cf. Section 8.3) for each column as well as a consensus sequence
for the alignment.
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Analysis menu options

Editing a trace

View menu options

Figure 10.17: Trace alignment visualization with interactive features.

Sort Component
Identical Traces

Information Score

Consensus Sequence

Figure 10.18: Interpreting the various results of trace alignment.
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10.7 Signature Discovery

The Signature Discovery plug-in realizes the ideas presented in Chapter 9. Given an
event log where the cases are labeled (indicating different classes of behavior), this
plug-in serves the purpose of uncovering discriminatory patterns that distinguishes
between the different classes of behavior. This plug-in assumes that the label of a case
is provided as an attribute value with the key “Class” in the event log. Figure 10.19
depicts the building blocks of the plug-in in line with the framework suggested in
Section 9.4 (cf. Figure 9.6).

Class
Labeling

Feature
Extraction

and
Selection

Discover
Patterns

(Classification

& Association)

Evaluation
Reporting

and
Visualization

Figure 10.19: Building blocks of the Signature Discovery plug-in.

� Class Labeling: the plug-in supports scenarios where some of the cases in the
event log are unlabeled. The plug-in supports strategies as discussed in Sec-
tion 9.4 based on two machine learning algorithms, viz., k-nearest neighbor
[46] and one-class SVM (support vector machines) [200], for assigning a label
to unlabeled instances. Figure 10.20 depicts the configuration step for class
labeling using the one-class SVM technique. We use the libsvm [33] library
for support vector machines to support this step. This step also includes the
parameter configuration (if any) for the algorithms, e.g., Figure 10.20 depicts
the configuration of various parameters for the one-class SVM as supported in
libsvm.

� Feature Extraction and Selection: the plug-in supports different types of fea-
tures, which form the basis of the discovered signature patterns. In addition
to individual activities, the plug-in supports the various feature sets based on
common execution patterns suggested in Section 4.2. Once a feature set or
combination of feature sets is chosen, the plug-in transforms each instance in
the event log into a vector space defined by the chosen feature set(s). If multiple
feature sets are chosen, the union of all the features is considered. Figure 10.21
depicts the configuration step for feature extraction and selection. The plug-in
also supports an exploration of all feature spaces and choosing the best fea-
ture set. However, this may require long computation times, and therefore not
feasible for larger event logs.

� Pattern Discovery: Once the features are chosen, the plug-in proceeds to dis-
cover the signature patterns using decision trees or association rule mining.
The plug-in supports two decision tree learning algorithms ID3 [176] and C4.5
[177] and extends the implementations of these algorithms in the weka library
[102, 268]. The extension primarily concerns the prohibition of the discovery
of rules with feature constraints that overlap between multiple sessions as dis-
cussed in Section 9.4. The plug-in has a custom implementation of mining the
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class association rules. Figure 10.22 depicts the learning algorithm configura-
tion step. Figure 10.22 also depicts the parameter configuration step for the
chosen algorithm.

techniques for labeling:
k-nearest neighbor and
one-class SVM

parameter configuration
for one-class SVM

Figure 10.20: Configuration step for labeling unlabeled instances in an event log. The plug-in
supports two algorithms, viz., k-nearest neighbor and one-class SVM for class labeling.

� Evaluation: As discussed in Section 9.4, the plug-in supports the evaluation of
the discovered signatures using k-folds cross validation. In addition, the plug-
in supports the evaluation using the training set and an independent test set.
Figure 10.22 depicts the different strategies that can be used for evaluation.

� Reporting and Visualization: Figure 10.23 shows the results provided by the
plug-in. The plug-in displays the different signatures uncovered for each class
of behavior or for chosen classes of behavior. The plug-in also displays the
metrics for each of the signatures assessing their quality. The estimated metrics
are true (false) positives, true (false) negatives, and derived metrics on these,
such as accuracy, sensitivity, specificity, and F1-score [104]. The plug-in also
supports the exporting of the signatures and the inspection of instances that
satisfy a selected set of signatures.
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feature type selection:
sequence or alphabet

feature selection: boa, kgrams,
tandem repeats, and maximal
repeat variants

binary or numeric feature count

Figure 10.21: Configuration step for feature extraction and selection. Different types of features
are supported, e.g., sequence and alphabet features: tandem arrays, maximal repeats and variants,
and individual events.

pattern discovery techniques:
decision trees and class associa-
tion rules

parameter configuration
for the pattern discovery
techniques

evaluation techniques

Figure 10.22: Configuration step for the learning algorithm for discovering signature patterns.
Two classes of algorithms, viz., decision trees and association rule mining are supported.
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discovered
signatures

metrics assessing the goodness of
signatures: true (false) positives,
true (false) negatives, and derived
metricsexport

signatures

show instances that
satisfy the selected
signatures

Figure 10.23: Results of the Signature Discovery plug-in. The plug-in estimates different quality
metrics for each of the discovered signatures.
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Chapter 11

Case Studies

In this chapter, we describe three different case studies where the concepts developed
in this thesis have been applied. These case studies have been chosen to illustrate
some of the challenges in analyzing large scale event logs and to demonstrate the
applicability of the results presented in this thesis. The first case study involves
the treatment procedures of patients visiting the gynaecology department in a large
academic hospital in the Netherlands (Section 11.1). This case study highlights the
significance of dealing with fine-granular events and heterogeneity in event logs. We
use the concepts of clustering, hierarchical process discovery, and process diagnostics
using trace alignment to analyze the treatment procedures of patients. Our second
case study focuses on the handling of concept drifts (Section 11.2). In this case study,
we analyze event logs of three different processes from a large Dutch municipality.
We employ the techniques proposed in this thesis for change point detection and
change localization and demonstrate their capability in correctly identifying process
changes. Our third case study has been performed in collaboration with a global
leader in professional and consumer healthcare. We analyze the event logs from
their high-tech medical systems and analyze the workflow of field service engineers
during fault diagnosis (part replacements) (Section 11.3). This case study specifically
highlights the challenges in analyzing fine-granular event logs. We use the concepts
of abstractions of events and the two-phase approach to process discovery to uncover
comprehensible process models. We also demonstrate the annotation of process mod-
els with performance information for gaining useful insights in identifying bottlenecks
in a process.

Table 11.1 depicts an overview of the three case studies along with some of the
characteristics of the processes/event logs and the techniques used in their analysis.

11.1 Patient Treatment Procedures in a Dutch
Academic Hospital

In this case study, we investigate the diagnostic and treatment procedures of patients
visiting the gynaecology department in the AMC hospital, a large academic hospital
located in Amsterdam, The Netherlands. More specifically, it deals with patients,
diagnosed with cancer, visiting the oncology clinic in the gynaecology department.
Gynaecologic oncology is a specialized field of medicine that focuses on cancers orig-
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Table 11.1: Brief description of case studies, their event log/process characteristics, and the tech-
niques used in analysis.
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Analysis of treatment
procedures on patients
diagnosed for gynae-
cological cancers in a
large academic hospital
(AMC)

fine-granular events,
heterogenous and
long-running cases,
complex processes in-
volving interactions
between multiple
departments

4 4 4

Analysis of process
changes in three dif-
ferent processes in a
large municipality in the
Netherlands

well-structured pro-
cesses but processes
change over time due
to various factors;
this leads to hetero-
geneity in event logs

4

Analysis of diagnosis
procedures followed by
field service engineers
during part replacements
in medical systems

fine-granular events,
heterogenous sys-
tems, no well-defined
notion of a process
instance, less struc-
tured and flexible
processes

4 4 4

inating in the female reproductive system. It includes cancer of the cervix, fallopian
tubes, ovaries, uterus, vagina, and vulva. The International Agency for Research on
Cancer indicates that gynaecological cancers accounted for 19% of the 5.1 million
estimated new cancer cases, 2.9 million cancer deaths, and 13 million 5-year prevalent
cancer cases among women in the world in 2002 [198]. The diagnosis and treatment
procedures for patients that are suspected to have gynaecological cancers involve
various medical imaging tests, pathology tests, radiotherapies, chemotherapies, and
surgical treatments. These procedures are administered in close coordination by
a multidisciplinary team of gynaecological oncologists, medical oncologists, pathol-
ogists, radiation oncologists, and nurses. This indicates that the diagnostic and
treatment procedures are non-trivial.

The designated gynaecological cancers workforce (ones specialized in the gynae-
cological cancers) and available resources (be it labs, medical imaging equipment,
and other medical professionals such as radiologists and anesthesiologists) are lim-
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ited, and therefore precious, not just in the AMC but in any hospital around the
globe. This, compounded with an ever increasing demand, presents many challenges
for healthcare organizations such as AMC. For example, in workforce planning: how
does it affect the coordination of health services? how does it impact on changing
models of care? what are the implications for patient outcomes?, etc [126]. Hospitals
have to focus on ways to streamline their processes in order to deliver high quality
care while at the same time reducing costs [9]. Furthermore, government and health
insurance companies impose pressure on hospitals to work in the most efficient way.
A better understanding of current practices can go a long way in shaping the treat-
ment and care of women with gynaecological cancers.

AMC is interested in understanding the processes corresponding to patient diag-
nosis and treatments. More specifically, they are interested in gaining insights into
the number and ordering of diagnosis tests performed, regularities (common patterns
of execution) and irregularities (violations) in the tests performed, process variations
such as variations in their medical practices, variations in logistic scheduling and
arrangements, etc. Furthermore, they are interested in obtaining insights on process
diagnostics such as the circumstances under which irregularities are observed.

We consider the event log provided for the first Business Process Intelligence Chal-
lenge (BPIC). The event log corresponds to the diagnosis of gynecological oncology
patients once they are referred to the AMC hospital for treatment. Since patients are
referred (by other hospitals), some medical tests could have already been performed
at the referring hospital and that a patient may already be (partly) diagnosed. The
diagnostic trajectory performed at AMC aims at further diagnosis of a patient and
deciding on the strategy that needs to be followed for treatment of a patient. Addi-
tional steps may be performed requesting the referring hospital to send material to
AMC so that all necessary details about a patient are available to the medical pro-
fessionals involved. In total, the diagnostic trajectory of the gynecological oncology
healthcare process is significant and consists of over 300 tasks [146]. This shows that
we are dealing with a complex process.

The event log contains 1143 cases and 150,291 events referring to 624 activities
where the activities pertain to the treatment procedures that are being administered
on patients diagnosed with gynaecological cancers during the period between March
2005 and March 2008. A naive attempt at analyzing this event log using existing
process mining techniques is bound to provide results that are incomprehensible
and unsatisfactory, e.g., control-flow analysis of the log generates a workflow that is
a graph containing a few hundred nodes (each node corresponding to an activity)
and edges connecting the nodes based on their dependency. Figure 11.1 depicts the
heuristic net mined on the event log. We can see that the mined model is spaghetti-
like and incomprehensible. One cannot even explore the model, leave alone getting
any meaningful insights. This log exhibits some of the characteristics of large scale
event logs, e.g., the activities in the event log are fine-grained (this event log contains
624 different activities), the event log is heterogenous (it contains a heterogenous mix
of patients diagnosed for cancer (at different stages of malignancy) pertaining to the
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Figure 11.1: Process model discovered using the heuristic miner [264] on an event log describing
the diagnosis and treatment of 1143 patients of the Gynaecology department in a Dutch hospital.

various organs such as the cervix, vulva, uterus and ovary), etc. The spaghettiness of
the model in Figure 11.1 is largely attributed to these factors. As has been advocated
in this thesis, preprocessing of the log leading to event log simplification is an essential
step in gaining meaningful insights.

Figure 11.2 provides a high-level view of our approach used to analyze this log.
We focus on two perspectives of process mining, viz., control-flow and process
diagnostics. More specifically, from the control-flow perspective, we attempt at
extracting the workflow of treatment procedures catered to patients, and from the
process diagnostics perspective, we attempt at identifying regularities and irregular-
ities/violations in treatment patterns across patients. As mentioned earlier, AMC is
interested in both of these aspects.

Figure 11.2: Overview of the approach followed.

11.1.1 Preprocessing

We first filter (remove) all administrative activities from the event log. These activi-
ties are considered to be irrelevant for the analysis of patient treatment procedures.
More specifically, we removed the following 12 activities: 190101 reg.toesl above.
A101, 190204 A204 Class 3a, 190205 Class 3b A205, administrative fee - the first pol,
clinical card - internal medicine, clinical map - anesthesia, inwend.geneesk. aanv.kaart
cost-Out, inwend.geneesk. Out-year card costs, inwend.geneesk. short-out card cost,
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verlosk.-gynaec. Out-year card costs, verlosk.-gynaec. short-out card cost, verlosk.-
gynaec. suppl. map-out costs. After this step, the event log contains 1143 cases and
131,096 events distributed over 612 activities. The event log contains rich informa-
tion stored as attributes both at the event level and at the case level. We exploit this
information and propose a few perspectives for preprocessing.

Diagnosis Perspective

Each case contains a few attributes that provide information on the illness the pa-
tient is diagnosed with. The event log captures treatment procedures pertaining to
different types of cancer in 11 different diagnosis values. For example, Table 11.2
depicts that the diagnosis value M11 corresponds to the cancer of the vulvar region,
which in turn is classified into different types and stages such as SCC (squamous cell
carcinoma) of stages I, II, III1, III2, IVa, and IVb.

Table 11.2: Description of different types of diagnosis associated with the diagnosis value M11

Diagnosis Value Diagnosis Description
M11 Pertains to the cancer of the vulva. Describes information on

cases diagnosed with
� squamous cell carcinoma (stages I, II, III1, III2, IVa, and

IVb)

� malignant neoplasms and melanoma

� basal cell carcinoma

� borderline malignancy

Table A.1 in Appendix A depicts the complete list of diagnosis values and the
types of cancer that they refer to. The different types of cancer captured in the event
log is in accordance with the FIGO (International Federation of Gynaecology and
Obstetrics) staging of cancers pertaining to gynaecological cancers [12]. Figure 11.3
depicts the Venn diagram of the various diagnosis values and the regions to which
they are associated.
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M16, 821

vulva

M11

vagina

M12

corpus uteri

M14, M15

cervix uteri

M13, 822

839

823

Figure 11.3: Diagnosis values and the regions to which they are associated.
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Due to the different types of cancer and differences among patients, the cases
found in the event log can be characterized as heterogeneous. This heterogeneity
adds to the complexity of analysis and the results (see Figure 11.1) are often in-
comprehensible. As discussed in Chapter 4, process mining results can be improved
by partitioning an event log into subsets of homogenous cases and analyzing these
subsets independently. We now propose a few means of segregating homogenous
cases based on the diagnosis perspective.

� Individual Diagnosis Value: One can filter the event log based on a particu-
lar value for any of the diagnosis, e.g., consider cases where the diagnosis value
= M14, consider cases where the diagnosis is ‘squamous cell carcinoma stage
Ib’. One can also use a combination of both the diagnosis value and the specific
diagnosis to select cases for analysis, e.g., cases where the diagnosis value =
M11 and the diagnosis is ‘basal cell carcinoma’.

� Diagnosis Value Combination: Since cases may contain multiple diagnosis
values, one can alternatively look at the combination of values. For example,
a case can have {M13, 822, 106} as the set of diagnosis values. If the event
log is preprocessed for all such combinations, we notice certain relationships
between the values in the diagnosis among the cases. For example, there are
distinct cases where the combinations {M13}, {M13, 822}, and {M13, 822, 106}
exist. We can clearly see a subsumption property between the values: {M13}
` {M13, 822} ` {M13, 822, 106}. The set of treatment procedures applied
on patients with diagnosis value combination {M13, 822} typically includes the
procedures applied to patients with diagnosis value {M13}. We can capture the
relationships between the diagnosis value combinations manifested in the event
log using a Hasse diagram by considering a partial ordering (with subsumption
as the cover relation) on the value combinations. In the event log, there are
a total of 38 distinct diagnosis value combinations. Table A.2 in Appendix A
depicts the distribution of cases over the different diagnosis value combinations.
Figure 11.4 depicts the Hasse diagram corresponding to the value combinations
involving M13. The figure also depicts the number of cases in the event log for
each diagnosis value combination, e.g., there are 57 cases with the combination
{M13, 106}.

The nodes in the Hasse diagram form the basis for segregation of homogenous
cases for analysis. Two types of node selection mechanisms can be adopted.

� Single-node mode: In this mode, one can consider all cases where the diagnosis
value combination of the selected node is manifested, e.g., choosing the node
{M13, 106} implies considering only those cases pertaining to patients who have
been diagnosed with both M13 and 106.

� Sub-graph mode: In this mode, multiple nodes can be selected. This implies the
union of all cases where the diagnosis value combinations of the selected nodes
are manifested are considered to be homogenous, e.g., selecting all the nodes
subsumed under the maximal element {M13, 106, 822} implies considering all
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Figure 11.4: Hasse diagram corresponding to the diagnosis value combinations involving M13 and
related diagnosis. The number in parenthesis () signify the number of cases in the event log with
that value combination.

the cases pertaining to patients who have been diagnosed with either {M13,
106, 822} or {M13, 106} or {M13, 822} or {106, 822} or {M13} or {106} or
{822} as homogenous.

Treatment Perspective

The event log also contains information corresponding to the treatment administered
on the patients. Each case may contain one or more treatments specified. 1131 of
the 1143 cases in the event log have at least one treatment value specified. There
are a total of 46 distinct values for the treatments and 236 distinct treatment value
combinations in the event log. A vast majority of treatment value combinations are
unique combinations. One can also use the treatment values as a basis for defining
homogeneity of cases with the method illustrated using Hasse diagram shown in
Figure 11.4. However, now treatment values instead of diagnosis values are used.

Time Perspective

The event log contains cases (pertaining to patients) during the period between
March 2005 and March 2008. We define the span period (or duration) of a case to be
the time difference between the last and first events of the case. Figure 11.5 depicts
the histogram of the span period of the cases. It can be seen that the cases typically
run over a long period of time (the average span period is 386 days and the standard
deviation is 338 days). Since each case in the event log corresponds to a patient,
one can interpret the long durations to be the time under which the patient is being
treated. During this period, the patient could have visited or consulted the hospital
several times, with a plausibility of these visits having to do with multiple problems.
Therefore, it is rather unusual to consider all the events in a case as belonging to
a single process instance for analysis. This calls for the definition of appropriate
notions of process instances, i.e., we will split cases into smaller more representative
cases.
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Figure 11.5: Histogram depicting the span period of the cases.

A closer inspection of the log reveals that the activities in a case happen in bursts.
Figure 11.6 depicts a typical scenario of activity bursts in cases. Bursts signify pe-
riods of consultation/treatment and idle periods denote recuperation, e.g., a patient
undergoing radiotherapy visits a hospital at regular intervals and there are recom-
mended time intervals between successive applications of radiotherapy or between
radiotherapy and surgery. We exploit this characteristic and define a process instance
to capture a burst of activities. One can use a parameter, say δ days, to demarcate
the boundaries between process instances. Two events or event sequences with a
time period between them greater than δ fall under two process instances as depicted
in Figure 11.7.

Figure 11.6: The cases in the event log contain bursts of activities at certain points during the
span period of the case. The x-axis denotes time with the format month/year. A dot can represent
a multitude of events due to the coarse-grained scale used in x-axis.

Figure 11.7: Defining process instances within a case based on activity bursts and idle periods.
The dotted lines indicate the start of a process instance and the immediate following solid line
indicates the end of the process instance.
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Using the Organizational Perspective to Derive Artifacts

Each event in the event log contains an attribute ‘org:group’ that captures the de-
partment/lab where the activity corresponding to the event was performed. There
are 43 distinct org:group values (departments/labs) in the event log with one being
‘unknown’. The process instances (bursts of events) defined above exhibit certain
regularity with respect to the organization group. The regularity is often manifested
as a related set of diagnosis tests in the form of a continuous series of activities, e.g.,
different diagnosis blood tests prescribed for a patient in the lab, as illustrated in
Figure 11.8. This can be associated to the concept of artifacts [161] in business pro-
cesses, i.e., process instances may be decomposed into more fine-grained instances.
In the original event log, we have events at the level of a blood test interleaved with
the events at the diagnosis or treatment level. We can try to decompose them and
create separate instances, e.g., instances capturing only events related to blood tests.

event

General lab
clinical chemistry

Pathology Radiology
Figure 11.8: Regularities in the form of series of activities (pertaining to related diagnosis tests)
performed in a lab/department.

Exploiting this notion, we propose the transformation of the original log into an
abstraction log where the activities correspond to the organization names. Each
continuous sequence of one or more events pertaining to the same organization in
the process instance of the original log is replaced by a single event with the or-
ganization name as its activity. At the same time, we create one sub-log for each
organization whose process instances correspond to the replaced sequence of events.
The transformation process is illustrated by Figure 11.9. The process instance in
Figure 11.8 is transformed into the process instance GPRG. . . where G, P, and R are
used as short-cuts for the organizations (departments), general lab clinical chemistry
(G), pathology (P), and radiology (R) respectively. At the same time, we create
three sub-logs, one for each of G, P, and R. The process instances in these sub-logs
correspond to the sequence of events replaced in the original process instance.

Urgent and Non-urgent Cases

The event log contains certain activities that are classified as urgent. Ordinary coun-
terparts to such activities also exist. For example, the activities haemoglobin pho-
toelectric and haemoglobin photoelectric-urgent both exist (this activity corresponds
to the estimation of haemoglobin using a photoelectric calorimeter). Similarly, the
activities platelet count and platelet count-urgent both exist. There are a total of
28 urgent activities in the event log. This indicates that certain cases (patients)
are considered as emergency cases and are treated in an expedited manner. These



274 Chapter 11. Case Studies

GPRG
G=General Lab
Clinical Chemistry P=Pathology R=Radiology

event
Figure 11.9: Transformation of the original log into an abstraction log using the notion of ar-
tifacts on the organizational perspective. The activities in the abstraction log correspond to the
organization names. Also, one sub-log is created for each organization.

urgent activities are mostly executed during and around the time period of surgery
on patients. When a patient profusely bleeds during/post surgery, the doctors con-
stantly monitor the biochemical profiles of the patients and these tests need to be
done in an expedited manner. We can exploit this information in order to segregate
homogenous cases. We can partition a given log, say a log containing cases of pa-
tients with diagnosis code combination as {M11}, into two categories: urgent and
non-urgent cases. Urgent cases are those cases where at least one activity of type
urgent is manifested.

We use the perspectives defined above either in isolation or in combinations as
a preprocessing step to segregate homogenous cases based on the focus of analysis.
We will show some examples in the next two subsections.

11.1.2 Control-flow Analysis

In this section, we analyze the control-flow perspective of patient flows across the
departments.

Workflow of Treatment Procedures on Patients Diagnosed for M11

The event log (after removing the administrative activities) is subjected to the fol-
lowing pre-processing steps.

� Select the cases whose diagnosis value combination is just {M11} (patients who
have been diagnosed with vulvar cancer). There are a total of 162 cases in the
event log satisfying this criterion. This filtered event log contains 8781 events
distributed over 199 activities.

� Segregate urgent and non-urgent cases from the filtered log obtained in the
previous step. Of the 162 cases, 137 cases are non-urgent cases containing 4820
events referring to 135 activities while 25 cases are urgent cases containing 3961
events distributed over 165 activities. Let us call these two logs the non-urgent
cases log and urgent cases log. It is interesting to note that though the number
of urgent cases is just 25 (15%), it contains almost half (45%) of the total
number of events.

� Transform the two logs (i.e., the urgent cases log and the non-urgent cases log)
based on the notion of artifacts over the organizational perspective. Selecting
this perspective includes the selection of time perspective for the definition of
process instances. These process instances are reflected in the sub-logs. The
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abstraction log for the non-urgent cases contains 136 cases1 and 1527 events
distributed over 21 activities (corresponding to the organization names). In
addition, 21 sub-logs are created, one for each abstract activity (organization
name). The abstraction log for the urgent cases contains 25 cases and 1061
events distributed over 18 activities. In addition, 18 sub-logs are created, one
for each abstract activity (organization name).

Figure 11.10 depicts the process model based on the abstraction log pertaining to
the non-urgent cases discovered using the Fuzzy Map miner. This corresponds to
the patient flows across the various labs/departments. All the nodes in the workflow
are colored in blue (signifying that they are abstract nodes). Abstract nodes can
be seamlessly zoomed in to see the subprocesses underneath it. Figure 11.11(a)
depicts the subprocess pertaining to the activities performed on the patients in
the pathology department. The pathology department performs histopathological
studies on the tissues of patients. Some of the primary activities include identifying
the compartment for inspection, resection of tissues (small and big) and performing
biopsies on them. Figure 11.11(b) depicts the subprocess pertaining to the activities
performed on patients in the radiology department. The radiology department takes
image scans of regions. Different modalities of scanning are supported, e.g., MRI,
CT, ultrasound, etc. The scans are primarily performed on the pelvis, thorax, ab-
domen, and allied bones. A CT chest scan is also normally performed. There is one
exceptional case for whom additional dental, brain, knee and leg veins scans were
performed (the highlighted region in the figure) at different instances in time.

Figure 11.12 depicts the subprocess pertaining to the activities of the ‘General
Lab Clinical Chemistry’. This lab is concerned with various diagnosis tests on blood
and urine. A few classes of tests are highlighted in the figure. For example, tests that
assess the levels of creatinine, sodium, phosphate, bicarbonate, etc., are performed.
As another example, tests are performed to assess the blood group, estimate Rh
factor, the white blood cell counts (leukocyte), red blood cell counts (haematocrit
etc.), platelet counts, etc. Sediment and urine analysis tests are also performed on
patients. Patients diagnosed with M11 (vulvar cancer) are subjected to the CEA
(carcinoembryonic antigen) tumor marker test followed by the cancer antigen tests,
CA 125 and CA 19.9. Figure 11.13 depicts the region corresponding to the blood
count tests in Figure 11.12.

In a similar fashion, the procedures followed in other departments/labs can be
analyzed.

Figure 11.14 depicts the workflow of the abstraction log pertaining to the urgent cases
discovered using the enhanced Fuzzy Miner. Figure 11.15(a) depicts the subprocess
pertaining to the activities performed on the patients in the pathology department
while Figure 11.15(b) depicts the subprocess pertaining to the activities performed
on the patients in the radiology department. The activities performed are more or

1This log contains one case less than the non-urgent cases log because one case in the non-urgent
cases log has certain events without the organizational group attribute/value. We ignored this
particular case.
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Radiology

Pathology

General
Lab Clinical
Chemistry

Figure 11.10: The process model depicting the flow of patients across the different labs/depart-
ments in the non-urgent cases diagnosed with M11.

less the same as that of the non-urgent cases except that for some urgent cases, ‘as-
piration cytology’ and ‘cytology vulva’ are performed in the pathology department.
The CT scan of the retroperitoneal region was performed on some of the urgent cases
while none of the non-urgent cases required this. While only a MRI scan of the pelvis
region was performed for the non-urgent cases, some urgent cases had a CT scan of
the pelvis in addition to a MRI scan.

The primary difference between the treatment/diagnosis procedures followed be-
tween the non-urgent and urgent cases emanate in the general lab clinical chemistry
subprocess. As mentioned earlier, ‘urgent’ variants of the activities (lab tests) are
followed in the urgent cases. Figure 11.16 depicts the subprocess of the general lab
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(a) Pathology (b) Radiology

Figure 11.11: The subprocesses pertaining to the activities performed on the patients in the
pathology and radiology departments for the non-urgent cases diagnosed with M11.

Tests to Assess Creatinine,
Sodium, Phosphate etc. levels

Blood Count Tests
Tumor

Marker Tests

Figure 11.12: The subprocess pertaining to the activities performed on the patients in the general
lab clinical chemistry for the non-urgent cases diagnosed with M11.

clinical chemistry. The highlighted regions in the figure indicate the series of tests
involving the urgent variants of the activities. The bottom half of the process is
almost like that of the non-urgent cases. It is important to note that during the life-
time of a case, the lab tests can be performed multiple times and at certain instances
these tests were needed to be done in an expedited manner and at other instances
the normal flow was followed. That is the reason why we see both the normal and
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Figure 11.13: A portion of the general lab clinical chemistry subprocess pertaining to the estima-
tion of blood counts for non-urgent cases diagnosed with M11.

urgent variants of the activities.

We have also analyzed the workflow of cases diagnosed with other code values
and value combinations. In all the scenarios, we were able to mine meaningful
process models. Although at first sight the log seems to be too complex to provide
any understandable process models, our systematic approach helped us to discover
models that are rather simple and sequential. Furthermore, this event log highlights
the influence of heterogeneity in event logs and the significance of partitioning them
into homogenous subsets for analysis.
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Radiology

Pathology

General
Lab Clinical
Chemistry

Figure 11.14: The process model depicting the flow of patients across the different labs/depart-
ments in the urgent cases diagnosed with M11.
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(a) Pathology (b) Radiology

Figure 11.15: The subprocesses pertaining to the activities performed on the patients in the
pathology and radiology departments for the urgent cases diagnosed with M11.

Urgent tests

Figure 11.16: The subprocess pertaining to the activities performed on the patients in the general
lab clinical chemistry for the urgent cases diagnosed with M11.

Figure 11.17: A portion of the general lab clinical chemistry subprocess involving the urgent
activities pertaining to the estimation of creatinine, sodium, phosphate, etc. levels.
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11.1.3 Process Diagnostics using Trace Alignment

We now analyze the AMC log using trace alignment. As mentioned in Chapter 8,
trace alignment can be used to explore the process in the early stages of analysis
and to answer specific questions in later stages of analysis, e.g., are there common
patterns of execution, are there any anomalies, are there any distinguishing aspects
with respect to the treatment procedures followed among cases, etc.

We will discuss the application of trace alignment and infer insights by using the
cases diagnosed for cervical cancer of the uteri (diagnosis value M13). The raw event
log is subjected to the following pre-processing steps

� Select the cases whose diagnosis value combination is the singleton set {M13}.
There are a total of 252 cases in the event log satisfying this criteria. This
filtered event log contains 12,249 events distributed over 263 activities.

� From the filtered log obtained in the previous step, select the cases that have
been subjected to a treatment code combination of {803}. There are 23 cases
satisfying this criteria. This filtered event log contains 2791 events distributed
over 129 activities. Though only 9% of the cases diagnosed with {M13} are
treated with the treatment code {803}, nearly 23% of the events happen in
these 9% of the cases.

� Segregate urgent and non-urgent cases from the filtered log obtained in the
previous step. Of the 23 cases, 15 cases are non-urgent cases containing 1647
events referring to 106 activities while 8 cases are urgent cases containing 1144
events distributed over 88 activities. Let us call these two logs the non-urgent
cases log and urgent cases log.

Figure 11.18 depicts the initial portion2 of the aligned traces pertaining to the
cases in the non-urgent event log. The event log is first encoded into traces where
each trace is the sequence of activities corresponding to a case. The activities are
represented in an encoded form in a trace with each activity encoded using two
characters (e.g., h9, a2, c4, etc.). We can clearly see some common patterns of
execution and exceptional/rare behavior in the alignment. For example, from the
alignment, we can see that

� all the cases with the exception of one (trace 00001023) have the activity se-
quence e3c2 corresponding to the estimation of ABO blood group and Rh factor
(e3) and Rh factor using centrifuge method (c2) respectively

� only one of the cases (trace 000000928) required the execution of the activity
e7 corresponding to cephalin time-coagulation test

� only in three cases was the activity a0 (CEA - tumor marker using meia) per-
formed

2The entire alignment is of length 378 and is not shown due to legibility issues. The entire
alignment can be provided upon request.
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Common execution patterns
are captured in the form of
well conserved regions

trace name

Deviations, exceptional behavior and rare event executions are cap-
tured in regions that are sparsely filled i.e., regions with lots of gap
symbols ‘-’ or in regions that are well conserved with a few rare gaps.

The consensus sequence represents
the backbone of the process

Figure 11.18: Initial portion of the aligned traces pertaining to the non-urgent cases diagnosed
with M13 and whose treatment code is 803. Each row refers to a process instance (a patient case).
Columns describe positions in traces. Consider now the cell in row y and column x. If the cell
contains an activity name a, then a occurred for case y at position x. If the cell contains no activity
name (i.e., a gap “-”), then nothing happened for y at position x. Trace alignment aims a minimizing
the number of gaps and maximizing the consensus.

� one of the cases (trace 00000937) does not have the activity e6 (squamous
cell carcinoma using eia); similarly, one of the cases (trace 00001023) does not
execute the activity c6 (red cell antibody screening)

Such rare behavior/exceptions/deviations can be acceptable or can indicate a vi-
olation of expected behavior. For example, skipping a test corresponding to the
estimation of the ABO blood group and Rh factor or red cell antibody screening
is more likely to be a violation than an acceptable behavior. On the contrary, the
rare execution of the cephalin time-coagulation test can be acceptable; based on the
history of the patient, this test could have been recommended.

We observed an issue with respect to the recording of events in the event log.
The timestamps of events are recorded at the granularity of a day and not at the
level of hours/minutes. The side effect of this is that the events in the log could
have been reordered, i.e., the order of events may not be reliable. However, this is
confined to events within a single day. All events that happen on a day will definitely
be logged on the same day. For example, the activity d2 corresponding to (First
outpatient consultation) occurs quite late in the traces (third column from the right
in Figure 11.18). However, one would expect it to be one of the initial activities
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before any tests are performed on the patients. Nonetheless, we can take heart with
the consistency in logging as can be seen with the consensus in the alignment (though
the ordering of activities is not reliable, we see certain regularity– the activity d2

occurs in all the traces almost at the same position).

trace name

Sequence of tests special to this
particular trace
Sequence of tests special to this
particular trace

Figure 11.19: Initial portion of the aligned traces pertaining to the urgent cases diagnosed with
M13 and whose treatment code is 803.

Figure 11.19 depicts the initial portion of the aligned traces pertaining to the cases
in the urgent event log (again we focus on cases diagnosed with M13 and treatment
code 803). Common patterns of execution and deviations can be clearly seen. For
example, from the alignment, we can see that

� unlike the other urgent cases, the first trace (00000257) has a special execution
of a sequence of activities at the beginning. Since the patients are referred to
by other hospitals, preliminary sets of diagnosis tests would have already been
performed. The doctors at AMC make use of those tests and results. However,
in some cases, they might go for a fresh set of tests. This trace corresponds to
one such case.

� only one of the traces (trace 00000499) has the activity c1 corresponding to
digoxin.

� two cases (traces 00000257 and 00000058) do not contain the activity a0 cor-
responding to CEA - tumor marker using meia. It is expected that these tests
are performed. This missing of this test in these traces indicates a potential
violation.

In this fashion, trace alignment can assist in uncovering extremely interesting insights
and act as probes when analyzing process execution behavior thereby giving cues on
process improvement opportunities.

To summarize, though the event log seems to be complex, in reality, it is not.
Adopting the systematic approach presented in this section, we realized/showed that
the processes are in fact very simple and sequential. Furthermore, based on trace
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alignment, we noticed that not only are the processes simple and sequential but also
the cases share a lot in common with very little deviations from the main path. This
case study substantiates our claim that systematic preprocessing of event logs leading
to log simplification is crucial in gaining meaningful insights from large scale logs.
Unfortunately, preprocessing is less studied/reported in process mining literature.

11.2 Concept Drift in Processes in a Dutch Munic-
ipality

Our second case study pertains to detecting concept drifts in processes. We consider
three processes from a large municipality in the Netherlands. As discussed in Chap-
ter 5, operational processes need to change to adapt to changing circumstances, e.g.,
new legislation, extreme variations in supply and demand, etc. For example, since
October 1, 2010, the All-in-one Permit for Physical Aspects (omgevingsvergunning) has
come into force through the WABO act [247]. This entails an overarching procedure
for granting permission for projects like the construction, alteration or use of a house
or building, etc. Now, the municipalities have one permit, one procedure and one set
of submittal requirements, followed by one legal remedies procedure and enforcement
by one authority.

Municipalities are interested in getting insights into their processes, e.g., the way they
are planned to be executed vis-a-vis the way they are actually executed. Moreover,
they want to know which parts/regions in processes are time consuming. Municipal-
ities find such insights important and interesting for many reasons. For example, in
some cases, municipalities can only charge its customers based on the real costs for
providing a service and in other cases they can charge a fixed fee for a service. Also,
in case of permit requests, if the municipalities do not come to a decision within
a certain time (as set by the law) then the permit has to be granted. Therefore,
they want to be as cost efficient as possible. Furthermore, processes within different
municipalities are very similar in many aspects. At the same time, each municipality
can have its own characteristics (e.g., differences in size, demographics, problems,
and policies) that need to be maintained. Recently, different municipalities in the
Netherlands have evinced interest in comparing their processes and learning from
each other (the interested reader is referred to the CoSeLog project [45] for further
information.). Their vision is to have a form of standardization through a centrally
managed process management system [28, 219, 220, 250]. This includes the definition
of configurable process models allowing for variations peculiar to each municipality.
The configurable process model can be realized from a set of concrete models (nor-
mative models) that capture the desired or required behavior. However, more often
than not, the concrete models are either not available or even if available are of very
low quality. Process mining plays a significant role in bridging this gap by enabling
the discovery of what the actual processes are. One can consider both normative
models as well as discovered models in extracting configurable process models. This
makes the discovery of good and correct process models (reflecting the reality) from
event logs extremely crucial. When analyzing event logs, one needs to factor in the
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possibility of process changes, i.e., concept drifts, that could have taken place. In the
following sections, we present the results of analysis of concept drifts in event logs
pertaining to three processes from this municipality related to building permits.

11.2.1 Permit Process for Temporary Rental of Vacant Dwellings

Our first process corresponds to obtaining permits for temporary rental of vacant
dwellings. If a person wants to rent out unoccupied dwellings, a permit from the
municipal authorities is required. A permit is sanctioned, usually valid for a period
of two years, if they satisfy a number of conditions.

We considered an event log containing 35 cases and 315 events referring to 10
activities. The cases pertain to permit requests for temporary rental of vacant
dwellings spanning over the period between 16-04-2009 and 05-01-2011. We consid-
ered the window count feature on the follows relation for all activity pairs using a
window of size 4. Since the mean trace length is small (9), we considered a smaller
window size for feature extraction. The window count feature of each activity pair
defines a vector of size 35, corresponding to the traces in the event log. The univari-
ate Kolmogorov-Smirnov test (KS-test) is applied on each of these vectors using a
population size of 6 (since we have only 35 traces, we considered smaller populations).
Figure 11.20 depicts the average significance probability of the KS-test on all activity
pairs. We see two troughs formed at indices 11 and 17. These troughs signify a
change in behavior in the traces preceding and succeeding them. Figure 11.20 also
depicts the start timestamps (24-11-2009 and 12-02-2010 respectively) of the cases
corresponding to these troughs.
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Figure 11.20: Average significance probability (over all activity pairs) of KS-test on window count
measure. The population size for the KS-test is 6. There are two troughs signifying a change in
behavior.

Considering the two change points, we split the log into three partitions, the first, L1,
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Figure 11.21: Heuristic net of the permit process for temporary rental of vacant dwellings discov-
ered using the event log L1.

containing the traces from the beginning until the first change point (i.e., traces 1 to
11), the second, L2, containing the traces between the first and second change points
(i.e., traces 12 to 17), and the third, L3, containing the traces from the second change
point until the end (i.e., traces 18 to 35). Figure 11.21 depicts the process model
discovered using the Heuristics miner [264] on the event log L1. The documents
submitted by the applicant are first registered at the municipality (by an employee).
The municipality notifies the applicant of the receipt of the documents and tests
for its completeness. The municipality requests for the lease (rental agreement) of
the vacant dwelling (if needed) and a decision is taken and communicated to the
applicant. A fee letter is also prepared and sent. The preparation of the fee letter can
happen before/after the decision is sent; this is captured in the parallel construct in
Figure 11.21. The sending of the fee letter can happen before/after the End procedure
activity.

Figure 11.22(a) depicts the process model discovered using the Heuristics miner
on the event log L2. There are two changes (marked with dashed rectangles) in this
model when compared to the model in Figure 11.21. Firstly, the activity Assessor:
Inherit file related to Creating received acknowledgments has to be executed before
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Test completeness. Secondly, the creation of fee letter can happen only after the
decision is sent. The process owners indeed acknowledged that their permit process
has changed in November 2009, thus, validating our change point detection. Fig-
ure 11.22(b) depicts the process model discovered using the Heuristics miner on the
event log L3. The figure also depicts the region corresponding to the change when
compared to Figure 11.22(a). Unlike the process in Figure 11.22(a), the municipality
now does not send acknowledgements for each and every permit request. Out of the
18 permit requests only one of them was sent an acknowledgment (an applicant is
allowed an option to indicate that a confirmation is not needed). Such measures are
typically taken to reduce costs.

(a) event log L2 (b) event log L3

Figure 11.22: Heuristic nets of the permit process for temporary rental of vacant dwellings discov-
ered using the event logs L2 and L3. The dashed rectangles in (a) highlight the regions corresponding
to the change in the process with respect to the process model in Figure 11.21. The dashed rectangle
in (b) highlights the region corresponding to the change in the process with respect to the model
depicted in (a).

Figure 11.23(a) depicts the average significance probability of the KS-test over
all activity pairs for the same event log using the J-measure as the feature computed
on a window of size 4. Unlike Figure 11.20, we see only one trough. This can
be attributed to the reliance of J-measure on the probability of activities. Since
the activities Creating received acknowledgments and Assessor: Inherit file are rarely
executed in the traces 18 to 35, the probability of activities is significantly different
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from that of the activities in the traces 1 to 17. This is captured in the trough
at index 17. The probability of activities dominates the probability of the follows
relation between activity pairs and hence we do not see a prominent change at index
11. Furthermore, since the significance probabilities are averaged over all activity
pairs, the change at index 11 being confined to a few activities is obscured by the
others. Nonetheless, we can see a minor dip at index 11 (as indicated by the arrow)
in Figure 11.23(a). Figure 11.23(b) depicts the significance probability of the KS-test
on the J-measure for the follows relation for the activity pair (Register Documents,
Create Decision). We can now see two drifts signifying change points at indices 11
and 17. The change point at index 11 indicates that there is a change in the process
in the region between Register Documents and Create Decision, which is indeed the
case.
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Figure 11.23: (a) Average significance probability (over all activity pairs) of KS-test on the J-
measure. The population size for the KS-test is 6. There is one trough signifying a change in
behavior. (b) Significance probability of the KS-test on the J-measure for the follows relation for
the activity pair (Register Documents, Create Decision).

11.2.2 Permit Process for Advertisements

We analyzed various other processes within the same municipality. We also inves-
tigated advertisement permits. If a person/organization wants to advertise on a
building in the Netherlands, for example on a billboard or an illuminated sign, a
permit is needed in most cases, which can be obtained from the local municipality.
The municipality may charge an advertising tax or municipal tax on encroachments
on or above public space (precariorechten) for advertisements visible from the public
road.

We considered an event log containing 116 cases and 2335 events distributed over 25
activities. The cases pertain to permit requests for placing advertisements spanning
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over the period between 07-07-2003 and 18-03-2008. We considered the J-measure
feature on the follows relation for all activity pairs using a window of size 10. The
J-measure values of each activity pair define a vector of size 116, corresponding to
the traces in the event log. The univariate Kolmogorov-Smirnov test (KS-test) is
applied on each of these vectors using a population size of 10. Figure 11.24 depicts
the average significance probability of the KS-test on all activity pairs. We see four
troughs formed at indices 42, 74, 84, and 103. These troughs signify a change in
behavior in the traces preceding and succeeding them. Among the four troughs,
the one at index 42 is particularly significant. Figure 11.24 also depicts the start
timestamps (04-10-2004, 27-10-2005, 13-02-2006, and 31-08-2006 respectively) of the
cases corresponding to these troughs.
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Figure 11.24: Average significance probability (over all activity pairs) of KS-test on J-measure.
The population size for the KS-test is 10. There are four troughs signifying a change in behavior.

Based on the four change points, we split the log into five partitions, the first,
L1, containing the traces from the beginning until the first change point (i.e., traces
1 to 42), the second, L2, containing the traces between the first and second change
points (i.e., traces 43 to 74), the third, L3, containing the traces from the second
change point until the third change point (i.e., traces 75 to 84), the fourth, L4,
containing the traces from the third change point to the fourth change point (i.e.,
traces 85 to 103), and the fifth, L5, containing the traces from the fourth change
point until the end of the log (i.e., traces 104 to 116). Figure 11.25 depicts the
process model discovered using the Heuristics miner [264] on the event log L1. The
process can be divided into four high-level sub-procedures as depicted in the figure
and listed below.

� Upon submission of an application, the municipality acknowledges the receipt
of documents and (optionally) tests for its completeness.

� The municipality then proceeds with a follow-up procedure that verifies whether
the application and submitted documents are in compliance with the regula-
tions.
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� Based on the investigations, the municipality then makes a decision on the
application and informs the applicant with the decision along with a fee letter.

� Finally, the municipality registers the advertisements placed and enforces them.

Figure 11.26 depicts the process model discovered using the Heuristics miner on
the event log L2. The figure highlights regions that differ from the process model
in Figure 11.25. There are two changes in this model with respect to the previous
one. The first change is related to the checking for completeness of the registered
documents. In the initial process model (Figure 11.25), this check was not manda-
tory (only 2 of the 43 applications were checked for completeness). The municipality
changed this process by making the checks mandatory before proceeding. The second
change is the introduction of a new activity End procedure: enforcement is next as
highlighted in Figure 11.26. The initial process model had only the activity End pro-
cedure, possibly choose enforcement where as the new model has both these activities.

Figure 11.27(a) depicts the process model discovered using the Heuristics miner
on the event log L3. This model contains only one type of enforcement activity
End procedure: enforcement is next indicating that the municipality has phased out
the activity End procedure, possibly choose enforcement. Figure 11.27(b) depicts the
process model discovered using the Heuristics miner on the event log L4. The change
corresponds to the region marked in the figure involving the activities Administration:
copy file and Assign to supervisor. Unlike the previous model where these activities
happen in a sequence, they can now be executed concurrently. Figure 11.28 depicts
the process model discovered using the Heuristics miner on the event log L5. In all
of the previous models, the activity Control advertisements placed is executed after
the initiation of the enforcement procedure. However, in the model based on L5, this
activity can execute concurrently with the administrative activities once a decision
has been taken.
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Figure 11.25: Heuristic net of the permit process for advertisements discovered using the event
log L1. The marked regions depict high-level sub-procedures in this process.
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Figure 11.26: Heuristic net of the permit process for advertisements discovered using the event log
L2. The marked regions depict regions corresponding to the change in the process when compared to
the model in Figure 11.25. The municipality has now made the checks for completeness mandatory
and introduced a new activity End procedure, enforcement is next.
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(a) event log L3 (b) event log L4

Figure 11.27: Heuristic nets of the permit process for advertisements discovered using the event
logs L3 and L4. The activity End procedure, possibly choose enforcement has been phased out in (a)
when compared to the model in Figure 11.26. Unlike the model in (a), the activities Administration:
copy file and Assign to supervisor can be executed in parallel in (b).
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Figure 11.28: Heuristic net of the permit process for advertisements discovered using the event
log L5. Unlike the previous model in Figure 11.27(b), the controlling of advertisements placed can
now happen in parallel with the administrative activities once a decision has been taken.
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11.2.3 Permit Process for Driveway Construction

To further illustrate our approach to discover concept drift, we consider the process
of obtaining a permit to build or change a driveway from ones premises to the mu-
nicipality’s public road, referred to as a ‘driveway permit’ (inritvergunning) or as an
‘egress permit’ (uitwegvergunning). If a person (business) wants to build a driveway
road to a provincial highway, permission from the provincial authority is needed. The
municipality or provincial authority considers issues such as safe and efficient road
use, protection of green spaces, and protection of the ambience of the surrounding
areas before sanctioning a permit. The permit application must be accompanied with
the necessary fees and documentation, including design plans, photos, and pertinent
reports.

We considered an event log containing 315 cases and 3968 events referring to 21
activities. The cases pertain to permit requests for driveway construction spanning
over the period between 03-01-2006 and 12-01-2011. We considered the J-measure
feature on the follows relation for all activity pairs using a window of size 10. The
J-measure values of each activity pair define a vector of size 315, corresponding to
the traces in the event log. The univariate Kolmogorov-Smirnov test (KS-test) is
applied on each of these vectors using a population size of 20. Figure 11.29 depicts
the average significance probability of the KS-test on all activity pairs. We see seven
troughs formed at indices 21, 91, 125, 168, 213, 237, and 291 respectively. These
troughs signify a change in behavior in the traces preceding and succeeding them.
Based on these change points, we split the log into 8 partitions as depicted in the
figure.

L1 L2 L3 L4 L5 L6 L7 L8

Figure 11.29: Average significance probability (over all activity pairs) of KS-test on J-measure.
The population size for the KS-test is 20. There are seven troughs signifying a change in behavior.
These are used to partition the log into L1, L2, . . . , L8.

Figure 11.30 depicts the process model discovered using the Heuristics miner [264]
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Figure 11.30: Heuristic net of the permit process for driveway construction discovered using the
event log L1.
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on the event log L1. Upon submission of an application, the municipality acknowl-
edges the receipt of documents and (optionally) tests for its completeness. A fee
letter is also prepared and sent to the applicant. The municipality then proceeds
with a follow-up procedure where an opinion from the department of planning and
management is sought. If needed, the municipality may ask for the original drawings
of the planned driveway. Based on the investigations, the municipality then makes
a decision on the application and publishes them. The municipality may refuse the
permission in which case a fee refund letter is sent to the applicant. For some re-
quests that have been authorized, the municipality may send an invoice for driveway
construction and contract the BUI division for construction. The BUI division may
in turn confirm its decision to the municipality.

Figure 11.31 depicts the process model discovered using the Heuristics miner on
the event log L2. There are two primary changes (marked by the dashed rectangles)
in this process model when compared to the model in Figure 11.30. Firstly, the check-
ing for completeness of the registered documents is no longer optional. Also, unlike
the previous model where there are two activities related to creating of a fee letter,
viz., Create fee letter/send conf. of request received and Drafting fee letter, we now
have only one activity Drafting fee letter. In addition, the confirmation of requests is
no longer sent to the applicants. The second change corresponds to the omission of
the activity Publishing application. Figure 11.32 depicts the process model discovered
using the Heuristics miner on the event log L3. There is one behavioral change in
this model when compared to the one in Figure 11.31. The municipality has now
enforced a stricter need for confirmation from the BUI division. In Figure 11.31,
only 5 of the 24 contracts submitted to the BUI division were confirmed where as in
Figure 11.32, 13 of the 14 contracts were confirmed.

Figure 11.33 depicts the process model discovered using the Heuristics miner on
the event log L4. There are two primary changes (as indicated by the dashed rect-
angles) in this model when compared to the previous model in Figure 11.32. Firstly,
a refund is recorded only to some selected cases in case of refusal of a permit. Sec-
ondly, the number of contracts given to the BUI division has drastically reduced.
Figure 11.34(a) depicts the process model discovered using the Heuristics miner on
the event log L5. There are no further contracts to the BUI division in this pro-
cess. Furthermore, the activities Advice Dept. Planning and Management and B &
I request original drawing happen more often in parallel with the activities Send fee
letter and End procedure, select follow-up procedure when compared to the previous
model. Figure 11.34(b) depicts the process model discovered using the Heuristics
miner on the event log L6. In this model, the activities Drafting fee letter and Send
request pending can be executed in parallel when compared to the previous models
where they happen in a sequence. Furthermore, refunds have been stopped for all
applicants in case of permit refusal.

Figure 11.35(a) depicts the process model discovered using the Heuristics miner
on the event log L7. This model differs from the model in Figure 11.34(b) in that
the activity Send fee letter has to happen before the End procedure, select follow-up
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Figure 11.31: Heuristic net of the permit process for driveway construction discovered using the
event log L2. The dashed rectangles indicate regions where changes had taken place when compared
to the previous model. When compared to the model in Figure 11.30, the tests for completeness is
now made mandatory and the confirmation of requests is no longer sent to applicants.
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Figure 11.32: Heuristic net of the permit process for driveway construction discovered using the
event log L3. There is a stricter need for confirmation from the BUI division in this model when
compared to the model in Figure 11.31.
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Figure 11.33: Heuristic net of the permit process for driveway construction discovered using the
event log L4. Refunds are done only for selected cases in case of permit refusal and the number
of contracts given to the BUI division has reduced drastically when compared to the model in
Figure 11.32.
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(a) event log L5 (b) event log L6

Figure 11.34: Heuristic nets of the permit process for driveway construction discovered using the
event logs L5 and L6. The marked regions signify the regions where changes are perceived when
compared to the previous model. In the model in (a), the activities Advice Dept. Planning and
Management and B & I request original drawing happen more often in parallel with Send fee letter
and End procedure, select follow-up procedure, unlike the model in Figure 11.33. Furthermore, the
municipality no longer assigns contracts to the BUI division. The activities Drafting fee letter and
Send request pending can be executed in parallel in (b) when compared to the model in (a).
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procedure. Figure 11.35(b) depicts the process model discovered using the Heuristics
miner on the event log L8. The change in this model pertains to the activity Send
fee letter. Unlike all of the previous models, the fee letter is sent only to some of the
applicants (for just 6 of the 24 permit requests was a fee letter sent). Due to this,
the probability of activities differ in the traces in L8 when compared to the traces in
L7. The J-measure elegantly captures this and reflects this as a change in behavior.
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(a) event log L7 (b) event log L8

Figure 11.35: Heuristic nets of the permit process for driveway construction discovered using the
event logs L7 and L8. The sending of fee letter has to happen before the activity End procedure,
select follow-up procedure in (a) while the activity is optional in (b).



304 Chapter 11. Case Studies

To summarize, the features and the framework proposed in this thesis for handling
concept drifts show significant promise in detecting behavioral changes by analyzing
event logs. The detection of such change points can help us put the results of process
mining in a right perspective and enables an organization to take appropriate mea-
sures when a change in behavior is perceived. Furthermore, the empirical studies on
the municipality event logs showed that the framework is robust. It is able to detect
changes in real-life event logs even with a small number of cases.

11.3 Workflow of Field Service Engineers

Our third case study was done in close collaboration with a global leader in profes-
sional and consumer healthcare. As mentioned in Chapter 9, whenever a customer
(hospital) complains about a malfunction of an X-ray machine, a Field Service En-
gineer (FSE) is despatched (if needed) to fix the problem. Depending on the type
of the problem, the field service process can consist of the corrective actions such as
configuration, calibration, and/or part replacements. Due to the complexity of sys-
tem architecture and the flexibility of system use, the diagnostic procedures are not
always easy, e.g., for some problems, we notice a high variation in the time to repair.
This implies that some of the cases are not easy to diagnose and efforts are needed
to help FSEs. The actions performed by an FSE during diagnosis (maintenance) are
expected to be manifested in event logs. The organization is interested in under-
standing the workflow of FSEs and in identifying the bottlenecks in the process (e.g.,
discover which activities take more time). Furthermore, they are also interested in
assessing whether all of the mandatory activities such as calibration of the system
after a part replacement are performed. Such insights can help them in improving
their current diagnostic procedures, customer service quality, and more importantly,
customer satisfaction besides reducing costs.

11.3.1 Data Selection and Preparation

In Chapter 9, we already explained the logging capabilities of X-ray systems and their
event logs in detail. Without repeating the description provided there, we present a
high-level view of the data selection and preparation process for the analysis of FSE
workflows in this section.

Data Selection

As mentioned in Chapter 9, there are two data sources, the system event logs and job
sheets. The data selection process for the analysis of workflow of FSEs during a part
replacement is similar to that of the data selection process for signature discovery
explained in Chapter 9. For example, if we are interested in understanding the
workflow of FSEs while replacing part A, we identify all systems from the job sheets
database where that part had been replaced. Each call in the job sheets database
with this part replacement is associated with a call open date and a call close date.
For each call, we consider logs from the corresponding system between the call open
and the call close date (both days inclusive). Note that this differs slightly from the
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time window used for signature discovery (cf. Section 9.3.2), where we considered
logs from a few days before/after the call open/close date. Since FSEs take charge
only after a complaint has been raised, it is reasonable to consider logs only on/after
the call open date.

Defining Cases: Scoping and Filtering

As mentioned in Chapter 9, there are different modes during the operation of an
X-ray machine, viz., start-up (SU), shutdown (SD), shutdown completed (SDC), nor-
mal operation (NO), warm-restart (WR), and field service (FS). Events are logged in
all of these system modes. The start-up, shutdown, shutdown completed, and normal
operation modes are common and almost occur everyday during regular usage of
the system. Operations meant for regular use by the clinicians are logged under the
normal operation mode. The field service system mode mostly manifests during sys-
tem maintenance (operations specific to FSEs are logged under this mode) while the
warm-restart system mode refers to an automatic restart of the system and occurs
rarely. The field service system mode is similar to the administrator mode in an
operating system. FSEs can also operate the system in the normal operation mode.
During a single day, the system could have been started or shutdown multiple times.
The shutdown completed system mode occurs immediately after every shutdown
mode. The sequence of events in any particular mode can be considered as a session
of system’s operation. Figure 11.36 depicts a scenario of system logs between the
call open date and the call close date where the events are marked by sessions.
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Figure 11.36: Events in a system log marked as sessions. The continuous sequence of events in any
particular system mode constitutes a session of system’s operation. SU:start-up mode, NO:normal
operation, SD:shutdown mode, SDC:shutdown completed mode, FS:field service mode. In this
example, the warm-restart system mode is not manifested.
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For understanding the workflow of FSEs during part replacements, we consider
sessions between the first and the last field service sessions (both inclusive) and
create one process instance (case) per call by juxtaposing the sessions. The domain
experts are mostly interested in understanding the operations of FSEs during the
field service modes. Nonetheless, the activities during the normal operation mode
are also important. However, we are not interested in the events during the startup,
shutdown, and shutdown completed modes (as these are standard operations that
are predefined (similar to computer boot up)). Therefore, we record just two events
for each of the startup, shutdown, and shutdown completed sessions signifying the
start and completion of the session. This will be handy during performance analysis
via log replay. Similarly, since we are not interested in the low level details of the
normal operation at first glance, we create an abstract event for each normal opera-
tion session and create a sub-log for the normal operations where a process instance
corresponds to a session of normal operation. We set the start time of the abstract
event to the timestamp of the first event in the session and the completion time of
the abstract event to the timestamp of the last event in the session. Figure 11.37
depicts the creation of a case for each call.
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Figure 11.37: Defining a process instance (case) per call by juxtaposing the sessions. Normal
operation sessions are abstracted and a sub-log is created with process instances corresponding to
the sessions.

In scenarios where we do not want to consider the events during normal opera-
tion mode, we can follow the same principle as in startup/shutdown modes, i.e.,
create two events signifying the start/completion of normal operation mode instead
of an abstract event. One might want to analyze the normal operation mode sep-
arately by creating a log with the sessions corresponding to the normal operation
mode as process instances.
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11.3.2 Discovering Hierarchical Workflows

In this section, we report on the discovery of workflow capturing the activities of
FSEs during one of the part replacements in an X-ray machine. The chosen part is
one of the most expensive parts in an X-ray machine and has a large deviation in
MTTR. We considered all systems of a particular software version where this part
had been replaced in the past. We created an event log from the system logs based
on the procedure defined in the previous section. In this experiment we confine
ourselves to only the activities performed by FSEs in the field service mode, i.e., we
represent each session pertaining to system modes other than field service with two
events signifying the start and completion of the session without bothering about the
actual events in those sessions. However, all events executed under the field service
mode are considered for analysis. The event log contains 16 cases and 8,867 events
distributed over 192 activities. Significant number of activities happen very rarely
(their relative frequency of occurrence is less than 0.05%). We filter (remove) such
activities. The filtered event log contains 16 cases and 8,677 events referring to 97
activities. Note that we see a reduction from 192 to 97 activities. Figures 11.38(a)
and (b) depict the process models uncovered on this log using the Heuristics miner
[264] and the classical Fuzzy miner [94] respectively. The figures clearly expose the
complexity of this event log and the limitations of existing discovery algorithms. The
fine-granularity of events is one of the primary reasons for this observed behavior.
The uncovered process models are totally incomprehensible. Domain experts are
interested in understanding the workflow of FSEs at the level of procedures that
engineers execute rather than at the (fine-granular) level of system commands as
manifested in the event log.

As discussed in Chapters 3 and 6, fine-granular event logs can be dealt by defining
abstractions and using our two-phase approach to process discovery. We first con-
sider the tandem arrays and maximal repeat patterns in the event log and define
abstractions over them as discussed in Chapter 3. Table 11.3 depicts a few pattern
alphabets and their corresponding abstractions. The uncovered common execution
patterns are found to have strong domain significance. For example, consider the
pattern alphabet 3 in Table 11.3. Before scanning an image of a patient, the details
about the patient and the examination type (e.g., left ventricle scan) need to be en-
tered on an X-ray machine for bookkeeping purposes. This functionality is captured
as a common execution pattern in the event log. The chosen part (for analysis) is one
of the critical components of an X-ray machine and if it is broken, the functionality
of the system as a whole is compromised (image scans are no longer possible). This
pattern reflects the behavior of FSEs attempting to record image scans as part of
their system diagnosis procedure. After defining the abstractions, we transform the
input event log into higher-levels of abstraction using the approach presented in
Section 6.3. This procedure generates a sub-log for each abstract activity, which can
be used to mine the subprocesses captured by the abstract activity. The transformed
event log contains 16 cases and 2154 events referring to 29 activities.

Figure 11.39 depicts the top-level process model discovered using the Fuzzy Map



308 Chapter 11. Case Studies

(a) Heuristic net

(b) Classical Fuzzy model

Figure 11.38: Process models discovered using the Heuristics miner and the classical Fuzzy miner
on the event log capturing the activities in the field service mode.

miner on the transformed log. The blue (dark) colored nodes are abstract nodes
that can be zoomed into. Note that this model is much more simpler and easily
comprehensible when compared to models discovered using classical approaches as in
Figure 11.38. We can see that certain tasks during maintenance such as calibration,
configuration, and adjustments captured as abstract activities. Figure 11.40 de-
picts the subprocesses corresponding to four of the abstract nodes. For example, the
events capturing the start/completion of the startup/shutdown and normal operation
modes are captured using an abstract activity, the subprocess of which is as depicted
in Figure 11.40(a). FSEs typically inspect the system logs to see if there are any
(known) error patterns. This is reflected in the activities View Technical Event Log
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Table 11.3: Pattern alphabets and abstractions defined using tandem arrays and maximal repeat
patterns on the event log.

S.No Pattern Alphabet Abstraction

1 {Start Fluoroscopy, Stop Fluoroscopy, Start Viewing,
Stop Viewing, Lower Priority, Minimize}

Fluoroscopy/Exposure
and Viewing

2 {Start Exposure, Stop Exposure, Start Viewing, Stop
Viewing, Start Prepare, Stop Prepare, Lower Priority,
Minimize}

3 {Create Examination, Add Examination, Set Patient
Name, Set Patient Date of Birth, Set Attending Physi-
cian}

Examination
Preparation and
Administration

. . . . . . . . .

in the subprocess for System Information depicted in Figure 11.40(c). By simplifying
event logs with abstractions, we are able to achieve meaningful and comprehensible
process models. We next look at the workflow of FSEs during the normal operation
mode.

Normal Operation Workflow

We consider the sessions defining the normal operation mode during the diagnosis
of a part replacement and analyze the activities performed by FSEs. The event log
contains 113 cases (each corresponding to one normal operation sessions) and 77,755
events distributed over 182 activities. Significant number of these activities occur
very rarely. We filter all activities whose relative occurrence frequency is less than
0.05%. The filtered event log contains 113 cases and 76,754 events referring to 92
activities. Figures 11.41(a) and (b) depict the process models uncovered on this log
using the Heuristics miner and the classical Fuzzy miner respectively. Again, we see
incomprehensible spaghetti-like models. We uncover common execution patterns,
define abstractions, and use our two-phase approach to alleviate this problem. The
transformed log (with abstractions) contains 113 cases and 10,387 events referring
to 20 activities.

Figure 11.42 depicts the top-level process model discovered using the Fuzzy Map
miner on this transformed log. We can see that the model discovered using our
two-phase approach is simpler and more comprehensible. Further note that at the
beginning of the process, there are two activities FSA startup and Change Field Service
Mode. These activities signify that the normal operation mode is being executed
with field service privileges (this is analogous to the sudo program on unix-like op-
erating systems). Figure 11.43(a) depicts the subprocess for the abstract activity
Fluoroscopy, Exposure, and Viewing while Figure 11.43(b) depicts the subprocess for
the abstract activity Beam Limitation. The beam limitation subprocess is concerned
with adjusting the wedges and shutters in an X-ray machine to direct X-ray beams
to the desired regions of scan. There are two wedges (Wedge1 and Wedge2) in the
X-ray machine and the permissible operations on them are translation (movement)
inwards/outwards or stop and rotation. This is elegantly captured in the Beam
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or Normal operation
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Figure 11.39: The top-level process model corresponding to the activities performed by FSEs in
the field service system mode.
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(a) Startup/Shutdown and/or Normal Operation

(b) System Specific Functions

(c) System Information

(d) Configuration

Figure 11.40: The subprocesses corresponding to the abstract activities Startup/Shutdown and/or
Normal Operation, System Specific Functions, System Information, and Configuration.

Limitation abstraction. Similarly, the shutters can be opened/closed, stopped, or
reset.

We have applied this methodology to discover the workflow of FSEs for several
other part replacements. In all of the cases, we were able to obtain meaningful and
comprehensible process maps. Based on these experiences, we summarize that the
approaches presented in this thesis of forming abstractions by exploiting common
execution patterns in event logs, the preprocessing of logs with these abstractions, in
conjunction with the two-phase approach for process discovery enables the discovery
of comprehensible hierarchical process models (a.k.a. process maps) at desired levels
of granularity. In the next section, we attempt at enriching these mined models with
performance information so that bottlenecks can be easily identified.
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(a) Heuristic net

(b) Classical Fuzzy model

Figure 11.41: Process models discovered using the Heuristics miner and the classical Fuzzy miner
on the event log defined by the sessions of normal operation mode.
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Figure 11.42: The top-level process model corresponding to the sessions operated in the normal
operation system mode.
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(a) Fluoroscopy, Exposure and Viewing

(b) Beam Limitation

Figure 11.43: The subprocesses corresponding to the abstract activities Fluoroscopy, Exposure and
Viewing and Beam Limitation.
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11.3.3 Performance Analysis

One means of identifying the hotspots (bottlenecks) in a process is to replay an
event log on a process model. During replay relevant performance measures can be
captured. We considered the process maps discovered in the previous section and
replayed their respective input logs (the logs from which the models are discovered)
using the replay technique presented in Chapter 7. Figure 11.44 depicts the anno-
tated Fuzzy map for the workflow of FSEs considering the activities executed in the
field service mode. We used the level average thresholds for coloring the nodes with
bounds of 0.3. In other words, if a node/edge’s average throughput time is less than
0.7 of the average node/edge throughput time of the process model at this level,
then the node/edge is colored green. If its value is between 0.7 and 1.3, then it is
colored yellow and if its value is greater than 1.3, it is colored red. For example, in
Figure 11.44, we see the abstract activity Startup, Shutdown, and Normal operation
colored red. This is expected because the FSE performs a lot of operations in the
normal operation mode. Figure 11.45(a) depicts the subprocess corresponding to this
abstract activity. We can get further insights on where the contributing factors (to
large execution times) are by analyzing this subprocess. In this subprocess, we have 8
events that correspond to the start and completion events of sessions in four system
modes: startup, shutdown, shutdown completed, and normal operation. Among
these four, the most variable component is the normal operation mode because the
activities performed vary depending on the need of any operating day of a hospital.
Accordingly, we see the edge Normal Operation-start � Normal operation-complete
colored red. Normally, the events captured during the startup mode are fixed with
very little variability. These typically involve handshaking commands with all the
components/parts of the system (analogous to operating system booting process).
The time it takes for the system to wake up is negligible compared to the time
spent in normal operation mode. Thus, we see the edge between Startup-start �
Startup-complete colored green.

Figure 11.45(b) depicts the annotated subprocess corresponding to the abstract
activity System Information. The edge connecting View Technical Event Log-start and
View Technical Event Log-complete is colored red. This activity corresponds to the
FSE manually inspecting the system logs to check for the existence of any known
patterns. This is a cumbersome process and this is one of the motivating factors
for the need for automated discovery of signature patterns, which we addressed in
Chapter 9. In this fashion, one can try to analyze the activities and flows in the
process that are time consuming and if possible remedial actions can be taken such
as optimizing the functionality.

Figure 11.46 depicts the annotated Fuzzy map corresponding to the workflow of
FSEs in normal operation mode using the same coloring strategy as earlier. Fig-
ures 11.47(a) and (b) depict the annotated Fuzzy map for two of the subprocesses,
viz., Beam Limitation and Field service window in the top-level process model. Let us
consider the subprocess in Figure 11.47(a). As mentioned earlier, the wedges in an
X-ray machine can be moved and/or rotated. The rotation of wedges is more com-
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Startup/Shutdown
and Normal operation

System
information

Figure 11.44: The top-level process model, of the activities performed by FSEs in the field service
mode, showing performance related information. The coloring of nodes/edges is based on model-
specific averages with tolerance limits of �30% with the average node throughput time of 119.034
units and an average edge throughput time of 77.198 units.

plex than the lateral/vertical movements. This is reflected in the edges connecting
to/from the activity corresponding to the rotation of wedges. These edges acquire a
red color because they are relatively more time consuming.

In this fashion, one can explore annotated process models to identify potential
bottlenecks in a process.
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Shutdown completed-
start → Shutdown
completed-complete

Startup-complete →
Normal Operation start

Normal operation-
start → Normal

Operation-complete

(a) Startup/shutdown and/or normal operation

View technical event log-
start → View techical
event log-complete

Detailed error
info parameter set

(b) System information

Figure 11.45: The subprocesses corresponding to Startup/shutdown and/or normal operation and
System information annotated with performance information. The coloring of nodes/edges is based
on model-specific averages with tolerance limits of �30%. The average edge throughput time of
Startup/shutdown and/or normal operation is 58.020 units while that of System information is 2.298
units.

Beam limitation

Field service
window

Figure 11.46: The top-level process model of the sessions corresponding to the normal operation
mode showing performance related information. The coloring of nodes/edges is based on model-
specific averages with tolerance limits of �30%. The average node throughput time is 40.005 units
and the average edge throughput time is 13.576 units.
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Wedge 2 Shutters Wedge 1

Wedge rotation
Open/close
shutters

(a) Beam limitation

(b) Field service window

Figure 11.47: The subprocesses corresponding to Beam Limitation and Field Service Window anno-
tated with performance information. The coloring of nodes/edges is based on model-specific averages
with tolerance limits of �30%. The average edge throughput time for Beam limitation is 10.220 units
while that of the Field service window is 0.91 units.

11.4 Conclusions

In this chapter, we have presented three case studies that have been performed in the
context of the work presented in this thesis. Each of these case studies exhibits one
or more of the characteristics of large scale event logs addressed in this thesis. These
case studies substantiate our claim that preprocessing, leading to simplified event
logs, based on the perspective of analysis is crucial in gaining meaningful insights.



Chapter 12

Conclusions

To conclude this thesis, we first summarize some of the motivating factors that has
driven the course of the work presented in this thesis followed by our contributions.
Although the techniques and concepts presented in this thesis take a step forward in
addressing some of these factors, several challenges still remain to be addressed to
improve the applicability of the techniques presented in this thesis, and the appli-
cability of process mining in general. We list some of these challenges and provide
some directions for future work.

12.1 Summary of Contributions

Process mining is an important tool for organizations managing nontrivial opera-
tional processes. During the last five years, process mining has expanded its reach
to new domains and applications, atypical of workflow-like information systems, e.g.,
analyzing event logs from high-tech systems such as X-ray machines, wafer scanners,
copiers and printers, and mission critical information systems. These applications
bring along with it new sets of challenges, e.g., fine-granular events, heterogeneity
in event logs, voluminous data, unreliable timestamps, etc. The challenges will
only be further inclined to grow what with the organizations predicted to churn out
burgeoning volumes of transactional data, via all means from networked sensors to
social media, referred to as the “big data” [147].

In Part I, we presented some of the characteristics of large scale event logs and
three major challenges for process mining, viz., dealing with less-structured pro-
cesses, dealing with process changes, and provisions for process diagnostics. We
highlighted the issues with current techniques and the need for advancements in pro-
cess mining. We presented some of the diagnostic questions that business analysts
are interested in obtaining answers to. Chapter 2 introduced several notations and
concepts in the context of process mining such as event logs and process modeling
formalisms and those needed for explaining the concepts in the thesis.

In Part II, we hypothesized that simplification of event logs can improve process
mining results. Therefore, we focused on techniques for preprocessing event logs.
First, we presented an approach of forming abstractions of fine-granular events by
exploiting some common execution patterns, manifested as sequences of activities,
in event logs (Chapter 3). We established relationships between these patterns and
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some of the process modeling constructs. By using these abstractions, low-level
events can be replaced with high-level abstract activities and process mining be ap-
plied on these abstracted logs. Next, we proposed techniques for partitioning event
logs into homogenous subsets as a means of dealing with heterogeneity in event logs
(Chapter 4). We highlighted the importance of considering contexts of execution
in forming homogenous partitions and showed that process mining results can be
improved by analyzing these subsets independently when compared to analyzing the
whole event log. In Chapter 5, we focused on techniques for dealing with process
changes. We presented techniques for determining the time points when changes
took place and the regions where processes have changed. Analyzing such changes is
of utmost importance to get an accurate insight on process executions at any instant
of time.

In Part III, we presented several advancements in topics in process mining. First,
we focused on one of the challenging tasks in process mining, i.e., dealing with
less-structured processes. We presented a two-phase approach to process discovery
in Chapter 6. We presented an event log transformation approach that exploits
the abstractions defined over common execution patterns presented in Chapter 3.
The transformation of logs constitute the first phase of our two-phase approach.
During this transformation, sub-logs, capturing the manifestation of activities cap-
tured under an abstraction, are created for each abstract activity. The second phase
deals with mining process maps. Abstract activities can be zoomed in to view the
subprocesses captured underneath them. Chapters 7–9 dealt with techniques for
process diagnostics. We presented an approach of replaying an event log onto process
maps and gathering relevant performance measures (Chapter 7). These measures can
be annotated on a process map to identify bottlenecks. We presented an approach
of aligning traces to answer a variety of diagnostic questions (Chapter 8). Trace
alignment extends the scope of conformance checking in process mining by finding
deviations by analyzing the raw traces without the need for process models. Chap-
ter 9 presented an approach of finding symptomatic signature patterns that explain
the behavior of different classes of traces in an event log. Such signatures can be
used for fault diagnosis and fraud detection.

In this last part (Part IV), we presented the tool support, realized as packages
in the ProM framework, for the concepts presented in this thesis (Chapter 10). We
presented three case studies to demonstrate the applicability of the techniques devel-
oped in this work (Chapter 11). In this chapter, we take a step back and reflect on
the material presented in the previous chapters and sketch directions for future work.

Figure 12.1 summarizes the contributions of this thesis. We have presented sev-
eral features with multitude of applications, e.g., common execution patterns such
as tandem arrays and maximal repeats catering to abstractions of events, trace clus-
tering, and signature discovery; causal foot print based features catering to concept
drifts, etc. These constitute the class of feature extraction techniques. We have
presented feature selection techniques to filter/prune features that are insignificant
or less significant, e.g., the various pattern count metrics. Based on these features,
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tool support as plug-ins in ProM

Figure 12.1: Contributions of this thesis.

we presented three techniques, viz., abstractions of events, trace clustering, and
concept drift, for preprocessing event logs as means of dealing with fine-granular
events, heterogeneity in event logs, and process changes. Furthermore, we presented
four techniques, viz., discovering process maps, process map performance analysis,
trace alignment, and signature discovery, leading to advancements in process mining.
All of the techniques presented in this thesis have been realized as plug-ins in ProM.
These provide rich interactive visualization capabilities to explore the mined results.

Since the focus of this thesis is on enabling process mining for large scale event
logs, scalability is an implicit requirement. The techniques presented in this thesis
have been shown to be scalable either empirically or theoretically.

12.2 Reflection, Challenges, and Directions for Fu-
ture Work

We have presented the limitations and extensions for most of the techniques proposed
in this thesis in the respective chapters. In addition, we have presented an outlook
for topics such as concept drift and trace alignment. In this section, we take an
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overarching perspective of the concepts presented in this thesis and address some
challenges and interesting extensions. The reader is referred to the process mining
manifesto [167] for a list of additional challenges in process mining.

From Sequences to Partial Orders

The pattern definitions (tandem arrays and maximal repeats) considered in this thesis
are restricted to sequence patterns, i.e., continuous manifestation of entities (activ-
ities, resources, etc.) in event logs. Sequence patterns have limitations in dealing
with concurrency as events involved in concurrency have an interleaved manifesta-
tion in traces. In this thesis, we proposed notions of non-continuous manifestation
of patterns to capture interleavings and the grouping of patterns sharing the same
alphabet into equivalence classes as a means of dealing with concurrency. However,
this assumes that we uncover at least one repeat pattern where the activities in-
volved in concurrency are not interleaved with other activities. A natural extension
of sequence patterns is to consider partial orders or episodes [145] and there have
been initial attempts at using episodes to mine structural workflow patterns [75–77].
However, there are still many open issues and finding/recognizing concurrent events
remains a challenging problem, e.g., dealing with the sensitivity to the size of episode
windows. This warrants a holistic perspective of patterns by analyzing traces not
just from a control-flow perspective but also considering the data and resource per-
spectives. Such a holistic perspective might help in dealing with concurrency and
resolving ambiguities.

Artifact-Centric Process Mining

Experiences from applying process discovery techniques on real-life logs revealed
that viewing processes as a flat single monolithic entity is problematic. In reality,
processes are designed and executed in a modular way, e.g., we have seen in the AMC
case study that the patient treatment procedures are not monolithic but a collection
of processes from multiple interacting departments, each with concrete and well-
defined responsibilities/functionalities. This modeling paradigm, where processes
are modeled as a collection of interacting entities, called as Proclets [226, 227] and
artifact-centric modeling [37, 66, 161], is gaining prominence among BPM practi-
tioners in recent years. Several new challenges emerge for process mining to cater to
artifact-centric processes. For example, there does not exist a unique notion of a case
or process instance as the process cannot be considered in isolation, several different
cases overlap and synchronize at different points, etc. Figure 12.2 depicts a scenario
where there is an ambiguity in associating the instances of activity b to instances of
activity a. It is to be resolved whether the first occurrence of b corresponds to the
first or the second occurrence of a.

In this thesis, we have considered abstractions as a means of defining modules
and our two-phase approach to process discovery aims at viewing the process as
a collection of process models (subprocesses). However, this is a restricted view
of artifacts and there is a need for new process mining techniques that look at
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Figure 12.2: Ambiguities in associating events related to multiple instances.

artifact-centric models holistically. Recent efforts in process mining point towards
this emerging area of research [1, 65, 124].

Operational Support

Process mining can be used off-line and online. The majority of research in process
mining is focussed on off-line (post-mortem) analysis. Online process mining, focus-
ing on providing operational support such as predictions and recommendations for
running cases, is gaining attention in recent years [234, 236]. The topics of concept
drift and signature discovery have a natural fit for operational support. Although
detecting concept drifts is important for off-line analysis, it is more interesting and
appropriate for online analysis, e.g., an organization would be more interested in
knowing a change in behavior of their customers or a change in demand as and when
it is happening. Such real-time triggers help them to take quick remedial actions and
avoid any ill-effects of the change. Similarly, we have looked at signature discovery
as a means of reactive assistance. We can extend the basic concept to enable predic-
tive assistance, e.g., signs of emergence of a signature pattern can be used to predict
an impending part failure or an insurance fraud. Extending techniques presented in
this thesis for operational support is not straightforward and new challenges emerge.
For example, for being able to detect drifts online, the number of samples required
remains an issue; for signature discovery, one should be able to uncover early symp-
toms that ultimately manifest in an unexpected behavior. Furthermore, one needs
additional computational power and efficient techniques to do such analysis in near
real-time.

When Process Mining Meets Bioinformatics

Some of the techniques presented in this thesis (abstractions of events, trace cluster-
ing, and trace alignment) are inspired from techniques in bioinformatics (or sequence
informatics, in a broader sense). Just like process mining, which aims at extracting
non-trivial process related knowledge from event logs, bioinformatics aims at increas-
ing the understanding of biological processes through the analysis of information
associated with biological molecules, often represented as DNA/protein sequences
[140]. It is important to note that, to a large extent, sequence analysis is a funda-
mental aspect in almost all facets of process mining and bioinformatics. In spite of
all the peculiarities specific to business processes and process mining, the relatively
young field of process mining should, in our view, take account of the conceptual
foundations, practical experiences, and analysis tools developed by sequence infor-
matics researchers over the last couple of decades.
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In this thesis, we have shown some initial successes, which demonstrate that process
mining techniques can benefit from such a cross-fertilization. For example, initial
attempts at such a crossover enabled the discovery of hierarchical process models and
helped extend the scope of conformance checking to also cover the direct inspection
of traces. Furthermore, there are many unexplored areas where bioinformatics and
process mining share some common goals. One such example is the commonality
between phylogenetics and process configuration. Phylogenetics refers to the study of
evolutionary relationships. A phylogeny is a tree representation of the evolutionary
history of a set (family) of organisms, gene/protein sequences, etc. The basic premise
in phylogenetics is that genes have evolved by duplication and divergence from com-
mon ancestors [211] and therefore can exist in a nested hierarchy of relatedness.
Figure 12.3(a) depicts the phylogeny of some of the species of Hawaiian honeycreeper
[166]. These variant species descended from a single ancestor over the last ten million
years. Likewise, process configuration [233] is primarily concerned with managing
families of business processes that are similar to one another in many ways yet
differing in some other ways. For example, processes within different municipalities
are very similar in many aspects and differ in some other aspects. A configurable
process model describes a family of similar process models in a given domain [233],
and can be thought of as the genesis (root) of the family. All variants in the family
can be derived from the configurable model through a series of change patterns [261].
Figure 12.3(b) (adapted from [186]) depicts an example of a configurable model (par-
ent) and two variants (children) derived from it. One of the core research problems
in process configuration is to automatically derive configurable process models from
specific models and event logs.

(a) Phylogeny of the Hawaiian honey-
creeper.

variant
2

variant
1

configurable
model

(b) Process configuration

Figure 12.3: Similarity between phylogeny and process configuration.
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One can find stark similarity between phylogenetics and process configuration. Tech-
niques have been proposed in the bioinformatics literature to discover phylogenies
both from (protein) structures as well as from sequences. This can be compared
to deriving configurable process models from specific models and from event logs
respectively. The adaptability of phylogeny construction techniques to process con-
figuration needs to be explored. Experiences from bioinformatics can also contribute
to tooling (e.g., visualization) and infrastructure efforts (e.g., benchmarking and
advanced data repositories) in process mining. The reader is referred to [20, 21] for
a more comprehensive discussion on the synergy between these two disciplines. Such
an overlap between the goals, combined with the promising initial results, calls for
a more rigorous attempt at understanding and exploiting the synergy between these
two disciplines.

Learnability and Sample Complexity

The goodness of any process mining result largely depends on the characteristics
of the data and the characteristics of the analysis algorithm. However, with the
exception of the α-algorithm [229], none of the existing algorithms in process mining
elicit their requirements/characteristics in a sufficient manner. The impact of this
is felt in two ways: firstly, analysts are unaware of which techniques can provide
meaningful results for the data at their disposal and secondly, algorithms do not
apriori know whether they can learn a concept (be it process discovery, conformance
or any other aspect of process mining) from the provided data. The effect of this
is reflected in the incomprehensible and unsatisfactory results, often produced, as
shown in many of the examples in this thesis. We perceive a lack of emphasis on
these aspects to be one of the shortcomings in process mining research that needs to
be seriously addressed.

We believe that process mining can benefit from concepts developed in compu-
tational learning theory [122, 141], a mathematical field related to the analysis of
machine learning algorithms. There are two main aspects that learning theory tries
to address: (i) learnability and (ii) sample complexity. The former is concerned with
learning a “good” model of the world from some information about the “world”,
usually provided in the form of data drawn from some unknown underlying distribu-
tion. The latter deals with issues surrounding the necessary and sufficient number
of samples needed to form a “good” model. Learning theory enables the quantifica-
tion of “good” precisely depending on the specific problem at hand, e.g., the PAC
(Probably Approximately Correct) learning paradigm [215] addresses the learnability
of a model within a desired level of accuracy with high probability from randomly
selected training examples. Both of these aspects are relevant to process mining.
For example, the learnability problem in process discovery can be posed as being
able to mine a process model with a desired level of fitness, precision, generalization,
and simplicity given an event log with certain well-defined characteristics, while the
sample complexity refers to the size of the event log (the number of traces) needed
for the discovery algorithm to learn such a model.
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Gold [82] initially formalized the problem of language learnability as a conver-
gence to a grammar from an infinite stream of sequence data and showed that even
regular languages cannot be exactly learned from positive examples only. The PAC
learning paradigm [215] improves significantly on the Gold model and offers a more
plausible treatment of convergence. Other extensions to this model that improve
learnability have been proposed [36]. The focus of most formal models of learnability
is on investigating which classes of languages can be learned from finite or infinite
data, without being concerned about the efficiency of learning [7]. In the context of
process mining, this concept was initially raised in the seminal work of Cook and
Wolf [39]. However, for reasons unknown to us, it was not pursued subsequently
by any researcher. This topic has started gaining attention recently [256, 262],
which is a welcome sign. Looking at process mining algorithms from a learning the-
ory perspective enables a well-founded theoretical framework upon which to reason
upon, compare, and evaluate different algorithms, and comment on their learnability.

On a closing note, process mining has had a remarkable journey so far. The initial
promise and successes have led to more and more organizations look up to process
mining as a panacea for many different purposes. The contributions made in this
thesis extends the journey by enabling process mining for large scale event logs.
Nonetheless, there are many evolving challenges for process mining researchers to
address making the journey ahead one of adventure and discovery.
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Classification of Patient
Diagnosis

Table A.1: Description of diagnosis of patients. The stage of malignancy is not known for some
cases in all the diagnosis categories.

Diagnosis Value Diagnosis Description

M11 Pertains to the cancer of the vulva. Describes information on cases
diagnosed with

� squamous cell carcinoma (stages I, II, III1, III2, IVa and IVb)

� malignant neoplasms and melanoma

� basal cell carcinoma

� borderline malignancy

M12 Pertains to the cancer of the vagina. Describes information on cases
diagnosed with

� squamous cell carcinoma (stages II, III and IVb)

� malignant neoplasms

� adenocarcinoma (stage II)

Certain metastases cases are also included.

M13 Pertains to the cancer of the cervix (uteri). Describes information
on cases diagnosed with

� squamous cell carcinoma (stages Ia1, Ia2, Ib, IIa, IIb, IIIb, IVa
and IVb)

� malignant neoplasms

� adenocarcinoma (stages Ia1, Ib and IIa)

� borderline malignancy

� sarcoma
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M14 Pertains to the cancer of the corpus uteri. Describes information on
cases diagnosed with

� adenocarcinoma (stages Ia, Ib, Ic, IIa, IIb, IIIa, IIIb, IVa and
IVb)

� malignant neoplasms and endometrium

� clear cell carcinoma (stages Ib and IIIb)

� borderline malignancy

Certain metastases cases are also included.

M15 Primarily pertains to the cancer of the corpus uteri of type sarcoma
(stages II and III according to the FIGO staging system). However,
certain cases of colon cancer and myometrium are also classified into
this category

M16 Pertains to the cancer of the ovary. Describes information on cases
diagnosed with

� adenocarcinoma of types

– serous (stages Ia, Ic, IIa, IIIb, IIIc and IV)

– endometroid (stages Ic, IIIc)

– mucinous (stages Ic, IIc and IIIc)

– non-differentiated (stages IIIc and IV)

� non-epithelial malignancy (stages Ia, IIa, IIIa and IIIc)

� neoplasms

� borderline malignancy

� clear cell carcinoma.

Certain metastases cases are also included.

821 Pertains to the cancer of the ovary. Describes information on cases
diagnosed with

� adenocarcinoma of types

– serous (stage IIIc)

– mucinous (stage IIIc)

� non-epithelial malignancy

� neoplasms
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822 Pertains to the cancer of the cervix (uteri). Describes information
on cases diagnosed with

� squamous cell carcinoma (stage Ib)

� adenocarcinoma (stages IIa and IIb)

� borderline malignancy

� malignant neoplasms

106 Describes a heterogeneous mix of cases pertaining to the cancers of

� cervix uteri, of types squamous cell carcinoma (stages Ia and
IIa), malignant neoplasms and borderline malignancy

� vulva, of types squamous cell carcinoma (stages III2, IVa and
IVb) and malignant melanoma

� corpus uteri, of types adenocarcinoma (stages Ib, Ic and IIa),
malignant neoplasms and borderline malignancy

� vagina, endometrium and ovarian tube

823 Describes a heterogeneous mix of cases pertaining to the cancers of

� corpus uteri, of types adenocarcinoma (stages IVa and IVb),
malignant neoplasms and sarcoma (stage IVb according to the
FIGO staging system)

� ovary, of type serous adenocarcinoma (stage IIIc)

� endometrium

839 Describes a heterogeneous mix of cases pertaining to the cancers of

� ovary, of types serous adenocarcinoma (stages IIIc and IV) and
borderline malignany

� uterine appendages, of type malignant neoplasms

� vulva, of type malignant neoplasms
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Table A.2: Distribution of cases based on the values for diagnosis code combination. Each case in
the event log may contain up to 16 diagnosis code attributes. The different diagnosis code attributes
can take on values such as M11, M13 and 106. This table depicts the values of diagnosis code
combinations manifested in the cases in the event log and the number of cases for each combination.

Diagnosis Value Combination Number of Cases
{M13} 252
{M16} 201
{M11} 162
{M14} 106
{106} 70
{822, 106} 61
{M13, 106} 57
{M13, 822, 106} 47
{106, M14} 31
{M16, 821} 25
{M12} 17
{821} 16
{M15} 14
{822} 11
{M11, 106} 11
{M13, 822} 10
{839} 8
{823} 7
{839, M16} 6
{M12, 106} 4
{823, 106, M14} 4
{823, M14} 3
{106, 821} 3
{M11, 106, 839} 2
{106, M15} 2
{106, 839} 1
{M13, 106, 839} 1
{M12, 839} 1
{822, 106, M14} 1
{M13, 106, 821} 1
{839, M16, 821} 1
{823, 106} 1
{106, M16, 821} 1
{823, 106, M15} 1
{106, M16} 1
{822, 106, 821} 1
{839, 821} 1
{M11, 822} 1
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Summary

Process Mining in the Large:
Preprocessing, Discovery, and Diagnostics

Modern information systems supporting operational processes of organizations record
events (data) capturing the footprints of process executions. Such data is generated
not only by traditional business information systems but also through numerous other
sources1. The amount and the rate at which data is collected by organizations today
are growing faster than ever. Intelligent use of this voluminous data is perceived to
be one of the key challenges in the future for organizations to innovate, grow, and
retain their competitive edge.

Process mining is an emerging discipline that aims at extracting non-trivial pro-
cess related knowledge and interesting insights from event logs, e.g., to automatically
discover process models. Such knowledge can be used to monitor and improve real
processes. Remarkable success stories have been reported on the applicability of
process mining based on event logs from real-life workflow management/information
systems. Today, we are at the cross roads of an increasing number of unprecedented
domains and new applications willing to apply and adopt process mining. Process
mining is being looked at even in applications that are atypical of workflow systems.
Analysis of event logs of high-tech systems such as X-ray machines and CT scanners
(medical systems), copiers and printers, mission-critical information systems, etc.,
are a few examples illustrating this trend.

Processes executed on high-tech systems tend to be flexible and/or less-structured
while the event logs from these systems tend to be fine-granular, heterogenous, and
voluminous. We refer to logs with the above characteristics as large scale event
logs. These characteristics pose new challenges to process mining. For example, con-
temporary process discovery algorithms have problems in dealing with fine-grained
event logs and less-structured processes, and generate spaghetti-like process models
that are hard to comprehend. This thesis focusses on enabling process mining for
large scale event logs. More specifically, this thesis addresses the following research
questions:

� how do we deal with fine-granular event logs and less-structured processes?

� how do we deal with heterogeneity in event logs?

� how do we deal with process changes? and

1Big Data: The Next Frontier for Innovation, Competition and Productivity, McKinsey Global
Institute, May 2011.
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� how do we enhance support for process diagnostics?

In this thesis, we advocate that the problems arising in analyzing large scale event
logs can be tackled from two fronts: (i) through event log simplification and (ii)
through advancements in process mining. We develop an approach to form abstrac-
tions over events by exploiting the common execution patterns manifested in an event
log. Such patterns typically carry a strong conceptual relationship (of domain signif-
icance) between the events involved in the pattern. Event logs can be simplified by
replacing the low-level events with abstract activities thereby mitigating the problem
of fine granular events. Using this as a basis, we propose a two-phase approach to
process discovery that enables the discovery of hierarchical process models (process
maps). This approach mitigates the problem of dealing with less-structured processes
by allowing the discovery of navigable process maps with multiple-levels of hierarchy
and context-dependent views.

In this thesis, we show that process mining results on heterogenous event logs
can be improved by first partitioning the event log into subsets of homogenous cases
(trace clustering) and analyzing these subsets independently. We highlight the sig-
nificance of considering contexts during such partitioning and propose context-aware
approaches to trace clustering. Furthermore, we introduce the topic of concept drift
to deal with process changes and propose techniques to detect points of change in an
event log. Detection of such change points enables the selection of cases and putting
the analysis results in perspective to process variants.

Another major contribution of this thesis is in enhancing the support for process
diagnostics. Process diagnostics, which encompasses process conformance checking,
auditing, process performance analysis, anomaly detection, diagnosis, inspection of
interesting patterns and the like, is gaining prominence in recent years. However,
lion’s share of process mining research has been devoted to control-flow discovery.
In this thesis, we try to bridge this gap and propose several techniques for process
diagnostics. We propose a means of replaying an event log onto process maps so
that process performance can be measured and bottlenecks identified. We develop a
trace visualization technique, called as trace alignment, that aligns the traces in such
a way that event logs can be explored easily. Trace alignment extends the scope of
conformance checking to also cover the direct inspection of traces. We show that
trace alignment is extremely helpful in answering a variety of diagnostic questions
such as where do process instances deviate? and are there any common patterns
of execution in the process instances?. We also propose techniques for discovering
signature patterns that discriminate between different classes of behavior in event
logs, e.g., patterns that discriminate fraudulent insurance claims from normal claims.

The algorithms and techniques described in this thesis are supported by concrete im-
plementations as plug-ins in the ProM framework2 and have been applied on real-life
case studies. We also show that most of the techniques presented in this thesis are
scalable, which is one of the desirable aspects in analyzing large scale event logs.

2see www.processmining.org to download and to learn more about ProM.



Samenvatting

Process Mining in the Large:
Preprocessing, Discovery, and Diagnostics

Van vrijwel alle processen die tegenwoordig door (informatie)systemen ondersteund
worden, wordt continu opgeslagen wat er precies gebeurt in de vorm van event logs.
Het volume van die data, opgeslagen door traditionele workflowsystemen, maar ook
door vele andere systemen, groeit sneller dan ooit3. Een van de grootste uitdagingen
voor organisaties om te innoveren, te groeien en hun concurrentiepositie te versterken
is om intelligent gebruik te maken van de beschikbare data.

Het verkrijgen van niet-triviale, procesgerelateerde inzichten door middel van de
analyse van eventdata is een relatief nieuwe discipline genaamd “process mining”.
Met behulp van de verkregen inzichten, bijvoorbeeld in de vorm van procesmodellen,
kunnen operationele processen bewaakt en verbeterd worden. De toepassing van
process mining op eventdata van informatiesystemen heeft in de praktijk geleid tot
verbluffende successen. Ook de toepassing van process mining op eventdata die niet
direct afkomstig is van informatiesystemen, maar van allerlei andere high-tech sys-
temen, zoals röntgenapparaten, CT scanners, kopieermachines, printers, etc., heeft
onlangs een grote vlucht genomen.

Processen die uitgevoerd worden in high-tech systemen zijn vaak erg flexibel en
ongestructureerd, wat ertoe leidt dat de logs fijnmazig, heterogeen en erg omvangrijk
worden. In dit proefschrift worden zulke logs aangeduid met de term “large scale
event logs”. Dergelijke karakteristieken zorgen voor extra uitdagingen op het gebied
van process mining. Zo kunnen de meeste technieken bijvoorbeeld niet omgaan met
de combinatie van fijnmazige logs en ongestructureerde processen en vaak leiden deze
technieken dan ook tot onleesbare modellen. Dit proefschrift beschrijft technieken om
process mining toe te kunnen passen op large scale event logs. Dit wordt beschreven
aan de hand van de volgende onderzoeksvragen:

� Hoe moeten we omgaan met fijnmazige, ongestructureerde processen?

� Hoe moeten we omgaan met heterogene event logs?

� Hoe moeten we omgaan met veranderingen in processen? en

� Hoe kunnen we mogelijkheden tot procesbewaking uitbreiden?

3Big Data: The Next Frontier for Innovation, Competition and Productivity, McKinsey Global
Institute, May 2011.
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De problemen die voortkomen uit het omgaan met fijnmazige, ongestructureerde
processen worden in dit proefschrift van twee kanten benaderd, namelijk via (i) ver-
simpeling van logs en (ii) door middel van uitbreiding van process mining technieken.
Voor de versimpeling van logs wordt een aanpak gepresenteerd die patronen vindt in
events. Events binnen deze patronen blijken vaak sterk gerelateerd wanneer gekeken
wordt naar het systeem waar de log vandaan komt en door de events in de log te
vervangen door de patronen kunnen bestaande process mining technieken gebruikt
worden op de ontstane log. Met dit als basis wordt in dit proefschrift een gefaseerde
aanpak gepresenteerd die in staat is om hiërarchische modellen, zogenaamde “process
maps”, te verkrijgen uit een large scale event log. Door iteratieve toepassing van
deze techniek, kunnen ongestructureerde processen inzichtelijk gemaakt worden op
verschillende, contextafhankelijke niveaus.

Om process mining toe te kunnen passen op heterogene event logs, wordt in dit
proefschrift een clustering aanpak gepresenteerd. Hierbij worden homogene delen
van de event log uitgesplitst en onafhankelijk van elkaar geanalyseerd. Bij het clus-
teren van delen van de log is het van groot belang om de context waarin events
plaatsvonden mee te nemen en de technieken die gepresenteerd worden zijn dan ook
context aware. Aangezien veranderingen in een proces, ook veranderingen in de con-
text van events met zich meebrengen, wordt de notie van concept drift gëıntroduceerd.
Hiermee kan in de log aangewezen worden wanneer een proces veranderde, waar-
door de log opnieuw gesplitst kan worden in verschillende delen voor verdere analyse.

Behalve aan het ontdekken van procesmodellen wordt in dit proefschrift ook veel
aandacht besteed aan de mogelijkheden tot procesbewaking. Hierbij gaat het om
zaken als het in kaart brengen van prestaties van een proces, het identificeren van
afwijkingen ten opzichte van modellen, alsmede het (tijdig) detecteren van moge-
lijk problematische afwijkingen van de normale gang van zaken. Hoewel de meeste
process mining technieken weinig aandacht besteden aan procesbewaking, is dit iets
wat vooral de laatste tijd steeds belangrijker is geworden. Door de event log na te
spelen op de ontdekte process maps, kan inzichtelijk gemaakt worden waar bottle-
necks zitten en hoe de werkelijkheid afwijkt van het model. Daarnaast wordt een
uitlijntechniek gepresenteerd genaamd trace alignment waarmee instanties van een
proces snel en gemakkelijk met elkaar vergeleken kunnen worden. Met deze techniek
is het bijvoorbeeld mogelijk om snel te zien waar bepaalde instanties afwijkingen
vertonen, maar ook of bepaalde afwijkingen vaak voorkomen, bijvoorbeeld in geval
van frauduleuze handelingen. Ook bij deze techniek is het weer mogelijk de log te
splitsen om zo de afwijkende zaken verder te analyseren.

Alle algoritmen en technieken die in dit proefschrift beschreven worden zijn gëımple-
menteerd in het ProM framework4. Daarnaast zijn alle technieken toegepast op echte
processen om de relevantie en schaalbaarheid in de praktijk te bewijzen.

4Zie www.processmining.org voor meer informatie over de tool en om deze te installeren.
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