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Moore-Smith theory for Uniform Spaces

through Asymptotic Equivalence
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Abstract

Moore-Smith theory tells us how to generate a topology by defining

convergence of nets rather than using a definition of open set. In this

report, we extend this theory to uniform spaces, and show how a uniform

space can be generated by defining asymptotic equivalence of nets rather

than using a definition of entourage.
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1 Introduction

That limits can be used to characterize a topological space is very well known,
and every standard textbook on topology discusses the theorem that a function
f is continuous if and only if for every converging net n = {nd | d ∈ D} the net
f · n = {f(nd) | d ∈ D} is also converging, and for every limit point nω of n,
f(nω) is a limit point of f · n.

The message of Moore-Smith theory (see e.g. [1]), is that one can actually
define any topological space using a suitable notion of limit on nets, known as
a convergence class, rather than starting from the usual notion of open set.

In this report, we show a variant on that theme, namely that one can define
any uniform space using a suitable notion of asymptotic equivalence of nets,
rather than starting from the usual notion of entourage.

That asymptotic equivalence can be used to characterize a uniform space, i.e.
that a function f is uniformly continuous if and only if for every asymptotically
equivalent pair of nets n ≈ m in the domain of f we find f · n ≈ f · m, is a
result due to Fuller [2]. However, this result did not get included in the standard
textbooks. In fact, most of the textbooks do not get to discussing the notion of
asymptotic equivalence in uniform spaces at all (exercise 1 of section 23 in the
book of Čech [3] forming a notable exception).

In the remainder of this report, we start by giving the necessary formal
definitions, and consecutively prove four theorems that together show that every
uniform space can be generated by a notion of asymptotic equivalence on nets.
Since the definitions that are used in this report very closely follow the the
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definitions in chapter 2 of [1], we refer to this standard textbook for the intuitions
behind, and explanations of, these definitions. Our only deviation from [1] in
this respect, is the notation we use for a product of a directed family of nets,
which is known in [1] as the ’iterative limit’.

2 Preliminary definitions

Definition 1 (Directed Set) A directed set 〈D,≤〉, is a set D with a binary
relation ≤⊆ D × D on it that is:

• Transitive: ∀d,e,f∈D d ≤ e ∧ e ≤ f ⇒ d ≤ f ;

• Reflexive: ∀d∈D d ≤ d;

• Directed: ∀d,e∈D∃f∈D d ≤ f ∧ e ≤ f .

A cofinality between directed sets 〈D,≤〉 and 〈E,�〉 is a function h : D → E

such that

• Cofinality: ∀e∈E∃d∈D∀d′∈D d ≤ d′ ⇒ e � h(d′).

Definition 2 (Net) A net in X is a function f : D → X from a directed set
D to a set X, where the relation ≤ is usually left implicit. A net f : D → X is
a subnet of a net g : E → X if there exists a cofinality h : D → E such that
f(d) = g(h(d)) for all d ∈ D. Given a family {fe : De → X | e ∈ E} of nets
in X, the product

∏

e∈E fe of this family is the net π :
(

E ×
∏

e∈E De

)

→ X

such that π(e, p) = fe(p(e)), where the product set E ×
∏

e∈E De is ordered,
regardless of a possible ordering on E, by (e, p) ≤ (e′, p′) iff for all e ∈ E we
have p(e) ≤ p′(e).

Often, we’ll say that a property P holds eventually for a net f : D → X. By
this, we formally mean that there exists a d ∈ D such that for every e ≥ d the
property P holds for f(e). Clearly, eventuality of properties is preserved when
taking subnets.

Definition 3 (Uniform Structure) A uniform structure on a set X, is a set
U ⊆ P(X × X) of binary relations on X (called entourages) such that

• Identity: for every U ∈ U and every x ∈ X, (x, x) ∈ U ;

• Filtering: if U ∈ U and U ⊆ V ⊆ X × X then V ∈ U ;

• Finite intersection: if U, V ∈ U then U ∩ V ∈ U ;

• Transitivity: for every U ∈ U there is a V ∈ U such that V · V ⊆ U ;

• Symmetry: if U ∈ U then U−1 ∈ U .

where we write U · V = {(u,w) | ∃v (u, v) ∈ U ∧ (v, w) ∈ V } and U−1 =
{(v, u) | (u, v) ∈ U}.
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Definition 4 (Asymptotic Equivalence) Given a set X, a relation ≈ be-
tween nets in X is an asymptotic equivalence if for all nets f, g, h in X we
find:

• Domain: if f ≈ g then dom(f) = dom(g);

• Reflexivity: f ≈ f ;

• Transitivity: f ≈ g and g ≈ h implies f ≈ h;

• Symmetry: f ≈ g implies g ≈ f ;

• Subnet closure 1: if f ≈ g, then for every cofinality h : D → dom(f) we
find f · h ≈ g · h;

• Subnet closure 2: if f 6≈ g and dom(f) = dom(g), then there exists a
cofinality h : D → dom(f) such that for every cofinality k : E → D we
have f · h · k 6≈ g · h · k;

• Product closure: given two families {fd | d ∈ D} and {gd | d ∈ D} of nets
in X such that fd ≈ gd for all d ∈ D, we find

∏

d∈D fd ≈
∏

d∈D gd.

where (f · h)(x) = f(h(x)) for all x ∈ dom(h).

3 Results

Theorem 1 Given a uniform structure U on a set X, let ∼ be the relation
between nets in X defined by f ∼ g iff dom(f) = dom(g) and for every U ∈ U
there exists a d ∈ dom(f) such that for every e ≥ d we find (f(e), g(e)) ∈
U . This relation ∼ is an asymptotic equivalence (and we call it the natural
asymptotic equivalence for U from now on).

Proof

• Domain: by definition, if f ∼ g then dom(f) = dom(g);

• Reflexivity: since every U ∈ U contains the identity, we find f ∼ f ;

• Transitivity: Assume f ∼ g and g ∼ h. Since every U ∈ U contains a
V ∈ U with V · V ⊆ U , by transitivity of the uniform structure, we may
conclude from f ∼ g and g ∼ h that there exist d, d′ ∈ dom(f) such that
(f(e), g(e)) ∈ V and (g(e), h(e)) ∈ V whenever e ≥ d and e ≥ d′. As
dom(f) is directed we can take a d′′ ≥ d and d′′ ≥ d′ and conclude that
(f(e), h(e)) ∈ V · V ⊆ U whenever e ≥ d′′. From this we conclude f ∼ h;

• Symmetry: Assume f ∼ g, and take U ∈ U . Recall that also U−1 ∈ U by
definition of uniform structure. Hence, for sufficiently large e ∈ dom(f)
we have (f(e), g(e)) ∈ U−1 and thus (g(e), f(e)) ∈ U , from which we
conclude g ∼ f ;
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• Subnet closure 1: Assume f ∼ g and take a cofinality h : D → dom(f).
For every U ∈ U there exists a d ∈ dom(f) such that for every e ≥ d we
have (f(e), g(e)) ∈ U . By definition of cofinality, there exists a d′ ∈ D

with h(e′) ≥ d for every e′ ≥ d′. Hence, for every e′ ∈ D with e′ ≥ d′ we
have (f(h(e′)), g(h(e′))) ∈ U , from which we conclude f · h ∼ g · h;

• Subnet closure 2: if f 6≈ g and dom(f) = dom(g), then there exists a U ∈
U such that for every d ∈ dom(f) there exists a e ≥ d with (f(e), g(e)) 6∈ U .
From this we conclude that the identity function i : D → dom(f) from
D = {e ∈ dom(f) | (f(e), g(e)) 6∈ U} to dom(f) is a cofinality. Obviously,
for any cofinality h : E → D we find f · i ·h 6≈ g · i ·h, since (f(d), g(d)) 6∈ U

for any d ∈ D.

• Product closure: given two families {fd | d ∈ D} and {gd | d ∈ D}
of nets in X such that fd ∼ gd for all d ∈ D, take any U ∈ U , and
for each d ∈ D pick an element p(d) ∈ Ed such that (fd(e), gd(e)) ∈
U for all e ≥ p(d). Then by definition of the product ordering also
(
∏

d∈D fd(a, p′),
∏

d∈D gd(a, p′)
)

∈ U for all p′ ≥ p (regardless of a ∈ D),
from which we may conclude

∏

d∈D fd(a, p′) ∼
∏

d∈D gd(a, p′).

Theorem 2 Given an asymptotic equivalence ∼ between nets in X, let U be the
set of binary relations on X such that U ∈ U if for every pair of nets f, g : D → X

with f ∼ g it holds that (f, g) is eventually in U . This set of relations forms
a uniform structure on X (and we call it the natural uniform structure for ∼
from now on).

Proof We start out by proving that, whenever f and g have the same
domain but f 6∼ g, there is a U such that (f, g) is not eventually in U (i.e.
infinitely often it is not in U). For this, assume f 6∼ g. Then by subnet closure
of ∼, there exists a cofinality h : H → dom(f) such that for every cofinality
k : K → H we find f · h · k 6∼ g · h · k. Given this h, we define the families
Bm = {n ∈ H | n ≥ m} and Am = {((f · h)(n), (g · h)(n)) | n ∈ Bm} and make
the following case distinction:

• The easy case, is when for some m it holds that every pair (u, v) with
u ∼ v is eventually in the complement of Am. If this is the case then we
take U to be that complement, thus by construction in U . Furthermore,
as (f · h, g · h) is eventually in Am, (f, g) is not eventually in U .

• The difficult case, is when for every Am there is a pair (u, v) with um ∼ vm

and (u, v) eventually in Am. Using the subnet and product closures, we
find that this case leads to a contradiction, because using these pairs, we
can construct a net wm : dom(um) → H such that f ·h ·wm = um ∼ vm =
g ·h ·wm. Taking the product over the family {wm | m ∈ H} gives us f ·h ·
∏

m∈H wm =
∏

m∈H(f ·h ·wm) ∼
∏

m∈H(g ·h ·wm) = g ·h ·
∏

m∈H wm. Fi-
nally, we obtain the contradiction by observing that

∏

m∈H wm is a cofinal-

ity, because by construction d ≥ e implies
(
∏

m∈H wm

)

(d) = wd(p(d)) ∈

Bd ⊆ Be and so
(
∏

m∈H wm

)

(d, p) ≥ e.
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Now, we are ready to show that U has all the properties of a uniform structure.

• Identity: for any U ∈ U and any x ∈ X, we take any constant net fx :
D → X with f(d) = x for all d ∈ D (for simplicity, one may take the
singleton directed set for D, but any directed set will do). By reflexivity
of ∼ we know fx ∼ fx, and by construction there exists a d ∈ D with
(x, x) = (fx(d), fx(d)) ∈ U ;

• Filtering: take any U ∈ U and any V such that U ⊆ V ⊆ X×X. Trivially,
if any asymptotically equivalent pair of filters is eventually related by U

then it is eventually related by V , hence V ∈ U ;

• Finite intersection: trivially, if every related pair of sequences is eventually
in U and V , then it is eventually in U ∩ V ;

• Transitivity: We prove by contradiction that for every U ∈ U there is a
V ∈ U such that V · V ⊆ U . Assume that we have a U ∈ U and that
there is no V ∈ U with V · V ⊆ U . Then we can find, for every V ⊆ U
three points xV , yV and zV such that (xV , yV ) ∈ V and (yV , zV ) ∈ V

but (xV , zV ) 6∈ U . Observe, that the set U is directed under the ordering
relation ⊆, because we already concluded it to be closed under intersection.
This means that the families xV , yV and zV we just constructed can be
interpreted as nets over U . By construction, we find for every V,W ∈ U
with W ⊆ V that (xW , yW ) ∈ V and (yW , zW ) ∈ V , hence (x, y) and
(y, z) are eventually in V . We started this proof by showing that, modus
tollens, this means that x ∼ y and y ∼ z, and by transitivity of ∼ we then
have x ∼ z. But by assumption the pairs (xW , zW ) 6∈ U for any value of
W , hence U 6∈ U . A contradiction.

• Symmetry: if any equivalent pair of nets (f, g) is eventually related in
U ∈ U , then by symmetry of ∼ also (g, f) is eventually related in U .
Hence U−1 eventually relates every pair, and we conclude that U−1 ∈ U .

Theorem 3 Given a uniform structure U , the natural uniform structure for
the natural asymptotic equivalence for U coincides with U .

Proof Let ∼ be the natural asymptotic equivalence for U , then by defini-
tion any U ∈ U eventually contains every pair xd ∼ yd of equivalent nets, hence
it is an entourage in the natural uniform structure for ∼. Reversely, assume
that U 6∈ U , then by definition of uniformity we find for any V ∈ U that V 6⊆ U .
Hence, for any V ∈ U there is a pair (xV , yV ) ∈ V such that (xV , yV ) 6∈ U . As
the set U is directed by ⊇ (because U is closed under ∩) these pairs give us two
nets xV and yV that, by construction, are asymptotically equivalent (xV ∼ yV ),
but are never in U . Hence, U is not an entourage in the natural uniform struc-
ture arising from ∼, and thus the elements of U are exactly the elements of the
natural uniform structure arising from the natural asymptotic equivalence for
U .
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Theorem 4 Given an asymptotic equivalence ∼, the natural asymptotic equiv-
alence of the natural uniformity for ∼ coincides with ∼.

Proof Let U be the natural uniformity for ∼. By definition, whenever we
have equivalent nets f ∼ g, they are eventually related by any U ∈ U , hence the
nets are related by the natural asymptotic equivalence for U . Reversely, assume
that f and g have the same domain but f 6∼ g, then (by similar reasoning as
was used in beginning of the proof of Theorem 2, we can find a U ∈ U such that
(f, g) are not eventually in U .

Remark 1 (Quasi-Uniform Spaces) If we drop the symmetry property from
the definitions of uniformity and asymptotic equivalence, we get the usual defi-
nitions for quasi-uniformity [1] and asymptotic pre-order. The same theorems
still apply, since symmetry of the one is only used in the proof of symmetry
of the other. As every topological space is quasi-uniformizable, this means that
every topological space can therefore also be characterized (but not uniquely) by
a pre-ordering on nets over that space.
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