

An interactive design and fault location tool for electronic
circuits
Citation for published version (APA):
Theeuwen, J. F. M. (1985). An interactive design and fault location tool for electronic circuits. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Hogeschool Eindhoven.
https://doi.org/10.6100/IR242145

DOI:
10.6100/IR242145

Document status and date:
Published: 01/01/1985

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR242145
https://doi.org/10.6100/IR242145
https://research.tue.nl/en/publications/c3128df8-1ec9-4382-aa46-96295ad508b9

AN INTERACTIVE

DESIGN AND FAULT LOCATION TOOL

FOR ELECTRONIC CIRCUITS

N ' .
'

.

. ...

'•· '•·

J.F.M. THEEUWEN

AN INTERACfiVE DESIGN AND FAULT LOCATION TOOL FOR ELECTRONIC CIRCUITS

AN INTERACTIVE

DESIGN AND FAULT LOCATION TOOL

FOR ELECTRONIC CIRCUITS

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR IN DE
TECHNISCHE WETENSCHAPPEN AAN DE TECHNISCHE
HOGESCHOOL EINDHOVEN, OP GEZAG VAN DE RECTOR
MAGNIFICUS, PROF. DR. F.N. HOOGE, VOOR EEN
COMMISSIE AANGEWEZEN DOOR HET COLLEGE VAN
DEKANEN IN HET OPENBAAR TE VERDEDIGEN OP

VRIJDAG 13 DECEMBER 1985 TE 14.00 UUR

DOOR

JOZEF FRANCISCUS MARIA THEEUWEN

GEBORENTEGELEEN

Orul<: Oissertatiedrukkerij Wibro, Helmond.

Dit proefschrift is goedgekeurd
door de promotoren:

Prof,Dr.-Ing, J,A,G, Jess

en

Prof.dr.ir. W.M.G, van Bokhoven

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Theeuwen, Jozef Franciscus Maria

An interactive design and fault location tool for electronic
circuits I Jozef Franciscus Maria Theeuwen. - {S.l. : s,n,], -
Fig,
Proefschrift Eindhoven, -Met lit, opg., reg,
ISBN 90-9001119-6
SISO 664.3 UDC 621,3,011.74 UGI 650
Trefw,: niet-lineaire netwerken; computer aided design.

CONTENTS

ABSTRACT... 1

1. Introduction...................................... 3

2. The formulation of the design problem............. 8

2. 1 The DC behaviour. 8

2.2 Small signal specification................... 11

2.3 Exciting voltage............................. 12

2.4 Exciting current............................. 14

2.5 Exciting parameters.......................... 15

2.6 The implementation of the small signal

system in the tableau........................ 17

2.7 The AC description........................... 21

2.8 The circuit elements......................... 21

2.9 Design constraints........................... 22

3. Incidence matrix and matching..................... 24

3.1 Definitions. 28

3.2 Canonical form of the incidence matrix....... 29

3.3 Determination of the maximum matching........ 32

3.4 Determination of a maximal set of shortest

augmenting paths. 34

3.5 Determination of strong components in a

directed graph ·......... 35

3.6 Determination of essential variables......... 38

3.7 The minimal essential set algorithm.......... 39

3.8 Evaluation of the minimal essential set

algorithm.................................... 43

3.9 Determining the matching in a set of

equations with AC systems.................... 45

4. Manipulating and solving the equations............ 50

4.1 Writing a variable explicitly................ 50

4. 2 Suffix notation. 52

4.3 Solving the strong components................ 54

4.4 The Newton Raphson method................... 58

4.4.1 Matching variables and

convergence 58

4.4.2 Maximum stepsize 59

4.4.3 Global nonincreasing function 60

5. Fault Location. 62

5. 1 Introduction. 62

5.2 Manipulations in the incidence matrix........ 63

5.3 Sensitivity matrix........................... 65

5.4 Determination of the computations to be

made... 68

6. Implementation Aspects............................ 70

6.1 The Modular Structure........................ 70

6.2 Storage of the different intermediate

results...................................... 71

6.2.1 The incidence matrix 71

6.2.2 The equations 72

6.2.3 Input language 73

6.2.4 The output formats 74

7. Design strategy and examples...................... 75

7.1 design of an amplifier. 76

7.2 Fault location in an amplifier............... 88

8. CONCLUSIONS....................................... 91

9. APPENDIX A.. 92

10. APPENDIX B. . • • . 94

11. APPENDIX C. • • . • 95

12. APPENDIX D. • . • • • . • • . 97

13. REFERENCES. 100

Samenvatting. 105

Curriculum vitae. 107

- 1 -

ABSTRACT

In this thesis a method for designing electrical nonlinear circuits,

with a given topology is presented. The designer has to determine

' the topology of an electrical circuit, and he has to define the type

of the elements in the circuit (a circuit element can for instance be

a resistor, a transistor or a capacitor). Further he has to impose a

number of constraints on the circuit. These constraints can prescribe

values of parameters, but also voltages on nodes, currents through

branches, impedances, gains and so on. The equations containing these

constraints will be called "design constraint equations". The program

is not only capable to handle biasing conditions of the circuit (DC

behaviour), but also "small signal" behaviour, meaning the response

of the circuit on small disturbances in the DC biasing point, and AC

behaviour.

In the approach used, the design constraint equations are treated

exactly in the same way as the equations describing the circuit

structure, that is the Kirchhoff voltage and current law equations

and the equations describing the behaviour of the elements (the

branch constraint equations). In this way the program constructs a

set of simultaneous nonlinear equations. Because it is possible that

the designer imposed a number of constraints on the circuit, yielding

an unsolvable system of equations, checks for solvability on the set

of equations are necessary. If the designer formulated an unsolvable

set of equations, these checks will reveal the source of the

difficulties.

Generally the solution of a set of nonlinear equations is found by

using an iterative method. One of the most popular methods is the

Newton Raphson method. This method is usually applied to the whole

set of equations. This however is not always necessary, especially

not in sparse equation sets. By reordering the equations, large parts

of the equation set can be solved by a non iterative method, saving a

lot of computation time.

In this thesis we also propose a new "simulation after test" method.

The basic elements of the method are already implemented in the

- 2 -

proposed interactive design system. This is true because the design

method used, tackles conceptually the same problem as the fault

location problem.

The design problem can be described as:

Given a number of design constraints, compute (all) the component

values in the proposed circuit.

The fault location problem can be described as:

Given a number of measured responses of a circuit, compute (all) the

component values of the circuit under test.

In addition to solving the mathematical equations associated with

these two problems, also the problem to identify the most appropriate

circuit entities to be measured is addressed in this thesis. We will

present a constructive method to find a set of adequate

measurements, taking sensitivities of components with respect to

measurements into account.

- 3 -

1. Introduction

In electronic industry the computer has become an essential tool

during the design, fabrication and testing of electronic circuits.

Especially in the design of (very) large scale integrated ((V)LSI)

circuits the computer has obtained a crucial role. In the last ten

years many programs to verify steps during the design of a digital

circuit have been developed. Examples are logic simulators, design

rule checkers and circuit extractors. However also more powerful

program packages have emerged. These packages help the designer

during the creative steps in the development of an integrated

circuit, or even take over these steps. Programs like these are

optimisation programs for logic functions, floorplan programs,

routers and cell generators. For certain classes of digital circuits

there even exist totally automatic layout generators, often called

"silicon compilers".

However in the analog field, the situation is different. There are a

number of well known analog circuit simulators, such as for instance

SPICE. With SPICE it is possible to simulate circuits containing

about one hundred transistors, on transistor level. This program is

widely used by circuit designers. SPICE has the capability to perform

some parameter optimisation, but there are only a very few analog

automatic synthesis tools available. For some special analog circuit

families, there exist automatic circuit generation methods. Automatic

filter design is an example of these. There are also programs which

help the designer in developing special circuits like operational

amplifiers [Nordholt]. These programs however can only be seen as a

library of precompiled solutions for a large number of special cases.

In the literature some more general approaches to computer aided

analog circuit design are known [Kozemchak], [Sussman], [de Kleer}.

Kozemchak et. al. use a method of voltage forcing elements and

current forcing elements. With these elements the user is able to

define voltages and currents in the circuit. The program then

computes values of elements in the circuit, in such a way that the

imposed voltages and currents, are realized by the circuit.

- 4 -

Another approach is used by Sussman and Stallman. Here a concept of

artificial intelligence is used. For each electrical rule, such as

the Kirchhoff voltage law, and the Kirchhoff current law, a daemon

can be created. Each time there are enough data for a daemon to

compute an unknown variable in the circuit, this daemon is triggered.

If no daemon can be triggered any more, and the circuit has not been

solved yet, the designer has to add more information (impose

restrictions on the circuit) or a symbolic variable is introduced,

which is treated by the program as a known value. During the further

analysis there possibly will come up an equation from which this

symbolic variable can be computed. A program language like LISP is

especially suited for an implementation of such a program.

The above mentioned methods have their strong and their weak points.

In the approach used by Sussman et. al. it is doubtful whether this

approach can solve sets of simultaneous nonlinear equations. A strong

point in the method used by Kozemchak is, that the method is able to

handle unequality constraints, like for instance a resistor whose

value has to be between 1000 0 and 2000 0. This however applies only

for linear circuits.

In this thesis we present a method for designing electrical nonlinear

circuits, with a given topology. The designer has to determine the

topology of an electrical circuit, and he has to define the type of

the elements in the circuit (a circuit element can for instance be a

resistor, a transistor or a capacitor). Further he has to impose a

number of constraints on the circuit. These constraints can prescribe

values of parameters, but also voltages on nodes, currents through

branches, impedances, gains and so on. The equations containing these

constraints will be called "design constraint equations". The program

is not only capable to handle biasing conditions of the circuit (DC

behaviour), but also "small signal" behaviour, meaning the response

of the circuit on small disturbances in the DC biasing point, and AC

behaviour.

In the approach used, the design constraint equations are treated

exactly in the same way as the equations describing the circuit

s tTuc cure, that is the Kirchhoff voltage and current law equations

- 5 -

and the equations describing the behaviour of the elements (the

branch constraint equations). In this way the program constructs a

set of simultaneous nonlinear equations. Because it is possible that

the designer imposed a number of constraints on the circuit, yielding

an unsolvable system of equations, checks for solvability on the set

of equations are necessary. If the designer formulated an unsolvable

set of equations, these checks will reveal the source of the

difficulties.

Mostly the solution of a set of nonlinear equations is found by using

an iterative method. One of the most popular methods is the Newton

Raphson method. This method is usually applied to the whole set of

equations. This however is not always necessary, especially not in

sparse equation sets. By reordering the equations, large parts of the

equation set can be solved by a non iterative method, saving a lot of

computation time.

One very important difference between our approach

optimisation approach used in SPICE should be made clear.

and the

In both

programs iteration is used. If however parameter optimisation in

SPICE is used, we can distinguish at least two levels of iterations

nested into each other. The highest level is the iteration level

which after each circuit evaluation generates a new, and hopefully

better guess for the parameter to be optimised. The second iteration

loop is the Newton Raphson iteration, trying to find a solution for a

part of the circuit with the new estimated parameters. In our

approach, there is only one iteration level. This is the iteration

loop trying to find a solution for the system of nonlinear equations.

If this solution is found, the computed circuit behaves in the way

the designer has specified, and all the unknown parameters are

determined.

Another crucial area in analog circuit design is testing of the

circuit. Here we have to distinguish between two main testing areas:

1. Go-Nogo test.

This kind of testing is essential during the production process

of integrated circuits. After an integrated circuit has been

produced, it has to be determined whether it works correctly or

- 6 -

not. For analog circuits this problem is mostly not too

difficult. For filters and amplifiers for instance it is easy

to check whether the transfer characteristics of the circuits

are correct.

2. Another much more difficult kind of testing is "fault

location". Now one tries to find out which elements in a

circuit are correct and which elements are faulty. This problem

is equivalent with determining all the parameter values in a

circuit from a number of measurements.

This kind of testing is important during the development of an

integrated circuit. If a circuit doesn't work well, a designer

wants to know which parameters in the circuit have wrong

values. Also in the maintenance field this kind of testing is

crucial.

Because of the ever increasing complexity of integrated

circuits, the task of fault location becomes very difficult.

This because of the fact that the "accessibility" of a large

integrated circuit is very bad. The number of elements in the

circuit is large and the number of points where measurements

can be performed is very small..

The approaches used in fault location can be divided in two

main groups:

1. Simulation before test.

In this method all the possible faulty circuits are

simulated, and the results of these simulations are

grouped in one or another way, constructing a so called

"fault dictionary" [Lin]. If in the field, a faulty

circuit is encountered its responses are compared with

the results stored in the dictionary, this way trying to

find the faulty element.

The size of the dictionary and the simulation time will

be in the order of O(nm), where n equals the number of

elements in the circuit, and m is equal to the number of

elements which are allowed to be faulty in one circuit

- 7 -

simultaneously. Mostly the assumption is made that only

one element is faulty, thuswise reducing the size of the

dictionary.

2. Simulation after test.

In simulation after test we try to

elements in the circuit. This is

compute all the

done by using the

measurements made on the faulty circuit [Biernacki]

[Bedrosian) [Salama] [Liu) [Duhamel] [Trick] [Lee]

[Saeks]. Also now the assumption that only one element is

faulty is often made. By simulation after test the

required on line computation power is larger than in the

"dictionary method".

In this thesis we propose a new "simulation after test" method.

The basic elements of the method are already implemented in the

proposed interactive design system. This is true because the

design method used tackles conceptually the same problem as the

fault location method.

The design problem can be described as:

Given a number of design constraints, compute (all) the

component values in the proposed circuit.

The fault location problem can be described as:

Given a number of measured responses of a circuit, compute

(all) the component values of the circuit under test.

In addition to solving the mathematical equations associated

with these two problems, also the problem to identify the most

appropriate circuit entities to be measured is addressed in

this thesis. We will present a constructive method to find a

set of adequate measurements, taking sensitivities of

components with respect to measurements into account.

- 8 -

2. The formulation of the design problem

The formulation of a design problem requires the description of the

associated circuit structure and the description of the design

objectives. This design problem has to be stored in the program. We

will call this the "internal design problem representation". On one

hand it must be possible to generate this internal design problem

representation from a description in terms of an input language used

by the designer to specify the circuit and the design problem. On the

other hand the internal design problem representation must be such

that it is easy for the program to deal with it. The description of

the network structure consists of the Kirchhoff voltage law

equations, the Kirchhoff current law equations and the the branch

constraint equations. These will constitute a "sparse tableau"

[Hachtel].

In this chapter

describe the

we will define

circuit. It will

all

be

the equations necessary to

done for the DC behaviour, the

behaviour of the circuit linearised around a certain DC operation

point (called the small signal behaviour) and for the behaviour of

the circuit if it is excited by a sinusoidal source at a given

frequency, called the AC behaviour.

2 .1 The DC behaviour

In the sequel we will use the term "circuit variable" and "circuit

parameter" (or simply "variable" and "parameter"). By way of

definition they will be assigned the following meaning:

1. A parameter is any entity characterising a circuit element such

as resistances, gains or transimpedances.

2. A variable is any voltage or current in the circuit as well as

any partial derivative of a voltage or current with respect to

a parameter or variable. Also in case some transposed small

signal system (the so called "adjoint system"; a more formal

definition of this term will be given later) is included, the

response entities of this system are considered as variables.

The parameters and variables may be "known" or "unknown".

- 9 -

The topology of a circuit can be represented by a directed graph.

Each element in the circuit is represented by a branch. This does

not mean that no multi port elements can be incorporated in the

circuit. There is a possibility to define controlled voltage or

current sources. The controlling variables can be voltages or

currents. Multi terminal elements such as transistors can be modeled

with a number of two terminal elements. For a bipolar transistor for

instance the Ebers Moll model [Taub) can be used. Each node in the

circuit. For the graph corresponds with a node in the electrical

De-description of the circuit with k nodes and l two terminal

elements we can distinguish three types of variables:

1. k node voltages represented by the vector

n- (nl·····nk)t

2. l branch currents represented by the vector

! - (il·····il)t

3. 1 branch voltages represented by the vector

y- (vl, ... ,vl)t

Further we define 2- (p1 , ... ,p1)t as the vector of parameters, and

~- (b1 , ... ,b1)t as the vector of excitations, whose meaning will be

explained in the next chapters. Most entries of this vector~ will be

equal to zero. For each element in the circuit we can define a

Kirchoff voltage law equation

where x and y denote the nodes connected with the element,

and a branch constraint

(2.1)

(2.2)

A branch constraint equation is the equation describing the behaviour

of the element and is mostly a relation between the current i through

the element, the voltage v across the element and one parameter p

describing the element. That each element is described by only one

parameter is not essential at all. It is possible to introduce

elements described by more than one parameter, this however is not

done in this implementation, resulting in an equal number of elements

- 10 -

and parameters. For each node in the circuit we can formulate the

Kirchhoff current law equation:

E i·- 0 (2.3)
J J

Where J enumerates all the branches incident with node n. The total

number of unknowns is

1 parameters

k-1 node voltages

1 branch voltages

1 branch currents

+
total : 31 + k - 1 unknowns.

The number of equations is :

1 Kirchoff voltage law equations.

1 branch constraint equations.

k-1 Kirchoff current law equations.

----- +

total 21 + k-1 equations.

To obtain a solvable set of equations·we need

31 + k-1 - (21 + k-1) - 1

design constraint equations, which can be functions of~. !. y and 2·

If we define~- (~. !. y)t, the system of all Kirchoff voltage law

equations, Kirchoff current law equations and the branch constraint

equations can be described with:

f(~. p_, ~) - Q (2.4)

~being the vector of excitations. F is called the "tableau

operator". An example circuit is shown in figure (2.1)

The tableau operator f, lineari:;:ed around the operation point of the

circuit, can be viewed as the product of the tableau matrix with the

vector ~ of unknowns added to the vector ~·

- 11 -

Figure 2.1. example circuit

* + b- 0

t

tableau matrix

For the example in figure 2.1 ! looks as follows:

VNVNVIII
1 1 2 2 3 3 2 1

KC 1 1 1 v 0
1

KC 2 1-1 N 0
1

:SG 3 1-R v 0
3 2

KV 3 1-1 * N + 0 - 0
2

KV2 1-1-1 v 0
3

BC 2 1 -R I 0
2 3

KVl -1 1 I 0
2

BG 1 1 I -E
1 1

KV: Kirchhoff voltage law equation.

KC: Kirchhoff current law equation.

BC: Branch constraint equation.

2.2 Small signal specification

The small signal behaviour of the circuit describes the response of

the circuit to a "small" excitation. "Small" means that the circuit

can be substituted by a linear circuit, obtained by linearisation

around the DC bias point. The excitation can be a small disturbance

- 12 -

of a voltage, a current or parameter. The responding variables are

elements of ~· If a small signal specification is used, it is

possible to compute gains or sensitivities in the circuit.

To obtain the equations describing the small signal behaviour of the

circuit we expand (2.4) into a Taylor series, around the point (~0 ,

Eo , £o), defining the DC biasing point of the circuit.

(2.5)

with 6b the vector of excitations of the small signal systems in case

of exciting voltages or currents.

These equations can be catenated to (2.4). The vectors 8~ and 8£

contain new variables, the small signal variables. The meaning of 6£

will become clear in the next chapters. For each exciting quantity,

we now will discuss the way it is modelled and described.

0.1 Exciting voltage

If a designer is interested in the gain of an amplifier, he wants to

add a small perturbation to the input voltage source of the amplifier

to compute the response of various voltages and currents in the

circuit. Suppose vj is the excitation voltage. We can model this as

in Fig.2.2.

0
®

Figure 2.2. exciting voltage

In series with the element j we insert an exciting voltage source. By

doing so the Kirchoff current law equations and the branch constraint

equations will not change. The only equation which changes is the

Kirchoff voltage law equations of branch j

This can be incorporated in the description by making bj equal to

ej. (All other elements of~ are zero). Because no parameters are

- 13 -

exciting the system ~2 - 0 holds.

Also

K(~,2o·~) - Q holds because the circuit is in its DC biasing point.

So in this case (2.5) will yield:

(2.7)

Notice that in the second term of (2.7) only the partial derivative

of the Kirchoff voltage law equations of element "j" will result in a

non zero value.

Assume the term av03
avol

is used in a design constraint equation. In other words, one design

objective of the network in fig 2.1. concerns the small signal

behaviour. Combining the DC and small signal equations into one

equation system yields (for the sample circuit of fig. 2.1) after

some reordering the tableau matrix below.

Cl 1

KC 1

BC 2

KV 2

KV 3

BC 3

KC 2

Bl 3

Cl 2

Bl 2

Vl 2

Vl 1

Bl 1

Vl 3

KVl

BC 1

KV:

KC;

BC:

Vi:

- 14 •

V N VlNlVlNlVlilili V N V I I Il
1 1 3 2 1 1 2 2 3 3 3 2 2 2 1 1

1 1

1 1

1-R
2

1 -1-1

-1 1

-R 1
3

1 -1

1 ·R
3

-1 1

1-R
2

1 -1-1

-1 1

1

-1 1

-1 1

1

Kirchhoff voltage law equation.

Kirchhoff current law equation.

Branch constraint equation.

Kirchhoff voltage law equation of "delta system"

definition of the "delta system" see chapter 2.6).

Ci: Kirchhoff current law equation of "delta system" 1.

Bi: Branch constraint equation of "delta system" 1.

2.4 Exciting current

i. (for the

If ij is the exciting current we model this as in Fig. 2.3. In

parallel with element j, we insert a current source. This does not

affect the Kirchoff voltage law equation and the branch constraint

equations. Only the Kirchoff current law equations of node p and

- 15 -

® ®

Figure 2.3. exciting current

node q will change.

node p

node q

l:ip + j j - 0
p

l:i - j . - 0 q q J

Again we will make element bj equal to jj , and ~~will be zero, so

again we obtain

§£j *Ax + Stl * ~b - 0
~ ~·~O·~ - - ~·~·~ - -

(2.8)

Only the partial derivatives of the Kirchoff current law equations of

node p and node q will result in a nonzero value in the second term

of equation 2. 8.

2.5 Exciting parameters

If a designer wants to know how the circuit reacts on changes of the

value of a parameter, for instance a resistor value, or the

temperature, this can be modelled by an exciting parameter. If Pj
is the exciting parameter of branch j, we make the J-th element of ~

equal to the exciting value.

So ~~ r Q, and ~~- Q thus (2.5) will result in

(2.9)

- 16 -

Parameter Pj appears in branch constraint equation j, so the partial

derivative of this equation will yield a nonzero value. For instance

a
~(v - i * R) - -i

or

~T(i-10 (exp(qvj(kT)-l))-I0 (qvj(kT2))*exp(qv/(kT))

So in the second term of equation (2.9) the branch constraint

equations of parameter j will result in a non zero value.

If the term :~~

is used in a design constraint equation the tableau matrix will look

as follows:

V N VlNlVlNlVlilllV N V I I I Il

1 1 3 2 1 1 2 2 3 2 2 3 3 2 1 1
Cl 1 1 .. ·1·

KC 1 1 1

KC 2 1-1

BC 3 1-R

KV 3 1-1

KV2

BC 2

Bl 3

Cl 2

Bl 2

Vl 2
Vl 1

Bl 1

Vl 3

1

KV 1 -1 1

BC 1 1

1

-1

-1

1

-1-1

1

-R
3

-1 1

1-R
2

1-1

-1 1

1

3

-R
2

-1

Equation Bl 2 reads: Vl 2 - R2 * Il 2 - I 2 - 0.

- 17 -

2.6 The implementation of the small signal system in the tableau

There are two ways to incorporate the small signal description, or

incremental system [Desoer] of the circuit, in the tableau. The

first method is what we will call the use of the "delta system".

Consider "s" as a sensitivity of variable x1 for variations of Y;·

s- Axi
t:..yj

We can interpret Ax1 as a responding variable with t:..yJ as

exciting quantity, and add to the existing system of equations

the expression

together with

or

as an exciting source vector. This method is used in the examples in

the previous paragraphs.

A second way to incorporate the small signal description is to use a

"transposed small signal system" (sometimes called an "adjoint

system") [Hachtel]. Assume we declare Ax1 to be an output variable.

Then there are two possibilities :

a The exciting entity is a parameter,

b The exciting entity is a voltage or a current,

Ad a)

As derived in a previous chapter, the equation

- 18 -

(2.10)

holds.

Let ~ be a vector implicitly defined by

(2.11)

- e~ w~th e~ - (0 0 0 1 0 0) -l.~ t , ~ •• t , , , •• ,

t

entry i

or

I * ~ - ~i
!o·:eo·~

(2.12)

So

(2.13)

If we multiply (2.10) from the left side with ~t we obtain

8xi + ~t *~I * a;e- Q (2.14)
:e !o·:eo·~

or

[~~ * a:e)t * ~- -axi 82 !o•:eo.!!o
(2.15)

Because the quantities fipJ are taken unequal to zero one at a time

we obtain :

["I • r *w 8xi
(2.16)

·~ "" ... ·l!o ~ fipJ

at place J

6

Now we have two sets of equations (2.12) and (2.16). The advantage

- 19 -

of using an adjoint system is , that if we want to know the

sensitivities of one variable in respect to a number of parameters,

only one adjoint system has to be considered. For each parameter,

equation 2.16 (which really is only one equation) has to be catenated

to the system (2.12) of equations.

(2.12) is a set of 21 + k - 1 equations and can be catenated to the

existing set of equations.

The matrix

is a square matrix.

Consider

We can distinguish two cases:

1. fr is a topological equation, i.e. a Kirchhoff voltage law

equation or a Kirchhoff current law equation.

2. fr is a branch constraint equation.

8f
adl. ~- ± 1 if x8 occurs in fr

s

8f
~ - 0 if x8 does not occur in fr.

s

ad2. The result depends on the type of the element described by fr.

For a resistor

~ av_ results in+ 1
s

8f
~ results in - Rr

s

(2.16) is one equation, and can be written as

- 20 -

(2.17)

w2l+k-l

We normalise apj to 1. The partial derivatives

can be evaluated and the row vector

(
~~l ~£_2 af21+k-l]
ap;J·ap;· ·ap;

J J

can be catenated to the tableau.

Ad b)

As derived earlier we start with (2.8)

From this equation again two systems of equations can be derived,

which can be catenated to the existing set of equations.

Equation (2.15) will now be different:

[aFI * ab)t * w- -axi
~~·:2<>·~ -

(2.18)

In the matrix

aFI
~ ~·£o·~

Clf
the term ~ will only result in a nonzero value in the Kirchhoff

s
voltage law equation fr of element s if b

8
is a voltage, or in the

Kirchhoff current law equation of the nodes in which b8 occurs if b
8

- 21 -

is a current. Thus we have two cases:

JP)•JPJ•·····•JPJ w~ - (0,0, .. 0,!,0, ... 0) (afl 8f2 8f21+k-l) * [wl l
w21+k-l

(here fr is the Kirchhoff voltage law equation of element r)

or

(Bfl 8f2 8f21+k-l) [wl l ~·~·······~ * w2 -j j j .

w21+k-l

(0,0, .. 0,1,0,.,0,1,0, .. ,0)
t t
p q

(2.19)

(2.20)

(here fp is the Kirchhoff current law equation of node p and fq is

the Kirchhoff current law equation of node q).

2.7 The AC description

To describe the AC behaviour of the circuit, we introduce a

frequency w and complex variables for all variables and parameters in

the circuit [Hostetter]. For each frequency point we introduce a

separate set of equations, describing the circuit at that frequency.

For each frequency there is a possibility to incorporate a delta

system or a transposed small signal system.

2.8 The circuit elements

The description of the circuit is totally general, so there are

really no restrictions with respect to the type of circuit elements

that can be used. In the implementation the following circuit

elements have been included:

- 22 -

DC AC

Resistor v-R*i v=R*i

Diode i - I 0 (exp(qv/(kT)) -1) i - Io

(exp(qv/(kT))-1)

Voltage source v- E v=X

Circuit source i - J i- y

Capacitor delete element i - (jwC) *v

Inductor short circuit v = jwL * i

Dependent current source i - J *X i - y * X

Dependent voltage v- E *X v- X* X

For both the pnp and the npn bipolar transistor we have the Ebers

Moll model [Taub].The models are composed from diodes and dependent

current sources, for instance the npn full model:

c

f t
ibc

b

ibe ~ t

e

Figure 2.4. Static Ebers Moll model

2.9 Design constraints

aF * ibe

aR * ibc

To obtain a solvable set of equations, we need 1 design constraint

equations. In these design constraint equations we can formulate

relations between all unknowns in the circuit, not only with branch

currents and voltages but also with circuit parameters. A resistance

can be given a value by:

. 23 .

R2 - 3ooo n

A nonlinear resistor however, can for instance be defined as

If the temperature depends on the power consumption we obtain:

T K- 300 K + 100 K * v(power supply) * i(power supply)fVA.

- 24 -

3. Incidence matrix and matching

In chapter 2 we described all equations necessary to formulate the

design problem of a circuit. The task of the program system is to

determine the solution of this set of equations if there exists one.

If no solution exists, the program has to point out, why the set of

equations is not solvable. Here we have to distinguish two kinds of

solvability

1. A set of equations can be unsolvable because there are no

values for the unknown variables, satisfying all the

equations,for instance:

X+ y- 4

X+ y = 2

(3.1)

2. A set of equations can be structural unsolvable, for instance:

w+ X + y + Z 3 (3.2)

w+ X - 4

w + 3x 9

w 8

Now there are some unknown variables which are "over

determined" and there are some variables for which no value can

be computed at all.

One of the essential differences between the two kinds of

unsolvability is that the structural unsolvability can be determined

from the way the variables appear in the equations.

This can be seen in an incidence matrix. An incidence matrix is a

matrix where a "1" appears in entry i,J if the variable, related with

column J of the matrix, appears in the equation, related with a row i

of the matrix (for a formal definition see chapter 3.1.) If we

determine the incidence matrix from the equations in (3.2), this will

look as follows:

W X y Z

1 1 1 1 1

2 1 1

3 1 1

4 1

- 25 -

Figure 3.1. incidence matrix

Form this incidence matrix we can see that w can be determined with

equation number 4. Then however, equation number 2 and 3 are two

equations with only one unknown variable, and equation number 1 is an

equation with at least two unknown variables. Except for some special

cases this set of equations will not be solvable.

From the incidence matrix of the eqUations in (3.1) we can not

conclude that this set of equations is not solvable. The incidence

matrix tells us that we have two equations with two unknown

variables, and in general these equations will be solvable, except

for some special cases.

During a design process of an analog

unsolvability occurs (roughly speaking),

circuit, the structural

if a designer poses more

than one constraint on a parameter. If for instance the design

constraint equations of the circuit in figure (3.2) are:

E
1

i
3

v * i
1 1

5

0.001

-0.2

Figure 3.2. example circuit

(3.3)

the incidence matrix shown in fig.(3.3) can be constructed:

- 26 -

IIIVNENRVRV

0 0 0 0 0 0 0 0 0 0 0

3 2 1 1 1 1 2 2 3 3 2

...
BC 3 1 1 1

KV 3 1 1

BC 2 1 1 1

KV2 1 1 1

BC 1 1 1

KV 1 1 1

DC 3 1 1

KC 1 1 1

KC 2 1 1

DC 2 1

DC 1 1

Figure 3.3. incidence matrix of example circuit

If we look at the last seven can see that these

equations are incident with

equations we

only 6 (the leftmost 6) variables,

indicating a structural unsolvable set of equations.

The incidence matrix not only tells the designer which variables are

"over determined" (one of the variables: i 3 , i 2 , i 1 , v1 , n1) , but

also which variables can not be determined at all (E1 , n2 , R2 , v3,

R3 , v 2), giving the designer an indication how to reformulate his

design problem.

To find out whether a set of equations is solvable, the notion of a

"matching" is introduced (for a formal definition of a matching see

chapter 3.1). A matching relates one variable to each equation,

occurring in that equation. Each equation may only be related with

one variable, and each variable may only be related with one

equation. If it is possible to relate each variable to an equation

we say that we have found a "complete matching", indicating that the

set of equations is structurally solvable.

- 27 -

If a set of equations is structural solvable, the incidence matrix

can tell us something about the way we have to solve the equations.

If the incidence matrix for instance has the form of an upper

triangular matrix, the set of equations can be solved by back

substitution, firstly solving variable 1 with equation number n, then

solving variable 2 with equation n-1 and so on (see fig. (3.4)).

1 •

1 1

2 1

1

1

1

1 1

1 1

1 1

1 1 1

1 1 1

n • 1 1 1

n 1

1

1

'
1

1 1

1 1

1 1 1

1 1 1

1 1

1

Figure 3. 4. upper triangular form

n

1

Mostly however it is not possible to obtain a triangular form by row

and column permutations and some equations have to be solved with an

iteration scheme (or with elimination if all the equations are

linear). In the majority of the applications the iteration is done

with the full set of equations. This however is not always necessary.

Mostly· iteration is only needed in a small subset of the equations,

while other parts of the equation set can be solved by back

substitution, resulting in a much more effective way of solving the

equations. The groups of equations which have to be solved by

iteration are related with so called "strong components" (for an

indication of what a strong component is see fig. (3.5)), to be found

by manipulations with the incidence matrix. This will be explained in

the next chapters.

- 28 -

1 '
1 1

2 1

1

1

1

1 1

1 1

1 1

1 1 1

1 1 1

n - 1 1 1

n 1

1

1

1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1

'
n

1

1

Figure 3.5. incidence matrix with strong component

3.1 Definitions

From the equations defined in chapter 2 we are able to derive a

square incidence matrix with 31 + k - 1 rows and columns.

This incidence matrix is defined as follows:

Each equation is related to a row in the incidence matrix;

Each variable and each parameter is related to a column in the

incidence matrix;

If a variable or a parameter j appears in equation i, entry i,j

in the incidence matrix is '1';

If a variable or a parameter j does not appear in equation i,

entry i,J in the incidence matrix is '0'.

From the incidence matrix we can derive a graph G(V,B) called the

incidence graph. V is the set of vertices, and B is the set of

branches in the graph. For each row (equation) in the incidence

matrix there will be a vertex v e F c V. Also for each column

(variable) in the incidence matrix, there will be a vertex veX c V.

F and X establish a partition on V, thus:

V - F u X. (3.4)

- 29 -

and

F n X- 0 (3.5)

A branch be B between the vertices v e F and we X, b(v,wJ, exists

if the variable related to w is incident with the equation related to

v.

Note: This graph is another graph as the graph derived from the

circuit topology in chapter 2.1.

Because of this construction a branch always connects a vertex v E F

with a vertex w eX, resulting in a bipartite graph [Harary]. In

such a graph a matching can be defined:

A matching M is a subset of the set of branches B such that there is

no node which is incident with more than one branch in the matching

M.

Determination of the (maximum) matching induces a direction on the

branches from v to w where v e X (related to the variables) and w e F

(related to the equations), if b(v,w> is in the matching and from v

to w where v e F and we X, if b(v,w> is not in the matching. A

directed path P v -> w, from v to w in G is a sequence of directed

branches leading from v to w.

A strong (sub)graph is a directed graph in which every node can be

reached from every other node through a directed path. A strong

component in a directed graph is a maximally1 strong subgraph.

We agree that each node can reach itself, so it is possible to have

strong components consisting of only one node.

3.2 Canonical form of the incidence matrix

When looking at the incidence matrix, we can find two important

properties in the set of equations. Firstly we can determine whether

the set of equations is structural solvable or not. Secondly we can

find out in which order the equations have to be solved to minimise

the number of equations participating in an iteration process. In

order to determine this information we shall have to transform the

1. A strong subgraph is maximal if it is not properly
contained in any other strong subgraph.

- 30 -

incidence matrix into a canonical pattern like the one in Fig. (3.6)

[Dulmage, 1958] [Johnson] [Dulmage, 1963] by row and column

permutations.

A' B'

Figure 3.6. canonical pattern

Only the shaded areas in the pattern may contain nonzero entries,

while white areas contain only zero entries. Define a " 45-degree

line" in the matrix A as the entries: Ai,n-i+l-k

where: n is the dimension of the matrix.

and: k = O, ... ,n- 1

and: i = l, ... ,n k

For k equal to 0 the "45-degree" line is the diagonal of the matrix.

The authors mentioned above have proved that the pattern can be made

to have the following properties:

1. The 45-degree line A • A' has all 1-entries. These entries

correspond with the matching with maximum cardinality in the

graph related to the incidence matrix.

2. There is no possibility to shift the line A - A' towards the

line B - B' (decrease k, while maintaining the 45-degree slope)

- 31 -

by row and columns permutations, such that the new line also

has all 1-entries.(so the matching has maximum cardinality).

3. The square arrays (like the shaded ones 1,2,3,4) are

"irreducible" in the sense that it is impossible to break them

down into smaller square arrays by row and column permutations

only.

Under these circumstances the irreducible arrays are unique in the

sense that the rows and columns involved per array are uniquely

determined. This is true although the set of entries along the line A

A' and the sequence of the irreducible arrays along this line are

not unique. The arrays 5 and 6 are called the "tails" of the scheme.

In particular 5 is the "horizontal" and 6 the "vertical" tail. If the

scheme is square and A - A' is the diagonal, there are no tails, and

the "maximum matching" is called a "complete matching". If we can

find a complete matching we can conclude that the system of equations

is structurally solvable.

As stated in the introduction the order of solving the equations is a

kind of back substitution. The equations fp,fp_ 1 , ,fk can be

solved in that way (fig 3.7).

Figure 3.7. matrix with strong component

If an irreducible array containing more than one equation is

encountered however, this way of solving the equations is not

- 32 -

possible any more. The equations associated with an irreducible

array have to be solved simultaneously.

3.3 Determination of the maximum matching

In this paragraph it will be explained how the matching and the

irreducible arrays can be determined.

To be able to explain how this can be done some definitions are

necessary.

1. A free node is a node that is not incident with any branch in

the matching M.

2. A path is a set of branches alternating in M and B·M where the

end node of a branch is the same node as the start node of the

next branch. (In a branch b(v,w> is v the start node and w the

end node).

3. An augmenting path is a path starting in a free node in F and

ending in a free node in X.

4. Two paths, P1 and P2 , are disjoint if P1 and P2 have no node in

common.

5. The number of branches in a matching M is denoted by IMI.

6. The number of branches in a path Pis denoted by IPI.

7. Each bipartite graph has a maximum matching ~x· with the

property that there exists no other matching M with

IMI > l~axl·

8. There may be more than one maximum matching.

Now we shall state a number of properties, for their proofs we refer

to [Hopcroft].

For each matching Mi with IMil < l~axl holds that there exists

at least one augmenting path relative to Mi.

If M is a matching and P is an augmenting path relative to M,

then M e P is a matching and IM e PI - IMI + 1.

With e we denote the "EXCLUSIVE OR" operation, so M e P yields

the branches which are in M and not in P together with the

- 33 -

branches which are in P and not in M (see fig 3.8).

free vertex tMi eM. P. free vertex
~ ~

0 0 0 0 0 0

!Mi+1 = M. ~ P. ~augmenting path
~ ~

0 0 0 0 0 0

E:Mi+1 iMi+1

Figure 3.8. generation of a new matching

- An augmenting path P is called a shortest augmenting path if the

cardinality of P is the least among the augmenting paths.

-Let M and N be matchings. If I Ml - r , I Nl - s, and s > r, then

M e N contains at least s - r vertex-disjoint augmenting paths

relative to M.

- Let M be a matching, P a shortest augmenting path relative to M

and P' an augmenting path relative to M e P then

IP' I ~ IPI + IP () P' I (3.6)

- These features reveal an algorithm to determine a maximum

matching [Hopcroft]. The algorithm can be described as

1. M-S/5

2. Let l(M) be the length of the shortest augmenting path of M.

Find a maximal set of paths

properties that :

1. for each i Pi is an augmenting path relative to M and

IPil - l(M),

2. the P1 are disjoint,

3. Halt if no path exists.

4. M-Me P1 e P2 SPt

go to 2.

In [Hopcroft] it is shown that the number of times that step 2) has

to be performed is bounded by 2*(J(I~axl> + 2).

The above mentioned algorithm indicates that it is essential to have

- 34 -

an effective method to find a set of the shortest augmenting paths.

This will be described in the next paragraph.

3.4 Determination of a maximal set of shortest augmenting paths

Until now the bipartiteness of the graph has not been considered.

This property is very helpful if we have to compute a maximal set of

shortest augmenting paths. From the undirected incidence graph

G(V,B) we determine a set of directed branches as follows: Assume M

to be a matching,

1. if a branch b(v,w) E M with v E X and w E F, we derive from

branch b a directed branch b(v,w> pointing from v to w.

2. If a branch b(v,w) E B-M with wE X and v E F we derive from b

a branch b(v,w>, pointing from v to w.

Now we can start to construct a search graph in which we can find a

maximal set of shortest augmenting paths. This graph.is divided into

levels of nodes and is constructed applying the following rules :

1. Level 1 contains all free nodes f e F.

2. Level(i+l) of the graph is obtained by adding the directed

branches from v tow, b(v,w>, to the graph where v E level (i).

3. When a new node is already a member of the constructed graph,

it is not inserted into the graph. Thus

level(i+l) ~

{ wlb(v,w> e B " v e level (.1) " w ¢ level()) " j :S i }.

4. We end the graph construction process if we have finished the

construction of a new level, and a free node x e X is a member

of that level.

Because of the way of construction, the levels consist alternately of

nodes f e F and nodes x eX. (Fig. 3.9) We also can see that a path

in the search graph consists alternately of branches b(v,w> eM, and

branches b(v,w> E B-M.

Searching for the maximal set of vertex disjoint shortest augmenting

paths is done by "Depth First Search" (DFS) [Tarjan] in the

constructed search graph.

level
1

• 35 •

X

level
2

f

level
3

Figure 3.9. search graph

level
4

A shortest augmenting path related to the matching M is found by

searching for a path from a free node f E F (located in the first

level) to a free x EX (located in the last level). Each shortest

augmenting path will start in level 1.

A node will only be added to a path in construction, if this node

isn't already visited by the search.

The search for a path ends in one of the following two ways:

1. We end in a free x e X, so we found a shortest augmenting path.

2. The DFS returns to the free starting node f E F. Then there is

no shortest augmenting path starting in f.

We stop the search, if we have tried to construct a path from each

(free) node in level 1.

3.5 Determination of strong components in a directed graph

By determining a maximum matching we have found out, whether the set

of equations is structural solvable or not. A matching however does

not indicate in which order the equations have to be solved. This

can be done by searching for strong components. Those components will

impose a partial ordering on the equations.

In the previous paragraphs a description is given how a maximum

matching in an incidence matrix can be found. During the

determination of the matching we have coupled equations to variables.

In the sequel we shall assume that the matching is complete.

(Searching for strong components makes only sense if the system of

equations is solvable).

- 36 -

An algorithm to find the strongly connected components is described

in [Tarjan]. The algorithm is based on DFS and traverses all branches

in the graph once, causing the time complexity to be linear with the

number of branches in the graph. By performing a DFS on a directed

graph, we determine a set of trees in the graph, called a forest.

Each tree can consist of a set of subtrees. During the depth first

search the nodes are numbered from low to high in the order they are

visited. For each branch in the graph there are three possibilities:

1. Branch b(v,w> is a new branch of the tree; node w is not

visited yet.

2. Branch b(v,w> is a branch pointing from v to a lower numbered

node w within the same subtree. Branch b is called a frond and

is responsible for a cycle in the graph, so v and w will be in

the same strong component.

3. Branch b(v,w> is a branch pointing from v to a lower numbered

node w, which is in another subtree. Branch b is called a

cross-link and determines a partial ordering on the derived

strong components. (see below).

During the depth first search each node

initially equal to the number of the node.

the number of the node with the smallest

gets a "lowlink" value

The lowlink value of v is

lowlink number reachable

from v by traversing zero or more tree arcs and at most one frond or

cross link. This lowlink value can be determined for each node in

the graph by searching the graph once with Depth First Search

[Tarjan]. If the search is ready, all the nodes with the same

lowlink value are member of a strong component.

Theorem 1

If the strong components are determined it is possible to rearrange

them in such a way that the area below that covered by the strong

components, contains only "0" entries. (Fig. 3.10) Remark:

If in figure (3.10) the entry marked with a "*" contains a "1", there

exists a cycle (indicated by the arrows), so the rows and columns

incident with this cycle have to be in one strong component.

Obviously this is not true, so the entry marked with a "*" has to

contain a "0".

- 37 -

1 1 1

1---~-1 1--1
I I
I 1 I
I 1 I 1
I

~ ~ A
I

I~ I 1 1 1 1 1 :

ctJ----~----~
1 1

1 1

Figure 3.10. ordering of strong components

Proof:

Consider a part of an incidence matrix consisting of a number of

strong components as shown in figure (3.11)

r---,- -- ---r
I I
I

A •. I
~J I

I I
t--- -r---.;--......
I I
I I
I I

I
I
I I

r--""""i~---'--- -J.
I I
1 B.j I
I ~ I

.J--.....L----1- ---+-

Figure 3.11. relations between two strong components

With the two strong components Ci and Cj two areas Aij and Bij are

related. Now there are four possibilities:

1. Both Aij and Bij contain "0" entries.

In this case,no crosslink between the two

exists and there is no order relation

strong components

between the strong

- 38 -

components c1 and CJ.

2. Only Aij contains "1" entries.

Now there exists a crosslink pointing from c1 to Cj. If Bij is

allowed to contain only "0" entries, strong component c1 has to

be above cj.

3. Only B1j contains "1" entries.

Now there exists a crosslink from Cj to c1 . To maintain the "0"

entries in the lower part of the matrix, the two strong

components have to be swapped.

4. Both Aij and Bij contain "1" entries.

Now there apparently exists a cycle, indicating that c1 and Cj

are part of a larger strong component. This is contradictive to

the assumption that c1 and Cj are strong components, so this

situation can not occur.

(End of proof).

From these considerations we can conclude that if a crosslink from a

strong component c1 to Cj exists, this crosslink imposes an ordering

on the strong components. In practice this means that the equations

related with strong component Cj have to be solved before the

equations of strong component c1 can be solved.

3.6 Determination of essential variables

As we saw before, solving the system of equations can partly be done

by back substitution. If, during this back substitution a strong

component is encountered, all equations belonging to this strong

component must be solved simultaneously, for instance by using a

Newton Raphson iteration scheme. If the strong component

incorporates n + m variables and n + m equations, the Jacobian matrix

in the Newton Raphson iteration will generally be a sparse matrix

with n + m rows and n + m columns. To obtain a new guess for the

solution we need to solve a set of linear equations. To start up the

iteration, initial values for all n + m variables are needed.

So it is advantageous to reduce the number of unknowns during the

iteration. By row and column permutations it is possible to derive a

Bordered Lower Triangular Form (BLTF) of the incidence matrix related

- 39 -

to a strong component. (See Fig. 3.12) [Cheung] [Trouborst, 1979)

[Smith}.

A :a
I

D

Figure 3.12. structure of a strong component

With such a BLTF it becomes possible to set up a Newton Raphson

iteration in m variables and m equations. This can be achieved by

expressing the variables x1 , ,Xn , in terms of xn+1•·····xn+m

with the equations f 1 , ,fn. In the following paragraph we shall

give an algorithm to determine the BLTF.

3.7 The minimal essential set algorithm

The algorithm for determining the BLTF of a strong component is based

on the minimal essential set algorithm described in [Trouborst,

1979][Trouborst, 1981]. To explain this algorithm we need some

definitions:

1. A bordered upper triangular matrix can be divided into four

submatrices, satisfying the following conditions

-Matrix B and C are square matrices;

- c1j - 1 if 1 - j,

c1j - o if j > 1,

So C has a upper triangular form.

- 40 -

The off diagonal matrices A and D contain at least one

nonzero entry.

2. An essential variable is a variable that is related to the

columns of matrix B. Suppose the matrix M has the form shown

in Fig. 3.13
n+m

followers

Figure 3.13. strong component

essential
variables

n+m

Mij 0 i 1,2, ... ,t s n + m- k i < j s m + n- k

1 1,2 .. ,t

3. The first t variables are called the followers.

4. The last k variables are, in accordance with 2, called

essential variables.

5. All other variables are called non-followers.

6. The set of followers, united with the set of essential

variables, is called the "train".

The algorithm described here, will try to find a set of essential

variables with a cardinality as small as possible, such that there

will be no nonfollowers any more and the matrix form in Fig. 3.12

will be obtained. Some important properties of this algorithm are :

- 41 -

1. The algorithm does not stick to the already found matching and

in the submatrix B even zero valued diagonal elements may

exist. This feature influences the cardinality of the set of

essential variables extremely [Donald].

2. Within a subset of the equations, namely those that are linear,

elimination steps can be included to reduce the cardinality of

the set of essential variables.

3. The cardinality of the essential set is minimal but not

minimum. The problem to find a maximum essential set has been

shown to be NP-complete [Karp].

The algorithm picks from the set of nonfollowers a variable that,

when added to the set of essential variables, results in a train as

large as possible. This variable is obtained by trying all

nonfollowers. When found, it will be added to the set of essential

variables and, if the set of nonfollowers is not yet empty, the

algorithm will start again to find the next essential variable. When

adding a variable to the set of essential variables, we can determine

the train as follows Search an equation that contains only one

nonfollower. If such an equation exists, add this variable to the

train. Repeat this until there are no more equations with only one

nonfollower.

The algorithm described so far searches a minimal essential set

without elimination in the set of linear equations. The equations in

the tableau can be divided into two classes:

1. The nonlinear equations. and the

coefficients not equal to ±1 or 0.

linear equations

2. The linear equations with coefficients equal.to ±1 or 0.

The following equations belong to this second group :

• The Kirchoff voltage law equations;

• The Kirchoff current law equations;

with

• The equations in the small signal

Kirchoff voltage law equations

equations;

systems, derived from the

and the Kirchhoff current law

- 42 -

• The equations in the AC systems, derived from the Kirchhoff

voltage law equations and the Kirchhoff current law equation.

Because of the fact that these equations are Kirchoff voltage and

current law equations, we know that, if we subtract two of these

equations, the variables appearing in both equations will be

cancelled. This gives us the possibility to eliminate variables, and

as a consequence entries in the incidence matrix, without knowing the

values of these variables. The elimination can be performed during

the search for those variables which, if added to the set of

essential variables, result in the longest train. This can be

achieved by a Gauss Jordan elimination [Hildebrand], performed only

with the equations in class 2. These equations can be captured in the

matrix formula in Fig. 3.14.

M. ~- y.

Where M comprises all equations of class 2.

The following partition is possible:

A B c

Figure 3.14. incidence matrix
elimination

during

1 ~ollowers

~~~~lowers 
l ~ssential variables 

Gauss-Jordan 

Matrix A is related to all followers. Matrix B belongs to the 

nonfollowers and matrix C belongs to the essential variables found at 

the current state. The Gauss Jordan elimination is executed with 

pivots in matrix B. The pivot for the Gauss-Jordan elimination is 

chosen in such a way that an identity matrix as large as possible is 

created. (See fig. 3.15.) In case a row occurs in the matrix Br• in 

which only nonzero entries appear, an equation with only one 

nonfollower has been found. At the moment this situation is 

detected, the Gauss Jordan elimination will be stopped and the newly 

found follower will be added to the train [Trouborst, 1981]. 



A 

Figure 3.15. 

- 43 -

B--....---

8 
r 

c 

incidence matrix 
elimination 

after 

1 ~ollowers 

I ~~~lowers I 

l
k 
essential 
variables 

Gauss-Jordan 

3.8 Evaluation of the minimal essential set algorithm 

To evaluate the algorithm a number of tests has been performed. The 

tests are done with matrices derived from electrical circuits. The 

Gauss Jordan elimination, can be switched on by an option. To get 

insight into the performance of the algorithm, a second algorithm, 

which searches for a minimum set of essential variables is 

implemented. This algorithm does not change the already found 

matching and tries all the possible sets of essential variables, 

together with a branch and bound technique. This is of course only 

possible for small strong components. The results of the comparison 

are given in table 3.1. 

maintaining not maintaining 
the matching the matching 

size of number of CPU with without 
component ess. var. time elimination elimination 

(sec) 
number of CPU number of CPU 
ess. var. time ess. var time 

(sec) (sec) 
3 1 0.14 1 0.20 1 0.20 6 1 0.12 1 0.22 1 0.24 15 1 0.14 1 0.54 1 0.50 16 2 0.16 1 0.64 1 0.53 31 3 0.28 2 3.54 2 2.46 55 6 >600 3 23.58 3 11.60 68 5 >600 3 52.92 3 16.46 77 - - 8 296.18 8 56.44 

TABLE 3.1. 

From these results we can conclude that 



- 44 -

1. Maintaining the matching enlarges the cardinality of the 

minimal essential set; 

2. Elimination does 

significantly and 

not 

uses 

reduce the minimal essential set 

a lot of computation time. Because of 

this result elimination has been taken out of the program. 

As described earlier the reason for searching a minimal set of 

essential variables in a strong component is to obtain a smaller 

Jacobian matrix during the Newton Raphson iteration. During the 

search for essential variables, the equations are split into two 

groups : the essential equations and the non-essential equations. 

(Fig. 3.16) 

non essential 
variables 

essential 

equations 

non essential equations 

Figure 3.16. strong component with essential variables 

To reduce the dimension of the Jacobian matrix it is necessary to 

write the non-essential variables in terms of the essential 

variables. This, however, is only possible if in the non-essential 

equations the matching variable can be written explicitly. For all 

Kirchoff equations this is the case. For some branch constraint 

equations and for the design constraint equations, this is not 

necessarily true. To be able to control the way how the essential 

variables are determined, and which variable will become the matching 

variable in a certain equation, a number of options are built into 

the algorithm: 



- 45 -

1. A variable in a given equation can be forced to be the matching 

variable in that equation. 

2. A variable in a given equation can be forced not to be the 

matching variable in that equation. 

3. A certain variable can be forced to be an essential variable 

If the designer uses one of these options it is possible that the 

resulting minimal essential set becomes larger. 

3.9 Determining the matching in a set of equations with AC systems 

If we want to incorporate the behaviour of a circuit at a number of 

different frequencies, we need a complete set of Kirchoff voltage law 

equations, Kirchoff current law equations and branch constraint 

equations for every frequency point. Moreover a new set of variables 

is needed for each frequency point. However, the incidence matrices 

for all frequency points are identical. The overall structure of the 

incidence matrix is given in Fig. 3.17 

parameters 
A 

~~~~~~~~~~~~ 

AC4

Aldesign constraint
e~ations

Figure 3.17. overall structure of the incidence matrix

The algorithm of Hopcroft and Karp determines a maximum matching by

searching for the shortest augmenting paths, in a search graph

constructed from a previously determined non-maximum matching and

augment the matching with each shortest augmenting path. For the

algorithm it is not essential at all how this non maximum matching

- 46 -

will be determined.

Because of the fact that the incidence matrices of all different AC

systems are equal, we are able to determine the matching of all AC

systems by doing so for only one AC system and using this matching

for all other systems.

Also for the system of equations describing the DC behaviour, a

matching can be determined separately. In this way a smaller

matching, given by line A-A' in Fig. 3.17 can already be found. By

the algorithm of Hopcroft and Karp the construction of a maximum

matching can be continued.

The above described method results in the following algorithm:

STEP 1 Find a maximum matching in the DC system by using the concept

of Hopcroft and Karp (augmenting paths). The DC system is the

set of equations and variables describing the DC operation

point of the circuit. The vertices associated with the design

constraint equations and the parameters are controlled to

remain free. The result of these restrictions is that we can

assume the parameter values to be known. Because of the fact

that the DC system in this situation can be seen as a

description of an existing circuit with known parameter values,

we can assume that the DC system is a set of equations with a

full rank Jacobian; so the set of equations is almost always

solvable. Because of this we are certain that we can find a

matching covering the whole DC system.

STEP 2 Find a maximum matching in one AC system. This is the set of

equations and variables describing the AC operation of the

circuit. The same restrictions as those for the DC system hold.

STEP 3 Catenate the AC system in the way displayed in Fig. 3.17. Now

we have already found a matching represented by the line A-A"

(Fig. 3.17).

STEP 4 Augment the matching with the aid of shortest augmenting

paths.

In this way we reduce the time necessary to find a maximum matching.

The time complexity of the algorithm of Hopcroft and Karp is

O((m+n)js) [Hopcroft], with

- 47 -

1. n -number of vertices in the bipartite graph associated with

the incidence matrix;

2. m- number of edges in the bipartite graph associated with the

incidence matrix;

3. s - number of edges of the maximum matching

A maximum on the number of times a set of disjoint shortest

augmenting paths has to be found, is O(s). The time needed to find a

set of disjoint shortest augmenting paths is O(m+n). If the matching

covers the whole system of variables and equations (a complete

matching) s - n/2 holds.

Definitions :

1. p - number of parameters;

2. v - number of equations in the DC system plus the design

constraint equations;

3. e - number of entries in the DC system plus the design

constraint equations;

4. x - number of frequencies we need (- number of AC systems) For

each AC system we are allowed to introduce one design

constraint equation. This design constraint can prescribe a

frequency, but also another variable in the system, leaving the

the frequency to be determined.

If we want to find the maximum matching without taking into account

the resemblance between the AC systems we find :

- 48 -

n - 2(v - p + x(v - p)+ p + x)-2(v + x + x(v - p))

l
DC system l

system AC

m- e + x(e

r
+x

DC
l
system +

design constraint.

AC system

The time needed to compute the maximum matching is asymptotically

T - C(m + n)Js

T C(n + m)J(n/2) C(2(v + x + x(v - p)+

e + x + x(e - p))j(~ + x +x(v - p))

If we compute the time needed to obtain the maximum matching, taking

into account the resemblance in the structure of the AC systems, we

obtain :

STEP 1) n' 2(v - p)

m' e - p

T' C(2(v - p) + e - p) j(v - p)

STEP 2) t' '- T'

STEP 4) n ' ' ' - n

m'''- m

s p + x (we only need to extend the matching with p+x

rows and columns)

T'''- (n + m)(p + x)

The obtained gain in execution time is

- 49 -

T

G - ---"------

T' + T'' + T'''

2 v + e + x(3 + 2 v - 30 + e)j(v + x(v - p)+ x)

G - --
2(2(v - p)+ e - p)(v - p) + (2 v + e + x(3 + 2 v - 3 p - e)j(p + x)

For large x (many AC systems) we find:

j(v + x(v - p)+ x) j(x(v - p)+ x)

G ~ ---------- = ------ - v-p+l

j(p+x) j(x)

The gain obtained for a circuit with v - 150, p - 30 and e - 554

uA-725 opamp) is plotted in Fig. 3.18.

gain in

execution time

2

lL-------------------------
10 20 40 60 80 100 120 140 number of

AC systems

Figure 3.18. Gain in execution time versus the number of AC
systems

- 50 -

4. Manipulating and solving the equations

The determination of the strong components and permutation of the

incidence matrix into a canonical form imposes an ordering on the

equations, determining in which order the equations have to be

solved. The resulting incidence matrix indicates also which variable

in an equation is the unknown variable (all the other variables are

already solved by previous equations) and has to be written

explicitly. This is the variable being in the matching. However this

is not true for the essential equations (see Chapter 3). There are

two different ways to generate the equations

1. Generate the equations directly in the appropriate form; this

means with the matching variable made explicit.

2. Generate the equations in a standard form and write them in the

correct form afterwards.

The second method is chosen for two reasons:

1. It is much easier to write a procedure generating the equations

in a standard form.

2. A procedure being capable of writing an explicit formula for a

variable, is needed anyway, ·because the design constraint

equations are in general not given in the appropriate form.

4.1 Writing a variable explicitly

To write a variable explicitly a formula manipulator has been

written. This formula

formulas appropriate for

manipulator is able to handle a set of

most of the equations occurring in a

description of an electrical circuit.

In appendix A a BNF definition of the used equations is . given. The

"terms" (see appendix A) are important in the process of writing a

variable explicitly.

In equation + v6 - + i6 * R6

are + v6 and + i 6 * R6 the terms.

In equation + exp(+ q * v5 1 k I T) - + I 0 * q * v15 I k I T

are + exp(+ q * v5 I k I t)

(4.1)

(4.2)

and

+ Io * q * vl5 I k I T
the terms.

- 51 -

The algorithm works as follows:

1. Scan the formula and search for the terms. When a term is

encountered determine whether the variable, to be written,

explicitly occurs in that term or not. If not, place this term

with the appropriate sign in a string called B (in case the

term occurred on the left side of the - sign, the sign

changes). If so, substitute a "1" for the variable to be

written explicitly (divide this term by that variable or

multiply it with that variable depending on whether the

variable is in the numeration or the denominator) and place the

result with the appropriate sign in a string called A (when the

term comes from the left hand side of the - sign, the sign does

not change). Repeat this step until all terms have been placed

in string A or string B.

2. The variable to be written explicitly can now be expressed by:

+x - (string A) I (string B) (4.3)

if x occurred in the numerator of a term and as

+x - (string B) I (string A) (4.4)

if x occurred in the denominator of a term.

This limited formula manipulator is able to handle most of the

equations occurring on the design system. However, for some of the

formulas something more has to be done.

(4.5)

When v5 has to be written explicitly, this equation is firstly

written as :

(4.6)

- 52 -

Then it can be handled by the formula manipulator.

n
2. x + r - - p (4.7)

When x has to be written explicitly, the power is initially

ignored. Thereafter the 1/n-th power of the result is taken.

After these two extensions it may still be possible that a variable

cannot be written explicitly as for instance the variable T in

equation 4.5. In case this equation occurs in the strong component

of dimension one, the only way to solve it is to iterate to the

correct solution. If, however, this equation occurs in a strong

component with a dimension larger than one, one can force this

equation to be an essential equation. Because in the set of essential

equations no variable has to be written explicitly the strong

component can be solved. It is also possible to control the algorithm

determining the essential variables in such a way that T will not be

the matching variable in that equation.

4.2 Suffix notation

To be able to compute the equations efficiently, it will be necessary

to write them in a suffix (reverse Polish or postfix) notation

[McKeeman]. This can be done with a simple algorithm, whose flow

diagram is shown in fig. 4.1. STACK is a last in first out array.

The arrays STACK, INPUT and OUTPUT can contain variables, constants

and operators. When the algorithm starts, the formula is stored in

INPUT. After the algorithm the result can be found in the array

OUTPUT. Priorities are assigned to the variables, constants and the

operators. These priorities are listed below. "A inv" means -A. This

operation is generated if the STACK or OUTPUT is empty and the top of

the input stack is "-". To compute a formula written in a suffix

notation, the following algorithm can be used.

1. Search for the first operator from the left side.

2. Search for the one or two corresponding operands.

3. Perform the operation.

4. Replace the operator and the operands by the result from 3).

STACK < INPUT

delete top of

INPUT and

place on

STACK

operator

operand

+, -. inv

* . /, t

variable

constant

(

)

exp, ln

- 53 -

STACK = INPUT

delete top of

INPUT and

delete top of

STACK

Figure 4.1. flow diagram

or STACK

priority

2

4

6

6

0

-
6

Table 4.1.

STACK > INPUT

delete top of

STACK and

place on

OUTPUT

No

INPUT

priority

1

3

5

5

7

0

7

- 54 -

5. If there are operators left, go to 1)

6. Stop.

4.3 Solving the strong components

As already has been shown in Chapter 3 the rows and columns of a

strong component can be rearranged in such a way that the incidence

matrix of that strong component looks like the one in Fig. 3.12. The

diagonal of the submatrix C consists of entries equal to one and the

lower triangular part of submatrix C consists of only "0" entries.
t We define! - (x1 ,x2 , ... ,xn)

X -.:.::e

!e is the vector of essential variables.

! is the vector of all the non essential variables in a strong

component.

The equations £1 , f 2 , ... , fn can be written as :

i - 1,2, ... ,n (4.8)

the equations fn+l until fn+m read

fi (! •) - 0 i - n+l, ... ,n+m. (4.9)

The strong component must be solved by computing the equations fn+l

, ... , fn+m simultaneously.

To be able to do so, the variables of ! have to be eliminated,

resulting in :

(4.10)

! - (Fn+l ,Fn+2 • ···• Fn+m) ·

This can be obtained by using the equations £1 , ... fn.

(4.11)

- 55 •

0 - fn+m = (gl(~), g2 <~e), ···• gn <~), ~e) = Fn+m<~e

The set of equations !<~e) - Q can be

solved by a Newton Raphson iteration scheme [Hildebrand]:

(4.12)

where~ is the vector of computed values for the essential

variables after k iterations and

8!n-rll 8!n+ll 8!n+ll
a~ xk-1 a~ xk-1 a~ xk-1

1 -e 2 ~ m ~

Jl -
8!n+21 8!n+21 8!n+21

k-1 a~ xk-1 a~e xk-1 a~ xk·l (4.13)
~ 1 ~ 2 -e m -e

8!n+ml 8!n+ml ;Fn+ I
a~ xk·l a~e xk-1 ~ xk·l

1 ~ 2 -e m ~

Because the equations to be solved are known, we are analytically

able to determine the derivatives of F. Thus there is no need to

apply approximations. However the equations Fn+l•···•Fn+m will be

very complicated, and the computation of the derivatives will be

lengthy. A better approach to compute the Jacobian is the following:

first compute the derivatives of each non essential variable with

respect to the essential variables. Hereafter compute the Jacobian

- 56 -

using the essential equations. The order in which the derivatives

have to be established can be generated by the following algorithm:

FOR i :- 1 UNTIL n 00

BEGIN

FOR j :- 1 UNTIL m DO

BEGIN

END;

END;

FOR i :- n+l UNTIL m+n 00

BEGIN

FOR j :- 1 UNTIL m DO

BEGIN

END;

END;

Before the derivative of an equation can be determined, this equation

has to be written in suffix notation (Chapter 4.2). Hereafter the

determination of the derivative implies repeatedly applying a number

of basic rules. These basic rules are listed below, where (A)' means

the derivative of A. A or B may represent more complex expressions.

(constant)'-> 0

(variable)'-> derivative of the variable , or zero. If the

- 57 -

variable is no member of the strong component

its derivative will be zero.

(A B *)' -> A B' * B' A*+

(A B +) -> A' B' +

(A B -) -> A' B' -
(A B I) ~> A' B I A B' * B 2 t I -
(A exp) -> A' A exp *

(A ln)' => A' A I
(A inv)' -> A' inv

(A B t)' -> A' B A B 1 - t * *

(A B t) means A B where B has to be a constant.

If a derivative of a constant or a variable results in a zero value,

there is a possibility to reduce the length of the resulting

expressions. For this simplification we can formulate the following

rules :

A 0 + -> A

0 A+-> A

0 A - -> A inv

A 0 - => A

A 0 * => 0

0 A * => 0

0 A I-> 0

0 inv -> 0

A 0 t => 1

0 exp => 1

If the result of the reduction rule equals zero perhaps a second

reduction rule can be applied.

The resulting algorithm to determine a derivative of an equation is

shown below.

1. Search for the rightmost term or operator whose derivative has

to be determined.

2. Search for the corresponding operand(s).

• 58 •

3. Apply the appropriate basic rule. Apply, if possible, one or

more reduction rules.

4. If there are subexpressions whose derivative have to be

determined go to step 1).

5. Stop.

4.4 The Newton Raphson method

To solve the equations belonging to a strong component a Newton

Raphson scheme is used. For each iteration, equation (4.12) has to be

solved. This equation can also be written as :

(4.14)

This set of linear equations can be solved with LV decomposition

(Hildebrand). During the LU decomposition, partial pivoting is used

(Jennings]. This means that the largest element in a column is chosen

as a pivot. Only the rows will be permuted.

As with most Newton Raphson iteration schemes in electrical

engineering, the method is only appropriate if the initial guess of

the solution is close enough to the real solution and the second

derivative of the function is continuous in the neighbourhood of the

solution (Kantorovich]. For equation systems resulting from

descriptions of electrical circuits, these conditions mostly do not

hold (mainly because the initial guess for the solution is not close

enough to the solution). This also applies for our case. To improve

the global convergence of the method a number of strategies are

possible. Some of these are implemented. The extensions resulted in

a significant improvement of the global convergence of the Newton

Raphson method.

4.4.1 Hatching variables and convergence

It appears · as is also pointed out in [Kevorkian] that the

convergence of the Newton Raphson method can be enhanced by pushing

the right variables into the matching.

• 59 .

Let f be a function of

t
~- (xl, x2, ... , xn) and f(~)- 0 holds. (4.15)

From this equation a number of equations can be derived

(4.16)

For convergence purposes it is advantageous to take variable xi as a

matching variable such that the relative change in xi with respect

to variations in XJ (j r i) is as small as possible.

For the Kirchoff current law equation and the Kirchoff voltage law

equation, these relative sensitivities are all +1 or ·1. So for those

equations it does not matter which variable is a matching variable.

For branch constraint equations, however, this is different,

especially for diodes (which are also part of the Ebers Moll

transistor models). For a diode the branch constraint equation reads

i - r 0 (exp(qv/(kT)) · 1) (4.17)

J,b - q/(kT) r0 exp(qv/(kT)) (4.18)

but also the formulation

v-kT/q ln ((i+I0/I0)) (4.19)

is possible yielding

av kT*Io
~ = q(i + r0)

(4.20)

For a conducting diode (4.20) yields the smallest value so (4.19) has

to be used. For a nonconducting diode (4.18) results in the smallest

value, so (4.17) is the appropriate equation.

Mostly the designer knows roughly the biasing configuration of his

circuit. During the determination of the essential variables in the

strong components he will be able to control the search of the

matching.

4.4.2 Maximum stepsize

It often occurs that the steps taken by the Newton Raphson iteration

method are very large. This may result in an intermediate solution

- 60 -

which is far from the initial guess and often also far from the

solution. To circumvent this pitfall, the notion of a maximal step

size is introduced. If the Newton Raphson method wants to take a step

larger than the maximal step size, the maximal step size in the newly

computed direction is taken as increment to the old intermediate

solution rather than the value computed by the Newton Raphson method.

4.4.3 Global nonincreasing function

The objective of the Newton Raphson method is to find the vector !

such, that E(!) - Q. If for an iteration step k+l holds that

2 2
IIE<!k+l >II >IIE<!k >II (4.21)

it is likely that the k+l-th solution is not closer to the solution

than the k-th solution. Nasrollah proposes a method to improve the

global convergence of the Newton Raphson method by modifying the

method to:

where 0 < A < 1 holds, and Ak is chosen such that

IIE<!k+l > 11
2

< IIE<!k > 11
2

{Nasrollah]

This results in the following algorithm.

Starting from an initial guess !o .set Ak - 1 and j - 0.

Step I Compute zk from the set of linear operations

J(xk) . ~k _ F(!k).

Then compute !k+l from

!k • !k+l Ak ~k

Then if

(4.22)

Step II

. 61 .

we accept the point ~k+l as the next iterate set

Ak - 1 and j - 0, then repeat.

If, on the other hand

we let j - j+l.

Then set Ak- (1/2)1,

go to step I and continue.

By this measure the algorithm cannot diverge any more; the algorithm,

however, can still get stuck in a local minimum.

By the above described methods the convergence of the Newton Raphson

method is increased significantly, but it is still possible that the

program does not give the correct solution of a design problem. This

happens often with not correctly stated design problems or in

circuits with high gain factors. In Chapter 7 we shall give some ways

to define design problems correctly.

- 62 -

5. Fault Location

5.1 Introduction

One of the largest problems in electrical engineering these days is

testing of integrated circuits. Because of the continuous

enhancements in processing facilities of integrated circuits there is

the possibility to produce smaller features on silicon. Thus it is

also possible to compose larger integrated circuits. This leads to a

steady growth of the complexity of the circuits that can be

integrated. However, the number of ports through which the circuit

is accessible has not grown equally fast. Because of this it is

getting more and more difficult to test integrated circuits. This is

not only true for digital circuits but also for analog circuits. For

digital circuits a number of approaches have been found to tackle

these problems, for instance the scan path techniques and the self

testing techniques. For analog circuits, however, those techniques

are not applicable.

In the testing field two kinds of problems can be distinguished. The

first kind is the gojnogo test. This test is necessary at the end of

the production process because the manufacturer wants to check

whether a circuit is working within the desired specifications or

not. For an analog circuit this test may be relatively easy. In case

of for instance an operational amplifier this means measurement of

the output response to a given set of input signals. There is,

however, a much more difficult test which can be seen as a diagnostic

test. This test is necessary during the development of an integrated

circuit The designer does this test to determine which circuit

element value causes a circuit not to work properly. This problem can

also be stated in another way, which reveals the relation between the

testing problem and the design problem, as described in the previous

chapters: The designer wants to know the measurements he has to make

in order to be able to compute the value of the parameters in the

circuit. These measurements, can be looked upon as constraints

imposed on the circuit. As one can see the problem is equivalent to

the design problem where a designer wants to know which values of a

- 63 -

circuit element must be chosen to obtain a desired response. The

problem left is how to couple measured values to electrical

components such that if instead of the component value the measured

voltage is taken as known, the system of equations is a solvable

system. It will be explained below how to do this.

5.2 Manipulations in the incidence matrix

The incidence matrix gives us a powerful

equations will in principle be needed

component. Consider the electrical circuit

tool to find out which

to compute an electrical

to be tested with all

electrical parameters at their nominal value. From this circuit we

can derive the Kirchoff voltage law equations, the Kirchoff current

law equations and the branch constraint equations describing the

circuit elements. By adding to this set of equations design

constraints, assigning a constant value for each parameter in the

circuit, we shall obtain a solvable set of equations. This is true

because the equations obtained, describe an existing electrical

circuit and solving this set of equations is equivalent to simulating

this circuit. Because the set of equations is solvable we know that

there has to be a complete matching in the incidence matrix which is

derived from it.

Definition: Let G(V,B) be the directed graph derived from the

incidence matrix with a complete matching.

A parameter p is reachable from a variable x if it is possible

to construct a directed path in the graph G(V,B) from the

vertex x, to the vertex p.

With this definition of reachability we are able to find out which

variable values are controlled by a certain parameter or, the other

way around, with which variable it is possible to find out about the

value of a parameter. Notice that here the order in which the

equations are solved, is opposite to the direction of a path.

As an example consider fig. 5.1.

As an example in fig 5.1 the node r 3 is reachable by the node voltage

~ because there exists a path in the directed graph from n2 to r 3 ,

KC 1

KC 2

BC 3

KV 3

KV2

BC 2

DC 3

DC 2

KVl

BC 1

DC 1

• 64 •

EVNRRVNVIII

0 0 0 0 0 0 0 0 0 0 0

1 1 1 2 3 2 2 3 3 2 1

. . . ~
1 1

1~1

1 <1
rf t; 1

1

1 1 1

1

1

1 1

1 1

1

Figure 5.1. incidence matrix of circuit in Fig. 2.1

but computation of n2 if r 3 is known, is in the opposite order. With

the previous definition we are able to state the following :

Theorem 2

Assume that there is a complete matching M, a parameter p is

reachable from a variable v and there exists an equation of the form

p - constant, then, if the design constraint p - constant is replaced

by v - constant, it is possible to find a complete matching M* in the

newly defined set of equations.

Proof

Consider an existing path P from the variable v to the parameter p.

Such a path exists because p is reachable from v. The path comprises

matching and nonmatching branches alternatingly. The arcs of the

matching are denoted by bold lines.

The matching arc at the end of the path represents the incidence of p

in the design constraint p • constant. The new matching can be

constructed by the following equation :

- 65 -

path

DC p

oc p

Figure 5.2. generation of a new matching

M* - M $ P - (M u P)/M n P.

The matching arc at the end of the path represents the incidence of v

on the design constraint v = constant.

(End of proof).

By applying theorem 1 we are able to identify a measurable voltage or

current to compute the value of the parameter. If we do so

repeatedly with the members of a set of unknown parameters, we may be

able to find a set of measurable circuit variables so as to compute

the values of the unknown parameters.

5.3 Sensitivity matrix

Experiments with some practical circuits have shown that the approach

described previously does not work always. It appears that often

parameter values are computed inaccurately or incorrectly.

The reasons for this are twofold :

1. Reachability from a parameter by a variable means that the

value of the parameter depends on the value of that variable.

However, numerically this dependence may be very small or even

zero by way of compensation, such as in balanced input stages.

So the value of the sensitivity ~ is of great interest and has

to be large in absolute value.

2. The sensitivities of one parameter relative to measured

variables are (nearly) a linear combination of the

sensitivities of a set of other unknown parameters. That this

can cause a faulty computation of the parameter values can be

explained as follows

- 66 -

If the sensitivities of parameter pk+l are linear combinations

of the sensitivities of the parameters p1 , ... ,pk then we can

not detect whether a disturbance in the measurements is caused

by a faulty parameter pk+l or by a linear combination of the

faulty parameters Pl•···•Pk·

To solve these problems we introduce the following definitions

v1 ,v2 , ... ,vn voltages and currents which are measurable.

pl,p2•····•Pm parameter values which have to be checked.

avl av2 avn

~· ~ ~
av1 av2 a~

G- ~· ~ ~

avl av2 a~

~· ~ ~

This matrix will be called the "sensitivity matrix". The values

in this matrix can easily be computed with the aid of a

(transposed) small signal system [Hachtel]. To make sure that

the two situations mentioned above are not the reason of

failure, we must choose such a set of parameters and

measurements that a submatrix J of G, belonging to that set of

parameters and measurements, is well conditioned and the

sensitivities are not too small by values. Ye identify such a

well conditioned submatrix by a technique derived from full

pivoting on Gaussian elimination [Hildebrand]. The algorithm

to perform the selection of parameters and measurements is as

follows :

1. Assume that already k parameters and measurements are

selected.

2. Search for the largest absolute

coefficients

value among the

- 67 -

k<ism

k<jsn

in G such that the parameter associated with row i is

reachable from the measurable quantity associated with

column j. This defines a pivot gij

3. Rearrange the rows and columns such that entry giJ
appears at place k+l,k+l.

k

gl,k+l · • • • · gl,n

J

G

Figure 5.3. structure of the sensitivity matrix

4. Perform a Gaussian elimination step in G.

gk+l.i
giJ - • gk+l:k+l * Si,k+l

for all i,j such that:

k+2 s i s m

k+2 :S J :S n

5. Repeat these steps until no parameters or measurements

are left, or until no appropriate pivot can be found any

more.

- 68 -

5.4 Determination of the computations to be made

In general, and especially in IC design there will not be enough

points to measure voltages and currents. If so, perhaps the same

measurements can be made at different supply voltages or at different

frequencies. Mostly, however, this will not result in as many

measurements as there are parameters. Assume that only one parameter

is faulty (an assumption that is often made in these analyses). Now

we try to locate the faulty parameter by doing several computations,

each time selecting a different set of parameters to be tested. For

any such set we assemble an associated set of measurable quantities

according to the above procedure. Let the sets of parameters and

measured quantities be p(i) and v(i) respectively, where i- 1,2, ...

identify the various computations.

Because of tolerances on the nominal values of all the parameters, no

parameter will be computed to have the exact value. To decide

whether a parameter is correct or not we have to take it's tolerance

into account.

From any computation the result may be:

1. Only one parameter is off it's tolerance region.

2. More than one parameter is off it's tolerance region.

In the second case, assuming the result of the computation is unique

none of the tested parameters can be the faulty one. Thus we select

an alternate set p(i) from the parameters not yet tested, and

continue.

In the first case the parameter with the non nominal value may be the

faulty one. However, any of the not yet tested parameters could be

the faulty one as well.

Eventually more and more parameters will be excluded to be the faulty

one. A final decision as to which one of the remaining parameters is

actually faulty can possibly be obtained by inserting those

parameters simultaneously into some test set p(i). Either we are able

to narrow down the set of possible faulty parameters to one by a

sequence of computations, this way deciding the game. Alternatively

we may get stuck with all badly conditioned computations. In that

case the faulty parameter can not be identified by the measured

- 69 -

quantities because of numerical reasons.

If it is not possible to identify the faulty parameter, it is also

possible that there are more faulty parameters. The same procedure as

described above, can be followed with the assumption that there are

two faulty parameters, in this way trying to identify two faulty

parameters. An example can be found in chapter 7.

• 70 •

6. Implementation Aspects

6.1 The Modular Structure

The program has been written in the Fortran IV programming language

and has been set up as an interactive program. Possible commands are

for instance INP(UT) causing the program to read the input

description of the circuit. If there exist no syntax errors in the

input the incidence matrix for the equations derived from that

description will be generated. DEC results in the determination of

the matching together with the strong components. For a complete set

of commands and their purpose: See Appendix B.

Each command invokes a separate and self contained part of the

program. The results of such a step can afterwards be evaluated by

the user. He then can decide to proceed with the next command or to

redefine the design problem or to rerun some previous commands with

other options. The data needed for each step are always read-in from

files stored on disk. The results will be written back to the disks,

mostly on other files. Because of this it is not necessary to perform

all computations in one session and it is also possible to rerun a

part of the program.

The relation between the different parts of the program and the data

files is shown in Fig. 6.1.

IINP IIDEC II SHO I I RES I I FOR I I SUF I I COM I

t
command

I decomp

I system
file

I eire I form 1- "' I shopic I lformul I I suf frl resul I

Figure 6.1. Relation between the program and the files

- 71 -

6.2 Storage of the different intermediate results

Because there is a variety of data and algorithms, not all data ca,,t

be stored in the same way. While defining a data structure, not only

memory space has to be considered. Also very important is the data

structure to be such that the algorithm can run efficiently on it.

Next we shall describe some important data structures used in the

program.

6.2.1 The incidence matrix

The incidence matrix is not implemented as a matrix. This would be

inappropriate for two reasons

1. The incidence matrix is sparse, so in terms of memory, this

would be an inefficient realization.

2. The algorithm to find a matching and the strong components does

not run on a matrix but needs a graph representation of the

structure.

The storage of the incidence matrix is done rowwise, or formulated in

another way, equation after equation. For each equation a list of

incident variables is generated. This is an effective way of storage

in terms of memory and also with respect to the algorithms which work

on it.

A close examination of the matching algorithm reveals that in order

to find the shortest augmenting paths we must know which variables

are incident with a given function to generate the arcs pointing from

an uneven numbered level to an even numbered level. The arcs of the

even to the uneven numbered levels can be found in the matching which

is stored in another array. The variables and the equations are

numbered in the order they are generated.

The storage of the incidence matrix is done in two arrays.

- 72 -

row pointer array

Figure 6.2. storage structure of the incidence matrix

The incident variables of equation i are stored in Row Array at the

places Row Pointer Array [i] until Row Pointer Array [i+l].

The names of the variables and equations are stored in two arrays,

where the name of equation i is stored in the i-th position of one

such array. The names of the variables are stored in the same way in

the other array.

The matching is stored in another array named the Match Array. For

this purpose the variables are renumbered. The new number of a

variable is equal to the old number plus the total number of

equations. If variable i is matched with equation j Match Array [i)

is equal to J, and Match Array [j] is equal to i.

The strong components are stored in two arrays (Fig. 6.3)

compts

comptsptr

Figure 6.3. storing structure for the strong components

The information about strong component i is stored in array

compts[comptsptr[i]] until compts[comptsptr[i+l]]. In strong

components the number of the equation together with the number of the

matching variable of that equation are stored pairwise. The order of

the pairs of numbers is such that it indicates the order in which the

equations in the strong components have to be solved.

6.2.2 The equations

Each equation is stored in a separate array. Entities to be

represented in the equations are :

- 73 -

-Variables, derivatives of variables and parameters:

-operators like+, -, /, exp;

-constants.

The values of all these entities • except for the operators are

stored in an array called VALUE. All these entities are mapped into

integers in the following way :

l. 1 s 1 S 500 is the value of variable number 1.

2. 500 < 1 < 520, the integer 1 represents an operator for

instance

501 +

502

515 exp

3. 600 S 1 < 890 represents a constant value. This value is

stored in VALUE (1).

4. 890 s 1 S 990 The jacobian of the Newton Raphson iteration is

stored here.

To be able to perform the Newton Raphson iteration, the Jacobian

matrix has to be computed. This matrix is stored row by row in the

array VALUE, starting at entry 890. Because the highest entry to

store an element of the Jacobian matrix in the array value is 989,

the maximum number of iteration equations is 10 so the strong

components may contain no more than 10 essential variables each.

During the Newton Raphson iteration process the derivative of each

non essential variable with respect to each essential variable has to

be computed and stored. The derivatives with respect to the first

essential variable are stored in the array VALUE in the range from

1001-1500.

For the derivative with respect to the second essential variable the

values are stored on the range 1501-2000 and so on.

6.2.3 Input language

The definition of the circuit and the design rules is described in an

input file. The file consists of two parts. In the first part the

- 74 -

circuit is defined. The language for this part is a SPICE-like

language. Each line defines an electrical element in the circuit.

The second part consists of the design rules. For a detailed

description of the input language see Appendix C.

6.2.4 The output formats

There are essentially three places where output can be obtained from

the program. Firstly it is possible to get pictures from the

incidence matrix. In an interactive way a part of the incidence

matrix can be defined. The defined part of the incidence matrix can

then be displayed on the terminal screen or stored in a file.

The second output possibility is a printout of the generated

equations which have to be solved.

Finally the computed values of all variables can be printed out.

In all these ways of output the equations and variables are

represented by names. The naming conventions are defined in Appendix

D.

- 75 •

7. Design strategy and examples.

As explained in chapter 3, the computation time for solving the set

of equations largely depends on the size of the strong components. In

strong components containing more than one equation, a Newton Raphson

iteration has to be performed. So it makes sense to formulate the

design problem in such a way that only small strong components will

result.

As can be expected, there is a close relation between strong

components and the circuit. If for instance the circuit incorporates

an amplifier with a feedback loop, the equations describing this part

of the circuit will be one large strong components. If the feedback

is taken away, this strong component will fall apart into a number of

smaller strong components.

Taking away the feedback, does not mean that the circuit topology has

to be changed. If with a design constraint equation for instance the

voltage of a node in the feedback circuit is defined, there will

(electrically) be no feedback any more, resulting in a number of

smaller strong components.

An indication for which variables have to be fixed by a design

constraint equation to split up a strong component is given by its

essential variables. This is true because if the essential variables

are taken out of the strong component (which is done by incorporating

them into a design constraint equation) all the other equations can

be solved by back substitution. It should be noted here that in

general there is more than one set of candidates for being essential

variables.(The algorithm to determine the minimal essential set

chooses one of these).

In circuits with high gain factors, it is important that there does

not exist a strong component describing this part of the circuit. By

the use of design constraint equations, that strong component has to

be split up into a number of smaller strong components.

Because of the fact that the design constraint equations derived from

the measurements during fault location, will fix voltages and

currents in the circuit, the strong components will be small, so the

calculation will be performed efficiently.

- 76 -

In the next sections we will give two examples illustrating the

capabilities of the described design and test-generation package. The

first example will be about the design of an amplifier, the second

will be an example of the generation of test measurements to test a

circuit.

7.1 design of an amplifier

The circuit to be designed is depicted in fig. 7.1.

Figure 7.1. The circuit to be designed

The topology of this circuit can be described in the file circ.dat.

#example

ex

0

01Rl302

02R0200

03Rl304

04R0500

05Rl306

06R0708

07R0800

08Rl200

09Rl012

10Rl011

11Rll12

12Rl309

13T040302NH

17T040503NH

21T060704NH

25T091210NH

29Tl31109NH

31C0102

32C0800

33C0609

34El300

35£0100

36R0100

37R0900

- 77 -

As we can see that "half Ebers Moll" models are incorporated for the

transistors. This means that the transistors are correctly modeled if

they are not operating in saturation mode. This is true for this

example.

The design constraint equations can be added to the description of

the circuit.

DCOl(ROl)-+ROl-+370000

DC02(R02)-+R02-+100000

DC03(N04)-+N04-+3.9

DC04(R04)-+R04-+1800

DC06(R06)-+R06-+630

DC08(R08)-+R08-+2200

DC09(V25)-+V25-+0.3

DC10(R09)-+R09-+1000

DC11(129)-+129-+0.004

DC12(Rl2)-+Rl2-+39000

DC13(Rll)-+Rll=+470

DC14(T)-+T-+300

DC15(Al4)-+Al4-+0.99

DC16(Al8)-+Al8-+0.99

DC17(A22)-+A22-+0.99

DC18(A26)-+A26-+0.99

DC19(A30)-+A30=+0.99

- 78 -

DC20(E34)-+E34-+15

DC2l(E35)-+E35-+0.0

DC22(X35)-+X35-+l.O

DC27(W01)-+W01=+10000

DC23(C31)-+C31-+0.0000002

DC24(C32)-+C32-+0.0001

DC25(C33)-+C33-+0.000001

DC26(R36)-+R36-+10000

DC28(X34)-+X34-+0.0

DC29(W02)-+W02-·10000

DC30(1Nl2,2Nl2)-+1Nl2*2Nl2-+1600

DC3l(R07)-+R07-+33000

A number of comments can be made here:

1. Design constraint equation DC03 defines the DC operation point

of the first stage of the amplifier. Resistor R03 has to be

computed to obtain the desired operation point.

2. With design constraint equation DC09 we want to express that

the transistor in the current !imitating circuit must not be

active during normal operation of the circuit (transistor 25

has to be in cut-off mode). Resistor RlO is the designable

parameter.

3. Design constraint DCll establishes the operating point of the

output stage of the circuit. (R37 is the designable parameter).

4.

5.

Design constraint DC16 DC19 define the a's of the

transistors.

DC27, DC29 and DC30 express a constraint on the gain of the

circuit. There is a small problem here. If a designer imposes

a gain on an amplifier, he mostly is only interested in the

absolute value of the gain, and not in the real and imaginary

part. The modulus of a complex number can be found, by

multiplying it with its complex conjugate. The complex

conjugate, can be computed by defining a negative frequency.

Design constraint equation DC30 defines a gain of 40. (The AC

signal source has an amplitude of 1, X35).

I !i
l
!
'I
I
I
·I
li

- 79 -

'''

',,

,I
I ,I
I I

I

I

I
I •'
I' .

•' I '•

Figure 7.~. Incidence matrix

II.

''

'•
''~.,.---------..

'•

I
I
I
I
I
I
I
I
I
I :,,h,
rl
I
I

- 80 -

I
'I

hi J I'':, 1
' lj,

I
•I
\
I
I
I
I
I
I

'I
I'
I
I
I

I

I'
I
I

',,,,,
,,, I

j, J '.Ill '

1 ,'':

'•\
II,

"

'

I

'I

hi

'hi'. '
j, " :

,,1111
,1:11

Ill j,
'II

,,'1,,, '

"::111.
•' ,I

I

'
I' '

''

- 81 -

The design problem formulated in this way results in a set of

equations with a complete matching, indicating a solvable set of

equations.

The incidence matrix after determination of the essential variables

in the strong components is shown in figure 7.2. As we can see there

exist 7 strong components.

The equations to be solved are listed below:

ODC20: +0E34-(+15) OBC34: +OV34-(+0E34)

OKV34: +ON13-(-0V34)*(·1) ODCl : +ORl-(+370000)

ODC14: +OT13-(+300) ODC4 : +0R4-(+1800)

ODC16: +0A18=(+0.99) ODC15: +0A14-(+0.99)

ODC2 +0R2-(+100000) OKC2 : +0-(+0Il-OI2-0I13+0Il4)

OKC5 +014-(+0!17) OBC4 : +0V4-(+0R4*0I4)

OKV4 +ONS-(-OV4)*(-1) OBC17: +0V17-(+LN(+0117/10+1))

/(+Q*1/K/OT13)

OKV17: +ON3•(-0V17-0N5)*(-1) OBC18: +0I18•(+0A18*0I17)

OKC3 : +0113-(-0117+0118)*(-1) OBC13: +0Vl3-(+LN(+OI13/IO+l))

/(+Q*l/K/OT13)

OKV13: +ON2-(-0V13-0N3)*(·1) OKVl : +0Vl-(+ON13-0N2)

OBCl +0Il•(-0Vl)/(-OR1*1) OKV2 : +0V2-(+0N2)

OBC2 +0I2-(-0V2)/(-0R2*1) OBC14: +0Il4-(+0Al4*0Il3)

ODC3 +ON4-(+3.9) ODC31: +OR7-(+33000)

ODC6 +OR6=(+630) 0BC6 : +0-(-0V6+0R6*0I6)

0BC21: +OV2l•(+LN(+OI21/IO+l))

/(+Q*l/K/OT13) OKV21: +0N7-(-0V2l+ON4)

0KC7 +016-(+0121) OKC8 : +017-(+016)

OBC7 : +OV7-(+0R7*017) OKV7 : +0N8-(-0V7)*(-l)

OKV6 : +0V6-(+0N7-0N8) ODC17: +0A22·(+0.99)

OBC22: +0122-(+0A22*0I21) OKC4 +013-(-0114-0118-0121+

0122)*(-1)

OKC6 : +015-(-0122)*(-1) ODC9 : +0V25-(+0.3)

0DC10: +0R9•(+1000) OBC25: +0125-(-EX(+Q*OV25/K/

OT13)+1)/(·l/10)

ODC18: +0A26•(+0.99) OBC26: +0126-(+0A26*0I25)

ODCll: +0129•(+0.004) ODC8 +ORS-(+2200)

OKClO: +0•(-0I9-0110-0I25+0I26 OKV8 : +OV8-(+0N12)

- 82 -

OBCS ; +018-(-0V8)/(·0R8*1) OKV25: +0N10-(-0V25-0N12)*(-l)

OKV9 : +0V9=(+0N10-0N12) OBC9 : +019-(-0V9)/(-0R9*1)

OKC12: +0111-(-018+019+0125)*

(-1) OKCll: +011Q-(-0111+0129)*(·1)

ODC13: +0R11=(+470) OBCll: +OV11-(+0Rll*0111)

OKVll: +0Nl1=(-0Vll-ON12)*(-1) OBC29: +0V29-(+LN(+0129/10+1))

/(+Q*1/K/OT13)

OKV29: +ON9=(-0V29-0N11)*(-l) OKV12: +0V12•(+0Nl3-0N9)

0DC12: +0R12-(+39000) 0BC12: +0112•(-0V12)/(-0R12*1)

ODC19: +0A30-(+0.99) OBC30: +0130-(+0A30*0129)

OKC13: +0134-(-011-013-015-

0112-0130) OKV3 : +0V3-(+0N13-0N4)

OBC3 : +0R3•(-0V3)/(-1*013) OKVlO: +OV10-(+0N10-0N11)

OBClO: +0Rl0-(-0V10)/(-1*0110) ODC28: +OX34-(+0.0)

2BC34: +2V34-(+0X34) 2KV34: +2N13-(-2V34)*(·1)

ODC25: +0C33-(+0.000001) ODC29: +0W2-(-10000)

0DC24: +0C32-(+0.0001) ODC22: +0X35-(+1.0)

2BC35: +2V35-(+0X35) 2KV35: +2N1•(-2V35)*(-1)

ODC23: +0C31-(+0.0000002) 2KV2 +0-(-2V2+2N2)

2BC14: +2114=(+0Al4/(+l-0Al4)*

2113) 2KC3 +2117-(+2113+2114)

2BC17: +2V17-(-2117)/(-l*Q*

OI17/K/OT13) 2BC18: +2118-(+0Al8/(+1-

0Al8)*2Il7)

2KC5 : +214-(+2117+2118) 2BC4 : +2V4-(+0R4*214)

2KV4 : +2N5-(-2V4)*(-1) 2KV17: +2N3•(·2V17-2N5)*(-1)

2BC13: +2Vl3-(-2113)/(·1*Q*

OI13/K/OT13) 2KV13: +2N2-(-2Vl3-2N3)*(-l)

2KV31: +2V31•(+2N1-2N2) 2BC31: +2131-(+0W2*0C31*2V31)

2KV1 +2V1-(+2N13-2N2) 2BC1 : +211-(-2V1)/(-0R1*1)

2KC2 +212-(+211-2113+2131) 2BC2 : +2V2-(+0R2*212)

2BC7 +0-(-2V7+0R7*217) 2BC22: +2122-(+0A22/(+1-0A22)

*2121)

2KC7 +216-(+2121+2122) 2BC6 +2V6•(+0R6*216)

2KC4 +213•(-2114-2118-2121)*

(-1) 2BC3 +2V3-(+0R3*2I3)

2KV3 +2N4=(-2V3+2Nl3) 2BC21: +2V21-(-2121)/(·1*Q*

- 83 -

0121/K/OTU)

2KV21: +2N7•(-2V21+2N4) 2KV6 : +2N8-(-2V6+2N7)

2KV32: +2V32-(+2N8) 2BC32: +2132-(+0W2*0C32*2V32)

2KC8 : +217-(+216-2132) 2KV7 +2V7-(+2N8)

OKV37: +0V37-(+0N9) OKC9 : +0137•(+0112-0126-0129

+0130)

OBC37: +OR37-(-0V37)/(-l*0137) 1BC34: +1V34-(+0X34)

1KV34: +1N13-(-1V34)*(·1) 0DC27: +0W1-(+10000)

1BC35: +1V35-(+0X35) 1KV35: +1N1-(-1V35)*(·1)

1KV2 +0-(-1V2+1N2) 1BC14: +1114•(+0A14/(+1-0A14)

*1113)

1KC3 : +1117-(+1113+1114) 1BC17: +1V17•(-1117)/(-1*Q*0117

/K/OT13)

1BC18: +1118-(+0A18/(+1-0A18)*

1117) 1KCS +114-(+1117+1118)

1BC4 : +1V4-(+0R4*1I4) 1KV4 +1N5-(-1V4)*(-1)

1KV17: +1N3-(·1V17-1N5)*(·1) lBC13: +1V13-(-1113)/(-l*Q*

OI13/K/OT13)

1KV13: +1N2-(-1V13-1N3)*(·1) 1KV31: +1V31•(+1Nl-1N2)

1BC31: +1131-(+0W1*0G31*1V31) 1KV1 +1V1-(+1Nl3-1N2)

1BC1 : +111-(-1Vl)/(-OR1*1) 1KC2 +112-(+111-1113+1131)

1BC2 : +1V2-(+0R2*112) 1BC7 +D-(-1V7+0R7*117)

1BC22: +1122-(+0A22/(+1-0A22)*

1121) 1KC7 +116-(+1121+1122)

1BC6 : +1V6-(+0R6*1I6) 1KC4 +113-(-1114-1118-1121) *(-1)

1BC3 : +1V3-(+0R3*1I3) 1KV3 +1N4-(-1V3+1N13)

1BC21: +1V21•(-1121)/(·l*Q*

OI21/K/OT13) 1KV21: +1N7-(-1V21+1N4)

1KV6 : +1N8-(-1V6+1N7) 1KV32: +1V32-(+1N8)·

1BC32: +1132-(+0Wl*OC32*1V32) 1KC8 : +117-(+116-1132)

1KV7 : +1V7-(+1N8) 1BC30: +0-(-1I30+0A30/(+l-OA30)

*1129)

1BC29: +D-(-1I29+1V29*Q*

0129/K/OT13) 1KV11: +0-(-1V11+1Nl1-1N12)

1BC26: +0•(-1I26+0A26/(+1·

0A26)*1I25) 1BC25: +0-(-1I25+1V2S*Q*OI25 /K/OT13)

2BC30: +D-(-2130+0A30/(+1-

- 84 -

0A30)*2129) 2BC29: +0-(-2129+2V29*Q*0129

/K/OT13)

2BC26: +0=(-2126+0A26/(+1-

0A26)*2125) 2BC25: +0-(-2125+2V25*Q*0125/K/OT13)

1KV29: +1N11=(-1V29+1N9) 2BC10: +2V10-(+0R10*2110)

2KC6 : +215=(-2122-2133)*(-1) 2BC33: +2V33-(-2133)/(-0W2*0C33*1)

1BC10: +1V10-(+0R10*1110) 1KV10: +1N10-(-1V10-1N11)*(-1)

1KV25: +1N12-(-1V25+1N10) ODC30: +2N12-(+1600)/(+1N12*1)

2KV8 +2V8-(+2N12) 2BC8 +218-(-2V8)/(-0R8*1)

1KV8 : +1V8-(+1N12) 1BC8 : +118-(-1V8)/(-0R8*1)

1KV9 :+1V9-(+1N10-1N12) 1BG9 : +119-(-1V9)/(-0R9*1)

1KC10: +1125-(-119-1110) 1KG12: +1111-(-118+119+1125+1126)

*(-1)

1BC11: +1V11-(+0R11*1111) 1KG11: +1129-(+1110-1111+1130)*(-1)

1KV12: +1V12=(+1N13-1N9) 1BC12: +1112=(-1V12)/(-0R12*1)

1KV37: +1V37=(+1N9) 1BC37: +1137-(-1V37)/(-0R37*1)

1KG9 : +1133-(+1112-1126-1129

-1!37)*(-1) 1BC33: +1V33-(-1133)/(-0W1*0C33*1)

1KV33: +1N6=(-1V33-1N9)*(-1) 1KV5 +1V5-(+1N13-1N6)

1KC6 : +115=(-1122-1133)*(-1) 1BG5 : +0R5-(-1V5)/(-1*115)

2BC5 : +2V5-(+0R5*215) 2KV5 : +2N6-(-2V5+2N13)

2KV33: +2N9=(-2V33+2N6) 2KV12: +2V12-(+2N13-2N9)

2BC12: +2112-(-2V12)/(-0R12*1) 2KV29: +2N11-(-2V29+2N9)

2KV10: +2N10-(-2V10-2N11)*(-1) 2KV9 : +2V9-(+2N10-2N12)

2BC9 : +219-(-2V9)/(-0R9*1) 2KG10: +2125-(-219-2110)

2KV25: +2V25-(+2N10-2N12) 2KV11: +2V11-(+2N11-2N12)

2BC11: +2111-(-2V11)/(-0R11*1) 2KC12: +2126-(-218+219+2111+2125)

*(-1)

2KV37: +2V37-(+2N9) 2BC37: +2137=(-2V37)/(-0R37*1)

2KC9 : +2129-(+2112-2126+2133-

2137) 2KC11: +2130-(+2110-2111+2129)*(-1)

OBC5 : +0V5=(+0R5*015) OKV5 : +0N6-(-0V5+0N13)

OKV14: +OV14=(+0N4-0N2) OKV18: +0V18-(+0N4-0N3)

OKV22: +0V22-(+0N6-0N4) OKV26: +0V26-(+0N9-0N10)

OKV30: +0V30=(+0N13-0N9 ODC21: +0E35-(+0.0)

OBC35: +0V35=(+0E35) OKV35: +0N1-(-0V35)*(-1)

OKV36: +0V36-(+0N1) ODC26: +0R36-(+10000)

- 85 -

OBC36: +0136-(-0V36)/(-0R36*1) OKCl : +0135-(-0136)

1KC13: +1134-(-111-113-115-

1112-1130) 1KV14: +1Vl4-(+1N4-1N3)

1KV18: +1Vl8-(+1N4-1N5) 1KV22: +1V22-(+1N6-1N7)

1KV26: +1V26=(+1N9-1Nl2) 1KV30: +1V30-(+1Nl3-1Nll)

1KV36: +1V36-(+1Nl) 1BC36: +1136-(-1V36)/(-0R36*1)

lKCl : +1135=(-1131-1136) 2KC13: +2134-(-211-213-215-2112-2130)

2KV14: +2Vl4=(+2N4-2N3) 2KV18: +2Vl8=(+2N4-2N5)

2KV22: +2V22-(+2N6-2N7) 2KV26: +2V26-(+2N9-2Nl2)

2KV30: +2V30-(+2Nl3-2Nll) 2KV36: +2V36-(+2Nl)

2BC36: +2136-(-2V36)/(-0R36*1) 2KC1 : +2135-(-2131-2136)

The results of the solution of the equations are listed below. The

values are represented by two numbers, the first number is the real

part and the second number is the imaginary part of the value.

ON 13

ov 1

ov 2

ON 4

01 3

ov 4

ON 6

01 5

ON 8

01 6

01 7

ov 8

ON 10

01 9

ov 10

ov 11

ON 9

01 12

ov 13

ov 14

ov 17

.15000E+02 0.

.11819E+02 0.

. 31813E+Ol 0.

.39000E+01 0.

.12979E-02 0.

ON 2

01 1

01 2

ov 3

ON 5

.23346E+Ol 0. 01 4

.85532E+Ol .11880E-03 OV 5

.10252E-03 0. ON 7

.34172E+Ol 0.

.10355E-03 0.

. 10355E-03 0.

.88024E+Ol 0.

.91024E+Ol 0.

.30000E-03 0.

-.14390E+Ol 0.

.17390E+Ol 0.

.11053E+02 0.

.10120E-03 0.

. 36381E+00 0.

. 71872E+00 0.

.48284E+00 0.

ov 6

ov 7

ON 12

01 8

ov 9

ON 11

01 10

01 11

ov 12

ON 3

01 13

01 14

01 17

.31813E+01 0.

.31942E-04 0 .

.31813E-04 0.

.11100E+02 0.

.23346E+Ol 0.

.12970E-02 0.

.64468E+Ol -.11880E-03

. .34825E+Ol 0.

.65264E-01 0.

.34172E+Ol 0 .

.88024E+Ol 0.

.40011E-02 0.

.30000E+00 0.

.10541E+02 0.

-.30001E-03 0.

.37000E-02 0.

.39467E+Ol 0.

.28175E+Ol 0 .

.12970E-04 0.

.12840E-04 0.

.12970E-02 0.

- 86 -

ov 18 . 10825E+01 0. OI 18 .12840E-02 0 .

ov 21 .41751E+00 0. 01 21 .10355E-03 0.

ov 22 . 46532E+01 .11880E-03 01 22 .10252E-03 0 .

ov 25 . 30000E+00 0. OI 25 .10983E-05 0 .

ov 26 .19509E+Ol 0. OI 26 .10873E-05 0.

ov 29 . 51195E+00 0. OI 29 .40000E-02 0 .

ov 30 . 39467E+Ol 0 .. OI 30 .39600E-02 0 .

ov 34 .15000E+02 0. OI 34 -.54936E-02 0.

ON 1 0. 0. ov 35 0. 0.

OI 35 0. 0. ov 36 0. 0.

OI 36 0. 0. ov 37 .11053E+02 0.

OI 37 .60109E-04 0. 1N 13 0. 0.

1N 2 .99996E+OO .63789E-02 lV 1 -.99996E+00 -.63789E-02

11 1 -.27026E-05 -.17240E-07 1V 2 .99996E+OO .63789E-02

11 2 .99996E-05 .63789E-07 1N 4 -.41838E+01 -.25901E-01

lV 3 .41838E+01 .25901E-01 11 3 .48921E-03 .30286E-05

1N 5 .99974E+00 .63775E-02 1V 4 .99974E+00 .. 63775E-02

li 4 .55541E-03 .35430E-05 1N 6 .46060E+02 -.15872E+00

1V 5 -.46060E+02 .15872E+OO 11 5 -.73244E-03 .25104£-05

1N 7 -.41673E+01 -.25773E-01 lN 8 -.51611E-04 .66146E-02

1V 6 -.41672E+Ol -.32387E-01 11 6 -.66146£-02 -.51408E-04

1V 7 -.51611£-04 .66146E-02 li 7 .40933E-08 .20251E-06

1N 12 .39998£+02 .36728E+00 1V 8 .39998E+02 .36728E+00

1I 8 .18181E-01 .16694E-03 1N 10 .41008E+02 .37654E+00

1V 9 .10092E+01 .92665E-02 11 9 .10092E-02 .92665E-05

1N 11 .46054E+02 .42288E+OO lV 10 -.50462E+01 -.46335E-01

11 10 -.10521E-02 -.96625E-05 1V 11 .60553E+01 .55602E-01

1111 .12884E-01 .11830E-03 1N 9 .46055E+02 .42298E+00

1V 12 -.46055E+02 - . 42289E+OO 11 12 -.11809E-02 -.10843E-04

1N 3 .99985E+00 .63782E-02 1V 13 .11068E-03 .70606E-06

li 13 .55541E-07 .35430E-09 1V 14 -.51836E+01 -.32279E-01

li 14 .54986E-05 .35076E-07 1V 17 .11068E-03 .70606E-06

11 17 .55541E-05 .35430E-07 1V 18 -.51835E+01 -.32278E-01

11 18 .54986E-03 .35076E-05 1V 21 -.16510E-01 -.12832E-03

11 21 -.66146E-04 -.51408E-06 1V 22 .50227E+02 -.13294E+OO

11 22 -.65485E-02 -.50894E-04 1V 25 .10092E+01 .92686E-02

11 25 .42882£-04 .39376E-06 1V 26 .60561£+01 .55705E-01

"87 -

11 26 .42453E-02 .38991E-04 1V 29 .90049E-03 .82705E-05

11 29 .13936E-03 .12796E-05 1V 30 -.46054E+02 -.42288E+00

11 30 .13796E-01 .12671E-03 1N 1 .10000E+01 0.

1V 31 .40692E-04 -.63789E-02 11 31 .12758E-04 .81383£-07

1V 32 -.51611E-04 .66146£-02 1I 32 -.66146E-02 -.51611£-04

1V 33 .53405E-02 -.58161E+OO 1I 33 .58161E-02 .53405E-04

1V 34 0. 0. 1I 34 ·.12370E-01 -.12139E-03

1V 35 .10000E+01 0. 1I 35 • .11276E-03 ·.81383E-07

1V 36 . 10000E+01 0. li 36 .10000E-03 0 .

1V 37 .46055E+02 .42289E+00 1I 37 .25045E-03 .22997£-05

OR 1 . 37000E+06 0. OR 2 .10000E+06 0 .

OR 3 .85522E+04 0. OR 4 .18000£+04 0.

OR 5 .62886£+05 -.11588E+01 OR 6 .63000E+03 0.

OR 7 .33000E+05 0. OR 8 .22000E+04 0.

OR 9 .10000E+04 0. OR 10 .47965E+04 0.

OR 11 .47000E+03 0. OR 12 .39000E+05 0.

OT 13 .30000E+03 0. OA 14 .99000E+00 0.

OA 18 .99000E+00 0. OA 22 .99000E+00 0.

OA 26 . 99000E+00 0. OA 30 .99000E+00 0 .

OE 34 .15000E+02 0. OE 35 0. 0.

OR 36 .10000E+05 0. OR 37 .18389E+06 0.

oc 31 .20000E-06 0. ow 1 0 . .10000E+05

oc 32 . 10000E-03 0. oc 33 .10000E-05 0.

ox 34 0. 0. ox 35 .10000E+01 0.

ow 2 0. -.10000E+05 2N 13 0. 0 .

2N 2 . 99996E+00 -.63789E-02 2V 1- -.99996E+00 .63789E-02

2! 1 ·.27026E-05 .17240E-07 . 2V 2 .99996E+00 -.63789E-02

2! 2 .99996E-05 -.63789£-07 2N 4 ·. 41838E+01 .25901E~Ol

2V 3 .41838E+01 -.25901E-01 2I 3 .48921E-03 -.30286E-05

2N 5 .99974E+00 -.63775E-02 2V 4 .99974E+00 -.63775E-02

2I 4 .55541E-03 -.35430E-05 2N 6 .46062E+02 .15691E+00

2V 5 -.46062E+02 -.15691E+00 2I 5 -.73247E-03 -.25086£-05

2N 7 • .41673E+Ol .25773E-01 2N 8 -.51660£-04 -.66147£-02

2V 6 - .41672E+01 .32387E-01 21 6 -.66146£-02 .51408£-04

2V 7 -.51660£-04 -.66147E-02 2I 7 .36813E-07 -.25145E-06

2N 12 .39998E+02 -. 36728E+OO 2V 8 .39998E+02 -.36728£+00

2I 8 .18181E-01 -.16694E-03 2N 10 .41009E+02 -.37836E+00

- 88 -

2V 9 .lOlllE+Ol - .11079E-Ol 2! 9 .10111E-02 -.11079E-04

2N 11 .46056E+02 - .42469E+00 2V 10 -.50461E+Ol .46334E-01

2! 10 -.10521E-02 .96625E-05 2V 11 .60573E+Ol -.57413E-01

2! 11 .12888E-01 -.12216E-03 2N 9 .46056E+02 -.42470E+00

2V 12 - .46056E+02 .42470E+00 2! 12 - .11809E-02 .10890E-04

2N 3 .99985E+00 -.63782E-02 2V 13 .11068E-03 -.70606E-06

2! 13 .55541E-07 -.35430E-09 2V 14 -.51836E+Ol .32279E-Ol

2! 14 .54986E-05 -.35076E-07 2V 17 .11068E-03 -.70606E-06

2! 17 .55541E-05 -.35430E-07 2V 18 -.51835E+01 .32278E-01

2! 18 .54986E-03 -.35076E-05 2V 21 -.16510E-Ol .12832E-03

2! 21 -.66146E-04 .51408E-06 2V 22 .50229E+02 .13113E+00

2! 22 ·.65485E-02 .50894E-04 2V 25 .10111E+Ol -.11079E-Ol

2! 25 .40905E-04 .14193E-05 2V 26 .60582E+Ol -.57421E-01

2! 26 .42411E-02 -.35128E-04 2V 29 .90049E-03 -.82705E-05

2I 29 .14350E-03 -.50756E-05 2V 30 -.46056E+02 .42469E+OO

2I 30 .13796E-01 -.12674E-03 2N 1 .10000E+Ol 0.

2V 31 .40692E-04 .63789E-02 2! 31 .12758E-04 -.81383E-07

2V 32 ·.51660E-04 -.66147E-02 2! 32 -.66147E-02 .51660E-04

2V 33 .53403E-02 .58160E+OO 2I 33 .58160E-02 -.53417E-04

2V 34 0. 0. 2! 34 -.12369E-01 .12137E-03

2V 35 .lOOOOE+Ol 0. 2! 35 -.11276E-03 .81383E-07

2V 36 .lOOOOE+Ol 0. 2! 36 .10000E-03 0.

2V 37 .46056E+02 -.42470E+00 2! 37 .25046E-03 -.23095E-05

7.2 Fault location in an amplifier

To demonstrate fault location we use the circuit shown in Fig. 7.3.

The parameters which can be faulty are:

R2• R3, R4, Rs, R6• R7, A10• A14·
The measurable quantities are the nodal voltages:

N2, N4, Ns, N6,

and the, source currents: I 1 , I 8 .

The matrix G is shown in Fig. 7.4. If we want to compute all the

parameters with the same relative accuracy and we assume that all the

variables can be measured with the same relative accuracy, the

sensitivities are all normalized to values 1 for parameters, voltages

and currents. This normalization does not affect the linear

dependence of the rows and columns.

- 89 -

@

Figure 7.3. circuit for fault location

N2 N4 Ns N6 Il Is

R2 -9.5E-3 6.9E-2 -6.2E-2 7.5E-2 -0.5 5.4E-2

R3 4.1E-l -3.0 2.7 -3.2 -21 -2.3

R4 -4.2E-l 3.0 -2.7 3.3 21 2.3

Rs 0 -1.2 0 -1.3 0 -1.0

R6 S.OE-3 7.2E-l 3.6E-l 7.7E-l -4.1E-l S.OE-1

R7 0 7.2E-2 0 8.2E-2 0 -7.5E-l

A10 1.1 -9.4 7.4 -10 -5.9 -7.3

A14 0 7.2 0 7.6 0 6.4

Figure 7.4. The sensitivity matrix

Because of the fact that there are eight parameters and six

measurable voltages and currents, at least two computations are to be

made to detect the faulty parameter (we assume that only one

parameter is faulty). So in each computation we need to incorporate

only four unknown parameters.

By searching for the best conditioned submatrix in G we find:

- parameters A1o• Al4• Ro7• Ro6·
-measurements: 1o1· No6· 1os• Nos·

For finding the parameters and measurements for the second

computation we first delete the rows in G associated with the

parameters:

- 90 -

A10• Al4• R07• R06·
For the second computation we find:

- parameters : a04 , a05 , a02 , R03
-measurements: r01 , N06 , N05 , los·

(note that the measurements are the same as in the first case).

The nominal values for the-parameters are:

Ro2- 10000 Ro6 - 460

Ro3 - 12000 Ro7 7500

Ro4- 320000 A10 ~o.99

Ros= 64000 A14 =0.99

In the first computation three parameters,

computed to be faulty, so we must conclude

R07 , A10 and A14 are

that the assumption that

R04 , R05 , Ro3 and R02 are correct is wrong. The second assumption

reveals RoJ as being the faulty component with a value of 10000

instead of 12000.

- 91 -

8. CONCLUSIONS

In this thesis a new approach for interactive design for electronic

circuits is presented. It is shown that the fault location problem

is a closely related problem, and large parts of the proposed

interactive design program can be used to solve this problem.

A number of observations can be made:

1. By treating design constraint equations in exactly the same way

as the equations describing the circuit, an efficient way of

determining element values in circuits is obtained.

2. By using the the same concept for the fault location problem,

an easy way is found to handle multiple faults in a circuit,

without excessive computation time.

3. It is valuable for a designer to have information about the

solvability of the set of equations describing the design

problem. With this information he is able to identify the

parts of the circuit being "overdefined", and in this way

having an indication how to change the formulation of the

design problem.

4. The computation time for solving the set of equations

describing the design problem is reduced by reordering the

equations in such a way that large parts of the equation set

can be solved by back substitution.

5. By using design constraint equations prescribing voltages and

currents in the circuit, the equation set falls apart into a

large number of small strong components, being advantageously

for the computation time and convergence of the Newton Raphson

method.

1 am grateful for the fruitful discussions with Professor J.A.G.

Jess, who also gave me the opportunity to write this thesis.

- 92 -

9. APPENDIX A

The syntax of an equation is presented in a BNF notation.

<equation>

<term>

<factor>

: := {<term> }+ "-" (<term> }+.

::- <sign> { ((<factor> [<power>]) I
<exp_ln> <composite_factor>)

<mult_div>)+.

::- <constant>

<variable>

<composite_factor>.

<composite_factor>: :-"(" (<sign> ((<variable>

<constant>

[<power>]

<mult_div>)+)+")".

<power> : :- "**" <sign> <constant>.

<sign> ::- "+" I

"-"

<mult_div> ::- "*" J

"/".

<exp_ln> ::- "exp"l

"ln".

Below this syntax is presented in a more visual way, which should

clarify the meaning of the various meta symbols.

- 93 -

equation

term :

composite_factor

'--------1 mul t _ di v ~+--------"'

factor :

.........,.--'-3-"'l>l constant 1----,-~

t----i~~~>~ variable 1-----1

~composite factor~

composite_factor

power

sign :

exp_ln :

mult_div :

-94

10. APPENDIX B

INP: The description and the design constraint equations are

read and checked for syntax errors. If there exist no

syntax errors, the incidence matrix is generated.

DEC: The maximal matching is computed, and the strong components

are determined.

SHO: With SHO it is possible to display the incidence matrix, or

parts of the incidence matrix. It is also possible to

obtain information about in which strong component a

variable or equation occurs.

RES: The command RES calls the routines, necessary to compute

the minimal essential set of a strong component.

FOR, GEN: FOR activates the formula manipulator. With GEN the

formulas are generated in a standard form.

FOR, EXP: With EXP the matching variables are written explicitly.

BER, SUF: BER activates the part of the program to solve the

equations. SUF converts the formulas to suffix notation,

and generates the derivatives of the equations.

BER, COM: With COM the equations are actually solved.

BER, PRI: PRI prints the results.

-95 -

11. APPENDIX C

The circuit and the design constraint equations are described in the

file circ/dat.

The file consists of six parts:

1. A circuit name consisting of two characters.

2. The reference node (>-1, <51).

3. Lines describing the topology of the circuit.

4. A line starting with a "f", indicating the end of the

description of the circuit.

5. Lines describing the design constraint equations.

6. A line starting with a "f", indication the end of the file.

Each line starting with a "#" is seen as comment.

In the topology part three kinds of lines are permitted:

1. Stringlength- 7.

The first two characters give the branch number i of the

element. (0 < i <100).

The third character indicates the type of the branch:

"r": resistor.

"d": diode.

"e": controlled voltage source.

"j": controlled current source. Character four and five give

the positive node p of the element. (0 < p < 51)

Character six and seven give the negative node q of the

element. (0 < q < 51)

2. Stringlength- 11. (dependent sources}.

The first seven characters describe an element of type "e" or

Character eight gives the type of the controlling quantity (

"v" or "i" for voltage or current).

Character nine and ten give the number p of the controlling

quantity (0 < p < 100}.

Character ten gives the the name of the parameter describing

-96 -

the controlled source.

3. Stringlength- 11. Transistor.

The first two characters give the branch number i of the

transistor. (0 < i <100).

The third character is a "t" for transistor.

Character four and five give the node number c of the collector

(0 < c <51).

Character six and seven give the node number e of the emitter

(0 < e <51).

Character eight and nine give the node number b of the base (0

< b <51).

Character ten indicates the type of the transistor ("p" for pnp

and "n" for npn).

Character eleven is a "h" or a "f". A "h" indicates a half

Ebers Moll model, containing two branches. A "f" indicates a

full Ebers Moll model, containing four branches.

The syntax of a design constraint equation is:

"DC• <number> "(" <variables incident with the design constraint

equation> ")-" <design constraint equation>.

1. <number> consists of two characters.

2. The variables in the list of incident variables are separated

by ",". The following variables may occur:

length

1

3

7

elements

t

vk, ik,

udu <x>

nk,

"/t"

description

temperature

Pk voltage, current,node

or parameter.

xe (vk, ik, nk}

sensitivity

9 "d" <x> "/d" <y> x E {vk, ik, nk)

y e {vk, ik, pk}

sensitivity

voltage

3. The design constraint equation has to obey the syntax describe

in appendix A:

- 97 -

12. APPENDIX D

Each variable name consists of four

<a><n><m><ii>

fields: variable name:

<a>: indicates the number of the AC system. If this number is

zero it may be skipped. (one digit).

<ii>: indicates the branch or node number to which the equation

or variable refers to. (two digits).

<n> <m>: For these two entries are a number of possibilities. They

are listed below. For columns (variables) we have the

following possibilities:

j

<n> <m>

n

v

i

<p>

n <j>

v <j>

i <j>

<j> v

<j> c

<j> b

d <j>

e <j>

f <j>

<J> p

description

voltage of node number ii

voltage across element ii

current through element ii

p is a variable indicating the parameter of

element ii

voltage of node ii in delta system J
voltage across element ii in delta system

J
current through element ii in delta system

transposed kirchhoff voltage law equation

of element ii

in adjoint system J.
transposed kirchhoff current law equation

of element ii in adjoint system J.
transposed branch constraint equation

of element ii in adjoint system j.

sensitivity in delta system j,the response

variable is a branch voltage

sensitivity in delta system j,the response

variable is a br.anch current

sensitivity in delta system j,the response

variable is a node voltage

sensitivity in adjoint system, exiting

- 98 -

entity is a parameter

<j> q sensitivity in adjoint system, exiting

entity is a voltage of a branch

<j> r sensitivity in adjoint system, exiting

entity is a current through a branch

For the rows (equations) are the following possibilities:

<n> <IIi>

k v

k c

b c

d c

v <j>

c <j>

b <j>

<j> n

<j> v

<j> i

d <j>

e <j>

f <j>

<j> p

<j> q

ii

description

kirchhoff voltage law equation of element

kirchhoff current law equation of node ii

branch constraint equation of element ii

design constraint equation of element ii

kirchhoff voltage law equation in

deltasystem j

kirchhoff current law equation of node ii

in delta system j

branch constraint equation of element ii in

delta system j

transposed voltage of node ii in adjoint

system j

transposed voltage of element ii in adjoint

system j

transposed current through element ii in

adjoint system j

row with sensitivities in delta system j,

responding variable is the voltage of

element ii

row with sensitivities in delta system j,

responding variable is the current through

element ii

row with sensitivities in delta system j,

responding variable is the voltage of node

i.i

row with sensitivities in adjoint system j,

exiting variable is parameter ii

row with sensitivities in adjoint system j,

<j> r

- 99 -

exiting variable is the voltage of element

ii

row with sensitivities in adjoint system j,

exiting variable is the current through

element ii

- 100 -

13. REFERENCES

Bedrosian, S.D. and J.H, Lee
GRAPH THEORETIC ASPECTS O~ANALOG FAULT DIAGNOSIS.
In: Proc. 17th Annual Allerton Conf. on Communication, Control,
and Computing, Monticello, Ill., 10-12 Oct, 1979. Co-chairmen:
J.B. Cruz, Jr. and F,P. Preparata,
Department of Electrical Engineering and The Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, 1979.
P. 164-171.

Biernacki, R.M. and J.W. Bandler
FAULT LOCATION OF ANALOG CIRCUITS.
In: Proc. 13th IEEE Int. Symp. on Circuits and Systems, Houston,
Texas, 28-30 April 1980.
New York: IEEE, 1980, P. 1078-1081,

Cheun~, L.K. and E.S. Kuh
THE BORDERED TRIANGULAR MATRIX AND MINIMUM ESSENTIAL SETS OF
A DIGRAPH.
IEEE Trans, Circuits & Syst., Vol. CAS-21(1974), p. 633-639.

de Kleer, J, and G,J, Sussman
PROPAGATION OF CONSTRAINTS APPLIED TO CIRCUIT SYNTHESIS.
Int. J, Circuit Theory & Appl., Vol, 8(1980), p; 127-144.

Desoer, C,H. and E.S. Kuh
BASIC CIRCUIT THEORY. -
New York: McGraw-Hill, 1969.

Donald, J, and J, Elwin, R, Hager, P, Salamon
~EXAMPLE FOR THE MINIMUM-rFiEDBACK VERTEX SET PROBLEM,
IEEE Trans, Circuits & Syst,, Vol. CAS-32(1985), p, 491-493,

Duhamel, P. and J,-c. Rault
AUTOMATIC TEST GENERATION TECHNIQUES FOR ANALOG CIRCUITS AND
SYSTEMS: A review,
IEEE Trans. Circuits & Syst,, Vol. CAS-26(1979), p. 411-440,

Dulmage, A,L, and N.S. Mendelsohn
COVERINGS ON BIPARTITE GRAPHS,
Can, J. Math,, Vol, 10(1958), p. 517-534,

Dulmage, A,L. and N,S, Mendelsohn
TWO ALGORITHMS FOR BIPARTITE GRAPHS,
J, Soc, Ind. & Appl. Math., Vol. 11(1963), p. 183-194.

Hachtel, G,D, and R.K. Brayton, F.G. Gustavson
THE SPARSE TABLEAU APPROACH TO NETWORK ANALYSIS AND DESIGN,
IEEE Trans, Circuit Theory, Vol. CT-18(1971), p. 101-113.

Harary, F.
~THEORY.
Reading, Mass.: Addison-Wesley, 1969.
Addison-Wesley Series in Mathematics

- 101 -

Hildebrand, F.B.
INTRODUCTION TO NUMERICAL ANALYSIS.
New York: McGraw-Hill, 1956,
International Series in Pure and Applied Mathematics

HoJ?froft, J. E. and R.M. Karp

AN nS/2 ALGORITHM FOR MAXIMUM MATCHINGS IN BIPARTITE GRAPHS.
SIAM J. Comput,, Vol. 2(1973), p. 225-231,

Hostetter, G.H.
FUNDAMENTALS OF NETWORK ANALYSIS.
New York: Harper & Row, 1980,

Jennings, A.
MATRIX COMPUTATION FOR ENGINEERS AND SCIENTISTS.
London: Wiley, 1977.

Johnson, D.M. and A,L, Dulmaae, N.S. Mendelsohn
CONNECTIVITY AND REDUCEBILITY OF GRAPHS.
Can, J. Math,, Vol, 14(1962), p. 529-539.

Kantorovich, L,V, and G,P, Akilov
NEW!ON1S METHOD. ---
A chapter in: Vainber&, M.M., VARIATIONAL METHODS FOR THE
STUDY OF NONLINEAR OPERATORS, Translated from Russian edition
(Moscow, 1956) and supplemented by A, Feinstein,
San Francisco: Holden-Day, 1964.
Holden-Day Series in Mathematical Physics, P. 258-298,

Karp, R.M,
REDUCIBILITY AMONG COMBINATORIAL PROBLEMS,
In: Complexity of Computer Computations, Proc. Symp.,
Yorktown Heights, N.Y., 20-22 March 1972, Ed. by R.E. Miller et al,
The IBM Research Symposia Series.
New York: Plenum, 1972, P. 85-103.

Kevorkian, A,K.
ON BORDERED TRIANGULAR OR LOWER N FORMS OF AN IRREDUCIBLE MATRIX.
IEEE Trans. Circuits & Syst., Vol, CAS-23(1976), p. 621-624.

Kozemchak, E.B. and M.A. Murray-Lasso
COMPUTER-AIDED CIRCUIT DESIGN BY SINGULAR IMBEDDING,
Bell Syst. Tech, J,, Vol. 48(1969), p. 275-315,

Lee, J.H. and S.D. Bedrosian
FAULT ISOLATION ALGORITHM FOR ANALOG ELECTRONIC SYSTEMS USING
THE FUZZY CONCEPT,
IEEE Trans, Circuits & Syst., Vol. CAS-26(1979), p. 518-522.

Lin, P.M. and Y.S. Elcherif
ii.NALOGUE CIRCUITS FAULT DICTIONARY - NEW APPROACHES AND
IMPLEMENTATION,
Int. J, Circuit Theory & Appl,, Vol. 13(1985), p, 149-172,

102-

Liu, Ruey-Wen and V, Visvanathan
SEQUENTIALLY LINEAR FAULT DIAGNOSIS. Part J: Theory.
IEEE Trans. Circuits & Syst., Vol. CAS-26(1979), p. 490-495,

McKeeman, W,M, and J,J, Horni~, D.B. Wortman
A COMPILER GENERATOR,
Englewood Cliffs, N.J.: Prentice-Hall, 1970.
Prentice-Hall Series in Automatic Computation

Navid, N. and A.N. Willson, Jr.
AT'iJEORY AND AN ALGORITHM FOR ANALOG CIRCUIT FAULT DIAGNOSIS.
IEEE Trans. Circuits & Syst,, Vol, CAS-26(1979), p. 440-457,

Nordholt, E.B.
THE DESIGN OF HIGH-PERFORMANCE NEGATIVE-FEEDBACK AMPLIFIERS.
Amsterdam: Elsevier, 1983,
Studies in Electrical and Electronic Engineering, Vol. 7.
Revised and reviewed version of the Ph.D. Thesis, Delft
University of Technology, 1980,

Saeks, R. and S.R. Liberty (eds,)
RATIONAL FAULT ANALYSIS. Proc, Symp,, Texas Tech University,
Lubbock, Texas, 19-20 Aug. 1974.
New York: Marcel Dekker, 1977,
Electrical Engineering and Electronics, Vol. 1,

Salama, A.E. and J,A. Starzyk, J,W, Bandler
A UNIFIED DECOMPOSITION APPROACH FOR FAULT LOCATION IN LARGE
ANALOG CIRCUITS.
IEEE Trans, Circuits & Syst,, Vol. CAS-31(1984), p. 609-622,

Smith, Jr., G.W. and R.B, Walford
T1Ufj[DENTIFICATION OF A MINIMAL FEEDBACK VERTEX SET OF A
DIRECTED GRAPH.
IEEE Trans. Circuits & Syst., Vol. CAS-22(1975), p. 9-15,

Sussman, G.J, and R,M, Stallman
HEURISTIC TECHNIQUES IN COMPUTER-AIDED CIRCUIT ANALYSIS.
IEEE Trans, Circuits & Syst,, Vol. CAS-22(1975), p. 857-865,

Taub, H, and D. Schillin~
DIGITAL INTEGRATED ELECTRONICS,
New York: McGraw-Bill, 1977.

Tarjan, R.
~FIRST SEARCH AND LINEAR GRAPH ALGORITHMS.
SIAM J, Comput,, Vol, I (1972), p. 146-160,

Trick, T,N, and W, Mayeda, A.A. ~
CALCULATION OF PARAMETER VALUES FROM NODE VOLTAGE MEASUREMENTS.
IEEE Trans, Circuits & Syst,, Vol, CAS-26(1979), p. 466-474,

- 103 -

Trouborst, P.M. and J.A.G. Jess
THE TRANSFORMATION TO A LO~ORDERED TRIANGULAR FORM WITH
THE APPLICATION OF ELIMINATION STEPS.
In: Proc, 12th Int. Symp. on Circuits and Systems, Tokyo,
17-19 July 1979.
New York: IEEE, 1979. P. 108-111,

Trouborst, P.M.
DYNAMIC SPARSE MATRIX CODE AS AN AUTOMATIC APPROACH TO
MACROMODELING.
Ph.D. Thesis, Eindhoven University of Technology, 1981.

- 104 -

- 105 -

Een interactief ontwerp en fouten localisatie hulpmiddel voor

electronische schakelingen

Het onderzoek bestaat uit bet realiseren van een programma pakket,

waarmee bet mogelijk is om interactief een analoge niet lineaire

electronische schakeling met een gegeven topologie, te analiseren en

te ontwerpen. Hierbij worden de eisen die de ontwerper aan bet

systeem stelt op gelijke wijze behandeld als de vergelijkingen die

bet circuit beschrijven, waardoor er een set vergelijkingen ontstaat

die geanaliseerd en opgelost moet worden. Hierbij wordt gebruik

gemaakt van incidentie matrices en grafen, die afgeleid zijn van de

vergelijkingen. In deze grafen worden "matchings" en "sterke

componenten" bepaald. Hatchings geven een indicatie over de

oplosbaarheid van het stelsel vergeljkingen, en sterke componenten

geven een leidraad voor de volgorde waarin de vergelijkingen opgelost

moeten worden. Naast de bovengenoemde technieken worden er tevens

formule manipulatie technieken en methoden voor het oplossen van een

stelsel niet lineaire vergelijkingen (Newton Raphson) gebruikt.

Naast bet gebruik als ontwerp tool, kan het systeem tevens gebruikt

worden als fouten localisatie hulpmiddel. Beide problemen zijn

namelijk conceptueel gelijk aan elkaar:

Het ontwerp probleem kan omschreven worden als:

Gegeven een aantal ontwerpeisen, bereken (alle) componentwaarden in

de voorgestelde schakeling.

Het fouten localisatie probleem kan omschreven worden als:

Gegeven een aantal gemeten responsies van de schakeling, bereken

(alle) componentwaarden van de te testen schakeling.

Naast het oplossen van de vergelijkingen behorende bij de hoven

omschreven problemen, kan bet beschreven programma pakket ook een set

adequate metingen berekenen, waarmee de schakeling getest kan worden.

Hierbij wordt rekening gehouden met gevoeligheden van componenten ten

opzichte van metingen.

- 106 -

- 107 -

Curriculum vitae Ir. J.F.M. Theeuwen.

Frans Theeuwen was born in Geleen, The Netherlands, in 1954.

He received the M.Sc degree in electrical engineering in

1979 from the Eindhoven University of Technology, The

Netherlands. He is currently working at the Eindhoven

University of Technology in the computer-aided design group.

His main interests are in functional design and fault

location in electronic circuits, automatic layout generation

and automatic design of logic circuits.

Stellingen

1. Een van de vaak onterecht aangehaa1de oorzaken van een niet

goed functionerende geautomatiseerde administratie is: "De

computer doet het niet".

2. De scheiding tussen software en hardware onderhoudstechnici

voor computer systemen, wordt steeds inadequater.

3. Lettend op de (neven}effecten van bet 1oonbe1eid voor

ambtenaren, en bet UHD beleid, zou men moeten conc1uderen dat

de regering niet geinteresseerd is een goed universitair

onderzoek en onderwijs.

4. Het gebruik van PLA's in IC ontwerpen wordt hoofdzake1ijk

veroorzaakt door een gebrek aan software om "random logic" op

een "optimale manier" te implementeren.

5. Het zou een zegen voor het onderwijs in de informatica zijn als

de programmeertaal BASIC, veel gebruikt in de home computer

sfeer, in populariteit zou inboeten ten voordele van een

krachtigere en leerzamere taal zoals bijvoorbeeld Pascal.

6. De nieuwe ontwikkelingen op bet

digitale schakelingen (signature

gebied van

zullen binnen enkele jaren veel

analysis,

test- en

overbodig maken.

het testen van

build in test},

meetapparatuur

7. Het invoeren van arbeidstijdverkorting he eft voor veel

werknemers de consequentie dat hun wer~zaamheden in minder

tijd gedaan moeten worden, wat vaak resulteert in onbetaald

overwerk.

8. Lettend op het aantal componenten van moderne mini-computers,

moet men concluderen dat bedrijven veel geld verdienen aan

onderhoudscontracten, die nog steeds 7 tot 15% per jaar van de

nieuwprijs bedragen.

