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G E N E R A L I N T R 0 D U C T I 0 N 

The main subject of this thesis is the description of the mo

tion of a charged particle in the combination of a high-frequency 

electromagnetic wave of large-amplitude, and of a (primary} magnetic 

field that may weakly depend on space and time. 

In the study of wave-plasma interactions the calculation of 

single-particle orbits plays an important role. These orbits are of 

great use, e.g. in the search for nonlinear, selfconsistent solutions 

of the collisionless Boltzmann equation. It is impossible to obtain 

the exact analytic solution for the trajectory of an individual par

ticle moving in arbitrary fields. However, when the oscillating field 

is due to a circularly polarized wave propagating in the direction of 

a uniform magnetostatic field, such a solution can be found 1- 9 ). 

The behaviour of the particle in the combined fields mentioned 

above exhibits resonance effects when the Doppler-shifted frequency 

of the wave is near the local, relativistic cyclotron frequency. 

In the context of thermonuclear research this cyclotron reso

nance mechanism is used for the heating and confinement of laboratory 

plasmas. On the other hand, both electron and ion cyclotron resonances 

seem to play an important role in the physics of the magnetosphere, 

e.g. the loss of particles from the radiation belts, and the emission 

of VLF and ELF radiation. Further, recent literature shows the strong 

interest in large-amplitude electron whistlers. 

In Chapter I we shall formulate the relativistic and nonlinear 

equations of motion for a charged particle when the primary field is 

axially symmetric, while the additional high-frequency wave propagates 

in the direction of the axis of symmetry. The WKB approximation for 

the transverse motion will be derived and discussed shortly. This ap

proximation holds when the primary field depends only weakly on space 

and time, that is when the relative change of the cyclotron frequency 

(as seen by the particle} during one gyration period is small. 
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In several situations expliait expressions can be obtained for 

one to four of the constants of motion. It is shown that these con

stants hold under less restrictive conditions than stated in the liter

ature. In the case of a circularly polarized wave propagating along a 

uniform magnetostatic field four constants of motion can be obtained. 

In this first Chapter we shall introduce a generalized veloc

ity (generalized only with respect to the wave field), and express the 

position and the velocity in frames that rotate around the axis with 

the Doppler-shifted frequency. Represented in these variables, the con

stants of motion assume a rather simple form, and give a direct insight 

into the character of the motion. 

In Chapter II we shall discuss the possible modes of oscilla

tion. Many features of the motion shall be described without recourse 

to the complete solution given there in terms of elliptic functions. 
All final expressions shall be represented in a form, normalized such 

that they contain two dominating parameters. The latter depend on 

the initial conditions, on the properties of the wave and of the me
dium. 

Chapter III concerns the problem of the motion of a charged 

particle when the primary field varies only slowly. This special prob

lem has led to a general study of problems mainly described by the 

WKB approximation to the solution of some Helmholtz equation. Succes

sive higher-order corrections to this approximation will be construct

ed; these corrections prove to be correct up to increasing powers of 

a proper smallness parameter, and thus lead to an asymptotic solution 

of the equation. Moreover, the related problem of the adiabatic in

variant associated with the Helmholtz equation is also considered. 

The exact invariant can again be approximated, in an asymptotic sense, 

by a corresponding sequence of functions. 
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C H A P T E R I 

EQUATIONS AND RESULTING CONSTANTS OF MOTION FOR AN ELECTRON 

NEAR CYCLOTRON RESONANCE IN EXTERNAL FIELDS 

I.l Introduction 

In this Chapter we shall derive some basic properties of the 

motion of an electron in an axially symmetric (primary) electromag

netic field, and an additional high-frequency field propagating in 

the axial direction. 

In section I.2 we shall state the basic equations that govern 

the motion, assuming that the characteristic length in the radial 

direction of the inhomogeneous primary magnetic field is large com

pared to the gyration radius. This means that we assume that the change 

of the cyclotron frequency, as seen by the particle, is mainly due to 

the time-dependence and to the axial variation of the magnetic part of 

the primary field. However, as we shall explicitly mention later on, 

some results even hold when this restriction is released. 

In section I.3 we shall consider the case in which the primary 

magnetic field is only slightly inhomogeneous. Supposing that the rela

tive change of the cyclotron frequency during one gyration period is 

small, we shall derive the WKB approximation for the transverse motion. 

In section I.4 the basic set of equations and the WKB approxi

mation for the transverse motion shall be written in normalized dimen

sionless form. Moreover, we shall express the transverse position and 

momentum in frames that rotate with the local Doppler-shifted frequency 

of the wave. The expressions resulting in these particular rotating 

~ystems turn out to be very useful because, near cyclotron resonance, 
the particle orbits theh prove to be relatively simple. 

Finally, in section I.S we shall discuss some cases in which 

one or more constants of motion can be derived directly from the basic 

.set of equation. 
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I.2 Equations of motion 

We consider the relativistic motion of an electron in the ex

ternal field consisting of the combination of an axially symmetric 

(primary) field, and the field of a high-frequency electromagnetic 

wave. 

The primary electromagnetic field ~' ~ is assumed to be 

axially symmetric, with a vanishing azimuthal component of ~· Intro

ducing cylindrical coordinates <lrl = jx+iyj ,~,z) the associated vector, 

potential, to be taken in the azimuthal direction, is given by: 

A = -2
1 lriS

0
(z,t) 

0~ 

the z-axis being the axis of symmetry, and s
0 

being a given scalar 

function. The Cartesian components of the electric field E and the -o 
magnetic field ~ read (MKS units) 

1 
as

0 1 
as 

Eox E 0 
Eoz 0 = 2 y ~ = - 2 X ~ = oy 

1 
as

0 1 
as 

S S = 0 S S = - 2 X az- - 2 y az- = ox oy oz 0 

(1) 

( 2) 

If s also depends on lrl, then (1) represents a general, axio 
ally symmetric field. The expression in (2) for S then should be 

oz 
replaced by s = s + ~ lrlas ;air!. oz 0 0 

The field (2) can represent different configurations. It may fix, e.g., 

the approximation to first order in lri/L of an axially symmetric field 

with characteristic scale length L, while it constitutes the field of 

a cusped configuartion, if as
0

/3z is independent of z. Equation (2) can 

also be used in the description of magnetic pumping. 

The high-frequency field is assumed to originate from a wave 

propagating along the axial direction, fixed by its associated vectvL 

poteqtial ~(z,t) = (Ax' Av' 0); in addition we admit axial electri~ 

fields with scalar potential V(z,t). Hence, in addition to the primary 

field we introduce the fields: 

~(z,t) = (- :~x, -:~Y, - ~~) ( 
3A 3A ) 

~(z,t) = - ~, azx' 0 

We emphasize that both the primary and the h.f. field need not be 

current free. 

(3) 

Considering a wave packet propagating along the axial direction 

we assume for the transverse components of the vector potential the form 
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, ( 4) 

where t , z , the frequency w, and the wave number k are to be real 
0 0 

constants; n is a phase constant. The amplitude A(z,t) may be any com-

plex function of its arguments. If A(z,t) is constant, (4) represents 

a right-circularly polarized wave packet, whose wave vector rotates in 

the same direction as the electron does in its cyclotron orbit around 

the primary magnetic field B • When A(z,t) depends on z and t only in oz 
tpe combination wt - kz, we deal with a packet of plane waves with 

equal phase velocities, but yet unspecified polarization. 

It is convenient to use, instead of the ordinary time t, the 

particle's proper time T defined by the equation 

dt 
dT = y 

where y is the Lorentz factor 

The proper time T is an increasing function of the ordinary time t. 

* Rotating coordinates r = x + iy and r = x - iy instead of 

( 5) 

(6) 

Cartesian coordinates will be used for the moving electron, and also 

for the corresponding velocities as well as for the vector potential. 

We thus define the quantities 

r(T} - X(T) + iy(T} 

U (T) = U (T) + iu (T) = ddr r X y T 
dz 

U (T) = -d 
Z T 

(7) 

The momentum equations that describe the relativistic motion of a test 

e1ectron in the combined primary and high-frequency fields can be put 

in the form: 

du z 
d't = 

e dAr 
m dT 

~ E e Re [ * aAr.] aw ( ) m· z m ur az - ~ azc Re iru; 

( 8) 

(9) 

where we= eB
0

(z,t)/m is the electron cyclotron frequency related to 

the particle's rest mass, while an asterisk denotes a conjugate com

plex quantity. Equation (8) for A = 0 has been the subject of several r 
investigations about the constancy of the magnetic moment 1 ' 2 ' 3 ). 
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The equation for the total kinetic energy mc 2y of the particle 

can be deduced from (8) and (9). In fact, by adding (8) multiplied by 

u;, the complex conjugate of this relation, and (9) multiplied by 2uz' 

we get: 

(10) 

The equations (5) - (10) constitute a complete set enabling to deter

mine the T-dependence of the unknowns x, y, z, t, u , u , u , y. 
X y Z 

For later use we also express the azimuthal component of the 

canonical momentum in terms of the rotating coordinates. This momentum 

p~ is given by each of the following expressions 

~ = !rl 2 d~ - lrl m dT leAmo~ + eAm~j -- - l { } - w I r I 2 - Re ir"' ( u - ~ A ) · ( 11) 2 c r m r ' 

A~ being the azimuthal component of the high-frequency vector poten

tiaL 

With the aid of {8), we obtain from (11) the time derivative 

of p~, 

The system is independent of the azimuthal coordinate ~ if Ar - 0. The 

azimuthal momentum p~ is then conserved during the motion. 

The equations (9) - (12) still hold when we and Ar would even 

depend on the radial coordinate lrl. Hence, all conclusions only in

volving (9) - (12) are also justified when the primary field and the 

transverse components of the high-frequency field are yet arbitrary 

functions of lrl. 

The particle travelling in the combined fields (2) and (4) 

experiences a resonance when the Doppler-shifted frequency of the 

wave in proper time, that is w y- kuz' happens to be near the local 

electron cyclotron frequency we (in ordinary time this occurs when 

w - k dz/dt is near the local relativistic cyclotron frequency w /y). c 
The total variation of the cyclotron frequency w , as seen by the c 
particle during its motion, is a consequence of the space and time-

dependence of the axial component B of the primary magnetic field. . oz 
The axial velocity and the total kinetic energy, and therefore, the 

Doppler-shifted freq~ency w y - kuz' are not only modified by the high

frequency field, but also by the transverse components B and B 
ox oy 

(mirror effect), these being related to the spatial inhomogeneity of 
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w , and by the primary electric field which is related to the time de
c 

pendence of w . c 

I.3 The adiabatic approximation 

We shall restrict ourselves to the case in which the primary 

field is weakly inhomogeneous. In this section we want to clarify what 

we mean by the word "weakly". 

A substitution of ur = dr/de into (8) leads to the following 

equation for r(e). 

dA e r 
m de 

( 13) 

This equation for the transverse motion is coupled to the axial motion 

through the z-dependence, and to the kinetic energy through the t-de

pendence of both the cyclotron frequency ~c and the high-frequency field 

Ar. 
In this section we shall derive an approximate formal solution 

of this equation under the condition that the relative cpange of the 

cyclotron frequency as seen by the particle is small over one gyration 

period. This implies that we only look for situations in which we never 

vanishes along the particle's trajectory. 

First we want to put equation (13) for r(e) into the reduced 

form. By applying the substitution 

e w 
r(e) = ~(1) exp i J c d1' (14) 

to (8) we obtain the following equation for ~(1), 

= ~ :~r exp {- i] ~c de'} (15) 

This equation corresponds to a driven harmonic oscillator with a time 

dependent frequency. 

We have mentioned that the time-scale of w should be long c 
compared to that of the gyration. To express this fact we introduce 

the variable q defined by the equation dq/de = s, in which s is as

sumed to be a small positive constant, while we consider we as a func

tion of q instead of e. Equation (15) can then be represented as follows 

with 

8 
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f(q) k(T) == [g, e~rJ exp {- i J ~c dT'} (16b) 

In the limitE= O, q and hence f(q), become independent ofT. 

We next apply the following Liouville transformation to (16): 

T q 

T = f F{q(T 1
) ,E}dT' q = f f ( q ' , E ) dq ' 1 

(17a) 

where F is to be considered as a function of q and the parameter of 

smallness E. Choosing the function F such that it constitutes a solution 

of the following nonlinear equation and additional condition 

F(q,O) = f(q) (17b) 

we obtain from (16a) an equation for ~ which has again the reduced form 

with 

kcT ,q,E) 
-3~. 

F (q,E) k(T) 

gg = E 

dT 

As can be verified by direct substitution, the. general solution of 

(18a) is given by 

- -
[c,-! I kcT')e-iT' dT•] - [c2 +! I k6' )e +iT' dt] F; eiT + e 

'o T 
0 

- - E cT-T
0

) q = qo + 

where c
1 

and c
2 

are constants, fixed by the initial conditions at 
-
T = 'o· 

(18a) 

(18b) 

( 19) . 

Passing with the aid of (17a) and (14), from the variables 

F;, :r, q tor, T and q, and making use of (18b) and (16b) in order to 

express k in terms of A , the representation (19) transforms into 
r 
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T' T 

ll 
exp {-i f [F + ;cJdT"} exp {if (F + ;c)dT'} 

T 

r(T) -! f dT
1 

To 
d M~ To 

+ 
F~ dT' m _ F~ 

To 

T' T 

l2 +!I dt· 

exp { i J (F - ;c)dT"} exp{-i f [F- ;c)dT'} 

To 
d M~ T 

+ 0 

F~ dT' ill F~ 
0 

q = q + S(T-T ) 
0 0 

(20) 

the constants c 1 , 2 now being fixed by the initial conditions at T = T
0

• 

The expression (20) for r(T) is the general solution of (13), 

ifF is the proper solution of (17b), reducing to f for s + 0. Hence, 
we have transformed the problem of solving (13} into the problem of 

solving ( 17b) . 

However, in general we cannot find explicit expressions for the 

function F since we cannot solve (17b) for arbitrary functions f(q). If 

the latter is such that two independent solutions of the homogeneous 

part of (16a) are known, we can also find a solution of (17b). In that 

case the function F can be expressed in terms of these two independent 

solutions 4). 

On the other hand, we could solve (17b) by iteration which leads 

to a series in powers of the smallness parameter. However, the series 

thus obtained will in general not converge, but only be asymptotic. With 

the aid of the related method described in Chapter III, an approximate 

solution of (16a) and thus also of (13), can be obtained that is correct 

to any order in the smallness parameter. By this we mean that the devi

ation of this approximate solution from the exact one, decreases in 

the limit s + 0 more rapidly than any power of E. 

However, for the present purpose we shall neglect in r(T) all 

terms of second and higher order in E. It then follows from (17b) and 
(16b), that F = ~w + O(s2). 

c 
We deduce from (20) that the particle experiences a resonance 

when its Doppler-shifted frequency is near ~w ± F. By neglecting terms c 
of second and higher order in s, we not only have to assume that the 

time-scale of we is long compared to the gyration period, but also that 

the influence of these terms on the resonant behaviour is negligible. 
Partial integrating the terms occurring under the integral 

signs in (20), while replacing F by wc/2, we obtain the following ap-

10 



proximate solution of (13), 

[c1 + J d<' 
. T I T 

w~ r("t) 
eAr 

w~ [ 1- iwc J exp {-i [ w0 d<"}] exp {if w dT I}+ = c m c 2w 2 c . 

To c T 
0 0 

T . 
J 

eAr iw 
+ c2 + dT 1 c ( 21) m 2w~l2 

T c 
0 . 

wh~re we have replaced dwcjdT by we for short; c 1 , 2 being constants. 

This expression is the WKB solution of (13). It is correct up to first 

order in e:. 

For our purpose we need an alternative form of (21). Differ

entiating this equation, and combining the result with (21) itself, we 

find the following two relations (remembering that ur = dr/dT): . T 
1 

( ur -
e A + we rJ = iC 1 exp { i J wcdT'} + 

w~ m r 2w c c To 

T T 
eA iw ) + i J 

dT'__£ w~ [1 2w~ exp { i J wcdT"} ,(22a) m c 
T 

0 
c . w 

[ r - ur - ~ A + _.£._ rl T . 
w~ 

m r 2wc 

J 
iw eA 

= c2 + dT' c 
c iw 2w% m c T c 

0 

with c 1 , 2 being fixed by the initial conditions, 

. 
iC = --1- [u - ~ A + wco r ) 

1 ~ · ro m ro 2wco o 
wco 

r 

T t 

viz • 

w~ r - c 
co 0 1 

(22b) 

, (22c) 

here and henceforth a subscript zero denotes the value of the relevant 

quantity at the initial time T • 
0 

The quantities on the left-hand sides of (22) are related to 

the azimuthal component of the canonical momentum. In fact, it follows 

from (11) that p$ can also be represented by . . 
lur ~A 

we 
r 12 ~A 

we 2 - + -- ur - + --- r 
p$ m r 2wc 

-~ 
m r 2wc 

= r - (23) m 2w 2 c iwc c 

The terms occurring in (22) and (23) can be interpreted as fol

lows. The quantity -~w /2w represents the first-order radial drift of c c 
the particle due to the slowly varying primary electromagnetic field 

11 



defined by (2). In view of this, the quantity r defined by g . 
we 

u - ~ A + --- r 
r m r 2wc 

iwc 
- r -

can be considered as the position of a guiding centre. The second term 

on the right-hand side of the above expression then represents the 

particle's position rL with respect to this centre, so that . 
w 

~, A + __£_ r 
m r 2w c 

iw c 

• 

Although the vector. that corresponds to rL is not at a right angle to 

the particle's trajectory, its modulus may be interpreted as a gener

alized gyration radius. The qualification "generalized" stresses the 

fact that this radius depends on u - ~ A instead of u . r m r r 
The first term on the right-hand side of (23) proves to be 

proportional to the magnetic flux through a circle with radius lrLI 

and centered at the guiding centre. In the absence of a high-frequency 

wave (Ar 0) it is proportional to the relativistic magnetic moment. 

The second term on the right-hand side of (23) is proportional to the 

magnetic fluK through a circle' of radius !rgl and centered at the axis. 

Substituting (22b) into (23) , and taking the average over the 

initial phase of the guiding centre position, i.e. averaging over the 

phase of c2 , while neglecting products of small quantities, we find 

the following expression for the average value <p$>: 

( 2 4) 

Hence, apart from an additional constant <p$> equals the angular mo

mentum of the particle with respect to its guiding centre. 

Combining (22a) with (23) and (24), we arrive at relations 

which express p~ and <p~>, respectively, in terms of the initial con

ditions, of the cyclotron frequency w , and of the wave vector A • c r 
Since we and Ar are not given as functions of the proper time,, but 

as functions of the ordinary time t and the axial position z, the 

equations (22) - (24) are coupled to (9) and (10); these latter equa

tions determine the behaviour in proper time of the axial velocity 

and of the kinetic energy, respectively. 
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I.4 Normalization of the equations of motion 

For convenience we change to normalized dimensionless. variables, 
basing the time-scale on the wave frequency w, and the length-scale on 

w the free-space wavelength c; thus we introduce 

s = w t i X,Y,Z = w (x,y,z) 
c 

We shall further use the normalized quantities: 

Pz(s) 
dZ 

= ds 

Q{Z,wt) = 

F (Z,wt) = z 

uz 
= c 

wc(z,t) 
w 

eE (z,t) z 
mwc 

Pq,{s) 

g(Z,wt) 

X(Z,wt) 

eA (z, t) 
me 

= eV(z,t) 
mc 2 

( 2 5) 

N = kc -w 

(26) 

In addition the position and velocity in the planes perpendicular to 

the axis will be fixed with the aid of the quantities R(s) and P(s), 

to be defined by 

R{s) - ~ r exp {-i j (y-NPz)ds'-in} ( 27) 

P(s) (
ur _ eAr) 
c me exp 

s 

{-i J (y-NPZ)ds'-in} ( 2 ti} 

so 

These expressions represent the normalized position and the normalized 

form of the generalized velocity (generalized only with respect to A ) , 
r 

respectively, in frames that rotate with the local Doppler-shiftea 

frequency (amounting to y-NP in proper time) around the z-axis. In z . 
general, this Doppler-shifted frequency is not a constant. In the 

special, case of a constant wave amplitude A, the wave vector g will 

also be constant in the rotating system. The transformation to.these 

particular rotating systems turns out to be very useful because, near 

cyclotron resonance, the particle orbits in these frames prove to be 

relatively simple (see Chapter II). 

In terms of these variables and quantities the equations (9) 

and (10), which govern the axial motion and the time dependence of the 

kinetic energy, respectively, become 

dP z 
ds = yFz + NRe(igP*) - Re { (P* + g*)_ !t}...: ~~ Re{ i i R(P* + g*) }, 

( 29) . 
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~~· = - PzFz + Re(igP*) + Re { (p* + g*} ~~t} + ~~t Re { i! R(P* + g*) }· 

(30) 

An additional relation for the three quantities P , P, and y results z 
from (6), reading in the normalized quantities 

Y = [1 + I P + g I 2 + p ~ J ~ ( 31) 

We shall also express the equation (12) for the angular momentum in 

the normalized quantities, giving 

dP q, * 
ds = Re (igP ) (32) 

where, in view of (23) the normalized angular momentum is given by 

p = 
<P 

w 

mc2 

~ 
- 2 (33) 

Since (9) - (12) also hold when w and A are arbitrary func-c r 
tions of the radial coordinate lrl, the equations (29) - (33) are still 

justified when ~ and g depend on IRI. 

We do not want to transform equation (8) for the transverse 

motion in terms of the new variables and quantities since we shall use 

the adiabatic approximation, whenever we might need it. The relations 

(22a) and (22b) become in the new variables: 

[Po + ~~0 Ro] 
s 

1 [ n(s) J 1 
exp {-i I \j;ds'} + 

lt~(s) 
P(s) + . 2 ~(s) R(s) = 

~Is 
0 so 

s s 

+ i I ds'g~~ (1 in ) { . I \j;ds"} ( 3 4) - -- exp -1 
2~2 

so s' 

[R(s) + i 
P(s) + n(s) R (s)j w~ 

s 
~~ (s) 2~ ( s) 

{-i I (y-NPz)ds'-in} + ~(s) = -c exp c 2 
so 

s . s 

+ f ds 'g i~ 
{-i I (y-NPZ)ds"-in} (35) 

2~ 3f2 
exp 

s s' 
0 . 

where c2 is given by ( 2 2c) , and d~/ds has been replaced by ~ for short; 

tjJ is the resonance function defined by 
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~(s) : y - NPZ - 0 (36) 

This function governs the resonant behaviour of the particle; it van

ishes if the local normalized Doppler-shifted frequency y-NPz equals 

the local normalized cyclotron frequency n. 

Substituting (35) into (33), and next averaging over the ini

tial phase of the guiding centre position, we find the following nor

malized form of (24) 

<P > = 
$ 

lp + g_ Rj2 
20 w (37) 

Under cyclotron resonance conditions (~ ~ 0), when the normal

ized Doppler-shifted frequency y-NP is near the normalized local z 
cyclotron frequency n, the right-hand side of (34) only contains slowly 

varying quantities (slowly with respect to the gyration period). 

Equation (35) fixes the position of the guiding centre. On the right

hand side of this equation fast oscillating terms occur, which 

only slightly influence the resonant behaviour of the particle. There

fore, near cyclotron resonance, the right-hand side of (35) may be 

neglected. 

1.5 Constants of motion 

1.5.1 Introduction 

Only in a few cases it is possible to find analytic solutions 

of the equations of motion. Constants of motion play an important 
role in obtaining such solutions. We shall show that under some re

strictive conditions one can obtain one to four integrals of motion 

from the equations in the preceding section. In the homogeneous situa

tion ,(an;az = an;at = 0), with a single (constant wave amplitude g) 

right-circularly polarized wave propagating along the magnetostatic 

field, we easily find four of them. In this situation it is even possi

ble to find analytically exact solutions of the equations of motion, 

but in most other cases one has to use approximate methods or numerical 

calculations. The constants of motion are useful to reduce the order 

of the equations and often give an insight into the character of the 

motion without recourse to the exact solutions. Moreover, they are of 

great use for constructing solutions of the Vlasov equation in the 
search for consistent solutions5 ' 9 ,l0). 

15 



We have already found the relation (22b) or, expressed in nor

malized coordinates, the equivalent relation (35). The real and imag

inary parts of this expression constitute two adiabatic constants re

lating the particle's position to the generalized velocity. Neglecting 

the off-axis position of the guiding centre (i.e. omitting the right

hand side of (35)) we obtain: 

R (s) ( 38) 

. 
If the primary field is homogeneous (n = 0) , then we may 

choose, without loss of generality, the origin of our coordinate sys

tem such that 

It then follows from (35) that 

R(s) 

holds exactly. 

P(s) 
--ur- ( 39) 

We conclude from this relation that the particle orbits in the 

R-plane and in the P-plane then are similar; apart from the scaling 

factor n for the corresponding rectangular Cartesian coordinates their 

positions in the complex plane transform into each other by rotation 
1T over an angle 2. 

Under some restrictions we obtain from (29) and (30) one or 

two integrals of motion. In view of (32) these equations can be put 

in the form 

d 
(P z - NP q) - yF - Re { (P~ + g~) ~} - an 

Re { i ~ R(P~ + g~)} I ds z az az 
(40) 

d (y - Pcjl) -P F + Re { (P~ + g~) ~~t} an 
Re { i ~ R(P* + g*)} . ds + awt z z 

( 41) 

In' the next subsections we shall discuss, successively, the different 

cases in which we can deduce one or two constants of motion from the 

above equations. In all these cases analogous results can be obtained 

for a left-circularly polarized wave packet and for ions instead of 

electrons as test particles. 
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1.5.2 Space-dependent primary field 

We shall consider the situation in which the primary fie Ld and 

the amplitude A of the high-frequency field are time-independent 

(an;at : o, ag;at = O); but otherwise n may be an arbitrary functi6n 

of the space coordinates lrl and z. The wave field given by (4) then 

has the form 

where h(z) may be an arbitrary complex function of its argument. This 

expression can represent the field of a circularly polarized wave 

propagating through an inhomogeneous medium, that of a damped wave, or 

also that of standing waves. In addition we assume that the axial 

electric field can be derived from a time-independent potential. Noting 

that then F : - dX/dZ, we can integrate (41) to obtain z 

Y - X(Z) - P~ : constant ( 4 2) 

The increase of the normalized total energy y-x thus equals the· in

crease of the normalized angular momentum P~. Expressed in unnormal

ized quantities, we could say that the circularly polarized wa'ves car

ry angular momentum, and that the interaction between these waves and 

the particle is such that the increase of the total particle energy 

divided by the frequency, i.e. (mc2y-eV)/w, equals the amount or an

gular momentum p~ : mc 2 P~/w transferred by th: waves to the particle. 

If the primary field is homogeneous (n = O), then we deduce 

from (33) and (35) that 

Equation (42) then reduces to the constant: 

y- X(Z) - 1;~ 2 
:constant ( 43) 

I.5.3 Time-dependent primary field 

We now suppose that the primary field is independent of the 
I 

axial coordinate z( an; a z = 0), but otherwise i t may be time-depepdent 

and as yet an arbitrary function of the radial coordinate lrl. I~ .. ad

dition we assume that the axial electric field F depends oh t ime 
z 
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only, and that the wave amplitude A is independent of z, so that the 

wave field given by (4) has the form 

-ikz A (z,t) = h(t)e 
r 

This may represent, e.g., a right-circularly polarized wave which is 

damped in time, or a wave whose amplitude and/or phase is modulated. 

Under the restrictions mentioned we can integrate (40) which 

results in 

t 

Pz- NP$ + J Fz(t')dt' =constant (44) 

Expressed in unnormalized quantities (44) states that, disregarding 

for the moment the term involving the axial electric field, due to the 

interaction between the wave and the particle, the gain in axial mo

mentum divided by the wave number, i.e. muz/k = mc2/Nw Pz equals the 

amount of angular momentum p$ = mc2P$/w absorbed by the particle. 

If the primary magnetic field is static and homogeneous, we 

have 

Equation (44) then reduces to the constant 

t 

P - N ~ + J F (t')dt' =constant z 2n z 

I.5.4 Homogeneous magnetostatic field 

We next restrict ourselves to the homogeneous situation in 

which the magnetostatic field is homogeneous. Therefore, an;az and 

an;at vanish in (40) and (41). 

(45) 

Moreover, we assume that the wave amplitude A depends on z and 

t in the combination a 1wt - a 2 * z, a 1 , 2 being as yet arbitrary con
stants. Hence, we suppose 

(46a) 

with 

(46b) 

If the amplitude A is real, the quantity a 1c;a
2 

may be interpreted as 

the group velocity of the wave. 
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By multiplying (40) by a
1 

and (41) by a
2 

and subtracting these 

relations, we obtain after integration 

s 

a 2y - a 1Pz - (a2 - a 1N) Pt - J ds' (a 1y - a 2P
2

) Fz = constant (47) 

As can be seen from (40) and (41), this relation still holds when ~ 

also depends on z and t in the combination a 1wt - a
2 
~ z. 

The integration in the last term in the left-hand side can eas

ily be performed when the normalized field Fz is constant, giving 

s I ds' (a 1y - a 2Pz) F 2 = ~Fz (48) 

where~ is given by (46b). 

The integral in (47) can also be evaluated when F depends, z 
like the normalized wave amplitude g, only on the function ~. Indeed, 

in view of (46b) and the relation F = - ax;az, we then obtain: z 
s 

Ids' (a 1y - a 2Pz) Fz = + a2 x(~) ( 49) 

Since we only assumed the primary field to be independent of 

t and z, the integral of motion (47) still holds in a primary field 

which is an arbitrary function of the radial coordinate lrl. If it is 

also independent of lrl, we may replace in (47) Pt by IPI 2 /2~. The 

integral of motion then has a form which is equivalent to that given 

by LAIRD6 ). For a slow wave (N ~ 1) a Lorentz transformation can be 

used to express the integral (47) in terms of quantities measured in 

the reference system moving with the phase velocity ~· When 

a 2;a1 = w/kc one then obtains the integral of motion in a form which 

is equivalent to that given by SONNERUP 7 ) 

In the special case where the group velocity of the wave 

packet equals the phase velocity of the waves, i.e. if a 1 = 1, a
2 

= N, 

(47) reduces to 

s 

NY - P - J ds' (y-NP ) F = constant z z z (SO) 

We emphasize that this relation is not only valid for a right

circularly polarized wave but also for a packet of arbitrary polarized 

plane waves. If, in addition, we have to do with free space propaga

tion (N = 1), (50) constitutes the following first-order differential 
s 

equation for ~ = f ds' (y-P ) , provided we assume that F is a func-. z z 
tion of ~ only: 
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d~' F (~') = constant z (51) 

The solution of this equation, if obtainable, gives ~ as a function of 

the normalized proper time s and enables to express also the resonance 

function w given by (36), as well as the wave amplitude g, as func

tions of s. The problem of finding the motion of the particle is then. 

reduced to the solution of the integral in the right-hand side of (34), 

Q now being constant. 

In the case of 
further reduces to 8 > 

a vanishing axial electric field (F 
z 

- 0), (47) 

(52) 

The kinetic energy of the particle then cannot change without a cor

responding change of its axial momentum. The gain in total particle 

energy is due to the electric field of the wave, while that in axial 

momentum is caused by the radiation pressure, i.e. by the corresponding 

magnetic field B. The index of refraction N = c ~ is a measure for the 

relative importance of these electric and magnetic fields. When N2 > 1 

the wave can be considered as more magnetic than electric and a gain 

in (normalized) axial momentum is larger than the associated change in 

total (normalized) energy. When N2 < 1 the wave is more electric than 

magnetic and the increase in axial momentum is smaller than the in

crease in total energy. For N2 = 1 both field contributions (properly 

normalized) are just equal • 

. Combining the relation (52) with the definition (36) for the 

resonance function we find, remembering the constant value of Q, 

w(s) = W + (l-N2 ) (y - Y ) = W + (l-N
2

) (Pz - Pz
0

) (53) 
o o o N2 

Thus the resonance function proves to depend only on the kinetic energy 

or, alternatively, on the axial momentum of the particle. In the case 

of free space propagation (N = 1), the resonance function is constant. 

I.5.5 Homogeneous background and magnetostatic field with a single 

circularly polarized wave 

Finally, we shall consider the motion of an electron in a mag

netic field, which is time-independent and spatially homogeneous, and 

in the presence of a single (g constant) right-circularly polarized 

wave propagating through a homogeneous background. We may suppose the 
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amplitude g to be real by choosing a proper phase constant n. If the 

axial electric field is absent, the constants of motion (43) and (45), 

which now both hold, can be written in the following form: 

I P lz lEl: - (y - y ) = 
20 0 

0 (54) 

I p lz 
0 (55) 

respectively. 

From the above equations one can find again the relation (52) 

and the expression (53) for the resonance function. 

For later use we need the constant of motion (54) in another 

form. With the aid of (31) this constant can be derived from the above 

equations, but it is simpler to do so directly from the equations of 

motion. 

By differentiation of (34) with respect to s, remembering that 

0 is constant, we get 

dP + iijiP = iOg 
ds (56) 

' 

Multiplying this equation by the constant value of g and combining its 

real part with (30) (in which now F = 0, 0 and g are real constants), z 
we get 

d dy = 
ds Re gP - i/1 ds 0 

According to (53) the resonance function i/1 only depends on y. Substi

tution of the expression (53) therefore results, after integration, in 

(57) 

With the aid of (52) we can also express Re P in terms of P instead z 
of y. In this form (57) and (55) then directly give the particle orbit 

in the "momentum space" (Re P, Im P, P ) , while eliminating P from z z 
these equations and combining the result with {39) we also obtain the 

particle orbit in the transverse coordinate plane (Re R, Im R). We 

shall use the constants of motion (54) or (55) and (57) in Chapter 

II. With the aid of these two equations the problem of finding the 

particle trajectory can be reduced to solving a first-order elliptic 

differential equation. 
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C H A P T E R II 

ELECTRON MOTION IN A HOMOGENEOUS MEDIUM UNDER THE INFLUENCE OF A HOMO

GENEOUS MAGNETIC FIELD AND A RIGHT-CIRCULARLY POLARIZED WAVE 

II.l Introduction 

In this chapter we shall consider the behaviour of an electron 

in the presence of a riqht-circularly polarized wave with constant am

plitude (see I.4) 

propagating along a time-independent and spatially homogeneous exter

nal magnetic field and through a homogeneous medium. The axial electric 

field is assumed to be zero (Fz = 0); while the constant wave ampli~ 

tude A is taken as real. 

In this homogeneous situation the equations of motion lead to 

one single first-order differential equation for y(s). In fact, by 

squaring (!.30) (remembering that F = O, Q and g are real constants) z . 
we find 

[ £1. J 2 = g2p~ = g2j p j2 - g2p2 
ds l. r 

Here and henceforth, P and P. denote the real and imaginary parts, r l. 

respectively, of the quantity P. 

Next, using the integrals of motion (I.54) and (I.57), we get: 

with 

g2p~ + 2 rQg2 -gP tjJ J (y-y ) _ rljJ2 + (1-N2)gP l (y-y )2-
l.O . L: ro o o L o roj o 
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Apart from the introduction of the proper time and the difference in 
' 1) 

normalization (1) is equal to Eq. (2.14) of ROBERTS and BUCHSBAUM 

and to Eq. (18) of SCHRAM2) 1 it describes the motion in a one-dimen

sional pseudo-potential well, given by F(y-y ) . 

Since [ ~ ] 2 
must be non-negative,°F(y-y

0
) is also non-neg

ative during the motion. When both N2 = 1 and ~ = 0, the case under 
0 

consideration is called synchronous (DAVYDOVSKir 3 >), F(y-y
0

) has only 

one zero and F(y-y ) + ± oo when y + ± oo, However, in all other cases 
0 . 

F(±oo) = -oo when y + ± oo, while F(O) > 0 so that F(y-y ) has at least 
- 0 

two real roots. In this general, non-synchronous, case the kinetic 

energy executes a periodic oscillation between the two real roots sit

uated around y = y
0

• Such a periodic motion is excluded in the syn

chronous case. 
Since F(y-y

0
) is a polynomial of the fourth degree, we can ex

press the normalized proper time s as a function of y in terms of an 

elliptic integral of the first kind 

y 

s - s 
0 

= + f dy' 
IF(y'-y ) 

Yo o 
The solution can be inverted which results in a Jacobian elliptic 

(3) 

function for y. The dependence on the proper time of the generalized 

momenta, of the resonance function, and of the particle's position in 

the transverse plane can easily be found by substitution of the solu

tion for y into the integrals of motion and/or into the equations of 

motion. Remembering that Pz = dZ/ds, we find the axial position by 

integrating (!.52), viz. 

s 

Z = Z
0 

+ (Pzo - Ny
0

) (s-s0 ) + N I yds' 

so 
while, by integrating the differential equation (I.5), remembering 

that s wT, we obtain the ordinary timet as a function of s or y: 

s y 

= J y(s')ds' = ± I 
so Yo 

y'dy' 

IF(y'-y ) 
0 

(4) 

(5) 

The last integral can be expressed as a combination of elliptic inte

grals of the first and third kind, but here the solution cannot be in

verted in terms of known functions to find the dependence of y on the 

time t.By choosing the proper time as an independent variable we avoid 

this difficulty and several features of the motion can be deduced 

without recourse to the complete solution. 

The integrals of motion derived in Chapter I give directly the 

particle trajectories in the generalized momentum space (P, P., P) r 1 z 

24 



and next in the complex R-plane. We shall show that these trajecto

ries are closed and bounded except when simultaneously ¢ = 0 and 
0 

N2 = 1. In this synchronous case the particle trajectory is not closed 

and unbounded. 

The generalized momentum P and the position R with respect to 

the generalized guiding centre were defined with reference to a frame 

which rotates with respect to the rest frame with a normalized angular 

velocity equal to the Doppler-shifted frequency y - NP (see (I. 27) z 
and (I.28)). The vector potential is constant in this rotating frame. 

In view of (I.52) we can verify the relation: 

y - NP = y
0 

- NP + (l-N2 ) (y-y
0

) z zo 

The angular velocity of the rotating coordinate system thus proves to 

be the superposition of an average value and a variation with the same 

periodicity as the energy oscillation. This angular velocity is only 

constant if N2 = 1, or if there is no energy oscillation at all. This 

last situation arises when the initial conditions are such that y = y
0 

is a multiple root of F(y-y ) , since dy/ds then vanishes at all times. 
0 

The function F(y-y ) has a double root in y = y if, simultaneously, 
0 0 

Pio = O, Qg - p lit - 0 · ro'+'o - ' ( 6a) 

while y
0 

is a triple root ofF if in addition ¢
0 

and Pro satisfy the 

relation 

¢2 + (l-N2)g P = 0, 
o ro 

i.e. if 

(6b) 

If (6a) is satisfied then it follows from (!.56) that the time 

derivative of the generalized momentum vanishes. The contribution to 

the rate of change of P due to the wave field is then just cancelled 

by the contribution of the rotation of the particle with respect to 

the wave. Then the particle is at rest in the rotating frame. 

If Pio = 0 then y = y
0 

is a root of F(y-y
0

). Since F(y-y
0

) 

must be positive, y
0

is the maximum or the minimum of the extreme values 

between which y oscillates. This depends on the sign of 

]y = g[ Qg - Pro1jlo J y = Yo 

If Qg - p ro¢o > 0 then y
0 

is a minimum and the particle will gain 
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energy, while y
0 

is a maximum if Og - Pro*o < 0. The particle will al
ways gain energy if Pro*o < 0. If the particle starts close to exact 
resonance with small initial transverse momentum, i.e. if 1Pr

0
1 and 

l*
0

lare smaller than the values given in (6b) (see section II.S.2), 
then IP * I < Og. Hence, on the average the particle will always gain ro o 
energy in this case. 

Condition (6a) reduces to the Cerenkov-like condition2): 
y - NP = 0, if the particle starts with zero initial transverse 

0 zo 
velocity, i.e. Pio = 0, Pro= -g. Hence, if the axial velocity ini-
tially equals the wave velocity, the particle will not experience an 
energy oscillation. However, if the axial velocity is less than 
the wave velocity, the particle will gain energy, while it will lose 
energy if the axial velocity exceeds the wave velocity. This last situ--
ation can only arise in the case of a slow wave (N2 > 1). 

In the rotating frame the wave vector Ar equals the real con
stant A, and the phase of P thus equals the phase difference between 

the generalized velocity ur - ~ Ar and the wave vector Ar. Hence, the 
trajectory in the (P , Pi' P )-space gives a direct insight into the r z 
behaviour of this phase difference. We could also obtain the particle 
trajectories in the rest frame 4), but we shall not perform the corre
sponding calculations because the rel~vant features ,of the motion are 

~ ., "' . r 

al,re~dy' contained in·~ our knowled9e of the trajecto~ies in the rota-
ting frarne. 

We shall use the concept of free and trapped particles. A par
ticle is called free when its resonance function remains all the time 

above (* > 0) or below (* < 0) exact resonance, and it is called 
trapped when the resonance function either remains zero or changes 
periodically its sign during the motion. 

II.2 Free-space propasation 

We first treat this relatively simple case in which the index 
of refraction equals unity. Then the solution of (1) can be expressed 
in terms of harmonic functions. In this case the resonance function is 
constant*= *o (see (I.53)) and all particles are free except those 
which start at s = s at exact resonance (* = 0). The rotating frame 

0 0 
now has the constant angular velocity y - P • 

0 zo 
We shall use the integrals of motion (I.SS) and (I.57) in a 

somewhat different form. In view of the relation (I.52) we may replace 

Y - Y0 by Pz - Pzo' and then obtain: 

( 7) 
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1/10 
Pr - -- (P - P ) = P g z zo ro 

(8) 

Introducing momentum space with coordinates (Pr' Pi, Pz), we 

consider the paraboloid given by (7) and the plane parallel to the 

Pi -axis given by (8). In this .system the normalized wave amplitude 

g points into the direction of the Pr-axis. The particle moves along 

the intersection of both surfaces. The particle orbit is symmetric 

with respect to the plane Pi = 0; it is an ellipse except when the 

electron starts at exact resonance (1/10 = 0) ; in this latter case the 

orbit is the parabola fixed by 

P? - 2Q(P - p ) = p2 
1. z zo io 

p 
r 

(9) 

Hence, the particle trajectory in momentum space is closed and bounded 

except in the synchronous case. 

The parabola I and the straight line II, s.hown in Fig. la, are 

the intersections of the plane P. = 0 with the surfaces (7) and (8), 
l. 

respectively. The intersection points of these two curves correspond 

to the maximum and minimum values of P attained by the particle z 
during its motion. In the (Pr, Pi) plane the electron moves along the 

circle (Fig. lb) obtained from an elimination of P in (7) and (8), z 
viz. 

P? + [p - gg)2 = P? + (p - gg)2 
1. r 1/1

0 
1.0 ro 1/1

0 
(10) 

If at the initial time Pio = 0 and Pro = Qg/~P0 then the particle is at 

rest in the rotating frame; in the rest frame it runs with constant 

angular velocity y
0 

- Pzo along a circle with radius Qg/j~V0 !. 

For IV + 0 the circle in the (P , P.) o r 1. 
straight line parallel to the P.-axis through 

l. 

plane passes into a 

the point P = P r ro· 
By elimination of Pr from (7) and (8) the 

(Pi, Pz) plane proves to be the ellipse (see Fig. 

p2 
i 

orbit in the 

lc) 

= 1 . 

lp? + fp - £!.9.) 2] L 1.0 ro 1/1
0 

For 1/1
0 

+ 0 this ellipse transforms into the parabola (9). 
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Fig. 1 Sketch of the trajectory in {Pr,Pi,Pz)-space 
in the case of free space propagation {N 2 = 1). 
The particle starts above resonance {~0 > 0). 

We can express the proper time s as a function of the kinet~c 

energy. For N2 = 1, (3) becomes 

s-s 
0 

dy' 1 

{ g2pf + g2(p - ~) 2 - $2[y'-y 
~o ro $

0 
o o -~ r~:- pro)]

2

}~ 
(12) 

The sign in front of the integral has to be chosen such that dy/ds and 

Pi have the same sign, this being required by (I.30) (for Fz = o, nand 

g are real constants). This also fixes the direction in which the par

ticle moves in its orbit (see the arrows in Fig. 1). 
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s-s 
0 

Performing the integration in (12) results in 

-1 
= - arccos 

*o 

*o (y-y ) + lp - B.s.) g o ro tP 
------------------~0-- + !_ 

[P? + [P _ ~) 2]; *o 
~o ro 1jl

0 

arccos 

(13) 

Inverting this expression we obtain the following dependence of the 

kinetic energy and the axial momentum on the proper time 

y - y = p - l? 
0 z zo 

= 
g [~- p J + SL [p2 + [ P - ~1 2J; cos [a - ljio(s-so>] ljio Wo ro *o io ro 1jl

0 
o , 

(14) 

where a 
0 

is the initial value of 

a = arctg 
p - ~ 

r 1jl
0 

the sign of a is defined by its representation in Fig. lb. 

With the aid of (8), (10) and (15) we deduce from (14) 

(15) 

(16) 

Therefore, the electron travels along the circle (10) in the (P , P.) r ~ 

plane with the constant angular velocity -w and completes one oscilo 
lation in the "proper time" interval 

(17) 

Note that in the linear approximation the same result is obtained for 

an ordinary time interval tosc· 

The trajectory in momentum space, which is given by (7) and 

(8), or also by (10) and (11), depends on both the wave amplitude and 

the resonance function according to the ratio g/1jl
0 

as well as on the 

associated quantities y and P
2

• However, the oscillation period in 

proper time is independent of the wave amplitude and only depends on 

the resonance function. 
In view of (14) the gain (relative to the initial situation) 

in kinetic energy and in axial momentum, averaged over one oscilla

tion, is given by 
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<P > - p = <y> - y = ~ 
z zo 0 ~0 

r~- p J L·~o ro 
(18) 

If ~opro < Qg we conclude that, on the average, the particle gains 

energy and axial momentum from the wave, while it loses on the average 

energy and momentum if ~opro > Qg. 

The maximum change in axial momentum and kinetic energy can be 

derived from (14) and is given by 

Pzmax- Pzmin = Ymax- Ymin = 2~ {Pro+ [Pro- ~]
2

}~ • ( 19) 

At low initial momentum, i.e. if IP I << Qg/1~ I, this total change 
0 0 

and the averaged gain (18) are proportional to the square of the ratio 

g/~0 of the wave amplitude to the resonance function, whereas at high 

initial momentum, IP
0

1 >> Qg/!~0 1, they are linearly proportional to 

the ratio g/~ • 
0 

Remembering that d(wt)/ds = y and P = dZ/ds we obtain, after z 
integration of (14), the following expressions for the time t and the 

axial position z as functions of s 

w(t-t
0

) - y
0

(s-s
0

) = z - Z
0 

- Pz
0

(s-s
0

) 

~[~-Pro] <s-so> +~~ia+(Pro-~rJ~ 

(20) 

The oscillation time, that is the increase of t corresponding to an 

increase of s by sosc' then equals 

wt = {y + :L. r~ - p J }s = <y> s osc · o ~0 L~o ro osc osc ( 21) 

Further, the oscillation length, i.e. the distance which the particle 

travels in the axial direction during a time interval s , is given osc 
by 

Z = w - {p + :1_ r~ - P J }s = <P > s (22) osc c zosc · zo ~0 L~0 ro osc z osc 

where sosc is given by (17), and <y>, <Pz> are given by (18). For 

~0 ~ 0 the oscillation time tosc and the oscillation length zosc tend 

to infinity much faster than s osc 
The particle trajectory in the complex R-plane is similar to 
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the one in the complex P-plane. In fact, a substitution of (1.39) into 

(10) results in 

( 2 3 )' 

where Rr and Ri denote the real and imaginary parts of R, respectively. 
The particle thus moves with the constant angular velocity -w

0 
along 

a circle with radius {R~0 + [Rio + }r}~ and centered at the point 

[o, - }) (see Fig. 2a). For w
0 

= 0 ~he circle transforms into a 
0 

straight line paraliel to the Rr-axis through the point Ri = Rio' The 
particle completes one single revolution in the proper time interval 

sosc = 2~/lw0 1 mentioned in (17). 

Fig. 2 Sketch of the particle trajectory in (Rr,R1 ,z)-space 
for a 0 = O, ~ 0 > O, <Pz> > 0, and for free-space prop
agation (N2 = 1). 

A combination of (16), (20) and (1.39) gives the axial po
sition as a function of a (see Fig. 2b): 

z = z + ~ (a -a) + B.s. R2 + R + SL 
2 ~ [sin - sin a] . <P > ~ ( ) J 

o '~'o o · w2 ro io $
0 

_ ao 
0 

where <P >is given by (18). z 
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Except for the synchronous case when ~ = 0, the motion in the 
0 

R-plane thus proves to be closed and bounded, while the motion in the 

axial direction is the sum of a linearly increasing part and a peri

odic part. The axial motion is also bounded if <P > = 0, i.e. if z 

which means that the initial axial momentum is then just cancelled by 

the average axial momentum imparted to the particle by the magnetic 

part of the Lorentz force. 

The particle trajectory in momentum space for the synchronous 

case (~0 = 0) is given by (9), while the particle trajectory in the 

R-plane is a straight line parallel to the R -axis through the point 
r 

R. = Ri • The angular velocity of the rotating frame with respect to 
1 0 

the rest frame is in this synchronous case just equal to the cyclotron 

frequency, y
0

- Pzo = Q (see (!.36)). 

Taking the limit ~0 + 0 in (14), taking into account (15) for 

a = a
0

, leads to 

y - y = P - P = gP. (s-s ) + ~ Qg 2 (s-s
0

) 2 
0 z zo 10 0 ' 

(25) 

next, an integration yields: 

( 26) 

The last expression can be inverted to obtain s as a function of t and 

then to find y as a function of time from the first expression. How

ever, we are only interested in asymptotic solutions. For large times, 

that is for 

wg(t-t ) 
0 

>> max 

we find from the last term in the right-hand side of (26) 

and the asymptotic solution for y becomes 

(27) 

(28) 

From (8) we infer that Pr is constant if ~0 = 0, while differ-
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entiating (25), remembering (1.30) (Fz = O, Q and g are real constants), 

it follows that 

(30) 

Hence, the phase angle e = arctg Pi/Pr tends to ¥ for t,s + ~. This 

means that the particle is accelerated in the direction of the electric 

field of the wave which is shifted in phase by ¥ with respect to the 

vector potential Ar. Moreover, Pi/y and Pr/Y tend to zero when t + ~, 

hence, the transverse velocity in ordinary time ~~ goes to zero for 
large times. From (!.52) we observe that {P /y} -1 =constant which z y 
goes to zero for s + oo, Thus, the axial velocity in ordinary time 

dz/dt = cP /y approaches the velocity of light. z 

II.3 General case of a homogeneous background differing from vacuum 

(N 2 #: 1) 

II.3.1 Description of the particle orbits in the generalized momentwk 

space 

We now drop the restriction imposed on the index of refraction 

in the last section and. shall consider the general case of a constant 

N different from unity. 

The resonance function ~ and the angular velocity y - NP of 
z 

the rotating frame with respect to the rest frame are not constant now 

but periodic functions of the proper time. 

We shall use the integrals of motion (1.54) and (1.57) in a 

modified form. A multiplication of (1.54) and (1.57) by N2 - 1, while 

combining the result with (!.53) leads to the following expressions 

for these two integrals of motion 

( 31) 

(32) 

The constants B and C are fixed by the initial conditions. With the 

aid of (!.31) and (!.36), the initial values y and P can be ex-o zo 
pressed in terms of P

0 
and ~ , or of B,C, and ~ • 

0 0 
We next define the quantity 

G ( 3 3) 

and introduce the following variables in order that the integrals (31), 
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(32) and the differential equation (1) become independent of the param

eters ~,N, and g: 

-s = Gs 

B B c c = = 
} Q2 3 sgn(N 2 -1)G 2 2 

(34) 

The equations (31) and (32) then become: 

1 
I i? 1

2 + ~ 
3 B 2 2 (35) 

p 1 -z 3 -+ 2 1jJ - c r 2 
(36) 

The above normalization has been chosen such that for Pi = 0, Pr = 1, 

~ = 1, the polynomial F(y-y
0

) (see (2)) has a triple root (see (6b)), 

while the constants B and C then become equal to unity. 

We introduce the Cartesian coordinate system (P , P., ~) and r 1 

consider the paraboloid given by (35) and the parabolic cylinder par-

allel to the P.-axis given by (36). The particle moves along the in-
1 

tersection of these two surfaces. The paraboloid and the parabolic 

cylinder, thus also their intersection, are symmetric with respect to 

the plane Pi = 0. Depending on the constant B and C the intersection 

consists of either one or two closed curves, according to the exis

tence of one or two modes of oscillation. Both surfaces as well as the 

particle orbit are sketched in Fig. 3a for values of B and c leading 

to only one mode of oscillation, and in Fig. 3b for values involving 

two possible modes of oscillation. From these figures it is immedi

ately clear that the particle orbit is always closed and bounded in 

the case of finite values of the constants B and c. In view of the 

linear relation between 1jJ and P , given by (1.53), the particle orbit 
z 

in the (P , P., 
r 1 

~)-space is simply related to the one in the 

(P , P., P )-space. r 1 z 
A multiplication of (!.30) (for F 

z 
0, ~ and g real constants) 

by 1 - N2 , while using (!.53) and (34) leads to 

- p 
i 

(37) 

The coefficient sgn(N2 -1) fixes the direction in which the particle 

moves along the intersection. The resonance function attains a maxi

mum or minimum value at those points where P. = 0. 
1 
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I 

Fig. 3 Sketch of the paraboloid (35) (surface I) and the parabolic 
cylinder (36) (surface II). The particle moves along the in
tersection; ~one mode of oscillation, £ two possible modes 
of oscillation. The surface II cuts the Pr-axis at the 
point Q. 

The two parabolas shown in Figs. 4a and 4b are the intersec

tions of both surfaces (35) and (36) with the plane Pi = 0, cur.ve I r~ 

presenting the intersection with the paraboloid (35) and curve II the 

one with the parabolic cylinder (36). In these figures the particle 

oscillates along the part of curve II that lies inside the 

Since the extreme values of ~ are situated in the plane P. 
~ 

parabola· I. 

= 0 the 

intersection points represent the maximum and minimum values of ~ at-
tained by the particle during its motion. In view of the linear rela

tion between 1/J and y ,· P or I P 2 1 /2rl., the total kinetic energy, the z 
axial momentum and the angular momentum also have extreme values at 

these intersection points. 
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® ! t ~ 
I -·,----3/28 

Fig. 4 Curves I and II are the intersections of the paraboloid 
(35) and the parabolic cylinder (36), respectively with 
the plane Pi 0; a one mode of oscillation, b two pos
sible modes of osc lation. 

The particle orbit cuts the plane ~ = 0 at the points 

p = l c 
r 2 

Pi = ± [38 - % cz] ~ (38) 

We have called a particle "trapped" when its resonance function changes 

periodically its sign during the motion. From (38) we then deduce that 

at least one of the two possible modes is trapped if 

(39) 

This means that in Fig. 4 the point Q on the P -axis, at P 
r r 

3 
2 c, lies 

between the points Pr = ± 138. 
Eliminating ~ from (35) and (36} we obtain the particle orbit 

in the complex P-plane, viz. 

P~ - 2 [38 - P2l P~ = Q (P2 > ~ rj ~ 4 r 

where Q4 is the polynomial of the fourth degree 

The roots of Q
4 

are the points at which the particle orbit in the 

P-plane cuts the P -axis (P. = 0). It depends on the values of the r ~ 

36 
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constants B and C whether the polynomial o4 has two or four real roots. 

Equation (40) then comprises one or two closed curves of the fourth 

degree, respectively. In the case of two modes of oscillation, the two 

possible particle orbits prove to be nested and do not intersect each 

other. The corresponding particle orbits in the R-plane can be found 

directly from (40) by applying (34) and (I.39). Apart from the scaling 

factor n and a rotation over an angle ¥, they are identical to the 

orbits in the P-plane. 

A further elimination of p 
r from (35) and (36) yields 

4P~ ·= P4(iji) - 4 [3s 2iii] - [3c iji2J 2 
l. 

- - [iii4 - 6ciji 2 + aiji + g(;2 - 12~ (42) 

A combination of (42} and (37) leads to the following form of (1) : 

[~]2 = (43) 

The dependence of iji on the proper time s thus proves to be completely 

determined by the values of the constants B and C. The polynomial P 4 
must be non-negative and since P4 (±~) = -oo the function iji oscillates 

between the two largest or between the two smallest real roots of P4 , 

depending on which of the two pairs is situated around iji = iji
0

• The 

roots of P4 are the extreme values of the function iji attained by the 

particle during its motion. The corresponding values of P r are. the 

points where the particle orbit in the complex P-plane cuts the P~

axis (Pi= 0) and therefore, are the roots of the polynomial o4 . 

Because the polynomials P4 and Q4 transform into each other by inter
changing the constant B and C, the roots of o4 can be found directly 

from the roots of P4 . The polynomials P4 and o4 must have the same 

number of real roots. Hence, the criterion for zero, two, or four 

real roots, must be symmetric in B and c. In Figs. 6 and 7 the roots of 

P4 are plotted for some special choices of the constants B and C. 

II.3.2 The transition from one mode to two modes of oscillation 

We are interested in the possible points of contact of the two 

surfaces (35) and (36) when B and C are chosen properly. These points 

mark the transition from no solution (all roots of P4 complex, which 

involves the impossible situation connected with negative values of 

P4 for all real iji) to a single mode of oscillation (only two real 

roots of P4), or the transition from a single to two modes of oscilla-
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tion (all roots of P4 becoming real). 

Both surfaces in question are of the second degree, and are 

symmetric with respect to the plane Pi = 0. From this we conclude that 

their points of contact have to lie in the plane Pi = 0, and that they 

are also the points of contact of the curves I and II {Fig. 4); the 

latter are the intersections of the surfaces (35) and (36) with the 

plane P. = 0. We obtain these points as follows. 
1. 

The straight line 

is a tangent of curve I when the constants c 1 and c 2 satisfy the rela

tion 

1 c2 + l B c = 2 2 1 2 

The coordinates of the point of contact then are 

Pr iJ! 3 B 1 c2 {45) = -c1 = 2 - 2 1 

The straight line (44) is also a tangent of curve II of Fig. 4 when 

1 + 3ctC 
c2 = - 2c

1 

which involves the following coordinates of the point of contact: 

(46) 

The two points of contact {45) and (46) coincide when the two algebraic 

equations 

2cf + 3Ccf - 1 = 0 

c3 - 3Bc - 2 
1 1 0 {47) 

have at least one real root in common. This is only possible when the 

constants B and C satisfy the relation 

D 0 (48a) 

When this condition is satisfied the polynomial P
4 

has at least two 

real and equal roots. The relation (48a) is symmetric in B and C. 
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The equations 

(48b) 

connected with the condition D = 0, have been plotted in Fig. 5. The 

minus sign holds for the branches of the curve D = 0 in the first 

quadrant of the (B,C)-plane, while the plus sign holds for the other 

branch. 

2 

c 

t 
0 

-1 

-2 
-3 -2 -1 0 

li,D>o 
one mode 

---a 
2 3 

Fig. 5 Plot of the algebraic equation D = 0. 

In region I of this figure,D is negative while a real solution 

of (43) cannot exist there, the constants B and C being such that P4 
has no real roots. This means that B and C correspond to initial values 

which do not fit each other. In region. II, D is positive which involves 

a single mode of oscillation corresponding to the two real roots of P4 • 

In region III, D is again negative, and two modes of oscillation exist, 

which corresponds to four real roots. These conclusions follow from 

the consideration of the positions of the surfaces which represent the 

constants of motion (35) and (36); these conclusions can be verified 

by calculating the roots of P4 with the method explained in the next 
subsection. 

The common root of the equations (47) is given by 

1 1 - ec 
c1 2 c2 a -
c1 = -1 when B = c = 1 (49) 
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The coordinates of the point of contact of the tangenting curves I and 

II are given by (see (45) and (46)) 

(50) 

c 1 being specified by (49), while B and C satisfy the relation (48). 
This point is also the point of contact of the paraboloid (35) and the 

parabolic cylinder (36). With the ~id of (34) one can verify that (50) 

satisfies (6a), and also (6b) if c 1 = -1. 

II.3.3 Properties of the roots of the polynomials associated with the 

earticle orbits 

In order to obtain the solution of (43) we have to calculate 

the roots of the polynomial P4 • We shall deduce a number of properties 

of the roots ~ and P (n = 1,2,3,4) of P4 and o4 respectively, and n nr 
the various possible situations will be classified in the next subsec-

tion. Of course, we shall recover those results that can also be ob-
tained by geometric considerations 

ing the constants of the motion in 

The polynomial P4 as given 

lows 

concerning the ·surfaces represent

the (P , P., ~)-space. . r J. 
by (42) can be decomposed as fol-

(51) 

By comparing (51) with (42) it follows that the four roots have to 

satisfy the relations 

(52) 

Eliminating ~i~j'~k~t and $k + $t from these relations ~e obtain the 
polynomial of the third degree: 

(53a) 

for a 2 , with 
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In view of the first relation of (52), the three solutions a 2 
n 

(n = 1,2,3) represent the quantities 

By introducing x = a 2 - 4C, (53a) becomes 

The three solutions of this equation are given by 

X = p% + p v3 • X = E: p lj3 + E: p v3 . X 
1 1 2 , 2 1 1 2 2 , 3 

where 

1 i r-;3 
2±2° 

while the discriminant D is identical to the quantity defined by 

(48a), viz. 

D 

The two relations associated with D = 0, viz. 

(53b) 

(55) 

(56 a) 

(56b) 

(56c) 

(57) 

have been plotted in Fig. 5. The minus sign holds for the lower branch 

of the curve D = 0 in the first quadrant of the (i3,c) -plane, while the 

plus sign holds for all other branches. 

The equations (53) and (55) have the same number of real 

roots. This number depends on the sign of the discriminant D. Equation 

(53a) has one real and two complex roots if D is positive, three real 

roots if D is negative, three real roots of which two are equal if 

D = 0, and three equal real roots if, simultaneously, 2C3 -3BC +1 = 0 
and c2 - 8 = o, i.e. if 8 = c = 1. 

In the following three possibilities are to be discussed. First, 

let the four roots of P 4 all be real, it then follows from (54) that 

all three solutions of (53) must be real and positive. From the above 

discussion we conclude that this is only possible if D ~ 0 and, since 
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the solutions of (53) have to satisfy the relations 

a2 + a2 + a 2 = 12C 
l 2 3 

1 + !_ + 1 = _
4
3 s 

az a2. a2 
1 2 3 

the constants B and C must be positive in this case. 

Secondly, if P4 has two unequal real roots and two complex 

roots, it follows from the first of the relations (52) and from (54) 

that (53) has one real and two complex solutions. This situation is 

only possible if D > 0. 

Thirdly, if P4 has four complex roots, it follows from the 

first of the relations (52) and from (54) that (53) has one positive 

and two negative real roots. Hence, the discriminant D must be nega

tive. Moreover, it is obvious from (53) that a negative solution for 

a 2 can only exist if B and C are not both positive. 

With the aid of the relations (52) we can express the four 

roots of P4 in terms of the single quantity a, satisfying (53a}. In 

fact, we have 

1/J1 2 . I 

1 
= - 2 a ± l{l2c -a2 + 16}~ • ~ = .! a + _2l{l2c- a2- a16}~. 2 a ' 3,4 2 - (58) 

Since (53) has at least one positive solution for a 2 for arbitrary 

values of B and C, we take in (58) for a the positive square root of 

such a positive solution. 

By interchanging B and C the above relations and conclusions 

are also valid for the roots of the polynomial o4 . 

II.3.4 Classification of the various modes of oscillation 

From the preceding discussion a number of conclusions about 

the roots of P4 and o4 can be drawn for the several ranges for the 

values of the constants B and c. 

A. Properties connected with the polynomial P4 • 

1. If the constants Band C are not both positive while D < 0, the 

polynomial P4 has four complex roots. This means that if Band C are 
situated in region I of the B,C-plane (Fig. 5), they correspond to 

initial values which do not fit each other, and no real solution of 

the equations of motion can exist. 

2. If D > 0, i.e. if B and C lie in region II of Fig. 5, P4 has two 

unequal real roots and two complex roots. In this case only one single 

mode of oscillation can occur. From (58) we conclude that the function 
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~ then oscillates between the real roots ~l and ~2 of P4 , that is be

tween 

(59) 

where a= -(~ 1 + ~2 ) is the positive root of (53). 

The root ~ 2 is negative and from the last relation of (52) (or 

from the term 9C 2 - 12B in the right-hand side of (42)) it follows that 

~ 1 is also negative if 3C 2 - 4B > 0. Th~ function ~ then remains nega

tive throughout the motion and the particle is free. If, ori the other 

hand, 3C 2 - 4B < O, ~ 1 has to be positive and the function ~ oscillates 

around ~ = 0. In accordance with (39), the particle is trapped. The 

function ~ just reaches the value ~ 1 = 0 if 3C 2 - 4B = 0. For this case 

the real roots of P 4 as functions of Care graphically represented in 

Fig. 6a at the end of this subsection. 

2a. If in particular the point (B,C) lies on the boundary between the 

regions I and II of the (~,C)-plane (Fig. 5), so that D = 0 and B,C 

are not both positive, P4 will have two equal real roots ~ 1 , 2 , the 

roots ~ 3 , 4 being complex. This double root and the corresponding value 

of P depend on the integrals B and C according to (49) and (SO). In-
r 

deed, it can easily be proved that if D = 0 and if B and C are not both 

positive (see (48b)), the relation for the existence of a double root, 

viz. 

and (53) 

12C - a 2 + 16 = 0 a 

will have the common positive 

-

root 

1 - ac [ -2 !J~ a = = 2 c 
§2 - c 

(60) 
§2 -

We then obtain from (58) the following four roots of P
4 

1 
= - 2 a ( 61) 

where a is given by (60). 

3. If D < o, while B and C are both positive, i.e. if B and c lie in 

region III of Fig. 5, P
4 

will have four real roots. In this case two 

modes of oscillation are possible. It depends on the initial value ~ 

whether the function ~ will oscillate between the two largest or be-

tween the two smallest roots of P
4

• From (59) we infer that at least 

one positive and one negative root occur, viz. 
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Because the modulus of the positive root is smaller than the modulus 

of the negative root, and since the sum of the four roots vanishes, 

there must exist at least one second positive root. From the last rela

tion of (52) we then conclude that P
4 

has two positive and two negative 

roots if 3c2 - 4B > 0, and three positive and one negative root if 

3C2 - 4B < 0. In the first case two free-particle oscillation modes do 

exist, while in the latter case one free and one trapped-particle os

cillation mode have to occur in accordance with (39). For the trapped

particle mode the function ~ oscillates between the two smallest roots 

of P4 , and just reaches the value ~ = 0 when 3C 2 - 4B = 0 (see Fig. 6b). 

3a. If the point (B,C) lies on the boundary between regions II and III 

of the (B,C)~lane (Fig. 5), so that D = 0 and B,C are both positive, 

P4 will have four real roots, two of which are equal. This double root 

~3 , 4 and the corresponding values of Pr' expressed in B and C, are 

given by (49) and (50). Again one can prove that if D = 0 and B and c 

are both positive (see (48b)), the equation 

12C - a 2 - ~ = 0 a 

and (53) have the common positive Loot 

a = sc - : = 2 [ ~ z - ~ J ~ 
s2 - c B2 - c 

(62) 

For this value of a we obtain from (58) the following four roots of P4 : 

t a ±/f ( 63) 

We conclude from (62) that a > 2 for (B,C) on the upper branch of the 

curve D = O, that is the branch for which C > B > 1. From (63) it then 

follows that ~ 3 , 4 > ~ 1 , 2 . This means that, when we pass from region II 

to region III (Fig. 5) by crossing the upper branch of the curve 

D = 0, the two new appearing real roots ~3 , 4 are both larger than ~ 1 , 2 . 

On the other hand, when we cross the lower branch of the curve D = 0 

(for which B > c > 1 and a < 2), the two new appearing roots ~ 3 4 lie - , 
between ~ 1 , 2 , i.e. ~ 1 > ~ 3 , 4 > $ 2 • 

When the constants B and C are both equal to unity, P4 has 

three equal roots. From (53) or (55) we now easily obtain the positive 

solution a = 2. Substituting this value into (58) we find the follow

ing roots of P4 : 
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(64a) 

in accordance with (49) and (50). The corresponding values of Pr are 

the roots of Q
4 

and can be found immediately from (35) and (36) 

(P . = o}: 
nl. 

(64b) 

B. Properties connected with the polynomial Q4 . 

By interchanging B and C in all relevant equations and using 

analogous arguments we can draw a number of conclusions about the roots 

P of Q4 (see (41)} and about the particle orbit in the P-plane. The nr 
four roots of Q4 can be represented as follows (compare (58)): 

(P1,2>r = ~ b ± t[l2a-bz + ~6J!..i, (P3,4>r = ~ b ± t[l2a-bz- ~6j\, 
( 6 5) 

b being an (always existing) positive root of the equation (compare 

(53) ) 

b6 (66) 

The P are the intersections of the particle orbit in the P-plane nr 
with the. Pr-axis (Pi= 0). All roots (65) of Q4 are complex when the 

point (B,C} lies in region I of the (B,C)-plane of Fig. 5. This corre

sponds again to initial values which do not fit each other. The poly

nomial Q4 has two real roots (P 1 , 2 )r and two complex roots (P 3 , 4 )r 

when the point (B,C) lies in region II., The root P2r is always nega

tive here and the sign of P1r depends on the last term on the right 

of (41}. If 3§2- 4C < O, the two roots (P1 ,
2
)r have opposite signs, 

and the particle orbit in the P-plane encloses the origin. In the 

oppopite case 3B 2 - 4C > 0 both roots are negative, and the particle 

orbit does not enclose the origin. In the latter case, therefore, the 

phase angle between the generalized momentum and the wave vector is 

restricted to a certain interval smaller than 2n. 

On the boundary between regions I and II of the (B,C)-plane 

the two real roots (P1 , 2 )r become just equal (compare (60) and (61}}, 

and are given by 

with 

1 -- b 2 (67a) 
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1 - BC [ B2 - CB-_ J ~ b = = 2 c2 - s c2 -
(67b) 

In region III of the (B,C)-plane all four roots Pnr are real. 

At least one of them is negative and at least two are positive. The 

number of negative roots depends again on the sign of the last term on 

the right of (41), thus leading to two different situations. 

If 3B2 - 4C < O, the polynomial Q4 has one negative and three 

positive roots. Since the two possible orbits in the P-plane are nest

ed, one mode exists for which Pr oscillates between the negative root 

and the largest positive root, while for the other mode Pr oscillates 

between the two smallest positive roots. The first particle orbit en

closes the origin of the complex P-plane, but the second one does not. 

This means for this latter orbit that the phase angle is again re-

stricted to an interval smaller than 2TI. 

In the other case, for which 3B2 - 4C > o, the polynomial 0 4 
has two negative and two positive roots. One mode now exists for which 

Pr oscillates between the smallest and largest root of o4 , and another 

one for which Pr oscillates between the intermediate roots. Both par

ticle orbits enclose the origin of the P-plane. In the transitional 

case 3B2 - 4C = 0 1 one particle orbit just passes through the origin 

of the P•plane. For this case the dependence of the corresponding 

roots of P4 on the integrals of motion B,C is graphically represented 

in Fig. 6b. 

On the boundary between regions II and III, o4 has four real 

roots of which at least two are equal. These roots are given by (com

pare (62) and (63)) 

1 
= 2 b (68a) 

where 

(68b) 

From (68) we conclude that, when we pass from region II to region III 

by crossing the upper branch of the curve D = 0 (where C > B > 1 and 

b < 2~, the :wo new. a~pearing real roots (P3 , 4)r lie between (P 1 , 2>r' 
i.e. P1r > (P3 , 4>r > P2r. On the other hand, when we cross the lower 
branch of the curveD= 0 (where B > C > 1 and b > 2), the two new ap

pearing real roots (P3 , 4>r are bqth larger than (P1 2>r' i.e. 
- - - - - 1 (P3 , 4>r > P1r > P2r. ForB= C = 1 the three equal real roots of o4 

are given by (64b). 

The different cases mentioned above are listed in table 1 and 

the corresponding regions of the (B,C)-plane are indicated in Fig. s. 
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Fig. 6 Plot of the real roots of the polynomial P4 given by 
(42) as functions of the constant C; 

® 

-1 0 

a 3C 2 - 4B = 0, $ = 0 is a real root of P 4 , 
b 382 - 4C = 0, ~ = 3/2 B is the real root of P4 that 

corresponds to the root Pr = 0 of Q4 • 
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Fig. 7 Plot of the real roots of the polynomial P4 as func
tions of the constants 8 and C; 
~ ~ = o, b c = o, £ 8 = c. 
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region 

I 

1 0 < 0 

II 

1. 0 > 0 

3 D > 0 

4 D > 0 

5 

6 

7 

0 > 0 

III 

0 < 0 

0 < 0 

8 D < 0 

9 0 < 0 

Table 1 

3c2
- 4B 3s2

- 4c 

> 0 > 0 

> 0 > 0 

> 0 < 0 

< 0 > 0 

< 0 < 0 

> 0 > 0 

> 0 < 0 

< 0 > 0 

< 0 < 0 

-, 
···<,' .~········ I 

I 
I 

I 
I 

·········· ... 
~·\ 

········· 

I 
I 
I 

Ill 

' ' 
\ 
\ 
\ 

' \ 
\ 
\ 

' ' ' \ 
\ 
\ 
\ 
\ 

' -, ..... 

pr 
no solutions 

one free particle mode, 
encircling the origin 

one free particle mode, 
encircling the origin 

not 

one trapped particle mode, 
not encircling the origin 

one trapped particle mode, 
encircling the origin 

two free particle modes, 
both encircling the origin 

two free particle modes 
which one encircles the 
origin 

of 

one free and one trapped 
particle mode both encir
cling the origin 

one free particle mode which 
does not encircle the origin 
and one trapped particle mode 
which encircles the origin 

The graphs are analogous to those repre~ented in Fig. 4. 
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Fig. 8 Regions of the (B,C)-plane correspond
ing to the cases listed in table 1. 

For some special cases we shall calculate the positive roots 

a2 and b2 of (53) and (66)', and the roots ijj and P of both polyno-n nr . 
mials P4 and Q4 , respectively, as functions of the constants Band C, 
or also as functions of the initial conditions P

0 
and ijj

0
• 

II.4 Calculation of the oscillation times and the oscillation length 

II.4.1 Solution of the equations of motion 

We shall now solve equation (43) in order to obtain ijj as a 

function of s, and thus, in view of the definitions (33) and (34), the 

dependence of the resonance function ~ on the proper time s. With the 

aid of this solution we can find the s-dependence of all quantities 

that are relevant to the motion of the particle. From the definition 

(I.36) of ~ we directly obtain the Doppler-shifted frequency y - NP , 
z 

while the total kinetic energy mc 2y and the axial momentum P follow 
z 

from the linear relations between~ andy, and between~ and P , re-z 
spectively (see .(I.53)). A substitution of ~(s), thus derived, into 

the constants of motion (31) and (32) leads to expressions for the 

transverse momentum P(s) and, in view of (I.39), also for the trans

verse position R(s). 

Since P4 (~) is a polynomial of the fourth degree, we can ex

press S as a function of ~ in terms of an elliptic integral of th·e 

first kind 

s = (69) 
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This solution can be inverted which results in an expression for *(s) 

in terms of a Jacobian elliptic function. Next, substituting the cor

responding ~(s) into (I.53), and integrating this equation with re

spect to s (remembering that y = w ~;and Pz =~;),we find the ordi

nary time t and the axial position Z = ~ z as functions of the proper 

time s with the aid of the following formula: 

s 

J ~(s')ds' = ljJ
0

s + (l-N2)[wt-y
0

s] = ~0s + (l~N2 ) [~ z- Pz
0

s] (70) 

The integral in the left-hand side of these relations can be expressed 

as a combination of elliptic integrals in ~(s) of the first and third 

kind. This enables us to find t and z in terms of either s or of ljJ. How

ever, these relations cannot be inverted to obtain the explicit depen

dence of s or 1jJ on the time t in terms of known functions. Hence, we 

cannot get simple expressions for the dependence of the relevant quan

tities on the ordinary time t. On the other hand, by performing the 

integration in (70) over one period of oscillation we, nevertheless, 

can obtain relations between the oscillation period in ordinary time 

tosc' the oscillation length zosc' and the oscillation period in prop

er time sosc· 

In the next subsections we shall express the solution of (43), 

the oscillation times, and the oscillation length in terms of the 

roots of the polynomial P4 • The details of the calculation are given 

in the Appendix. 

II.4.2 The solution in the single-mode domain 

Inside region II of the (B,C)-plane (see Fig. 5), the polyno

mial P4 has the two real roots~ .. , and the two conjugate complex 
~,J 

roots ¢k,~' all given by (58); *k,~ just become real on the boundary 

with region III. In this B,C domain the function * therefore oscil

lates between ¢i and ¢j. For this single mode the solution of (43) 

reads as follows in terms of the Jacobian elliptic function cn(u,k) 

(see Appendix) : 

with 

= ¢i Rj + *jRi - (*iRj - *jRi) en{ ~~(s-sj) ,k} 

Ri +Rj+ (Ri-Rj)cn{~/RiRj·(s-sj),k} 

Ri2 . = <*. . 
'J ~' J 

(i 'I j 'I k 'I t) 

and the modulus k given by 
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1 
= 2 

(~i- ~k) (~j- ~R,) + (~i- ~R,) (~j- ~k) 
4RiRj 

= (~i -~j)2- (Ri-Rj)2 

4RiRj 
(7 3) 

The constant sj has been chosen such that~= ~j holds at s = sj. In

side region II the v.alue of k 2 is situated in the range of 0 < k2 < 1, 

while k2 = 1 on the lower branch of the boundary with region III, and 

k2 = 0 on the upper branch of the boundary with region III as well as 

on the boundary with region I. 

Inside and on the boundaries of region II both quantities R? . 
l.t) 

are positive, except at the point B = C.= 1 where R? = 
l. 

O, ~i being 

there a triple root of P4 • On the boundary between regions I and II, 

where~. = ~., Ri and R. are equal. 
l. J J 
The oscillation period sosc of the 

found from the property that the period of 

periodic function ~ may be 

the Jacobian elliptic func-

tion is 4K(k), K being the complete elliptic integral of the first 

kind, whose modulus is again given by (73). In view of the argument of 

the above elliptic function we thus find 

sosc 
= 8K(k) 

/RiRj 
(74) 

In view of (33) and (34) we obtain the oscillation proper time sosc by 

dividing (74) by G. 

Approaching the lower branch of the boundary with region III, 

the modulus k tends to unity. Since K(l) = 00
1 the oscillation period 

-sosc then tends to infinity. 

The oscillation period in ordinary time tosc and the oscilla-
w 

tion length Zosc = czosc can be expressed in terms of sosc· For that 

purpose we integrate (71) over one period of oscillation. Combining 

the result with (70) and (74) we get (see Appendix) : 

Q 
~ . R . +~ . Rij [ J - l. J J -= \jJ - - - sosc - 41Tsgn (Ri -RJ.) l-A

0 
( B ,k)_ , (75a) o Ri +Rj 

A
0

(8,k} being Heuman's lambda function 5 > (see Appendix, Eq. (22)), 

whose argument is given by 

2~ 
sin B = 1 J 

R. + R. 
l. J 
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The initial values y and P may not be chosen arbitrarily, but are 
0 zo 

fixed by the choice of the initial point (P. , P , ~0 ) on the parti
l.O ro 

cle orbit. They may equally well be considered as functions of B,C and 

~o· 
Figure 9 shows the Heuman function plotted as a function of 

its argument B and of the modulus k. 

1.00 r-----.-----,-------::::;;:;>!1 .. 

A0 <~.k) 

0.75 

0.50 

0.25 

---- ~ 
1.00 r-----......----'T"""-P-="':'9"':'0-=-o...., 

A0 Cp,k) 

t 0.501-----

. -1 
---- stn k 

Fig. 9 A0 (S,k) plotted as a function 
of its argument a and of the 
modulus k. 

II.4.3 The solution in the two-mode domain 

This domain was characterized by P 4 having four real roots. 

This situation occurs when the constants of motion B,C are such that 

the corresponding point situates inside or on the boundary of region 

III of Fig. 5. The function ~ then oscillates either between the two 

smallest, or between the two largest roots, that is, e.g. between ~. 
l. 

and ~j" The solution of (43) now reads as follows in terms of the 

Jacobian elliptic function cd(u,k1 ) (see Appendix): 
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- [ 2 ~-- J - $iRj)cd ~{RiRj(1-k )} (s-sj),k1 

R~ + R. + (R. -
... J ~ 

R.)cd[~{R.R. (1-k2) }~ts-s .) ,k
1
] 

J ~ J J 

(ijij ~ iji ~ ijii) (76) 

with R? . and k2 once again given by (72) and (73), respectively, and 
~I J 

the modulus k 1 of the Jacobian elliptic function cd(u,k1) by: 

(iji. - iji.)2 - (Ri- R.)2 
~ J J {77) 

Inside region III the value of kf lies in the range of 

0 < kf < 1, while ki = 0 on the upper branch and kf = 1 on the lower 

~ran:h of the boundary with region II. The value of kf at the point 

B = C = 1 depends on the path along which this point is approached. 

2 

n,one mode 

---9 

Fig. 10 The ranges of k and k 1 in the (B,C)
plane. The curves represent the al
gebraic equation D = 0. 

Inside this region both quantities R? . are positive, since 
~,J 

all roots of P4 are real and different there, and ijii . are both larger 
- I J 

or both smaller than $k,t' On the upper branch of the boundary which 

separates regions II and III, Rf ~ R~ or R? = R~ holds according to 
- - - - - !: J ~ J 
$. . < $k = $", or $k " < $. = $., respectively. On the lower branch 
~,] "' '"' ~ J 

of this boundary either R? or Rf vanishes according to iji. < iji. = 
- - - - - ~- J J ~ 
$k < $t' or $k < $g_ = $. < $i' holds respectively. At the point 

- J ---- -~ = c = 1 either of the relations $j < $i = $k = $t or $k 
iji. = iji. is valid, so that at this point R? = 0, R? ~ 0 or 

J ~ ~ J 

< ijit = 
R? = R? = 0 ~ J I 

respectively. 
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The oscillation period of the Jacobian elliptic function 
cd(u

1
,k

1
) is 4K(k 1), hence, in view of the argument of the function cd 

in ( 76) , 

8K(k ) 16K(k ) 
= (78) 

[ ( Ri + R . ) 2 - ( ~ . - ~ . ) 2] 
J ~ J 

It follows from (72) that RiRj = RkR~. Equation (73) then 

shows that the values of k 2 , thus also the values of kj, are equal for 

both oscillation modes. Hence, both oscillation modes have the same 

period s in proper time. osc 
When approaching the lower branch of the boundary with region 

II, the modulus k 1 will tend to unity. Since K(l) = oo, the oscillation 

periods then tend to infinity. 
An integration of (76) over one oscillation period, and a com

bination of the result with (70) and (78) again leads to relations be

tween the oscillation time tosc' the oscillation length Zosc and sosc' 
viz. (see Appendix): 

here the argument of Heuman's lambda function A
0

(6 1 ,k 1) is given by 

2[R.R.(l-k2)]~ 
i Q - ~ J s n ~-' 1 - ---=~R,.....t-+-:-::R=-. --

~ J 
(79b) 

Again the initial values y and P may not be chosen arbitrarily, but 
0 zo 

are fixed by the choice of the initial position (Pio' Pro' ~0 ) on the 

particle orbit. They may equally well be considered as functions of 

B,C and ~0 • 

II.S Solutions for special values of the constants Band c 

In the next subsections we shall calculate the roots of P 4 , 

the oscillation times s
050

, t
050 

and the oscillation length Z
080 

= 
~ z for various values of the constants B and C. c osc 

For that purpose we want to express the quantities Ri2 ., the ,J 
modulus k 2 and the coefficients of (74), (75), (78) and (79) in terms 

of ~. and ~ .• With the aid of (52) and (53) we obtain from (72) and 
~ J 

(73) the following expressions, which are applicable in both the 

single-mode and the two-mode domains: 
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R? . (ijii + iji.) 2 8 ± (iji2 iji~) = 
~,J J ijii + iiij 

i J 
(80) 

R?R~ 3 [<iii i iii. ) 2 -J 2 48(c2 B) = + - 4C - -
~ J J 

(81) 

iiiiRj + iji.R. RiRj 4 J ]. = + (82) 
R. + Rj 2(iji. + iiij) <iii i + - ) 2 

]. ~ lPj 

<iii i + iji.) 2 - 4c 
k2 1 3 = 2 - 4 R.R. 

~ J 
( 83) 

If the point (B,C) is situated on the boundary between the re

gions I and II, or on the upper branch of the boundary between II and 

III, one oscillation mode will exist for which iji. = iji. = iii
0

• For this 
]. J 

mode we obtain from (80): 

RI = Rj = 4 iii; [1 -- ~ 3j 
ll!o 

Since k = k 1 = 0 on the specified boundaries, we obtain the following 

expression for the oscillation period (K(o) =I), from (74) or (78), 

-s = osc I iii o I [1.- : 3] ~ 
ll!o 

21T (84) 

It follows from (75b) and (79b) that a= a1 = ;. Since Ao(I, o) = 1, 
we then find from (75a) or (79a) the relations wt = y s , osc 0 osc 
z = ~z = P s • These results are trivial, since, for the mode osc c osc zo osc 
under consideration, no energy oscillation will occur. 

In subsection II.3.2 we have shown that if P. = 0 and 
l.O 

P iii = 1, the polynomial P4 has a double root. If, in addition, iji < 0 ro o o 
then the corresponding point (B,C) is situated on the boundary between 

the regions I and II, while this point lies on the upper branch of the 

boundary between the regions II and III if iji > 1. For 0 < iii < 1, the 
' 0 0 

point (B,C) iies on the lower branch of the boundary between the re-

gions II and III. In that case (84) does not hold. 

II.5.1 The situation of small values of the integrals of motion 

We first consider a particle whose initial conditions are such 

that the integrals of motion B and C satisfy the inequalities 

Is I < 1- I c I < 1 ( 8 5) 
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The corresponding point then lies in region II of the (B,C)-plane 

(Fig. 5). For this range of val~es of Band C the polynomial P4 (Q 4 , 

respectively) has only two real roots. It follows from (35) and (36) 

that the relations (85) are certainly satisfied if 

IP0
1 < 1 and IJ. I < 1 '~'o (86a) 

This means that the initial transverse momentum is small and the par

ticle starts close to exact resonance. In view of (37) these relations 

read as follows in the original,, non-normalized quantities: 

I p 12 < rfl2g J 2/3 
o L~2-1] 

(86b) 

In most experimental situations g << 1, and IN 2 -1I = 0(1) 1 so that the 

first inequality holds for relatively cold particles. If N2-l + 0 the 

second inequality can only be satisfied for values of 1/1
0 

in a small in

terval around exact resonance 1/1
0 

= 0. With the aid of (85) and (56) we 

obtain the following approximate expression for the positive root of 

(53), which is explicit up to the second order in Band c, 

( 87) 

Substituting this expression into (58) we find the following approxi

mations, correct up to second order in B and c, for the two real roots 

of P4 

J. = 3 9 c-2 '~'1 2 B - S 

(88) 

The root $2 is always negative for the assumed small values of 

B and c, while the sign of $1 depends on sgn(4B - 3C 2). Both roots are 

negative if 4B - 3c2 < 0. Then the particle is free since the reso

nance function 1/J either remains below or above exact resonance (~ = 0) • 

When 4B - 3C2 > 0 the root ~ 1 will be positive and the resonance func

tion oscillates around ~ = 0; hence, the particle is then trapped. 

The roots (88) are the maximum and minimum values of $, respec

tively, attained by the particle during its motion. In view of (42) P. 
J. 

vanishes at these extrema of ~~ while the corresponding values of P 
r 

are the real roots of o4 . According to the symmetry in the definitions 

(41) and (42) of 04 and P4 , the latter roots can be found by inter
changing B and C in (88), giving: 
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(89) 

The second root is negative, while the sign of P1r depends on 

sgn(4C - 382). The particle orbit in the P-plane encircles the origin 

if P
1r > o, that is if 4C - 382 > O, and it does not if P

1
r < 0, 

and consequently 4C - 3B2 < 0. 

The relationship between $ .. and the corresponding extreme 
1,] 

values of the resonance function w, the normalized kinetic energy y, 

the axial momentum P , the generalized angular momentum IPI 2/2Q and z 
the radial position in the R-plane are contained in (34), (!.53), (31) 

and (1.39) from which formulae we deduce 

p . - p 
zi, J zo 

N 

IPI 2 - IP 1
2 

i,j o = g[l 12 -I 12] = 2Q 2 R i, j . Ro 

(90) 

With the aid of (35) and (36), B,C can be expressed in terms 

of the initial values P and $ , we then obtain the roots (88) in terms 
0 0 

of P0 and $
0

• The extreme values of the normalized kinetic energy can 

be derived up to second order in the initial values P0 and $0 from (88), 

(90), (35) and (36) yielding: 

l:{ Qg2 ~ 1(3 
p2 

Ymin = y - -2 = Yo 
io P. -w-0 2 (N2-1) 10 

Ymax = Yo + [- Qg2 j 1(3 
2 (NL1)2 

{ 1 + ~ p +.?. 
ro 3 +-P --P - 1 - 2 1 - - } 

w~ 12 io 9 rowo ( 91) 

Remembering that, in view of (I. 30) for F = Clg/Clt = ClQ/Clt = 0, dy /ds = z 
gP., we conclude that, when P1 < 0, the energy first decreases 

1 0 
until 

y = Ym· , and next raises to its maximum value y = y . On the con-1n max 
trary, the kinetic energy initially increases when P. > 0. 

10 
The maximum value y tends to infinity when N2 + 1. This is max . 

in accordance with the results of subsection II.2, since in this limit 

the above approximation is only valid if the particle starts at exact 

resonance w
0 

= 0. Not only the kinetic energy but all maximum quanti

ties mentioned in (90) tend to infinity for N2 + 1. 

The os~illation times sosc and tosc' and the oscillation 

length Zosc czosc can be calculated from (74) and (75). For simplic-
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-ity we only consider the case P
0

, 

then obtain ~i = 0 and ~j = -2. A 
(80), (82) and (83) results in: 

•o + 0, i.e. B,C + 0. From (87) we 

substitution of these values into 

~.R. +~.R. L 

~ J J ~ = 1 - 3~ = - 0.732 
R. + R. 
~ J 

R? = 4 I R~ = 12 
~ J 

k2 = ~ - i 13 = 0.0670 

From (75b) we next obtain 

0.9634 

For the above values of k and B, K(k) = 1.598 and A
0

(B,k) 

nally, we get from (74) and (75) 

0.95. Fi-

= 4.86 G-1 = 4.86[JN2-J.jQg2]-lh 

= 4. 86 y [J N2 -lj Qg2J -lf3 + 3 • 56 + 0. 21T 
o jN2-lj 

~zosc = 4. 86 P zo [lN 2-lj ng2J -V3 + (3. 56+ d. 21T) _:.;:.N __ 
jN2-lj 

(92a) 

(92b) 

(92c) 

These expressions have been derived for ~0 = 0 and P
0 

= 0. They remain 

approximately valid if P
0 

and ~0 satisfy the inequalities (86). The 

results (92) agree with those obtained by SCHRAM2 ). Neglecting the dif-
w 

ference between wtosc and y0 sosc' and the one between czosc and Pzososc' 
(92) also agrees with the results derived by ROBERTS and BUCHSBAUM!). 

These differences are described by the second term on the right-hand 

side of (92b) and (92c), respectively. These terms become important 

under the following conditions 

( 93) 

Since in general g << 1, these are very strong conditions on the index 

of refraction. The total change in kinetic energy, and the one in 

axial momentum then become large. 

II.5.2 The case of a particle initially far from exact resonance 

Next, we consider the situation in which the integrals of 
motion satisfy the inequalities 
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<< 1 (94) 

The corresponding point of the (B,C)-plane (Fig. 8) then lies in the 

upper half plane outside the two parabolas 4IBI = 3C 2 • We then only 

have to do with free-particle orbits for which C is positive and suf

ficiently large. A particle which starts with initial conditions such 

that (94) is satisfied can never reach exact resonance. It follows 

from (35) and (36) that the relations (94) are in any case satisfied 

if, simultaneously, 

I~ I » 2 0 
~ 2 » 21 i? I 

0 0 
(95a) 

this involves that the initial distance ~0 to exact resonance should 

be large, since in view of (37) and (36h 

(95b) 

These inequalities can also be satisfied in the limit N2 ~ 1 and for 

vanishing wave amplitude (g ~ 0). 

If (94) holds, we obtain the following positive solution of 

(53) : 

With the aid of (35), (36) and (95a) we can express (96a) in terms of 

the initial values P
0 

and ~0 • We then find the following expression 

which is correct up to third order in the small quantities I:P0 I/I~0 I 2 

and ~-3 0 I 

4~~ [1 + 
2Pro - 2 {1 - 2Pro 4p2 } 

a2 = +~-
-2 -3 -2 -q 
lJJO lJJO lJJO 1/Jo 

li?ol2 {1 - 2Pro 
+ L}- {1- 20 Pro 

+ .!Q L}J (9Gb) 3=;- . -q -2 -3 -s 3 -3 
lJJO $0 $0 $0 lJIO lJJO 

Substituting (96b) into (58), we find that the function~ oscillates 

between the following two real roots of P
4 

that are situated above and 

below the initial value ~0 , viz.: 
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ijjmax,min - ijjo 

+ p2 :i.2 
io'~'o 

ijj
0 

and P
0 

have to satisfy (95). The total relative change 

(97) 

(ijj - w i )/iii thus proves to be of first order in the small quantimax m n o 
ties IP l!iii 2 and 1/ijj 3 • Equation (97) represents a double root of P4 0 0 0 
when, simultaneously, Pr

0
ijj

0 
= 1 and Pio = 0, that is when Pr

0
1jJ

0 
= Qg 

and P. = 0. This is in agreement with (6a); no energy oscillation 
J.O 

whatever then occurs. 

The remaining two roots of P4 are given by 

These further roots are real if ijj
0 

is sufficiently large, that is if 

,J, > - _41 I Po I 2 
'~'o - (98a) 

otherwise they are complex. This means that if in addition to (95b), 

the initial values P and 1jJ satisfy the inequality 
0 0 

(98b) 

the polynomial P4 has four real roots. 

When we pass from region II to region III of the (B,C)-plane 

by crossing the upper branch of the boundary, all four roots of P4 
become real. In this case the roots (97), between which ijj oscillates, 

are the two largest or the two smallest roots of P4 . This depends on 

the sign of the initial value $
0

• 

The relationship between the roots (97) and the corresponding 

extreme values of the resonance function ljJ, the normalized kinetic 

energy y, the axial momentum P , the generalized angular momentum 

r;~ 2 
and the radial position i~ the R-plane is again given by (90). 

By combining (97) and (90), remembering (33) and (34), we obtain, e.g., 

for the extreme values of y the following expressions in terms of the 

initial transverse momentum P
0 

and the initial distance ljJ
0 

to exact 
resonance: 
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+ 

(99) 

In view of (95), the terms containing g(N2 -1) are small. Neglecting 

them we obtain the result that can also be derived from (14). 

The roots (97) can be used to calculate the oscillation times 

and the oscillation length. Neglecting small terms we then reobtain 

the expressions given in section II.2. Hence, the results that are 

exact for N2 = 1 remain approximately valid if the particle starts 

far enough from exact resonance. 

II.5.3 The case of a large initial transverse momentum 

Finally, we consider the case in which the integrals of motion 

satisfy the relations 

(100) 

The corresponding point in the (B,C)-plane then lies in the right half 

plane of Fig. 8 outside the two parabolas ± 4C= 3Bz. Thus (100) includes 

all trapped-particle orbits (3C 2 $ 4B) for which B is sufficiently 

large. It follows from (35) and (36) that the relations (100) are in 

any case satisfied if, simultaneously, 

-2
1 li?0 12 >> l;r. I '~'o li? I » 2 

0 
(lOla) 

this means that the initial transverse momentum should be large ac

cording to the equivalent relations: 

(lOlb) 

These inequalities can only be satisfied for N2 ~ 1. 

For B and C satisfying (100) we obtain the following approxi

mate positive solution directly starting from (53), 
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A substitution of (102) into (58) will give the four roots of the 

polynomial P
4 

in terms of the integrals of motion. 

We shall restrict ourselves to trapped-particle orbits. We 

may then suppose that the particle starts at exact resonance (W
0 

= 0). 

A combination of (35) and (36) for ~0 = 0 with (102) then leads to: 

a == 
2 (103) 

Iii I 0 

By substituting this expression into (58), we obtain the following 

four roots of the polynomial P4 : 

[ l + 
Iii I 0 

with ii satisfying (101). 
0 

+ 2ii -ro (104a) 

(l04b) 

The roots (104a) are always real, while the roots (104b) are 

complex except when the initial phase e
0 

= arg P
0 

lies in a small in

terval around 8
0 

= 0, viz. 

(105) 

For e
0 

outside this interval the function ~(s) oscillates between the 

real roots ~ .. = ~ i , given by (104a), which lie around the ini-
~, J max,m n 

tial value ~ = 0. 
0 

When cos e
0 

~ 1, the point (B,C) passes from region II to III 

by crossing the lower branch of the boundary, the two new real roots 

(104b) then being situated between the real roots (104a). In region 

III the particle will oscillate between the smallest of the roots (104a) 

and the smallest of the roots (104b), since there these roots are situ

ated around the initial value ~0 = 0. Hence, by crossing the lower 

branch of the boundary, the oscillation "amplitude" ~ - ~ . de-max m~n 

creases, and the same holds for the total change in kinetic energy, 

in axial momentum and in angular momentum. 

The relations between the extreme values (104a) of the func

tion ~ and the corresponding values of the kinetic energy, the axial 

momentum, etc. are again given by (90) taking account of (104a), (35) 

and (36). We obtain e.g., the following maximum and minimum values 
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of the normalized kinetic energy 

sgn(N2 -1)] ± 

IP 1
4 J 

0 

jP0 j+2Pro sgn(N2 -1)_l~ 

IP 13 J 
0 (106) 

With the aid of the roots (104a) we are able to calculate the 

oscillation times and the oscillation length. We only consider the case 

for which the roots (104b) are complex. A substitution of (104a) into 

(80) - (83),neglecting corrections of order IP
0

J- 3 , results in 

R? . 
~,) 

_ 4(2IP0 1 + 2Pr0)~ 
= 41Pol + IP I 

R?R~ = 16IP
0

1 2 
~ J 

k 2 = ! + 1 Pro 
2 2 IPol 

0 

(107) 

(108) 

( 109~ 

The argument S of Heuman's lambda functions' follows from (75b), (107) 

and (108), viz. 

sin S = 1 1T s = 2 ( 110) 

Since A
0

(n/2,k) = 1, we obtain, from a combination of (107) - (110) 
with (74) and (75), the following expressions for the oscillation times 

and the oscillation length 

- G-1 = 4K(k) 4K~k) 
sosc = sosc 

IP
0

1 ¥G 
= I . ( 111) 

{gJN2 -1j I Pol}~ 
wt - y s 1 

[zosc - P zososc] = N osc 0 osc 

= G 8 osc = 

( 112) 

with k given by (109). 

Since we have assumed that jP
0
! > 2, and because in general G << 1, it 

follows from (112) that 

y
0

sosc and that between 
When cos e -+ 1, 

in most cases the difference between wtosc and 
w 
czosc and Pzososc can be neglected. 
the point (~ 1 C) approaches the lower branch of 
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the boundary between the regions II and III. Since then k 2 + 1, the os

cillation times and the oscillation length become large. In that case 

it follows from (104a) that the oscillation amplitude $max- $min' 

hence also the corresponding total change in kinetic energy, in axial 

momentum and in angular momentum, become large. 

II.6 The influence of inhomogeneities on particle motion near 

cyclotron resonance 

In this Chapter we have considered the motion of an electron 

in the combination of a homogeneous magnetostatic field and a single, 

right-circularly polarized wave. In the singular case in which the 

refractive index equals unity (N 2 = 1), while the particle starts at 

exact resonance, the motion is non-oscillatory and unbounded (synchro

nous case) • In all other situations the motion proves to be peri

odic. The particle behaviour is completely determined by the constants 

Band C given by (35) and (36), respectively, and by the initial value 

$
0 

of the normalized resonance function. 

However, when the system is inhomogeneous, for instance when 

the primary field is space or time-dependent or when axial electric 

fields are present, this oscillatory or synchronous motion will be dis

turbed. The inhomogeneity can be inherent to the system as is the case 

in a mirror-confined e(lectron) c{yclotron) r(esonance) plasma, but it 

can also be imposed externally, for instance by modulating the high

frequency field. 

In the "disturbed" case, the quantities B and C given by (31) 

and {32), respectively, are not constant, but depend on space and time. 

The resonance function ~ is then not only changed by the high-frequen

cy field, but it is also influenced by the inhomogeneities. 

If the disturbance is large enough, the change of the reso

nance function due to the wave-field will be small compared to the one 

due to the inhomogeneities. In that case the interaction between the 

wave and the particle is too weak to keep the particle near resonance, 

and the particle will be pulled through resonance in a time short com

pared to the undisturbed oscillation time. The rate of change of the 

transverse momentum will still be governed by the high-frequency field, 

while the time spent by the particle near resonance will be controlled 

by the disturbances of the homogeneous situation. Consequently the 

energy gain or loss will be determined by both the wave field and the 

magnitude of the perturbation6- 9 ). 

Dependent on the initial conditions, especially on the initial 

phase, it is possible that the particle is kept closer to exact reso-
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nance for a time longer than it would be in the homogeneous situation. 

As a consequence the energy gain will then be larger. This mechanism 

could explain the occurrence of very energetic particles in e.c.r. 

plasmas. It may be possible that, in spite of resonance conditions 

changing along the orbit, the particle still performs a periodic mo

tion. An example would be a particle moving under resonance conditions 

close to the midplane of a mirror field. When this particle does .not 

penetrate deeply into the mirror region, the change of the resonance 

function due to the high-frequency field can be of the same order or 

exceed the variation in the cyclotron frequency during the motion back 

and forth between the mirrors. Then the particle will remain close to 

resonance and will execute an energy oscillation with a period which. 

is much larger than the bounce timelO,ll). 

In the other limit of weak inhomogeneities the time-dependence 

of the resonance function is only slightly modified, and a quasi-oscil

latory motion will occur. In this case the quantities B and C are not 

constants but slowly varying. Therefore, the point (B,C) moves along 

some path in the (B,C)-plane. As an important consequence, the charac

ter of the motion may be changed; the particle can pass from trapped 

to untrapped, or vice versa. 

65 



1 c.s. Roberts and S.J. Buchsbaum, Phys. Rev. 135, A 381 (1964). 

2 D.C. Schram, Physica ll• 617 (1967). 

3 V.Ya. Davydovskii, Sov. Phys. JETP ~' 629 (1963). 

4 M.L. Woolley, Plasma Phys. ~. 779 (1970). 

5 P.F. Byrd and M.P. Friedman, Handbook of Elliptic Integrals for 

Engineers and Physicists (19 54) , p. 3 5 - 38 • 

6 E. Canobbio, Nuclear Fusion 2• 27 (1969). 

7 D.C. Schram and G.P. Beukema, Physica !£, 277 (1969). 

8 D.C. Schram, w. Strijland and L.Th.M. Ornstein, III Eur. Conf. 

on Contr. Fus. and Plasma Phys., Utrecht, 71 (1969). 

9 D.C. Schram, P. Manintveld and E. Oord, IV Eur. Conf. on Contr. 

Fus. and Plasma Phys., Rome, 107 (1970). 

10 D.T. Tuma and A.J. Lichtenberg, Plasma Phys. 2, 87 (1967). 

U M. Se.tdl, Plasma Phys. (J. Nucl. Energy Part C) §_, 597 (1964). 

66 



APPENDIX. 

A. Determination of the dependence of the resonance function on the 

proper time 

We suppose that the function $(s) oscillates between either 

the two largest or the two smallest real roots, ~. and ~., say, of P4 , 
~ J -

(with ~j ~ ~i). It depends on the value of the constants of motion B 

and C whether the polynomial P4 has two or four real roots. 

A formal integration of (II.43) yields 

- - l d$' s - sj = ± 2 
fp 4 ( ~.) 

~j 

( 1) 

P
4 

being defined by (II.Sl) and (II.52). 

We introduce the angle 8 defined by 

($i - ~)R. - (~ - ~, )R. 
cos e = J J ~ (2) 

(~i - ~)Rj + (iji - ~, )R. 
J ~ 

with 

(i~j~k~t). (3) 

The quantities R~ . are real and non-negative if P
4 

has at least two 
. ~I J 

real roots. 

Inverting (2) we find 

(~jRi - ~iRj) cos 8 ~iRj + ~jRi + 
~ = ( 4) 

R. + R. + 
~ J 

( R . - R . ) cos 8 
~ J 

In order to express the integral on the right-hand side of (1) 

in terms of e, we di·fferentiate ( 4) to e which leads to 
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sin 8 

Further, a substitution of (4) into (II.51), while making use 

of (3), results in the following expression for P4 : 

3 3 - - ~.)2 4
RiRj (lj!i J [1 - k2 sin2 8] sin2 8 

[Ri + Rj + (Ri + Rj) cos 8)4 
with 

k2 ::; 1 (~j- ij;R,) (ijii- ijik) + (~i- ~R,) (ijij- ~k) 
2 - 4RiRj 

(iji.- iji.) 2 - (R.- R.)2 
= --~1~~]~~~~1~--J~ 

4RiRj 

With the aid of the above expressions, (1) reduces to the following 

form 

·- -s-s. = 
J 

e 
2 f d8' 

IRT o 1 J 

------'1""-----::- = 
[1-k2sin 2 e •] ~ 

2 F(e,k) 
IRT. 

1 J 

(5) 

( 6) 

F(8,k) represents the elliptic integral of the first kind whose modu

lus is given by (5). 

Making use of one of the inverse functions associated with the 

elliptic integral (5), we obtain from (4) $ as the following function 

of s 
ijj = iiiiRj + $jRi + <~jRi- iiiiRj)cn{!.ziiYS"<s-sj) ,k} 

Ri+ R. + (R. -R.)cn{!slif:R.(s-s.) ,k} 
J 1 J 1 J J 

( 7) 

cn{loj/RT(s-s.),k} here marks the Jacobian elliptic function defined 
1 J J 

by 

cos 8 = cnF(S,k) (8) 

Applying (6) over one period of oscillation, that is taking 

8 = 2n, we obtain the oscillation proper time sosc (which also results 

by multiplying the result for 8 = n/2 by 4), 

sosc 
= 8K(k) 

IRiRj 
TI K(k) = F(2,k) here represents the complete elliptic integral of the 

first kind. 

We also consider the integration over s of iji, of which the 
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role as a phase is apparent from (I.34). We need this quantity in 

order to be able to derive the relations between the oscillation period 

in ordinary time tosc' the oscillation length Zosc = ~zosc' and the os
cillation period in proper time sosc· The resulting "phase integral" 

becomes 

21£ 

f ~ds = 2 f 
IR.R: 0 ~ J 

~ . R . + iii . R . + (iii . R. - iiiiR . ) cos 8 
d8 ~ J J ~ J ~ J 

R. + R . + ( R. - R . ) cos 8 
~ J ~ J . 

R. + R. 
~ J 

Ri- Rj 

1 

(10) 

TI(c:t 2 ,k) being the complete elliptic integral of the third kind defined 

by 

with 

1£/2 

IT(c:t2,k) = f 
0 

(Ri - R.) 2 
J 

B. Discussion of the ranges for the squared modulus k 2 

(11) 

(12) 

The expressions (7), (9) and (10) hold for all values of k. 

However, the elliptic integrals are only tabulated for 0 ~ k 2 ~ 1. 

Th~refore, we shall investigate the range of values of k 2 in region 

II and III of the (B,C)-plane. If k 2 lies outside 0 ~ k 2 ~ 1, we 

need a modulus transformation in order to express iii,sosc and t iiids 
into tabulated functions. 

From ( 3) and (5) we obtain the following expressions for 
k2(k2 - 1) , 

<iiii - ~.) 2 (~JI, - ~ )2 
k2 (k2 1) J k ( 13·) - = 

16R?R~ 
~ J 

For the single mode of region II of the (B,C)-plane the roots ~k and 

ijiJI, are conjugate complex. Hence, k 2 (k2 - 1) < 0 in this region, which 

is only possible if 0 < k 2 < 1. Since ~i = ijij holds on the boundary 

separating regions I and II, it follows from (3) and (5) that k2 = 0 

there. We next consider the two branches of the boundary between 

regions II and III. In view of the discussion following (II.63) the 

two new real roots appearing on the upper branch are both larger than 

~i and ~j, i.e. ijii . < ~k = ~JI,' while those on the lower branch situate - ,] - . - -
between ijj, and 1)!., i.e. 1)!. < 1)Jk = 1)!. < 1)! •.• We then conclude from (3) 

1 J J ~ 1 
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and (5), taking into account that Ri and Rj are defined as the posi

tive roots of (3), that k 2 = 0 on the upper branch, and that k 2 = 1 

on the lower branch of this boundary. At the point B = c = 1 the value 

of k depends on the path along which we approach this point. 

Inside and on the boundary of region III all four roots of P4 
are real. We conclude from the discussion following (II.63) that on the 

upper branch of the boundary with region II one of the following rela

tions between the roots of P4 holds 

while on the lower branch the roots satisfy one of the relations 

It then follows from {13), (3) and (5) that k 2 < 0 inside region III, 

while k2 = 0 on the upper branch, and k2 = -~ on the lower branch of 

the boundary with region II. 

Since k 2 ~ 0 in region III we there apply the following modu
lus transformation1) 

sin 81 = sin 8 (14) 

we then have 0 < kt < 1 inside region III, while kf = 0 on the upper 

branch, and ki = 1 on the lower branch of the boundary with region II. 

Fig. 10. 

The conclusions stated above about k 2 and k2 are indicated in 
1 

c. Transformation to tabulated elliptic functions in region III 

In order to perform this transformation we derive from (14), 

cos 8 
cos 81 

= 
[1-kisin2 81] ~ -

(15) 

cd F(8 1 ,k 1) being a Jacobian elliptic function. An application of (13) 

to (6) and (11) leads to the following expressions 

s-s. 
J 

= 2F(8,k) 

[RiRj] ~ 
= 

2F{8 1 ,k1) 

[Ri Rj (1-k2 )] \ 
(16) 

(17a) 
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with a defined by (12) and a 1 by 

a2 = 
1 

= 
($.-$.)2 

l. 

(R. +R.)2- ($.- $.)2 
l. J l. J 

(17b) 

A substitution of (15) - (17) into (4), (9) and (10), while 

making use of (5) and (12), yields the following expressions in terms 

of tabulated elliptic functions 

s osc = 

$.R. + $.R. + ($.R.- iji.R.)cd[~{R.R.(1-k 2 )}\(s-s.),k 1] l.] Jl. ]l. l.] l.] . J 

R. + R. + (Ri- R.)cd[\{R.R.(l-k 2 )}~(s-s.),k 1] l. J J l. J J 

BK (k 
1

) 

[R.R. (l-k 2)] \ 
l. J 

In obtaining (20.,) we made use of the relation 

which follows from (3)·and the first of relation (II.52). 

D. Simplified expressions for the phase integral 

(18) 

(19) 

(20) 

( 21) 

We can find expressions for p $ds which are much simpler than 

(10) and (20). Such expressibns result from the following relation 

between the complete elliptic integrals of the second and third kind, 

and Heuman's lambda function A
0

2 ,J): 

IT(p2,q) !Usll. + 
wp 2 [A

0 
( 6 ,q) -1] 

p2 $. 0 . (22a) = 
2(j>2(1-p2) (p2-q2)]\ ' 1-p2 

here, q represents the modulus of A
0

, while its argument is given by 

sin (22b) 

The Heuman function has been plotted in Fig. 9 as a function of its 

argument and modulus. 

In region II, where 0 $ k 2 < 1 and a2 $ 0, we substitute (22) 

into (10), taking p 2 = a 2 and q = k. Remembering (5), (12) and (21), 

this leads to 
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(23a) 

the argument of A
0

(6,k) here being given by 

1 2[R.R.]~ 
sin S = = ~ J 

[1-u2] ~ Ri+Rj 
(23b) 

In region III, where 0 $ ki ~ 1 and uf ~ 0, we again substitute (22) 

into (20) but now we take p 2 = rti, q = k 1 . With the aid of (5), (14), 

(17b) and (21) we then obtain 

(24a) 

the argument s1 then being given by 

sin 8 = 1 

1 [1-rti] ~ 
(24b) 

Performing the integration in (II.70) over one period of oscil

lation, remembering (II.33) and (II.34), leads to 

A substitution of (23) and (24) into this relation leads to (II.75) 

for region II and to (II.79) for region III, respectively. 

1 P.F. Byrd 

Integrals 

2 loc. cit. 

3 loc. cit. 

R E F E R E N C E S 

and M.D. Friedman, Handbook of Elliptic 

for Engineers and Physicists (1954), p. 38. 

p. 226. 

p. 35 - 37. 
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C H A P T E R III 

SERIES SOLUTIONS AND THE ADIABATIC INVARIANT OF THE HELMHOLTZ EQUATION 

III.1 Introduction 

We want to discuss the solutions of the ijelmholtz equation, to 

be represented here as follows 

( 1) 

the parameter £ is ass.umed to be positive constant. 

Many problems in physics lead to this equation. It plays a 

role in very different questions like the propagation of a plane wave 

through a stratified medium, the motion of a charged particle in a 

varying magnetic field, or the reflection of a spinless particle by a 

one-dimensional potential barrier. 

The function f(x) does not depend explicitly on t, but onlr 

through the linear dependence of x on t. The introduction of the addi

tional variable x is convenient to express that the rate of change of 

f may be much smaller than that of the corresponding solution u. In 

the limit£= 0, x and hence, f(x) become independent oft. In the fol

lowing we shall suppose throughout that f(x) vanishes nowhere and that 

its derivatives of any order exist and are continuous. 

We shall discuss two methods for solving (1). In the first one 

we look for solutions of the form 

\ 
We then obtain from (1) a nonlinear second-order differential equation 

for F. This equation could be solved by iteration, obtaining a series 

in powers of £ then used as a smallness parameter. However, the result

ing series will, in general, not converge, but will only be asymptotic. 
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Using this method, KULSRUDl) has shown that in the case of a 

real function f(x) varying smoothly from a constant value f(-ro) for 

x + -oo to another value f(+ro) for x + +oo (vanishing derivatives at 

x = ±00 ), the "energy of the oscillator" (l) divided by its "frequency" 

f, viz. 

( 2) 

constitutes an "adiabatic invariant" associated with (l). The property 

that I(<) is an adiabatic invariant to all orders means that its total 

change I(+oo) - I(-oo) vanishes in all orders of the smallness parameter 

E; this implies that in the limit of a very slow transition (E + 0), 

this change vanishes more rapidly than any power of E. This does not 

mean that I is a rigorous constant. It is an example of a class of 

adiabatic invariants discussed by LENARD 2). 

In the second method the solution of (l) is obtained with the 

aid of a series expansion. In his discussion of the scattering of a 

plane wave by a stratified medium, BREMMER3) describes an exact solu

tion of' the wave equation (1). The stratified medium is approximated 

by adjacent thin homogeneous layers with different indices of refrac

tion. Taking into account all internal reflections, these being a 

consequence of the jumps in the refractive index, and passing to the 

limit for infinitesimal layers, Bremmer obtained a series which is an 

exact solution of (1). The subsequent terms of this series may be 

interpreted as due to an increasing number of reflections. The first 

term represents the WKB approximation; it constitutes the forward 

wave resulting when all internally reflected waves are neglected. 

A similar approach to this scattering problem has been per

formed by SLUIJTER4). In his work the stratified medium is approxi

mated by thin inhomogeneous layers inside each of which the WKB 

approximation is identical to the exact solution. The internal re

flections are then due to the introduced discontinuities of the 

first derivative of the index of refraction. 

Considering the initial value problem instead of the scat
tering problem, BROERS) and BROER and VAN VROONHOVENG) also found 

a series solution of (1). They show that their series is equivalent 

to the Bremmer series. 

In the next sections we shall extend both methods. By ap

plying consecutive Liouville transformations (see equation (3)) to 

(1) we obtain a solution in the form of an asymptotic series and a 

remainder. This rest term is related to the solution of a modified 

Helmholtz equation and can be expressed as an infinite series re-
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lated to the Bremmer series. With the aid of this solution we shall ar

rive at an expression for the change of I(1). 

III.2 Liouville transformation 

III.2.1 General remarks 

We shall apply to (1) the following Liouville transformation 

- 1 1 = f d1' F{x(1') ,e:} 

- X 
x = f dx' F(x' ,e:) ( 3) 

where F(x,e:) is a yet unspecified function of x and the smallness pa

rameter e:. 
-Then we obtain an equation for u, which again has the reduced 

form 

d 2u :E 2 <x,e:> - 0 
dx --+ u = = e: ( 4a) 

d'T2 d'T 

with f2 given by 

:E 2 <x,e:> 1 
[f2 + e:2F~ F-~J = 

p2 dx 2 
(4b) 

If we choose F such that it constitutes a solution of the non

linear equation 

we find from (3) 

U(1) 

-~ F 

(5) the complete solution of (1) in the form 

1 

+ c2 exp{-i J F{x(1'),e:}d1'} 
F~{X(1) ,e:} 

(5) 

( 6) 

where c 1 , 2 are arbitrary constants. The solution of (1) for e: = 0 is 

trivial since then f 2 becomes a constant. From the form of the solu

tion (6) it is then required that the solution of (5) for e: = 0 

should be given by 
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F2 (x ,o) = f 2 (x) 

It follows from (4) that the system described by (1) has an 

exact invariant (an expression not depending on T) reading: 

I 1 [iiz + (d~) 2] ::= 2 d1" 

1 
[u 2 F + {L du + €::!! d F~rJ = 2 dx F~ dT F 

provided that f 2 = 1, so that F constitutes a solution of (5). This 

even hold~ if f is complex, so that also F, T and x become complex. 

This invar:i,cmt is equivalent to that obtained by LEWIS 7 ), when ap

plying KR.US,iAL ;sa) asymptotic theory to the classical oscillator 

with time-dependent frequency. 

( 7) 

(8) 

In general we cannot find explicit expressions for the in

variant (8), since we cannot solve (5) for arbitrary functions f(x). 

In his treatment, Lewis calculates the solution of (5) for some func

tions f(x) for which the solutions of (1) are known. 

On the other hand, we can solve (5) by iteration, which leads 

to a series in powers of the smallness parameter €: 1 the first term of 

which constitutes the well-known WKB approximation. The consecutive 

terms give the higher-order corrections to this WKB solution. However, 

in general the series thus obtained will not converge, but only be 

asymptotic. 

To illustrate this asymptotic character, we consider the sit

uation in which (1) describes the propagation of a plane wave through 

an unbounded, stratified medium, whose refractive index f{x(-r)} 

changes smoothly from the constant value f(-ro) for 1" + -ro to the other 

value f(+ro) for 1" + +oo (see Fig. 1). Moreover, we restrict ourselves 

to the simple case in which the incident wave arrives from 1" = -oo, 

while imposing the boundary condition that the reflected wave should 

vanish for 1" + +00 • For 1" + ±oo the solution of (1) then has to approach 

the asymptotic solutions 

u(T) = a 1 exp{if(-00 )1"} +a~ exp{-if(-oo)-r} 1" + -ro (9a) 

u ( 1") (9b) 
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f (+co) ------------------------· 

-------------------- f(-co) 

-.x 

Fig. 1 Schematic picture of the index of refrac
tion f(x) as a function of x. 

Let (5) have a positive, single-valued and integrable solution 

F(x,£), which satisfies the boundary conditions 

F{x(T) ,£} + f(± 00 ) for T + ±oo 

we then conclude from .(9) and (6) that the amplitude c2 must vanish, 
c

2 
: 0. This would mean that no reflected wave could occur. Obviously, 

this physically incorrect result implies that (5) cannot have solu

tions that satisfy the stated conditions, so that the series obtained 

from (5) by iteration cannot converge for all x. An analogous conclu

sion has been drawn by HERTWECK and SCHLUTER9 ) in their discussion of 

the change of the magnetic moment of a charged particle in a slowly 

varying field. 

On account of the above remarks we shall proceed along a some

what different way. 

III.2.2 A hierarchy of Liouville transformations 

III.2.2.l Definition of the transformations 

An obvious change of variables for treating (1) is given by 

u = u f~ 
1 

1" 

Tl = f f{X(T')} dT' 

X 

x1 = f f (X I) dX 1 

Equation (l) then becomes (compare (4) for F replaced by f) 
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(lOb) 

in which 

(lOc) 

An analogous transformation can be applied to (lOb), and next again to 

the resulting equation, and so on (POLISHCHUCK10 >). 
The hierarchy thus obtained has been used by LITTLEWOODll) to 

show the adiabaticity of the quantity I of (2). However, in the follow

ing the successive Liouville transformations will be used to obtain 

corrections to the WKB approximation, which is the solution of (1) to 

first order in e, and to show the asymptotic character of the above

mentioned iteration procedure. 

Thus applying in succession the transformations 

u = un-1 f~ n n-1 

T = Jn-1 f dT 1 

n n-1 n-1 

= T 

n ~ 1 

X n = ~n-1 f dx' n-1 n-1 

f (x ,e) = f(x) 
0 0 

( lla) 

We obtain a sequence of second order differential equations which all 

have the reduced form: 

dx 
n 

dT = € 
n 

(n -' 0) 

Each fn is then related to fn-l by the recurrence formula 

-~ f n-1 (n > 1) 

III.2.2.2 Expressions for the hierarchy in terms of the original 
variables 

( llb) 

( llc) 

In view of the chain of transformations (lla), the quantity 

f~, which is defined as a function of xn and e, can equally well be 

considered as a function of x and e. Therefore, it proves to be more 

convenient to express the preceding relations in terms of the func

tions F (x,e), defined by 
n 
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n 
Fn(x,e:) - n fk(x,e:) (n :! 0) (12) 

k=O 

According to (12) and (lla), the relation between u and u, 
n 

't and 't , and the one between X and x can also be given by 
n n 

U(T) ~ :! 1 u = Fn-1 (x,e:) n n 

't X 

't = J F 
1

{x(T 1 ),e:}dT 1 X J F (x' e:) dx' 
n n- n n-1 ' 

u = U(T) T = 't X = X Fo(xo,e:) = f (x) (13) .. 
0 0 0 

Moreover, the relation (11c) can also be expressed in terms of 

the functions Fn instead of fn. In fact, substituting fy = Fy/Fy-l for 

y = n, n-1 in (11c), while applying the relation dxn_ 1 = Fn_2dx, we 

first find 

the following equation.then results after a summation over n in: 

p2 = ~p2 - t:2F~ d2F~~j + e;2p~ .!!:__ F-~ 
n 1 o dx 2 n-1 d 2 n-1 . X 

Reducing this expression with the aid of (11c) for n = 1, remembering 

that F 1 = f 1f
0 

and F
0 

= f
0 

= f, we find 

(n 2: 1) (14a) 

= f2 + e:2{- l __ 1 __ d2F~-l 5 
4 + -16 

p2 dx2 
n-1 

[
_ 1 dF~-l] 2} 
p2 dx J 

n-1 

(14b) 

Dividing both sides of (14a) by F~_ 1 , and combining (13) and 

(11c), respectively, we find the following alternative expressions for 

f~(x,e:) (n .<::. 1) 

f~(x,e:) = 1 

p2 
n-1 

(!Sa) 
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e:2 (- i 1 
d 2f2 

3 {f- df~-1 r f 2 (x, e: ) 1 + n-1 
- +16 dx + n p2 f2 dx 2 

n-1 n-1 n-1 

df
2 

} 
d.F2 

+ _!_ {-1- n-1 
{;;;---- d~~l} J (15b) 

8 f2 dx 
n-1 n-1 

The expressions for F 2 and f 2 , which can be obtained from (14) 
n n 

and (15) by repeated differentiations, contain f 2 (x) and its first 2n 

derivatives. The assumption that f 2 (x) nowhere vanishes, and that its 

first 2n derivatives exist and are bounded, ensures that, for values 

of e: 2 small enough, f 2 and p 2 also exist and are also bounded, nowhere n n 
vanishing, functions of x and e:. We should stress that F 2 and f2 are 

n n 
not simple finite series. in positive powers of c 2, but expressible as 

rational functions of c 2 . 

III.2.2.3 Asymptotic character of the sequence {Fnl 

The relations ( llb) , ( 13) , ( 14a) and (!Sa) strongly resemble 

the equatiohs (4a), (3), (5) and (4b), respectively. 

This might suggest that, when taking the limit n + oo, we have found a 

recipe for obtaining an exact solution of (5), and thus of (1). How

ever, it is not allowed to take this limit since, in general, the se

quences of functions {F } and {f } do not converge for all values of 
n n 

x. Hence, in general it is not allowed to deduce from (14) an equation 

for a possible limit of F for n + oo for all values of x. 
n 

As an example, we consider the reflection problem mentioned at 

the end of subsection 2.1. In that case the sequence {F } will cer-
n 

tainly converge in the limit n + oo for T + ±00 , since all derivatives 

of f{x(<)} vanish forT+ ±oo : F + f is then bounded while f tends 
n n 

to unity. In the intermediate region, however, the sequence does not 

converge for all values of T. The solution of (1) for T + - oo then can

not be linked with that for T + +00 (Stokes phenomenon). 

By induction we obtain from (14b) and (15b), respectively the 

following estimates for p 2 and f 2 n n' 

In the limit e: 

f2 (x,O) 
n 

0 the functions f 2 and p2 satisfy the relations 
n n 

1 F (x,O) 
n 

f (x) 
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In general it does not follow from the estimates (16) that, 

for small but finite values of E, and for increasing values of n, the 

quantities f 2-1 become zero to a higher and higher degree of accuracy. 
n 

Both estimates are meant in an asymptotic sense; they refer to the 

limit E ~ 0 for a fixed value of n only. This can be illustrated by 

the following example. 

We suppose that for large x, f(x) is given by 

f 2 (x) a + b x-a (a > 0) X ~ oo 

By repeated differentiation we then obtain from (14b) and (15b) the 

following expression for f2: 
n 

2 b [ E 2l n -a-2n -2a-2n f n = 1 + a - 4 aJ ( a + 2 n - 1 ) ! X + 0 ( X ) 

Due to the factor (a+ 2n- 1)! the quantities f 2-1 will only become 
n 

arbitrarily small for increasing values of n if E depends on n in a 

proper way. 

III.2.3 Introduction of higher-order invariants 

On the analogy of the function I given by (2), which was asso

ciated with the original equation (1), we introduce quantities I as
n 

sociated similarly with (11b). Starting from I = I as given by (2), 
0 

these I will be defined by the two following relations which are 
n 

equivalent in view of (13) 

I (T) 1 [t~ u2 + r:~n] 2J n 2fn n n 

1 [f~ F u 2 + {-1 du u d:~-1 r] 2f n-1 F\ dT 
+ E -F--

n n-1 n-1 

(n ~ 1) (18) 

Let the system vary slowly from one steady state to a differ

ent steady state such that f(x) = a for x < x 1 , f(x) = b for x > x
1

, 

with x 1 = x(T 1 ) and x
2 

= x(T 2). This excludes periodic functions f(x). 

It then follows from repeated applications of (14b) and (lSb) that 

F (x, E ) = a 
n 

F (x,E) n b 

f (x, E ) 
n 

1 for x < x
1 

(n :;::: 1) 

( 19) 
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From (18) we then deduce that the functions I (T) all approach the 
n 

same limit viz. 

I (T) = I(T) 
n 

for T < T 
1 

(20) 

In the following sections we shall prove that the functions In 

form a hierarchy of adiabatic invariants. 

III.3 A splitting of the n-th order solution 

We want to convert, for each n, the second-order differential 

equation (11b) into two coupled equations of the first order. An infi

nite number of such conversions is possible, but we shall choose a 

special one. 

To that end we split un into the functions vn and wn, defined 

by 

w 
n 

1 
. du 

1. n 
- 2 un - ~ dT 

n n 
(n ~ 0) 

( 21) 

The splitting (21) is unique in the sense that, if fn is real, 

it also splits the energy and the Wronskian associated with (11b) into 

contributions depending on v and w only6 ). For n = 0 it is identical 
n ) n 

to the splitting used by BREMMER3 . Replacing in (21) fn by 1, we ob-

tain for n = 1 the splitting used by SLUIJTER4 ) . It can easily be ver-

ified that, in view of ( llb) 1 the functions v n' w indeed satisfy n the 

two coupled first-order equations contained in: 

df df 
if €: n €: n 

[:: 

n - 2f dx 2f dx 

::] d n n n n 

dT 
::: (22) 

n df df 
€: n -if £ n 

2f dx - 2f dx n n n n 

A relation connecting v
0

, w with v , w can be found as fol-o n n 
lows. we apply to (21) for n = 0, the transformation un = u0F~_ 1 , 
dTn = Fn_ 1dT

0
• This yields a relation between v , w , u and du /dT • o o n n n 

The latter two quantities can be expressed in terms of v and w with n n 
the aid of (21), which leads to the relation in question, viz. 
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(23a) 

in which (n ~ I) 

F it: aF 
I + ....!!+ · n-I 

f 2fF dx 
A (x,t:) I n-I 

-
2F~ n 

Fn dF n-I I it: n-I - r- 2fF dx n-I 

F 
it: 

dF n-I 
I - ....!!+ 

f 2fF dx n-I (23b) I 

F it: dF n-l I + n r- 2fF n-I dx 

while A
0

(x,e:) = E, E denoting the identity matrix. 

If the system varies from the steady state f(x) = a for x < xi 

to the other steady state f(x) = b for x > x2 , it follows from (I9) and 

(23b) th<::.t 

An(x' ~) = f-~(x) E for x < x ·and x > x 
<;. I 2 (n ~ I) • (24) 

In order to get new 

which only has off-diagonal 
- -

equations depending on a simpler matrix, 

elements, we pass from v , ~ to the funcn n 
tions vn' wn defined by 

(25a) 

with the square matrix 

X 

exp{~ J Fndx'} 
-~ <;. 

- f n 

0 

<2sb) 
• X 

0 exp{- ~ J F dx'} t: n 

It then follows from (23), (25) and (I3) that the functions - -vn' wn have to satisfy the equations 

d 
d-r 

L (x,e:) 
n [::] 

the matrix L being defined by 
n 

0 
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d-r = t: 

-2i X 
exp{--t:- 1 Fndx'} 

0 

(26a) 

(26b) 



with 

(26c) 

From (16) and (26c) we conclude that ln = O(e 2n). Hence, by each con

secutive Liouville transformation and corresponding splitting (21), 

the order of the coefficient in the right-hand side of the first rela

tion (26a) is raised by a factor e 2 • The above procedure resembles in 

principle very much the one used by VAN KAMPEN12 ). However, we have 

made use of the freedom to choose our splitting such that 

u = F-~ 1 (v + w ) satisfies the original equation (1). n- n n 
In the next section we shall express the solution of (26) by 

an infinite series of multiple integrals. The solution of (11b) will 

then be obtained, since Fndx = ef dT 1 in the form: n n 
- T 

un = vn + wn = :~ exp{+i Jn fndT~} 
n 

f dT'} 1 (27) n n 

or, applying the relations u = u F-~ 1 and f dT = F /e dx following n n- n n n 
from (13) 1 the solution of (1) in the form 

- X 

= vn(T) exp{i J 
F~(x 1 e) e: 

U(T) F n ( x 1 
, e) dx 1 

} + 

W (T) { X 
+ n exp-! J Fn(x',e)dx'} 

F~(x,e:) 

(28) 

The quantities~ exp{±i f FndT'} contain the first n corrections with 

n 
respect to the smallness parameter e to the WKB solutions of (1); there-

fore, we shall call them the n-th order WKB solutions of (1). Hence, 

the functions v 1 w are just the amplitudes of the first-order WKB n n 
solutions of the equation (11b) for the n-th Liouville function u 1 as 

n 
well as those of the n-th order WKB solutions of the original equation 

( 1) • 

The quantities In given by (2) and (18) can be expressed in 

terms of Vn and wn. Making use of (21) and (25) we find 

(29) 
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III.4 Series solution of the equation for the WKB amplitudes 

The solution of (26a) can be expressed as follows in terms of 

a matrix Ux , which describes the evolution of the system from an inin x 
tial value a Ta of T up to some arbitrary T! 

V ( T) n V (T ) n a 

= ux 
n xa 

(30) 

W ( T) n W (T ) n a 

With X= X + E(T - T ) • 
a a x 

The evolution matrix Ux (also called the matrizant) then has 
n a 

to satisfy a matrix differential equation and a normalization condi-
tion, viz.: 

a X X --a u , = L (x,E) u , x n x n n x ( 31) 

Solving (31), we obtain the solution in the form of a series 

of multiple integrals, 

. oo X sk-1 
= E + L f ds2 ••• J dsk Ln(s 1 )Ln(s2) ••• Ln(sk) • (32) 

k=l 
X a X a 

This equation constitutes the Neumann-Liouville expansion for the 
equivalent integral equation 

X 

E + f 

The multiple integrals in (32) cannot be reduced to single in

tegrals, since the matrix Ln' given by (26b) does not commute for dif
ferent values of its argument, i.e. 

In view of (26b) the expansion (32) involves the following expressions 
X for the elements of nux : 

a 
X 

1 + I J ds 1 •. 
k=2 ,4,6 •. 

xa 
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X s 
00 

I 
r-1 ux = t ds 1 ..• dsk ln(s 1 ) .. ln(sk) X 

n x 12 a k= 1, 3, 5 •• 
X X a a 

k s 
{2' Ip Fn ds~} x exp £~ t (-1) p (33b) 

p=1 

The expressions for nu~ 22 and nu~ 21 are obtained from (33a) and (33b) 
a a 

respectively, by replacing i by -i. 

By combining (33) and (30) we finally obtain the exact solution 

for (26) for the n-th order WKB amplitudes Vn(T) and Wn(T) in terms of 

multiple integrals. 
-In order to obtain estimates of the WKB amplitudes v and wn' n 

while restricting ourselves to real f and therefore, also to real F , n 
we yet define the non-negative functions m and M by the relations n n 

xl x' 

m (x,x ) = max I dx 1 ln ( x 1 
, s) exp{- ~i I Fn(x",s)dx"} n a ( 34a) 

X a 
for X < xl :;: X a 

X 

Mn(x,xa) = I lln ( x' '£) I d I x· I (34b) 

xa 

Due to the exponential, mn will generally be much smaller than Mn. 

The moduli of the series (33a) and (33b), respectively, are 

then majorized by the following series (mn $ Mn) 

(35) 

Either of the series (33) is thus in any case absolutely and uniformly 

convergent on the interval (x,x ) if a 

M (x,x ) < oo n a (36) 

This constitutes a rather weak restriction. It even admits a vanishing 
2 -a of f - f(+oo) for x ~ 00

1 which may be as slow as x (a > 0). 

Finally, we want to express the splitting v , w of the origo 0 
inal equation (1) in terms of ux • This can be achieved as follows. n x , 
Combining (23a) and (25a), we a find the relations 

A (x,s) B (x,s) n n [ ~n(T)l W ( T) n 
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where the superscript -1 indicates the inverse. A combination of 

these relations with (30) leads to the result 

[

v ( T ) l 
UXX B -1 (X ' €: ) A -1 (X ' €: ) 0 a 

n n a n a 
a w ( T ) 

o a 

(37) 

The solution of (1) can be represented by the formula (28) with vn' 
-wn given by (30), as well as by u(T) = v

0
(T) + w

0
(T), with v

0
, w

0 
given 

by ( 37) • 

III.5 Equivalence of the series solution with the Bremmer tyee solution 

For the sake of convenience we shall use the terminology refer

ring to the situation in which equation (1) describes the prgpagat.i~n 

of a plane wave through an unbounded stratified medium. The refractive 

index of this medium changes smoothly from the constant value f(-""') 

for T ~ -""' to the other value f(+""') for T ~ +""'. The incident wave ar

rives from T = -""', and. we impose the boundary condition that the re

flected wave should vanish for T ~ +""'. We shall prove that in this 

case the series solution obtained in the previous section is equiva

lent to the Bremmer type solution. 
For that purpose we introduce the operators on±' p± and Q± 

n n 
fixed by the relations: 

o± h(x) 
n j 

x' 
dx'ln(x',e::) exp{± ~i J Fn(x",e::)dx"} h(x') 

-co 

""' x' 
P~ h(x) =I dx'ln(x',e::) exp{± ~i JFn(x",e::)dx"} h(x') 

X 

co X 

Q~ h(x) =I dx ln (x,e::) exp{± ~i I Fn(x' ,e::)dx'} h(x) 
-co 

with ln and Fn defined by (26c) and (12), respectively. 

(38) 

In view of (31) and (32) we shall interpret the evolution 

matrix Ux as an operator acting on a matrix with constant elements. 
n xa 

Because of the boundary condition at x = -co we take x = -oo. Accord-
x a 

ing to (33) the elements of nu-co can then be expressed as follows in 

terms of the operator 0~, 
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ux 1 + 0-0+ + 0-0+0-0+ + 1 
= ... -n -""11 n n n n n n 1 0-0+ - n n 

ux 1 + 0+0- + o+o-o+o- + 1 ... -n -oo22 n n n n n n 1 0+0-- n n 

X 0-0+0- 0 - 1 
n°-.,.;12 = 0 + + ... -n n n n n 1 o+o-- n n 

ux 0+ + 0+0-0+ + 0+ 1 (39) = ... -n - 00 21 n n n n n 1 0-0+ - n n 

The fractions on the right are only meant as convenient abbreviations. 

A substitution of (39) into ( 30) , applied for X a' ra -+- -oo, 

leads to the following expressions for the n-th order WKB amplitudes, 

v (r) 
[1 -1 

+ RO - 1 J A = n 0-0+ n 1 - 0+0-
n n n n 

w (r) = r+ 1 + R 1 o+o.:] A I n n 1 - 0-0+ 1 -n n n n 

where we have introduced the parameters A = v (-co) and n 
R = w (-00 )/v (-"").By repeated application of (14) we find that n n 
Fn{x(r),£}-+- f(±oo) for x-+- ±00 • We then conclude from (28) that 

(40a) 

(40b) 

w (+00 ) = 0 because of the boundary condition of a vanishing reflected n 
wave for r -+- +00 , and that v (-00 ) is the amplitude of the incident WKB 

n 
wave. Thus A and R represent the WKB amplitude of the incident wave 

and the reflection coefficient, respectively. 

In view of the vanishing of wn("") an application of (30) for 
x,r -+- +00 and x ,r -+- -oo leads to the relation a a 

With the aid of (39) and (38) this formula can also be expressed as 

follows, taking into account that the substitution of x -+- oo into the 

product of successive operators prescribes to replace only the first 
+ + operator o; by o;, 

( 41) 

This formula will be used below. 

Each individual term of the Bremmer series for the solution 

un of the equation (11b) for the n-th order Liouville transformation 
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can be derived from repeated applications of the equations (8) of 

Ref. 3. The resulting series then proves to be representable by: 

U (T)-1-
n 

(42a) 

(42b) 

here the quantities u t and u + are the WKB amplitudes of the wave ut 
n n 

propagating towards T + +oo and the wave u+ propagating towards T + - 00
1 

respectively (u = ut + u+), 

X 

u(r)t = 
un(r)t 

F (x,s) ~ 
n 

exp{i I Fn(x' ,s)dx'} 

= un(r)+ exp{-! 
Fn(x,s)~ s 

u(r)+ 

X I Fn(x' ,s)dx'} (43) 

To obtain the representation (42) and (43) we made use of the relations 

u = uF~ 1· and f dr = F /s dx following from (13), in order to express n n- n n n 
all quantities in terms of our original variables x and r, instead of 

x and T • n n 
It can easily be shown that the vectors (u t, u +) and (v , w ) · n n n n 

satisfy the same vectorial differential equations (26a). Hence, they 

should be identical, since they are also subject to the same boundary 

conditions at x = ±00 • However, we shall prove directly that the ampli

tudes u t, u + are identical to v , w , respectively. To that end we n n n n 
shall show that the right-hand sides of (40a) and (42a) and also those 

of (40b), (42b) are equal. 
- + By applying the operator 1 + 0 P to the right of (40a), while n n 

making use of the relation P+ = Q+- on+' we find the expression, n n 

[~ 

A substitution of (41) into the first term on the right leads to the 

identity: 

[~ 
Thus the application of the operator 1 + 0-P+ to (40a) yields 

n n 
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or 

V (T) = 
n 

provided that 

(42a), u (-r)t 
n 

that iin.r = wn. 

(44) 

(45) 

the series, thus defined, converges. Hence, in view of 

= v (T) holds indeed. In a similar way we can deduce 
n 

As a consequence, we conclude that the solution (40) is equiv-

alent to the Bremmer type solution (42). Obviously, this conclusion 

can only be drawn if both series expansions (40) and (42) are conver

gent. In view of (36) a sufficient condition for the convergence of 

the series expansions occurring in (40) is given by 

+ro 
dfn 

I dx I 1 I < ro 
2fn dx 

-ro 

(46) 

while, applying the derivation of ATKINSON13 ), we obtain the much more 

restrictive condition for the convergence of the Bremmer solution (42): 

-oo 

1 dfn 
dx I 2f dx 

n 
< ~1T 

III.6 Conclusions concerning the asymptotic behaviour of the 

solutions 

(47) 

The majorizing 

nitude of the elements 

expansions 
X U , given n x 

(35) lead to an estimate of the mag

by (33), viz.: 
a 

= Jnu~ 22 -11 < mn(x,xa) sinh Mn(x,xa) 
a 

( 4 8) 

These upper estimates are rather pessimistic since they are based on 

a neglect of all effects of phase interferences occurring in (33). 

Since max 1 (x,E) = O(E 2n), it follows from (34), remembering n . 
that X- X = E(T- T ) 1 that a a 

m (x,x ) ~ M (x,x ) n a n a (49) 
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By combining this relation with (48) and (30), we o~tain the following 

estimates for the WKB amplitudes vn and wn: 

- ( ) - ( ) -- O(c-2n+11""-"" I> vn 1 - v 1 " , , n a a 

(50) 

Hence, the amplitudes of n-th order WKB solutions of (1) are constants, 

up to a special order e;P (p ~ 1) , for a bounded interval of the inde

pendent variable, viz. for the interval 1•-• I = O(£p-2n- 1). a 
A substitution of (49) into {28) leads to the solution of (1) 

in the following form 

u { 1) 
v (1 ) { xf } = n a exp f Fn(x' ,e:)dx' 
F~(x,£) 

n 

+ 

X 
wn<•a> 

+ F~(x,e:) exp{- f f Fn(x',e:)dx'} + 0(£2n+11•-•a1> .(51) 

The function F can be derived from (14) by 2n repeated differentia-
n . 

tions. By developing the resulting expressions into powers of e:2, we 

obtain F up to order e: 2n. Hence, for a given finite interval of the 
n 

independent variable <', equation (51) yields the solution of the 

original equation (1) to any desired power in the smallness param

eter when taking n sufficiently large. 

We now again consider the situation discussed in subsection 

2.3, and thus assume that the system slowly passes from one steady 

state into another in a finite interval of 1: 

f(x) = a for x ~ x 1 f(x) = b for x ~ x 2 

We then conclude from (19) and (26) that the n-th order WKB amplitudes 

are constant on 1 $ 1
1 

and 1 ~ 1
2

, since ln(x,e:) = 0 for x $ x 1 and 

x ~ x2 • From (34) we now again find (49), however, with 1- 'are

placed by 1 1 - 1
2 

on the right-hand side. Hence, (50) transforms into 

(52) 

Introducing the difference, 

91 



we infer from (20) that ark 

(29) yields 

: ar 1 SO that a SUbStitutiOn Of (52) intO 
n 

(0 :S. k :s. n) (53) 

Since we assumed that T1 - T2 is bounded, this means that the total 

change of either of the quantities Ik(T) defined by (2) and (18), 

vanishes to all orders in the smallness par~eter. These quantities 

are thus adiabatic constants of motion. 

Let the original equation (1) again describe the propagation 

of a plane wave through a stratified medium. Outside the interval 

T1 :s. T :S. T2 the amplitudes v , w are constants. There, we may then · n n 
identify (compare (28)) v with the WKB amplitude of the incoming n . . 
wave, and w with that of the reflected wave. The interpretation of . n 
the total solution as being composed inside the mentioned interval 

of two waves vn' wn propagating in opposite directions~ is not .com

pletely justified. This is due to the fact that the amplitudes v (T) 
n 

and w (T) are complex functions containing an additional phase factor 
n 

depending on T. However, since the amplitudes prove to be constant up 

to any order in the smallness parameter, the indefiniteness of the 

interpretation in. question is c.onnected ·with the neglected terms. 

Requiring a vanishing of the reflected wave for T ~ T
2

, i.e. 

Wn(T ~ T 2 ) = 0, it follOWS from (52) that 

(54) 

The reflection from the stratified medium thus proves to be zero to 

any order in the parameter .of smallnes·s. Following a different 

approach this result has also been obtained by.VAN. KAMPEN. 12 L. 

III.? Application to the'inhomogeneous Helmholtz equation. 

The method described in the preceding sections can also be 

applied to inhomogeneous second-order differential equations. In order 

to show this we shall consider the equation 

dx 
dT = E (55) 

This equation, e.g., describes the•motion of a charged particle inthe 

combination of a slowly varying magnetic field and the field of a 
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high-frequency electromagnetic wave (compare (16) of Chapter I). 

Applying the transformation (13) to (55), we find, instead of 

(11b), the following equations: 

d 2 u dx __ n + f2 k n u = dT = e: 
dT 2 n n n n 

(56a) 

n 

with 

k - F-% k n n (5Gb) 

the functions fn and Fn again being given by (14) and (15), respec

tively. 

With the aid of the splitting (21) and the definition (25), 

we now find, instead of (26a), the following set of coupled first-order 

differential equations: 

: n l = E Ln ( x , E ) [:nJ + 
d k(T) 
dT 2F~(x,e:) 

n n 

dx 
dT = £ 

the matrix L being given by (26b). n 

X 

-i exp {;i J Fndx'} 

X 
(57a) 

i exp { 
i I Fndx'} -e: 

(57b) 

The general solution of (57) can be expressed as follows in 

terms of the evolution matrix ux given by (32): 
n xa 

-i exp 

x' 
dT' k(T') 

2F~(x',e:) 
i exp·{ ~ J Fndx"} 

with 
(58a) 

(58b) 

The solution of (55) can still be represented by the formula 

(28), but now with the amplitudes v (T) and w (T) given by (58a). n n 
Combining (49) with (48), we find 

(59) 

A substitution of (59) into (58) results in expressions for the ampli

tudes v (T) and w (T), that are correct up to any order in the small-n n 
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ness parameter. However, due to the external force k(t), the quantity 
I(t) defined by (2), is not an adiabatic constant anymore. 

A combination of (59), (58a) and (28) leads to the following 

form for the solution of (55), 

exp 

u(t) 
k (t I) 

dt' exp 
2F~(x',e:) 

X 

+ 

x 
1 J exp { ~ i J F n dx' } 

f F dx"} + 
n F~(x,e:) 

When the force k(t) is a harmonic function oft, e.g. 
t 

(60) 

k(t) expi/ w(t')dt 1
, the right-hand side of (60) leads to resonant 

contributions near the points where w ± F = 0. Since F (x,e:) = n n 
f(x) + O(e: 2 ), the shift of such resonances for small but finite values 

of e: with respect to those for e: = O, will be of second-order in the 

smallness parameter. In addition we notice that, in the case of finite 

e:, also an amplitude modification of k(t) occurs that is due to the 

factor F~ in the denominator of the t' integral. 
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C U R R I C U L U M V I T A E 

De auteur van dit proefschrift studeerde van 1957 tot 1965 

elektrotechniek aan de Technische Hogeschool te Delft. Zijn afstu

deerwerk betrof het berekenen van de verstrooiing van elektromagne

tische golven aan een obstakel in een golfpijp. In 1965 trad hij in 

dienst van de Stichting voor Fundamenteel Onderzoek der Materie. Na 

aanvankelijk werkzaam te zijn geweest bij het FOM-Instituut voor 

Plasmafysica te Jutphaas, ging hij in 1970 over naar de Werkgroep 

TN-1 die is ondergebracht in hetzelfde instituut. In deze werkgroep 

werd het werk verricht dat in dit proefschrift is beschreven. 
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S T E L L I N G E N 

I 

De constanten van de beweging die in hoofdstuk II van dit proefschrift 

worden gebruikt zijn vorm-invariant voor Lorentz-transformaties. Dit 

in tegenstelling tot die welke in de literatuur worden gebruikt. 

II 

In de literatuur betreffende cyclotronresonantie wordt het begrip "ge

vangen deeltje" verschillend gedefinieerd. Het verdient aanbeveling om 

naar analogie met elektrostatische golven een deeltje te beschouwen als 

"gevangen" indien het periodiek om resonantie oscilleert. 

R.F. Lutomirski and R.N. Sudan, Phys. Rev. 147, 156 (1966). 

P. Palmadesso and G. Schmidt, Phys. Fluids !!• 1411 (1971). 

M.J. Laird, J. Plasma Phys. ~, 255 (1972). 

III 

Juist bij Tokamak-experimenten, waarin de plasmastroorn wordt geindu

ceerd d.m.v. een luchtkerntransformator en waarbij de ruimte tussen de 

primaire windingen en de secundaire (plasma)winding grotendeels wordt 

gevuld door het koper van de magneetspoelen voor het opwekken van het 

toroidale veld, is een goede voorionisatie van groot belanr;J• Indieh dan 

een initHHe vertraging in de aflevering, van de primaire flu:x: mogl'lliJk 



is, zal door de snellere stijging van de stroom na de opbouw van het 

plasma een nuttiger gebruik gemaakt worden van de aangeboden primaire 

flux. 

IV 

Ionentemperaturen beneden 1 eV kunnen in een heliumplasma met een nauw

keurigheid beter dan 0.1 eV bepaald worden uit de verhoudingen van 

maxima en minimum in het Doppler-verbrede profiel van de He II 4687 
j(-lijn. 

v 

De energie-constanten die door Davidson & Hammer zijn afgeleid van de 

Vlasov-vergelijking gelden met de nodige veranderingen ook voor de re

lativistische Vlasov-vergelijking. 

R.C. Davidson and D.A. Hammer, Phys. Fluids !.2 . .r 1282 (1972). 

VI 

Indien het hoogfrequente veld afkomstig is van een circulair gepolari

seerde golf waarvan de amplitude tijdafhankelijk is, b.v. een gedempte 

niet-lineaire "whistler'' 1 dan beschrijft een Van de in de VOrige Stel

ling genoemde constanten dat de toename van de gegeneraliseerde azimu• 

tale i.mpulsdichtheid evenredig is met de toename van de axiale impuls

dichtheid. 

VII 

Bij de beschrijving in het MHO-model van het stationaire evenwicht van 

een cilinder-symmetrische plasmakolom, wordt het radiele elektrische 

veld onbepaald indien de traagheidstermen ab initio worden verwaar

loosd. 



VIII 

De fysische gronden waarop Roberts & Potter besluiten tot de afwezig

heid van krachtvrije stromen in het gebied buiten een dichte plasmako

lom zijn ontoereikend. 

K.V. Roberts and D.E. Potter, in Methods in Computational Physics 
vol. 9, Academic Press (1970). 

IX 

De ontwerpers van de toekomstige organisatie van het wetenschappelijk 

onderzoek hebben een te beperkte opvatting van hun verantwoordelijkheid 

indien zij voorstellen doen over de wijze van financiering van het on

derzoek en een daarmee gekoppeld doorstromingsbeleid t.a.v. het weten

schappelijk personeel zonder aandacht te besteden aan de maatschappe

lijke gevolgen voor de onderzoekers. 

Nota van de Gespreksgroep Universitair Onderzoek (1972). 

X 

De voortdurende en minutieuze zelfportrettering door Paul L~autaud 

is een bewijs van zijn groot talent. 

Eindhoven, 6 februari 1973 T.J~, Schep 


