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Summary

When studying the deformation behaviour of glassy polymers, a distinction can
be made between the linear viscoelastic region, the nonlinear viscoelastic response
and the yield behaviour at high stress levels. The linear viscoelastic deformation
is adequately described using linear response theory, resulting in the well known
Boltzmann single integral representation. The non-linear regime has been, and
still is, an active field of research and a large number of theories have been put
forward. Most of these theories aim at a one-dimensional deseription of the non-
linear behaviour at moderate strain, often for a special deformation mode like for
instance creep. Yield of polymer materials is classically described by nsing yield
criteria, of which the pressure and rate-dependent Von Mises criterion seems to
be most successful, After yielding, strain hardening sets in, sometimes preceded
by intrinsic strain softening.

In this thesis, an attempt is made to combine all these aspects of the de-
formation behaviour of polymer glasses into a single constitutive equation. To
this extent, the “time-stress superposition principle” is invoked, sometimes re-
ferred to as & “stress clock”, which states that the main influence of stress is to
change all relaxation times in a similar way, Le. to alter the intrinsic time scale
of the material. This is analogous to the well known “time-temperature super-
position” , according to which all relaxation times depend equally on temperature.
This nonlinear influence of stress on the deformation behaviour, originating from
stress-biased segmental diffusion, is quantitatively described by the Eyring theory,
which defines to what extent the relaxation times change as a function of stress.
The applicability of time-stress superposition is demonstrated for polycarbonate,
that can be considered as a relatively simple model system since it has only a
single molecular mechanism active from room temperature to the glass-transition
temperature. It is shown that the complete nonlinear viscoelastic behaviour of
polyearbonate, including rate-dependent “yield” behaviour, is determined by the
lingar relaxation time spectrum combined with a single nonlinearity parameter,
which emerges from the Eyring theory, the so-called “activation volume”. In es-
sence, the applicability of time-stress superposition states that “yielding” can be
envisaged as a stress-induced glass transition.



The strain-hardening response of polycarbonate was investigated hy meany of
large homogeneous deformations above and below the glass-transition Lemperat-
ure, To ensurc homogeneous behaviour below the glass-transition termperature
during mechanical testing at large strains, the samples were conditivned mech-
anically, priot to testing. During this conditioning technique, consisting of large
Lo and fro torsion of the eylindrical specimen, intrinsic strain softentny, which iy
the main cause for strain localisation, procecds up to a saturation level. 1Tpon
reloading, the material does not soften anymore, resulting in a homogeneons de-
formation, even under tensile loading,

Using the preconditioned polyearbonate samples, it was shown experimentally
that the strain hardening response of polycarbonate at room temperature, in uni-
axial tensile and compression, and in shear deformation, is accurately described
by neo-Hookean behaviour, with a (shear} modulus G = 26 MPa. Neo-Hookean
behavionr was observed up to fracture, which occurred at draw rativs A = 3 in
uniaxial tensile deformation. In particular, no upswing in stress, indicative for a
finite extensibility {(maximum draw ratio) of the entangloment network, was ob-
served, The temperature dependence of the strain-hardening modulus below the
glass-transition temperature corvesponds to the temperature dependence of the
“plateau modnlus?, as observed with mechanical spectroscopy above the glass-
transition temperature. This indicates that strain hardening in glassy polyniery
results from a rubber-elastic response of the entanglement network,

To combine all these aspects of the deformation behaviour of glassy polymers
into a single constitutive equation, a basic model, a so-called “Leonov mode”, is
presented, A single Leonov mode is a Maxwell model employing a relaxation time
that is dependent on an equivalent stress proportional to the Von Mises stress.
Furthermore, a Leonov mode correctly separates the (elastic) hydrostatic and {vis-
roelastic) deviatoric stress response and accounts for the geometrical complexities
agsociated with simultaneons finite elastic and plastic deformations. Subsequently,
this Leonov mode is combined into a “multi-mode” cxpression that is able to de-
seribe the bimodal spectrum of relaxation times which rules the complete deforme
ation hehaviour of polymer glasses, It is demonstrated that the model is able to
deseribe the three-dimensional, finite non-linear viscoelastic behaviour of polycar-
bonate in crecp, stress relaxation and tensile experiments, inciuding strain-rate
dependent yield behaviour. It is also capable of describing three-dimensional as-
pects of the strain-hardening behaviour, such as the development of anisotropy
during plastic flow.

The present research establishes the linear shear relaxation time spectrurn
as the key quantity, determining the nonlinear viscoelastic behaviour of glassy
polymers. Deviatoric stress (and temperature) merely distort the tine scale, It
shonld be noted, Lowever, that mechanical properties in general, and viscoelastic
behaviour especially, are profoundly influenced by physical aging. Tt is now well
established that, under influence of aging, the creep compliance curve shifty to-
ward longer times. All samples used in this study, however, had the same age,



x1

which by far exceeded the longest times in the experiments. Therefore, to a first
approximation, aging was not taken into account (which causes the model to be
less accurate for differently aged samples). As opposed to aging, it is also ob-
served that plastic deformation beyond the “yield point” results in a decrease
of the viscosity, leading to intrinsic strain softening. This phenomenon is called
“rejuvenation” and iz thought to be the result of mechanically “de-aging” the
sample by plastic deformation. The good agreement between experiments and
predictions for the stress-relaxation experiments, as well as the applicability of
time-stress superposition, indicate that, for polycarbonate, rejuvenation effects
are not important for monotonic loading paths up to the “yield stress”, and for
loading times which are short relative to the age of the matertal., Although a
quantitative description of rejuvenation {and aging) at moderale stresses has yet
to be developed, several phenomenological models have been proposed in liter-
ature, that give an adequate description of strain softening in monotone loading
paths after the yield point (Boyce et al., 1988; Hasan et al, 1993). In this thesis,
rejuvenation was not taken into account. Some consequences with respect fo
aging and rejuvenation of the modelling strategy applied, are addressed at the
end of the thesis.

An important consequence of the nonlinear flow behaviour of polymers in
general, and polymer glasses specifically, is their sensitivity to strain localisation.
Strain localisation, loosely defined as amplification of non-homogeneous deform-
ation due to small fluctuations in the stress- or strain field, manifests itself in the
form of shear bands or crazes. Using a brittle polystyrene, it was shown experi-
mentally that both, fracture and yield, possess the same strain-rate dependence,
This given indicates that the accurrence of small deformation zones (micro-shear
bands or “slip patcheg”) is the rate-determining step in craze inttiation. This of-
fors a possibility to define a local (titne-independent) craze initiation criterion. By
comparing local finite-element caleulations, given a specific micro-structure, with
experimental craze studies, this local criterion could be identified and could serve
as a powerful tool in the computer-aided design of new heterogeneous polymer
systems, where the morphology is optimized in such a way that shear yieldmg
prevails erazing.



Notation

Tensorial Quantities
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Chapter 1

Introduction

1.1 General Introduction

Polymers, as a group of materials, often offer an attractive compromise between
ease of processability and final mechanical and thermal properties. It is, there-
fore, not surprising, that, since their introduction in the beginning of this century,
nowadays gtructural and other applications of polymers have become widespread.
Nevertheless, a thorough vnderstanding of their mechanical behaviour is still lack-
ing.

There are a number of reasons to strive for a better comprehension of the
deformation behaviour of polymer systems. In case of structural applications, the
need for an adequate description of mechanical properties like creep and stress-
relaxation, is obvious. Second, at high stress, polymers are prone to strain local-
isation, which manifests itself in the form of shear bands and crazes, and which is
often a prelude to failure. In heterogeneous polymer systerns, this process of strain
localisation is strongly influenced by the specific micro-structure (merphology),
which determines the local state-of stress and strain., A thorough understanding
of this process is, however, still lacking and researchers in the area of polymer
development have to rely on an empirical approach, characterized by the im-
possibility to transfer knowledge, obtained in one polymer system, to the other.
Utilizing detailed finite element calculations might remove some of this empir-
icisrn, by resolving the complicated interaction between structure development
and strain localisation, and, thereby, determine which aspects of the morphology
govern the localisation process on a toesoscopic scale. However, for this, a proper
constitutive equation, which allows for a quantitative description of the conatitu-
ent polyrmers, is essential. Last but not least, an accurate continuum mechanical
description would identify the essential material parameters which control the
mechanical behaviour of polymer materials, Relating these parameters to the mo-
lecular structure of a polymer, would open an efficient way of developing new
polymers with tailored mechanical properties,
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With tespect to micro-structure, it is possible to distinguish between semd-
crystalline and amorphous polymers. Semi-crystalline polymers generally have a
spherulitic structure, consisting of crystalline lamellae, separated by amorphous
material. Consequently, semi-crystalline polymers exhibit a complex deformation
hehaviour, which, at this moment, is difficult to describe, especially since the
mechanical behaviour of the constituent amorphous and crystalline phases is not
understood completely, let it be their mutual interaction’. Therefore, this thesis
is primarily concerned with amorphous polymers, also called palymer glusses.

The structure of a polymer glass is essentially the same as the melt from which
it solidifies, and can be envisaged as a random assembly of covalent bonded chains,
held together by secondary forces. Many aspects of the physical and mechanical
properties of {glassy) polymers are governed by the comparatively weak seeondary
bounds, and polymers are, therefore, sometimes referred to as “soft-condensed
matter”. An important consequence of the weakness of the secondary bonds is
the considerable thermally (and stress) activated segmental motion, resulting in
complicated time and temperature dependent mechanical behaviour, which is the
topic of this thesis.

1.2 Deformation Behaviour of Polymer Glasses

In the description of the deformation behaviour of solid polymers, vsually a dis-
tinction is made between the linear viscoelastic regime at very low stress, the
non-linear viscoelastic response at moderate stress, and the yield behaviour at
high stress (Ward, 1990). The lincar viscoelastic deformation is adequately de-
seribed wsing linear response theory, which results in the well-known Boltzmann
single integral representation. The non-linear regime has been, and still is, an act-
ive field of research, and a large number of theories have been put forward. Most
of these theories aim at a one-dimensional description of the non-linear behaviour
at moderate strain, often for a special deformation modes like, for instance, ereep.
An extensive survey of these theories can be found in the monograph by Ward
(1990). Yield of polymer materials is classically described by using yield criteria,
of which the pressure and rate- dependent Von Mises criterion seems to be most
successful.  After yielding, strain hardening sets in, sometimes preceded by in-
trinsic strain softening. A typical stress-strain curve of an amorphous polymer,
displaying these features of mechanical behaviour, is depicted in Figure 1.1. Tt
should be noted that most of the response, as depicted in Figure 1.1, is highly
nonlinear, since the true linear range for polymers is very small®.

!A nice example of the complicated effects which can oceur in semi-crystalline polymers, is
the dramatic embrittlement of poly[( R)-3-hydroxybutyrate] upon secondary erystallization, and
the relatively simple solution, to this problem (De Koning and Lemstra, 1993),

*For polyearbonate in uniaxial tensile deformation, the critical stress is about 1.7 MTa, which
cotrespomnds to approximately 0.06% strain in a normal tensile test, see Chapter 3.



1.2 Deformation Behaviour of Polymer Glasses

Stress

Strain

Figure 1.1 Schematic stress-strain curves of en (amorphous) polymer below the glass-
transition temperature, at different strain rates £.

The main features of the linear viscoelastic behaviour of glassy polymers are
determined by two characteristic relaxation mechanisms, the glass transition and
the reptation process (Struik, 1990). This is depicted in Figure 1.2, showing a
schematic dubbel-logarithmic plot of the shear-relaxation modulus versus time.
At short times, only limited segmental motion is possible, resulting in a solid-
like behaviour. At the glass transition, segmental diffusion becomes unbounded,
but large scale motion of the polymer chain is still prohibited because of steric
hindrance between the chains, On these time scales, the polymer effectively be
haves like a rubber. From the (plateau) modulus G, in this region, a molecular
weight between entanglements-can be defined, using the classical theory of rub-
ber elasticity. Here, entanglements are envisaged as physical knots, as opposed
to chermical (permanent) cross-links in a real rubber, and the molecular weight
between entanglements provides a sealar measure of the steric hindrance between
the polymer chains. At still longer time scales, the reptation process ehables main-
chain diffusion (centre-of mass diffusion), and the polymer behaves like a melt,
not able to sustain any load.

The overall shape of the relaxation modulus of an amorphous polymer, as
depicted in Figure 1.2, is rather insensitive to the exact chemical composition.
Details of the molecular structure determine the glass-transition temperature and
the value of the platean modulus (disproportional to the molecular weight between
entanglements), whereas the length of the platean zone depends on the molecular
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Figure 1.2 Relaxstion modulus of a glassy polymer (far) below the gliss-transition
temperature; schematic

weight (which is proportional to degree-of polymerisation),

It was already observed by Leaderman (1943}, that, to a good approximation,
temperature does not influence the shape of the relaxation modulus, but only de-
termines its position on a logarithmic time-scale. This is called time-temperature
superposttion or thermo-rheological simple behaviour., With respect to modelling,
it unplies that the main influence of temperature is to change all the relaxation
times, which determine the decay of the relaxation modulus in time, in an identical
way. If it is assumed that this is the only effect of temperature, then a so-called
reduced time @ can be defined, on which isothermal linear hehaviour is recovered:

t dt.'
o= ), airem -
Here, T(#) is the applied temperature history, and ar is the temperature shuft
factor, defined as the ratic of the relaxation times at a given temperature with
rospect €0 a reference temperature. Thus, a higher temperature only sccelerates
relaxation, and, therefore, only distorts the time scales of the malerial,

An important feature of the mechanical behaviour of glassy polymers is the
similarity between Fignres 1.1 and 1.2, At low stress/short times, the response
is solid-like, with a modulus of 1-5 GPa. At higher stress/longer times, there is
a gradual change to rubber-like behaviour, with a good correspondence between
the value of the strain-hardening modulus in Figure 1.1, and the platean modulus
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in Figure 1.2. Finally, at the highest stress/longest time, there is a transition to
Aunid-like behavieur, and the polymer will break /flow. Only the time-scales are not
correct, for polycarbonate at room temperaiure, the linear relaxation times associ-
ated with the glass-transition are in the order of 101%-10 s, whereas the transition
to rubber-like behaviour in a standard uniaxial tensile test, at high stress, only
takes == 100 5. This indicates that stress, like temperature, accelerates relaxa-
tion, If this concept of stress-induced relaxation is correct, it is important both
from a modelling and from a physics point-of view. For example, with respect to
molecular interpretation, it indicates that the yield point can be envisaged as a
stress-induced glass transition, With respect to modelling, the concept of stress-
induced relaxation suggests the use of a reduced time, or, equivalently, the use of
stress-dependent relaxation times, to describe the nonlinear effect of high stresses.

The principle to describe yield-like behaviour of polymeric materials, by use
of a stress-dependent relaxation time, dates back to Tobolsky and Eyring (1943).
It was used later by Haward and Thackray (1968) who added a finite-extendable
spring (a so-called “Langevin” spring} to account for & maximum draw ratio
during strain hardening (see Figure 1.3).

D, N

4/\/\/\/7 -

Figure 1.3 Mechanical analogue of the Haward-Thackray model. The initial elastic
responge 1s described by the compliance Dy, the yield point is determined by a stress-
dependent viscosity n, and the strain-hardening response follows from D,

The stress dependence of the relaxation time in the Haward-Thackray model
is incorporated using a stress shift factor a,, defined as the ratio of the relaxation
time at a given stress level and the linear relaxation time at zero (very low)
stress. The effect of a stress-dependent relaxation time is revealed most clearly
in creep tests at different stress levels, see Figure 1.4. At very low stress levels,
the relaxation time is constant, and the behaviour is linear (the creep compliance
is independent of stress). At higher stress levels, the relaxation time is reduced
by a factor o, (). On a logarithmic time axis, this results in a horizontal shift of
the compliance curve.
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Haward and Thackray assumed, that the stress dependence of the relaxation
time originated solely from the plastic flow process (the dashpot in Figure 1.3).
They used the Eyring expression for the viscosity, a semi-empirical relation, which
describes stress-activated flow of structural units in a material, like segments in
case of polymers. The Eyring equation is known to give a good description of
the strain rate dependence of plastic flow in polymers and other materials (Krausz
and Eyring, 1975; Ward, 1990, Chapter 11). OQther expressions for the stress
dependence of the viscosity have been derived, with more molecular detail, like
the Argon theory, in which plastic flow is regarded as stress-activated nucleation
of kink bands in a polymer chain. However, on a fitting level, these theories are
almost indistinguishable (Hasan and Boyce, 1995; Ward, 1990).

A schematic drawing of a set of ealcuiated true stress-strain curves, at different
strain rates, using the Haward-Thackray model, iz depicted in Figure 1.5. From
this figure, it is clear that the model correctly accounts for the rate-dependence
of the yield stress and the initial “glassy” modulus. However, the use of a single
stress-dependent relaxation time results in an abrupt transition from elastic to
plastic behaviour, similar to elasto-plastic behaviour, employing a rate-dependent
yield criterion., Moreover, using only a single relaxation time, it is not possible to
describe an experimental linear relaxation modulus (see Figure 1.2). Particularly,
the Haward-Thackray model considers a polymer to be a thermoset, incapable
of (irreversible) plastic deformation, whereas many polymers are thermoplasts,
which ultimately can flow (see Figure 1.2).

More recently, Boyce et «l. (1988) introduced the “BPA-model”, which is cs-
sentially an extension of the Haward-Thackray model to three-dimensional finite
deformations, using the Argon theory and the three-chain model (James and Guth,
1943) to describe, respectively, the plastic flow process and the strain-hardening
response. The BPA-model was later refined by Arruda (1992) and Wu and van der
Giessen (1993) with respect to the strain-hardening response and by Hasan et al.
(1993) to include the effect of aging and rejuvenation. In all these models, no
explicit use is made of a yield criterion. Instead, like in the Haward-Thackray
model, the deformation behaviour is determined by a single relaxation time that
is dependent on an equivalent stress (proportional to the Von Mises stress). Con-
sequently, these models suffer from the same drawbacks as the Haward-Thackray
model, as described abave,

A way to improve the Haward-Thackray model, with respect to its poor de-
scription of the linear viscoelastic deformation behaviour, would be to use a spee-
trum of relaxation times rather than one (see Figure 1.6). In this case, additional
assumptions have to be made concerhing the stress dependence of these relaxation
times. If it is assumed that all the relaxation times are dependent on the total
stress in the same way, then the only nonlinear effect of stress is to alter the time
scale of the material. This is called a “stress clock” (Bernstein and Shokooh,
1980), or time-stress superposition, analogous to time-temperature superposition.
From time-stress superposition it follows that, like with temperature, a reduced
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time @ can be defined on which linear behaviour is recovered (Schapery, 1969):

t dtl

where 7(t') is the stress history of the material.

The principle to use a shift funciion to incorporate the effect of an experimental
parameter is not limited to temperature and stress alone. Schapery {1969) and
Valanis (1971) assumed that strain affects relaxation processes in a material,
Shay, Jr. and Caruthers (1986) and O'Dowd and Knauss (1995) considered a
free-volume clock to describe nonlinear viscoelastic behaviour and vielding, and
Struik (1978) found that, during aging of 4 glassy polymer, the retardation times
increase proportional to the aging time. All these theories imply, that the linear
compliance curve or, more general, the linear response characteristic, is the key
material function. The main influence of parameters like stress and temperature, is
to distort the time scale. In Chapter 3, the time-stress superposition superposition
principle will be used to formulate a constitutive equation for the finite nonlinear
viscoelastic behaviour of glassy polymers up to the yield point,

Ag yoentioned before, the Haward-Thackray mode] is only an approximation
of the experimental relaxation modulus, assuming elastic behaviour before and
after the glase transition. Moreover, in their original treatment of the subject,
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Haward and Thackray (1968) assumed that the entanglement network, like a
chemically cross-linked network, has a limited extensibility. They used a non-
(Gaussian rubber elastic model, a so-called “Langevin spring” (Kuhn and Griin,
1942), to describe the expected upswing in stress at limiting chain stretches. This
concept of a maxtmum draw rotie was retained in all three-dimensional extensions
of the Haward-Thackray model by Boycee ef al. (1988); Arruda and Boyee (1993a)
and Wi and van der Giessen (1993). Donald and Kramer (1982b, 1982a) showed
that the maximum extensibility of a single strand in the entanglement network
correlates well with the extension ratio inside craze fibrils and shear-deformation
FONERS.

Although Anite extensibility is relevant for a chemically eross-linked rubber, it
i3 less obvious that it also applies to a (thermoplastic) glassy polymer, which ulti-
mately flows. In fact, for a number of (semi-crystalline) polymers, the upswing in
stress, associated with finite extensibility, was not observed experimentally (G*Sell
et al., 1992). In later expositions on the subject, Haward (1993) abandoned the
Langevin spring, and adopted standard neo-Hookean behaviour to describe the
strain-hardening response of polymeric materials. The deformation-state depend-
ence of strain hardening and the issue of finite extensibility will be discussed in
mare detail in Chapter 5.

Impostant aspects of the deformation behaviour of glassy palymers, which have
not been discussed so far, are “physical aging”, and “rejuvenation”. During cool-
ing of a (polymer) melt around the glass-transition temperature, the relaxation
times excead the observational time scale, the material is unable to reach thermo-
dynamic equilibrium, and turns into a glass. In the non-equilibrium glassy state,
thermodynamic quantities like volume and enthalpy are not constant, but slowly
evolve towards their equilibrium value. This process is called physical aging and
is also known to have a profound influence on the viscoelastic behaviour. It was
found in the sixties (Struik, 1978), that the main influence of physical aging far
below the glass-transition temperature, on viscoelastic behaviour is to increase the
retardation tites proportional to the aging time, In other words, an aging-time
shift factor &, can be defined, analogous to the temperature shift factor ey and
the stress shift factor a,. On the other hand, it was shown {Bauwens, 1987), that
aging far below the glass-transition temperature did not result in large changes
of the yield stress. The effect of physical aging can be erased by bringing the
sample above the glass-transition temperature, or by the application of plastic
deformation. The latter observation is called rejuvenation, and is in accordanece
with the point of view that yielding can be envisaged as a stress-induced plass
transition. Rejuvenation results in a significant decrease of the viscosity after the
“vield point”, and, consequently, strongly ampiifies non-homogeneous behaviour.
It is, therefore, also referred to as infrinsic strain softendng, and plays an im-
portant role in the evolution of strain inhomogeneities such as shear bands and
Crazes.

(Qualitatively, changes in mobility during aging and rejuvenation are often at-
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tributed to changes in the so-called free volurne (Struik, 1978; Hasan of al., 1983),
loosely defined as frec space, available for segment diffusion. Unfortunately, at-
tempts to quantify the free-volume concept have met serious diffienlities, since
there is no known definition of “free volume” that provides a satisfactory relation
hetween “free volume” and mobility, especially below the plass transition tem-
perature (Struik, 1978, Chapter 13). This is related to the fact that a thorough
theoretical understanding of the glass transition is still lacking (Mansfield, 1995),
which, in general, frustrates attempts to identify measurable parameters that ace
able to describe “mobility” (relaxation behaviour) around and below the glass
transition termperature (Hodge, 1995).

1.3 Scope of the Thesis

The main objective of this thesis, is to derive a structured phenomenoclogical
congtitutive equation for the thres-dimensional, finite, nonlinear viscoelastic be-
haviour of glassy polymners. To this extent, the correspondence between the linear
response characteristics of glassy polymers and the nonlinear deformation beha-
viour at high stress, as discussed in the preceding section, is Laken as a starting
point. It is assumed that each molecular relaxation process is described by a spec-
trum of relaxation times, all of which are equally dependent on stress and lemper-
ature. This implies, that the initial “yield point” is regarded as a stress-induced
glags transition, whereas the temperature dependence of the strain-hardening re-
sponse is assumed to originate from relaxation of the ent inglement network.

In the present investigation, all experiments were perlormed on separate sam-
ples of identical thermal history, their age exceeding by far the longest time in the
experiments, It is, therefore, assumed that all samples were equally affected by
physical aging at the start of the experiment, and, moreover, that aging during the
experiments could be neglected. Therefore, to a first approximation, aging was
not taken into acecount. In this thesis, also the complicated effects of stress on the
aging process, such as accelerated aging at higher stress levels and rejuvenation
above the “yvield stress”, are not considered. It is, therefore, to be expected that
especially in cyclic loading sitnations the model proposed will be less accorate.

1.4 Survey of the Thesis

To describe relaxation behaviour at large deformations, one needs to take into
account complexities which can arise when combining simultaneously large elastic
and plastic deformations. To this extent, a basic model, a so-called “Leonov
mode”, is presented in Chapter 2. A single Leonov mode is a Maxwell model
employing a rclaxation time that is dependent on an equivalent stress, proportional
to the Von Mises stress. Burthermore, a Leonov mode correctly separates the
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(elastic) hydrostatic stress and the (viscoelastic) deviatoric stress.

In Chapter 3, this Leonov mode is combined into a “multi-mode” expression to
describe the spectrum of relaxation times which rules the deformation behaviour
up to the yield point. Using polycarbonate as a model polymer, it is shown that
the multi-mode Leonov model is able to describe the three-dimensional, finite,
nonlinear viscoelastic behaviour in creep, stress relaxation, and tensile experi-
ments.

Some consequences of the proposed constitutive behaviour with respect to
strain localisation are discussed in Chapter 4. Using an extremely brittle poly-
styrene grade as a model system, it is shown that the kinetics of craze initiation are
determined by the nonlinear flow process, Cavitation of a plastically deforming
zone, which marks the onset of crazing, is either a very fast, or time-independent
Process.

Chapter 5 describes the state-of deformation dependence and the influence of
temperature on the strain-hardening responsge of polymer glasses. Using polycar-
bonate as a model system, it is shown that the three-dimensional aspects of strain-
hardening are adequately described hy simple neo-Hookean behaviour. Deviations
due to a finite extensibility, such as an asymptotic upswing in stress, were not ob-
served. It is also shown, that the temperature dependence of the strain-hardening
response is in accordance with the relaxation behaviour of the entanglement net-
work, as observed in the melt (reptation process).

Chapter 6 discusses some of the implications of the applied model strategy
with respect to aging and rejuvenation. It is shown that the free-volume approach,
employing the Doolittle equation, is not able to describe three dimensional aging
and rejuvenation. Moreover, it will be argued that it probably is not possible to
define a aging-time shift factor for the complete relaxation-time spectrum. This
would imply that during aging the relaxation-time spectrum not only shifts, but
also changes shape.

Finally, some of the conclusions and recommendations are summarized in
Chapter 7.



Chapter 2
Contimoum Mechanical Modelling

2.1 Introduction

In the introductory Chapter, 2 one-dimensional outline of the deformation beha-
viour of glassy polymers was discussed. In order to develop a three-dimensional
model, some continuurn mechanical aspects have to be taken into account, which
is the subject of this Chapter. In Section 2.2 the most frequently used kinematic
quantities are introduced together with their notation. Section 2.3 gives an over-
view of the balance laws of continuurm mechanics. In Section 2.4 a formalism to
derive thermodynamic consistent constitutive equations is presented. This form-
alism is then used to derive a basic non-linear relaxation model which will serve
as a “building block” for a detailed description of the finite non-linear viscoelastic
behaviour of polymer glasses in Chapters 3 and 5. In Section 2.5, some of the fea-
tures of this basic model, the so-called “compressible Leonov model”, are shown
and compared with some of the “standard” relaxation models used in plasticity
and in polymer rheology. The Chapter ends with a short discussion in Section 2.6.

2.2 Kinematics

Inn this section we briefly introduce some of the kinematic quantities used in this
thesis. A more complete discussion on this subject can be found in the literature
(Astarita and Marrucci, 1974, Chapter 2).

A material body B consists of material points 7 which, at a certain time t,
occupy a region in space. This region is called a configuration of B at time t.
The motion of B in space penerates a family of configurations which are related
by the function ¢ with inverse (=1

x=(X,#) and X = '(x,1) (2.1)

Here x is the position vector in the current configuration (at time t) of a material
point which was located at X in an arbitrary reference configuration. In this thesis
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the initial (undeformed) configuration is chosen as reference, which is called the
Lagrangian description of deformation. Since it is assumed that the inverse ¢ !
exists, catastrophic motions like ripping and interpenetration of matter are not
allowed,

The function ¢ fully specities the deformation history of B, The gradient
of (3, 1) with respect to X is a measure of the defortnation and i called the
deformation gradient tensor F:

(X, 1 Z

F=260%0 _ 0% (2.2)
ax ox

The change in volume between the reference and current configuration of the

infinitesitnal neighbourhood of a material point P iz related to the determinant

of ¥

g-:’-;; =J=detF (2.3)

The determinant of the deformation gradient tensor is, therefore, on physical
grounds, always pusitive,

Fror the deformation gradient tensor, several strain measuras can be derived,

the most important of which are the left and right Cauchy-Green strain tensors:

B=F-F" and C=F'.F (2.4)

Throughout this thesis, the rate of an arbitrary field quantity ¢ over the body
B denotes the time derivative of that quantity at a constant value of X:

. Dg _ 98(X,1)

2I!'
=BT & 25)
The velocity is the rate of position of the material points:

V== w (2.6)

The gradient of the velocity field gives the rate of deformation and is denoted by

L
ov  Be(X, ) Pe(Xt) X .,
L. - A L. 2.7
dx Mox IXM Ox F-F 27)

The symmetric part of L is the rate-of-strain tensor

D= (L+L7) (2.8)
and the skew symmetric part 1s the vorticity tensor
W = L - L7) (2.0)

The trace of D is related to the rate of volume .7
d(det F)
¢

=det(F)F T F=Jt(F - F ) =JurL=JuD  (2.10)
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2.3 Balance Laws

For a material body 55, mass, momenturn, moment of momentum and energy are
conserved quantities. This is expressed in the balance equations of continuum
mechanics. The law of conservation of mass reads in its loeal form:

b+ pdivy =0 (2.11)

where p is the mass density of the body.

Aceording to Canchy, the state of strese of a material body B is completely
determined by the Cauchy-stress tensor field T. This second order tensor maps
the outward unit normal n of a surface element d5 in BB to the traction vector t
on d5:

t=T n (2.12)

The Cauchy-stress tensor field is determined by the low of conservation of mo-
menium, which reads in 1ts local form:

pv =divT + ph (2.13)

Here, b is the external body force field per unit mass.

For some materials {fluids), large deformations can be obtained without a not-
able change in the volume. This kind of behaviour is often idealised by assuming
that the material is “Incompressible”. In case of such an incompressibility con-
straint, the hydrostatic part of the Cauchy-gtress tensor is undetermined, which
gives rise to a so-called extre stress tensor Tg, of which only the deviatoric part
iz of importance;

T=—pl+Tg (2.14)

Here, the unknown quantity p is determined by the boundary conditions. The
hydrostatic (thermodynamic) pressure —pp equals —p + %tr Tg and, therefore,
Eq. (2.14) can also be written as:

T=—m+TE (2.15)

For ordinary continua the law of conservation of mement of momentum states
that the Cauchy-stress tensor is symmetrie:

T=1T (2.16)

In addition to the balance laws of mass, momentum and moment of mo-
mentum, the material body B must also obey the first and second law of thermody-
namics. The first law of thermodynamics is the law of conservation of (internal)
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energy, which states that the rate of internal cnergy per unit volume, 7, equals
the heat, (2}, plus the power, W, supplied to the material body.

U=Q+W=0+1T:L (2.17)

Note that ¢ and W are inexact differentials, only their sum U is path independent.

The socond law of thermodynamics states that the entropy production is always
positive. Since, in this thesis, thermal effects are not considered directly, the first
and second law are not of immediate concern. However, from the second law
a dissipation rate may be defined as will he discussed in the next section on
constitutive principles.

2.4 Constitutive Principles

2.4.1 Restrictions on Constitutive Equations

fonstitutine equations are material specific relations necessary to clogse the set
of equations which describe the behaviour of the material body B This thesis
is concerned with rheological constitutive equations, which typically relate kin-
ematic quantities to the six independent compaonents of the Cauchy-stress tensor,
Although these cquations cannot be derived from any balance law, there are some
general aspects of material behaviour which lead to widely accepted restrictions
on the form of constitutive equations. The two most imoportant thereof are the
starting point of the famous stmple fluid theory of Noll (1958): the principles of
local action and material frame indifference.

The principle of local action states that the stress in a material point P is
completely determined by the deformation history of that point. In a mathematical
sense it states that the stress tensor in P is a functional of the history of the
deformation gradient tensor in P,

According Lo the principle of material frame indifference, also called the prin-
ciple of objectinity, a constitutive equation must be invariant under a Galilei trans-
formation. This means that the material behaviour must appear the same {or two
observers moving with different speed and/or undergoing a relative rotation Q¢)
with respect to each other (Q(#) is orthogonal).

An objective quantity is one which is subdue to certain transformation rules
dependent on the tensorial order: a sealar i always objective, a vector is objective
if it, transforms like 8" = -a and a second order tensor is objective if it transforms
like A* = Q-A-Q". An invariant quantity is not affected by a rigid body rotation
Q. A scalar is always invarlant. As an example, the left Canchy.Green strain
tensor B and the Cauchy-stiess tensor T are objective quantities and the right
Canchy-Green strain tensor is an invariant quantity. The velocity wradient L
transforms like: L* = Q- Q7 + Q- L - QT and is, therefore, neither objective nor



2.4 Constitutive Principles

17

invariant. An easy way to ensure objectivity of a constitutive equation is to relate
only objective quantities or invariant quantities.

Of particular importance is that the material derivative of an objective quant-
ity is neither objective nor invariant. Therefore, objective rates have been defined,
of which the most important are the Truesdell (or upper-convected) and the Jou-

v
mann (or corotational) timme derivative. The Truesdell time derivative A of an
objective tensor A, is the derivative with respect to a co-deforming frame-of ref-
erence (Astarita and Marrueci, 1974):

v -
A=A-L.-A-A.L7 (2.18)

The Jaumann time derivative A is the derivative with respect to a co-rotating
frame-of reference:

A=A-W.A-a-WT (2.19)

In principle, an infinite amount of objective rates can be defined.

2.4.2 Matrix Representation of Constitutive Equations

In the simple fluid concept it is assumed that constitutive variables like the stress
tensor are fully determined by the history of deformation (axiom of determinism).
Using the concept of fading memory, the history dependence of the material is then
described by functional relations (Coleman and Noll, 1963). However, using this
framework 1t is difficult to incorporate information about the micro-structure in
the constitutive equation. Therefore, in recent polymer rheology as well as plas-
ticity literature it is recognized advantapeous to formulate constitutive equations
using state variables e.g., the natural reference state concept of Besseling and
van der Giessen (1994) in the field of plasticity, the Poisson-bracket approach of
Beris and Edwards (1990) and the matrix model by Jongschaap ef al. (1994) in
polymer rheology. Here, the latter will be used to derive a constitutive equation
for the rate-dependent yield behaviour of polymer glasses without strain harden-
mg. To this extent we will first briefly introduce the matrix model, for a more
elaborate discussion we refer to the original papers of Jongschaap (Jongschaap,
1990; Jongschaap et al., 1994).

The notion of stete variables plays & central role in the matrix model of Jong-
schaap. The current state of the material body B is completely determined by the
momentaneous values of the external rate variables, [F,F,F,...,Q]. Alkhoungh
the body as a whole can be in a non-equilibrium state, it is assumed that there
are subsystems which are in thermodynamic equilibrium. The internal (thermody-
namic) state of these subsystems is described in the sense of equilibrium thermo-
dynamics by the current value(s) of a (set of) state variable(s) [X1, Xa,... , X,).
These may be scalar quantities like free volume, higher order tensorial quantities
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like the stored elastic strain, or even distribution functions. Since state variables
completely specify the state of the material body in the sense of equilibrium ther-
modynarmics, it must in prineiple be possible to fix or control their value for
an arbitrary time span by adjusting the external rate variables. Moreover, tho
slate variables must appear in Gibbs' fundamental equation, since this equation
completely describes the thermodynamic equilibrium state of the material body:

U=US X\, Xa,... , Xn) (2.20)

with the entropy per unit volume S. The rate of internal energy is obtained by
differentiating Eq. {2.20) with respect to time:

U=T§+ X+ FXe + + FoXa (2.21)

Here, 1" is the absolute temperature T = AU/85 and F; are the associated forces
defined as:

oL
= —=F(5 X, X ., X0 222
B.Xg ( kl x{d ) ( )

F

Note that all time derivatives in Eq. (2.21) are total differentials {path inde-

pendent) in contrast to Eg. (2.17), which was derived [rom a conservation law.
The sum FiX; is the rate of reversible storage of energy per unil volume,

Since entropy is not an easy quantity to control in practice, it can be eliminated

from the list of independent variables by introducing the Helmholtz free energy
A=U-T5:

A = —.97‘1 + .I"-‘lX] + Fg}t'j A+ Fqn)&n (223)

From this equation 1t can be scen that in an isothermal process, the rate of froe
encrgy A equals the rate of reversible storage of energy (Astarita and Marruedi,
1974).

The rate of entropy production T is defined as; & = § — @/ and can be
obtained by eliminating 7 from Egs. (2.17) and Bq, (2.21}:

r=2 (T:%- F;;fg) - % (2.24)

The quantity between the brackets is the difference between the total external
power supply to the material body and the rate of reversible energy storage in
the body and is denoted as the rate of dissipation A. By the second law of ther-
modynamics the absolute temperature is always positive and the rate of entropy
production is greater than or equal to zera. Therefore, the rate of dissipation is
always greater than or equal to zero,

Without loss of generality, we will for the moment assume that the interual
variable which determines the internal state of the body is a second-order tensor 8
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(sometimes called a “structure tensor”) with an associated thermodynamic force
M = 84/8%. In that case, for isothermal conditions, combining Eqs. (2.23)
and (2.24), the rate of dissipation ¢can be written as:

24

A=T:L—A=T:L—-§S~:S:T:L—M:S:_‘-O (2.25)

An important concept in the matrix model of Jongschaap is that of mucro-
scopic time reversal, where it 1s examined to what extent the rate of the state
variables 8 and the stress tensor T are affected by a reversal of the macroscopic
external velocity gradient L. Here it should be noted that any function f(L) can

be decomposed in an even part fT and an odd part f~ according to:
FL) = FHL)+ (L) = S(7(0) + F(-L) + 5(£L) — F(-L))  (226)

By definition, the parity of the velocity pradient L itself is odd. Recognizing that
state variables are even and (due to the second law of thermodynamics) the rate
of dissipation is also even, it is possible to decompose Eq. (2.25) in an even part:

A=AY=T":L-M:§* (2.27)
and an add part:
0=T*:L-M:8§" (2.28)
Without loss of generality, the reversible part of §, $" can be written as:
8 =A:L (2.29)

where the tensor A = A{L M) is of rank four and even with respect to L. A
very general expression for the reversible part of the stress tensor T# = T is
obtained by substitution of Eq. (2.29) in Eq. (2.28):

TH=TF=M:A=AT:M (2.30)

A similar relation was first discussed by Grmela (1985) in his Poisson-bracket
formulation of material behaviour.

To complete the matrix model, the fourth order tensors i and 3 are introduced
to describe the dissipative parts of the stress tensor T and the time derivative
of the state variable §7:

T?=T =pM,L):L and 5°=8%*=-g(M,L): M (2.31)

The tensors 17 and 3 are (semi-) positive definite and even with respect to L.
Equations (2.29), (2.30) and (2.31) ean be written in matrix notation, which
conchides the generic matrix representation of constitutive equations:

€13 % [ an
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2.5 Viscoelastic Behaviour

The matrix model of Jongschaap will now be applied to derive a general “single
mode” viscoclastic relationship, To illustrate the method, the limiting case of
complete (isotropic) elastic behaviour will be considered first,

2.5.1 Elastic Behaviour

In case of isotropic elastic behaviour it is assumed that the state variable determ-
ining the free energy is the left Canchy-Green strain tensor B, Because of isotropy,
the free encrgy A can be expressed in the invariants of B: A = A(7g, Ty, [11y),
The thermodynamic force consequently equals:

_ﬁ_@_A@Jr AA d115+ A dlllg
T 4B AfydB  Allg dB ' BIII; dB
= O’-]I + (’l’g(tl'(B)I - B) + df‘f(B)B ! (233)

with o the derivatives of the free energy (per unit volume) with respect to the
invariants of B, v

From kinematics it follows that the Truesdell (upper convected) derivative B
of B equals the null tensor O:

vV . -
B=B~-L-B-B-L" =0 (2.34)
"This leads to the evolution equation for B;
B=L-B+B - LT=A:L with Ay = 08Bmj + Bimdin (2.35)

Sinee there is no dissipation, 1 and B vanish and with Eqgs. (2.32), (2.33) and {2.35)
the constitutive equation for isotropic ¢lastie behaviour reduces to:

T = M:A=2(w;det(B) + (v + 22 t1 B)B — ;B - B)
B, (2.36)

which is the well known expression for Green elastic behaviour (Hunter, 1983).

The objective of this Chapter is to develop a three-dimensional expression for
viscoelastic behaviour, where the volume response is purely elastic. Therefore, as
a second example, the case of purely elastic behaviour will be considered where
the volume deformation and the change of shape are uncoupled.

Because of the independent volume deformation it is assumed that the free
energy is determined by two state variables, which can be derived from Be the
volume deformation factor J = det¥® = vdet B (for convenience JI will be
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used, instead of J) and the left Cauchy-Green strain tensor at constant volume
B = J-%B. In case of isotropic behaviour, the free energy will be a function of
the invariants of B and of J:

A= A(J 15, 115) (IIlz=detB=1) (2.37)

Two conjugated thermodynamic forces can be distinguished now, one related to
the volume deformation {IN) and one related to the change of shape (M):

A 1 /084
=s=== (W) I (2.38a)
- B4 N -
M = —= = &1+ &(tr(B)I - BT) (2.38h)
oB
From kinematics it follows that:
JI=Jtr(D)I=JII: L (2.39a)
ﬁ=L“-E+]§-(L“)T=(A_—§1§I):L=A:L (2.39b)

where the fourth-order tensor II is the dyadic produet of the second-order unit
tensor I with itself, and BI is the dyadic product of B with L
The constitutive equation for elastic behaviour now becomes:

T=N:JI+M:A=T:+T¢=

J (gﬁ) I+ 28 B + 24, 11(B)B? + 28,(B - B)®

B=L{B+B.(L9)"

(2.40)

JI = Jtr(D)I

Following Simo et al. (1985) and Rubin (1994}, a formal separation of the
volume effecta from the shape deformation can now be achieved by assuming that
there are two uncoupled contributions to the free energy, a “volumetric” part A®
and an “isochoric” (constant volume) part A%

A= AL I g} = A(J) + A' (I3, 115) (2.41)
which results in:
A BA _ . o
-y Ry A 81(B), &, = &(B) (2.42)

As might be expected, the hydrostatic stress T is determined solely by the volume
deformation, whereas the deviatoric stress T? is governed by B.
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2.5.2 Decompaosition of the Rate-of Strain Tensor

In order to develop a basic viscoelastic constitutive equation for glassy polymess,
the expression for clastic behaviour with a separated volume response, Feg. (2.40),
will be used as a starting point. First it 18 noted that the evolution equation for
B may also be written as:

4

B=B-W-B-B. W=D/ B+B.D* (2.43)

where B is the Jaumann rate of B.

In case of plastic deformation it is now assumed that the accumulation of elastic
strain (at constant volume) is reduced because of the existence of a (deviatoric)
plastic strain rate D, (Leonov, 1976). Therefore, the evolution equation {or B is
maodified to:

2

B,=(D!-D,) B+ B, (D-D,) (2.41)

Hence, there is no direct coupling anymore between the state variable B, and the
external rate variables, as in the case of elastic deformation in the previows section.
Therefore, kinomatic arguments alone are not sufficient to solve the evolution
equation for B, and a constitutive description of the plastic rate-of strain tensor
Dy, must be provided,

For materials in general (Krausz and Eyring, 1975) and polymers in gpecific
(Ward, 1990), it is known that the plastic shear rate is often well modefled by
using an Eyring-flow process. In the Eyring flow process i is assumed that
the free encrgy barrier for molecular jump events becomes asymmetric upon the
application of a (shear) stress.

The Eyring flow model can be depicted one-dimensionally as:

1 T
Y, = — sinh [ — 2.45
=g (Tn) (2.45)
Here, 7 is the shear stress and 4, is the plastic rate of shear. 'The malerial constants
(at constant temperature) A and 7y are related to the activation energy, AH, and
the activation volume, V*, respectively:

A= Ajexp (%}%)
: (2.16)
RT
h =
V-ﬁ

with Ag a pre-exponentional factor involving the fundamental vibration frequency,
R the universal gas constant and 7" the absolute temperature.
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By inversion of the Eyring equation, Eq. (2.45), a viscosity can be defined:
. T T
e (Tu a,rcsinh(A"yp)) (%)
o

The Eyring flow equation, (2.47), ig a special case of a one-dimensional non-
Newtonian fluid relationship, which ¢an be generalized into a three-dimensional
form in a standard way (Bird et al, 1987, Chapter 4):

(2.47)

Lpd
D, = S L -
7o ATCSInh (Aeg )/ Veq
Yeg = 4/ 2 tr(DP - Dy)

e
M Heq) (2.48)

The equivalent strain rate, 7., is defined such, that in case of a shear flow it
reduces to the plastic shear rate %, (and than Eq. (2.48) reduces to Eq. (2.47)).
Note that the plastic rate-of-strain tensor is parallel to the deviatoric Caunchy
stress tenmsor, since plastic fiow is assumed to be incompressible (trD, = 0).
Complementary to the equivalent strain rate, an equivalent stress (r.;) can be
defined, satisfying:

oo 1 Teq ..1}1 ¢ . Td
'y,q-Asmh(Tu) ) Teq = gtr(T T4) (2.49)

Substitution of Eq. (2.49) into Eq. (2.48), results in a three-dirmensional Eyring
equation, relating the plastic rate-of-strain tensor to the deviatoric part of the
Cauchy-stress tensor:

)
D, = — T

p = 2W(Teq) ’ W(TSq) = A‘Tom = 'n‘?oad('?'aq) {2.50)

k!

with the so called shift function a,. The Eyting equation can be augmented in
a straightforward way, to allow for pressure dependence and intrinsic softening
effects, but this will not be considered here.

On a fitting level, the Eyring equation is almost indistinguishable from the
Argon theory (Argon, 1973), used in the “BPA-model” (Bovee et ol., 1988), and
the “full chain model” (Wu and van der Giessen, 1993), but conceptually there are
differences {Ward, 1990). In contrast to the Argon theory, which regards yielding
as a nucleation-controlled process, the Eyring approach implies that deformation
mechanisms are essentially always present and that stress merely changes the
rate of deformation. This is clearly expressed by the functional dependence of the
Eyring viscosity on stress (Eq. (2.50). There is a linear region at low (equivalent)
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8tress (Tep < ), where the viscosity is equal to the xero-shear wiscosity 0y =
A7y and all the non-lincar stress effects are incorporated into the shift function
ay- Thus, according to the Eyring equation, deformation processes at very low
stresses, as observed in linear viscoelastic measurements, are accelerated by stress,
This point of view will be explored in more detall in Chapter 3,

A constitutive formmlation for viscoelastic behaviour with an elastic volume
response is now obtained by combining Eq. {2.40) for elastic behaviour with the
new evolution equation for B, Eqs. (2.44) and Eq. (2.50), leading to:

-
T=.J (‘i’“) I+ 2B, + 28, te(B,)B,” + 24,(B, - B,

o

B, = (D~ Dy)- B, +B,. (D¢- D,)

—
L
[ee }

—

JI = Jtr(D)I
Tn‘.

D= —

| ? gn(ﬂeq)

It is assumed that the volume changes remain small (J = 1) According
to Hooke's law, the hydrostatic-stress term T" = J(dA/d))] in Fq. (2.51) can
then be written as;: T = K'(J — 1)1, where K is the bulk modulus. Choosing
¢y = 0 (only a linear dependence of T¢ on B,) and identifying 24, to the shear
modulus &, the constitutive formulation, Eq. {2.61), rednces to:

T=K(J- I+ GB,° (2.52a)
B,=(D-D,) B4 B, (D'—D,) (2.52b)
J1 = Jtr(D)I (2.52¢)
Td
_ 2.52d
Dy 2 (Teg} (2.52d)
(%)
Y= An o (2.52¢)

- —_ns
Nireq
sinh | —
o

Although derived in a different way, this model is very similar to compressible
Leonov models as discussed by Rubin (1987, 1994) and Baaijens (1991),

2.5.3 Results

Some features of the “compressible Leonov model”, which was derived in the
previous section, are demonstrated in this section, using polycarbonate as a model
polymer.
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Material Parameters

The material parameters required by the compressible Leonov model are the linear
elastic constants K and & from Hooke's law and two non-linearity parameters
from the Eyring viscosity function: A and 7. The elastic constants were obtained
by measuring the Young's modulus E and the Poisson constant v in a tensile test,
at low siresses and strains, which resulted in F = 2335 [MPa] and v = .41 [-].
The shear modulus is related to F and v by Hooke's law: G = E/2(1 + 1) =
830 [MPa).

At the yield point, the plastic strain rate is approximately equal to the total
strain rate. Therefore, according to the Leonov model, at the yield point, a
material behaves as a generalized Newtonian fluid.

T = —pl + 27D, = —pl + 25D (2.53)

Becanse of the incompressibility constraint, the hydrostatic stress p depends only
on the boundary conditions. The yield point is defined by the moment the stress
rermaing constant at a constant applied strain rate and is, therefore, completely
determined by the viscosity function (Eq. (2.48)):

n= ;——ﬂ arcsinh(Ade) ,  Yop = /2(Dy, - Dy) (2.54)
ag

If the yield point @, is measured in a tensile experiment at a (Henky) strain rate
¢ in the z-direction, we have from Eq. (2.53):

00 0 —p 0 0 -k 00
00 0 |=|0 —p 0 |+20h)| 0 -1 0 (2.55)
00 o 0 0 -p 0 0 &

From this equation it can be seen that the equivalent plastic strain rate be-
comes Y., = 2¢°. The yield stress as a function of strain rate, therefore, equals:

Oy = Oy — Oz = TpV/ 3 arceinh(A&+/3) (2.56)

If the argument of the hyperbolic sine function is large, it can be approximated
by an exponential function and Eq. (2.56) may be transformed to:

g, = 7V/310(2Av3) + V3 Iné (2.57)

From the last equation it follows that the Eyring parameters from the Leonov
model can be determined by linear regression, plotting the vield stress versus the
logarithm of the strain rate. This is called an Eyring plot. Note that Eq. (2.57)
depends on the mode of deformation, for example, in shear, the generalized New-
tonian flow equation, Bq. (2.53), relates the shear-yield stress 7, to the applied
shear rate

Ty = 701n(24) + 75 In ¥ (2.58)
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In a planar extension test, the generaliced Newtonian Aow rule reduces to:
ol = 21 In{4A) + 27g In ¢ (2.59)

where r:rgr is the yicld stress in planar extension at a planar extension rate &%
Eyring plots for polycarbonate in various deforination modes are depicted in

Figure (2.1). The solid lines in this figure are the best fit of & single set, of Eyring

parameters: 7y = 0.9 [MPa] and A = 1.75 - 10% [s]. From this figare it is clear

100 [

80 Planar extension
e gy
ﬁ ___,.1'———"'______-‘_ M A
= T g
: 60 [ o ¥ -
g Uniaxial extension
'y

40 e

. — — —— ¥
g ———4r—¥ —— Shear
20 i— i L L b el MR
10-5 10 10-? 102 10!

Deformation rate [5-1]

Figure 2.1 Eyring piot for polycarbonate constructed from yield points in various
deformation modes. The solid lines are a best fit using a single set of Eyring paramctoers.

that at the yield poinl polycarbonate behaves like a generalized Newtonian Huid,

Having determined all the material constants, it iv now possible to caleulate
any response from the compressible Leonov model. First, a standard uniaxial
tensile test, will be vonsidered, in which a tensile bar is elongated in the x direction
at two different rates-of deformation. The tensile bar is stress (rec in the radial and
tangential direction (sec Figure 2.2a}. As second deformation mode, a plane-stress
shear test, also called “laboratory shear”, is chosen. The upset of a plang-stress
shear test is shown in Figure 2.2b, the shear strain ., = tan(#).

The response of the Leonov model, Eq. (2.52), for these two deformation
maodes, is given in Figure 2.3, In this figure it can be seen that the Leonov
mode]l predicts a sharp instead of a gradual transition from elastic to plastic
behaviour, which is very similar to that of an clastic-perfectly plastic watorial
with a rate-dependent Von Mises yield eriterion. This similarity originates from



2.5 Viscoelastic Behaviour

7

the proportionality of the equivalent stress 7,, with the Von Mises equivalent
SEYess Tum (Teq = Tum1/3V38).

2.5.4 Comparison with Other Models

A common way to describe viscoelastic behaviour are the so-called generalized
Moezwell models, often depicted as a number of springs and dashpots in series. In
a Maxwell model it is assumed that the velocity gradient is decomposed in an
elastic and a plastic part:

L=L,+L,=(D,+W.,) + (D, + W,) (2.60)

For the kinematic interpretation of L, and L;, usually a so-called unloaded state
or “natural reference state” is introduced (Besseling and van der (Giessen, 1994).

In case of isotropic materials, the crientation of the unloaded state is irrelevant
and the plastic spin W, is set equal to the null tensor. Furthermore, it is an exper-
imenta] fact that, to a good approximation, polymers, like most other materials,
show negligible volume deformation during plastic flow, i.a. tr D, = 0. Therefore,
the (deviatoric) plastic rate-of-strain tensor D, is assumed to be parallel to the
deviatoric Cauchy-stress tensor:

T = 2(Ir, 7o) D, (2.61)

This equation reflects that the viscosity may be pressure dependent although the
volume response is purely elastic,

The elastic part of the deformation is usually modeiled by a rate formulation
of Hooke's law for isotropic materials. This results in an isotropic relationship
between an objective time derivative of the Cauchy-stress tensor and the elastic
rate-of-strain tensor: '

T= A tr(De)T + 24D, = £°: D, (2.62)

Here, @ denotes an objective rate, A and g are the Lamé constants and £° is a
tensor of rank four.

Combining Eqs. (2.60), (2.61) and (2.62), leads to a standard viscoelastic rate
equation:

£ (D-D,)
Td
e 277(1'1”: ch)

The subject of objective rates is a controversial one in continuum mechan-
ics. By far the most common choice in plasticity theory is the Jaumann rate or
corotational derivative, which is the time derivative with respect to a co-rotating

&
T
(2.63)

D
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Figure 2.2 Schematic drawing of (a) the uniaxial tensile test and (h) the plane-stress
shear test, the shear strain +v = tan(¢).
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Figure 2.3 Calculated response from the Leonov model for polycarbonate in uniaxial-
tensile and plane-stress shear deformation, at two strain rates
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reference frame (Neale, 1981). Applying the Jaumann derivative in Eq. (2.63)
results in the so called coretational Mazwell model:

ﬂ(fTé Te) by e = 2Ly, o)D) + A (?—(—I%Ti)) tr(D) (2.64)

Another well known rate is the Truesdell or upper-convected time derivative.
As already mentioned above, this is the timne derivative with respect to a co-
deforming reference frame (Bird ef al, 1987, Chapter 9). Using the Truesdell
derivative in Eq. (2.63) results in what will be denoted as the “Truesdell-rate
model”:

v I
”__(I%Teq) T+ T = 29(Ir, 7g)D + A (”(—le)) (D) (265)

It can be shown that integration of the Truesdell-rate formulation of Hooke's
law results in correct hyperelastic behaviour, whereas integration of the Jaumann
rate results in a hypoelastic law (van Wijngaarden, 1988; Sansour and Bednar-
ceyk, 1993) (in contrast to a hypoelastic relation, a hyperelastic law is a con-
stitutive equation for elastic behaviour, which can be derived fromn a strain-energy
potential). Therefore, if large elastic deformations oceur like in polymer flow, the
Truesdell-rate is more attractive from a Physics point of view. This was for in-
stance shown by Beris and Edwards (1990), who found that their Poisson-bracket
formulation of continuum mechanies conld only accommodate the upper-convected
time derivative (and its counterpart, the lower-convected derivative).

From the Truesdell-rate model, Eq. {2.65), and the corotational Maxwell model,
Eq. (2.64), only the latter is approximately equal to the compressible Leonov
model, Eq. (2.52), in the limit of small elastic strains. This can be shown by tak-
ing the Jaumann derivative of the expression for the stress tensor in the Leonov
formulation, Eq. (2.52a):

G

T = KJ1+GB. - 3 (B (2.66)

Substitution of the evolution equations for B, and J, Eqs. (2.52b) and (2.52d) at

small isochoric-elastic and volume strains (f!e = I and J =2 1), then resulits in the
corotational Maxwell model:

T=Ktr(D)I+2G(D-D,) =L : (D =-D,) (2.67)

However, taking the Truesdell derivative of Eq. (2.52a), results in:

v , v _
T=KJI-2K{J-1)D+GB, — %tr(BE)I (2.68)
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Again substituting the evolution equations for B, and J at small elastic strains,
now regults in;

v
T

It

2G(D% - D) + K te{D)I - 2K (J - 1)D
(2.69)

=L (D-D,) - 2K(J/ —1)D

In this expression an extra term appears, compared to the Truesdell-rate model,
Eq. (2.65), which can not be neglected when the elastic strain rate tensor D, is
small (D = Dy}, In contrast to the Jaurann derivative, the Truesdell derivative
of a deviatoric tensor, in gencral, is not deviatoric. Therefore, the Truesdell
derivative fails to preserve the (physically meaningfull distinction berween the
hydrostatic part and the deviatoric part of the Cauchy-stress tensor (Sansour and
Bednarczyk, 1993).

It is possible, however, to reduce the compressible Leonov model, Eq. (2.52), at
small clastic strains, to a slightly modified Truesdell-rate model. For this purpose,
an extra-stress tensor Ty is defined, of which the deviateric part is equal Lo the
deviatoric part of the Cauchy-stress tensor:

Tz =GB, -1) ; Ti=T¢ (2.70)
Taking the Truesdell derivative of this expression, followed by substitution of the
flow rule for D, Eq. (2.61), and the evolution laws for B, and J, Eqs. (2.52b)
and (2.52d), at small clastic strains, results in:

T=K{J-1I+TE

0 Ir, Tey)

Ty + T% = 2n(Ir, 7ag) D (2.71)

J = tx(D)

Apart from the stress dependence of the viscosity, the Truesdell-rate equation
for the extrasstress tensor Tw, Eq. (2.71), corresponds to the upper-convected
Maxwell model, well known from polymer rheology (Larson, 1988, Chapter 1). Tn
the next section, this model, o be denoted as the UCM-model, will he evaluated
as well. Note that the corotational Maxwell model, Eq. (2.64), can be written in a
simnilar form as Eg. (2.71), using only the Canchy-stress tensor, due to the fortu-
nate fact that the Jaumann derivative of a deviatoric tensor is always deviatoric:

T=T¢w K(J - 1)I
Ip . P
n{ ;C;nq),r + T = (I, 7eg)D (2.72)
J = tr(D)
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The performance of the compressible Leonov model and the “standard” rate
equations involving the Truesdell and the Jaumann derivative are mutually com-
pared and evaluated by means of two simple homogeneouns deformation tests, using
polycarbonate as a model polymer. The material parameters are & = 830 MPa,
K = 4600 MPa (which is equivalent to E = 2335 MPa and ¢ = 0.41 [-]),
A= 17510 57! and 7, = 0.89 MPa. First a standard uniaxial tensile test
will be considered, in which a tensile bar, stress-free in the radial and the tan-
gential direction, is elongated in the x-direction at a deformation rate of 10~% 51
{see Figure 2.4).

15 o -
Uniaxial Tensile

&0

45 -

Tyer T,y [MPa]

15 -

0.00 0.02 0.04 0.06 0.08 0.10
En! Y;y [_]

Figure 2.4 Stress-strain curves for a uniaxial tensile test (T, v8. £pg) and a plane
gtress shear test (s, v§. ygy), both at a rate of deformation of 1073 5™1.

The calculated axial Cauchy-stress versus logarithmic-strain curves for all four
models are virtually indistingunishable, as can be seen in Figure 2.4. Moreover, as
might be expected from these single mode models, they all show a sharp instead
of a gradual transition from elastic to plastic behaviour.

The calenlated volume responge as a function of logarithmic strain, is depicted
in Figure 2.5, All four models show a correct volume response in the elastic region,
according to Hooke's law. However, the Truesdell-rate model displays a volume
decrease during plastic flow, which is not in accordance with the assumption of
incompressible flow during plastic deformation.

Second, a plane-stress shear test is calenlated. The Truesdell-rate model is
not considered anymore because of its anomalous volume decrease in a tensile
test. Virtually the same behaviour is obtained for all three models, Figure (2.4).
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Figure 2.5 Relative volumne deformation sy a function of logarithmic strain for a uni-
axial tensile test at a rate of deformation of 107% s~1.

However the caleulated normal stress in the y direction, T}, differs markedly
for the three models considered, as is depicted in Figure (2.6). In contrast to
the corotational Maxwell model, both the compressible Leonov model and the
UCM model display “correct” neo-Hookean behaviour in the elastic region, where
the noral stress in the y direction is a quadratic function of the shear strain,
This is to be expected, since integration of the Jaumann-rate version of Hooke's
law does not result in hyperelastic behaviour. In contrast, at higher straing, the
UCM model predicts zero normal stress in the v direction, whereas shear flow of
a polymeric substance normally results in negative normal stresses (Bird et al,,
1987, Chapter 3), as it is displayed by the corotational Maxwell model and the
compressible Leonov mode]l, The Leonov mode]l provides a smooth fransition
frum Neo-Hookean behaviour in the elastic region, to the more realistic response
of the coratational Maxwell cloment during yielding.

It is intercsting to note that the first normal stress difference, N1 (N1 =
Trr — Ty, 18 virtnally equal for all three models considered, as can be concluded
from Figure (2.7). Apparently, at small elastic strains, all three models differ
mainly in the hydrostatic-stress contribution, resulting in different absolute values
of the normal stresses thernselves. This can also he derived from the calculated
volume response, see Figure 2.8, recalling that in these models, the relative vohime
change is directly related to the hydrostatic stress.
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Figure 2.6 Normal stress in the y direction as a function of shear strain at a deform-
ation rate of 1073 gL,
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Figure 2.7 First normal stress difference N1 (N1 = Tgq — Ty, ) as a function of shear
strain at a deformation rate of 1073 571,
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Figure 2.8 Relative volume deformation as a function of shear strain for o plane-stress
shear test at a rate of deformation of 1074 g1

2.6 Discussion and Conclusions

In this Chapter a so-called “compressible Leonov model” has heen introdoced
which can be depicted as a single Maxwell model employing a relaxation time
dependent on an equivalent stress proportional to the Von Mises stress. The
model has been derived using a generic formalism for the development of ther-
modynamically consistent constitutive equations. Tt was assumed fthat the free
energy of the system at constant temperature, which is a measure for the amount
of stoved energy, is determined by two state variables, the isochoric elastic sirain
and the volume strain. The plastic strain rate was constitutively described by
stress-activated Eyring flow.

A comparison has been made between the Leonov model and two standard
constitutive equations for the description of relaxation behaviour, the Truesdell-
rate and Lhe corotational Maxwell model. It was concluded that neither of these
two standard models is able to describe plastic deformation accompanied by
large elastic deformations, as it can occur during strain-hardening of plassy poly-
mers, Integration of the corotational Maxwell model is known to result in ly-
poelastic elastic behaviour, whereas integration of the Truesdell model results in
a volume decrease during plastic flow in a tensile test. Based upon the Leonov
model, a slightly modified Truesdell-rate model was proposed, the so-cajled upper-
convected Maxwell model (UCM-model}, for which the volume remains constant
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during plastic flow in a tensile experiment.

In a plane-stress shear test, the UCM-model, the corotational Maxwell model
and the Leonov model only seem to differ in their volume response. The coro-
tational Maxwell model shows no volume response at all, which is somewhat
unrealistic for a plane-stress configuration. Contrary, the compressible Leonov
model and the UCM model display a volume increase in the elastic region, but
the volume does not remain constant after yielding as in the tensile test. It is
doubtful, whether experimental data can shed any light on these results. In prin.
ciple, the normal stress in the y direction can be measured experimentally up to
the yield point. After the yield point however, shear bands will develop, prohib-
iting & straightforward interpretation of the data. Furthermore, cven if it would
be possible to extract useful data after the yield point, the effects mentioned
would probably be overwhelmed by the strain-hardening response, which will be
discussed in Chapter 5. Since the models considered here are all “single mode”
models, even the response in the elastic region is not be predicted realistically.
Therefore, a theoretical and experimental study of the full non-linear viscoelastic
response up to the yield point of polycarbonate, will be discussed in the next
Chapter.



Chapter 3

Finite Nonlinear Viscoelastic Behaviour

3.1 Introduction

In the previpus Chapter, the compressible Leonov model was introduced to de-
scribe the yield behaviour of polymer glasses (and other materials). A single
Leonov mode is a Maxwell model employing a relaxation time that is dependent
¢m an equivalent stress proportional to the Von Mises stress. Furthermore, a
Leonov mode correctly separates the (elastic) hydrostatic and (viscoelastic) de-
viatoric stress response and accounts for the geometrical complexities associated
with simultaneous elastic and plastic deformations.

However, the use of a single stress-dependent relaxation time cannot account
for the (non)linear viscoelastic response at small and moderate strains, Moreover,
using a single relaxation time results in an abrupt transition from elastic to viscous
behaviour that is rarely seen in practice. Therefore, a deseription employing
a spectrum of relaxation times would be more appropriate. Tf the additional
assumption is made that all relaxation times depend in the same way on the
total stress, one arrives at the principle of time-stress superposition, equivalent
to time-temperature superposition, where it is assumed that all relaxation times
depend in the same way on the (total) temperature. Time-stress superposition
implies that the nonlinear effect of stress is to alter the intrinsic time-scale of
the material, hence it is sometimes referred to as a “stress clock” (Bernstein and
Shokooh, 1980).

Other choices are possible as well. Valanis {1971) assumed that strain instead
of stress accelerates relaxation processes in a material. However, using the total
strain as a variable implies that the material under consideration is a solid and
gince all materials ultimately flow, it is better to use a fluid point of view (Bern-
stein and Shokoolt, 1980). Shay, Jr. and Caruthers (1986) considered a volume
cloek to describe nonlinear viscoelastic behaviour and yielding. However, in this
way, they were unable to recover Von Mises like yvield behavicur that is observed
experimentally, Furthermore, volume recovery measurements by McKenna et al.
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(1994) sugpest that the structural state of a glass (its volune) is deconpted [rom
the mechanical stress field. Hasan and Boyee (1995) used a spectrum of activa-
tion energies to describe the distributed nature of local plastic transformations.
However, using a spectrum of activation cnergies results in thermo-rheological
complex behavicur which is not always observed in practice,

The concept of time-gtress superposition has heen used frequently to describe
noenlingar viscoelastic behaviour. 1t was incorporated in the Boltzmann integral
by Schapery (1969) using the concept of a reduced time (Leaderman, 1943). Bern-
stoin and Shokooh (1980) showed that the introduction of special stress-clock
functions can transform a viscoelastic relation (in their case the class of BKZ-
equations (Larson, 1988)) into an elastic-perfectly plastic constitutive equation.
In this Chapter, time-stress superposition is used to obtain a compressible three-
dimensional constitutive equation which provides a unified description of Hinite
nonlinear viscoelastic behaviour and yield. The constitutive relation will be veri-
fied experimentally using polycarbonate as a model polymer.

It is well known that the viscoelastic response of polymers changes with time,
a thermo-reversible process called physical aging (Struik, 1978). Tn thiy Chapter,
we will limit ourselves to samples which all have the same age, exceeding by far
the longest titne in the experiments, Therefore, to a first approximation, aging
will not be taken into account. Some aspects of aging in relation to mechanical
behaviour will be discussed in Chapter 6.

3.2 Theory
3.2.1 Single Mode Approach

ln Chapter 2 an elasto-viscoplastic equation for polymer glasses (and other ma-
teriais) was introduced, the so-called compressible Leonov model (Leonov, 1976,
Tervoort et al,, 1994). In this model a formal decoupling of the volume response
and the isochoric "shape” rosponse was achieved by assurning that the free encrgy
of the system is determined by two state vartables: the relative volume deforma-
tion, J = det(F), where F is the deformation gradient and the isochoric Cauehy-
Green strain tensor, B, (dcat{ﬁe) = 1) {see also Rubin (1937, 1994) and Bualjons
(1991)). Using a formalism developed to derive thermodynamically consistent
constitutive equations (Jongschaap et al, 1994), it was shown that the hydro-
static stress is coupled to the volume deformation, whereas the deviatoric stress is
determined by the isochoric {constant volume) elastic strain. Furthermore it way
assumned that the volume deformation remained elastic whereas the aceumulation
of isochoric-elastic strain was reduced because of a plastic strain rate Dy, At
amall volume deformations (J = 1) the compressible Leonov model reduces to
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(see Eq. (2.52)):

T = K(J~ 1)1+ GBY

B.=(D-D,) B, +B, (D-D,) (3.1}
J = Jtr(D)
Here, K is the bulk modnlus, G the shear modulus, the superscript “d” denotes

the deviatoric part and B, is the Jaumann or co-rotational derivative of B,:

B.=B, - W.B, - B, W (3.2)

with the vorticity tensor W. The plastic strain rate D,, which reduces the ac-
cunmulation of isochoric-elastic strain, was constitutively described by the Eyring
equation (see Eq. (2.50)). The Eyring equation for plastic flow is a semi-empirical
relation which deseribes stress-activated flow of structural units in a material, like
segments in case of a polymer. It is depicted three-dimensionally as {Tervoort
et al., 1994):

-
Td.'
D —
? 277(Teq)
%)
M(Teq) = Anp = b (Teg) (3.3)
sinh (%"-)
Teg = 4/ = tr(T? - T9)

Here, 7o, is an equivalent stress, proportional to the Von Mises stress. The
material constants (at constant temperature) A and my are related to the activation
energy, AH and the activation volume, V*, respectively:

A= Agexp (%) , o= —1‘3.—1: (3.4)
with Ay a pre-exponential factor involving the fupdamental vibration frequency,
R the gas constant and T the absolute temperature. The product A7y is the zero-
shear viscosity 0. The shift function a, (7.,) is, in fact, a dimensionless viscosity
which is equal to one when 7., < 7¢ and rapidly decreases to zero when 7, = 7.

From Eqs. {3.1) and (3.3) it can be seen that the deviatoric stress response
as described by the compressible Leonov model (to be called: “a single Leonav
mode™) can be depicted as a single Maxwell model employing a nonlinear relax-
ation time A = /G



Finite Nonlinear Viscoelastic Be_hayiour

G N = Node(Tey)
AN DS
A y
D. D,

Figure 3.1 Graphical representation of the deviatoric streas respouse of a single Leonaov
maocde.

In the Eyring approach it is assumed that deformation processes are cssen-
tially always present and that stress, like temperature, merely changes the rate
of deformation. This is reflected by the functional dependence of the relaxation
time on stress (Egs. (3.1) and (3.3)). At low equivalent stress (7., < 7y) there
is a linear region where the relaxation time is constant, A = Ay = mp/. At
higher stress (1., > Tp} the relaxation time decreases rapidly as described by the
shift function a,(r.,). Thus the intrinsic time scale of the material (“the internal
clock™) is changed by the application of stress, hence the name “stress-clock”
material (Betnstein and Shokooh, 1980). The nonlinear effect of stress can be
ohserved most clearly in a constant stress experiment, like the creep test, For a
creep experiment at a very low (equivalent-) stress level (1., < 7)) the compliance
curve of a single Leonov mode is determined hy the linear relaxation time Ag as
cah be seen in Figure 3.2, that shows the compliance curves versus time, with the
aquivalent stress as a paramoter.

For creep tests performed at higher stress levels (r,, > 7;) the relaxation
time 15 reduced by a factor a,(7.,). On a logarithmic time axis this results in
a horizontal shift of the compliance curve (hence the name “shift function”). A
single Leonov mode is not capable of predicting realistic compliance curves, sinee
it is dominated by a single relaxation time, see Figure 3.2.

A set of typical wensile curves at various strain rates, calculated from a single
Leonov mode is depicted in Figure 3.3,

As with the creep test, a single Leonov mode is not able to offer a realistic
description of the experimental curve, as it only accounts correctly for the initial
modulos and the (strain-rate dependent) “yield stress”. Thiz is not surprising
since both are essentially the material parameters supplied to the model. There
exists, however, a serious discrepancy between calenlated and experimental curves
before and after the (experimental) yield point (the maximum in the tensile curve),
which shows a more gradual transition from elastic to yield behavienr and the yicld
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Figure 3.2 Compliance curves for a single Leonov mode at various stress levels.
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Figure 3.3  Calculated tensile curves for a single Leonov mode at various strain rates.
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point is, therefore, generally found at a higher strain. Inhomogencous defornation
and possible strain softening account for the discrepancy after the “yield point”.
In contrast, before the “yield point” the deformation is fairly homogeneous and
the deviation between model predictions and the experimental curves must be due
to another course. It will be shown that a quantitative description of a tensile
test, and in fact the complete three-dimensional nonlinear viscoclastic behaviour
of polymer glasses, can be obtained by using a spectrum of stress-dependent
relaxation times, rather than one.

It is to be noted that the inability of a single Leonov mode to describe ac-
eurately the nonlinear viscoelastic response of a polymer glass is inherent to all
models which employ only ohe stress-dependent relaxation time (Boyee et al,
1988; Wi and van der Giessen, 1993).

3.2.2 Multi Mode Approach

From polymer physies it is weli known that time-dependent hehaviour of amorph-
ous polymers can result from a wide variety of molecular transitions. The most
important of these is the glass transition (o-transition) which is associated to main
chain segmental motion, Many polymers also exhibit so-called secondary trans-
itions (F-transitions) originating from the motions of side groups, end groups, or
restricted motion of the main chain (Ward, 1990),

The time dependence, resulting from a specific molecular transition, is gener-
ally mathematically represented by a spectrum of relaxation fimes, In contrast, it
is usually assumed that the activation of a molecular transition by temperature is
detormined by a single parameter, the activation encrgy AL, This implies that all
the relaxation times, due to a specific molecular transition, depend in an identical
way on temperature, resulting in the well known time-temperature superposition
principle (thermo-rheological simple behaviour), According to this principle, the
influence of temperature on viscoelastic properties, whose time dependence 1s de-
termined by {a set of) relaxation time(s), can be described by a so-called reduced
time t* (Leaderman, 1943):

£ dt’
0 ar

= (3.9)
Dividing the real time ¢ by a shift factor ap results, on a logarithmic time axis,
in a horizontal shift by a factor log{ay), where ar s the ratio of the relaxation
tmes at teraperatures T and Ty,

In practice, experimental verification of the applicability of time- temperature
superposition consists of two parts (Ferry, 1980): First it is attempicd to construct
a smooth master curve of a viscoelastic quantity, like the creep compliance, at
a cortain reference temperature. This is done by shifting curves measured at
different, temperatures horizontally along the logarithmie time axis. Second, if a
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smooth master curve is obtained, a plot of the resulting shift factors as a function
of temperature must obey a “familiat” relation, e.g. the Arrhenius equation or
the WLF-equation.

According to the Eyring approach, besides activation by temperature, a mo-
lecular transition can alse be activated by stress (to be more precise: by the
equivalent stress 7,). Again it is commonly assumed that stress activation is
described by a single parameter, the activation volume V*, Indeed, determination
of the activation energy and volumne is often used for the identification of certain
molecular transitions (Ward, 1990). It is, therefore, logical to assume that, like in
the case of activation by temperature, all relaxation times are the same function of
the total equivelent stress. This leads to the principle of time-stress superposition,
which states that the nonlinear effect of stress can be described by using a reduced
time, lke in the case of temperature. It implies that, if a discrete spectrum of
Leonov modes is used as an approximation of the relaxation-time spectrum, all
modes should be shifted by the same factor a,(r,,), where 7., is the totel equi-
valent stress. Furthermore, it implies that the experimental verification of the
applicability of time-temperature superposition, as described above could also be
used to justify time-stress superposition. Data obtained for constant stress levels
must shift to a smooth master curve and the resulting shift factors, as a function
of equivalent stress, must obey a “familiar” relation like the Eyring eguation,
Eq. (3.3). In essence, for polymer glasses, time-stress superposition implies that
vielding can be regarded as a stress induced glass transition.

3.3 Experimental

Experiments were carried out on test specimens produced according to ASTM D
$38 from extruded sheets of Makrolon (bisphenol A polycarbonate, Bayer), 2 mm
thick. Polycarbonate was selected as a model polymer since, at room temperature,
it exhibits only one active relaxation mechanism of interest; the glass transition.
At room ternperature the S-transition, which is situated at -100 *C to -50 *C, is
only relevant for very fast processes.

Stress relaxation experiments were performed on a Frank 81565 tensile tester,
whereas creep and constant strain rate experiments were performed on a Zwick Rel
servo-hydraulic tensile tester (20 kN). In all cases the extension was measured
using an Instron (2620-602) strain gauge extensometer with a measure length of
50 mm and a range of £ 2.5 mm. The radial strain was measured using an Instron
(2640-008) transverse extensometer. The relative aceuracy in the force and strain
measurements was 1%.

Stress relaxation experiments, with loading times not exceeding 10 s, were
performed at strains of 0.5% to 3%. Creep experiments, with loading times not
exceeding 10° s, were performed in dead weight loading at loads of 10 to 55 MPa.
The strains and loads in the stress relaxation and ereep experiments were applied
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within 1 . Tensile test experiments were performed at constant strain rates up to
1072 57!, Bach experiment was performed on a new sample at room temperature.
All test samples had the same age, which exceeded by far the longest time iu the
experiments,

3.4 Results

In Section 3.2 it was argued that the deformation behaviour of glassy polymers is
determined by the linear relaxation time spectrum which is shifted to shorter times
when stress is applied. In this section, the admissibility of this time-stress super-
position principle will be verified experimentally using polycarbonate as a model
polymer. Subsequently the lincar relaxation time spectrum will be determined in
order to complete the multi-mode Leonov model for polycarbonate. Finally, the
model will be verified using constant strain rate experiments and stress relaxation
experiments (in tensile deformation).

3.4.1 Admissibility of Time-Stress Superposition

In order to verify, experimentally, the admissibility of time-stress superposition for
polycarbonate, it was frst attempted to construct a smooth master curve from
# pumber of creep tests at different stress levels as deseribed in Scetion 3.2.2.
The results of the creep tests are depicted in Figure 3.4, The curves were shified
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Figure 3.4 Crecp complisnce of polycarbonate at varions loads at 20 °C.
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horizontally along the logarithmic time axis with respect to the 10 MPa reference
curve. The resulting master curve is depicted in Figure 3.5.
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log{a,,)
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0.60

VT RTINS E FEFRTT EER TR i W ound 3 ool

104 108 10# 107 10¢ 1031 1012 0¥

t [5]

Figure 3.5 Construction of the master curve of the creep compliance at a reference
stress of 10 MPa.

From Figure 3.5 it is clear that a smooth compliance master curve can be
constructed by horizontal shifting of the creep tests at different stresses. It must
be emphasized that the compliance master curve at 10 MPa is a “virtual” curve
that will strongly deviate frorn an experimental creep test on the same time scale,
due to aging effects.

The logarithm of the shift factors log(ain), are tabulated in Tabel 3.1 as a
function of the creep load:

g [MPe] [ 10| 15 | 20 | 25 |30 35 | 40 | 45 | 50 | 525 | 55 |
Tog(aa) [] | 0 |-1.5 | -2.6 | 3.0 | -5 | 65 | 74| -8.6 |10 | -11.4 | -13.2

Table 3.1 Shift factors resulting from the construction of the 10 MPa master compli-
ance curve.

The second part of the experimental verification of time-stress superposition
conaists of fitting the shift data from Tabel 3.1 with the Eyring equation, Eq. (3.3),
see Figure 3.6. It is clear that the creep data are determined by one Eyring shift
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Figure 3.6 Logarithm of the shift factors with respect to 10 MPa obtained from the
creep tests as a function of equivalent stress. The solid line is a Gt using the Eyvring shift
function (Ey. (3.3)),

function only. Therefore, the sccond condition is also met and we may nssume
that time-stress superposition may be applied.

3.4.2 Material Parameters

Now it is verified experimentally that time-stress superposition applies to polycar-
bonate, the multi-mode Leonov model for polycarbonate can be completed by
determining the material parameters.

The Byring Porameters

The Eyring viscosity function, Eq. (3.3), which describes the nonlinearity in the
stress response, 18 determined by two parameters, the zero-shear viscosity 7 and
the nonlinearity parameter 7o, which may be determined by using an Eyring plot
(see Chapter 2, Section 2.5.3). In order to make such a Eyring plot, we need to
extract viscosity data from the creep tests at different stress levels (Figure 3.4).
In principle, this should be done by measuring the platesu.creep rate (£5) of
each creep experiment. The plateau-creep rate is determined by the constancy of
the creep rate at an imposed (constant) creep load gy and, therefore, defines a
viscosity 15 = @o/£u. Note that this is an extensional viscosity (as denoted by
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the superscript “e™) since the creep data were obtained from tensile experiments,
In terms of the Leonov model, the plateau-creep viscosity 75 is equal to the sum
of the viscosities nf = 7§, of all the separate Leonov maodes:

[+
Mot = ETZ = Zﬂ&ﬂa("'ﬁ) (3.6)

where Tg’; is the equivalent stress associated with the creep load oy, The plateau-
creep rate 1s usually obtained from a Sherby-Dorn plof, which is a graph of the
crecp rate versus creep strain.
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Figure 3.7 Sherby-Dorn plot for the determination of the plateau creep rate at 55 MPa.

Due to the limited experimental time window, a plateau-creep rate was ob-
served only at the highest creep load of 55 MPa. From the Sherby-Dorn plot,
the value of the plateau-creep rate was estimated to be €y = 107° 571, leading to
a plateau-creep viscosity of 1§, = 55 - 10° MPas™! (see Pigure 3.7). For all the
other creep tests, a constant creep rate could not be established experimentally.
However, according to Eq. (3.6), the ratio of the plateau-creep viscosities at two
different stress levels v}, and 75, is equal to the ratic of the shift factors at those
stress levels:

77;.! (Telq) iy (Téq)
Ta(7d)  8.(3)

(3.7)
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Therefore, the valuc of the plateau-creep viscosity at 58 MPa may he used to
conrvert the plot of shift factors (Figure 3.8) to a graph of viscosity as a function
of ecquivalent stress (Figure (3.8)).

In order to obtain an accurate estimation of both the activation volume ()
and the zero-shear viscosity ng, it is necessary to have viscosity data up to the
(equivalent} “yield stress”. Therefore, yield data obtained by tensile testing at
different strain rates were included in Figure 3.8, Note that a “yield point”
also defines a viscosity since it 1s determined by the moment the stress becomes
constant at an imposed constant strain rate. Since it is irrelevant whether this
steady-state situation is achieved at an imposed stress or imposed sérain rate,
the “yield viscosity” is also equal to the sum of the viscositics of all the separate
Leonov modes:

m= D b (TE) (3-8)

where 7% is the equivalent yield stress.

The results of the tensile tests at different strain rates are shown in Tabet {3.2).
A plot of all the viscosity data is depicted in Figure 3.8, The solid line is a best
fit vsing a single Eyring viscosity function. From this figure it is clear that both
vield and creep are determined by the same Eyring process. The best it resnlted

in a value for ) = 0.89 MPa and for n§ = 4.6561 - 102° MPa-z.

d 3= "] T4 107 [ 15 W7 [ 14 10 % [14-107 [ 14 102 16-10-° [ 14-18 ?]
7, {MPa] 617 59,9 63.6 63.1 63.1 65,3 6.6
ny [MPasl [ 45.10° 4.1 108 4.6 107 4.5 107 1.5 10% 4.3 107 4,7 10
L Teq¥ [MFPa] 45.6 34,6 36.7 36.4 36.4 TN AY.5

Table 3.2  Viscosities from yield points at different strain rates ss a function of equi-
valent stregs.

Linear Viscoelastic Porameters

In the limit of small stresses and strains, the multi-mode Leonov model reduces
to a generalized Maxwell model (in shear). In order to find the linear Leonov
(Maxwell) parameters, we start from the the 10 MPa compliance master curve,
which was obtained through application of the time-stress superposition principle
(Section 3.4.1). This compliance curve is complete towards the long time limit,
since the platean creep regime was established. However, the 10 MPa compliance
master curve does not constitute the true lpear compliance curve. The value
of the nonlincarity parameter 7p indicates that, above an equivalent stress of
0.8% MPa, polycarbonate already behaves in a nonlinear way. Therefore, the
true linear compliance curve could only be obtained indirectly by shifting the
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Figure 3.8 A plot of the elongational viscosity as & function of equivalent stress,
obtained from creep data (v) and yield data (o). The solid line is a Bt using & single
Eyring function.

10 MPa master curve horizontally by a factor a,(ri¥ #2). The resulting linear

compliance curve is depicted in Figure 3.9, Also plotted in Figure 3.9 is the single
maode approximation of the linear compliance curve, which is obtained by only
taking into aceount the glassy compliance D; and the total zero-shear viscosity #g.
The solid line in Figure 3.9 is a fit using a generalized Kelvin-Voigt model (see
Appendix A):
= t
D) = Dy + 3. Dl — %) + = (3.9)
iz 1 T
with D, = 1/E,, where the initial (“glassy”) Young’s modulus was measured to
be: B, = 2335 MPa. The fit was obtained using CONTIN, a constrained regulariz-
ation program developed to invert iil-posed lingar integral equations (Provencher,
1982a, 1982b). Using an equidistant grid of relaxation times, eighteen modes
were necessary t0 obtain a accurate description of the linear compliance curve.
No further attempts were made at this stage of the research to reduce the number
of modes.
In order to obtain the linear Leonov parameters, the linear tensile compli-
ance curve D(t) must be converted to the linear shear relaxation modulus curve
((¢). This was done by invoking the correspondence principle (Tschoegl, 1989),
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Figure 3.9 The linear compliance curve D{t) (o). The solid line iv a fit using a
generalized Kelvin-Voigt model, for comparison the single mode approximation of the
yield behaviour is added (dashed line).

agsumning a constant bulk modulus K = 4300 MPa {which corvesponds to the
experimentally determined initial Poisson ratio of polycarbonate v = (1.41 [-]}, see
Appendix A. The resulting shear relaxation modulus is depicted in Figure 3.10,
the eighteen shear moduli and relaxation times are tabulated in Tabel 3.3. Tt must
be emphasized that these linear parameters bear no physical meaning, only the
relaxation modulus G(t) itself is a material function.

3.4.3 Model Verification

In Section 3.2.2 it was argued that the finite nonlinear viscorlastic behaviour of
polymer glasses is determined by the linear relaxation time spectrum which is
shifted to shorter times when stress is applied. In the previous Section 3.4.2, the
linear relaxation time spectrum for a model pelymer, polycarbonate, was approx-
imated using cighreen Leonov modes, all subdued to the same stress dependence.
In thiz Section, this multi mode Leonov constitutive equation of polycarbonate
will be verified by constant strain rate experiments {homogeneons uniaxial tensile
tests) and stress relaxation cxperiments,
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Figure 3.10  The linear shear relaxation modulus ({1t} caleulated from the linear tensile
compliance curve D(t) as described in Appendix A.

Uniaziol Tensile Test

The first verification experiment ronsidered, is a standard uniaxial tensile test
at various constant strain rates {constant crosshead speed). Figure 3.11 shows
a comparison between the experimental data {open symbols) and the numerical
predictions (solid line). It is clear that, in contrast to a single mode Leonov
model {see Figure 3.3), the multi mode Leonov model provides an quantitative
description of the strain rate dependent “yield behaviour” of polycarbonate.

In the multi-mode Teonov model, polycarbonate is essentially regarded as
a highly nonlinear fluid. It is, therefore, instructive to divide hoth stress and
strain data in Figure 3.11 by the constant applied strain rates and make a plot
of the extensional viscosity versus time, as i3 common practice in rheology, see
Figure 3.12.

During the tensile test the lateral contraction was measured as well, TIig-
ure 3.13 shows a comparison between the experimental data (open symbols) and
the numerical predictions (solid line) of the radial strain versus axial strain. The
dashed line is the prediction for an elastic solid with a (constant) Poisson ratio
equal to the initial Poisson ratio of polycarbonate v = 0.41,

From Figure 3.13 it is clear that the multi mode Leonov model also provides
a quantitative description of the strain rate dependent volume behaviour during
tensile testing of polycarbonate up to the “yield point”.
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Figare 3.11  Uniaxial tensile experiments at various strain rates (open syrabols), eom-
pared to mode! predictions (solid lines).
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Figure 3.12  Extensional viscosity build-up measured at various (Hencky) strain rates
(symbols), compared to maodel predictions (solid lines).
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i A,‘ [S] G,; {MP&] s = )\o‘i . G;‘ [MP&S]
1 ] 0.7080e+04 | 0.2254e+02 0.1596e+06
2 | 0.3548e+06 | 0.9810e+01 0.3481e+-07
3 | 0.2512e4+07 | 0.1096e--02 0.2753e408
4 | 0.1778e-+08 | 0.1354e+02 0.2407e--09
5 | 0.1259¢+09 | 0.16332+02 0.2056e+-10
6 | 0.8913e+09 | 0.1687e+02 0.1503e+11
7 | 0.6310e+10 | 0.2125¢+02 0.1341e412
8 | 0.4467e+11 | 0.2331e+02 0.1041e+13
9 | 0.3162e+12 | 03336402 0.1055e+-14

10 | 0.223%-+13 | 0.3642¢+02 0.8153e+14
11 | 0.1585e+14 | 0.4226e+02 0.6608e+15
12 1 0.1122e415 | 0.4532e402 0.5085¢+16
13 | 0.7943e415 | 0.5148e+02 0.4089e+17
14 | 0.5623e+16 | 0.7140e+02 0.4015e+18
151 0.3981e417 | 0.5088e4-01 0.2026e+15
16 | 0.2818e+18 | 0.3992e4-03 0.1125e421
17 | 0.1995e+19 | 0.6563e+01 0.1310e+20
13 | 0.1413e+20 | 0.204%e+01 0.2894e4-20

Table 3.3 Linear Leonov parameters obtained by fitting the linear relaxation moduus

Stress Relazation

In order to verify the deseription potential of the nonlinear viscoelastic behaviour
of polycarbonate, offered by the multi-mode Leonov model, nonlinear relaxation
experiments were performed. The results of experimental data and numerical
caleylations at various strain levels are depicted in Figure 3.14.

Note that all the stress relaxation experiments displayed in Figure 3.14 are
essentially nonlinear, since the equivalent stress levels are well above the value of
the nonlinearity parameter 5 = 0.89 MPa. In contrast, visually, the response up
to one per cent strain appears to be quite linear, which illustrates that conclu-
sions about true linear behaviour can only be drawn with great precaution. This
becomes evident when describing these nonlinear stress-relaxation experiments.
In an ideal stress relaxation experiment, it is assumed that loading takes place
instantanecusly. In practice, however, loading always occurs over a finite time.
In case of true linear behaviour the difference in response between instantaneous
and ramp-like loading is negligible after ten times the loading time (Struik, 1978).
In contrast, due to the nonlinear behaviour, it was found that, in order to obtain
a pood agreement between experimental data and calculations, as displayed in
Figure 3.14, it was necessary to take into account the exact loading program as
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used in the experiment. Agsuming an instantaneous loading program in the caleu-
lations, resulted in differences with the experiments which persisted much longer
than ten times the experimental loading time, This kind of “hidden” nonlinear
behaviour could be of importance when considering the influence of a short stress
pulse on creep behaviour (Struik, 1978) as was also mentioned by McKenna et al.
(1994).

Shear Test

Another possible verification experiment would be a plane-stress shear test also
called “laboratory shear” (see Figure 3.15, the shear strain v = tan(#)). The
predicted shear stress 7 versus shear strain v data are depicted in Figure 3.15.
Note that the “vield points” in tensile and in shear deformation compare very well
to a (strain rate dependent) Von Mises criterion, This is due to the fact that the
equivalent stress 7,,, which determines the nonlinear response, is proportional to
the Von Mises equivalent siress. Unfortunately, at present, we are not able to
measure the shear stress reaponse experimentally, nor could we find accurate data
in the literature for samples having the same thermal history as our samples.
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Figure 3.15 Calculated plane-stress shear test cxperiments, at various shear strain
rates. The left axis i the shear stress and the right axis is the normal stress in the y
direction.
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3.5 Discussion and Conclusions

The present research shows that the finite three-dimensional nonlinear viscoelastic
behaviour (including yielding) of polycarbonate is completely determined by the
(in good approximation constant) butk modulus, the linear shear relaxation time
spectrum and one nonlinearity parameter, which describes how the spectrum iy
shifted to shorter times upon loading. The nonlinearity parameter (related to the
activation volume) and the linear relaxation time specterum can be determined on
hasis of creep experiments and constant strain rate experiments using time-stress
superposition. Polycarbonate was selected as a model system, sinee it exhibits
only vne relaxation mechanism of interest at room temperature (the glass trans-
ition). A quantitalive three-dimensional constitutive equation for polycarbonate
as a model polymer was obtained by approximating the relaxation time spectrurn
by eighteen Leonov modes. A single Leonov mode is a Maxwell model employing
a relaxation time which is dependent on an equivalent stress proportional to the
Von Mises equivalent stress. Furthermore, a Leonov mode correctly separates
the hydrostatic and deviatoric stress response and accounts for the geometrical
complexities associated with simultaneous (large) elastic and plastic deformations.

The present research establishes the linear shear relaxation time spectrum
a8 the key quantity determining the nonlincar viscoelastic behaviour of glassy
polymers. Deviatoric stress (and temperature) mercly distort the time scale. Tt
should be noted that mechanical properties in general, and viscoelastic behaviour
especially, are also profoundly influenced by physical aging (Struik, 1978). It is
now well established that, under influence of aging, the ¢reep compliance curve
shifts toward longer times, which can be quantified by an aging-time shift factor
as defined by Struik (1978). However, all samples used in this study had the sane
age, which by far exceeded the longest time in the experiment. Therefore, to a
first approximation, aging was not taken into account (which will cause the model
to be less accurate for differently aged samples). As opposed to aging, it has also

. been observed that plastic deformation beyond the “yield point” can result in a

decrease of the viscosity, leading to intrinsic strain softening and a decrease of the
yield stress. This phenomenon is called *rejuvenation” and is thought to be the
result of mechanically “deaging” the sample by plastic deformation (Hasan et al,
1443; Struik, 1978). Until now here, however, only the response up to the “yickd
point” is considered and rejuvenation is not taken into acconnt. Furthermore,
the good agreement between experiments and predietions for the stress-relaxation
experiments, as well as the applicability of time-stress superposition, suggest that,
up to the “yield stress”, rejuvenation cffects (Struik, 1978, Hasan et ol., 1993) are
not iroportant (for monotone loading paths and for short loading times relative to
the age of the material). In Chapter 6, aging and rejuvenation will be addressed
in more detail.

In this Chapter, it was shown that glassy polymers behave essentially as highly
nonlinear Auids. In the next Chapter, we will discuss some of the consequences
of this nonlinear behavipur with respeet to inhomogeneous behaviour.



Chapter 4

Localisation Phenomena

4.1 Introduction

In the previous chapters a detailed constitutive equation was presented, which de-
scribes the nonlinear viscoelastic behaviour of polymer glasses up to the “yield”
point. In Chapter 5 this description will be extended to include the strain-
hardening regime. An important consequence of the highly nonlinear behaviour of
polymers in general, and polymer glasses specifically, is their sensitivity to strain
localization, whick will be the topic of this Chapter.

Strain localisation, defined loosely as amplification of non-homogeneous be-
haviour due to small fluctuations of the stress- or strain field, manifests itself in
glassy polymers in the form of shear bands and crazes. Shear bands are localized
yield zones which can be diffuse or sharp and which grow at constant volume.
Crazes can be envisaged as micro-cracks bridged by fibrillar material. Craze
growth is accompanied by an increase in volume.

Understanding the initiation and evolution of these strain inhomogeneities is
the key to the design of macroseopic tough polymeric materials (van der Sanden
et al., 1993) and detailed finite element calculations are now used to examine the
influence of specific morphologies on the strength of polymeric systems (Huang
et al., 1993). Initiation and growth of shear bands results from the combined ac-
tion of nonlinear material behaviour and the applied boundary conditions, and is
now understood qualitatively (Boyce and Arruda, 1990; Wu and van der Giessen,
1994). It appears that strain localisation is inherently related to yielding. The
inhomogeneous response is enhanced by intrinsic strain softening, although in
some loading conditions the nonlinear yield behaviour itself can already result in
the formation of shear bands (Wu and van der Giessen, 1995). Craze initiation
is more complex and less well understood. Crazing is a dilatational process and,
therefore, most craze-initiation criteria usually involve the hydrostatic stress or
strain (Ward, 1990, Chapter 12). In this Chapter, however, it will be shown ex-
perimentally that the yield process is the rate-determining step in craze initiation.



58

Localisation Phenomena

4.2 Theory

4.2.1 Crage-Initiation Criteria

Macroscopie brittle fracture of glassy polymers is normally preceded by the form-
ation of crazes, small crack-like defects, bridged by fibrillar material. Unlike real
cracks, crazes have load bearing capacity and when viewed on a microscopic level,
they display large plastic deformations. Therefore, crazes are the most important
sonrce of fracture Loughness in brittle glassy polymers, even though the volume
fraction crazes during fracture is generally low. It is, therefore, not surprising
that a vast amount of research has been done on all aspects of crazing: crase
nucleation, growth and failure, the micro-structure of crazes, the influence of mo-
lecular parameters, etc., and a number of excellent reviews are available (Kramer
{1983); Kramer and Berger (1990) and Kinloch and Young (1985), Chapter 5).

Craze initiation has received relatively little attention. It is generally accepled
that craze injtiation is enhanced by both the hydrostatic and the deviatoric stress
state, and, consequently, craze-initiation criteria normally involve both the first
and the second invariant of the stress tensor (Ward, 1980). Unfortunately, two
factors complicate the search for a macroscopic craze criterion. First, it is well
known that crazes always initiate on surface grooves or small imperfections in the
polymer, where the exact state-of stress (and strain) are unknown. Second, espe-
cially at low stresses, there can be a considerable time lag between load application
and the occurrence of the first visible craze, which indicates that craze initiation
is a time-dependent phenomenon. Therefore, a meaningful craze criterion can
probably only be defined on a local scale, in & well defined micro-structure, where
the state-of stress is known (Kambour, 1986). Such a local eriterion would still
be very useful in numerical aided design of morphologies where shear yielding
prevails craging,

Figure 4.1 depicts some of the microscopic events that are likely to he involved
in craze nucleation (Kramer, 1983). First, plastic deformation starts at a local
stress concentration. The nonlinear nature of the yield process and the strain
softening character of polymer glasses will result in a localisation of deformation
as the plastic strain increases. Since the material at some distance of the local
deformation zone is relatively undeformed, lateral stresses will develop, At this
stage two things can happen. First, the strain-hardening response of the material
can stabilize the strain-localisation process and the micro-shear band will spread
out. Second, it has been shown (Argon and Hannoosh, 1977) that, the hydrostatic
stress required to plastically expand a micro-porous region, ig greatly reduced if
the material iz in a state of low. Therefore, if the laieral stresses become high
enough, the material in the deformation zone will cavitate, and craze nucleation
has been accomplished.

It is difficult to predict which of the events in Figure 4.1 will be the rate-
determining step in craze nucleation. In one of the most detailed studies on craze
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a

Figure 4.1 Schematic drawing of rpicroscopic events involved in craze nucleation: a
Formation of & localized surface plastic zone and buildup of lateral stresses. b Cavitation
of the plastic zone. ¢ deformation of the polymner ligaments between voids and coalescence
of individual voids to form a void network (after Kramer, 1983).

initiation, Argon and Hannoosh (1977), it was argued that nucleation of voids is a
thermally activated process. The activation-free energy for pore formation consists
out of two terms: the formation of a slip patch, which is started and arrested by
molecular inhomogeneities, followed by the formation of a stable round cavity
by plastic expansion of micro-porous regions inside the slip patch. This model
was criticized by Kramer (1983), because it ignores both surface-tension and
chain-entanglement effects. Furthermore, in the study by Argon and Hannoosh
(1977) the true kinetics of eraze initiation were obscured by the considerable time
lag between the void formation and visible occurrence of the first craze. The
void-initiation time could only be estimated indirectly by assuming a power-law
relation between the cquivalent stress- and strain during the plastic expansion of
the initial void until it is large enough to reflect lighe.

In order to avoid the difficulties associated with the unknown state-of stress,
Dekkers (1985) studied craze initiation around a well-adhering glass bead. Linear
clastic finite-element caleulations were used to determine the local state-of stress.
and strain. Comparing these calculations with the spatial arrangement of crazes
around the glass beads, it was concluded that the major principle stress and the
dilatation were the most likely candidates for a craze-initiation criterion. In this
study, the kinetics of craze initiation were not considered. Moreover, the assump-



60

Localisation ‘_Phenomena

tion of linear elastic behaviour up to the point of eraze initiation is questicnable.

The concept of a local, time-independent craze-initiation criterion is appealing
and conld be very useful in finite element calculations on a microscopie level,
Unfortunately, a direct experimental verification of the existence of such a criterion
on a macroscopic level is not possible. However, defining a local time-independent
craze-initiation criterion implies that the rate-determining step in craze-initiation
i either the initiation of strain localisation, or the evolution of the localized plastic
zone up tu the point of voiding, In the next section, it will be argued that the rate
dependence of the initiation of strain localisation in glassy polymers is determined
by the nonlinear yield behaviour. Therefore, if strain localisation, leading to
the formation of a slip patch, is the rate-determining step in craze initiation,
then the kinetics of craze initiation and the nonlinear yield behavieur should be
identical. The latter statement is accessible to direct (mmacroscopic) experimental
verification, as it will be shown in Section 4.4.

4.2.2 Strain Localisation in Polymer Glasses

Strain localisation in polymer glasses i3 the result of the combined action of non-
linear material response, comprising the nonlinear yield hehaviour, intrinsic strain
softening and strain hardening, and the applied boundary conditions. The ine-
tration of strain localisation, however, is only determined by the yicld process
and the applied boundary conditions. Moreaver, the rate dependence (the “kinet-
ies™) of the yield behaviour is fully described by the Eyring process (Chapter 2,
i. (2.52)), and is not influenced by strain hardening or strain softening. A rig-
orous justification of these statements would require a full stability analysis of the
nonlinear flow problem {Rice, 1977; Anand et al, 1987). Here, however, a more
qualitative argument will be used to illustrate the influence of the vonstitutive
behaviour on strain localisation (Bowden, 1970). To start, it will be assumed
that, at the vield point, the material behaviour can be approximated by a Kelvin-
Voigt model, representing the nonlinear flow behaviour and the strain-hardening
response in shear (see Figure 4.2), which results from a rubber-elastic response
of the “entanglement” network, see Chapter 5.

At the yield point, to a good approximation, the total strain rate is equal to the
plastic strain rate, According to Figure 4.2, the relation between the shear-flow
stress 7 and the plastic strain rate v, becomes:

T = Gr’)/p

0 = Grop)y ) (1)

Y =

where & is the “rubbery” strain-bardening modulus (see Chapter 5),
Al the nonlinear flow characteristics (the “kinetics” of the yield process) are
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Figure 4.2 Schematic drawing of the mechanical hehaviour of a polymer glass at the
vield point. The dashpot depicts the nonlinear flow behaviour, which depends on stress
and plastic strain, and the (neo-Hookean) spring with shear modulus G represents the
entropic strain hardening.

incorporated in the viscosity function n (Figure 4.2):

1 = 1otiyy (4.2a)

&)

8g(7) = —=r (4.2b)
sinh (1)
To
a, = exp(—D) (4.2¢)
D=h (1 - Dﬂ) ¥ (4.2d)

The function a,{7) is the Eyring-shift factor, which describes stress activated flow,
as discussed in Chapters 2 and 3. The last two relations, Eqs. (4.2¢) and (4.2d),
present a phenomenological description of intrinsic strain softening, using a scalar
intertial variable, 2, which is related to the number density of shear transformation
sites (areas of increased mobility due to a high free volume) (Hasan ef al., 1993).
The constants D, and h are essentially fitting parameters. The shift factor o,
can be expressed as a function of the plastic strain v, by integration of Egs. (4.2¢)

and (4.2d):
Oy = €XP [—Dm (1 — exp [_Df_;%})] (4.3)
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In Chapter 6, the subject of intrinsic strain softening will be diseussed in more
detail.

At high stress levels, the hyperbolic sine lunction in Eq. (4.2b) can be approx-
imated by an exponential. Using Eqgs. (4.1) and (4.2), the plastic strain rate can
then be written s

lnﬂ'm='“( - )*T — (44)
204, To

The nonlinear character of the Eyring process is depicted in an Lyring plot
of the yield stress versus the logarithm of the plastic strain rate (Figure 4.3).
From this plot, it iz clear that the Eyring process can trigger inhomogeneous
behaviour. A small fuctnation of the stress field will result in & large deviation of
the local plastic strain rate, depending on the value of the activation volume (which
determines the slope 7, see Figure 4.3). Dependent on the specific boundary
conditions, this can lead to strain localisation.

Ay I
_a—'—’_'__
E At de____;—f""_f
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“r] —
= .
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Log(Strain Rate)

Figure 4.3 A graphical representation of the nonlinesr yicld behaviour as described
by the Eyring process. A small fluctuation in the stress results in a large deviation of
the plastic strain rate (logarithmic x-axis!).

Crazing, as an cxtreme form of strain localisation, is not determined by the
Eyring process alone. Figure 4.4 depicts a combined Eyring plot of several poly-
mers. From this Figure it can be seen, that polymers sensitive to craszing, like
polystyrene, can have a smaller activation volume (larger 7)) than polymers like
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polycarbonate, which are insensitive to crazing and generally fall through shear-
ing. Intrinsic strain softening and the strain hardening, amplify respectively sta-

100 '
Epoxy f,ﬁa";ﬂ

— 90 - e
o= el P8
£
a 00 PMMA
&
24} 70
b z PC
s -
e 60 -

50 Loy A R Lot banl N EeTI R

10~ 10+ 102 ip# 10

Strain Rate [5-']

Figure 4.4 A combined Eyring plot for several well known polymers. The polystyrene
data are a prediction, nsing Fq. (4.13).

bilize small stress Auctuations. This is depicted in Figures 4.5 and 4.6, where some
typical values of the material constants in Eq. (4.4) for polycarbonate were used
(Timmermans et ef., 1995), to show the effect of strain softening- and hardening
on the plastic strain as a function of time, at different stress levels,

As is clear from this Figure, the plastic strain as a function of time increases
dramatically if the material displays strain softening behaviour. Dependent on the
balance between strain hardening and strain softening, and the specific bound-
ary conditions, this will promote strain localisation. Particularly, elimination of
strain softening will result in a more homogeneous deformation behaviour, as
was also mentioned by Argon and Hannoosh (1977). This concept will be used
in Chapter §, where the strain-hardening behaviour is investigated by means of
large hornogeneous deformations, obtained via elimination of strain softening.

From Eq. (4.1) it can also been seen that the value of the strain-hardening
modulus &, determines the level at which the plastic strain stabilizes, A high
value of &, prometes homogeneous behaviour, Moreover, a high strain-hardening
modulus is indicative of a dense entanglement network. In Chapter 3, it was
shown that the yield point can be envisaged as a stress-induced glass transition.
Therefore, a plastically expanding zone is effectively a rubber. From rubber-
cavitation theories, {Gent and Wang, 1995) it is known that dense networks have
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Figure 4.5 Plastic strain as a4 function of time, according to Equ. (4.1) and (4.2), at
& shear stress v = 40 MPa. Farameters used for polycarbonate: Dy, — 43 |-} and
Bo= 120 [-] (Timmermens et al., 1995), Gy = 26 MPa (Chapter 5), 7 = 0.838 MFa aud
Mo = 4.656  10°° MPa-s (Chapter 3).
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Figure 4.6  Plastic strain as a function of time, accordimg to Egs. (4.1) and {4.2), at
different constant shear stress. Parameters as in Figure 4.5,
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a higher cavitation stress. As a consequence, 2 high strain-hardening modulus will
inhibit voiding of the slip patch. An alternative point of view is that the cavitation
stress is higher, because the covalent-bond contribution to the surface energy of a2
glassy polymer inereases with entanglement density (Kramer, 1983). Therefore,
due to its dense entanglement network, polycarbonate is not very sensitive to
crazing, despite its rather strong strain-softening response and its small activation
volume.

Using Eq. (4.4), the sensitivity of the local plastic strain rate to deviations in
the stress field, can be expressed as:

dln,) 1
skl T A 4.
dr Ty ( 5)

Thus, the kinetics of the yield process, responsible for the indtiation of strain
localisation, is fully described by the Eyring process and, in particular, inde-
pendent of steain hardening- and softening. This will be verified experimentally
in Chapters 5 and 6. Consequently, if the initiation of strain localisation is the
rate-determining step in craze initiation, the kipetics of craze initiation should be
described by the satne Eyring parameters as the yield process.

4.3 Experimental

The polystyrene grade (Styron 6387M), used in this study, was specially selected
for its extreme brittle behaviour, creating a situation where the craze-initiation
stress is approximately equal to the macroscopic breaking stress. The strain rate
dependence of the craze-initiation stress was studied using biaxial flexure (ball-
ring test, {de Smet ¢t ol, 1992)). In these tests the maximum stress region is
limited to & very small volume, thus minimizing the influence of surface flaws and
other defects on the experimentally determined strength. The hiaxial flexure tests
were petformed on 3 mm thick polystyrene dizks with a diameter of 45 mm. The
support (ring) consisted of thrust bearing of 30 mm diameter with balls of 3 mm
radius. The load was applied in the centre of the disk with a 3 mum radius ball. As
the loading path was linear, the nominal fracture stress ¢4, and the corresponding
strain rate £ were evaluated according to linear elastic theory (Roark and Young,
1984):

oy = %F—f [1 +2In (%) n (i:r—‘;) (%22) (1 - 2%)} (4.6a)
ézl(l—p)gf (wob)
i\ E

where ¢ is the support radius, & the effective contact radius, R the specimen
radius, d the specimen thickness, £ Young's modulus, Fy the foree at fracture,




66

‘ Localisation Phenomena

t the loading time and v Poisson’s ratio. The cffective contact radius b can be
caleulated from the contact rading according to Hertz, ¢ (Westergaard, 1952,
page 163):

b= 1622 — 0.675t (4.7)

To study the strain rate dependence and pressure sensitivity of the yield be-
haviour of polystyrene two other test methods were employed:

1. Tensile tests under a superimposed hydrostatic pressure (500 MDa), per-
formed on polystyrenc specimens with dimensions: 35 = 10 = 2 mm. The
experiments were performed with kind permission at the IRC of Polymer
Science & Technology (University of Leeds). The experimental sct-up at
the TRC has been described extensively by Sweeney et al (1988).

2. Planar compression tests, performed on polystyrenc specimens with a gange
length of 40 = 12 % 3 mm. The specimens were supportod by two Teflon
covered steel plates to create a plane strain condition.

All specimen were produced by compression moulding and were carefully polished
to minimize the effect of surface defects,

4.4 Results

Uniaxial tensile tests under superimposed hydrostatic pressure, and planar com-
pression tests were performed, in order to suppress crazing (Matsushige of o,
1575). The yield stresses obtained from these tests and the results of the fracture
tests are depicted in Figure 4.7,

A convenient way to verify whether the rate dependence of the yield and frac-
ture process (craze initiation) are identical, is to compare the results of Figure 4.7
in a single Eyring plot. Because different loading geometries are involved, the
state-of stress and the strain rate at the yield- and fracture points must be ex-
pressed in terms of equivalent stress and strain rate, respectively. The resulting
Eyring plot is depicted in Figure 4.8,

The pressure-modified Eyring relation (Ward, 1990, Chapter 11) in terms of
equivalent quantitics, is given by (compare to Bqs. {2.45) and (2.46)):

SR Y . W e
Yoo = sinh ( = ) exp ( o ) (4.8)

which at high stress leads to:

Teyg = Tg; + T In fl}'(‘-q + I"'P (4'9)
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Figure 4.7 Combined plot of yield stress (closed symbols) and fracture stress (open
symbols) as a function of deformation rate. Yield stress from plapar compression tests
() and tmisxial tensile tegts under superimposed hydrostatic pressure (9). Fracture
stress from ball-ring tests (3). The solid lines are visual fits.

where rfq = In(2A) is a constant, P the hydrostatic pressure, and u = rp/wy, with
wo related to the pressure activation veolume. In general loading situations, the
hydrostatic pressure P and the equivalent (yield) stress 7.,, are not independent.
For example, in case of uniaxial extension under a superimposed pressure F,
Teq @il P are equal to:

Teg = 4/ 3L dre = 5\/50 (4.10)
PIPO‘—%U (4.11)

Therefore, P can be written as a function of 7
P By +aty (4.12)

with o = —%x/ﬁ. For other loading geometries, the coefficient & cap be calculated
in a similar way, see Table 4.1.

Introduction of the coefficient o, Eq. (4.12), into the Eyring flow equation,
Eq. (4.9}, leads to:
_ qu + 7o I Yeg + 15
- 1 — oy

(4.13)
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Figure 4.8 FEquivalent stress versus equivalent strain rate for polystyrene (Styron
6I&TM ) in various loading geometries. Open symbols: crazing; closed symbols: yielding
(see Figure 4,7), The solid lines are a best fit of all date according to Fq. (4.13), using
a single set of Evring parameters.

[Loading peometry | Geometry factor:]
Uniaxial extension —% 3
Biaxial extension a ;t NE
Planar compression %\/E

Table 4.1 Geometry factor o for the different loading geometries in Figure 4.8,

‘This equation facilitates a direct interpretation of the experimental data, presented
in Figure 4.8, The drawn lines in this figure, are a best fit of all data vsing a
single set of Eyring parameters: 75, = 60.0 MPa, 7y = 2.2 MPa and ¢ = 0.09 [-].
From Figure 4.8 it is clear that this single set of parameters accurately describes
hoth yield and craze initiation. In our opinion, this is a strong indication that
the rate-determining step in craze initiation is the formation of a localised plastic
zone, The evolution and cavitation of these patches are either relatively fast or
even time-independent processes,
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4.5 Discussion and Conclusions

In this Chapter, it was illustrated how the combined action of nonlinear plastic
flow behaviour, as described in Chapters 2 and 3, strain hardening and intrinsic
strain softening, can give rise to strain localisation. It was argued that the initi-
ation of strain localisation is only determined by the yield process. The aim of this
Chapter was to investigate whether craze initiation can be envisaged as a plastic
localisation process, followed by (time-independent) cavitation of the deformed
zones. An extremely brittle polystyrene grade was selected as a model material,
to ensure that, during a fracture test, the time between craze-initiation and mac-
roscopic fracture is negligible small. A ball-ring test and a three-point bending
test were used to minirnize the effect of inhomogeneities on the fracture process.
The strain rate dependence of the yield process was determined using plane-strain
compression tests and uniaxial tensile tests under superimposed hydrostatic pres-
sure. Expressing the results of these tests in equivalent quantities, it was shown
that both fracture and vield have the same strain rate dependence, which is de-
scribed by one Eyring process. This iz a strong indication that the occurrence
of smail deformation zones ( “slip patches”) i indeed the rate-determining step in
craze initiation. The evolution of thesze micro-shear bands is determined by the
combined action of constitutive behaviour, as described in this thesis, and the local
boundary conditions. Given a certain micro-structure, the evolution of these slip
patches could in principle be ealeulated using finite element methods, emplaying
the detailed constitutive equation discussed in this thesis. This offers possibilities
for defining a local craze-initiation criterion, by comparing these detailed finite
element calculations (instead of linear elastic ealeulations as in Dekkers {1983))
with experimental craze studies. Such a local craze-initiation criterion is essen-
tial in computer-aided design of new heterogeneous polymer systems, where the
morphology is optimized in such a way that shear yielding prevails crazing.



Chapter 5

Strain-Hardening Behaviour

5.1 Introduction

A characteristic feature of polymer systems is their composite structure on a
maolecular level, consisting out of covalent bonded chains, held together by sec-
ondary forces. Stress-activated segmental motion iz responsible for the nonlinear
viscoelastic behaviour, as discussed in Chapters 2 and 3. In particular, it was
argued in Chapter 3, that the yield point can be viewed upon a8 a stress-induced
glass trapsition. The primary bonds survive the segmental jump process, and
give rise to steric hindrance (“chains cannot mutually cross”), which results in
strain-hardening behaviour, the topic of this Chapter. This reinforcing effect of
the covalent chaing, prevents segmental motion from leading to fatal fracture like
in low molecular weight glasses. Instead, the deformation is spread throughout
the material, and leads to craging or shear bands (see Chapter 4). For this reason,
polymers are intrinsically very tough materials, with a critical energy release rate
which is orders of magnitude larger than the (Van der Waalg) surface energy.

The steric hindrance between the polymer chains is also of prirne importance
for the How behaviour of polymer melts, where all the secondary bonds are broken
by thermal energy. It is well known, that, above a certain molecular weight and on
a restricted time scale, a polymer melt behaves like a rubbery s0lid (Larson, 1988,
Chapter 4}. Comparing this behaviour to that of a real (chemically eross-linked}
rubber, leads to the definition of enfanglements. Entanglements are envisaged as
physical knots, which can not unravel on the time scale of the experiment. The
molecular weight between these entanglements is caleulated from the “stiffness”
(platean modulus) of the melt, using the classical theory of rubber elasticity. In
this way, the molecular weight between entanglements, M., provides a scalar
measure of the diffuse steric hindrance between the covalent chains.

It is, therefore, not surprising that the concept of entanglements play an im-
portant role in the large-strain deformation behaviour of polymer solids as well.
For example, it is now widely accepted, that strain-hardening in glassy poly-
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mers originates from the robber-elastic response of the entanglement network.
Moreover, it is often assumed, that the entanglement, network, like a chemically
cross-linked network, has a limited extensibility, This leads to the concept of
a mazimum drew ratio M., (Allison and Ward, 1967), which can be catimated
from the maximum extensibility of a single strand in the entanglement network.
It was shown by Donald and Kramer (1982b, 1982a) that this maximum draw
ratio of the entanglement network correlates remarkably well with the extension
ratio of craze fibrils and within shear bands,

Haward and Thackray (1968) were the first to incorporate these two features
of strain-hardening behaviour, a rubber-elastic response and finite extensibility,
into a constitutive equation, This one-dimensional equation was extended to the
three-dimensional “BPA model” by Boyce ef ol (1988), who used the “three-
chain model” (James and Guth, 1943; Wang and Guth, 1952) to describe the
strain-hardening response. The BPA model was later refined with respect to
strain hardening by introducing better representations of the spatial distribution of
molecular chains, leading to the “eight-chain model” (Arruda and Boyre, 1993b),
and the “full-chain model” (Wu and van der Giessen, 1993).

Although finite extensibility is relevant for a chemicelly cross-linked rubber,
it seemns less obvious that it also applies to a (thermoplastic) glassy polymer,
which can ultimately flow. In fact, for a number of polymers, the upswing in
strain-hardening response, associated with finite extensibility, was not ohserved
experimentally, G’Sell et al. (1992). In this Chapter, the large strain behaviour of
polycarbonate will be studied experimentally, in order to determine the depend-
ence of strain hardening on the state-of deformation. Predeformation above the
glass-transition temperature and mechanical preconditioning are used to ensure
hotmogeneons behavieur.

5.2 Theory

5.2.1 Strain-Hardening Behaviour

A typical stress-strain curve of a glassy polymer below the glass-transition tem-
perature is depicted in Figure 5.1. Haward and Thackray (1968) captured this
behaviour in a constitutive equation, assuming that the isothermal deformation
behaviour of a glassy polymer below the plass-transition temperature can be de-
composed in an elastic region, followed by rate-dependent yielding, due to stress-
activated segmental motion and a (rubber) elastic strain-hardening part, due Lo
orientation of the entanglement network {sec Figure 5.1).

It 15 now generally accepted that the strain-bardening response in (glassy)
polymers originates from the rubber elastic response of the entanglement networl,
although quantitative agreement seems to be lacking (Haward, 1993). Therefore,
first some of the rubber elastic network models, which are used 1o deseribe strain-
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Figure 5.1 a2 Schematic decomposition of a (simplified} stress-strain curve of 4 glassy
bolymer, showing an initial elastic region, followed by (rate-dependent) yield behaviour
(including strain-softening), and strain-hardening behaviour.

hardening, will be reviewed.

§.2.2 Rubber Elastic Network Models

In the classical theory of rubber elasticity it is assumed that the internal energy re-
mains constant upon isochoric deformations. Therefore, at isothermal conditions,
the thermodynamic foree, Eq. (2.38b), is only dependent on changes in entropy:

M= (E) - (i‘fi) 7 (E‘E) — (‘Eﬁ) (5.1)

dB/ dB/ r dB/ r aB/r
The change in entropy is a consequence of the distortion of the molecnlar
network and can be calculated from statistical mechanical arguments (Treloar,
1975). The most simple expression follows from the so-called “GGaussian network
approximation”, where it is assumed that the end-to-end distance vectors of a

chain between two cross-links, are described by a Gaussian distribution funetion
{lames and Guth, 1943). In this case, the entropy will depend on deformation as:

§= —%nk(fg _3) (5.2)

where n is the number of (randomly oriented) chains per unit volume in the
network, and & is Boltzmann's constant. Using the evolution equation for the
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isochoric elastic strain, Eq. (2.39b), and the expression for the Cauchy-stress
tensor, Eq. (2.30), the Gaussian network approximmation leads to neo.lookean
hehaviour:

T¢ = ¢B°

(5.3}
with the shear modulus & = nkT.

A more accurate expression for the configurational entropy of a stretched mo-
lecular chain, taking into account the effect of finite extensibility, was first derived
by Kuhn and Grin {1942). Considering a single ideal chain, containing N links of
length [, having a root-mean-square distance /< r% > = /N and a maximum
draw ratio Apee = VN, they derived an expression for the Helmholtz-free energy
as a function of draw ratio A:

A = nkT (”v/%ﬁ +In [gm[; ,@D - Ap (5.4)
= ()

where Ay is an arbitrary constant and £(3) is the Langevin function defined by:

1 )
L(B)=cothf— = (5.6)
8
A useful expression is the first Padé approximant of the inverse Langevin function
(Cohen, 1091):
3 — izt
LNa) mr— 5.7
(@) 2T (57)
For clastic behaviour, at isothermal conditions, the total power input o¢, with
£ = A/A, is equal to the rate-of-elastic encrgy storage A = (8A/8M)A. Hence, the
stress-gtrain relation becomes:

c=A (g—’;)T = kTVNAL™! (%)

In this equation, the stress becomes infinitely large, as the draw ratio A approaches
its limiting value Apey = Vv'N. Invoking the affine deformation scheme, Wu and
van der Giessen (1993) cxtended this one dimensional equation to describe three-
dimensionsl behaviour, by caleulating the exact spatial distribution of the moleeu-
lar chains. This so called “full chain™ model, though mathematically exact, has the
disadvantage that it can not be solved analytically. Three-dimensional extensions
of Eq. (5.8) that lead to analytical expressions, were obtained hy sampling the
orientational distribution function only in a discrete number of directions, like the
“three-chain™ model of Jamus and Guth (1943) (see also Wang and Gnth (1952)),
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and the “eight-chain” model of Arruda and Bovee (1993b). The “four chain”
model of Flory and Rehner, Jr. (1943) also approximates the real distribution of
orientations, but does not lead to an analytical equation.

The three-chain model was obtained by assuming that Eq. (5.8) can be used
to caleulate the principle stresses ¢y from the principle stretches A

1 A
o; = —nkTVNMNLT | —=
t 3 \/-‘_ ? W
with /3 chains per unit volurne in each of the principle stretch directions.
In the eight-chain model, Eq. (5.4) is assumed to hold, multiplied by the
number of chaing per unit volume, n, and using an average chain-stretch parameter
Aﬂhain:

(5.9)

1 1
Achatn = “ﬁ Af + v\% + )\g = 73.\/ Iy (5.10)

Here, it should be noted that /I3/3 equals the average change in length of a
line element at a point P, averaged over all pessible orientations (Macoske, 1994,
Chapter 1). The thermodynamic force for the eight-chain model becomes:

JA dA OMihain ) (BI 5 )
M=—= = :
7B (mmm) ( ol iB (5:11)
where:
BA - -1 v\chain
(aAc’mm) = ﬂkT\/ﬁ[- (_\/_]_V__) (512)
a/\chain _ 1 --% - 1
( BIE' ) B E\/EIB B 6f\chain (513)
BIE ‘
( 7B ) (5.14)

The constitutive relation for the eight-chain model then follows from the the evol-
ution equation for B, Eq. (2.39b), and substitution of Eqgs. (5.11)-(5.14) in the
general expression for the stress tensor, Eq. (2.30)4:

= U (O B s e

Note that the eight-chain model can be envisaged as a neo-Hookean relation,
employing a shear modulus which is dependent on the first invariant of B,

'In the original derivation (Arruda and Boyce, 1993b), the total -instead of the isochoric
strain was used, under the assumption of incompressible behaviour. This leads to a relation
between the extra stress tensor and the Green-Lagrange strain tensor, and is, therefore, slightly
different from Eq. {(5.13)). This applies also to the other rubber-elastic models in this Chapter,
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(a) (b)

Figure 5.2 Schematic drawing of (a) the three-chain model and (b) the cight-chain
model.

A schematic view of the three-chain model and the cight-chain model is given
in Figure 5.2. From this figure it is clear that the three-chain model samples
anly the principle strain directions, while the eight-chain model samples none of
the principle strain directions. Therefore, the threc-chain model will overestimate
the network stiffness, whereas the eight-chain mode] underestimates the network
response. Since the response of the full-chain model is always between the upper
and lower bound provided by the three and eight-chain model, W and van der
Giessen {1992) proposed a simple mixing rle:

G{ul!-‘-r:h — (1 _ P)!‘Tf oh - pgf- rh (5]6)
A
g =085 (5.17)

VN

where @; are the principle stresses and Aygp 18 the maximum prineiple stretch.

It should be noted that Eq. (5.8), which is the starting point of all non-
Caussian network theories, was criticized by Flory (Flory, 1988, Chapter 8) for
a number of reasons. First, from statistical mechanics point of view, Eq. {5.8)
is only correct in the limit of a large number of segments N and at small chainp
streteh (A/+/N = 1), It can be shown that, cspecially at small N, the Canssian
distribution function is, in fact, a better approximation of the exact distribution
function than the Langevin expression over most of the range-of deformation,
except at very high chain stretch. Second, Flory noted that, in a number of
cases, the stress-upswing in uniaxial extension could also be due to strain-indueed
crystallization. Therefore, it is probably better to regard Eq. {5.8) as an empirical
relation, which can be used Lo incorporate finite extensibility.
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When considering the state-of deformation dependence, it should be realized
that, in a geometrical sense, all possible isochoric deformations are bounded by
uniaxial extension and uniaxial compression (which is equivalent to biaxial ex-
tension). This is quantified by the difference between the first and the second
invariant of the isocheric elastic strain, /5 — I3, which is called the alignment
strength (Larson, 1988, Chapter 7). A deformation for which I is larger than 175
is called strongly aligning, when 7z = I, the deformation is neutrally aligning,
and for Iz < [1g, the deformation is weakly aligning (see Figure 5.3).

40
| Uniaxial Compression
-
Simple Shear =
P i Planar Extension
= 20t
E=ﬂ
10
L Uniaxiel Tension
0 I | —_— T I
\] 10 20 30 40
Is [-]

Figure 5.3 A plot of Iz versus ITg for all possible isochoric deformations (17Tg =1)
{from Treloar (1875)).

All network madels introduced in this section converge to simple neo-Hookean
behaviour at small chain stretch (see for example Eq. (5.15) in case of the eight-
chain model}. Since the bulk modulus of a rubber is several orders of magnitude
larger than its shear modulus, in general, deformation of a rubber proceeds at
nearly constant volume (except for pure volume deformations). Therefore, to
a good approximation, the isochoric-elastic strain tensor B is equal to the left
Cauchy-Green strain tensor B. In case of uniaxial extension in the x-direction, B
equals:

Ao oo
B=(0 10 (5.18)
0 0 %
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According to neo-Hookean behaviour, the deviatoric stress-strain relation then
hecomes;

2z 0 Q
T™=10 -7 0
N0 -ic
: 0,14
2{2 - 0 0 (5:19)
=d 0 -3 (M- 1) 0
0 T -hpe-y)
Therefore, the tensile stress o = T4, — T?, equals:
T = (3 (,\2 -1 (5.20)
== (r )\ ¥

From this last equation il is clear that even neo-Hookean behaviour, which has no
finite extensibility, resnlts in a (quadratic) upswing of the stress in a o - A plot.
The effect of finite extensibility 13 revealed more clearly in a graph of the stress
versus A? — I/A, In this case, neo-Hookean behaviour will yield a straight line
and the effect of finite extensibility will manifest itself as a deviation from this
straight line,

All network models with finite extensibility discussed so far have two ad-
Jjustable paramcters: the number of segments N, which determines the maximu
chain streteh and the number of chains per unit volume n, which, given N, de-
termines the initisl modulns (at constant temperature). The Gavssian-network
approximation leads t0 neo-Hookean behaviour with only one parameter; the
initial modulus, The response of these various network models in uniaxial and
planar extension, 15 depicted in Figures 5.4 and 5.5, using the three-chain, eight-
chain, and full-chain parameters reported by Arruda (1992) and Wa and van dey
(riessen (1993) for the strain-hardening behaviour of polycarbonate in uniaxial
compression (see Table 5.1).

| threcchain__eight-chain _full-chain _Gaussian chain |
nkT [MPa] | 17.0 12.7 127 9.5
N 35 2.25 98 :

Table 5.1 Network parameters required by the different rubber-elasticity models to de-
seribe the strain-hardening behaviour of polycarbonate in unfaxial compression {Arruda,
19832, Wu and van der Ciessen, 1993).

The value of the shear modutus of the Gausstan-chain model in Table 5.1 was
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chosen to coineide with the initial shear modulus of the eight-chain model, Gy

1
3 N
1
Gy = znkT i (5.21)
-5

using the Padé approximation of the inverse Langevin function (Eq. (5.7)}.

5.3 Experimental

The most straightforward way to verify the strain-hardening response of polymer
glasses experimentally, is to apply large homogeneous deformations. However,
it was shown in Chapter 4 that most polymer systems, and especially polymer
glasses are prone to inhomogeneous deformation. G'Sell et al. {1992) developed an
experimental technique in which locally a constant strain rate could be applied to
an axis-symmetric hour-glass shaped sample, by means of video-controlled tensile
testing (a digital closed loop system). Arruda and Boyce (1993a) argued that the
deformation in uniaxial -and planar compression will remain homogeneous, since,
contrary to a tensile test, there is no area-reduction. This seems to be a rather
strong assumption, since the development of shear bands in compression has been
observed for a number of polymers (see Bowden, 1970). On the other hand, finite
element calculations of Wu and van der Giessen (1994) have shown that the effect
of shear band formation on the global stress-strain behaviour is not very large,

In this study, thermal and mechanical treatments will be used to ensure ho-
mogeneons deforrmation. In Chapter 4 it was shown that strain localisation in
polymer glasses ig initiated by the nonlinear yield behaviour. Strain hardening
and intrinsic-strain softening respectively stabilize and amplify non-homogeneous
behaviour. Unfortunately, the stress dependence of the yield process is a material
property and, therefore, it can not be eliminated as a cause for inhomogeneous de-
formation behaviour below the glass-transition temperature, However, by raising
the temperature above the plass-transition temperature, thermal agitation over-
whelms stress-activated flow, and the material will deform homogeneously like a
rubber. Freezing in orientation applied above the plass-transition temperature by
quenching to room temperature, will result in anisotropic yleld behaviour, from
which information about the strain hardening behaviour can be retrieved.

Another way to promote homogeneous behaviour, is to eliminate intrinsic-
strain softening by means of mechanical conditioning, as was discussed in Chapter 4
(Argon and Hannoosh, 1977). Large plastic deformations rejuvenate the material
up to a saturation level which is maintained when the stress is released. As a
result, subsequent testing wiil not lead to strain softening. In the next sections,
these methods will be discussed in more detail.
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Figure 5.4 Comparison of the different network models in their description of the
strain-hardening response of polycarbonate in uniaxial deformation. Nedwork parameters

secording to Table 5.1,
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Figure 5.5 Comparison of the different network models in their description of the
strain-hardening response of polycarbonate in planar extension (equivalent to simple
shear). Network parameters according to Table 5.1.
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5.3.1 Predeformation Above the Glass-Transition Temperature

Dumb-bell shaped specimen were cut from an extruded sheet of Makrolon (bi-
sphenol A polycarbonate, Bayer), 2 mum thick, according to ASTM D368 type 111
To prevent degradation during predeformation at, 160 °*C, the material was dried
at 80 °C for about three days. Before predeformation above the glass-transition
temperature, the samples were brought 15 *C above T, for 15 minutes, to ensure
the same testing conditions for all samples (T, = 150 *C). Uniaxial predeform-
ation was imposed using a FRANK 81565 tensile tester at a constant strain rate
of 500 mm/min at 163 °C. In this way a range of predeformed samples were
obtained up to a draw ratio of A = 1.85, for which the deformation was visually
homogeneous.

After predeformation, the oven was opened to enable rapid cooling to room
temperature, in order to freeze in the applied orientation. To verify the amount of
predeformation, markers were used on some of the samples. After determination
of the amount of predeformation, these specimen were brought back to the oven
at 180 °C for 15 minutes, to allow for shrinkage in order to measure the effective
draw ratio. All samples showed complete recovery.

Planar predeformed sheots were kindly provided by the university of Leeds
{IRC of Polymer Science & Technology). On these sheets, the planar predeforma-
tion was imposed at a constant strain rate of 500 mm/min at 163 °C. From these
sheets, small dumnb-bell shaped samples were cut at different angles with the main
principle-strain axis (see Figure 5.6)

To determine the anisotropic yield behaviour, the uniaxially predeformed sam-
ples were tested on a FRANK 81565 temsile tester at four different strain rates,
from 107 to 107! 5=!. The dumb-bell shaped samples, cut in different orienta-
tions from the planar predeformed sheets, were tested on a ZWICK 1432 tensile
tester at three rates of strain: 10~%,1073 and 10~2 5=, All tests were performed
at room temperature (21 °C).

5.3.2 Predeformation Below the Glags-Transition Temperature

A way to enable large homogenecus deformations below the glass transition tem-
perature, ig to rejuvenate the material through mechanical conditioning at room
temperature. .

For this purpose, dog-bone shaped, axis-symmetrical tensile bars (see Fig-
ure §5.7), manufactured from extruded polycarbonate (bisphenol A, Bayer) rod,
were subjected to large strain torsion at room terperature. The torsion was ap-
plied manually, by clamping the sample in a universal Jathe and turning one side
to and fro over 720 degrees, with a line on the sample as a reference. After prede-
formation some of the samples were heated to 180 *C, but no motion due to resid-
ual stress was observed. This indicates that, with respect to the strain-hardening
response, the samples were returned to their isotropic state. A disadvantage of
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|~

. 28 A=1.0

Figure 5.6  Schematic representation of the production of small dumb-bell shaped sum-
ples from a planar predeformed sheet.

the method is that the predeformation is not homogeneously distributed and that
the central fibre of the sample will not deform (and, therefare, not rejuvenate) at
all.

Immediately after rejuvenation, the samples were tested uniaxially on a ZWICK
Rel 1852 servo-hydraulic tensile tester {20 kN). In all cases the extension wis
measured using an INSTRON (2620-602) strain gauge extensometer with a meas-
ure length of 50 mm and a range of £2.5 mm. The relative accuracy in force
and strain measurements was 1%. The tensile tests were performed at several
termnperatures between room temperature and the glass {ransition temperature, at
constant strain rates. The torsion experiments were performed on a custom-made
torsion-rig, at a rotation speed of 1 rad/s.
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Figure 5.7 Tensile bar used for mechanical conditioning below the glass transition
temperature.

5.4 Results and Discussions

5.4.1 Characterisation of the Untreated Material

For polymer glasses, it is normally assumed that the strain hardening response
and the yield behavionr (Chapter 3) are two separate processes, which add up to
the total stress-strain relation (see Figure 5.1). Therefore, the nonlinear flow be-
haviour (activation volume) should not be influenced by predeformation or strain
hardening (see Chapter 4, Section 4.2.1). To verify this assumption, first the yield
behavigur of the untreated material was determined. This untreated material was
subjected to the same temperature history as the material predeformed above the
glags-transition temperature,

In Chapter 3 it was shown that a full characterization of the nonlinear flow
behaviour of a polymer glass comprises the combination of creep tests at different
stress levels and yield stresses at different strain rates, combined in g single Eyring
plot (see Figure 3.8). This Chapter, bowever, focuses on the strain-hardening
behaviour and only yield stresses at different strain rates were used to determine
the nonlinear-stress dependence, described by the Eyring parameter 7. An Eyring
plot of the yield stress versus the logarithm of strain rate, is depicted in Figure 5.8.

The best fit of the yield data in Figure 5.8 results in & value for the Eyring
parameter 7p = 1.59 MPa. This value differs considerably from the value 75 =
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Figure 5.8 Eyring plot of the yield stress a5 a function of logarithmic strain rate for
untreated polycarbonate. The solid line is a best fit.

(.89 MPa determined in Chapter 3, which is due to the narrow range of equivalent
stress covered, {compared to Figure 3.8) using only yield-stress data.

54,2 Predeformation Above the Glass-Transition Temperature

By deforming the sample above the glass-transition temperature it is possible to
separate the nonlinear viscoelastic responsc and the elastic strain-hardening be-
haviour, since the tetnperature treatment erascs residual viscoclastic (memory)
effects. Samples, predeformed above the glass-transition, should have the same
activation volume as untreaied material. This was verified for a series of tensile
bars, predeformed uniaxially above the glass-transition temperature at five differ
ent lovels of extension. Eyring plots of the yield stress as a function of logarithmic
strain rate, at various levels of predeformation are depicted in Figure 5.9, The
solid lines in this figure are a fit using the same value of the Eyring purameter 7
as the untreated material. An excellent agreement was obtained, indicating that
the activation volume is indeed independent of the strain-hardening response.

A disadvantage of predeformation above the glass-transition temperature, is
that large homogeneous deformations below the glass-transition temperature can-
not he obtained, since the heat treatinent will restore the intringic-strain softening
behaviour. Therefore, information abont the strain-hardening behavionr can only
be obtained indirectly from the anisotropic yield behaviour. In principle, using a
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Figure 5.9 Eyring plots of polycarbonate in uniaxial tension at various levels of pre-
deformation,

three-dimensional constitutive equation with one of the network models from the
previous section to describe the strain-hardening behaviouvr, the development of
this anisotropy, as well ag the effect on the stress-strain curve upon reloading, can
be calculated numerically (see Bayce and Arruda, 1990).

A useful approximation to determine the effect of orientational hardening on
the yield point alone, is to assume that, at the yield point, the initial elastic strain
rate is zero, and that the material response is adequately described by a Kelvin-
Voigt model (see Figure 5.10}. At low stress and at low temperature, the viscosity
in the dashpot (Figure 5.10) is very high. At high stress and/or at high temperat-
ure, the viscosity can be low enough to facilitate homogeneous deformation of the
entanglement network, characterized by the rubbery modulus G,. If the material
is homopeneously deformed above the glass-transition temperature, quenching to
room temperature will freeze-in the predeformed situation. After releasing the
sample, the deviatoric network stress will be balanced by the deviatoric viscous
stress. In other words, the high viscosity at room tetnperature and at low stress,
prevents the material from returning to its original state.,

The representation by a Kelvin-Voigt model implies that the total deviatoric
stress is decomposed in a network stress and a viscous stress;

T4 = G,B2 + 29(1I7)D, (5.22)

Here, f!p is the "plastic” predeformation applied above the glass-transition tem-
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Figure 5.10 Schematic representation of the deviatoric stress response ab the yield
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perature, and T¢ is the deviatoric stress acting over the dashpot. The “yield
point” of this Kelvin-Veigt model is determined by a critical value of the sceond
invariant of T2 In other words, the dashpot “yields” according to a Von Mises
criterion. The critical value of 7Iry, therefore, cquals 1/3ay, with g the uniaxial
yield stress of the untreated isotropic material (f!g =0).

Uniarial Predeformation

In case of uniaxial predeformation, the frozen-in deformation is described by

200
B,={0 5 0 (5.23)

0 0 3

r

where A, is the uniaxial draw ratio,
At the moment the predeformed sample “vields” at a stress o, upon uniaxial
reloading at room temperature, the deviatoric viscous stress equals:

T = T - CBY
20, -G [ - 4]) 0 0
=‘;1§ 0 ~ (o -c - ) 0
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A relation between the vield stress of the predeformed material -and the un-
treated isotropic material, respectively o, and op, can now be obtained from the
critical condition for yield:

1
Ilyg = 3% (5.25)
This quadratic equation in ¢, has two solutions, one for the case of yielding in
tension, and one for yielding in compression:

o, =00+ G (Ag - ,xi) (5.26a)
P
1
oy =0+ G (,\;-; - —) (5.260)
Ap

According to Eq. (5.26), the strain-hardening modulus G can be obtained
from a plot of the yield stress as a function of predeformation. This is depicted
in Figure 5.11, where it is shown that the yield stress as a function of (A2 = 1/Ap)
reveals a straight line, indicative of neo-Hookean behaviour with a constant shear
modutus & = 3 MPa. Apparently, there is no effect of finite extensibility up to
a draw ratio of A, = 1.85 [-] (applied above the glass-transition temperature).
This is not in accordance with the uniaxial and plane -strain compression data
for palycarbonate of Arruda (1992), see Figure 5.4, which would predict a strong
upswing in the stress, accompanied by a higher initial modulus.

Planar Predeformation

As in the case of uniaxial predeformation, samples, subjected to planar prede-
formation above the glass-transition temperature, should have the same activation
volume as the untreated material. This was verified for a series of tensile bars, cut
at four different directions from a sheet, planarly predeformed above the glass.
transition temperature af, two different levels of extension (see Figure 5.6). Eyring
plots of the yield stress as a function of logarithmic strain rate, at various levels of
predeformation and at different levels of orientation are depicted in Figures 5.12
and 5.13. The solid lines in this figure are a fit using the same value of the Eyring
parameter g as the untreated material. A good agreement is obtained, indicating
that the activation volume is indeed independent of the strain-hardening response.
In case of planar predeformation, the frozen-in deformation is deseribed by:

_ )\g 00
B,=|0 10 (5.27)
00 ;‘;

where A, is the planar draw ratio (see Figure 5.6).
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Figure 5.11 The yield stress as a function of uniaxial predeformation alove the gl
trapsition temperature.

To examen the anisotropy in yield behaviour introduced by planar predeforiu-
ation, samples, cut in different orientations with respect to the drawing direction
(see Figure 5.6), were subjected to uniaxial tensile experiments ab room temper-
ature. During these uniaxial tensile experiments, the deviatoric “viscous” stress
equals:

Ti=T‘-GR-Bj RT (5.28)
with the rotation tensor R

cosd —sin@ 0
R={siné cosfi 0 {5.29)
0 0 1

The uniaxial “vield stress” o, of a tensile bar, cut at an angle & with respect to
the planar draw direction, 15 again determined by the critical value of the second
invariant of the deviatoric “viscous-stress tensor”, Eq. (5.25). Like in the case
of uniaxial predeformation, this criterion results in a relation between 7, and the
isotropic yield stress og, which is quadratic in o, and has two solutions, one in
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Figure 5.12 Yield stress versus strain rate for planarly predeformed samples (A, =
1.23), at different orientations with respect to the predrawing direction.

TS —

Yield Stress [MPa]

45 bbb L L Lei] it Lot v agad L1 1 b

10-# 10+ a7 10 10-t

Strain Rate [5'']

Figure 5.13 Yield stress versus strain rate for planarly predeformed samples ( Ap =
1.5), at different orientations with respect to the predrawing direction.



9

 Strain-Hardening Behaviour

tension and one in compression

| I .
Ty = 3 [5(3,\‘ (A% - i) (M 307 cos(2a) 2) +
(flA”‘ (-G + @A+ G -GN+ M) +
. :
3—102/\4 (123" (2422 + 328 mb-(:m))*) } (5.30a)
1 ]1 ;
T = 333 [EG,\Q (N = 1) (A + 3AY cos(20) + 2) -

(4)\" (~G% + GPAT + G20 — 0" 4 Mol +

%c;ﬂ,\‘* (1—2%)7 (24 A% 4 327 cos(za))z) ] {5.30b)

The yield stress data at different orientations and at two levels of predeform-
ation, (Figures 5.12 and 5.13), were used to verify Eq. (5.30a). This is depicted
in Figure 5.14, which shows the yield stress as a function of orientation at two
levels of predeformation and at a given strain rate. The solid line is the prediction
of Eq. (5.30a) using the value of the strain-hardening modulus from the uniaxial
predeformation experiments G = 3 MPa (see Section 5.4.2), Unfortunately, the
value of the 1sotropic vield stress o was not known, since the exacl temperatiure
history of the predeformed samples (large sheets) was unkoown. Therefore, one
yield point at a given level of predeformation, orientation and strain rate, was
needed to determine oy, using Eq. (5.30a). From Figure 5.14 it is clear that,
like in the case of uniaxial predeformation, simple neo-Hookean behavionr with o
constant modunius i able to capture the strain-hardening response aceurately,

The good agreement between experiment and predictions observed i Fig-
ures 5.11 and 5.14, suggest that simple neo-Hookean behaviour emnploying a con-
stant shear modulus (7 = 3 MPa, is able to give a quantitative description of the
state-of deformation dependence of the strain-hardening response at a temperat-
ure of 163 °C up to a draw ratic of A, = 183, In particular, no effect of finie
extensibility could be observed,

54.3 Predeformation Below the Glass-Transition Temperature

Inhomogeneous deformation below the glass-transition temperature is initiated
by the nonlinear yield behaviour and promoted by the intrinsic strain-softening
response.  The nonlinear yisld behaviour is a material characteristic and can
not be avolded, but the intrinsic strain-softening response can be eliminated by
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Figure 5.14 Yield stress versus origntation angle in the planarly predeformed plates,
measured at & strain rate of 1072 ¢~1.

mechanical conditioning through larpe-strain plastic deformations. In absence
of strain softening, small fluctuations in the stress field can? be stabilized by
strain-hardening, resulting in homogeneous deformation behaviour (Argon and
Hannoosh, 1977). In this study, mechanical conditioning of cylindrical tensile bars
was achieved by large-strain to and fro torsion, resulting in isotropic material.

Uniarial Testing of Samples Predeformed in Torsion’

Rejuvenated cylindrical tensile bars were produced by large strain to and fro
torsion at room temperature. Heating these samples above the glass-transition
temperature did not reveal any residual motion, suggesting that to and fro torsion
resulta in rejuvenated, isotropic samples. A disadvantage of thiz method is that
the predeformation iz not distributed homogeneously over the cross-section of the
sample, The amount of intrinsie strain softening is maximal on the outside of
the sample, and decreases to zero in the central fiber of the tensile bar. A true
stress-strain tensile curve of such a mechanically conditioned sample is depicted
in Figure 5,15, In this figure, a small load drop can still be observed. This is

*Elimination of intrinsic strain softening through mechanics! conditioning does not necessar-
ily lead to homogeneous deformation behavieur. For example, due to their low strain-hardening
modulus, polyethylene and polypropylene still show neeking in a tensile test, despite the fact
that they digplay no intrinsic strain-softening.
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Figure 5.15 True stress as a function of draw ratia for o cylindrical tensile bar, con-
ditioned in torsion.

probably dne to the central core of the tensile bar which was not deformed and,
therefore, has not been rejuvenated. Visually, however, the deformation of the
cylindrical tensile bar remained homogeneous. From Figure 5.15 it cab also be
seen that homogeneous deformations up to A = 3 were reached, in contrast to
maximum draw ratios of 2.44 and 2.5 reported by respectively Boyee and Arruda
(1990) and Donald and Kramer (1982a). To determine the state-of deformation
dependence of the strain-hardening response of polycarbonate, also uniaxial com-
pression tests were performed. The results of the uniaxial tensile -and compression
tests, plotted as true stress versus (A7 — 1/X), is depicted in figures 5.16 and 5.17.
In these Figures, the strain-hardening response appears as a straight line of
equal slope in both tension and compression, indicative of neo-Hookean bebaviour.
From the slope the strain-hardening modulus was determined (Eq. (5.20)) to be:
(7 = 26 MPa. Nu effect of finite extensibility was observed, there iz no deviation
from the straight line in a ¢ vs. (A2 — 1/A) plot for both uniaxial tension -and
compression experiments. This is again in contrast with uniaxial -and planar
compression data of polycarbonate, published by Arruda and Bovee {1993a).

Shear Testing of Samples Predeformed in Torsion

A torsion curve of a mechanically conditioned torsion bar of length L and with a
palar maoroent, of inertia £, 1s depicted in Figure 5,18, Assuming linear bebaviony,
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Figure 5.16 True stress versus (A% ~ 1/)) during a tensile test at é = 1072 s of a
cylindricsl tensile bar, conditioned in torsion.
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Figure 5.17 True stress versus (A° — 1/} during & compression test ac ¢ = 1072 57!
of & eylindrical tensile bar, conditioned in torsion.
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the relation between torque M, and torsion angle per unit length /L, 15 given
by (Roark and Young, 1984):

6 _ Mo (5.31)
L G,
with the shear modulus &
B - —_— —_—
6 _J,...f'"
g /\ 0.21 [Nm/rad]
% , =
% .-d--’_..
= -
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Figure 5.18 Strain-hardening of polycarbonate measured in torsion, at a rotation
speed of | rad/s.

From Figure 5.1% it is clear, that, also in shear deformation, neo-UHookean
behaviour is observed, The shear modulus G = 26 MPa, obtained from the
torsion experiments, is in excellent agreement with the values obtained from the
tensile and compression tests. Again, no effect of finite extensibility is alserved,

5.4.4 Temperature Dependence of the Strain-Hardening Response

The rejuvenated tensile bars were also used to perform tensile tests over a range
of strain rates from 1077 to 10" 57!, at different temperatures above room tem-
perature. The results are depicted in Figure 5.19. No strain-rate offects could be
observed, and at all temperatures the strain-hardening response was cssenfially
elastic until fracture oceured. From Figure 519, it is clear that neo-Hookean
strain-hardening hehaviour is observed over the whole temperature range. The
strain-hardening modulus as a function of temperature, determined from Pig-
ure 5,19, iy depicted in Figure 5200 Although there is no effect of strain rate
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Figure 5.19 Homogeneous tensile curves of polycarbonate at different temperatures.
No strain-rate effects could be obsarved.

on the hardening response, the strain-hardening modulus clearly decreases as a
function of temperature.

5.5 Discussion and Conclusions

Nowadays, it is generally accepted that the strain hardening response of (glassy)
polymers originates from a rubber-elastic response of the entanglement network,
characterized by the plateau modulus &, {which can be measured in the melt,
using mechanical spectroscopy). Using the classical theory of rubber elasticity,
the plateau modulus can be used to calculate the molecular weight AL, of a single
strand in the entanglement network (Kramer, 1983): .

_ pRT
G-
Assuming that entanglements cannot unravel on the time scale of the experiment,

a maximum draw ratio of the network can be estimated as the ratio of the stretched
length of a single strand (molecular weight: M) and its random walk length:

M, (5.32)

NI N,
Amez = — = = (5333)

VCuNAE ¥ O
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Figure 5.20 Strain-hardening modulus G, of polycarbonate ag a function of temper-
ature (from Figure 5.19). The solid line Is a guide to the cye.
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Here, N, is the number of monomer units of an entangled strand, € is the char-
acteristic ratio (a measure of the chain stiffness), and [, and M, are, respectively,
the length and the molecular weight of a monomer unit.

For a number of polymers, Donald and Kramer {1982b, 1982a) determined
the draw ratio in craze fibrils and shear deformation zones, using transmission
electron microscopy. They found that the experimental values correlated reasou-
ably well with the maximum draw ratic of the entanglement network according
to Eq. (5.33a). Their estimate for the maximum draw ratio of polycarbonate was
Amaz 5 2.0. Indications for a finite extensibility of the entanglement network were
also found from uniaxial and planar compression tests on polycarbonate and poly-
methyl methacrylate by Arruda and Boyce {1993a). They estimaled, for polycars
bonate, from uniaxial compression tests a limiting chain streteh /N = 1.5, from
which a maximum draw ratio in uniaxial extension can be calculated® A, ., == 2.5.

I this study, thermal and mechanical conditioning techniques were used to
access the strain-hardening response of glassy polymers, by means of large homo-
geneeus deformations. It was shown, that the state-of deformation dependence of

*According Lo the eight-chain madel, the maximun draw ratio of the network is oltained
when the average chain stretch pacameter, Bg. (5.10), equals the limiting chain strewch VAN,
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the strain-hardening response of polycarbonate, is adequately deseribed by neo-
Hookean behaviour, with a shear modulus & = 26 MPa at room temperature,
which decreases at higher temperatures. In particular, no effect of & maximum
draw ratio was observed, in contrast to the studies mentioned above. The strain-
hardening response remained neo-Hookean until fracture occured at draw ratios
A 72 3 (it uniaxial extension).

It should be noticed, that finite extensibility is not a prerequisite to stabilize
a local deformation zone, In Chapter 4, it was argued that, at constent stress,
the evolution of the draw ratio in a deformation zone is determined by the stress
dependence, and the intrinsic strain-softening response, of the plastic flow process
and by the value of the strain-hardening modulus G,. Using realistic material
parameters, it was estimated that the shear strain -4, at which the neo-Hookean
strain-hardening response stabilizes a plastic deformation zone in polycarbonate,
is approximately: 4g, = 1.4 (see Figure 4.5). This corresponds to an extension
ratio of Ay =1+ %’m; = 1.7, which is in good agreement with the experimental
value as determined by Donald and Kramer (1982a). Thus, in a constant stress
sitnation, stabilisation of a deformation zone can be realized by a neo-Hookean
strain-hardening response as well, and does not necessarily result from a finite
extensibility of the entanglement network.
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Figure 5.21 Comparison between the strain-hardening response of polycarbonate as
determined by uniaxial tensile and compression experiments on rejuvenated samples (o),
and by uniaxial compression on non-refuvenated samples (+).

A comparison between the uniaxial compression data on non-rejuvenated sam-
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ples by Arruda (1992) and our compression and tensile data on rejuvenated sam-
ples, is depicted in Figure 5.21. The lines in this figure are the calculated strain-
hardening response of polycarhonate according to neo-Hookean behaviour with a
modulus of G = 26 MPa, and according to the eight-chain model with the network
parameters as determined by Arruda (1992). The initial strain-hardening modulus
and the maximum draw ratios in uniaxial tensile and compression, caleulated from
their network parameters (see Table 5.1), equal: & = 19.5 MPa, Asr#reson - .3

and Aenete — 244, From Figure 5.21 it is clear, that the actual compression
data do not differ substantially, both rejuvenated and non-rejuvenated samples
show an upswing in stress. However, interpreting this stress upswing as resulting
from a finite extensibility of the network, using & non-Gaussian spring model,
also leads to a maximum draw ratio in {ensile deformation, which s not observed
experimentally.

The temperaturce dependence of the strain-hardening modulus, as measured in
uniaxial tensile deformation on mechanically conditioned samples, was depicted
in Figuare 5.20. Arruda (1992) assumed that the temperature dependence of the
strain-hardening response originated from a change in chain density » (number
of elastically active chains), which is equivalent to a change in the number of
monomer units between entanglements (NV,), since the total number of monomer
units is conserved (Boyee, 1086), Following Raha and Bowden (1072}, an empir-
ical relation was proposed, to describe the evolving chain density with temperat-
ure.

It is instructive to plot the values of the strain-hardening modulus as a func-
tion of temperature, together with a temperature scan of the dynamic modulus at
1 He (Figure 5.22). This is allowed, since the strain-hardening respouse is to a
good approximation elastic (even at higher temperatures, strain-rate effects were
not observed). In Figure 5.22, it can be seen, that the temperature dependence
of the stain-hardening modulus correlates very well with the relaxation behaviour
of the emtanglement network, This quantitative agreement is a strong indication
that strain hardening in polycarbonate indecd originates from a rubber-clastic
response of the entanglement network, which becomes operable when sepmental
motion is allowed, In the polymer rheology field, it is well established that re-
laxation of the entanglement network results from reptation de Gennes (1971).
In the reptation theory, the influence of topological interactions on centre-of-masy
diffusion of long chain moleculss is taken into account by assuming a chain to be
confined in a tube in which only snake-like diffusion is allowed. Reptation is a
puowerful theory, which is able to relate many molecnlar aspects, such as molecular
weight, molecular weight distribution, chain arehitecture (branching, star poly-
mets), to the relaxation behaviour of polymer melts (Larson, 1988, Chapter 4). If
the correspondence between relaxation of the strain-hardening response and relax-
ation behaviour of the melt, as suggested by Figure 5,22, is correct, the concepts
of reptation theory would also apply to the strain-hardening response of glassy
polymers.
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Conceptually, it is irmportant that the temperature dependence of the strain-
hardening response originates from relaxation behaviour of the network. In prin-
ciple, this could be described using a second spectrum of Leonov modes, with tem-
perature dependent relaxation times. However, the absence of strain-rate effects
in the strain-hardening response at constant temperature, suggests that relaxation
of the entanglement network is not very dependent on stress, in contrast to the
glass transition (Chapter 3). With respect to modelling, this implies that the use
of a single, temperature-dependent neo-Hookean spring, instead of a spectrum of
Leonov modes, to describe the temperature dependence of the strain-hardening
response is sufficient. '

Although we now have a detailed deseription of the nonlinear viscoelastic be-
haviour up to the “yield point” (Chapter 3) and of the strain-hardening response,
it iz still not poasible to predict a complete stress-strain curve of polyearbaonate,
since rejuvenation (intrinsic strain softening) has not been taken inio account.
Some aspects of physical aging and rejuvenation will be discussed in the next
Chapter,



Chapter 6

Aging and Rejuvenation

6.1 Introduction

Important aspects of the deformation behaviour of glassy polymers which have not
been discussed so far, are “physical aging”, and “rejuvenation”. Upon cooling a
(polymer) melt, the molecular mobility decreases, and when the relaxation times
exceed the experimental time scale, the melt becomes a plass. In the glassy state,
thermodynamie variables, like volume and enthalpy, have not been able to attain
their equilibrium value, and continue to decrease, a process called physical aging
(Struik, 1978; McKenna, 1989). Physical aging also has a pronounced effect on
mechanical properties. In the sixties it was found that the main influence of
physical aging on linear viscoelastic behaviour is to increase all retardation times
proportional to aging time (Struik, 1978). With respect to modelling, this implies
that the effect of aging on mechanical behaviour can be incorporated similar to
the effect of stress and temperature, using a aging-time shift factor a,.

The effect of aging can he erased, either by raising the temperature above
the glass-transition temperature, or, alternatively, mechanically, by application
of plastic deformation, of which the latter is called rejuvenation (McKenna and
Kovacs, 1984). Rejuvenation results in a sipnificant decrease of the viscosity
during plastic flow after the “yield point”, and is, therefore, also referred to as
intringic strain soffening, As shown in Chapter 4, intrinsie strain softening plays
an important role in the evolution of strain inhomogeneities, such as shear bands
and crazes, since it strongly amplifies inhomogeneous behaviour.

Qualitatively, changes in mobility during aging and rejuvenation are often at-
tributed to changes in the so-called free volume (Struik, 1978; Hasan ef al., 1993),
loosely defined as free space, available for segmental diffusion. Unfortunately, at-
tempts to quantify the free-volume concept have met serious difficulties, since
there iz no known definition of “free volume” that provides a satisfactory relation
hetween “free volume” and mobility, especially below the glass transition tem-
perature (Struik, 1978, Chapter 13). This is related to the fact that a thorough
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theoretical understanding of the glass transition 1 still lacking (Mansfield, 1995},
which, in general, frustrates attempts to identify measurable parameiers that arc
able to describe “mobility” (relaxation behaviour) arcund and below the glass
transition temperature (Hodge, 1995). A quantitative description of aging and
rejuvenation in the linear and nonlincar range, therefore, deserves o special study,
and is considered outside the scope of this thesis, This Chapter has the character
of an “epilogue”, and is only concerned with some consequences of the modelling
strategy, advocated in Chapters 2 and 3, with respect to aging and rejuvenation,

6.2 Rejuvenation and Elastic Dilatation

The free-volume approach is a well-known concept, which states that mobility in
an amorphous (liquid) material is determined by the degree of packing, or, equi-
valently, by the amount of free space, available for diffusion {Hirschfelder ef ol
1967, Struik, 1978). One of the most popular relations between [rec velume and
mobility was derived by Doolittle (1951). By measuring the viscosity of n-alkane
liquids as a function of temperature apd volume, and assuming that variations in
viscosity (mobility) arc only determined by changes in volume (thermal expan-
sion), he observed a quantitative relation between viscosity » and fractional froe
volume f:

Inn:A—? (6.1)

Here, A and B are material constants (B = 1), and f is defined as:

U=

= (6.2)

v

with v the actual specific volume and the vq specific occupied volume {(extrapolated
volume at zero Kelvin), The Doolittle equation, Eq. (6.1}, was supported theor-
etically by Turnbull and Cohen (1961) from the assumption that oaly free volume
sites larger than a critical size contribute to particle diffusion. The Doolittle
equation defines a free-volume shift factor af:

Ina; = In (L) _5_5 (6.3)

Traf f frr:f

Here, 7rqy is the relaxation time at a reference fractional free volume f,. /.

From the Doolittle equation, a temperature shift factor ap can be derived,
presuming that changes in maobility as a function of temperature originate solely
from changes in free volume with temperature, Substituting in Eq. {6.3) a linear
relation between free volume and temperature:

f=fi+2al-T,) (6.4)
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leads to the well-known WLF-equation (Williams et of., 1955):

LTI T -T,)
nor =W ) T O T L) (©5)
where
ct=2 ad 1= fo (6.6)

T Ao

with f, the fractional free volume at the glass-transition temperature T}, (reference
state), and Ao the difference between the thermal expansivity above and below
T,. From the WLF-equation it follows that at high temperatures (T % T;), the
constant B/ f, is approximately equal to the shift factor In a7. Since the relaxation
times at the glass-transition temperature (7(T,) typically of the order of 102 5), and
at high temperatures (t(T} 22 10~ 5, bounded by vibrational transitions) differ
at most fifteen orders of magnitude, f, has a “universal” value of approximately
1/1n(10%5) = 0.029 (8 = 1) (Struik, 1987).

In many types of deformation, dilatation occurs, which finally, if not immedi-
ately, should contribute to the amount of free volume. Given the wide applicability
of the WLF-equation (Ferry, 1980, Chapter 11), it is not surprising that many
authors have considered stress-induced changes of the relaxation times to originate
from changes in free volume throuph dilatation (Ferry, 1980, Chapter 18). If it is
assumed that all relaxation times are equally affected by free volume, this leads
to a so-called volume clock. Some authors even assumed that both, stress and
temperature, influence (nonlinear) viscoelastic behaviour solely through changes
in free volume. Shay, Jr. and Caruthers {1986) combined the free-volume defini-
tion (“hole fraction™) of the Simha-Somcynsky equation-of state, which is a known
function of temperature, pressure and speeific volume, with the Doolittle eguation,
Eq. (6.3), to derive a “volume clock” for the nonlinear viscoelastic constitutive
behaviour of polymer glasses. Also (’Dowd and Knauss (1995) used the Doolittle
equation to describe yield-like behaviour, using the fractional free volume f as
an empirical parameter to describe the thermodynamic state of the material (see
also Knauss and Emri (1981, 1987) and Losi and Knauss (1992)). Using only a
volume clock, however, these models could not reproduce yield-like behaviour in
deformations with a negative dilatation, like uniaxial compression {O’Dowd and
Knauss, 1993). Moreover, these models were unable to describe Von Mises-like
yield behaviour, since, for example, the dilation in shear deformation is much
smaller than in tensile deformation (Shay, Jr. and Caruthers, 1986).

Stress-clock models, like the Leonov model introduced in Chapter 2, do not
suffer from the deficiencies mentioned above, but, as they stand, do not deseribe
intrinsic strain softening. Combining a volume clock with a stress clock, could
result in a natural way to describe intrinsic strain softening for stress-clock mod-
els, retaining their favourable characteristics. A volume clock can be introduced
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in the compressible Leonov model, Eq. (2.52), in a straightforward way, if it is
assurned that free volume only affects mobility (the viscosity function) and does
not contribute to the stress tensor directly, In that case, only a shift function,
and an cvolution equation for free volume, are needed. The Doolittle equation,
Eq. (6.3), is the obvious choice for the free-volume shift function. With respect
to the evolution equation, it could be assumed, in principle, that deformation
induced dilatation directly contributes to the amount of free volume ((¥Dowd
and Knauss, 1995). However, an elastic dilatation would enlarge all free volume
gites instantaneously, and since only free-volume sites larger than a eritical size
contribute to particle diffusion (Turnbull and Cohen, 1961), a time-lag is to be
expected. A well-known phenomenological evolution equation for the fractional
free volume f, at isothermal conditions, in the absence of deformation, is due to
Kovacs (1964):

jo ot

T(fv T)
Here, f.(T) is the equilibrium-free volume at temperature 7', and 7{f,T) s a
relaxation time. This equation can be augmented, in a straightforward way, to
include the effect of deformation, assuming that the dilatation (J — 1) adds to
the equilibrium value of the (fractional) free volume {rather than the free volume
itself), and that the relaxation time 7(f,T") is equal to the mechanical relaxation
time 7/

(6.7)

[ (fa(T) + (]~ 1))
W7egs T, )]G
where two extra fit parameters, ¢ and &, have been added to generalize Eq. (6.7).
This evolution equation for the fractional free volume combined with the Doolittle
equation, Eq. (6.3}, constitutes a “volume clock”, which can be introduced in the

compressible Leoniov model (Chapter 2, Eq. {2.52)):

f=-k

(6.8)

T=K(J -~ DI+GB,” (6.9a)
B, = (D'~ D,) B, +B, (D*-D,) (6.9)
JI = Jtr(D) (6.9¢)
i et alJ-1) i
= W DG (6.8d)
Td
D= e De
F 273(T¢rn f) {6 ? )
W(Tcm fl=ma, Gf (6.9f)
Ly = —(%) (G‘QK)
sinh (E)
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A few remarks with respect to Eq. (6.9} are in place. In Chapter 3, it was
shown that the compressible Leonov model, actually, is a single mode appraoxim-
ation of the relaxation titne spectrum, describing only the longest relaxation time
{see Figure 3.9). Introduction of a volume clock can, therefore, only be expected
to account for the effect of aging and rejuvenation on the “yield point”. Aecord-
ing to Eq. (6.9), the effect of aging (at zero stress) on the “yield peint” will be
negligible, since the mechanical relaxation time in Eq. (6.9d) is very large (for
polycarbonate in the order of 107 ), The effect of rejuvenation will depend on
the values of the parameters v, fe, fref, B, k and fy (the initial value of f at
“zera” time), and can be fitted to experiment!.
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Figure 6.1 Effact of free-volume parameters, see Eq. (6.8), on strain-softening beha-
viour {n uniaxigl tensile deformation of polycarbonate (¢ = 1072 571), as described by
the compressible Leonov model augmented with a volume clock; schematic,

A schematic uniaxial tensile response of the compressible Leonov model aug-
mented with a volume clock, Eq. (6.9), is depicted in Figure 6.1. In this figure,
some typical free-volume parameters were used: fr; = fo = 0.012 [] ( in the
order of the “universal” value of f at T: f = 0029}, k= B=a =1 [] and

wo = 0.01 [-] (0'Dowd and Knauss, 1995),

'Since rejuvenation inevitably results in strain localisation, this requires a numerical evalu-
ation of the inhomogeneous experiments (Timmermans et ol 1995).
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From Figure 6.1 it is clear, that combination of a volume clock with a stress
clock, can lead to a realistic description of intrinsic strain-softening behavioor in
uniaxial tensile deformation. The mechapical relaxation time, which governs the
transition to yield-like behaviour, also determines the evolution of free volume
(see Eq. (6.9d)). Choosing the initial value of [ equal to its reference value
(fo = freg), the volume clock will only start to work after the stress clock has
initiated “yielding”. Therefore, an important feature of the siress-clock model,
Von Mises-like yield behaviour, is retained,
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Figure 6.2 Effect of the frec-volume parameter o, see Eq. (6.8), un strain-softening
behaviour in uniaxial tension and compression. The two upper lines constitute the
response in cornprossion and the two lower lineg are the corresponding tensile citrves,

The crucial test of the model, however, is the behaviour in a deformarion with
negative dilatation (compression). This is depicted in Figure 6.2, showing the
influence of the free-volume parameter & on the strain-softening hehaviour in uni-
axial tensile and compression. In this Figure, the same paramcters were used
as in Fipure 6.1, only f. was equated with f..; and f;, which is the maximum
value from a Physics point of view®. As is clear from Figure 6.2, the response of
the volume clock in compression, at « = 1, is stronger than the stress clock and
prohibits yielding. The contribution of the volume clock can be nullified by de.
creasing the parameter «, which is equivalent to reducing the amount of dilatation
to be added to the equilibrinum value of the fractional free volume, Unfortunately,

*If foo would be larger than f,,p, then the (free) volume would increase upon agicy.
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this also reduces the amount of intrinsic strain softening in uniaxial tension. [t
must be concluded, that the combination of a free-volume clock with the com-
pressible Leonov model, as depicted in Eq. (6.9), is not able to describe intrinsic
strain softening in both tensile and compression experiments. The basic idea,
advocated in Eq. {6.9), is that deviatoric stress reduces the mechanical relaxation
time, while, at the same time, mechanical dilatation lifts the equilibrium free-
volume value fy, over the actual amount of free volume f, resulting in an increase
in mohility (intrinsic strain softening). However, in a defortration with negative
dilatation, this will always lead to a decregse in mobility, whereas, experiment-
ally, strain softening is also known to occur in, for example, uniaxial compression
(Whitney and Andrews, 1967; Brown and Ward, 1968; Boyce and Arruda, 1990).
It appears, therefore, that the elastic volume changes which oceur during deform-
ation have no (direct) influence on mobility. This was confirmed experimentally
by Hasan ef ol (1993), who observed an inerease in free volume upon uniaxial
compression, using positron annihilation lifetime spectroscopy. Also dilatomet-
ric experiments by McKenna et al. (1991) (see also Santore et al. (1991), and
Waldron, Jr. et al. (1995)) indicate that the thermodynamic (volume) state of
a glass is decoupled from the mechanical stress or deformation (McKenna et al,
1994).

6.3 Phenomenological Approach to Rejuvenation

In a uniaxial tensile experiment, after the yield point, necking occurs and a load
drop is observed. Part of this drop is due to the geometric instability and part is
due to intrinsic strain softening (rejuvenation). The existence of rejuvenation can
be demonstrated by comparison of the stress-strain behaviour of two polycar-
bonate samples, one quenched from the melt, the other annealed close to the
glass-transition temperature, as depicted in Figure 6.3. The large difference in
thermal history induces a significant difference in yield stress. Yet the stress at
which stable neck growth proceeds, as well as the draw ratio in the neck, are ap-
proximately equal. This is 2 strong indication that after large plastic deformations
the effect of (thermal) history is erased; the material is rejuvenated. Moreover, the
constant value to which the flow stress evolves, appears to be independent of the
thermal history (Hasan et el 1993). The level that is reached is usually regarded
as a saturation leve] of rejuvenation. This was also shown in uniaxial compression
experiments on annealed and quenched polycarbonate and poly(methyl methac-
rylate} by Hasan et al. (1993). Using positron annihilation Jifetime spectroscopy,
they observed an increase in the size of free volume sites following inelastic de-
formation, and found the initially quenched and annealled specimen to posses the
same post-deformation free-volume distribution. '

Hasan et ol. (1993) postulated that shear transformations occur in regions of
increased free volume, where the local resistance is low. To model rejuvenation
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Figure 6.3 Stress-strain curves at a strain rate ¢ = 10 2 57! of two polyearbonate
sarmnples at room temperature, one annealed close to the glass-transition ternperatire,

the other quenched from the melt. The draw ratio in the neck was equal for both samiples.

they proposed a first order evolution equation for the number density [} of such
regions as a function of (equivalent) plastic strain;

8D __D-Dy (6.10)
dy Ty

where D is the equilibrium value of £, and 7, is a relaxation time. Combination
with a “D-shift factor” ap (actually a plastic-strain shift factor a,}, defined in
Eq. (6.11)%, these two eguations constitute a “D-clock”, which can be incorporated
in the compressible Leonov model, see Eq. (4.2a) (Tunimermans el of., 1993),

ap = exp(—D} (6.11}

Here, D determines the stcady state flow stress and (Dy/7) the softening
slope. This phenomenoclogical description of intrinsic strain softening was used
in Chapter 4 to determine the evolution of plastic strain at constant stress (see
Eq. (4.2) and Figures 4.5 and 4.6).

*Hasan et al. {1993) used as shift factor (ap = 1/D), but since I} has to change several
orders of magnitnde, Eq. (6.11) is more convenient (Timmermans ef al, 1995).
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6.4 Aging, Rejuvenation and Nonlinear Viscoelasticity

It is now widely accepted that in the linear viscoelastic range, time-aging time
superposition applies (Struik, 1978). The combined action of aging and nonlinear
viscoelastic behaviour, however, is still a controversial area of research (Waldron,
Jr. et al, 1995). Large deformations beyond the vield point lead to a satura-
tion level of rejuvenation and result in a complete erasure of the aging history as
eonfirmed by mechanical testing {previous Section), positron annihilation exper-
iments (Hasan ef al., 1993) and caloric measurements (Oleinik et al., 1993).

On basis of aging studies, combining large and small stresses, it has been
stated (Struik, 1978; Ricco and Smith, 1985; Smith et al., 1988; Yee et al., 1988)
that rejuvenation also occurs at moderate stresses below the yield stress. This
was disputed by others (Lee and McKenna, 1990; Santore et al., 1991; Waldron,
Jr. et ol 1995, and references therein), who argued that the rejuvenation effects
observed could be deseribed using a nonlinear viscoelastic constitutive equation
with fading memory. McCrum (1984, 1992) proposed a sequential aging hypo-
thesis, in which it is assumed that aging predominantly affects those relaxation
times which are comparable to the aging time. According to this hypothesis,
time-aging time superposition is a valid approximation in the linear region, where
only the “short” relaxation times are probed. At high stress, touching the long
relaxation times which have not been able to age, time-aging time superposition
does not apply anymore.

In Chapter 3, it was shown that the “yield stress” is determined by the longest
relaxation time. Therefore, according to time-aging time superposition, aging far
below the glass-transition temperature should equally affect the “yield stress” and
linear viscoelastic behaviout (see Figure 6.4). Experimentally, however, the re-
tardation times shift proportionally to aging time in the linear viscoelastic range,
whereas the effect of aging on the yield stress is much smaller. This could be
due to rejuvenation at moderate stress, below the “yield stress” (Struik, 1978).
On the other hand, the increase in “yleld stress” upon anpealing close to the
glass-transition temperature is apparently not affected. Moreover, the good agree-
ment between experiments and predictions for the stress-relaxation experiments
at moderate stress (see Figure 3.14), as well as the applicability of time-stress
superposition (see Figure 3.5), suggest that for short monotone loading paths up
to the “yield stress”, rejuvenation effects are not important.

According to the sequential aging hypothegis, the “yield stress” is not affected
by aging far below the glass-transition temperature, because the longest relax-
ation times are much larger than the aging time, and barely change. However,
at temperatures close to the glass-transition temperature, the longest relaxation
times become comparable to the aging times and are subjected to aging, resulting
in an increase of the “yield stress”. This was also confirtmed by Bauwens (1987),
who observed that aging of quenched (young} polycarbonate at room temperature
resulted in a significant stiffening of the tensile curve at low stress (determined by
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Figure 6.4 Schematic representation of the influcuce of aging on the linear cornpliance
curve, From experirnent it is well established that at short times, the complisnce curve
shifts proportional to aging time. However, the yield stress, which is determined by the
longest relaxation time, is hardly affected by aging. This indicates that aging not only
shifts the compliance curve, but also changes its shape,

the “shorter” relaxation times)}, but hardly affected the yield stress, whercas an-
nealing close to the glass transition temperature resulted in a substantial increase
of the yield stress, leaving the shape of the tensile curve at low stress unchanged.
Since deviatoric stress and temperature have a similar effect on relaxation times,
it could very well be that prolonged exposure to elevated stresses results in sim-
ilar effects as described above. For instance Vincent (1960) already observed
that post yielded polyviny] chloride “quenched” to zero stress exhibils neo strain
softening upon reloading, whereas the same material after relaxation just helow
the yield stress {equivalent to annealing just below the glass transition temper-
ature) possesses an increased yield stress and does display strain soltening (see
Figure 6.3).

There is more experimental evidence that the influence of aging 1z not to shift
the complete compliance curve, but only that part where the relaxation times
are of the same order of magnitude as the aging times considered. Venditti and
Gillham (1992a, 1992h) used torsional bread analysis to show that by aping at
different temperatures it is possible to change specific parts of the relaxation time
spectrum.

These complicated effects of aging at elevated stress and temperatnre, not
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Figure 6.5 Schematic representation of the post yield behaviour of polyvinyl chioride,
&y observed by Vincent (196(). After quenching to zero stress the material exhibits no
strain softening upon reloading, whereas the same material after relaxation just below
the yield stress (equivalent to annealing just below the glass transition temperature)
possesses an incressed yield stregs and does display strain softening,

only shifting the relaxation time spectrum, but also changing its shape, are not
taken into account by the constitutive model proposed in this thesis, which uses
only a stress clock (see Figure 7.4). Tt is therefore to be expected that especially
in cyclic loading situations the proposed maodel will fail.



Chapter 7

Conclusions and Recommendations

The objective of the study described in this thesis was to develop a detailed three-
dimensional constitutive equation for the nonlinear viscoelastic behaviour of glassy
polymers. Most constitutive models which are known to date, focus on a special
aspect of the material behaviour and neglect the rest. For example, to describe
the nonlinear viscoelastic behaviour at small deformations, rather detailed modeils
have been proposed, which are only valid in a specific deformation mode. On the
other hand, finite three-dimensional constitutive equations developed to describe
strain hardening, often totally neglect this non-linear behaviour at small strains.

In this thesis, an attempt is made to combine all these aspects of the deform-
ation behaviour, and to develop a single constitutive equation for the finite, non-
linear viseoelastic behaviour of glassy polymers. To this extent, the “time-stress
superposition principle” is invoked, sometimes referred to as a “stress clock”.
Time-stress superposition states that the main influence of stress is to change
equally all relaxation times associated with a specific molecular transition. This
nonlinear influence of stress, originating from stress-biased segmental diffusion,
is described guantitatively by the Eyring theory, which defines a shift factor a.
by which all relaxation times are multiplied. In general, the relaxation behaviour
of polymer glasses is dominated by two relaxation mechanisms: the glass trans-
ition and the reptation process. Therefore, in essence, time-stress superposition
states that “yielding” can be envisaged as a stress-induced glass transition, and,
tentatively, that ductile fracture is related to stress-induced reptation.

To describe three-dimensional relaxation behaviour, a basic model, a so-called
“compressible Leonov mode” is presented in Chapter 2. A single Leonov made
iz a Maxwell model (see Figure 7.1), splitting the total rate-of strain tensor D
in an elastic part D, and a plastic part Dy The relaxation time, A = n(r.q)/G,
depends on an equivalent stress 7, proportional to the Von Mises stress. The
nonlinearity is determined by the parameter 7 (related to the activation volume).
At low stress, 7.y <& 7y, the relaxation time is constant A\ = A (@, = 1), At higher
stress levels, 1, > 7o, the relaxation time decreases rapidly as described by the
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Figure 7.1  Graphical representation of the deviatoric stress response of 4 single Leonov
modde:.

shift function w,'. Furthermore, a Leonov mode is capable of describing finite

deformations, and correctly separates the (elastic) hydrostatic stress (described
by a constant bulk modulus K'), and (viscoelastic} deviatoric stress. It is depicied
as:

T = K(J - DI+ GB.’ (7.1a)

- (D~ D,) B, + B, (D?- D,) (7.1b)

.fI = Jtr(D)X {7.1c)
D, = m’.{r_ﬁq} (7.1d)
n(Teq) = 1o Qg (71(‘)

Tey
Ta
a = ——
o . Teq
sinh | —
o

Here, T is the Cauchy stress tensor, K is the bulk modulnus, G the shear maodulus,
I the second order unity tensor, J — 1 the relative volume deformation, and B,
an internal variable, describing the isochoric elastic strain stored in the Leonov
mode during deformation.

Subsequently, this Leonov model can be extended to a “multi-mode” expres-
sion, to describe the bimodal spectrum of relaxation times which rules the com-
plete deformation behaviour of polymer glasses. This is depicted graphically in

(7.1f)

Yup to typically 15 decades changing the stress from zero to the yield stress for polycarbonate
at room temperature,
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Figure 7.2 Mechanical analogue of the bimodal apectrum of relaxation times of a
polymer glass, composed of the glass transition and the reptation process. In principle,
both sets of relaxation times can have their own temperature and stress dependence.

Figure 7.2, and can be written as:

T=K(-1)I+Y GBI +> GBI, (7.28)
i J
JI = Jtr(DHI ' (7.2b)
By = (D -D,,) - Boy+ Be; - (D ~ D, ) (7.2¢)
T
Dy = —‘)—$ (7.2d)
27;,-('r§¢}. )
(i) = my il (7.2¢)
m
alt) = N\ J (7.26)
ey
' B
sinh (ﬁ)
Ta
1
Té;J = 3 tr(Tt(in 'Ta)) (7.2g)

T'(in = Z Tf = ZGiﬁg.i (7.2h)
i i
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B.; = (D' - D,;) - B.; + B.; (D= D,,) (7.2i)
Td
oy ——1 (7.2j)
M o)
77_7( (2)) = o5 «(12) (7.2k}
(2)
f'q
(2}
@ AN/
ay! = 5 {7.21)
sinh | =
)
20 = L era ey (7.2m)
s T\ 2 e e :
g4 d - . R
T = Ti=) G,BY; (7.2n)
J 7

Here, nfy‘) and a&.‘” are the shift factors for the relaxation times assoclated with,

respectively, the glass transition and the reptation process. The stress df‘F(—‘Ildt‘lle‘
of the relaxation times of these two processes, determuwd by ‘J"(E " and 7", is not
necessarily the same. If they are different ('r0 # (9)) this gives rise to stress-
rheological complex behaviour,

The model was dernonstrated for polycarbonate in Chapter 3. Polycarbonate
was chosen as a model system since, with respect to experimental characterisation,
1t combines a number of attractive properties. It has a single dominant, relaxation
mechanism at room temperature and, therefore, it Lehaves like a rheologically
simple material. Furthermore, it has a relative strong strain-hardening response,
counter-acting fatal strain-localisation phenomena, like crasing.

To determine the malti-mode Leonov parameters for polyearbonate, the virtual®
lincar creep compliance master curve was constructed by horizontal shifting of
creep curves at different stress levels (Chapter 3, Figure 3.5). By fitting the shift
factors with the Eyring shift function af,”, the nonlinearity parameter -:[5” wits de-
termnined: 'rc(,” = 0.89 MPu, The linear compliance curve was transformed to the
linear shear relaxation modulus, see Figure 7.3, using the correspondence principle
{see Appendix A). Eighteen Lecnov modes provided an accurate description of
the shear relaxation modulus, using an equidistant grid of relaxation times. The
resulting eighteen relaxation times and shear moduli, which describe that part of
the spectrum which is due to the glass transition, are depicted in Tabel 7.1%,

In Chapter 5 it wag shown experimentally, that the three-dimensional strain.
hardening response is accurately described by neo-Hookean behaviour, employing

IAging effects are not ineluded!

*In principle, the shear relaxation modulus, depicted in Figure 7.3, also includes the shear
relaxation modulus due to the reptation process. However, the networl response only contributes
three percent to the total (“glassy” ) shear modulus, and can, therefore, safvly be neplocted.
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Figure 7.3 The linear shear relaxation modulus G(t) caleulsted from the linear tengile
compliance curve DI({t) as described in Appendix A.

a shear modulus G = 26 MPa at room temperature. It was also shown that the
strain-hardening response is essentially elastic, and even at elevated temperatures
no strain-rate effects were observed. This indicates that the stress dependence of
the reptation process is much smaller compared to the stress dependence of the
glass transition. With respect to modelling, this implies that the spectrum due
to the reptation process reduces to a single neo-Hookean spring, describing the
strain-hardening response,

Summarizing, the multi-mode Leonov model for polycarbonate comprises
eightecn modes to describe the glass transition part of the spectrum and a
single spring (one Leonov mode with an infinite viscosity) to capture the strain-
hardening response. This is depicted graphically in Figure 7.4 and is written
as!

T=K(/-1)I+) GBI +GBI, (7.3a)
i
J1= Jtr(D)I (7.3b)
B, =(D=D,,) B.; + B.:- (D - D,,) (7 3¢)
T
Dy = —t (7.3d)

2m(riy)
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i A [s] Gi [MPa] [no; = Ao;- G [MPas|
1 | 0.7080e+04 | 0.2254e+02 0.1506e+06
2 | 0.3548¢+06 | 0.9810e-+01 0.3481e+07
3 [ 0.2512e+07 | 0.1096e+02 0.2753e+08
4 101778408 | 0.1354e+02 .2407e+09
5 | 0.1259e+09 | 0.1633e+02 0.20560+10 |
6 | 0.8913e+00 | 0.1687e+02 0.1503e+11
7 | 0.6310e+10 | 0.2125e+02 0.1341e+12
B | 0.4467e+11 | 0.2331e+02 0.1041e+13
T 7 0.3162e+12 | 0.3336e+02 0.1055e+14
10 [ 0.223%+13 | 0.3642e+03 0.8153e+14
11 ] 0.1585c+14 | 0.4226e+02 0.6608e+15
[ 12 | 0.1122e+15 | 0.4532e+02 0.5085e+16 _
12 ] 0.7943¢+15 | 0.5148e+02 0.4080e+17 i
14 | 0.5623¢+16 | 0.7140e+02 0.4015e+18
15 [ 0.3981e+17 | 0.5088¢+01 0.2026e+18
16 | 0.2818¢+18 | 0.3992e+03 0.1125e+21
17 | 0.1995e+19 | 0.6563e+01 0.1310e-+-20
18 | 0.1413e+20 | 0.2049e+01 0.2894e+-20

Tahle 7.1 Linear Leonov parameters obtained by fitting the linear relaxation modulus

n(7ia) = moq al (7.30)

2y = {7.31)
0
stith (_@,g_)
(1
To
1 .
'ré;) =V3 t,r(T‘(*l) . Tgl)) (7.3g)
TH =3 Ti= GB, (7.3h)
i i
rae.r =n?. ﬂﬂ,r + ﬁe.r - D (7.31)

A numerical prediction of a uniaxial tensile test, using the parameters in Table 7.1
and a strain-hardening rodulus &, = 26 MPa, is depicted in Figure 7.5 (sce also
Figures 3.11-3.15). From these Figures, it is clear that the multi mode Leonov
model accurately captures many aspects of the nonlinear viscoelastic hehaviour,
including rate-dependent “yielding”.
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Figure 7.4 Mechanical analogue of the deviatoric stress response of polycarbonate,
consigting of eighteen Leonov modes to describe the glass transition, and a single spring
to model the strain-hardening responge.

In Chapter 5, it was also shown that for polycarbonate, even at large straing
(up to a draw ratio A = 3 in uniaxjal tensile deformation), no asympiotic up-
swing in stress, indicative of a finite extensibility of the entanglement network,
was observed. The three-dimensional strain-hardening response was accurately
described by neo-Hookean behaviour. However, if compelled to by experiment?,
finite extensibility could easily be incorporated in Eq. (7.3), by replacing the
constant shear modulus G, with, for example, the deformation-dependent shear
modulus from the “eight chain model” Gy(Ig ) (Arruda and Boyce, 1993b) (see
also Eqg. (5.15)).

It should also be noted that, especially at elevated temperatures, the relaxation
behaviour of the entanglement network (“entanglement slip”) finally must become
apparent, since polycarbonate is a thermoplast which ultirnately can flow, It could
be assurned, tentatively, that this will also occur at high stress, leading to ductile
fracture. It would be interesting to determine whether duetile fracture at large
deformations is rate-dependent, and if so, whether this raie dependence can be
captured by a stress-dependent relaxation time (Eq. (7.2) with j = 1, equivalent
to adding a stress-dependent “dash pot” to the strain-hardening modulus).

If one is only interested in rate-dependent yield behaviour, a useful approx-

te.pr., for other polymers, especially thermosats
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Figure 7.5 Calculated uniaxial tensile response of the multi-mode Leonov mocdcd
{dashed line), compared to the single-mode spproximation (solid line),

WD

Figure 7.6 Graphical representation of the “single-mode” approximation of the de-
formation hehaviour of a glassy polymer. The Leonov mode describes rate-dependent
yield behaviour, and the spring represents the strain-hardening response.

imation i3 to add all moduli G; and zerc-shear viscosities ng; in Table 7.1, and
reduce the description of the glass transition part of the spectrum to a single
Leonov made. This is depicted in Figure 7.6 and Eq. (7.3) with ¢+ = 1. This
“single-mode” Leonov model {actually a “double-mode” model) is similar to the
well-known Haward-Thackray model (Haward and Thackray, 1968), and its three-
dimensional extensions by Boyee ef ol (1988); Wu and van der Giessen (1093),
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and others. A typical uniaxial tensile curve of this single-mode approximation is
depicted in Figure 7.5, together with the muiti-mode prediction. It is clear that
the use of a single stress-dependent relaxation time vresults in an abrupt transition
from elastic to plastic deformation.

-
1

Figure 7.7 Schematic drawing of the mechanigal behaviour of & polymer glass at the
yield point. The dashpot depicts the nonlinear flow behaviour, and the (nev-Hookean)
spring represents the entropic strain hardening.

It is of course possible to reduce the model even further, by neglecting the
initial elastic response completely, in which case the single mode Leonov model
becomes & Kelvin-Voigt model, depicted in Figure 7.7. This approximation was
used in Chapter 4, to determine the effect of strain hardening on the evolution of
plastic strain, and in Chapter 5, to describe the development of anisotropy as a
function of predeformation above the glass transition temperature.

On Localisation Phenomena

In Chapter 4, it is illustrated how the combined action of nonlinear plastic flow
behaviour, strain hardening and intrinsic strain softening, can lead to strain loe-
alisation. Strain localisation manifests itself in glassy polymers in the form of
shear bands and crazes. Using an extremely brittle polystyrene grade as a model
polymer, it is shown experimentally, that the strain rate dependence of the plastic
flow process and craze initiation are identical. This is a strong indication that the
formation of a micro shear band is the rate-determining step in craze initiation.
The cavitation of the shear band which leads to a craze, is either a relatively
fast, or even time-independent, process. This offers possibilities for defining a
lecal (tite-independent) craze criterion, by comparisen of detailed finite-element
calculations of a given micro-structure with experimental craze studies. Such a
local criterion is essential in computer-aided design of new heterogeneous poly-
mer systems, where the morphology is optimized in such a way that shear vielding
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prevails erazing {van der Sanden et ol., 1993).

On Aging and Rejuvenation

It should be noted that mechanical properties in general, and viscoclastic boe-
haviour especially, are profoundly influenced by physical aging., It is now well
established that, under influence of aging, the creep compliance curve shifts to-
ward longer times, However, all samples used in this study had the same ape,
which by far exceeded the longest time in the experimems, Therefore, to a first
approximation, aging was not taken into account (which will cause the model 1o
be less accurate for differently aged samples}. As opposed to aging, i1 has also
been observed that plastic deformation beyond the “yield point” can resylt in a
decrease of the viscosity, leading to intrinsic strain softening and a decrease of
the yield stress. This phenomenon is called “rejuvenation” and ix thought to be
the result of mechanically “deaging” the sample by plastic deformation. There
are indications in literature, that rejuvenation can oceour even at moderate stress
levels (Struik, 1978). However, the good agresment between experiments and
predictions for the stress-relaxation experiments, as well as the applicability of
time-stress superposition, indicate that for polycarbonate, rejuvenation effects are
not important for monotone loading paths up to the “vield stress”, and for short
loading times relative to the age of the material. Although a quantitative deserip-
tion of rejuvenation (and aging) at moderate stresses has yet o he developed,
several phenomenological models have been proposed that give an adeguate de-
seription of strain softening in monotone loading paths after the yield point (Boyee
el al, 1988 Hasan et ol, 1993). These models can be nsed ag a starting point
for the development of rejuvenation models at moderate stress levels,
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Appendix A

Interconversion of Linear Viscoelastic
Response Functions

Interconversion of linear viscoelastic response functions in various modes of de-
formation is most readily done by invoking the correspondence principle. Accord-
ing to this principle, the appropriate Laplace transform of an elastic solution to a
gtress analysis problem corresponds to the viscoelastic solution in the transform
plane. The time-dependent solution is then obtained by inverting the transform.
The principle can only be applied if the boundaries themselves do not change with
time {Tschoegl, 1989).

In caze of step response functions, the appropriate Laplace transform is the
Carson transform (s-multiplied Laplace transform). As an example, substitution
of the Carson transforms s& and =D in the elastic relation E = 1/D resuits in:

= 1

E(‘E)D(S) = ':SE

Here, s is the transform variable and the overbar denotes the Laplace transform.
Re-transforming then yields the relation between the creep compliance and the

relaxation modulus, equation {A.1):

/ID(t - B[ =i (A1)
0

Conversion of the creep compliance in tensile mode to the shear relaxation mod-
ulus can be realized in a similar way. From Hooke's law for isotropic elastic
materials, the relation between the shear modulus (7, the tensile compliance D,
and the bulk modulus K reads:

3K

TOKD -1

The Carson transform relation, therefore, becomes:

33K (5)
9sK (s)sD(s) — 1

G

sG(s) =
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Interconversion of Linear Viscoelastic Response Functions

Since it 15 assumed that the volume response remains elastic, the Laplace trans-
form of the bulk modulus K equals Ay/¢ and the transform cquation hecomes:

- 3K, .
Al (g) = e Al

(8) = S ReaB(s) =1 (-2
This relation can be used to transform the experimental tensile compliance func-
tion D(t) {figure 3.9) to the shear relaxation modulus G(t) by collocation. To
this extent, the experimental compliance function was first fited to A generalized
Kelvin-Yoigt model:

i _ t
D(t)= Dy + 3 Dyl —e %) + -

=1
with the Carson transform:

D,
1+ A

1

'
o

n
sD(s) =D, + >
=1

The fit was obtained using CONTIN, a constrained regularization program de-
veloped to invert ill-posed linear integral equations (Provencher, 1982a, 1982h).
The key feature making CoNTIn particular suitable for Atting il}-posed problems
is the ability to incorporate a priori knowledge of the solution structure, like non.
negativity of the Kelvin-Voigt parameters, into the numerical algorithm (Mead,
1994). A satisfactory fit was obtained using a log-equidistant grid of eighteen
relaxation times (see figure 3.9). The next step consisted of caleulating for a
range of s values the Carson transform of the shear relaxation modulus, s(7(s), by
substitution of the Carson transform of the Kelvin-Voigt representation of LD(#)
into equation A 2. The resulting curve was fitted to a gencralized Maxwell model:

Again, the fit was obtained using CONTIN, imposing non-negativity of the Masxwsll
parameters and constraining the zeroth and the first moment of the distribution
to the a priori known values of the glassy shear modulus (7, and the zero-shear
viscosity ng:

, - 3K,
= ;G" T 9K,D, -1

n

T = ZTh‘ =ZGM& = 235
(L

=1



135

The first relation follows from Hooke's law, whereas the second relation reflects
the Trouton ratio between extensional and shear viscosity. An excellent fit was
obtained using a log-equidistant grid of eighteen relaxation times. The resulting
shear relaxation modulus is depicted in figure 3.10 and the eighteen shear mod-
uli and relaxation times are tabulated in Table 3.3. A check of the conversion
procedure was provided by comparing the original fit' of the Carson transform of
D(t) with the generalized Maxwell fit of (the Carson transform of) G(t), again
using equation A.2. A good agreement was obtained.



Samenvatting

Bij het bestuderen van het deformatiegedrag van polymeren wordt onderscheid
gemaakt tussen lineair viscoelastisch gedrag, niet-lineair viscoelastisch gedrag en
het vloeigedrag bij hoge spanningen. Het lineair viscoelastisch gedrag wordt,
gebruikmakend van de zogenaamde lineaire respons theorie, beschreven met de
bekende Boltzmann superpositie-integraal. Het modelleren van niet-lineair vis-
coelastisch pedrag is een nog altijd actief gebied van onderzoek, waarin verschil-
lende theorieén zijn ontwikkeld. De meeste daarvan beogen een één-dimensionale
beschrijving te geven van een specifieke belastingstoestand bij niet al te grote
deformaties, zoals bijvoorbeeld kruip. Het vloeigedrag wordt tenslotte in het
algemeen beschreven met behulp van vloeieriteria, waarbij meestal wordt gekozen
voor het druk- en reksnelheidsafhankelijke Von Mises criterium. Na het vioeipunt
vertonen polymeren rekversteviging, soms voorafgegaan door intrinsieke rekver-
zachting.

In dit proefschrift is getracht al deze aspecten van het mechanisch gedrag
van plasachtige polymeren te combineren in &én constitutieve vergelijking. Hiet-
toe is gebruik gemaakt van het “tijd-spanning superpositie-principe”, ook wel
cen “spanningsklok” gencemd. Tijd-spanning superpositie stelt dat de niet-
lineaire invloed van spanning voornamelijk bestaat uit het op identieke wijze ver-
anderen van alle relaxatietijden. Met andere woorden, dat de intrinsieke tijdschaal
van het materiaal verandert. Dit is analoog aan het bekende “tijd-temperatuur
superpositie-principe”, waarin alle relaxatietijden op dezelfde manier van de tem-
peratuur afhangen, De mate waarin de relaxatietijden veranderen door de niet-
lineaire invived van spanning, wordt kwantitatief beschreven door de Eyring
theorie van spanningsgeinduceerde diffusie. Voor het experimentele onderzoek
naar de geldigheid van spanning-tijd superpositie is gekozen voor polycarbonaat
als een modelpolymeer, aangezien in dit polymeer vanaf kamertemperatuur tot
aan het glaspunt slechts één relaxatiemechanisme actief is. Het blijkt dat het
volledige niet-lineaire viscoelastische gedrag van polycarbonaat, inclusief het rek-
snelheidsathankelijke viceigedrag, wordt bepaald door de combinatie van een line-
alr relaxatietijden-spectrum met één niet-lineariteitsparameter uit de Evring theo-
rie, het zogenaamde “activeringsvolume”. Tijd-spanning superpositie betekent
in essentie, dat het vloeipunt gezien kan worden als een spanningsgeinduceerde
glasovergang,
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Samenvatting

De rekversteving in polycarbonaat is experimenteel onderzocht door middel
van grote homogene deformaties, zowel boven als onder de glasovergangstem-
peratuur. Voor het realiseren daarvan beneden het glaspunt is gebruik gemaakt
van een mechanische conditioneringstechniek, waarbij cilindervormige procfstaven
werden getordeerd (ot ver in het plastische gebied, waarna de staven weer in hun
isotrope uitgangstoestand werden teruggebracht door ze terug te dranien. Het
gevolg van deze plastische deformatie is dat, bij het opnieuw belasten van het
materiaal, geen rekverzachting meer op optreedi, hetgeen resulteert in homogene
deformatie, zelfs bij trekbelasting,

Gebruikmakend van deze mechanisch geconditioneerde proefstaven bleek ex-
perimenteel dat het verstevigingsgedrag van polycarbonaat, zowel in trek, druk,
als afschuiving, uitstekend kan worden beschreven met neo-Hooke’s gedrag, mot
een afschuifmodulus &G == 26 MPa. Een asymptotische toename van de spanning,
die zou kunnen wijzen op een eindige uitrekbaarheid (maximale strekgraad) van
het entanglementnetwerk, werd niet waargenomen. De rekversteviging bleef vol-
doen aan neo-Hooke's gedrag tot het moment van breuk, dat in trek optrad bij
200 % deformatie. De temperatuursafhankelijkheid van de rekverstevigingsmo-
dulus komt gvereen met de temperatnursafhankelijkheid van de plateanmodulus,
zoals die wordt waargenomen bij dynamisch mechanische metingen, Dit is cen di-
recte aanwijsing dat de rekversteviging in pelycarbonaat wordt verourzaakt door
rubberelastisch gedrag van het entanglemeninetwerk,

Tencinde al deze aspecten van het mechanisch gedrap van glasachtige poly-
meren te combinercn tot één enkele constitutieve vergelijking, is een basismodel
ontwikkeld voor het beschrijven van relaxatiegedrag, een wzogenaamd “Leonov
element”. Een Leonov element is een in feite een Maxwell model, waarvan de
relaxatietijd afhankelijk is van een equivalente spanning, evenredig met de Von
Mises spanping. Een Leonov element maakt verder, op correcte wijze, onder-
scheid tussen de {elastische) hydrostatische spanning en (viscoclastische) devi-
atorische spanning en is geschikt voor het beschrijven van eindige deformaties,
rekening houdend met geometrisch complex gedrag als gevolg van het gelijktijdig
optreden van elastische en plastische deformaties. Een aantal van dege Leonov
elementen is vervolgens parallel geschakeld, resulterend in een benadering van het
relaxatietijdenspectrum, hetgeen het volledige deformaticgedrag van glasachtige
polymeren afdoende beschrijft. Het resulterende model geeft cen kwantitatieve
beschrijving van het drie-dimensionale, niet-lineaire, viscoelastische gedrag bij
cindige deformaties. Het geeft ook een beschrijving van drie-dimensionale aspec-
ten van rekversteviging, zoals de ontwikkeling van anisotropie tijdens plastische
deformatie.

Het in dit proefschrift beschreven onderzoek toont aan dat het lineaire re-
laxatietijdenspectrum het mechanisch gedrag van glasachtige polymeren hepaalt.
Dec deviatorische spanning (en temperatuur) vervormen slechis de tijdschaal van
het materiaal. Opgemerkt dient to worden dat het mechanische gedrag in het
algemeen en het lineair viscoelastische gedrag in het bijzonder, in belangrijke
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rnate wordt beinvioed door fysische veroudering. Het is bekend dat onder invioed
van fysische veroudering de kruipcompliantiecurve verschuift naar langere tijden.
Echter de proefstaven die werden gebruikt in deze studie, hadden allc cenzelfde
leeftijd, die veel hoger was dan de experimenteertijd. Daarom is, als eerste be-
nadering, fysische veroudering niet meegenomen. Het gevolg hiervan is dat het
model voor materialen met een andere geschiedenis minder nauwkeurig zal zijn
en in kwantitatieve zin dus nog niet universeel toepasbaar is.

Fysische veroudering kan door plastische deformatie teniet worden gedaan.
Dit fenomeen, ook wel verjonging genoemd, kenmerkt zich door een verlaging van
de viscositeit na het vioeipunt, wat letdt tot intrinsieke rekverzachting. De goede
overeenkomst tussen voorspelling en experiment voor de niet-lineaire relaxatie-
experimenten en de toepasbaarheid van tijd-spanning superpositie wijzen erop
dat, voor polycarbonaat, voor monotone belastingspeschiedenissen tot aan het
vloeipunt, verjongingseffecten relatief onbelangrijk zijn. Daarom zijn in deze
studie verjongingseffecten niet meepenomen. Hoewel een nauwkeurige kwantita-
tieve beschrijving van verjongingseffecten beneden het vloeipunt nog onvoldoende
uitgekristalliseerd is, zijn er in de literatuur verscheidene bruikbare fenomeno-
logiache modellen beschikbaar voor het beschrijven van rekverzachting na het
vigeipunt.

Een belangrijk gevolg van het niet-lineaire vlceipedrag van polymeren in het
algemeen en glasachtige polymeren in het bijzonder, is het optreden van rek-
lokalisatie. Rek-lokalisatie, hier gedefinieerd als het uitgroeien van imhomogeen
gedrag ten gevolge van kleine verstoringenm in het rek- of spanningsveld, uit
zich in de vorming van shearbands en crazes, Gebruikmakend van een brosse
polystyreen-grade als modelmateriaal is experimenteel aangetoond dat de rek-
snelheidsafhankelijkheid van het breukproces (craze-initiatie) en het vloeiproces
identiek zijn. Dit gegeven opent mogelijkheden voor het definiren van een lokaal
craze-initiatie criterium, door eindige-elementen berekeningen voor een gegeven
microstructuur te vergelijken met experimentele craze-studies. Een dergelijk
lokaal criteriumn zou een krachtig hulpmiddel kunnen zijn bij het computet-onder-
steund ontwerpen van nieuwe heterogene polymere systemen die zodanig zijn
geoptimaliseerd dat het breukproces wordt averheerst door het vloeiproces,
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Stellingen

behorende bij het proefschrift
*CONSTITUTIVE MODELLING OF POLYMER GLASSES"
van T.A. Tervoort

1. Het vloeipunt van polycarbonaat is een spanningsgeinduceerde glas-
overgang.

Dit proefschrift, Hoofdstuk 3

2. Het voorspellen van ¢en maximale rekgraad in trek vanuit (uniaxiale)
compressieproeven kan bijzonder onnauwkeurig zijn.

Dit proefschrift, Hoofdstuk &

3. De omschrijving:“In the context of the idea of [ree volume we acknow-
ledge that this physical phenomenon is not necessarily the only one
that can play a significant role in large deformation processes. While
the presently considered strain states develop exclusively positive di-
latation, there are others where a volume decrease would not produce
some of the phenomena associated with “yield” in tension.” is een erg
cryptische manier om te zeggen:*Ons vrij-volume model werkt wel in
trek, maar niet in druk.”.

'Dowd, N.P, and Knauss, W.G. (1995) Timne-dependent large principle de-
formation of glassy polymers. J. Mech. FPhys. Solids 43(3), vr1.792. Dir
proefschrift, Hoofdstuk 6

4. De rekgraad zoals gevonden in shearbands (" deformation zones™) van
glasachtige polymeren is niet noodzakelijkerwijs het gevolg van een
maximale uitrekbaarheid van het “entanglementnetwerk”.

Donald, AM. and Kramer, E.J. (1982). Deformation zones and entangle-
ments in glassy polymers. Polymer, 23, 1183 Dil proefschrift, Hoofdstuk 4
en 3.



2.

Het, ts opmerkelijk dat de plasticiteitsleer bijna exclusief gebruik maakt
van “spanningsklok” modellen op basis van de tweede invariant van de
deviatorische spanningstensor, terwijl deze niet of nauwelijks voorko-
men in de rheologie van polymere smelten,

Besseling, J. and van der Giesyen, E. (1994) Mathematical Modelling of In:
elastic Deformaolions. Chapman & Hall, London.

Larson, R.G. (1988) Constitutive Equations for Polymier Melts and Solufi-
ons. Butterworth, Stoneham.

. Van der Werff en FPennings concluderen uit een lineaire extrapolatic

van de vloeispanning als functie van de temperatuur ten onrechte dat
vleel in georignleerd polyetheen het gevolg is van het ontstaan van een
hexagonale fase in de kristallijne domeinen,

Van der Werff, II. and Pennings, A.J. (1991), Tensile deformation of high
atrength and high modulus polyethylene fibers, J. Colloid Polym. Sci., 270,
747.

Govaert, L.E. and Feijs, 1. (1995). Tensile strength and work of fracture of
oriented polyethylene fibre. Polymer, 36(23), 4425.

. Hel is nooit te laat Therme 1 nog eens te volgen.

Figuur 12 in: Honcll, K.G, and Hall, C.K. (1991) Theory and simulation
of hard-chain mixtures: Equations of state, mixing properties, and density
profiles near hard walls. J. Chem. Phys. 85(6), 4481,

Thermodynarmica I, collegediktaat Techpische Universiteit Bindhoven,

. Het is opmerkelijk dat Rusland probeert te democratiseren naar Eu-

ropees model, terwijl Europa steeds meer communiceert volgens oud
Russisch model.

De Munt valt onder monumentenzorg, de gulden helaas niet.

. Op de momenten dat je zin hebt in het leven, denk je meestal niet na

over de zin van het leven,

Eindhoven, februart 1996,
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