
 

Collision warning system based on probability density
functions
Citation for published version (APA):
van den Broek, T. H. A., & Ploeg, J. (2010). Collision warning system based on probability density functions. In
Proceedings of the 7th International Workshop on Intelligent Transportation (WIT 2010), 23-24 March 2010,
Hamburg, Germany

Document status and date:
Published: 01/01/2010

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/587296b5-98e2-47f8-bcf8-5592d32b2d66


Collision Warning System based on Probability
Density Functions

Thijs H. A. van den Broek, Jeroen Ploeg
Integrated Safety - Automotive

The Netherlands Organisation for Applied Scientific Research (TNO)
Helmond, The Netherlands
thijs.vandenbroek@tno.nl

Abstract—In this paper, a collision warning method
between the host vehicle and target object(s) is studied.
A probabilistic collision warning method is proposed,
which is, in particular, useful for objects, e.g. vulner-
able road users, which trajectories can rapidly change
heading and/or velocity with respect to time. A vehi-
cle is equipped with the probabilistic collision warning
system and its functionality is validated in experiments
with a bicyclist as target object.

Index Terms—Advance driver assistant system, colli-
sion warning system, vulnerable road user, probability
density function.

I. INTRODUCTION

In this paper, a collision warning system is de-
signed, which is able to handle the unpredictable
behavior of vulnerable road users (e.g. bicyclists
and pedestrians). Todays cars are more and more
equipped with advance driver assistant (ADA) sys-
tems. One of the most popular ADA systems in the
research field are active safety systems, i.e. collision
warning and avoidance (CW/A) systems. For decades
CW systems are only used in air traffic control [1],
but recently the focus is also on automotive appli-
cations. The current CW/A systems are strongly fo-
cused on car-to-car applications, i.e. the host vehicle
with CW/A system prevents an accident with another
vehicle. Most of these car-to-car CW/A applications
only focus on head-on collision [2],[3],[4]. Regret-
fully, not all road users are protected with car-to-car
collision warning systems. For instance, 750 road fa-
talities are recorded in the Netherlands in 2008, of
which 181 are bicyclist, 75 are moped driver and 62
pedestrians [5]. Over 42 % of the total road fatalities
are vulnerable road users (VRUs).

Before customer cars are equipped with collision
warning systems, which are able to handle all road

users in all possible collision scenarios, many techni-
cal and scientific challenges must be faced such as ro-
bust classification of all road users, accurate accelera-
tion measurements for a better future prediction, han-
dling the unpredictable behavior of vulnerable road
users, etc. The focus of the current paper is handling
the unpredictable behavior of vulnerable road users.
The main focus is on bicyclists and/or moped drivers
with their nonholonomic constraints, but the general
theory is applicable for pedestrians as well. The gen-
eral theory is based on probability density functions
(PDFs).

In recent literature a few methods are described
based on probability density functions. In [2],[3] an
ADA system is designed, which is based on an algo-
rithm that calculates the risk factor. The risk factor is
based on the PDF of steering maneuvers. The model
used in the algorithm is based on a single track model,
with cars state variables. Since the model is based on
car-to-car scenarios it considers state variable of a car,
based on Kamm’s circle of frictional forces. There-
fore, the proposed method is not robust to different
road users, e.g. bicyclists, pedestrians. Secondly, the
focus of the algorithm are steering maneuvers, which
results that a change of velocity or acceleration in the
longitudinal direction is not taken into account.

A general method for computing the risk of a colli-
sion, which is based on PDFs, is described in [4] for a
collision mitigation by braking (CMbB) application.
The model predicts trajectories of objects that are sup-
posed to follow straight line segments and circle seg-
ments. The probability density function is approxi-
mated with the use of particle filtering. The PDFs of
the acceleration behaviour of a driver is an empirical
distribution and the measurement noise is based on bi-
modal Gaissian probability density functions. Regret-
fully, the research of [4] is limited to head-on car-to-
car collisions, which is described as forward collision



avoidance systems.
A Monte Carlo method is used for computing the

probability of an impact of airplanes in [1]. The ad-
vantage of the Monte Carlo method is that complex
PDFs, e.g. non-Gaussian, multi-modal, can be used
in complicated state space models. The disadvan-
tage is the increase in calculation time. The authors
of [1] propose a small adaptation to the usual Monte
Carlo approach. The future trajectories of the objects
are approximated by individual path segments. With
the use of linear path segments in combination with
change points to change the heading of the object,
more complicated and time-consuming calculations
are no longer necessary. This approach is feasible,
since the position error of airplanes is relative small
compared to absolute positions. However, the posi-
tion error of VRUs is relative large compared to abso-
lute positions, since the measured positions are much
smaller compared to airplanes.

In this paper a probabilistic method of collision
warning is proposed, which is, in particular, useful
for objects, e.g. VRUs, which trajectories can rapidly
change heading and/or velocity with respect to time.
The complexity is limited to decrease computation
time. The collision warning system is validated dur-
ing experiments in a Citroën C4.

This paper is organized as follows. In Section II,
definitions and theorems that are used in the remain-
der of the paper are presented. The collision warning
system based on probability density functions is ex-
plained in detail in Section III. In Section IV, the pro-
posed collision warning system is validated in exper-
iments. The conclusions are presented in Section V.

II. PRELIMINARIES

Throughout this paper numerous theoretical results
will be used. In this section these theoretical results
and definitions are briefly recalled.

Theorem 1: [6] A function f(x) is a probability
density function for some continuous random variable
X if and only if it satisfies the properties

f(x) ≥ 0; (1)

for all real x, and∫ ∞
−∞

fX(x)dx = 1. (2)

Proof: See page 65 of [6].
.

Definition 1: [6] Random variables X1, ..., Xk are
independent if for every ai < bi,

P (a1 ≤ X1 ≤ b1, ..., ak ≤ Xk ≤ bk)
=
∏k
i=1 P (ai ≤ Xi ≤ bi).

(3)

Definition 2: [7] A joint probability density func-
tion for the continuous random variables X and Y ,
denoted as fXY (x, y), satisfies the following proper-
ties:
• fXY (x, y) ≥ 0 for all x, y;
•
∫∞
−∞

∫∞
−∞ fXY (x, y)dxdy = 1;

• for any region R of two-dimensional space,

P ([X,Y ] ∈ R) =
∫∫
R
fXY (x, y)dxdy. (4)

Theorem 2: [6] Suppose that X is a continuous
random variable with probability density function
fX(x) and assume that Y = h(X) defines a one-to-
one transformation from A = {x|fX(x) > 0} on
to B = {y|fY (y) > 0} with inverse transformation
x = w(y). If the derivative (d/dy)w(y) is contin-
uous and nonzero on B, then the probability density
function of Y is

fY (y) = fX [w(y)]
∣∣∣ d
dy
w(y)

∣∣∣ y ∈ B. (5)

Proof: See page 198 of [6].
.

Theorem 3: [6] Suppose that X =
(X1, X2, ..., Xk) is a vector of continuous ran-
dom variables with joint probability density
function fX(x1, x2, ..., xk) > 0 on A, and
Y = (Y1, Y2, ..., Yk) is defined by the one-to-
one transformation

Yi = ui(X1, X2, ..., Xk) i = 1, 2, ..., k. (6)

The inverse transformation is defined as x = w(y). If
the Jacobian is continuous and nonzero over the range
of the transformation, then the joint probability den-
sity function of Y is

fY (y1, ..., yk) = fX(w1(y1, ..., yk), ..., wk(y1, ..., yk))|J |,
(7)

where J is the Jacobian, which is given by:

J =

∣∣∣∣∣∣∣∣∣∣
∂x1/∂y1 ∂x1/∂y2 . . . ∂x1/∂yk

∂x2/∂y1
...

...
∂xk/∂y1 . . . ∂xk/∂yk

∣∣∣∣∣∣∣∣∣∣
. (8)



Proof: See page 206 of [6].
.

Definition 3: [6] If the pair (X1, X2) of continu-
ous random variables has the joint probability density
function f(x1, x2), then the marginal probability den-
sity functions of X1 and X2 are

f1(x1) =
∫ ∞
−∞

f(x1, x2)dx2, (9)

and
f2(x2) =

∫ ∞
−∞

f(x1, x2)dx1. (10)

III. PROBABILISTIC RISK ESTIMATION

In this section, the approach of the probabilistic
collision warning system is explained in detail. First,
in Section III-A, the inputs are defined for the proba-
bilistic risk estimation module. Then, in Section III-
B, the trajectory is predicted for two cases, namely
constant velocity with constant heading and constant
acceleration with constant curvature. The probabilis-
tic trajectory prediction is explained in Section III-C.
This approach is particular interesting to predict tra-
jectories of objects, of which the predicted trajectory
is uncertain in time due to sudden unexpected move-
ments of the object. The objects in this document are
currently only bicyclists. In Section III-D, the col-
lision probability is determined between object and
host. And finally, in Section III-E, the overall proba-
bilistic risk estimation algorithm is given.

A. Inputs

There are two types of input data necessary for an
accurate trajectory prediction of both host and object.
The required input data consists of probability den-
sity functions and the measured states of the object
and host vehicle. Individual PDFs are determined for
each object and host vehicle. These distributions rep-
resent the predicted behaviour of the VRU and host
vehicle. The measured states are defined as the gener-
alized position, velocity and acceleration and are de-
fined as a vector SV A according to:

SV A = (x y φ ẋ ẏ φ̇ ẍ ÿ φ̈), (11)

where the states of the host vehicle and objects are
indicated by subscripts h and o, respectively. Not all
states of (11) are necessary which will become clear
in Section III-B. Currently, the probabilistic risk es-
timation module consists of 1 host vehicle and i ob-
jects, with i = 1, ..., N .

The SV A of the host and objects are absolute
quantities, since the local coordinate frame of the host
is globally fixed at the time of calculation. The co-
ordinate frame is located in front of the host vehicle
with the x-axis pointing in the longitudinal direction
and the y-axis pointing in the leftwards lateral direc-
tion. The orientation is the angle between the heading
of the object or host and the x-axis, see Figure 1.

Fig. 1. Host vehicle coordinate frame.

Note that the position of the object is given at the
center of gravity. Common sensors are not able to de-
tect the center of gravity, but detect the object bound-
aries. Since the model of the object and host is based
on a point mass, this effectively means that the point
mass is located at the boundary of the object.

B. Trajectory Prediction

In this section the prediction of the objects and host
trajectories are explained. First, the trajectory predic-
tion is explained for objects and host which are driv-
ing with a constant velocity and no curvature. The
second trajectory prediction is based on objects and
host with a constant acceleration and a constant cur-
vature, which is not equal to zero. This division is
made, since the object trajectory prediction is experi-
mentally validated in Section IV, and the sensors that
are used in the experiments are not able to determine
acceleration and curvature.

1) Constant Velocity & Constant Heading: The
trajectory of object and host, with a constant velocity
and constant heading, is predicted using the following
continuous time kinematic model:

ẋ = v cos(φ)
ẏ = v sin(φ)
φ̇ = 0

, (12)



where the longitudinal velocity v at t = t0 is deter-
mined as

v(t0) =
√
ẋ2(t0) + ẏ2(t0). (13)

If the orientation φ is not measured by the sen-
sor(s), it is assumed that the heading, i.e. yaw angle,
is aligned with the velocity direction of the object,
which is defined as

φ(t0) = arctan
( ẏ(t0)
ẋ(t0)

)
. (14)

The analytical solution of the kinematic model of
(12) is easily derived and given as

x(t) =
(
v(t0) cos

(
φ(t0)

))
t+ x(t0)

y(t) =
(
v(t0) sin

(
φ(t0)

))
t+ y(t0)

. (15)

This model is used in the experimental validation
in Section IV.

2) Constant Acceleration & Constant Curvature:
The trajectory of object and host, with a constant ac-
celeration and constant curvature, is predicted using
the following continuous time kinematic model:

ẋ = v cos(φ)
ẏ = v sin(φ)
φ̇ = κv
v̇ = along
ȧlong = 0
κ̇ = 0

, (16)

where the longitudinal acceleration along and curva-
ture κ at t = t0 are determined according to

along = ẍ(t0) cos
(
φ(t0)

)
+ ÿ(t0) sin

(
φ(t0)

)
(17)

and

κ(t0) =
φ̇(t0)
v(t0)

, (18)

respectively. If the yaw rate φ̇ is not directly measured
by the sensor(s), the curvature is determined accord-
ing to

κ(t0) =
alat(t0)
v(t0)2

, (19)

with

alat = −ẍ(t0) sin
(
φ(t0)

)
+ ÿ(t0) cos

(
φ(t0)

)
. (20)

Again, the kinematic model (16) is solved analyti-
cal, resulting in the following two equations

x(t) = 1
κ(t0) sin

(
κ(t0)

(
1
2a(t0)t

2 + v(t0)t
)

+ φ(t0)
)

+x(t0)− 1
κ(t0) sin

(
φ(t0)

)
y(t) = − 1

κ(t0) cos
(
κ(t0)

(
1
2a(t0)t

2 + v(t0)t
)

+ φ(t0)
)

+y(t0)− 1
κ(t0) cos

(
φ(t0)

)
(21)

where a is equal to the longitudinal acceleration along.
The model (21) is currently developed for future re-
search application, since the model can not be exper-
imentally validated. The current host vehicle, which
we use during experiments, is not equipped with sen-
sors which are able to determine real-time the accel-
erations and/or yaw rate.

In the next section we determine the likelihood that
the host and object are following their trajectories.
This estimation is performed with the use of proba-
bility density function.

C. Probabilistic Trajectory Prediction

Let us determine the probability of the future tra-
jectory of the object, e.g. VRU, and the host with a
constant velocity and a constant heading, which is ex-
plained in Section III-B.1. Note that the subscripts o
and h are still not used, since the probabilistic tra-
jectory prediction theory holds for both object and
host. Bare in mind that the starting position of the
host

(
xh(t0), yh(t0)

)
= (0, 0), see Figure 1. We as-

sume a certain predefined distribution for the proba-
bility of the velocity and the heading of both object
and host. The distribution of the velocity and heading
is not defined in this section, since this theory is ap-
plicable for all distributions that satisfy the properties
of Theorem 1, which is defined in Section II. There-
fore, the distribution of the velocity and yaw angle is
defined as fv and fφ, respectively.

The joint probability density function of the posi-
tion fx(t),y(t)

(
x(t), y(t)

)
is dependent on the PDF of

the velocity fv and yaw angle fφ as follows:

fx(t),y(t)
(
x(t), y(t)

)
=

fv(t0)

(
v
(
x(t), y(t)

))
fφ(t0)

(
φ0

(
x(t), y(t)

))
|J |,
(22)

where J is the Jacobian and defined as

J =

∣∣∣∣∣
∂v(t0)
∂x(t)

∂v(t0)
∂y(t)

∂φ(t0)
∂x(t)

∂φ(t0)
∂y(t)

∣∣∣∣∣ , (23)

as explained in Theorem 3, assuming v(t0) and φ(t0)
are independent. It becomes clear in (22) that (15)



should be inverted as follows

v(t0) =

√(
x(t)−x(t0)

t

)2
+
(
y(t)−y(t0)

t

)2

φ(t0) = arctan
(
y(t)−y(t0)
x(t)−x(t0)

) . (24)

The Jacobian is given as

J =
1

t
√(

x(t)− x(t0)
)2 +

(
y(t)− y(t0)

)2 . (25)

Define a grid, which is in front of the host vehi-
cle, with numerous x- and y-values. For each future
timestep t, the joint probability density function is de-
termined according to (22), i.e. the likelihood of the
objects and host future trajectory is determined. In
Figure 2, the grid, which is in front of the host vehi-
cle, is shown.

Fig. 2. Grid in front of host vehicle.

Due to calculation time limitations, we are limited
to 2 distributions, namely fv and fφ. If we choose
more than 2 distributions, the one-to-one transfor-
mation of (24), as explained in Theorem 3, results
in more outputs instead of only the position (x, y).
Then, the marginal PDF has to be calculated, see Def-
inition 3, to limit the result of the joint probability
density function to the position (x, y). Determining
the marginal PDF is very calculation time consuming,
due to its integral.

Note that the probabilistic path prediction for more
complicated trajectories, e.g. (21), is solved in a sim-
ilar fashion. In the next section, we determine the
collision probability.

D. Collision Probability

In Section III-C the future trajectories of object and
host are determined stochastically. Based on these

future trajectories, the collision probability is deter-
mined in this section. The area of overlapping predic-
tions of object and host is defined as the collision area.
The volume of probability density function in the col-
lision area is equal to the probability that the object
and host are located in the collision area at the same
time. The volume of the probability density function
is equal to (4) in Definition 2. Let us assume the prob-
abilities of object i and host, respectively Poi and Ph.
Then, the collision probability is defined as

Pi = Poi
(
[X,Y ] ∈ R

)
· Ph

(
[X,Y ] ∈ R

)
, (26)

where X and Y define the collision area R and where
Poi and Ph are independent. The continuous integral
of (4) is solved with the use of Monte Carlo integra-
tion [8], where the rangesX and Y are uniformly dis-
tributed over the collision area.

E. Probabilistic Risk Estimation Algorithm
The probabilistic risk estimation algorithm is sub-

divided into four steps to limit the calculation time
for real time applications. First, the minimum deter-
ministic distance between each object i and host is
determined. Second, the collision probability is de-
termined for each object i and host for the time inter-
val around the corresponding time of the minimum
distance of object i and host. Then, the most im-
portant object (MIO) is determined. We have chosen
to combine the collision probability between object
i and host and the collision time, since the collision
warning system should only activate when the colli-
sion probability is high and the time-to-collision is
low. Finally, if the MIO-value exceeds a threshold,
the collision warning system is activated, see Algo-
rithm 1.

IV. EXPERIMENTAL RESULTS

In this section an experiment is performed to vali-
date the probabilistic collision warning system, which
is proposed in Section III. In Section IV-A the exper-
imental setup is presented and the experimental result
is discussed in Section IV-B.

A. Experimental Setup
The probabilistic risk estimation algorithm is in-

tegrated into a Citroën C4. The object’s position
and velocity is determined with lidar (OMRON Laser
Radar). The collision warning algorithm runs on a
dSpace Autobox with a sample rate of 10 Hz. Both
signal processing and algorithm implementation are
executed in Matlab/Simulink and are real-time moni-
tored and tuned in dSpace ControlDesk.



1. Calculate deterministic the minimum distance (∆di) between
the host vehicle and object i and corresponding time ti for the
time interval TRD = [0, tmax]. Here, tmax is defined as the
maximum time horizon to determine collision probabilities.

∆di =

min
(√(

xh(TRD)− xi(TRD)
)2

+
(
yh(TRD)− yi(TRD)

)2)
(27)

2. Calculate the collision probability, based on probability den-
sity functions, for the time interval Ti =

[
ti − trange

2
, ti +

trange

2

]
, where trange is a constant that determines the time

range around the time ti that is determined in step 1, for each
object i,

PTi = Ph

(
[X, Y ] ∈ R

)
· Poi

(
[X, Y ] ∈ R

)
, (28)

where Ph and Poi are probabilities of the collision area R of the
host vehicle and object i, respectively. The probability is defined
as (4).
3. Calculate most important object (MIO) for all objects i and
time intervals Ti

MIO = max
i

(Pi

Ti

)
. (29)

4. Threshold the MIO to determine if the system should activate.

If
(
MIO > threshold

)
→ Activate Warning

Alg. 1. Probabilistic Risk Estimation Algorithm

B. Experimental Results

Let us assume a scenario where a bicyclist is com-
ing from the right and is passing in front of the ve-
hicle. Since the coordinate frame is located in front
of the host vehicle, the position of the lidar is always
(0, 0), see Figure 1. In this example we are only inter-
ested in the position (x, y), orientation φ and velocity
v of (12), since the lidar is not able to determine the
accelerations and yaw rate real-time of the bicyclist,
see Figures 3 and 4.

The joint probability density function of both vehi-
cle and bicyclist are solved with the trajectory predic-
tion of Section III-B.1 and the probabilistic trajectory
prediction of Section III-C. A Gaussian distribution
is chosen for the random behaviour of the bicyclist
and vehicle. Standard deviations of (0.05,0.01) and
(0.1,0.1) are chosen for both ’uncertain’ parameters,
i.e. velocity v and heading φ of host vehicle and bicy-
clist, respectively. Let us take a closer look at the time
intervals of 0, 1, 2 and 3 seconds. In Figures 5 and 6,
the joint PDFs of the vehicle and bicyclist are shown
for the time intervals of 0 and 1 seconds and 2 and 3
seconds in a three dimensional and two dimensional

Fig. 3. The position, orientation and velocity of the host vehicle.

Fig. 4. The position, orientation and velocity of the bicyclist.

view, respectively. The largest MIO, see Algorithm 1,
is shown for both time intervals with the correspond-
ing collision probability and time-to-collision.

Figures 5 and 6 show that the probabilities of both
vehicle and bicyclist are different due to the chosen
standard deviation of the Gaussian distribution. The
joint PDF of the bicyclist is lower in height and spread
over a larger area compared to the joint PDF of the
host. This means that the future position of bicyclist
is more unpredictable than the host vehicle’s position.
Both joint PDFs are overlapping each other, i.e. there
is a possibility that a collision can occur. The height
of both joint PDFs of bicyclist and host vehicle are
increasing in time, while the time-to-collision is de-
creasing, i.e. the future position becomes more reli-
able.

In Figure 7 the collision probability, time-to-
collision and MIO-value are shown for the entire sce-
nario.

Figure 4 shows that the forward velocity of the bi-



Fig. 5. The collision probability and time-to-collision for t =
0, 1 [s].

Fig. 6. The collision probability and time-to-collision for t =
2, 3 [s].

cyclist varies a little. The measurement uncertain-
ties influence the collision probability and time-to-
collision, see Figure 7. The TTC varies with the same
frequency as the measured velocity of the bicyclist.
Therefore, it is important that the inputs are measured
as good as possible.

V. CONCLUSION

In this paper a probabilistic risk estimation algo-
rithm is given. The risk estimation algorithm is based
on probability density functions. The stochastic ap-
proach corresponds to the nature of vulnerable road
users and makes the approach feasible for vulnerable
road users in general.

Although PDFs require numerical intensive calcu-
lations, it is shown in an experimental environment

Fig. 7. The collision probability, TTC and MIO value for the
entire scenario.

that due to efficient calculation a real-time implemen-
tation is feasible.

Currently, the behaviour of the bicyclist and host
vehicle are estimated and simplified with the use of
Gaussian distributions. Different distributions result
in different estimated behaviours of the bicyclist and
host vehicle. First, it is recommended to determine
distributions that represent realistic behaviour of bicy-
clists. Second, the distributions should be expanded
for all road users.
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