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We consider the production/inventory problem of a manufacturer (or a retailer) under
non-stationary and stochastic supply availability. Although supply availability is uncer-
tain, the supplier would be able to predict her near future shortages -and hence supply
disruption to (some of) her customers- based on factors such as her pipeline stock infor-
mation, production schedule, seasonality, contractual obligations, and non-contractual
preferences regarding other manufacturers. We consider the case where the information
on the availability of supply for the near future, which we refer to as advance supply
information (ASI), is provided by the supplier. The customer demand is deterministic
but non-stationary over time, and the system costs consist of fixed ordering, holding and
backorder costs. We consider an all-or-nothing type of supply availability structure and
we show the optimality of a state-dependent (s, S) policy. For the case with no fixed
ordering cost we prove various properties of the optimal order-up-to levels and provide a
simple characterization of optimal order-up-to levels. For the model with fixed ordering
cost, we propose a heuristic algorithm for finding a good ordering strategy. Finally, we
numerically elaborate on the value of ASI and provide managerial insights.
Keywords: supply uncertainty, advance supply information, inventory, optimal policy

1 Introduction and related literature

Numerous success and failure stories have taught us that supply chains need to take

potential supply disruptions into account in the planning phase, rather than ‘fire-fighting’

when disruptions take place. The supply process in a supply chain can be disrupted for

various reasons, which can be classified into two groups: i) Unpredictable disruptions,

which arise from natural disasters, terrorist attacks, accidents, and the like, and ii)

predictable disruptions, which basically originate from capacity restrictions and scarcity
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of some resources at the supplier. Further, a predictable disruption might be either due

to a temporary total lack of the supplier’s production capacity (in which case none of

her customers are satisfied), or the supplier’s choice in allocating her restricted capacity

to other manufacturers and/or products. The supplier would possibly be able to predict

her near future shortages -and hence supply disruption to (some of) her customers-

based on factors such as her pipeline stock information, production schedule, seasonality,

contractual obligations and non-contractual preferences regarding other manufacturers,

and the like. Nevertheless, a predictable disruption might remain unpredictable to the

manufacturer (or the retailer) if the supplier does not inform him -at least to a certain

extent- about this disruption. We refer to such information concerning future disruptions

that are known to the supplier as advance supply information (ASI). The supplier might

want to provide the manufacturer with ASI for several reasons including reputation and

improving collaboration.

In this paper we consider the production/inventory problem of a manufacturer (or

a retailer) under non-stationary stochastic supply uncertainty and availability of ASI.

The supply chain environment that we consider consists of a manufacturer facing non-

stationary deterministic demand, and an outside supplier with uncertainties in the deliv-

ery times and amounts. Novel features of our model are that (1) the supply availability

over the planning horizon is time dependent, and (2) the supplier provides the man-

ufacturer information regarding the supply conditions over a limited specified horizon

(the ASI horizon). Moreover, since both the customer demand sequence, and the supply

availability structure is time dependent, our model can also be used to capture possible

correlations between the customer demand and the disruption duration in supply.

The supply structure that we consider is of all-or-nothing type and is similar to a

clearing process: in a given period, the order placed by the manufacturer along with

its backorders are supplied with a probability that depends on the period. Under this

environmental setting, the manufacturer’s problem becomes determining the optimal

order amount in each period that minimizes expected linear holding and backorder costs

and the cost of ordering over the planning horizon. As the manufacturer keeps track of

the supply availability information provided by its supplier, any optimal policy should

be a function of ASI as well as the time dependent nature of supply uncertainty. In

this article we characterize the structure of the optimal policy and provide managerial

insights on the impact of ASI on the optimal system performance. To the best of our
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knowledge, our paper is the first one that provides an exact and near-explicit expression

for optimal order-up-to levels as a function of the supply information.

The environment described above is suitable for the planning problem of a parts

manufacturer where customer orders are the firm production quantities dictated by an

upstream stage through a master production schedule. The parts manufacturer, now

facing deterministic customer orders, needs to plan its own order quantities from an

outside supplier whose delivery performance is time dependent and uncertain. The parts

manufacturer tries to reduce the supply uncertainty by receiving the supply availability

information from the supplier a number of periods in advance. Under the assumption

of all-or-nothing type supply structure, ASI is equivalent to knowing the timing of the

supply availability (when the order is fully delivered and any backorders are cleared), and

supply unavailability (nothing is delivered) periods during the ASI horizon. From this

perspective our system also resembles a supply system where the inter-delivery times are

non-stationary random variables, the supplier keeps track of the manufacturer’s inventory

position and a partial knowledge of the delivery times is revealed to the manufacturer.

Papers in production/inventory literature that model uncertainties in the supply side

can be divided into three research tracks. Papers in the first track model supply uncer-

tainty by considering random durations in which supply is either completely unavailable

or completely available (our paper falls into this group). Parlar and Berkin (1991) and

Parlar and Perry (1996) are early examples of allowing random supply disruptions in in-

ventory literature. In both of these papers supply availability and unavailability durations

are respective exponential random variables and the inventory models follow assumptions

of Economic Order Quantity (EOQ) model. In particular, the demand process is contin-

uous and stationary over time. Parlar and Berkin (1991) allows a replenishment (when

the supply is available) when the inventory level drops to zero, whereas Parlar and Perry

(1996) incorporate a possibly non-zero reorder level and multiple suppliers. Under a Pois-

son demand process and fairly general availability and unavailability durations, Mohebbi

(2004) evaluates an (s,Q) type inventory policy. Güllü et al. (1997) consider a periodic

review variation of the Parlar and Berkin (1991) model where the supply unavailability

durations are non-stationary random variables, and the demand quantities in successive

periods are dynamic deterministic values. Güllü et al. (1997) present a newsboy-like

expression for obtaining the optimal order-up-to levels.

The second research track treats supply uncertainty as randomness in yield, where
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the quantity received is a random fraction of the quantity ordered. Starting with the

pioneering work of Karlin (1958), Yano and Lee (1995), Gerchak et al. (1988), Henig

and Gerchak (1990), Wang and Gerchak (1996), Hsu and Bassok (1999) present various

production/inventory models incorporating random yield. In a recent article Yeo and

Yuan (2011) consider a model with random yield and demand cancellation, and show

that the optimal ordering policy has a reorder point structure.

In the last research track, the production capacity, rather than the supply is considered

to be random. Note that there is a subtle difference between uncertainty in supply and

randomness in production capacity. In supply uncertainty models, when the supply is

available it is assumed to be fully available. Therefore, supply uncertainty often occurs

not as a constraint on the amount that can be ordered, but as an external factor that

affects the quantity received (either nothing or a fraction of the ordered amount is received

during the unavailability duration). In random capacity models on the other hand, the

maximum amount that can be ordered (or produced) is a random variable, and hence

the treatment of models with finite (but random) capacity is quite different. Ciarallo

et al. (1994), Iida (2002), and Güllü (1998) consider periodic review inventory problems

under random capacity. In these papers, demand and supply processes are assumed

to be stationary. Erdem and Özekici (2002) consider the same problem, but allow the

distribution of capacity to vary according to a Markov chain.

In the supply uncertainty literature, information on availability of future supply is

typically modeled through considering supply uncertainty as a Markov process. In these

models the probability distribution of supply availability in the next period depends on

the current availability state (see, for example, Özekici and Parlar (1999), Parlar et al.

(1995), Song and Zipkin (1996), Chen and Yu (2005)). We differ from the literature by

explicitly including the supply information for a number of periods in our state definition.

Among the papers that treat production capacity as a random variable, Jaksic et al.

(2011), and Altuğ and Muharremoğlu (2011) explicitly consider the existence of advance

information on production capacity in their models. In these papers the evolution of

capacity information follow stationary processes. Main differences of our work from

previous papers that incorporate supply or capacity information in their models are that

we allow the supply process to be non-stationary, and we provide exact and near-explicit

expressions for the optimal policy parameters in a finite horizon setting.

In this article we make four major contributions: (1) we consider non-stationary sup-
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ply uncertainty and model advance supply information, (2) we provide characterization

for the optimal policies and when the fixed cost is zero we provide easy-to-compute, near-

explicit solution for the optimal base stock levels as a function of ASI, (3) we propose and

test a heuristic solution for the non-zero fixed cost case, and (4) we provide managerial

insights on the value of ASI.

The rest of the paper is organized as follows. In Section 2 we introduce our dynamic

programming model and analyze the form of the optimal ordering policy. In Section 3

we consider the model with no fixed cost and analyze the optimal policy. In Section

4 we present a heuristic approach for the model with fixed ordering cost and discuss

the performance of the heuristic. In Section 5 we provide a comprehensive numerical

analysis. We conclude the paper in Section 6.

2 Description of the model

In this section we present the dynamic programming model for the problem and provide

the optimal ordering policy. We first describe the structure of supply uncertainty and ASI.

The following notation is to be used throughout the paper but we introduce additional

notation as need arises.

N : number of periods in the planning horizon,
Dn: demand in period n for n = 1, 2, ..., N ,
h: holding cost per unit per period,
b: backorder cost per unit per period,
A: fixed ordering cost
M : Length of the ASI horizon, M ≥ 1
pn: probability that supply is fully available in period n.

2.1 Structure of supply uncertainty and ASI

Supply uncertainty has an all-or-nothing type structure, such that in a given period sup-

ply is either fully available or completely unavailable. When supply is available in a given

period we denote this period as a supply period. Supply availability probability is non-

stationary over the planning horizon and supply availability in a period is independent

of other periods. In addition, the supplier provides supply availability information to

the manufacturer regarding the future periods. Therefore, manufacturer may reduce the
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uncertainty with the help of ASI. Suppose that at the beginning of period n the manu-

facturer receives information on supply availability. Then, the supply availability of the

next M periods is known (in addition to the supply availability of the current period),

which constitutes the ASI horizon. To be able to characterize the ASI vector accurately

we define ΩM as an M dimensional vector, with elements in {0,∞}. That is,

ΩM = {(q1, ..., qM) : qi ∈ {0,∞} , i = 1, 2, ...,M} ,

where qi = ∞ implies a supply state meaning that supply is available, and qi = 0 implies

a no-supply state meaning that supply is unavailable.

We define Wn as the random vector denoting the supply availability state for periods

n+1, ..., n+M . Note that Wn ∈ ΩM . Also let Qn be the supply availability state for the

current period n. We define Zn = (Qn,Wn) as the supply availability state for periods

n, n+1, ..., n+M . Let zn, wn and qn be the realizations of Zn, Wn and Qn, respectively.

We can state wn as wn = (ol, rM−l) where ol is a vector of size l (0 ≤ l ≤ M) with

all entries being zero, and rM−l a vector of size M − l with the first entry being ∞ (the

remaining entries can be either ∞ or zero). The value of l gives us the first period after

n (and before n + M) that the supply will be available. If l = 0 then, wn = rM (the

supply is fully available in period n + 1), and if l = M , wn = oM (supply is unavailable

in periods n+ 1, n+ 2, . . . , n+M).

2.2 Dynamic programming model

Let Ln(y) denote the expected single-period inventory-related costs incurred at the end

of period n where the inventory level after the realization of supply is y.

Ln(y) = h max(0, y −Dn) + b max(0, Dn − y).

Ln(y) is the sum of two convex functions, and hence it is convex in y.

For n = 1, 2, .., N + 1 we define Cn(I, zn) as the minimum expected cost of operating

the system through periods n, n+ 1, ..., N + 1 when the inventory level at the beginning

of period n is I and supply availability state (i.e. the information vector) is zn = (qn, wn)

with CN+1(I, z) ≡ 0.

The dynamic programming recursion for this problem is

Cn(I, zn) = min
I≤y≤I+qn

{A δ(y − I) + Ln(y) + E[Cn+1(y −Dn, wn, Qn+M+1)]} , (1)
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where δ(y − I) is 1 when y > I, and zero otherwise. Qn+M+1 is the unknown supply

availability state for period n+M +1, and its realization is to be known in period n+1.

Stochasticity is due to the unknown supply state of period n+M +1. It will be ∞ with

probability pn+M+1 and 0 with probability 1− pn+M+1.

The sequence of events is as follows: (1) At the beginning of period n the new supply

information for period n + M is received, and hence the new supply availability state

becomes zn = (qn, wn). (2) The replenishment decision is made by taking zn into account.

(3) At the end of the period demand realization occurs and relevant costs are incurred.

For ease of notation, we define the auxiliary function Gn(y, wn) := Ln(y)+E[Cn+1(y−
Dn, wn, Qn+M+1)]. The dynamic programming recursion (1) then becomes

Cn(I, zn) = min
I≤y≤I+qn

{Aδ(y − I) +Gn(y, wn)} , (2)

where the recurrence relation is considered within Gn.

Cost functions Cn and Gn are not convex under the existence of a fixed ordering cost.

Theorem 1 states the A-convexity of cost functions. Therefore optimal policy is a state

dependent (s, S) policy.

Theorem 1. For n = 1, 2, ..., N .

(i) Gn(y, wn) is A-convex in y for all wn,

(ii) the optimal ordering policy is a state dependent (sn(wn), Sn(wn)) policy where Sn(wn)

minimizes Gn(y, wn) and sn(wn) is the smallest value of y for which Gn(y, wn) =

A+Gn(Sn(wn), wn),

(iii) Cn(I, zn) is A-convex in I for all zn and it is minimized at Sn(wn).

Proof. Proof follows as in Bertsekas (1987), and details are provided in Küçük-Atasoy

(2009).

In Theorem 1 we show that Gn(y, wn) is A-convex in y and Cn(I, zn) is A-convex in

I which are both minimized at Sn(wn). By the property of A-convexity, for A = 0 these

functions are convex and hence the optimal policy is of state dependent order-up-to level

type: if inventory level is below some yn(wn), then order-up-to yn(wn), otherwise do not

order anything. These results are stated in the next corollary, which is needed for the

succeeding sections.
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Corollary 1. When A=0, we have the following properties for n = 1, 2, ..., N :

(i) Gn(y, wn) is convex in y. Let the minimum of Gn(y, wn) be attained at yn(wn),

(ii) Cn(I, zn) = Cn(I, qn, wn) is convex in I and it is minimized at I = yn(wn),

(iii) the optimal ordering policy is of order-up-to type. The ordering quantity at the

beginning of the period is un(wn) = max {yn(wn)− I, 0}.

3 Characterization of the optimal order-up-to levels

when there is no fixed ordering cost

In this section we provide structural results regarding the optimal policy when there is

no fixed ordering cost. In particular, we provide the full-characterization of order-up-to

levels. We start by showing that order-up-to level of a period is not less than the demand

of that period, which is stated in the next proposition.

Proposition 1. yn(wn) ≥ Dn for all n = 1, 2, ..., N .

Proof. The proof is provided in the Appendix.

The rest of the section is organized as follows. In Section 3.1 we characterize the

optimal order-up-to levels when supply is available in one of the periods in the ASI

horizon, that is when wn = (ol, rM−l) with l ∈ {0, 1, . . . ,M − 1}. In this case, order-up-

to level for such an ASI state can be found easily and it is independent of the supply

availability distribution. However when there is no supply period in the information

horizon (that is, wn = oM) the problem is more challenging. For this case, a simple exact

algorithm is provided in Section 3.2 for finding the order-up-to levels.

3.1 Characterization when there is a supply period in the ASI
horizon

In this subsection, we consider the case when there is at least one period with available

supply in the ASI horizon. First we show that when supply is available in the next period,

it is optimal to order up-to the demand of the current period, which is the minimum value

for the order-up-to level. This result is stated in the following proposition.
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Proposition 2. Let wn = (ol, rM−l) for some l ∈ {0, 1, ...,M − 1} then yn(wn) is mini-

mized at l = 0. That is yn(rM) = Dn ≤ yn(wn) , for any wn ∈ ΩM , ∀n = 1, 2, ..., N .

Proof. The proof is provided in the Appendix.

When there is at least one supply period in the ASI horizon, the corresponding order-

up-to level can be found easily and it does not depend on the supply availability distri-

bution. Let us first denote the sum of demands in periods n through n+ j as D(n, n+ j),

i.e. D(n, n+ j) = Dn +Dn+1 + · · ·+Dn+j for a given integer j ≥ 0.

Proposition 3. Suppose M ≥ 2 and let w = (ol, rM−l) for some l ∈ {1, 2, ...,M − 1}.
Then there exists K(w) ∈ {1, 2, ..., l+1} such that yn(w) = D(n, n+K(w)−1). Moreover,

K(w) =


1 if h ≥ lb,

j if h ∈
{

l−j+1
j

b, l−j+2
j−1

b
}

j = 2, ..., l,

l + 1 if h < 1
l
b.

(3)

Proof. The proof is provided in the Appendix.

Remark 1. For M = 1 and l = 0, K(w) = 1 as already shown in Proposition 2.

Proposition 3 gives rise to the next corollary, which states that an order-up-to level

monotonically increases as the first period of supply availability gets further away in the

ASI vector.

Corollary 2. For n = 1, 2, ..., N , yn(ol1 , rM−l1) ≤ yn(ol2 , rM−l2) for l1 < l2, li ∈
{1, 2, . . . ,M − 1} (i = 1, 2) .

Proof. K(w) in Proposition 3 is non-decreasing in l, as can be seen from Equation (3)

(or from Equation (11)).

An order-up-to level reaches its maximum value when there is no supply period in

the ASI horizon, which is stated in the next result.

Proposition 4. yn(w) ≤ yn(oM) for any w = (ol, rM−l) where l < M , and n = 1, 2, ..., N .

Proof. The proof is provided in Appendix.
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3.2 Characterization when there is no supply period in the ASI
horizon

As shown in Proposition 3, whenever w ̸= oM , the order-up-to level of any period n can

be written as yn(w) = D(n, n +K(w) − 1). Note that K(w) does not depend on n. In

what follows, we characterize the optimal order-up-to level of a period when w = oM . To

this end, we need another property of order-up-to levels, which is stated in Proposition

5: the order-up-to level of a period is not greater than the sum of that period’s demand

and the maximum order-up-to level of the next period.

Proposition 5. yn(wn) ≤ Dn + yn+1(oM) for all wn ∈ ΩM , n = 1, 2, ..., N .

Proof. The proof is provided in Appendix.

Given that zn = (qn, wn), we define:

Rw(n) = min {k : k ∈ {1, 2, ..., N − n} : Zn+k = (∞, w)} .

If no such k exists, set Rw(n) = ∞. Note that Rw(n) is the first time after n a supply

state z = (∞, w) is observed, given that we start at the supply state zn = (qn, wn). In

particular, whenever w = oM

RoM (n) = min {k : k ∈ {1, 2, ..., N − n} : Zn+k = (∞, oM)} .

We also define for i = 1, 2, . . . , N − n,

Pn(i) = Pr{Rw(n) > i, ∀w ∈ ΩM} (4)

and

Qn(i, j) = Pr{Rw(n) > i, ∀w ∈ ΩM , w ̸= oM , K(w) ≥ j − i+ 1, and RoM > i}, (5)

for i = 1, 2, . . . , N − n and j = 1, 2, . . . , K(w). K(w) in Equation (5) is defined in

Proposition 2 and Proposition 3. Intuitively, Pn(i) is the probability that supply does

not become available for the periods n+1, . . . , n+i (the first supply period is after period

n+ i). On the other hand, Qn(i, j) is the probability that the inventory level can not be

raised to the optimal order-up-to level in periods n + 1, . . . , n + i whenever the starting

inventory at the beginning of period n is D(n, n + j). The following proposition is the

central result of this section, where we show that once the optimal order-up-to level of

period n+ 1 is known, the optimality condition for period n can be obtained.
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Proposition 6. Assume that yn+1(oM) = D(n + 1, n + J) (J-period demand) for some

n ∈ {1, 2, ...N − 1} and 1 ≤ J ≤ N − n. Then, for j = 1, 2, ..., J ,

Gn(D(n, n+ j), oM) ≤ Gn(D(n, n+ j)− η, oM) ∀ 0 ≤ η ≤ Dn+j

if and only if ∑N−n
i=j Pn(i)

1 +
∑j−1

i=1 Qn(i, j) +
∑N−n

i=j Pn(i)
≥ h

h+ b
, (6)

where

Pn(i) =


1 if i < M + 1

i∏
k=M+1

(1− pn+k) if i ≥ M + 1
.

Proof. The proof is provided in the Appendix.

Proposition 6 will be utilized in the following manner: Since yn+1(oM) = D(n+1, N+

J), we know that yn(oM) ≤ Dn +D(n + 1, n + J). As equation (6) does not depend on

η, yn(oM) is equal to one of the values {Dn, D(n, n + 1), . . . , D(n, n + J)}. Moreover,

convexity of Gn(y, oM), together with equation (6) immediately yields the optimal value

of yn(oM) (see Theorem 2). The only term which is not given in an explicit form in

Proposition 6 is Qn(i, j). This probability can be obtained in a recursive manner using

the first hitting time probabilities of an appropriately constructed non-stationary Markov

chain. The details are provided in the Appendix.

3.3 Computation of the optimal order-up-to levels

We conclude this section by presenting a simple computational method for the optimal

order-up-to levels at a given ASI state. Notice that the inequality (6) in Proposition 6

does not depend on the demand sequence, but only depends on the supply uncertainty

structure and the cost parameters. Also note that for w ̸= oM , the optimal order-up-to

levels can be expressed as K(w)-period cumulative demand. Moreover, Proposition 6

guarantees that an optimal order-up-to level corresponding to w = oM occurs in one of

the cumulative demand points, as long as the same is true for the succeeding period.

That is, if there is a cost benefit of increasing (decreasing) the order-up-to level a small

amount η, it should be increased (decreased) up to the next cumulative demand point.

We summarize our findings in the following Theorem.
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Theorem 2. The optimal order-up-to level for period n ∈ {1, 2, ..., N} is equal to Jn

period demand, D(n, n+ Jn − 1), for some 1 ≤ Jn ≤ N − n+ 1 with JN = 1. Given that

yn+1(oM) = D(n+ 1, n+ J) for some 1 ≤ J ≤ N − n+ 1 and n = N − 1, N − 2, ..., 1, it

holds that yn(oM) = D(n, n+ J
′
) where

J
′
= max

{
j = 1, 2, ..., J :

∑N−n
i=j Pn(i)

1 +
∑j−1

i=1 Qn(i, j) +
∑N−n

i=j Pn(i)
≥ h

h+ b

}
, (7)

If no such J
′
exists, then J

′
= 0.

Proof. The proof is provided in Appendix.

Combining the characterization of the order-up-to levels for different types of ASI

vectors, we can find the optimal order-up-to levels for any given ASI vector. When

the next period is a supply period, optimal ordering decision is to order up-to current

demand as stated in Proposition 2. When there is at least one supply period in the ASI

horizon we can find the optimal order-up-to levels with the help of Proposition 3. Finally

when there is no supply period in the ASI horizon order-up-to levels are determined

by the algorithm given as Algorithm A, which follows from Theorem 2. Note that the

characterization (obviously not the amounts) of optimal order-up-to levels (in terms of

the number of demand periods to be covered) does not depend on the specific values of

demands, as an optimal order-up-to level can be simply written as a cumulative demand

point.

Algorithm A
Step 0. J = 1 (yN(oM) = DN)
Step 1. For n = N − 1 to 1, find J

′
satisfying Equation (7).

Set yn(oM) = D(n, n+ J
′
) and J = J

′
+ 1.

If no such J
′
exists, set yn(oM) = Dn and J = 1.

4 A heuristic solution when there is non-zero fixed

ordering cost

If the fixed ordering cost is non-zero and with the ASI horizon (M) is large, the dynamic

programming approach for finding the optimal inventory policy ((s(w), S(w)) pairs) is

computationally intractable with a complexity of O(N22MDmax), where Dmax is the
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maximum demand value in the planning horizon. Therefore in this section we propose a

heuristic for finding a good ordering strategy in a reasonably short time.

The suggested heuristic is a forward method, like Silver-Meal Heuristic (Silver and

Meal (1973)), which requires determining the average cost per period as a function of

the number of periods the current order is to span. The number of periods to span is

increased until the average cost per period starts increasing. Because of the stochastic

nature of supply availability, we need to consider the expected backorder costs in addition

to the holding and set-up costs of the classical Silver-Meal Heuristic. Moreover, we have

supply availability information for a number of periods so we also need to incorporate

this information into the method.

Suppose that at the beginning of period n the on hand inventory is equal to D(n, n+

n+ − 1), for n+ ∈ {0, 1, . . . , N − n+ 1}, where D(n, n− 1) := 0. This essentially means

that we have sufficient stock for n+ periods. Let B be the amount of backorders (B = 0

if n+ ≥ 1). Let zn = (qn, wn) be the current ASI state, and recall the decomposition

wn = (ol, rM−l). If qn = ∞ then we can place an order, and suppose that we place

an order to raise the inventory up-to D(n, T ). Obviously T ≥ n + n+ − 1, with T =

n+ n+ − 1 corresponding to not ordering anything. Let Cn(T ) be the average expected

cost per period for ordering up-toD(n, T ), where averaging is performed over the effective

duration for which D(n, T ) is expected to cover the system demand. Even though Cn(T )

depends on wn and B (but not the on on-hand inventory) we suppress this dependency in

the notation for sake of brevity. We compute Cn(T ) for T ≥ n+ n+ (where B is cleared

by ordering up-to a positive amount) until Cn(T +1) > Cn(T ), and record the minimizer

Ta = argminCn(T ). Then we compute Cn(T ) for T = n+ n+ − 1, and conclude that the

best T is T ∗ = Ta if Cn(Ta) < Cn(n+ n+ − 1), and set T ∗ = n+ n+ − 1 otherwise.

In what follows we present how we develop Cn(T ) for T < n+M and for a particular

form of wn. The other case, T ≥ n + M , or other structures of wn are handled in the

same spirit and omitted here. For the case T < n+M , we order up-to D(n, T ). In this

case, we have supply availability information beyond the periods that this order covers,

that is, for periods T +1, . . . , T +M . Let v = n+M −T . Let w̃n be the last v entries of

wn. Then, w̃n is the ASI that we have for the periods T + 1, . . . , T +M . Following our

standard notation, we can write w̃n = (õl, r̃v−l). Consider the case 0 < l < v: w̃n starts

with zero, but includes at least one supply period. In this case, the total holding cost

incurred is: h
∑T−n

i=1 iDn+i. The system backorders demands of periods DT+1, . . . , DT+l

13



and has an ordering opportunity at the beginning of period T+l+1 (as given by w̃n). The

total backordering cost incurred until this ordering opportunity is: b
∑l

i=1(l− i+1)DT+i.

Consequently, D(n, T ) has an affect on periods n, n+ 1, . . . , T + l. Therefore,

Cn(T ) =
A+ h

∑T−n
i=1 iDn+i + b

∑l
i=1(l − i+ 1)DT+i

T + l − n+ 1
.

For instance, if w̃n = (õl, r̃v−l) is such that v − l = 0 (w̃n consists of all zeros), then we

need to consider expected backorder costs that might be incurred beyond the information

horizon, in addition to the backorder costs that are to be certainly incurred.

Accordingly, Algorithm B can be used for executing the heuristic that we propose.

Algorithm B
Set I = 0, TotalCost = 0, n+ = 0, B = 0
Observe the supply availability information z1 = (q1, w1)
for n = 1 to N

if qn = ∞ then
find T ∗ as outlined above

if I < D(n, T ∗) then
set I = D(n, T ∗), n+ = T ∗ − n+ 1
set TotalCost = TotalCost+ A

end
end
set I = I −Dn

set B = max(0,−I)
set n+ = max(0, n+ − 1)
TotalCost = TotalCost+ hmax(0, I) + bmax(0,−I)
Observe supply availability information for period n+M + 1
update supply availability information vector

end

To assess the performance of the heuristic, optimal solution and heuristic results

are compared for a number of problem instances. As the performance criteria, percent

deviation from the optimal value is used. We generated demand values by discretizing

the Gamma distribution. We used 9 Gamma distributions having 3 different means (µ :

µ1, µ2, µ3) and 3 different coefficient of variation (cv: cv1, cv2, cv3) values, which can be

seen in Table 1. For each of the given demand distributions, 100 different demand sets

(that is, demand values for a planning horizon of 12 periods) are generated randomly.

For each demand set, a million replications are taken to reduce variation. In Table 2 we

present some results with 2-period ASI (that is, M = 1). Supply availability is assumed
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Table 1: Parameters of the demand distributions

µ1 5 cv1 0.1
µ2 10 cv2 0.5
µ3 15 cv3 1

to be stationary with 3 levels: 0.1, 0.5, and 0.9. Holding cost is fixed at h = 1, and b = 5

and b = 10 are used for backorder cost. Fixed ordering cost is taken as a multiple of

backorder cost, assuming the values of 5 b and 10 b. We report the % average deviation

(%av) of 100 demand sets that are generated for each demand distribution. In addition

we report the standard deviation of %av (σ).

Analyzing the results in Table 2 we can make some observations. In general %av and

σ are higher when cv is higher. Heuristic method performs best for low availability case

(p = 0.1). The optimal ordering decision, which is also mimiced by heuristic method, is

to place a big amount of order that covers the demand of a several number of periods

for such a low availability. For low availability case (p = 0.1), heuristic algorithm has

an average %av deviation of 0.8%. For moderate (p = 0.5) and high availability cases

(p = 0.9) this deviation is 5.6% and 3.2% respectively. Note that moderate availability

case has the biggest variability in terms of the supply availability and therefore heuristic

algorithm performs better in low and high availability cases.

Finally it is important to mention the advantage of the heuristic algorithm in terms

of computational time. The heuristic algorithm has a polynomial computation time with

an order of O(N2) compared to the dynamic programming which has a non-polynomial

computation time with an order of complexity of O(N22MDmax).

5 Numerical analysis

In this section we present the results of our numerical experiments. Parameter settings

used are the same with that in Section 4. We first state our observations as to the optimal

policy under different parameter settings: For 2-period ASI (that is,M = 1) an important

observation is that Sn(0) ≥ Sn(∞) and sn(0) ≥ sn(∞). For the same backorder cost and

same level of the supply availability, order-up-to levels monotonically increase and re-

order points monotonically decrease in fixed ordering cost. We also observe that total

expected cost increases as supply availability decreases, as expected.

Next, we study the value of information (VOI) aspect of ASI. We consider various
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Table 2: Performance of the heuristic algorithm

cv1 cv2 cv3
p = 0.1 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

b=5 %av 0.71 0.83 0.83 0.67 0.75 0.86 2.11 1.69 1.39
A=25 σ 0.22 0.24 0.22 0.30 0.35 0.37 2.42 1.90 1.48
b=5 %av 0.72 0.71 0.77 0.63 0.61 0.69 2.10 1.60 1.29

A=50 σ 0.20 0.24 0.23 0.27 0.32 0.33 2.42 1.91 1.46
b=10 %av 0.09 0.10 0.14 0.13 0.17 0.17 2.14 1.39 1.07
A=50 σ 0.06 0.05 0.06 0.10 0.12 0.10 3.14 2.31 1.73
b=10 %av 0.24 0.15 0.17 0.23 0.18 0.19 2.26 1.42 1.07

A=100 σ 0.13 0.11 0.12 0.14 0.14 0.14 3.14 2.35 1.73
cv1 cv2 cv3

p = 0.5 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

b=5 %av 0.47 2.12 1.25 2.41 5.24 5.95 4.09 5.15 5.47
A=25 σ 0.40 0.30 0.99 1.39 1.96 2.12 2.75 2.48 2.78
b=5 %av 1.85 0.25 3.14 1.77 2.55 3.75 3.29 4.12 4.23

A=50 σ 0.69 0.31 0.44 1.00 1.42 1.57 2.58 2.08 2.24
b=10 %av 2.68 6.87 6.15 6.12 10.45 12.22 11.00 13.32 14.47
A=50 σ 1.11 0.52 0.38 3.09 3.63 4.01 6.88 5.36 5.99
b=10 %av 2.72 2.47 4.03 4.53 6.81 8.41 9.85 11.63 11.72

A=100 σ 0.83 0.95 0.89 2.90 3.27 3.00 5.52 5.38 4.83
cv1 cv2 cv3

p = 0.9 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

b=5 %av 0.85 1.53 1.09 2.33 3.19 3.63 3.61 3.76 5.13
A=25 σ 1.02 1.22 1.01 2.58 2.44 2.44 3.56 3.50 3.78
b=5 %av 5.23 1.52 0.79 2.86 2.21 2.75 3.33 2.78 4.29

A=50 σ 3.96 1.61 0.41 3.06 2.32 2.75 3.90 3.02 3.66
b=10 %av 3.22 2.51 0.51 3.16 3.93 5.72 4.47 6.04 7.96
A=50 σ 1.83 1.62 0.45 3.28 3.73 4.01 5.19 5.22 4.96
b=10 %av 0.67 3.10 0.22 2.88 2.91 2.58 3.62 4.39 5.36

A=100 σ 0.90 2.01 0.27 4.25 3.40 2.92 4.69 4.04 5.09

factors. Firstly, the effect of the length of ASI horizon is investigated. The value of an

additional period’s supply information is referred to as the marginal %VOI. We denote

the marginal %VOI of 2-period ASI (M = 1) by %VOI0−1 which gives the additional

value resulting from 2-period ASI. Similarly, the marginal %VOI of 3-period ASI (M = 2)

and 4-period ASI (M = 3)are denoted by % VOI1−2 and % VOI2−3, respectively. To find

the marginal %VOI, we use Equation (8):

%VOIi−j =
Cost with (i+1)-period ASI− Cost with (j+1)-period ASI

Cost with (i+1)-period ASI
∗ 100, (8)

where the term ‘Cost’ refers to the total expected cost in the system. In addition to

%VOI, absolute VOI is also analyzed and it is calculated as in Equation (9):

VOIi−j = Cost with (i+1)-period ASI− Cost with (j+1)-period ASI. (9)
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5.1 Investigation of VOI when there is no fixed ordering cost

In this subsection, VOI is analyzed when there is no fixed ordering cost, that is A = 0.

The two other cost parameters are set as h = 1 and b = 5. Marginal %VOI and absolute

VOI for the cases with no ASI, 2-period ASI, 3-period ASI, and 4-period ASI are presented

in Table 3. We make various observations for the selected setting:

• %VOI increases as the supply availability probability increases from 0.1 to 0.9.

When there is low supply availability in the system, large quantities are ordered

and hence ASI does not play a key role. On the other hand, when there is high

supply availability, orders are placed more frequently which facilitates better usage

of ASI in decision making in the sense that the system without ASI faces the risk

of having no stock and backordering all the demand when the unlikely event of

supply unavailability occurs, while the presence of ASI prevents those prospective

backorder costs. Consequently, %VOI is high in this setting although unavailability

probability is low, because backorder costs constitute a large portion of the total

expected cost.

• The variability in supply availability is the highest when availability probability is

0.5. Therefore absolute VOI is higher in this case compared to the other two cases.

• There is a diminishing rate of return of ASI for medium and high availability of

supply, both for marginal %VOI and absolute VOI. When there is high supply

availability, the most valuable information is the availability of the immediate next

period’s supply, as a large amount of backorder might be avoided. On the other

hand, when there is low availability, ASI regarding a longer time interval is relatively

more useful, as it becomes more likely to avoid a large order.

5.2 The effect of fixed ordering cost

In what follows we consider the effect of fixed ordering cost and different parameter

settings on %VOI. The results are summarized in Figure 1 for 2-period ASI and b = 5.

Main observations regarding the selected parameter settings can be listed as follows:

• For the same backorder cost and for the same demand distribution, %VOI decreases

as the fixed ordering cost increases. %VOI is the highest when there are no fixed
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Table 3: %VOI for 3 levels of availability

cv1 cv2 cv3
p=0.1 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

%VOI0−1 0.240 0.240 0.240 0.237 0.238 0.237 0.244 0.241 0.230
%VOI1−2 0.396 0.396 0.396 0.391 0.393 0.390 0.404 0.395 0.378
%VOI2−3 0.444 0.444 0.444 0.438 0.439 0.438 0.457 0.439 0.422
VOI0−1 2.29 4.55 6.80 2.28 4.68 6.65 2.24 4.39 7.19
VOI1−2 3.76 7.48 11.19 3.74 7.70 10.93 3.70 7.18 11.77
VOI2−3 4.20 8.35 12.49 4.18 8.58 12.21 4.18 7.96 13.08

cv1 cv2 cv3
p=0.5 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

%VOI0−1 16.25 16.20 16.19 16.00 16.12 16.02 16.18 16.50 15.83
%VOI1−2 15.86 15.83 15.79 15.57 15.67 15.53 15.74 16.07 15.20
%VOI2−3 8.65 8.64 8.61 8.44 8.54 8.46 8.54 8.72 8.13
VOI0−1 25.75 51.15 76.47 25.64 52.83 74.89 24.85 49.96 81.80
VOI1−2 21.04 41.88 62.51 20.96 43.08 60.94 20.26 40.62 66.11
VOI2−3 9.66 19.24 28.71 9.59 19.80 28.04 9.27 18.50 29.98

cv1 cv2 cv3
p=0.9 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

%VOI0−1 67.56 67.42 67.37 66.85 67.28 67.22 67.42 67.92 66.56
%VOI1−2 14.69 14.62 14.59 14.31 14.49 14.36 14.59 15.03 14.05
%VOI2−3 1.10 1.10 1.09 1.07 1.08 1.08 1.09 1.12 1.03
VOI0−1 22.39 44.44 66.43 22.24 45.99 65.40 21.57 43.29 71.17
VOI1−2 1.58 3.14 4.70 1.58 3.24 4.58 1.52 3.07 5.02
VOI2−3 0.10 0.20 0.30 0.10 0.21 0.29 0.10 0.19 0.32

costs, for all supply availability levels. This is because the supply availability of the

future periods becomes less important in the ordering decision as fixed ordering cost

increases: orders are placed in large quantities regardless of the supply availability

to avoid the ordering costs. Same observations are valid for the absolute VOI.

• When fixed ordering cost is positive, %VOI increases as cv increases. Similarly,

%VOI increases as µ increases.

5.3 Effect of non-stationary supply availability

We conduct a numerical experiment to study the effects of non-stationary supply avail-

ability and ASI on the optimal ordering decision and the value of ASI. We considered

different forms of non-stationarity to reflect various cases of supply availability in real life,

such as a seasonal structure reflecting time dependence where supply is scarce in some

periods (for example, summer) and mostly available (“abundant”) in some other periods,

a cyclical structure reflecting state-of-the-world dependence such as the economical state
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(a) low availability (b) moderate availability

(c) high availability

Figure 1: % VOI for b = 5

where periods of scarcity are followed by periods of abundance, an alternating structure

reflecting instability where each scarce supply period is followed by an abundant one, etc.

We also considered stationary high availability and stationary low availability cases to

reflect the known high or low reliability of the supplier. Moreover, we considered differ-

ent demand patterns, such as cyclical demand, seasonal demand (for example, Christmas

sales), increasing demand, decreasing demand, and stationary demand, keeping the av-

erage demand unchanged over all periods, for a fair comparison.

We worked with a 4-period problem where the demand patterns and supply avail-

ability probability patterns as presented in Tables 4 and 5, respectively. To be able to

analyze the effect of ASI, 3-period ASI, 2-period ASI and no ASI are considered. Cost

parameters are h = 1, b = 5, A = 0 and 20.

The order-up-to levels of the experiment for the first period in the horizon are pre-
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Table 4: Demand patterns

Demand Period 1 Period 2 Period 3 Period 4
1 5 15 25 35
2 35 25 15 5
3 20 20 20 20
4 10 10 10 50
5 30 10 30 10

Table 5: Probability patterns

Scenarios Period 1 Period 2 Period 3 Period 4
Scenario 1 0.9 0.9 0.9 0.9
Scenario 2 0.9 0.9 0.1 0.1
Scenario 3 0.9 0.1 0.9 0.1
Scenario 4 0.1 0.1 0.1 0.1
Scenario 5 0.1 0.1 0.9 0.9
Scenario 6 0.1 0.9 0.1 0.9

sented in Table 6. For ease of exposition, order-up-to levels are given as the cumulative

demand of corresponding number of periods such that level of 1 corresponds to one-

period demand, and same convention holds for other values. We also report %V OI0−2,

that is the relative value of having a 3-period ASI compared to no ASI. When A = 0,

we obtained the same number of demand periods to be covered for all demand patterns

within a particular scenario, which we restrain from repeating in Table 6. We make the

following observations:

• In the absence of fixed costs, the optimal policy is insensitive to the non-stationarity

of demand. This does not necessarily hold when there exists a fixed cost of order-

ing, which makes it more difficult to manage the system. However, the availability

of ASI diminishes the impact of the demand pattern on the optimal policy. Con-

sequently, ASI does not only make the system less costly to operate, but it also

makes it more robust in terms of dependency on the demand pattern.

• The optimal order quantity is sensitive to the supply availability structure when

there is no or little information on this availability. More information into future

supply availability makes the system more robust in terms of dependency on the

supply availability pattern, as it practically replaces this pattern.

• ASI that signals an upcoming supply period decreases the system’s desire to stock

against supply scarcity. Accordingly, ASI decreases the inventory-related costs in

the system, especially when it signals the unlikely supply state, resulting in a higher

value of ASI in those cases. Similarly, ASI that signals an upcoming supply scarcity
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elevates the order-up-to levels protecting the system from shortage. This effect is

stronger when supply availability probability is higher, as a costly shortage might

be avoided which would not have been anticipated without ASI.

• Not only the content of ASI, but also the mere existence of ASI may change the

optimal solution. This is because the overall uncertainty of the problem decreases

as the length of ASI horizon increases, which might effect the ordering decision

whatever the information is. For example, under scenario 6 for demand pattern 4,

S(∞) is greater than both S(∞,∞) and S(∞, 0). That is, the optimal order-up-to

level in this case decreases with an additional one-period ASI, both for a supply

period signal as well as a shortage signal.

• The existence of the fixed ordering cost triggers intricate cost interactions in the

system, which makes it difficult to draw simple conclusions regarding the order-up-

to level as a function of ASI. For example, ASI that signals supply availability in

period 3 in our experiment results in an increased order-up-to level compared to

an ASI that signals shortage in period 3, that is, S(∞,∞) ≥ S(∞, 0), contrary to

what one might expect.

6 Conclusions and future work

In this paper, we analyzed a single-item, periodic review, deterministic demand inventory

system under non-stationary supply availability with ASI. This paper contributes to the

supply uncertainty literature in that, ASI is incorporated into an inventory model and

near-explicit solutions are obtained under ASI. Optimal policy is characterized and shown

to be a state dependent (sn(wn), Sn(wn)) policy.

For the model with no fixed ordering cost optimal ordering policy is shown to be of

order-up-to type, based on the convexity of the relevant cost functions. Several character-

istics of the optimal order-up-to levels are presented and a simple algorithm is constructed

for finding the optimal order-up-to levels for an arbitrary length of ASI horizon. When

there is fixed ordering cost, analytical solutions for the re-order point and the order-up-

to level are difficult to obtain and the dynamic programming model becomes hard to

solve for a large state space. Therefore a heuristic algorithm is suggested for finding a

good ordering strategy. Proposed heuristic algorithm is an alternative for finding good
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Table 6: Order-up-to levels

A=0
ASI M=2 M=1 M=0

y(0, 0) y(0,∞) y(∞, 0) y(∞,∞) y(0) y(∞) y
Scenario 1 3 2 1 1 2 1 1
Scenario 2 4 2 1 1 4 1 2
Scenario 3 4 2 1 1 2 1 2
Scenario 4 4 2 1 1 4 1 4
Scenario 5 3 2 1 1 2 1 2
Scenario 6 3 2 1 1 3 1 1

A= 20
ASI M=2 M=1 M=0

Scenario 1 Demand S(0, 0) S(0,∞) S(∞, 0) S(∞,∞) S(0) S(∞) S %V OI0−2

1 3 2 1 2 2 2 2 22.33
2 4 2 1 1 2 1 1 11.31
3 3 2 1 1 2 1 2 9.14
4 3 2 1 2 3 2 3 19.86
5 3 2 1 2 2 2 2 13.67

Scenario 2 Demand S(0, 0) S(0,∞) S(∞, 0) S(∞,∞) S(0) S(∞) S %V OI0−2

1 4 2 1 2 4 1 2 22.64
2 4 2 1 1 4 1 4 18.21
3 4 2 1 1 4 1 2 23.03
4 4 2 1 2 4 1 2 17.43
5 4 2 1 2 4 1 4 19.93

Scenario 3 Demand S(0, 0) S(0,∞) S(∞, 0) S(∞,∞) S(0) S(∞) S %V OI0−2

1 4 2 1 2 2 2 2 17.88
2 4 2 1 1 2 1 2 8.97
3 4 2 1 1 2 1 2 12.85
4 4 2 1 2 2 2 2 12.40
5 4 2 1 2 2 2 2 17.97

Scenario 4 Demand S(0, 0) S(0,∞) S(∞, 0) S(∞,∞) S(0) S(∞) S %V OI0−2

1 4 2 1 2 4 1 4 0.43
2 4 2 1 1 4 1 4 0.05
3 4 2 1 1 4 1 4 0.17
4 4 2 1 2 4 1 4 0.53
5 4 2 1 2 4 1 4 0.13

Scenario 5 Demand S(0, 0) S(0,∞) S(∞, 0) S(∞,∞) S(0) S(∞) S %V OI0−2

1 3 2 1 2 2 2 2 7.39
2 4 2 1 1 2 1 2 0.14
3 3 2 1 1 2 1 2 0.44
4 3 2 1 2 3 2 3 8.83
5 3 2 1 2 2 2 2 0.63

Scenario 6 Demand S(0, 0) S(0,∞) S(∞, 0) S(∞,∞) S(0) S(∞) S %V OI0−2

1 3 2 1 2 3 1 3 9.25
2 4 2 1 1 4 1 4 0.86
3 3 2 1 1 3 1 3 3.64
4 3 2 1 2 3 3 3 10.06
5 3 2 1 2 3 1 1 0.63

ordering strategies, especially when there is scarcity in supply. Heuristic algorithm is sat-

isfactory considering the deviation from the optimal solution, and it is computationally

much faster.

In addition to the analytical results, we also provide a numerical analysis that yields

important managerial insights. Based on our numerical experiments, we conclude that

contractual agreements regarding information sharing would be more valuable when there

exist non-stationarity in supply availability (e.g. low supply availability during holiday
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periods) or demand (e.g. seasonality), where the value increases in the degree of non-

stationarity. On the other hand, information sharing might not be profitable enough

when the ordering costs are high and when the supply availability is consistently low in

the system. For the low availability case, information sharing could be justified if the

ASI spans a long horizon, whereas if supply is known to be reliable, most important

information is provided by the near future periods which eliminates the need for an

agreement over a long ASI horizon. We also observe that the benefit of ASI is not

only in terms costs, but also in terms of robustness in managing the system under non-

stationarity.

As a further research, stochastic demand structure can be considered and advance

demand information (ADI) can be incorporated into the model having the needed tech-

nological infrastructure already at hand for ASI. Inclusion of the ADI will strengthen

the supply chain by decreasing the overall costs. ASI in this paper is considered to be a

perfect information and another extension can be the model with imperfect ASI, which

might be more realistic in some inventory systems.
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Küçük-Atasoy, B. 2009. A deterministic demand inventory model with advance supply
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A Proofs of the results

Proof of Proposition 1. For n = N , yN(wN) = DN and the assertion holds. Assume

that, the statement is true for n + 1. Since Cn+1(I, zn+1) is convex and it is minimized

at I = yn+1(wn+1), it follows that for y < Dn, Cn+1(y − Dn, zn+1) ≥ Cn+1(0, zn+1) ≥
Cn+1(yn+1(wn+1), zn+1) for any zn+1 since yn+1(wn+1) ≥ Dn+1 ≥ 0 ≥ y − Dn. We also

know that Ln(y) is minimized at Dn so Ln(y) ≥ Ln(Dn).

Gn(y, wn) = Ln(y) + E[Cn+1(y −Dn, wn, Qn+M+1)]

= Ln(y) + pn+M+1 Cn+1(y −Dn, wn,∞) + (1− pn+M+1) Cn+1(y −Dn, wn, 0)

≥ Ln(Dn) + pn+M+1 Cn+1(Dn −Dn, wn,∞)+

(1− pn+M+1) Cn+1(Dn −Dn, wn, 0)

= Gn(Dn, wn).

Therefore, for y < Dn we have Gn(y, wn) ≥ Gn(Dn, wn) and this completes the proof.
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Proof of Proposition 2. Choose η ∈ [0, Dn+1], and let y = Dn + η. We will show

that Gn(y, rM) increases in η and this together with the convexity of Gn(y, rM) and

yn(w) ≥ Dn will imply that yn(rM) = Dn. First recall that

Gn(y, rM) = Ln(y) + E[Cn+1(y −Dn, rM , Q)], (10)

where Q ∈ {0,∞} with respective probabilities 1 − p and p. Also note that since

the supply is fully available in period n + 1 and as y − Dn = η ≤ Dn+1, the system

reaches its target inventory position yn+1(w) at the beginning of period n + 1. Hence

E[Cn+1(y − Dn, rM , Q)] = E[Gn+1(yn+1(Wn+1),Wn+1)]. The specific form of Wn+1 is

induced by (rM , Q) but happens to be irrelevant. Now, note that Gn(y, rM) is minimized

by minimizing Ln(y) = Ln(Dn + η), and achieves its minimum at η = 0. By Proposition

1 we know that yn(wn) ≥ Dn so we can conclude that yn(rM) = Dn ≤ yn(wn).

Proof of Proposition 3. First note that since w = (ol, rM−l) for some l ∈ {1, 2, ...,M−
1}

Gn(y, w) = Ln(y) +
l∑

j=1

Ln+j(y −D(n, n+ j − 1)) + E [Cn+l+1(y −D(n, n+ l),∞,Wn+l+1)] .

Define Vn(y) = Ln(y) +
∑l

j=1 Ln+j(y −D(n, n+ j − 1)). First note that Vn(y) in-

creases for y > D(n, n + l). Also, since the supply state in period n + l + 1 is ∞, that

is, since we can raise the inventory level of period n+ l + 1 to yn+l+1(wn+l+1) as long as

y − D(n, n + l) < yn+l+1(wn+l+1), Cn+l+1(y − D(n, n + l),∞, wn+l+1) is non-decreasing

for y > D(n, n+ l). Therefore at optimality we have yn(w) ≤ D(n, n+ l).

Moreover, for y ≤ D(n, n+ l), y −D(n, n+ l) ≤ 0 ≤ yn+l+1(wn+l+1). Hence,

E [Cn+l+1(y −D(n, n+ l),∞,Wn+l+1)] = E [Gn+l+1(yn+l+1(Wn+l+1),Wn+l+1)] ,

which is a constant. Then Gn(y, w) is minimized by minimizing

Vn(y) = Ln(y) +
l∑

j=1

Ln+j(y −D(n, n+ j − 1)).

Vn(y) is not differentiable at {D(n, n), D(n, n + 1), ..., D(n, n + l)} but for any i ∈
{1, 2, ..., l} and y ∈ (D(n, n + i − 1), D(n, n + i)), the derivative of Vn(y) is V

′
n(y) =

i h− (l − i+ 1) b. Then Gn(y, w) is minimized by

yn(w) = min
{
y : V

′

n(y) ≥ 0
}
,
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and we can write yn(w) = D(n, n+K(w)− 1) where

K(w) = min {i ∈ {1, 2, ..., l} : i ≥ (l + 1)b/(h+ b)} . (11)

Let K(w) = l + 1 if no such K(w) exists. Then, K(w) can be rewritten as in Equation

(3).

Proof of Proposition 4. For any w = (ol, rM−l) where l < M , yn(w) = D(n, n +

K(w)− 1) for K(w) ∈ {1, 2, ..., l + 1} (note that K(w) ≤ M). Proposition 3 states that

if h ∈
{

(l−j+1)
j

b, (l−j+2)
j−1

b
}

for j ∈ {2, ..., l + 1} then K(w) = j. This means that, for

any K(w) ∈ {2, ..., l + 1} we need to have h ∈
{

(l−K(w)+1)
K(w)

b, (l−K(w)+2)
K(w)−1

b
}
. Notice that

we can write the upper bound on h as h (K(w)− 1) < (l −K(w) + 2) b.

We can write Gn(y, oM) as

Gn(y, oM) = Ln(y) +
M∑
j=1

Ln+j(y −D(n, n+ j − 1))E [Cn+M+1(y −D(n, n+M), Zn+M+1)] .

Choose y ∈ (D(n, n + K(w) − 2), D(n, n + K(w) − 1)). Then y − D(n, n + M) <

D(n, n+K(w)− 1)−D(n, n+M) < 0 < yn+M+1(wn+M+1) since K(w) ≤ M .

Define Vn(y) = Ln(y)+
M∑
j=1

Ln+j(y −D(n, n+ j − 1)) for the ease of notation. Select

η in such a way that y + η ∈ (D(n, n +K(w) − 2), D(n, n +K(w) − 1)). Then we can

write

Gn(y + η, oM)−Gn(y, oM) = Vn(y + η)− Vn(y)

+ E [Cn+M+1(y + η −D(n, n+M), Zn+M+1)]− E [Cn+M+1(y −D(n, n+M), Zn+M+1)] .

We know that Cn+M+1(y, zn+M+1) is convex in y and minimized at yn+M+1(wn+M+1) ≥
Dn+M+1 ≥ 0. Then Cn+M+1(0, Zn+M+1) < Cn+M+1(y + η − D(n, n + M), Zn+M+1) <

Cn+M+1(y −D(n, n+M), Zn+M+1) for any such selected η. Therefore

E[Cn+M+1(y + η −D(n, n+M), Zn+M+1)− Cn+M+1(y −D(n, n+M), Zn+M+1)] < 0.

Also we can write Vn(y + η) − Vn(y) = (K(w) − 1) h η − (M −K(w) + 2) b η since

under both y and y+ η we have on-hand inventory for periods n, n+ 1, ..., n+K(w)− 2

and insufficient inventory for periods n + K(w) − 1, n + K(w), ..., n + M . We know

from Proposition 3 that h (K(w) − 1) < (l − K(w) + 2) b. Therefore h (K(w) − 1) <

(M −K(w) + 2) b since l < M . Therefore Vn(y + η)− Vn(y) ≤ 0.
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As a resultGn(y+η, oM)−Gn(y, oM) ≤ 0 meaning that yn(oM) ≥ D(n, n+K(w)−1) =

yn(w) for any w = (ol, rM−l) with l < M .

Proof of Proposition 5. It is sufficient to show that yn(oM) ≤ Dn + yn+1(oM) since

we already know that yn(wn) ≤ yn(oM) for all wn. Assertion holds for n = N , because

yN(wN) = DN and yN+1(wN+1) = 0 for all wN+1.

Suppose y > Dn+yn+1(oM), we need to show thatGn(y, oM) ≥ Gn(Dn+yn+1(oM), oM).

We need the following ingredients:

• Ln(y) ≥ Ln(Dn + yn+1(oM)) as Ln(y) is convex and minimized at y = Dn.

• Cn+1(y −Dn, oM ,∞) ≥ Cn+1(yn+1(oM), oM ,∞) because we know that yn+1(oM) ≥
yn+1(oM−1,∞). So by convexity of Cn+1, Cn+1(y − Dn, oM ,∞) ≥ Cn+1(Dn +

yn+1(oM)−Dn, oM ,∞) ≥ Cn+1(yn+1(oM−1,∞), oM ,∞).

• Cn+1(y − Dn, oM , 0) ≥ Cn+1(yn+1(oM), oM , 0) since Cn+1(y, oM , 0) is minimized at

yn+1(oM) by Corollary 1.

Putting everything together:

Gn(y, oM) = Ln(y) + pn+M+1Cn+1(y −Dn, oM ,∞) + (1− pn+M+1)Cn+1(y −Dn, oM , 0)

≥ Ln(Dn + yn+1(oM)) + pn+M+1Cn+1(yn+1(oM), oM ,∞)

+ (1− pn+M+1)Cn+1(yn+1(oM), oM , 0)

= Gn(Dn + yn+1(oM), oM).

Proof of Proposition 6. Suppose that yn+1(oM) = D(n + 1, n + J) and for j ∈
{1, 2, .., J} set y = D(n, n + j) − η for some η ∈ [0, Dn+j]. The evolution of the in-

ventory level in periods n+ 1, n+ 2, ... depends on the choice of η.

For a fixed j ∈ {1, 2, .., J} define τn(η) as the first time after n that the inventory level

is raised to the optimal order-up-to level (possibly by ordering zero) when the inventory

level after ordering at the beginning of period n is equal to y.

First note that τn(η) = i implies that (1) the supply availability information in period

n+ i should be of the form zn+i = (∞, w) for some w and (2) the inventory level before

ordering at period n+ i should be less than yn+i(w). In periods prior to n+ i it is either
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not possible to order (that is, supply is not available), or the inventory level is above the

period’s respective order-up-to level.

With this definition of τn(η) we can write Gn(y) for y = D(n, n+ j)− η as

Gn(y, oM) = Ln(y) +
N−n∑
i=1

Pr {τn(η) > i}Ln+i(y −D(n, n+ i− 1))

+
N−n∑
i=1

∑
w

Pr {τn(η) = i,Wn+i = w}Gn+i(yn+i(w), w). (12)

The second term in Equation (12) stands for the case that ordering occurs at a period

later than n+ i and hence the starting inventory level of period n+ i is y−D(n, n+ i−1),

and a cost of Ln+i(y −D(n, n+ i− 1)) is incurred in period n+ i.

The third term in Equation (12) is due to the fact that if τn = i and W = w, then the

starting inventory level of period n + i after ordering is yn+i(w) and the expected cost

incurred is Gn+i(yn+i(w), w).

It can be shown that the distribution of τn(η
′
) is the same for all 0 ≤ η

′ ≤ η and in

particular for η
′
= 0. Note that if it is not possible to order prior to period n + i for a

particular η > 0, then in the same periods an ordering can not occur for 0 ≤ η
′ ≤ η.

Moreover, if an ordering occurs in period n+ i (by raising the inventory position up

to yn+i(w)) with η > 0, then for any 0 ≤ η
′ ≤ η an ordering occurs in period n + i by

raising the inventory level to the same order-up-to level yn+i(w).

Suppose that {τn(η) = i,W = w} with w = oM (the case w ̸= oM is similar). Note

that y = D(n, n + j) − η ≤ Dn + yn+1(oM) since yn+1(oM) = D(n + 1, n + J) and

j ∈ {1, 2, .., J}. By Proposition 5 we know that yn+1(oM) ≤ Dn+1 + yn+2(oM) so we can

write yn+1(oM) ≤ D(n + 1, n + i − 1) + yn+i(oM) (that is, yn+i(oM) ≥ D(n + i, n + J)).

Therefore y = D(n, n + j) − η ≤ D(n, n + i − 1) + yn+i(oM). Note that for η = 0 we

will have an inventory of D(n, n + j) at the beginning of period n. Having no available

supply till period n + i, at the beginning of period n + i we will have an inventory of

D(n, n + j) − D(n, n + i − 1) = D(n + i, n + j) ≤ D(n + i, n + J) ≤ yn+i(oM). This

enables us to drop η from τn(η) and write Equation (12) as:

Gn(y, oM) = Ln(y) +
N−n∑
i=1

Pr {τn > i}Ln+i(y −D(n, n+ i− 1))

+
N−n∑
i=1

∑
w

Pr {τn = i,Wn+i = w}Gn+i(yn+i(w), w). (13)
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Therefore we can write the difference Gn(y, oM)−Gn(D(n, n+ j), oM) as

Gn(y, oM)−Gn(D(n, n+ j), oM) = Ln(y)− Ln(D(n, n+ j))

+
N−n∑
i=1

Pr {τn > i} [Ln+i(y −D(n, n+ i− 1))− Ln+i(D(n+ i, n+ j))]. (14)

For i ≥ j, y −D(n, n+ i− 1) = D(n+ i, n+ j)− η ≤ Dn+i. We know from Proposition

1 that yn+i(w) ≥ Dn+i so we can write

Pn(i) := Pr {τn > i} = Pr {Rw(n) > i,∀ w} .

For i < j, the inventory level is raised to yn+i(oM) whenever Zn+i = (∞, oM). If

Zn+i = (∞, w) for w ̸= oM then an order is placed if y − D(n, n + i − 1) ≤ yn+i(w).

Therefore

Pr {τn > i} = Pr {Rw(n) > i : y −D(n, n+ i− 1) ≤ yn+i(w)}

= Pr {RoM (n) > i,Rw(n) > i,∀w ∈ Ω, w ̸= oM , y −D(n, n+ i− 1) ≤ yn+i(w).}

For w ̸= oM , y−D(n, n+i−1) ≤ yn+i(w) implies thatD(n, n+j)−η−D(n, n+i−1) =

D(n+i, n+j)−η ≤ yn+i(w) = D(n+i, n+i+K(w)−1). Therefore n+j ≤ n+i+K(w)−1

which implies K(w) ≥ j − i+ 1. Hence for i < j

Qn(i, j) := Pr {τn > i} = Pr {RoM (n) > i,Rw(n) > i : ∀w : w ̸= oM , K(w) ≥ j − i+ 1}

whereK(w) is defined as in Proposition 3. Also note that Ln(y)−Ln(D(n, n+j)) = −ηh.

Now, putting these together, Equation (14) can be written as

Gn(y, oM)−Gn(D(n, n+ j), oM) = −h η

− h η

j−1∑
i=1

Qn(i, j) + b η
N−n∑
i=j

Pn(i)

We also note that for i ≥ j, Qn(i, j) = Pn(i) (since K(w) ≥ 1). Therefore

j−1∑
i=1

Qn(i, j) =
N−n∑
i=1

Qn(i, j)−
N−n∑
i=j

Qn(i, j)

=
N−n∑
i=1

Qn(i, j)−
N−n∑
i=j

Pn(i).
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Therefore Gn(D(n, n+ j), oM) ≤ Gn(y, oM) if and only if∑N−n
i=j Pn(i)

1 +
∑j−1

i=1 Qn(i, j) +
∑N−n

i=j Pn(i)
≥ h

h+ b

The probability term Pr {Rw(n) > i; ∀ w} is in fact the probability that there is no

available supply in one of the periods from period n + M + 1 (note that we know the

supply state of the periods n, n+1, ..., n+M) up to and including period n+i. Therefore

Pr {Rw(n) > i; ∀ w} = 1 for i < M + 1 since we know that in periods n + 1, ..., n +M

supply is unavailable. For i ≥ M + 1, Pr {Rw(n) > i; ∀ w} =
∏i

k=M+1 (1− pn+k).

Derivation of Qn(i, j). First note that the evolution of ASI process {Zn, n ≥ 1} is

a time-dependent Markov chain on ΩM+1. For all z ∈ ΩM+1 and z
′ ∈ ΩM+1 de-

fine Pz,z
′ (n) = P

{
Zn+1 = z

′|Zn = z
}
, and let U(n) be the square matrix with entries{

Pz,z′ (n), z, z
′ ∈ ΩM+1

}
. U(n) is the time-dependent transition matrix of the Markov

chain. Note that given Zn = z = (q, w), Zn+1 only depends on w, but not on the current

supply state.

For a fixed j ∈ {1, 2, ..., J} and i ∈ {1, 2, ..., j − 1} define

Ei,j = {(∞, w) : w ∈ ΩM , w = oM or K(w) ≥ j − i+ 1} .

Define:

f (k)
z (n,Ei,j) = Pr {Zn+1 /∈ Ei,j, Zn+2 /∈ Ei,j, ..., Zn+k /∈ Ei,j | Zn = z} .

Since given Zn = (q, w), Zn+1 depends only on w, f
(i)
0,oM

(n,Ei,j) = f
(i)
∞,oM (n,Ei,j).

Therefore

Qn(i, j) = Pr {RoM (n) > i,Rw(n) > i : ∀w : w ̸= oM , K(w) ≥ j − i+ 1}

= f (i)
∞,oM

(n,Ei,j).

Define f (k)(n,Ei,j) as the column vector
{
f
(k)
z (n,Ei,j), z ∈ ΩM+1

}T

. Let Ũ (i)(n) be

the matrix U(n) where columns corresponding to Ei,j are replaced by zeros.

f (1)
z (n,E1,j) = Pr {Zn+1 /∈ E1,j| Zn = z} =

∑
z
′
/∈E1,j

Pr
{
Zn+1 = z

′ | Zn = z
}
.

Therefore f (1)(n,E1,j) = Ũ (1)(n) 1, where 1 is the column vector whose entries are all 1’s

and whose size matches Ũ (1)(n).
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We can find f
(2)
z (n,E2,j) as:

f (2)
z (n,E2,j) = Pr {Zn+1 /∈ E2,j, Zn+2 /∈ E2,j| Zn = z} =

∑
z′ /∈E2,j

Pz,z
′
(n)Pr

{
Zn+2 /∈ E2,j| Zn+1 = z

′
}

= zth entry of the column vector Ũ (2)(n)f (1)(n+ 1, E2,j),

since Pr
{
Zn+2 /∈ E2,j| Zn = z

′}
= f

(1)

z
′ (n+ 1, E2,j).

In general,

f (i)
z (n,Ei,j) = Pr {Zn+1 /∈ Ei,j, ..., Zn+i /∈ Ei,j| Zn = z}

=
∑

z′ /∈Ei,j

Pz,z
′ (n)Pr

{
Zn+2 /∈ Ei,j, ..., Zn+i /∈ Ei,j| Zn+1 = z

′
}

where Pr
{
Zn+2 /∈ Ei,j, ..., Zn+i /∈ Ei,j| Zn+1 = z

′}
is equal to f

(i−1)

z′
(n + 1, Ei,j). There-

fore,

f (i)(n,Ei,j) = Ũ (i)(n)f (i−1)(n+ 1, Ei,j)

for i = 1, 2, ..., j − 1 with f (0) ≡ 1.

Proof of Theorem 2. Since GN(y, w) = LN(y), yN(w) = DN and therefore JN = 1

as desired. Assume that the assertions hold for n + 1, and in particular yn+1(oM) =

D(n+1, n+J). Note that yn(oM) ≥ Dn by Proposition 1 and yn(oM) ≤ Dn+yn+1(oM) =

D(n, n+ J) by Proposition 5. These observations assure that the minimum of Gn(y, w)

will occur on {Dn, D(n, n+ 1), ..., D(n, n+ J)}. Since Gn(y, w) is convex, the minimum

of it is equal to D(n, n+ J
′
), where J

′
is the greatest number satisfying

Gn(D(n, n+ J
′
), w) ≤ Gn(D(n, n+ J

′ − 1), w),

which is found by Equation (7). If J
′
= J , then Gn(y, w) is a decreasing convex function

and the order-up-to level for period n is set to its highest possible value (J + 1 - period

demand). However if no such J
′
exists then Gn(y, w) is an increasing convex function

and hence yn(oM) = Dn.
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