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ABSTRACT 

In this thesis a method for designing electrical nonlinear circuits, 

with a given topology is presented. The designer has to determine 

' the topology of an electrical circuit, and he has to define the type 

of the elements in the circuit (a circuit element can for instance be 

a resistor, a transistor or a capacitor). Further he has to impose a 

number of constraints on the circuit. These constraints can prescribe 

values of parameters, but also voltages on nodes, currents through 

branches, impedances, gains and so on. The equations containing these 

constraints will be called "design constraint equations". The program 

is not only capable to handle biasing conditions of the circuit (DC 

behaviour), but also "small signal" behaviour, meaning the response 

of the circuit on small disturbances in the DC biasing point, and AC 

behaviour. 

In the approach used, the design constraint equations are treated 

exactly in the same way as the equations describing the circuit 

structure, that is the Kirchhoff voltage and current law equations 

and the equations describing the behaviour of the elements (the 

branch constraint equations). In this way the program constructs a 

set of simultaneous nonlinear equations. Because it is possible that 

the designer imposed a number of constraints on the circuit, yielding 

an unsolvable system of equations, checks for solvability on the set 

of equations are necessary. If the designer formulated an unsolvable 

set of equations, these checks will reveal the source of the 

difficulties. 

Generally the solution of a set of nonlinear equations is found by 

using an iterative method. One of the most popular methods is the 

Newton Raphson method. This method is usually applied to the whole 

set of equations. This however is not always necessary, especially 

not in sparse equation sets. By reordering the equations, large parts 

of the equation set can be solved by a non iterative method, saving a 

lot of computation time. 

In this thesis we also propose a new "simulation after test" method. 

The basic elements of the method are already implemented in the 
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proposed interactive design system. This is true because the design 

method used, tackles conceptually the same problem as the fault 

location problem. 

The design problem can be described as: 

Given a number of design constraints, compute (all) the component 

values in the proposed circuit. 

The fault location problem can be described as: 

Given a number of measured responses of a circuit, compute (all) the 

component values of the circuit under test. 

In addition to solving the mathematical equations associated with 

these two problems, also the problem to identify the most appropriate 

circuit entities to be measured is addressed in this thesis. We will 

present a constructive method to find a set of adequate 

measurements, taking sensitivities of components with respect to 

measurements into account. 
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1. Introduction 

In electronic industry the computer has become an essential tool 

during the design, fabrication and testing of electronic circuits. 

Especially in the design of (very) large scale integrated ((V)LSI) 

circuits the computer has obtained a crucial role. In the last ten 

years many programs to verify steps during the design of a digital 

circuit have been developed. Examples are logic simulators, design 

rule checkers and circuit extractors. However also more powerful 

program packages have emerged. These packages help the designer 

during the creative steps in the development of an integrated 

circuit, or even take over these steps. Programs like these are 

optimisation programs for logic functions, floorplan programs, 

routers and cell generators. For certain classes of digital circuits 

there even exist totally automatic layout generators, often called 

"silicon compilers". 

However in the analog field, the situation is different. There are a 

number of well known analog circuit simulators, such as for instance 

SPICE. With SPICE it is possible to simulate circuits containing 

about one hundred transistors, on transistor level. This program is 

widely used by circuit designers. SPICE has the capability to perform 

some parameter optimisation, but there are only a very few analog 

automatic synthesis tools available. For some special analog circuit 

families, there exist automatic circuit generation methods. Automatic 

filter design is an example of these. There are also programs which 

help the designer in developing special circuits like operational 

amplifiers [Nordholt]. These programs however can only be seen as a 

library of precompiled solutions for a large number of special cases. 

In the literature some more general approaches to computer aided 

analog circuit design are known [Kozemchak], [Sussman], [de Kleer}. 

Kozemchak et. al. use a method of voltage forcing elements and 

current forcing elements. With these elements the user is able to 

define voltages and currents in the circuit. The program then 

computes values of elements in the circuit, in such a way that the 

imposed voltages and currents, are realized by the circuit. 
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Another approach is used by Sussman and Stallman. Here a concept of 

artificial intelligence is used. For each electrical rule, such as 

the Kirchhoff voltage law, and the Kirchhoff current law, a daemon 

can be created. Each time there are enough data for a daemon to 

compute an unknown variable in the circuit, this daemon is triggered. 

If no daemon can be triggered any more, and the circuit has not been 

solved yet, the designer has to add more information (impose 

restrictions on the circuit) or a symbolic variable is introduced, 

which is treated by the program as a known value. During the further 

analysis there possibly will come up an equation from which this 

symbolic variable can be computed. A program language like LISP is 

especially suited for an implementation of such a program. 

The above mentioned methods have their strong and their weak points. 

In the approach used by Sussman et. al. it is doubtful whether this 

approach can solve sets of simultaneous nonlinear equations. A strong 

point in the method used by Kozemchak is, that the method is able to 

handle unequality constraints, like for instance a resistor whose 

value has to be between 1000 0 and 2000 0. This however applies only 

for linear circuits. 

In this thesis we present a method for designing electrical nonlinear 

circuits, with a given topology. The designer has to determine the 

topology of an electrical circuit, and he has to define the type of 

the elements in the circuit (a circuit element can for instance be a 

resistor, a transistor or a capacitor). Further he has to impose a 

number of constraints on the circuit. These constraints can prescribe 

values of parameters, but also voltages on nodes, currents through 

branches, impedances, gains and so on. The equations containing these 

constraints will be called "design constraint equations". The program 

is not only capable to handle biasing conditions of the circuit (DC 

behaviour), but also "small signal" behaviour, meaning the response 

of the circuit on small disturbances in the DC biasing point, and AC 

behaviour. 

In the approach used, the design constraint equations are treated 

exactly in the same way as the equations describing the circuit 

s tTuc cure, that is the Kirchhoff voltage and current law equations 
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and the equations describing the behaviour of the elements (the 

branch constraint equations). In this way the program constructs a 

set of simultaneous nonlinear equations. Because it is possible that 

the designer imposed a number of constraints on the circuit, yielding 

an unsolvable system of equations, checks for solvability on the set 

of equations are necessary. If the designer formulated an unsolvable 

set of equations, these checks will reveal the source of the 

difficulties. 

Mostly the solution of a set of nonlinear equations is found by using 

an iterative method. One of the most popular methods is the Newton 

Raphson method. This method is usually applied to the whole set of 

equations. This however is not always necessary, especially not in 

sparse equation sets. By reordering the equations, large parts of the 

equation set can be solved by a non iterative method, saving a lot of 

computation time. 

One very important difference between our approach 

optimisation approach used in SPICE should be made clear. 

and the 

In both 

programs iteration is used. If however parameter optimisation in 

SPICE is used, we can distinguish at least two levels of iterations 

nested into each other. The highest level is the iteration level 

which after each circuit evaluation generates a new, and hopefully 

better guess for the parameter to be optimised. The second iteration 

loop is the Newton Raphson iteration, trying to find a solution for a 

part of the circuit with the new estimated parameters. In our 

approach, there is only one iteration level. This is the iteration 

loop trying to find a solution for the system of nonlinear equations. 

If this solution is found, the computed circuit behaves in the way 

the designer has specified, and all the unknown parameters are 

determined. 

Another crucial area in analog circuit design is testing of the 

circuit. Here we have to distinguish between two main testing areas: 

1. Go-Nogo test. 

This kind of testing is essential during the production process 

of integrated circuits. After an integrated circuit has been 

produced, it has to be determined whether it works correctly or 
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not. For analog circuits this problem is mostly not too 

difficult. For filters and amplifiers for instance it is easy 

to check whether the transfer characteristics of the circuits 

are correct. 

2. Another much more difficult kind of testing is "fault 

location". Now one tries to find out which elements in a 

circuit are correct and which elements are faulty. This problem 

is equivalent with determining all the parameter values in a 

circuit from a number of measurements. 

This kind of testing is important during the development of an 

integrated circuit. If a circuit doesn't work well, a designer 

wants to know which parameters in the circuit have wrong 

values. Also in the maintenance field this kind of testing is 

crucial. 

Because of the ever increasing complexity of integrated 

circuits, the task of fault location becomes very difficult. 

This because of the fact that the "accessibility" of a large 

integrated circuit is very bad. The number of elements in the 

circuit is large and the number of points where measurements 

can be performed is very small.. 

The approaches used in fault location can be divided in two 

main groups: 

1. Simulation before test. 

In this method all the possible faulty circuits are 

simulated, and the results of these simulations are 

grouped in one or another way, constructing a so called 

"fault dictionary" [Lin]. If in the field, a faulty 

circuit is encountered its responses are compared with 

the results stored in the dictionary, this way trying to 

find the faulty element. 

The size of the dictionary and the simulation time will 

be in the order of O(nm), where n equals the number of 

elements in the circuit, and m is equal to the number of 

elements which are allowed to be faulty in one circuit 
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simultaneously. Mostly the assumption is made that only 

one element is faulty, thuswise reducing the size of the 

dictionary. 

2. Simulation after test. 

In simulation after test we try to 

elements in the circuit. This is 

compute all the 

done by using the 

measurements made on the faulty circuit [Biernacki] 

[Bedrosian) [Salama] [Liu) [Duhamel] [Trick] [Lee] 

[Saeks]. Also now the assumption that only one element is 

faulty is often made. By simulation after test the 

required on line computation power is larger than in the 

"dictionary method". 

In this thesis we propose a new "simulation after test" method. 

The basic elements of the method are already implemented in the 

proposed interactive design system. This is true because the 

design method used tackles conceptually the same problem as the 

fault location method. 

The design problem can be described as: 

Given a number of design constraints, compute (all) the 

component values in the proposed circuit. 

The fault location problem can be described as: 

Given a number of measured responses of a circuit, compute 

(all) the component values of the circuit under test. 

In addition to solving the mathematical equations associated 

with these two problems, also the problem to identify the most 

appropriate circuit entities to be measured is addressed in 

this thesis. We will present a constructive method to find a 

set of adequate measurements, taking sensitivities of 

components with respect to measurements into account. 
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2. The formulation of the design problem 

The formulation of a design problem requires the description of the 

associated circuit structure and the description of the design 

objectives. This design problem has to be stored in the program. We 

will call this the "internal design problem representation". On one 

hand it must be possible to generate this internal design problem 

representation from a description in terms of an input language used 

by the designer to specify the circuit and the design problem. On the 

other hand the internal design problem representation must be such 

that it is easy for the program to deal with it. The description of 

the network structure consists of the Kirchhoff voltage law 

equations, the Kirchhoff current law equations and the the branch 

constraint equations. These will constitute a "sparse tableau" 

[Hachtel]. 

In this chapter 

describe the 

we will define 

circuit. It will 

all 

be 

the equations necessary to 

done for the DC behaviour, the 

behaviour of the circuit linearised around a certain DC operation 

point (called the small signal behaviour) and for the behaviour of 

the circuit if it is excited by a sinusoidal source at a given 

frequency, called the AC behaviour. 

2 .1 The DC behaviour 

In the sequel we will use the term "circuit variable" and "circuit 

parameter" (or simply "variable" and "parameter"). By way of 

definition they will be assigned the following meaning: 

1. A parameter is any entity characterising a circuit element such 

as resistances, gains or transimpedances. 

2. A variable is any voltage or current in the circuit as well as 

any partial derivative of a voltage or current with respect to 

a parameter or variable. Also in case some transposed small 

signal system (the so called "adjoint system"; a more formal 

definition of this term will be given later) is included, the 

response entities of this system are considered as variables. 

The parameters and variables may be "known" or "unknown". 
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The topology of a circuit can be represented by a directed graph. 

Each element in the circuit is represented by a branch. This does 

not mean that no multi port elements can be incorporated in the 

circuit. There is a possibility to define controlled voltage or 

current sources. The controlling variables can be voltages or 

currents. Multi terminal elements such as transistors can be modeled 

with a number of two terminal elements. For a bipolar transistor for 

instance the Ebers Moll model [Taub) can be used. Each node in the 

circuit. For the graph corresponds with a node in the electrical 

De-description of the circuit with k nodes and l two terminal 

elements we can distinguish three types of variables: 

1. k node voltages represented by the vector 

n- (nl·····nk)t 

2. l branch currents represented by the vector 

! - (il·····il)t 

3. 1 branch voltages represented by the vector 

y- (vl, ... ,vl)t 

Further we define 2- (p1 , ... ,p1)t as the vector of parameters, and 

~- (b1 , ... ,b1)t as the vector of excitations, whose meaning will be 

explained in the next chapters. Most entries of this vector~ will be 

equal to zero. For each element in the circuit we can define a 

Kirchoff voltage law equation 

where x and y denote the nodes connected with the element, 

and a branch constraint 

(2.1) 

(2.2) 

A branch constraint equation is the equation describing the behaviour 

of the element and is mostly a relation between the current i through 

the element, the voltage v across the element and one parameter p 

describing the element. That each element is described by only one 

parameter is not essential at all. It is possible to introduce 

elements described by more than one parameter, this however is not 

done in this implementation, resulting in an equal number of elements 
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and parameters. For each node in the circuit we can formulate the 

Kirchhoff current law equation: 

E i·- 0 (2.3) 
J J 

Where J enumerates all the branches incident with node n. The total 

number of unknowns is 

1 parameters 

k-1 node voltages 

1 branch voltages 

1 branch currents 

+ 
total : 31 + k - 1 unknowns. 

The number of equations is : 

1 Kirchoff voltage law equations. 

1 branch constraint equations. 

k-1 Kirchoff current law equations. 

----- + 

total 21 + k-1 equations. 

To obtain a solvable set of equations·we need 

31 + k-1 - (21 + k-1) - 1 

design constraint equations, which can be functions of~. !. y and 2· 

If we define~- (~. !. y)t, the system of all Kirchoff voltage law 

equations, Kirchoff current law equations and the branch constraint 

equations can be described with: 

f(~. p_, ~) - Q (2.4) 

~being the vector of excitations. F is called the "tableau 

operator". An example circuit is shown in figure (2.1) 

The tableau operator f, lineari:;:ed around the operation point of the 

circuit, can be viewed as the product of the tableau matrix with the 

vector ~ of unknowns added to the vector ~· 
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Figure 2.1. example circuit 

* + b- 0 

t 

tableau matrix 

For the example in figure 2.1 ! looks as follows: 

VNVNVIII 
1 1 2 2 3 3 2 1 

KC 1 1 1 v 0 
1 

KC 2 1-1 N 0 
1 

:SG 3 1-R v 0 
3 2 

KV 3 1-1 * N + 0 - 0 
2 

KV2 1-1-1 v 0 
3 

BC 2 1 -R I 0 
2 3 

KVl -1 1 I 0 
2 

BG 1 1 I -E 
1 1 

KV: Kirchhoff voltage law equation. 

KC: Kirchhoff current law equation. 

BC: Branch constraint equation. 

2.2 Small signal specification 

The small signal behaviour of the circuit describes the response of 

the circuit to a "small" excitation. "Small" means that the circuit 

can be substituted by a linear circuit, obtained by linearisation 

around the DC bias point. The excitation can be a small disturbance 
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of a voltage, a current or parameter. The responding variables are 

elements of ~· If a small signal specification is used, it is 

possible to compute gains or sensitivities in the circuit. 

To obtain the equations describing the small signal behaviour of the 

circuit we expand (2.4) into a Taylor series, around the point (~0 , 

Eo , £o ), defining the DC biasing point of the circuit. 

(2.5) 

with 6b the vector of excitations of the small signal systems in case 

of exciting voltages or currents. 

These equations can be catenated to (2.4). The vectors 8~ and 8£ 

contain new variables, the small signal variables. The meaning of 6£ 

will become clear in the next chapters. For each exciting quantity, 

we now will discuss the way it is modelled and described. 

0.1 Exciting voltage 

If a designer is interested in the gain of an amplifier, he wants to 

add a small perturbation to the input voltage source of the amplifier 

to compute the response of various voltages and currents in the 

circuit. Suppose vj is the excitation voltage. We can model this as 

in Fig.2.2. 

0 
® 

Figure 2.2. exciting voltage 

In series with the element j we insert an exciting voltage source. By 

doing so the Kirchoff current law equations and the branch constraint 

equations will not change. The only equation which changes is the 

Kirchoff voltage law equations of branch j 

This can be incorporated in the description by making bj equal to 

ej. (All other elements of~ are zero). Because no parameters are 
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exciting the system ~2 - 0 holds. 

Also 

K(~,2o·~) - Q holds because the circuit is in its DC biasing point. 

So in this case (2.5) will yield: 

(2.7) 

Notice that in the second term of (2.7) only the partial derivative 

of the Kirchoff voltage law equations of element "j" will result in a 

non zero value. 

Assume the term av03 
avol 

is used in a design constraint equation. In other words, one design 

objective of the network in fig 2.1. concerns the small signal 

behaviour. Combining the DC and small signal equations into one 

equation system yields (for the sample circuit of fig. 2.1) after 

some reordering the tableau matrix below. 



Cl 1 

KC 1 

BC 2 

KV 2 

KV 3 

BC 3 

KC 2 

Bl 3 

Cl 2 

Bl 2 

Vl 2 

Vl 1 

Bl 1 

Vl 3 

KVl 

BC 1 

KV: 

KC; 

BC: 

Vi: 

- 14 • 

V N VlNlVlNlVlilili V N V I I Il 
1 1 3 2 1 1 2 2 3 3 3 2 2 2 1 1 

1 1 

1 1 

1-R 
2 

1 -1-1 

-1 1 

-R 1 
3 

1 -1 

1 ·R 
3 

-1 1 

1-R 
2 

1 -1-1 

-1 1 

1 

-1 1 

-1 1 

1 

Kirchhoff voltage law equation. 

Kirchhoff current law equation. 

Branch constraint equation. 

Kirchhoff voltage law equation of "delta system" 

definition of the "delta system" see chapter 2.6). 

Ci: Kirchhoff current law equation of "delta system" 1. 

Bi: Branch constraint equation of "delta system" 1. 

2.4 Exciting current 

i. (for the 

If ij is the exciting current we model this as in Fig. 2.3. In 

parallel with element j, we insert a current source. This does not 

affect the Kirchoff voltage law equation and the branch constraint 

equations. Only the Kirchoff current law equations of node p and 
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® ® 

Figure 2.3. exciting current 

node q will change. 

node p 

node q 

l:ip + j j - 0 
p 

l:i - j . - 0 q q J 

Again we will make element bj equal to jj , and ~~will be zero, so 

again we obtain 

§£j *Ax + Stl * ~b - 0 
~ ~·~O·~ - - ~·~·~ - -

(2.8) 

Only the partial derivatives of the Kirchoff current law equations of 

node p and node q will result in a nonzero value in the second term 

of equation 2. 8. 

2.5 Exciting parameters 

If a designer wants to know how the circuit reacts on changes of the 

value of a parameter, for instance a resistor value, or the 

temperature, this can be modelled by an exciting parameter. If Pj 
is the exciting parameter of branch j, we make the J-th element of ~ 

equal to the exciting value. 

So ~~ r Q, and ~~- Q thus (2.5) will result in 

(2.9) 
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Parameter Pj appears in branch constraint equation j, so the partial 

derivative of this equation will yield a nonzero value. For instance 

a 
~(v - i * R) - -i 

or 

~T(i-10 ( exp( qvj(kT)-l))-I0 (qvj(kT2))*exp(qv/(kT)) 

So in the second term of equation (2.9) the branch constraint 

equations of parameter j will result in a non zero value. 

If the term :~~ 

is used in a design constraint equation the tableau matrix will look 

as follows: 

V N VlNlVlNlVlilllV N V I I I Il 

1 1 3 2 1 1 2 2 3 2 2 3 3 2 1 1 
Cl 1 . . . . . . . 1 .. ·1· 

KC 1 1 1 

KC 2 1-1 

BC 3 1-R 

KV 3 1-1 

KV2 

BC 2 

Bl 3 

Cl 2 

Bl 2 

Vl 2 
Vl 1 

Bl 1 

Vl 3 

1 

KV 1 -1 1 

BC 1 1 

1 

-1 

-1 

1 

-1-1 

1 

-R 
3 

-1 1 

1-R 
2 

1-1 

-1 1 

1 

3 

-R 
2 

-1 

Equation Bl 2 reads: Vl 2 - R2 * Il 2 - I 2 - 0. 
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2.6 The implementation of the small signal system in the tableau 

There are two ways to incorporate the small signal description, or 

incremental system [Desoer] of the circuit, in the tableau. The 

first method is what we will call the use of the "delta system". 

Consider "s" as a sensitivity of variable x1 for variations of Y;· 

s- Axi 
t:..yj 

We can interpret Ax1 as a responding variable with t:..yJ as 

exciting quantity, and add to the existing system of equations 

the expression 

together with 

or 

as an exciting source vector. This method is used in the examples in 

the previous paragraphs. 

A second way to incorporate the small signal description is to use a 

"transposed small signal system" (sometimes called an "adjoint 

system") [Hachtel]. Assume we declare Ax1 to be an output variable. 

Then there are two possibilities : 

a The exciting entity is a parameter, 

b The exciting entity is a voltage or a current, 

Ad a) 

As derived in a previous chapter, the equation 
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(2.10) 

holds. 

Let ~ be a vector implicitly defined by 

(2.11) 

- e~ w~th e~ - (0 0 0 1 0 0) -l. .... ......~ t , ~ •• t , , , •• , 

t 

entry i 

or 

I * ~ - ~i 
!o·:eo·~ 

(2.12) 

So 

(2.13) 

If we multiply (2.10) from the left side with ~t we obtain 

8xi + ~t *~I * a;e- Q (2.14) 
:e !o·:eo·~ 

or 

[~~ * a:e)t * ~- -axi 82 !o•:eo.!!o 
(2.15) 

Because the quantities fipJ are taken unequal to zero one at a time 

we obtain : 

["I • r *w 8xi 
(2.16) 

·~ "" ... ·l!o ~ fipJ 

at place J 

6 

Now we have two sets of equations (2.12) and (2.16). The advantage 
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of using an adjoint system is , that if we want to know the 

sensitivities of one variable in respect to a number of parameters, 

only one adjoint system has to be considered. For each parameter, 

equation 2.16 (which really is only one equation) has to be catenated 

to the system (2.12) of equations. 

(2.12) is a set of 21 + k - 1 equations and can be catenated to the 

existing set of equations. 

The matrix 

is a square matrix. 

Consider 

We can distinguish two cases: 

1. fr is a topological equation, i.e. a Kirchhoff voltage law 

equation or a Kirchhoff current law equation. 

2. fr is a branch constraint equation. 

8f 
adl. ~- ± 1 if x8 occurs in fr 

s 

8f 
~ - 0 if x8 does not occur in fr. 

s 

ad2. The result depends on the type of the element described by fr. 

For a resistor 

~ av_ results in+ 1 
s 

8f 
~ results in - Rr 

s 

(2.16) is one equation, and can be written as 
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(2.17) 

w2l+k-l 

We normalise apj to 1. The partial derivatives 

can be evaluated and the row vector 

( 
~~l ~£_2 af21+k-l ] 
ap;J·ap;· ..... ·ap; 

J J 

can be catenated to the tableau. 

Ad b) 

As derived earlier we start with (2.8) 

From this equation again two systems of equations can be derived, 

which can be catenated to the existing set of equations. 

Equation (2.15) will now be different: 

[aFI * ab)t * w- -axi 
~~·:2<>·~ -

(2.18) 

In the matrix 

aFI 
~ ~·£o·~ 

Clf 
the term ~ will only result in a nonzero value in the Kirchhoff 

s 
voltage law equation fr of element s if b

8 
is a voltage, or in the 

Kirchhoff current law equation of the nodes in which b8 occurs if b
8 



- 21 -

is a current. Thus we have two cases: 

JP)•JPJ•·····•JPJ w~ - (0,0, .. 0,!,0, ... 0) (afl 8f2 8f21+k-l) * [wl l 
w21+k-l 

(here fr is the Kirchhoff voltage law equation of element r) 

or 

(Bfl 8f2 8f21+k-l) [wl l ~·~·······~ * w2 -j j j . 

w21+k-l 

(0,0, .. 0,1,0,.,0,1,0, .. ,0) 
t t 
p q 

(2.19) 

(2.20) 

(here fp is the Kirchhoff current law equation of node p and fq is 

the Kirchhoff current law equation of node q). 

2.7 The AC description 

To describe the AC behaviour of the circuit, we introduce a 

frequency w and complex variables for all variables and parameters in 

the circuit [Hostetter]. For each frequency point we introduce a 

separate set of equations, describing the circuit at that frequency. 

For each frequency there is a possibility to incorporate a delta 

system or a transposed small signal system. 

2.8 The circuit elements 

The description of the circuit is totally general, so there are 

really no restrictions with respect to the type of circuit elements 

that can be used. In the implementation the following circuit 

elements have been included: 
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DC AC 

Resistor v-R*i v=R*i 

Diode i - I 0 (exp(qv/(kT)) -1) i - Io 

(exp(qv/(kT))-1) 

Voltage source v- E v=X 

Circuit source i - J i- y 

Capacitor delete element i - (jwC) *v 

Inductor short circuit v = jwL * i 

Dependent current source i - J *X i - y * X 

Dependent voltage v- E *X v- X* X 

For both the pnp and the npn bipolar transistor we have the Ebers 

Moll model [Taub].The models are composed from diodes and dependent 

current sources, for instance the npn full model: 

c 

f t 
ibc 

b 

ibe ~ t 

e 

Figure 2.4. Static Ebers Moll model 

2.9 Design constraints 

aF * ibe 

aR * ibc 

To obtain a solvable set of equations, we need 1 design constraint 

equations. In these design constraint equations we can formulate 

relations between all unknowns in the circuit, not only with branch 

currents and voltages but also with circuit parameters. A resistance 

can be given a value by: 
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R2 - 3ooo n 

A nonlinear resistor however, can for instance be defined as 

If the temperature depends on the power consumption we obtain: 

T K- 300 K + 100 K * v(power supply) * i(power supply)fVA. 
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3. Incidence matrix and matching 

In chapter 2 we described all equations necessary to formulate the 

design problem of a circuit. The task of the program system is to 

determine the solution of this set of equations if there exists one. 

If no solution exists, the program has to point out, why the set of 

equations is not solvable. Here we have to distinguish two kinds of 

solvability 

1. A set of equations can be unsolvable because there are no 

values for the unknown variables, satisfying all the 

equations,for instance: 

X+ y- 4 

X+ y = 2 

(3.1) 

2. A set of equations can be structural unsolvable, for instance: 

w+ X + y + Z 3 (3.2) 

w+ X - 4 

w + 3x 9 

w 8 

Now there are some unknown variables which are "over 

determined" and there are some variables for which no value can 

be computed at all. 

One of the essential differences between the two kinds of 

unsolvability is that the structural unsolvability can be determined 

from the way the variables appear in the equations. 

This can be seen in an incidence matrix. An incidence matrix is a 

matrix where a "1" appears in entry i,J if the variable, related with 

column J of the matrix, appears in the equation, related with a row i 

of the matrix (for a formal definition see chapter 3.1.) If we 

determine the incidence matrix from the equations in (3.2), this will 

look as follows: 



W X y Z 

1 1 1 1 1 

2 1 1 

3 1 1 

4 1 
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Figure 3.1. incidence matrix 

Form this incidence matrix we can see that w can be determined with 

equation number 4. Then however, equation number 2 and 3 are two 

equations with only one unknown variable, and equation number 1 is an 

equation with at least two unknown variables. Except for some special 

cases this set of equations will not be solvable. 

From the incidence matrix of the eqUations in (3.1) we can not 

conclude that this set of equations is not solvable. The incidence 

matrix tells us that we have two equations with two unknown 

variables, and in general these equations will be solvable, except 

for some special cases. 

During a design process of an analog 

unsolvability occurs (roughly speaking), 

circuit, the structural 

if a designer poses more 

than one constraint on a parameter. If for instance the design 

constraint equations of the circuit in figure (3.2) are: 

E 
1 

i 
3 

v * i 
1 1 

5 

0.001 

-0.2 

Figure 3.2. example circuit 

(3.3) 

the incidence matrix shown in fig.(3.3) can be constructed: 
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IIIVNENRVRV 

0 0 0 0 0 0 0 0 0 0 0 

3 2 1 1 1 1 2 2 3 3 2 

... 
BC 3 1 1 1 

KV 3 1 1 

BC 2 1 1 1 

KV2 1 1 1 

BC 1 1 1 

KV 1 1 1 

DC 3 1 1 

KC 1 1 1 

KC 2 1 1 

DC 2 1 

DC 1 1 

Figure 3.3. incidence matrix of example circuit 

If we look at the last seven can see that these 

equations are incident with 

equations we 

only 6 (the leftmost 6) variables, 

indicating a structural unsolvable set of equations. 

The incidence matrix not only tells the designer which variables are 

"over determined" ( one of the variables: i 3 , i 2 , i 1 , v1 , n1) , but 

also which variables can not be determined at all (E1 , n2 , R2 , v3, 

R3 , v 2), giving the designer an indication how to reformulate his 

design problem. 

To find out whether a set of equations is solvable, the notion of a 

"matching" is introduced (for a formal definition of a matching see 

chapter 3.1). A matching relates one variable to each equation, 

occurring in that equation. Each equation may only be related with 

one variable, and each variable may only be related with one 

equation. If it is possible to relate each variable to an equation 

we say that we have found a "complete matching", indicating that the 

set of equations is structurally solvable. 
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If a set of equations is structural solvable, the incidence matrix 

can tell us something about the way we have to solve the equations. 

If the incidence matrix for instance has the form of an upper 

triangular matrix, the set of equations can be solved by back 

substitution, firstly solving variable 1 with equation number n, then 

solving variable 2 with equation n-1 and so on (see fig. (3.4)). 

1 • 

1 1 

2 1 

1 

1 

1 

1 1 

1 1 

1 1 

1 1 1 

1 1 1 

n • 1 1 1 

n 1 

1 

1 

' 
1 

1 1 

1 1 

1 1 1 

1 1 1 

1 1 

1 

Figure 3. 4. upper triangular form 

n 

1 

Mostly however it is not possible to obtain a triangular form by row 

and column permutations and some equations have to be solved with an 

iteration scheme (or with elimination if all the equations are 

linear). In the majority of the applications the iteration is done 

with the full set of equations. This however is not always necessary. 

Mostly· iteration is only needed in a small subset of the equations, 

while other parts of the equation set can be solved by back 

substitution, resulting in a much more effective way of solving the 

equations. The groups of equations which have to be solved by 

iteration are related with so called "strong components" ( for an 

indication of what a strong component is see fig. (3.5)), to be found 

by manipulations with the incidence matrix. This will be explained in 

the next chapters. 
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1 ' 
1 1 

2 1 

1 

1 

1 

1 1 

1 1 

1 1 

1 1 1 

1 1 1 

n - 1 1 1 

n 1 

1 

1 

1 1 

1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 

' 
n 

1 

1 

Figure 3.5. incidence matrix with strong component 

3.1 Definitions 

From the equations defined in chapter 2 we are able to derive a 

square incidence matrix with 31 + k - 1 rows and columns. 

This incidence matrix is defined as follows: 

Each equation is related to a row in the incidence matrix; 

Each variable and each parameter is related to a column in the 

incidence matrix; 

If a variable or a parameter j appears in equation i, entry i,j 

in the incidence matrix is '1'; 

If a variable or a parameter j does not appear in equation i, 

entry i,J in the incidence matrix is '0'. 

From the incidence matrix we can derive a graph G(V,B) called the 

incidence graph. V is the set of vertices, and B is the set of 

branches in the graph. For each row (equation) in the incidence 

matrix there will be a vertex v e F c V. Also for each column 

(variable) in the incidence matrix, there will be a vertex veX c V. 

F and X establish a partition on V, thus: 

V - F u X. (3.4) 
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and 

F n X- 0 (3.5) 

A branch be B between the vertices v e F and we X, b(v,wJ, exists 

if the variable related to w is incident with the equation related to 

v. 

Note: This graph is another graph as the graph derived from the 

circuit topology in chapter 2.1. 

Because of this construction a branch always connects a vertex v E F 

with a vertex w eX, resulting in a bipartite graph [Harary]. In 

such a graph a matching can be defined: 

A matching M is a subset of the set of branches B such that there is 

no node which is incident with more than one branch in the matching 

M. 

Determination of the (maximum) matching induces a direction on the 

branches from v to w where v e X (related to the variables) and w e F 

(related to the equations), if b(v,w> is in the matching and from v 

to w where v e F and we X, if b(v,w> is not in the matching. A 

directed path P v -> w, from v to w in G is a sequence of directed 

branches leading from v to w. 

A strong (sub)graph is a directed graph in which every node can be 

reached from every other node through a directed path. A strong 

component in a directed graph is a maximally1 strong subgraph. 

We agree that each node can reach itself, so it is possible to have 

strong components consisting of only one node. 

3.2 Canonical form of the incidence matrix 

When looking at the incidence matrix, we can find two important 

properties in the set of equations. Firstly we can determine whether 

the set of equations is structural solvable or not. Secondly we can 

find out in which order the equations have to be solved to minimise 

the number of equations participating in an iteration process. In 

order to determine this information we shall have to transform the 

1. A strong subgraph is maximal if it is not properly 
contained in any other strong subgraph. 
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incidence matrix into a canonical pattern like the one in Fig. (3.6) 

[Dulmage, 1958] [Johnson] [Dulmage, 1963] by row and column 

permutations. 

A' B' 

Figure 3.6. canonical pattern 

Only the shaded areas in the pattern may contain nonzero entries, 

while white areas contain only zero entries. Define a " 45-degree 

line" in the matrix A as the entries: Ai,n-i+l-k 

where: n is the dimension of the matrix. 

and: k = O, ... ,n- 1 

and: i = l, ... ,n k 

For k equal to 0 the "45-degree" line is the diagonal of the matrix. 

The authors mentioned above have proved that the pattern can be made 

to have the following properties: 

1. The 45-degree line A • A' has all 1-entries. These entries 

correspond with the matching with maximum cardinality in the 

graph related to the incidence matrix. 

2. There is no possibility to shift the line A - A' towards the 

line B - B' (decrease k, while maintaining the 45-degree slope) 
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by row and columns permutations, such that the new line also 

has all 1-entries.(so the matching has maximum cardinality). 

3. The square arrays (like the shaded ones 1,2,3,4) are 

"irreducible" in the sense that it is impossible to break them 

down into smaller square arrays by row and column permutations 

only. 

Under these circumstances the irreducible arrays are unique in the 

sense that the rows and columns involved per array are uniquely 

determined. This is true although the set of entries along the line A 

A' and the sequence of the irreducible arrays along this line are 

not unique. The arrays 5 and 6 are called the "tails" of the scheme. 

In particular 5 is the "horizontal" and 6 the "vertical" tail. If the 

scheme is square and A - A' is the diagonal, there are no tails, and 

the "maximum matching" is called a "complete matching". If we can 

find a complete matching we can conclude that the system of equations 

is structurally solvable. 

As stated in the introduction the order of solving the equations is a 

kind of back substitution. The equations fp,fp_ 1 , .... ,fk can be 

solved in that way (fig 3.7). 

Figure 3.7. matrix with strong component 

If an irreducible array containing more than one equation is 

encountered however, this way of solving the equations is not 
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possible any more. The equations associated with an irreducible 

array have to be solved simultaneously. 

3.3 Determination of the maximum matching 

In this paragraph it will be explained how the matching and the 

irreducible arrays can be determined. 

To be able to explain how this can be done some definitions are 

necessary. 

1. A free node is a node that is not incident with any branch in 

the matching M. 

2. A path is a set of branches alternating in M and B·M where the 

end node of a branch is the same node as the start node of the 

next branch. (In a branch b(v,w> is v the start node and w the 

end node). 

3. An augmenting path is a path starting in a free node in F and 

ending in a free node in X. 

4. Two paths, P1 and P2 , are disjoint if P1 and P2 have no node in 

common. 

5. The number of branches in a matching M is denoted by IMI. 

6. The number of branches in a path Pis denoted by IPI. 

7. Each bipartite graph has a maximum matching ~x· with the 

property that there exists no other matching M with 

IMI > l~axl· 

8. There may be more than one maximum matching. 

Now we shall state a number of properties, for their proofs we refer 

to [Hopcroft]. 

For each matching Mi with IMil < l~axl holds that there exists 

at least one augmenting path relative to Mi. 

If M is a matching and P is an augmenting path relative to M, 

then M e P is a matching and IM e PI - IMI + 1. 

With e we denote the "EXCLUSIVE OR" operation, so M e P yields 

the branches which are in M and not in P together with the 
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branches which are in P and not in M (see fig 3.8 ). 

free vertex tMi eM. P. free vertex 
~ ~ 

0 0 0 0 0 0 

!Mi+1 = M. ~ P. ~augmenting path 
~ ~ 

0 0 0 0 0 0 

E:Mi+1 iMi+1 

Figure 3.8. generation of a new matching 

- An augmenting path P is called a shortest augmenting path if the 

cardinality of P is the least among the augmenting paths. 

-Let M and N be matchings. If I Ml - r , I Nl - s, and s > r, then 

M e N contains at least s - r vertex-disjoint augmenting paths 

relative to M. 

- Let M be a matching, P a shortest augmenting path relative to M 

and P' an augmenting path relative to M e P then 

IP' I ~ IPI + IP () P' I (3.6) 

- These features reveal an algorithm to determine a maximum 

matching [Hopcroft]. The algorithm can be described as 

1. M-S/5 

2. Let l(M) be the length of the shortest augmenting path of M. 

Find a maximal set of paths 

properties that : 

1. for each i Pi is an augmenting path relative to M and 

IPil - l(M), 

2. the P1 are disjoint, 

3. Halt if no path exists. 

4. M-Me P1 e P2 ...... SPt 

go to 2. 

In [Hopcroft] it is shown that the number of times that step 2) has 

to be performed is bounded by 2*(J(I~axl> + 2). 

The above mentioned algorithm indicates that it is essential to have 



- 34 -

an effective method to find a set of the shortest augmenting paths. 

This will be described in the next paragraph. 

3.4 Determination of a maximal set of shortest augmenting paths 

Until now the bipartiteness of the graph has not been considered. 

This property is very helpful if we have to compute a maximal set of 

shortest augmenting paths. From the undirected incidence graph 

G(V,B) we determine a set of directed branches as follows: Assume M 

to be a matching, 

1. if a branch b(v,w) E M with v E X and w E F, we derive from 

branch b a directed branch b(v,w> pointing from v to w. 

2. If a branch b(v,w) E B-M with wE X and v E F we derive from b 

a branch b(v,w>, pointing from v to w. 

Now we can start to construct a search graph in which we can find a 

maximal set of shortest augmenting paths. This graph.is divided into 

levels of nodes and is constructed applying the following rules : 

1. Level 1 contains all free nodes f e F. 

2. Level(i+l) of the graph is obtained by adding the directed 

branches from v tow, b(v,w>, to the graph where v E level (i). 

3. When a new node is already a member of the constructed graph, 

it is not inserted into the graph. Thus 

level(i+l) ~ 

{ wlb(v,w> e B " v e level (.1) " w ¢ level()) " j :S i }. 

4. We end the graph construction process if we have finished the 

construction of a new level, and a free node x e X is a member 

of that level. 

Because of the way of construction, the levels consist alternately of 

nodes f e F and nodes x eX. (Fig. 3.9) We also can see that a path 

in the search graph consists alternately of branches b(v,w> eM, and 

branches b(v,w> E B-M. 

Searching for the maximal set of vertex disjoint shortest augmenting 

paths is done by "Depth First Search" (DFS) [Tarjan] in the 

constructed search graph. 



level 
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X 

level 
2 

f 

level 
3 

Figure 3.9. search graph 

level 
4 

A shortest augmenting path related to the matching M is found by 

searching for a path from a free node f E F (located in the first 

level) to a free x EX (located in the last level). Each shortest 

augmenting path will start in level 1. 

A node will only be added to a path in construction, if this node 

isn't already visited by the search. 

The search for a path ends in one of the following two ways: 

1. We end in a free x e X, so we found a shortest augmenting path. 

2. The DFS returns to the free starting node f E F. Then there is 

no shortest augmenting path starting in f. 

We stop the search, if we have tried to construct a path from each 

(free) node in level 1. 

3.5 Determination of strong components in a directed graph 

By determining a maximum matching we have found out, whether the set 

of equations is structural solvable or not. A matching however does 

not indicate in which order the equations have to be solved. This 

can be done by searching for strong components. Those components will 

impose a partial ordering on the equations. 

In the previous paragraphs a description is given how a maximum 

matching in an incidence matrix can be found. During the 

determination of the matching we have coupled equations to variables. 

In the sequel we shall assume that the matching is complete. 

(Searching for strong components makes only sense if the system of 

equations is solvable). 
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An algorithm to find the strongly connected components is described 

in [Tarjan]. The algorithm is based on DFS and traverses all branches 

in the graph once, causing the time complexity to be linear with the 

number of branches in the graph. By performing a DFS on a directed 

graph, we determine a set of trees in the graph, called a forest. 

Each tree can consist of a set of subtrees. During the depth first 

search the nodes are numbered from low to high in the order they are 

visited. For each branch in the graph there are three possibilities: 

1. Branch b(v,w> is a new branch of the tree; node w is not 

visited yet. 

2. Branch b(v,w> is a branch pointing from v to a lower numbered 

node w within the same subtree. Branch b is called a frond and 

is responsible for a cycle in the graph, so v and w will be in 

the same strong component. 

3. Branch b(v,w> is a branch pointing from v to a lower numbered 

node w, which is in another subtree. Branch b is called a 

cross-link and determines a partial ordering on the derived 

strong components. (see below). 

During the depth first search each node 

initially equal to the number of the node. 

the number of the node with the smallest 

gets a "lowlink" value 

The lowlink value of v is 

lowlink number reachable 

from v by traversing zero or more tree arcs and at most one frond or 

cross link. This lowlink value can be determined for each node in 

the graph by searching the graph once with Depth First Search 

[Tarjan]. If the search is ready, all the nodes with the same 

lowlink value are member of a strong component. 

Theorem 1 

If the strong components are determined it is possible to rearrange 

them in such a way that the area below that covered by the strong 

components, contains only "0" entries. (Fig. 3.10) Remark: 

If in figure (3.10) the entry marked with a "*" contains a "1", there 

exists a cycle (indicated by the arrows), so the rows and columns 

incident with this cycle have to be in one strong component. 

Obviously this is not true, so the entry marked with a "*" has to 

contain a "0". 
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1 1 1 

1---~-1 1--1 
I I 
I 1 I 
I 1 I 1 
I 

~ ~ A 
I 

I~ I 1 1 1 1 1 : 

ctJ----~----~ 
1 1 

1 1 

Figure 3.10. ordering of strong components 

Proof: 

Consider a part of an incidence matrix consisting of a number of 

strong components as shown in figure (3.11) 

r---,- -- .... ---r 
I I 
I 

A •. I 
~J I 

I I 
t--- -r---.;--...... 
I I 
I I 
I I 

I 
I 
I I 

r--""""i~---'--- -J. 
I I 
1 B.j I 
I ~ I 

.J--.....L----1- ---+-

Figure 3.11. relations between two strong components 

With the two strong components Ci and Cj two areas Aij and Bij are 

related. Now there are four possibilities: 

1. Both Aij and Bij contain "0" entries. 

In this case,no crosslink between the two 

exists and there is no order relation 

strong components 

between the strong 
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components c1 and CJ. 

2. Only Aij contains "1" entries. 

Now there exists a crosslink pointing from c1 to Cj. If Bij is 

allowed to contain only "0" entries, strong component c1 has to 

be above cj. 

3. Only B1j contains "1" entries. 

Now there exists a crosslink from Cj to c1 . To maintain the "0" 

entries in the lower part of the matrix, the two strong 

components have to be swapped. 

4. Both Aij and Bij contain "1" entries. 

Now there apparently exists a cycle, indicating that c1 and Cj 

are part of a larger strong component. This is contradictive to 

the assumption that c1 and Cj are strong components, so this 

situation can not occur. 

(End of proof). 

From these considerations we can conclude that if a crosslink from a 

strong component c1 to Cj exists, this crosslink imposes an ordering 

on the strong components. In practice this means that the equations 

related with strong component Cj have to be solved before the 

equations of strong component c1 can be solved. 

3.6 Determination of essential variables 

As we saw before, solving the system of equations can partly be done 

by back substitution. If, during this back substitution a strong 

component is encountered, all equations belonging to this strong 

component must be solved simultaneously, for instance by using a 

Newton Raphson iteration scheme. If the strong component 

incorporates n + m variables and n + m equations, the Jacobian matrix 

in the Newton Raphson iteration will generally be a sparse matrix 

with n + m rows and n + m columns. To obtain a new guess for the 

solution we need to solve a set of linear equations. To start up the 

iteration, initial values for all n + m variables are needed. 

So it is advantageous to reduce the number of unknowns during the 

iteration. By row and column permutations it is possible to derive a 

Bordered Lower Triangular Form (BLTF) of the incidence matrix related 
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to a strong component. (See Fig. 3.12 ) [Cheung] [Trouborst, 1979) 

[Smith}. 

A :a 
I 

D 

Figure 3.12. structure of a strong component 

With such a BLTF it becomes possible to set up a Newton Raphson 

iteration in m variables and m equations. This can be achieved by 

expressing the variables x1 , .... ,Xn , in terms of xn+1•·····xn+m 

with the equations f 1 , .... ,fn. In the following paragraph we shall 

give an algorithm to determine the BLTF. 

3.7 The minimal essential set algorithm 

The algorithm for determining the BLTF of a strong component is based 

on the minimal essential set algorithm described in [Trouborst, 

1979][Trouborst, 1981]. To explain this algorithm we need some 

definitions: 

1. A bordered upper triangular matrix can be divided into four 

submatrices, satisfying the following conditions 

-Matrix B and C are square matrices; 

- c1j - 1 if 1 - j, 

c1j - o if j > 1, 

So C has a upper triangular form. 
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The off diagonal matrices A and D contain at least one 

nonzero entry. 

2. An essential variable is a variable that is related to the 

columns of matrix B. Suppose the matrix M has the form shown 

in Fig. 3.13 
n+m 

followers 

Figure 3.13. strong component 

essential 
variables 

n+m 

Mij 0 i 1,2, ... ,t s n + m- k i < j s m + n- k 

1 1,2 .. ,t 

3. The first t variables are called the followers. 

4. The last k variables are, in accordance with 2, called 

essential variables. 

5. All other variables are called non-followers. 

6. The set of followers, united with the set of essential 

variables, is called the "train". 

The algorithm described here, will try to find a set of essential 

variables with a cardinality as small as possible, such that there 

will be no nonfollowers any more and the matrix form in Fig. 3.12 

will be obtained. Some important properties of this algorithm are : 
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1. The algorithm does not stick to the already found matching and 

in the submatrix B even zero valued diagonal elements may 

exist. This feature influences the cardinality of the set of 

essential variables extremely [Donald]. 

2. Within a subset of the equations, namely those that are linear, 

elimination steps can be included to reduce the cardinality of 

the set of essential variables. 

3. The cardinality of the essential set is minimal but not 

minimum. The problem to find a maximum essential set has been 

shown to be NP-complete [Karp]. 

The algorithm picks from the set of nonfollowers a variable that, 

when added to the set of essential variables, results in a train as 

large as possible. This variable is obtained by trying all 

nonfollowers. When found, it will be added to the set of essential 

variables and, if the set of nonfollowers is not yet empty, the 

algorithm will start again to find the next essential variable. When 

adding a variable to the set of essential variables, we can determine 

the train as follows Search an equation that contains only one 

nonfollower. If such an equation exists, add this variable to the 

train. Repeat this until there are no more equations with only one 

nonfollower. 

The algorithm described so far searches a minimal essential set 

without elimination in the set of linear equations. The equations in 

the tableau can be divided into two classes: 

1. The nonlinear equations. and the 

coefficients not equal to ±1 or 0. 

linear equations 

2. The linear equations with coefficients equal.to ±1 or 0. 

The following equations belong to this second group : 

• The Kirchoff voltage law equations; 

• The Kirchoff current law equations; 

with 

• The equations in the small signal 

Kirchoff voltage law equations 

equations; 

systems, derived from the 

and the Kirchhoff current law 
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• The equations in the AC systems, derived from the Kirchhoff 

voltage law equations and the Kirchhoff current law equation. 

Because of the fact that these equations are Kirchoff voltage and 

current law equations, we know that, if we subtract two of these 

equations, the variables appearing in both equations will be 

cancelled. This gives us the possibility to eliminate variables, and 

as a consequence entries in the incidence matrix, without knowing the 

values of these variables. The elimination can be performed during 

the search for those variables which, if added to the set of 

essential variables, result in the longest train. This can be 

achieved by a Gauss Jordan elimination [Hildebrand], performed only 

with the equations in class 2. These equations can be captured in the 

matrix formula in Fig. 3.14. 

M. ~- y. 

Where M comprises all equations of class 2. 

The following partition is possible: 

A B c 

Figure 3.14. incidence matrix 
elimination 

during 

1 ~ollowers 

~~~~lowers 
l ~ssential variables 

Gauss-Jordan 

Matrix A is related to all followers. Matrix B belongs to the 

nonfollowers and matrix C belongs to the essential variables found at 

the current state. The Gauss Jordan elimination is executed with 

pivots in matrix B. The pivot for the Gauss-Jordan elimination is 

chosen in such a way that an identity matrix as large as possible is 

created. (See fig. 3.15.) In case a row occurs in the matrix Br• in 

which only nonzero entries appear, an equation with only one 

nonfollower has been found. At the moment this situation is 

detected, the Gauss Jordan elimination will be stopped and the newly 

found follower will be added to the train [Trouborst, 1981]. 
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Figure 3.15. 
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B--....---

8 
r 

c 

incidence matrix 
elimination 

after 

1 ~ollowers 

I ~~~lowers I 

l
k 
essential 
variables 

Gauss-Jordan 

3.8 Evaluation of the minimal essential set algorithm 

To evaluate the algorithm a number of tests has been performed. The 

tests are done with matrices derived from electrical circuits. The 

Gauss Jordan elimination, can be switched on by an option. To get 

insight into the performance of the algorithm, a second algorithm, 

which searches for a minimum set of essential variables is 

implemented. This algorithm does not change the already found 

matching and tries all the possible sets of essential variables, 

together with a branch and bound technique. This is of course only 

possible for small strong components. The results of the comparison 

are given in table 3.1. 

maintaining not maintaining 
the matching the matching 

size of number of CPU with without 
component ess. var. time elimination elimination 

(sec) 
number of CPU number of CPU 
ess. var. time ess. var time 

(sec) (sec) 
3 1 0.14 1 0.20 1 0.20 6 1 0.12 1 0.22 1 0.24 15 1 0.14 1 0.54 1 0.50 16 2 0.16 1 0.64 1 0.53 31 3 0.28 2 3.54 2 2.46 55 6 >600 3 23.58 3 11.60 68 5 >600 3 52.92 3 16.46 77 - - 8 296.18 8 56.44 

TABLE 3.1. 

From these results we can conclude that 
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1. Maintaining the matching enlarges the cardinality of the 

minimal essential set; 

2. Elimination does 

significantly and 

not 

uses 

reduce the minimal essential set 

a lot of computation time. Because of 

this result elimination has been taken out of the program. 

As described earlier the reason for searching a minimal set of 

essential variables in a strong component is to obtain a smaller 

Jacobian matrix during the Newton Raphson iteration. During the 

search for essential variables, the equations are split into two 

groups : the essential equations and the non-essential equations. 

(Fig. 3.16) 

non essential 
variables 

essential 

equations 

non essential equations 

Figure 3.16. strong component with essential variables 

To reduce the dimension of the Jacobian matrix it is necessary to 

write the non-essential variables in terms of the essential 

variables. This, however, is only possible if in the non-essential 

equations the matching variable can be written explicitly. For all 

Kirchoff equations this is the case. For some branch constraint 

equations and for the design constraint equations, this is not 

necessarily true. To be able to control the way how the essential 

variables are determined, and which variable will become the matching 

variable in a certain equation, a number of options are built into 

the algorithm: 
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1. A variable in a given equation can be forced to be the matching 

variable in that equation. 

2. A variable in a given equation can be forced not to be the 

matching variable in that equation. 

3. A certain variable can be forced to be an essential variable 

If the designer uses one of these options it is possible that the 

resulting minimal essential set becomes larger. 

3.9 Determining the matching in a set of equations with AC systems 

If we want to incorporate the behaviour of a circuit at a number of 

different frequencies, we need a complete set of Kirchoff voltage law 

equations, Kirchoff current law equations and branch constraint 

equations for every frequency point. Moreover a new set of variables 

is needed for each frequency point. However, the incidence matrices 

for all frequency points are identical. The overall structure of the 

incidence matrix is given in Fig. 3.17 

parameters 
A 

~~~~~~~~~~~~ 

AC4 

Aldesign constraint 
e~ations 

Figure 3.17. overall structure of the incidence matrix 

The algorithm of Hopcroft and Karp determines a maximum matching by 

searching for the shortest augmenting paths, in a search graph 

constructed from a previously determined non-maximum matching and 

augment the matching with each shortest augmenting path. For the 

algorithm it is not essential at all how this non maximum matching 
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will be determined. 

Because of the fact that the incidence matrices of all different AC

systems are equal, we are able to determine the matching of all AC 

systems by doing so for only one AC system and using this matching 

for all other systems. 

Also for the system of equations describing the DC behaviour, a 

matching can be determined separately. In this way a smaller 

matching, given by line A-A' in Fig. 3.17 can already be found. By 

the algorithm of Hopcroft and Karp the construction of a maximum 

matching can be continued. 

The above described method results in the following algorithm: 

STEP 1 Find a maximum matching in the DC system by using the concept 

of Hopcroft and Karp (augmenting paths). The DC system is the 

set of equations and variables describing the DC operation 

point of the circuit. The vertices associated with the design 

constraint equations and the parameters are controlled to 

remain free. The result of these restrictions is that we can 

assume the parameter values to be known. Because of the fact 

that the DC system in this situation can be seen as a 

description of an existing circuit with known parameter values, 

we can assume that the DC system is a set of equations with a 

full rank Jacobian; so the set of equations is almost always 

solvable. Because of this we are certain that we can find a 

matching covering the whole DC system. 

STEP 2 Find a maximum matching in one AC system. This is the set of 

equations and variables describing the AC operation of the 

circuit. The same restrictions as those for the DC system hold. 

STEP 3 Catenate the AC system in the way displayed in Fig. 3.17. Now 

we have already found a matching represented by the line A-A" 

(Fig. 3.17). 

STEP 4 Augment the matching with the aid of shortest augmenting 

paths. 

In this way we reduce the time necessary to find a maximum matching. 

The time complexity of the algorithm of Hopcroft and Karp is 

O((m+n)js) [Hopcroft], with 
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1. n -number of vertices in the bipartite graph associated with 

the incidence matrix; 

2. m- number of edges in the bipartite graph associated with the 

incidence matrix; 

3. s - number of edges of the maximum matching 

A maximum on the number of times a set of disjoint shortest 

augmenting paths has to be found, is O(s). The time needed to find a 

set of disjoint shortest augmenting paths is O(m+n). If the matching 

covers the whole system of variables and equations (a complete 

matching) s - n/2 holds. 

Definitions : 

1. p - number of parameters; 

2. v - number of equations in the DC system plus the design 

constraint equations; 

3. e - number of entries in the DC system plus the design 

constraint equations; 

4. x - number of frequencies we need (- number of AC systems) For 

each AC system we are allowed to introduce one design 

constraint equation. This design constraint can prescribe a 

frequency, but also another variable in the system, leaving the 

the frequency to be determined. 

If we want to find the maximum matching without taking into account 

the resemblance between the AC systems we find : 
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n - 2(v - p + x(v - p)+ p + x)-2(v + x + x(v - p)) 

l 
DC system l 

system AC 

m- e + x(e 

r 
+x 

DC 
l 
system + 

design constraint. 

AC system 

The time needed to compute the maximum matching is asymptotically 

T - C(m + n)Js 

T C(n + m)J(n/2) C(2(v + x + x(v - p)+ 

e + x + x(e - p))j(~ + x +x(v - p)) 

If we compute the time needed to obtain the maximum matching, taking 

into account the resemblance in the structure of the AC systems, we 

obtain : 

STEP 1) n' 2(v - p) 

m' e - p 

T' C(2(v - p) + e - p) j(v - p) 

STEP 2) t' '- T' 

STEP 4) n ' ' ' - n 

m'''- m 

s p + x (we only need to extend the matching with p+x 

rows and columns) 

T'''- (n + m)(p + x) 

The obtained gain in execution time is 
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T 

G - ---"------

T' + T'' + T''' 

2 v + e + x(3 + 2 v - 30 + e)j(v + x(v - p)+ x) 

G - ------------------------------------------
2(2(v - p)+ e - p)(v - p) + (2 v + e + x(3 + 2 v - 3 p - e)j(p + x) 

For large x (many AC systems) we find: 

j(v + x(v - p)+ x) j(x(v - p)+ x) 

G ~ ---------- = ------ - v-p+l 

j(p+x) j(x) 

The gain obtained for a circuit with v - 150, p - 30 and e - 554 

uA-725 opamp) is plotted in Fig. 3.18. 

gain in 

execution time 

2 

lL-------------------------
10 20 40 60 80 100 120 140 number of 

AC systems 

Figure 3.18. Gain in execution time versus the number of AC 
systems 
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4. Manipulating and solving the equations 

The determination of the strong components and permutation of the 

incidence matrix into a canonical form imposes an ordering on the 

equations, determining in which order the equations have to be 

solved. The resulting incidence matrix indicates also which variable 

in an equation is the unknown variable (all the other variables are 

already solved by previous equations) and has to be written 

explicitly. This is the variable being in the matching. However this 

is not true for the essential equations (see Chapter 3). There are 

two different ways to generate the equations 

1. Generate the equations directly in the appropriate form; this 

means with the matching variable made explicit. 

2. Generate the equations in a standard form and write them in the 

correct form afterwards. 

The second method is chosen for two reasons: 

1. It is much easier to write a procedure generating the equations 

in a standard form. 

2. A procedure being capable of writing an explicit formula for a 

variable, is needed anyway, ·because the design constraint 

equations are in general not given in the appropriate form. 

4.1 Writing a variable explicitly 

To write a variable explicitly a formula manipulator has been 

written. This formula 

formulas appropriate for 

manipulator is able to handle a set of 

most of the equations occurring in a 

description of an electrical circuit. 

In appendix A a BNF definition of the used equations is . given. The 

"terms" (see appendix A) are important in the process of writing a 

variable explicitly. 

In equation + v6 - + i6 * R6 

are + v6 and + i 6 * R6 the terms. 

In equation + exp(+ q * v5 1 k I T) - + I 0 * q * v15 I k I T 

are + exp(+ q * v5 I k I t) 

(4.1) 

(4.2) 
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The algorithm works as follows: 

1. Scan the formula and search for the terms. When a term is 

encountered determine whether the variable, to be written, 

explicitly occurs in that term or not. If not, place this term 

with the appropriate sign in a string called B (in case the 

term occurred on the left side of the - sign, the sign 

changes). If so, substitute a "1" for the variable to be 

written explicitly (divide this term by that variable or 

multiply it with that variable depending on whether the 

variable is in the numeration or the denominator) and place the 

result with the appropriate sign in a string called A (when the 

term comes from the left hand side of the - sign, the sign does 

not change). Repeat this step until all terms have been placed 

in string A or string B. 

2. The variable to be written explicitly can now be expressed by: 

+x - (string A) I (string B) (4.3) 

if x occurred in the numerator of a term and as 

+x - (string B) I (string A) (4.4) 

if x occurred in the denominator of a term. 

This limited formula manipulator is able to handle most of the 

equations occurring on the design system. However, for some of the 

formulas something more has to be done. 

(4.5) 

When v5 has to be written explicitly, this equation is firstly 

written as : 

(4.6) 
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Then it can be handled by the formula manipulator. 

n 
2. x + r - - p (4.7) 

When x has to be written explicitly, the power is initially 

ignored. Thereafter the 1/n-th power of the result is taken. 

After these two extensions it may still be possible that a variable 

cannot be written explicitly as for instance the variable T in 

equation 4.5. In case this equation occurs in the strong component 

of dimension one, the only way to solve it is to iterate to the 

correct solution. If, however, this equation occurs in a strong 

component with a dimension larger than one, one can force this 

equation to be an essential equation. Because in the set of essential 

equations no variable has to be written explicitly the strong 

component can be solved. It is also possible to control the algorithm 

determining the essential variables in such a way that T will not be 

the matching variable in that equation. 

4.2 Suffix notation 

To be able to compute the equations efficiently, it will be necessary 

to write them in a suffix (reverse Polish or postfix) notation 

[McKeeman]. This can be done with a simple algorithm, whose flow 

diagram is shown in fig. 4.1. STACK is a last in first out array. 

The arrays STACK, INPUT and OUTPUT can contain variables, constants 

and operators. When the algorithm starts, the formula is stored in 

INPUT. After the algorithm the result can be found in the array 

OUTPUT. Priorities are assigned to the variables, constants and the 

operators. These priorities are listed below. "A inv" means -A. This 

operation is generated if the STACK or OUTPUT is empty and the top of 

the input stack is "-". To compute a formula written in a suffix 

notation, the following algorithm can be used. 

1. Search for the first operator from the left side. 

2. Search for the one or two corresponding operands. 

3. Perform the operation. 

4. Replace the operator and the operands by the result from 3). 
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delete top of 

INPUT and 
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STACK 

operator 

operand 
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exp, ln 
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STACK = INPUT 

delete top of 

INPUT and 

delete top of 

STACK 

Figure 4.1. flow diagram 

or STACK 

priority 

2 

4 

6 

6 

0 

-
6 

Table 4.1. 

STACK > INPUT 

delete top of 

STACK and 

place on 

OUTPUT 

No 

INPUT 

priority 

1 

3 

5 

5 

7 

0 

7 
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5. If there are operators left, go to 1) 

6. Stop. 

4.3 Solving the strong components 

As already has been shown in Chapter 3 the rows and columns of a 

strong component can be rearranged in such a way that the incidence 

matrix of that strong component looks like the one in Fig. 3.12. The 

diagonal of the submatrix C consists of entries equal to one and the 

lower triangular part of submatrix C consists of only "0" entries. 
t We define! - (x1 ,x2 , ... ,xn) 

X -.:.::e 

!e is the vector of essential variables. 

! is the vector of all the non essential variables in a strong 

component. 

The equations £1 , f 2 , ... , fn can be written as : 

i - 1,2, ... ,n (4.8) 

the equations fn+l until fn+m read 

fi (! • ) - 0 i - n+l, ... ,n+m. (4.9) 

The strong component must be solved by computing the equations fn+l 

, ... , fn+m simultaneously. 

To be able to do so, the variables of ! have to be eliminated, 

resulting in : 

(4.10) 

! - (Fn+l ,Fn+2 • ···• Fn+m) · 

This can be obtained by using the equations £1 , ... fn. 

(4.11) 
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0 - fn+m = (gl(~ ), g2 <~e ), ···• gn <~ ), ~e ) = Fn+m<~e 

The set of equations !<~e ) - Q can be 

solved by a Newton Raphson iteration scheme [Hildebrand]: 

(4.12) 

where~ is the vector of computed values for the essential 

variables after k iterations and 

8!n-rll 8!n+ll 8!n+ll 
a~ xk-1 a~ xk-1 a~ xk-1 

1 -e 2 ~ m ~ 

Jl -
8!n+21 8!n+21 8!n+21 

k-1 a~ xk-1 a~e xk-1 a~ xk·l (4.13) 
~ 1 ~ 2 -e m -e 

8!n+ml 8!n+ml ;Fn+ I 
a~ xk·l a~e xk-1 ~ xk·l 

1 ~ 2 -e m ~ 

Because the equations to be solved are known, we are analytically 

able to determine the derivatives of F. Thus there is no need to 

apply approximations. However the equations Fn+l•···•Fn+m will be 

very complicated, and the computation of the derivatives will be 

lengthy. A better approach to compute the Jacobian is the following: 

first compute the derivatives of each non essential variable with 

respect to the essential variables. Hereafter compute the Jacobian 
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using the essential equations. The order in which the derivatives 

have to be established can be generated by the following algorithm: 

FOR i :- 1 UNTIL n 00 

BEGIN 

FOR j :- 1 UNTIL m DO 

BEGIN 

END; 

END; 

FOR i :- n+l UNTIL m+n 00 

BEGIN 

FOR j :- 1 UNTIL m DO 

BEGIN 

END; 

END; 

Before the derivative of an equation can be determined, this equation 

has to be written in suffix notation (Chapter 4.2 ). Hereafter the 

determination of the derivative implies repeatedly applying a number 

of basic rules. These basic rules are listed below, where (A)' means 

the derivative of A. A or B may represent more complex expressions. 

(constant)'-> 0 

(variable)'-> derivative of the variable , or zero. If the 
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variable is no member of the strong component 

its derivative will be zero. 

(A B *)' -> A B' * B' A*+ 

(A B +) -> A' B' + 

(A B -) -> A' B' -
(A B I) ~> A' B I A B' * B 2 t I -
(A exp) -> A' A exp * 

(A ln)' => A' A I 
(A inv)' -> A' inv 

(A B t)' -> A' B A B 1 - t * * 

(A B t) means A B where B has to be a constant. 

If a derivative of a constant or a variable results in a zero value, 

there is a possibility to reduce the length of the resulting 

expressions. For this simplification we can formulate the following 

rules : 

A 0 + -> A 

0 A+-> A 

0 A - -> A inv 

A 0 - => A 

A 0 * => 0 

0 A * => 0 

0 A I-> 0 

0 inv -> 0 

A 0 t => 1 

0 exp => 1 

If the result of the reduction rule equals zero perhaps a second 

reduction rule can be applied. 

The resulting algorithm to determine a derivative of an equation is 

shown below. 

1. Search for the rightmost term or operator whose derivative has 

to be determined. 

2. Search for the corresponding operand(s). 
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3. Apply the appropriate basic rule. Apply, if possible, one or 

more reduction rules. 

4. If there are subexpressions whose derivative have to be 

determined go to step 1). 

5. Stop. 

4.4 The Newton Raphson method 

To solve the equations belonging to a strong component a Newton 

Raphson scheme is used. For each iteration, equation (4.12) has to be 

solved. This equation can also be written as : 

(4.14) 

This set of linear equations can be solved with LV decomposition 

(Hildebrand). During the LU decomposition, partial pivoting is used 

(Jennings]. This means that the largest element in a column is chosen 

as a pivot. Only the rows will be permuted. 

As with most Newton Raphson iteration schemes in electrical 

engineering, the method is only appropriate if the initial guess of 

the solution is close enough to the real solution and the second 

derivative of the function is continuous in the neighbourhood of the 

solution (Kantorovich]. For equation systems resulting from 

descriptions of electrical circuits, these conditions mostly do not 

hold (mainly because the initial guess for the solution is not close 

enough to the solution). This also applies for our case. To improve 

the global convergence of the method a number of strategies are 

possible. Some of these are implemented. The extensions resulted in 

a significant improvement of the global convergence of the Newton 

Raphson method. 

4.4.1 Hatching variables and convergence 

It appears · as is also pointed out in [Kevorkian] that the 

convergence of the Newton Raphson method can be enhanced by pushing 

the right variables into the matching. 
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Let f be a function of 

t 
~- (xl, x2, ... , xn) and f(~)- 0 holds. (4.15) 

From this equation a number of equations can be derived 

(4.16) 

For convergence purposes it is advantageous to take variable xi as a 

matching variable such that the relative change in xi with respect 

to variations in XJ (j r i) is as small as possible. 

For the Kirchoff current law equation and the Kirchoff voltage law 

equation, these relative sensitivities are all +1 or ·1. So for those 

equations it does not matter which variable is a matching variable. 

For branch constraint equations, however, this is different, 

especially for diodes (which are also part of the Ebers Moll 

transistor models). For a diode the branch constraint equation reads 

i - r 0 (exp(qv/(kT)) · 1) (4.17) 

J,b - q/(kT) r0 exp(qv/(kT)) (4.18) 

but also the formulation 

v-kT/q ln ((i+I0/I0)) (4.19) 

is possible yielding 

av kT*Io 
~ = q(i + r0) 

(4.20) 

For a conducting diode (4.20) yields the smallest value so (4.19) has 

to be used. For a nonconducting diode (4.18) results in the smallest 

value, so (4.17) is the appropriate equation. 

Mostly the designer knows roughly the biasing configuration of his 

circuit. During the determination of the essential variables in the 

strong components he will be able to control the search of the 

matching. 

4.4.2 Maximum stepsize 

It often occurs that the steps taken by the Newton Raphson iteration 

method are very large. This may result in an intermediate solution 
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which is far from the initial guess and often also far from the 

solution. To circumvent this pitfall, the notion of a maximal step 

size is introduced. If the Newton Raphson method wants to take a step 

larger than the maximal step size, the maximal step size in the newly 

computed direction is taken as increment to the old intermediate 

solution rather than the value computed by the Newton Raphson method. 

4.4.3 Global nonincreasing function 

The objective of the Newton Raphson method is to find the vector ! 

such, that E(!) - Q. If for an iteration step k+l holds that 

2 2 
IIE<!k+l >II >IIE<!k >II (4.21) 

it is likely that the k+l-th solution is not closer to the solution 

than the k-th solution. Nasrollah proposes a method to improve the 

global convergence of the Newton Raphson method by modifying the 

method to: 

where 0 < A < 1 holds, and Ak is chosen such that 

IIE<!k+l > 11
2 

< IIE<!k > 11
2 

{Nasrollah] 

This results in the following algorithm. 

Starting from an initial guess !o .set Ak - 1 and j - 0. 

Step I Compute zk from the set of linear operations 

J(xk) . ~k _ F(!k ). 

Then compute !k+l from 

!k • !k+l Ak ~k 

Then if 

(4.22) 



Step II 
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we accept the point ~k+l as the next iterate set 

Ak - 1 and j - 0, then repeat. 

If, on the other hand 

we let j - j+l. 

Then set Ak- (1/2)1, 

go to step I and continue. 

By this measure the algorithm cannot diverge any more; the algorithm, 

however, can still get stuck in a local minimum. 

By the above described methods the convergence of the Newton Raphson 

method is increased significantly, but it is still possible that the 

program does not give the correct solution of a design problem. This 

happens often with not correctly stated design problems or in 

circuits with high gain factors. In Chapter 7 we shall give some ways 

to define design problems correctly. 
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5. Fault Location 

5.1 Introduction 

One of the largest problems in electrical engineering these days is 

testing of integrated circuits. Because of the continuous 

enhancements in processing facilities of integrated circuits there is 

the possibility to produce smaller features on silicon. Thus it is 

also possible to compose larger integrated circuits. This leads to a 

steady growth of the complexity of the circuits that can be 

integrated. However, the number of ports through which the circuit 

is accessible has not grown equally fast. Because of this it is 

getting more and more difficult to test integrated circuits. This is 

not only true for digital circuits but also for analog circuits. For 

digital circuits a number of approaches have been found to tackle 

these problems, for instance the scan path techniques and the self 

testing techniques. For analog circuits, however, those techniques 

are not applicable. 

In the testing field two kinds of problems can be distinguished. The 

first kind is the gojnogo test. This test is necessary at the end of 

the production process because the manufacturer wants to check 

whether a circuit is working within the desired specifications or 

not. For an analog circuit this test may be relatively easy. In case 

of for instance an operational amplifier this means measurement of 

the output response to a given set of input signals. There is, 

however, a much more difficult test which can be seen as a diagnostic 

test. This test is necessary during the development of an integrated 

circuit The designer does this test to determine which circuit 

element value causes a circuit not to work properly. This problem can 

also be stated in another way, which reveals the relation between the 

testing problem and the design problem, as described in the previous 

chapters: The designer wants to know the measurements he has to make 

in order to be able to compute the value of the parameters in the 

circuit. These measurements, can be looked upon as constraints 

imposed on the circuit. As one can see the problem is equivalent to 

the design problem where a designer wants to know which values of a 
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circuit element must be chosen to obtain a desired response. The 

problem left is how to couple measured values to electrical 

components such that if instead of the component value the measured 

voltage is taken as known, the system of equations is a solvable 

system. It will be explained below how to do this. 

5.2 Manipulations in the incidence matrix 

The incidence matrix gives us a powerful 

equations will in principle be needed 

component. Consider the electrical circuit 

tool to find out which 

to compute an electrical 

to be tested with all 

electrical parameters at their nominal value. From this circuit we 

can derive the Kirchoff voltage law equations, the Kirchoff current 

law equations and the branch constraint equations describing the 

circuit elements. By adding to this set of equations design 

constraints, assigning a constant value for each parameter in the 

circuit, we shall obtain a solvable set of equations. This is true 

because the equations obtained, describe an existing electrical 

circuit and solving this set of equations is equivalent to simulating 

this circuit. Because the set of equations is solvable we know that 

there has to be a complete matching in the incidence matrix which is 

derived from it. 

Definition: Let G(V,B) be the directed graph derived from the 

incidence matrix with a complete matching. 

A parameter p is reachable from a variable x if it is possible 

to construct a directed path in the graph G(V,B) from the 

vertex x, to the vertex p. 

With this definition of reachability we are able to find out which 

variable values are controlled by a certain parameter or, the other 

way around, with which variable it is possible to find out about the 

value of a parameter. Notice that here the order in which the 

equations are solved, is opposite to the direction of a path. 

As an example consider fig. 5.1. 

As an example in fig 5.1 the node r 3 is reachable by the node voltage 

~ because there exists a path in the directed graph from n2 to r 3 , 
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Figure 5.1. incidence matrix of circuit in Fig. 2.1 

but computation of n2 if r 3 is known, is in the opposite order. With 

the previous definition we are able to state the following : 

Theorem 2 

Assume that there is a complete matching M, a parameter p is 

reachable from a variable v and there exists an equation of the form 

p - constant, then, if the design constraint p - constant is replaced 

by v - constant, it is possible to find a complete matching M* in the 

newly defined set of equations. 

Proof 

Consider an existing path P from the variable v to the parameter p. 

Such a path exists because p is reachable from v. The path comprises 

matching and nonmatching branches alternatingly. The arcs of the 

matching are denoted by bold lines. 

The matching arc at the end of the path represents the incidence of p 

in the design constraint p • constant. The new matching can be 

constructed by the following equation : 
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path 

DC p 

oc p 

Figure 5.2. generation of a new matching 

M* - M $ P - (M u P)/M n P. 

The matching arc at the end of the path represents the incidence of v 

on the design constraint v = constant. 

(End of proof). 

By applying theorem 1 we are able to identify a measurable voltage or 

current to compute the value of the parameter. If we do so 

repeatedly with the members of a set of unknown parameters, we may be 

able to find a set of measurable circuit variables so as to compute 

the values of the unknown parameters. 

5.3 Sensitivity matrix 

Experiments with some practical circuits have shown that the approach 

described previously does not work always. It appears that often 

parameter values are computed inaccurately or incorrectly. 

The reasons for this are twofold : 

1. Reachability from a parameter by a variable means that the 

value of the parameter depends on the value of that variable. 

However, numerically this dependence may be very small or even 

zero by way of compensation, such as in balanced input stages. 

So the value of the sensitivity ~ is of great interest and has 

to be large in absolute value. 

2. The sensitivities of one parameter relative to measured 

variables are (nearly) a linear combination of the 

sensitivities of a set of other unknown parameters. That this 

can cause a faulty computation of the parameter values can be 

explained as follows 
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If the sensitivities of parameter pk+l are linear combinations 

of the sensitivities of the parameters p1 , ... ,pk then we can 

not detect whether a disturbance in the measurements is caused 

by a faulty parameter pk+l or by a linear combination of the 

faulty parameters Pl•···•Pk· 

To solve these problems we introduce the following definitions 

v1 ,v2 , ... ,vn voltages and currents which are measurable. 

pl,p2•····•Pm parameter values which have to be checked. 

avl av2 avn 

~· ~ ~ 
av1 av2 a~ 

G- ~· ~ ~ 

avl av2 a~ 

~· ~ ~ 

This matrix will be called the "sensitivity matrix". The values 

in this matrix can easily be computed with the aid of a 

(transposed) small signal system [Hachtel]. To make sure that 

the two situations mentioned above are not the reason of 

failure, we must choose such a set of parameters and 

measurements that a submatrix J of G, belonging to that set of 

parameters and measurements, is well conditioned and the 

sensitivities are not too small by values. Ye identify such a 

well conditioned submatrix by a technique derived from full 

pivoting on Gaussian elimination [Hildebrand]. The algorithm 

to perform the selection of parameters and measurements is as 

follows : 

1. Assume that already k parameters and measurements are 

selected. 

2. Search for the largest absolute 

coefficients 

value among the 
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k<ism 

k<jsn 

in G such that the parameter associated with row i is 

reachable from the measurable quantity associated with 

column j. This defines a pivot gij 

3. Rearrange the rows and columns such that entry giJ 
appears at place k+l,k+l. 

k 

gl,k+l · • • • · gl,n 

J 

G 

Figure 5.3. structure of the sensitivity matrix 

4. Perform a Gaussian elimination step in G. 

gk+l.i 
giJ - • gk+l:k+l * Si,k+l 

for all i,j such that: 

k+2 s i s m 

k+2 :S J :S n 

5. Repeat these steps until no parameters or measurements 

are left, or until no appropriate pivot can be found any 

more. 
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5.4 Determination of the computations to be made 

In general, and especially in IC design there will not be enough 

points to measure voltages and currents. If so, perhaps the same 

measurements can be made at different supply voltages or at different 

frequencies. Mostly, however, this will not result in as many 

measurements as there are parameters. Assume that only one parameter 

is faulty (an assumption that is often made in these analyses). Now 

we try to locate the faulty parameter by doing several computations, 

each time selecting a different set of parameters to be tested. For 

any such set we assemble an associated set of measurable quantities 

according to the above procedure. Let the sets of parameters and 

measured quantities be p(i) and v(i) respectively, where i- 1,2, ... 

identify the various computations. 

Because of tolerances on the nominal values of all the parameters, no 

parameter will be computed to have the exact value. To decide 

whether a parameter is correct or not we have to take it's tolerance 

into account. 

From any computation the result may be: 

1. Only one parameter is off it's tolerance region. 

2. More than one parameter is off it's tolerance region. 

In the second case, assuming the result of the computation is unique 

none of the tested parameters can be the faulty one. Thus we select 

an alternate set p(i) from the parameters not yet tested, and 

continue. 

In the first case the parameter with the non nominal value may be the 

faulty one. However, any of the not yet tested parameters could be 

the faulty one as well. 

Eventually more and more parameters will be excluded to be the faulty 

one. A final decision as to which one of the remaining parameters is 

actually faulty can possibly be obtained by inserting those 

parameters simultaneously into some test set p(i). Either we are able 

to narrow down the set of possible faulty parameters to one by a 

sequence of computations, this way deciding the game. Alternatively 

we may get stuck with all badly conditioned computations. In that 

case the faulty parameter can not be identified by the measured 



- 69 -

quantities because of numerical reasons. 

If it is not possible to identify the faulty parameter, it is also 

possible that there are more faulty parameters. The same procedure as 

described above, can be followed with the assumption that there are 

two faulty parameters, in this way trying to identify two faulty 

parameters. An example can be found in chapter 7. 
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6. Implementation Aspects 

6.1 The Modular Structure 

The program has been written in the Fortran IV programming language 

and has been set up as an interactive program. Possible commands are 

for instance INP(UT) causing the program to read the input 

description of the circuit. If there exist no syntax errors in the 

input the incidence matrix for the equations derived from that 

description will be generated. DEC results in the determination of 

the matching together with the strong components. For a complete set 

of commands and their purpose: See Appendix B. 

Each command invokes a separate and self contained part of the 

program. The results of such a step can afterwards be evaluated by 

the user. He then can decide to proceed with the next command or to 

redefine the design problem or to rerun some previous commands with 

other options. The data needed for each step are always read-in from 

files stored on disk. The results will be written back to the disks, 

mostly on other files. Because of this it is not necessary to perform 

all computations in one session and it is also possible to rerun a 

part of the program. 

The relation between the different parts of the program and the data 

files is shown in Fig. 6.1. 

IINP IIDEC II SHO I I RES I I FOR I I SUF I I COM I 

t 
command 

I decomp 

I system 
file 

I eire I form 1- "' I shopic I lformul I I suf frl resul I 

Figure 6.1. Relation between the program and the files 
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6.2 Storage of the different intermediate results 

Because there is a variety of data and algorithms, not all data ca,,t 

be stored in the same way. While defining a data structure, not only 

memory space has to be considered. Also very important is the data 

structure to be such that the algorithm can run efficiently on it. 

Next we shall describe some important data structures used in the 

program. 

6.2.1 The incidence matrix 

The incidence matrix is not implemented as a matrix. This would be 

inappropriate for two reasons 

1. The incidence matrix is sparse, so in terms of memory, this 

would be an inefficient realization. 

2. The algorithm to find a matching and the strong components does 

not run on a matrix but needs a graph representation of the 

structure. 

The storage of the incidence matrix is done rowwise, or formulated in 

another way, equation after equation. For each equation a list of 

incident variables is generated. This is an effective way of storage 

in terms of memory and also with respect to the algorithms which work 

on it. 

A close examination of the matching algorithm reveals that in order 

to find the shortest augmenting paths we must know which variables 

are incident with a given function to generate the arcs pointing from 

an uneven numbered level to an even numbered level. The arcs of the 

even to the uneven numbered levels can be found in the matching which 

is stored in another array. The variables and the equations are 

numbered in the order they are generated. 

The storage of the incidence matrix is done in two arrays. 
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row pointer array 

Figure 6.2. storage structure of the incidence matrix 

The incident variables of equation i are stored in Row Array at the 

places Row Pointer Array [i] until Row Pointer Array [i+l]. 

The names of the variables and equations are stored in two arrays, 

where the name of equation i is stored in the i-th position of one 

such array. The names of the variables are stored in the same way in 

the other array. 

The matching is stored in another array named the Match Array. For 

this purpose the variables are renumbered. The new number of a 

variable is equal to the old number plus the total number of 

equations. If variable i is matched with equation j Match Array [i) 

is equal to J, and Match Array [j] is equal to i. 

The strong components are stored in two arrays (Fig. 6.3 ) 

compts 

comptsptr 

Figure 6.3. storing structure for the strong components 

The information about strong component i is stored in array 

compts[comptsptr[i]] until compts[comptsptr[i+l]]. In strong 

components the number of the equation together with the number of the 

matching variable of that equation are stored pairwise. The order of 

the pairs of numbers is such that it indicates the order in which the 

equations in the strong components have to be solved. 

6.2.2 The equations 

Each equation is stored in a separate array. Entities to be 

represented in the equations are : 
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-Variables, derivatives of variables and parameters: 

-operators like+, -, /, exp; 

-constants. 

The values of all these entities • except for the operators are 

stored in an array called VALUE. All these entities are mapped into 

integers in the following way : 

l. 1 s 1 S 500 is the value of variable number 1. 

2. 500 < 1 < 520, the integer 1 represents an operator for 

instance 

501 + 

502 

515 exp 

3. 600 S 1 < 890 represents a constant value. This value is 

stored in VALUE (1). 

4. 890 s 1 S 990 The jacobian of the Newton Raphson iteration is 

stored here. 

To be able to perform the Newton Raphson iteration, the Jacobian 

matrix has to be computed. This matrix is stored row by row in the 

array VALUE, starting at entry 890. Because the highest entry to 

store an element of the Jacobian matrix in the array value is 989, 

the maximum number of iteration equations is 10 so the strong 

components may contain no more than 10 essential variables each. 

During the Newton Raphson iteration process the derivative of each 

non essential variable with respect to each essential variable has to 

be computed and stored. The derivatives with respect to the first 

essential variable are stored in the array VALUE in the range from 

1001-1500. 

For the derivative with respect to the second essential variable the 

values are stored on the range 1501-2000 and so on. 

6.2.3 Input language 

The definition of the circuit and the design rules is described in an 

input file. The file consists of two parts. In the first part the 
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circuit is defined. The language for this part is a SPICE-like 

language. Each line defines an electrical element in the circuit. 

The second part consists of the design rules. For a detailed 

description of the input language see Appendix C. 

6.2.4 The output formats 

There are essentially three places where output can be obtained from 

the program. Firstly it is possible to get pictures from the 

incidence matrix. In an interactive way a part of the incidence 

matrix can be defined. The defined part of the incidence matrix can 

then be displayed on the terminal screen or stored in a file. 

The second output possibility is a printout of the generated 

equations which have to be solved. 

Finally the computed values of all variables can be printed out. 

In all these ways of output the equations and variables are 

represented by names. The naming conventions are defined in Appendix 

D. 
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7. Design strategy and examples. 

As explained in chapter 3, the computation time for solving the set 

of equations largely depends on the size of the strong components. In 

strong components containing more than one equation, a Newton Raphson 

iteration has to be performed. So it makes sense to formulate the 

design problem in such a way that only small strong components will 

result. 

As can be expected, there is a close relation between strong 

components and the circuit. If for instance the circuit incorporates 

an amplifier with a feedback loop, the equations describing this part 

of the circuit will be one large strong components. If the feedback 

is taken away, this strong component will fall apart into a number of 

smaller strong components. 

Taking away the feedback, does not mean that the circuit topology has 

to be changed. If with a design constraint equation for instance the 

voltage of a node in the feedback circuit is defined, there will 

(electrically) be no feedback any more, resulting in a number of 

smaller strong components. 

An indication for which variables have to be fixed by a design 

constraint equation to split up a strong component is given by its 

essential variables. This is true because if the essential variables 

are taken out of the strong component (which is done by incorporating 

them into a design constraint equation) all the other equations can 

be solved by back substitution. It should be noted here that in 

general there is more than one set of candidates for being essential 

variables.(The algorithm to determine the minimal essential set 

chooses one of these). 

In circuits with high gain factors, it is important that there does 

not exist a strong component describing this part of the circuit. By 

the use of design constraint equations, that strong component has to 

be split up into a number of smaller strong components. 

Because of the fact that the design constraint equations derived from 

the measurements during fault location, will fix voltages and 

currents in the circuit, the strong components will be small, so the 

calculation will be performed efficiently. 
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In the next sections we will give two examples illustrating the 

capabilities of the described design and test-generation package. The 

first example will be about the design of an amplifier, the second 

will be an example of the generation of test measurements to test a 

circuit. 

7.1 design of an amplifier 

The circuit to be designed is depicted in fig. 7.1. 

Figure 7.1. The circuit to be designed 

The topology of this circuit can be described in the file circ.dat. 

#example 

ex 

0 

01Rl302 

02R0200 

03Rl304 

04R0500 

05Rl306 

06R0708 

07R0800 

08Rl200 

09Rl012 

10Rl011 



11Rll12 

12Rl309 

13T040302NH 

17T040503NH 

21T060704NH 

25T091210NH 

29Tl31109NH 

31C0102 

32C0800 

33C0609 

34El300 

35£0100 

36R0100 

37R0900 
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As we can see that "half Ebers Moll" models are incorporated for the 

transistors. This means that the transistors are correctly modeled if 

they are not operating in saturation mode. This is true for this 

example. 

The design constraint equations can be added to the description of 

the circuit. 

DCOl(ROl)-+ROl-+370000 

DC02(R02)-+R02-+100000 

DC03(N04)-+N04-+3.9 

DC04(R04)-+R04-+1800 

DC06(R06)-+R06-+630 

DC08(R08)-+R08-+2200 

DC09(V25)-+V25-+0.3 

DC10(R09)-+R09-+1000 

DC11(129)-+129-+0.004 

DC12(Rl2)-+Rl2-+39000 

DC13(Rll)-+Rll=+470 

DC14(T)-+T-+300 

DC15(Al4)-+Al4-+0.99 

DC16(Al8)-+Al8-+0.99 

DC17(A22)-+A22-+0.99 

DC18(A26)-+A26-+0.99 

DC19(A30)-+A30=+0.99 
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DC20(E34)-+E34-+15 

DC2l(E35)-+E35-+0.0 

DC22(X35)-+X35-+l.O 

DC27(W01)-+W01=+10000 

DC23(C31)-+C31-+0.0000002 

DC24(C32)-+C32-+0.0001 

DC25(C33)-+C33-+0.000001 

DC26(R36)-+R36-+10000 

DC28(X34)-+X34-+0.0 

DC29(W02)-+W02-·10000 

DC30(1Nl2,2Nl2)-+1Nl2*2Nl2-+1600 

DC3l(R07)-+R07-+33000 

A number of comments can be made here: 

1. Design constraint equation DC03 defines the DC operation point 

of the first stage of the amplifier. Resistor R03 has to be 

computed to obtain the desired operation point. 

2. With design constraint equation DC09 we want to express that 

the transistor in the current !imitating circuit must not be 

active during normal operation of the circuit (transistor 25 

has to be in cut-off mode). Resistor RlO is the designable 

parameter. 

3. Design constraint DCll establishes the operating point of the 

output stage of the circuit. (R37 is the designable parameter). 

4. 

5. 

Design constraint DC16 DC19 define the a's of the 

transistors. 

DC27, DC29 and DC30 express a constraint on the gain of the 

circuit. There is a small problem here. If a designer imposes 

a gain on an amplifier, he mostly is only interested in the 

absolute value of the gain, and not in the real and imaginary 

part. The modulus of a complex number can be found, by 

multiplying it with its complex conjugate. The complex 

conjugate, can be computed by defining a negative frequency. 

Design constraint equation DC30 defines a gain of 40. (The AC 

signal source has an amplitude of 1, X35). 
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The design problem formulated in this way results in a set of 

equations with a complete matching, indicating a solvable set of 

equations. 

The incidence matrix after determination of the essential variables 

in the strong components is shown in figure 7.2. As we can see there 

exist 7 strong components. 

The equations to be solved are listed below: 

ODC20: +0E34-(+15) OBC34: +OV34-(+0E34) 

OKV34: +ON13-(-0V34)*(·1) ODCl : +ORl-(+370000) 

ODC14: +OT13-(+300) ODC4 : +0R4-(+1800) 

ODC16: +0A18=(+0.99) ODC15: +0A14-(+0.99) 

ODC2 +0R2-(+100000) OKC2 : +0-(+0Il-OI2-0I13+0Il4) 

OKC5 +014-(+0!17) OBC4 : +0V4-(+0R4*0I4) 

OKV4 +ONS-( -OV4)*( -1) OBC17: +0V17-(+LN(+0117/10+1)) 

/(+Q*1/K/OT13) 

OKV17: +ON3•(-0V17-0N5)*(-1) OBC18: +0I18•(+0A18*0I17) 

OKC3 : +0113-(-0117+0118)*(-1) OBC13: +0Vl3-(+LN(+OI13/IO+l)) 

/(+Q*l/K/OT13) 

OKV13: +ON2-(-0V13-0N3)*(·1) OKVl : +0Vl-(+ON13-0N2) 

OBCl +0Il•(-0Vl)/(-OR1*1) OKV2 : +0V2-(+0N2) 

OBC2 +0I2-(-0V2)/(-0R2*1) OBC14: +0Il4-(+0Al4*0Il3) 

ODC3 +ON4-(+3.9) ODC31: +OR7-(+33000) 

ODC6 +OR6=(+630) 0BC6 : +0-(-0V6+0R6*0I6) 

0BC21: +OV2l•(+LN(+OI21/IO+l)) 

/(+Q*l/K/OT13) OKV21: +0N7-(-0V2l+ON4) 

0KC7 +016-(+0121) OKC8 : +017-(+016) 

OBC7 : +OV7-(+0R7*017) OKV7 : +0N8-(-0V7)*(-l) 

OKV6 : +0V6-(+0N7-0N8) ODC17: +0A22·(+0.99) 

OBC22: +0122-(+0A22*0I21) OKC4 +013-(-0114-0118-0121+ 

0122)*(-1) 

OKC6 : +015-(-0122)*(-1) ODC9 : +0V25-(+0.3) 

0DC10: +0R9•(+1000) OBC25: +0125-(-EX(+Q*OV25/K/ 

OT13)+1)/(·l/10) 

ODC18: +0A26•(+0.99) OBC26: +0126-(+0A26*0I25) 

ODCll: +0129•(+0.004) ODC8 +ORS-(+2200) 

OKClO: +0•(-0I9-0110-0I25+0I26 OKV8 : +OV8-(+0N12) 
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OBCS ; +018-(-0V8)/(·0R8*1) OKV25: +0N10-(-0V25-0N12)*(-l) 

OKV9 : +0V9=(+0N10-0N12) OBC9 : +019-(-0V9)/(-0R9*1) 

OKC12: +0111-(-018+019+0125)* 

( -1) OKCll: +011Q-(-0111+0129)*(·1) 

ODC13: +0R11=(+470) OBCll: +OV11-(+0Rll*0111) 

OKVll: +0Nl1=(-0Vll-ON12)*(-1) OBC29: +0V29-(+LN(+0129/10+1)) 

/(+Q*1/K/OT13) 

OKV29: +ON9=(-0V29-0N11)*(-l) OKV12: +0V12•(+0Nl3-0N9) 

0DC12: +0R12-(+39000) 0BC12: +0112•(-0V12)/(-0R12*1) 

ODC19: +0A30-(+0.99) OBC30: +0130-(+0A30*0129) 

OKC13: +0134-(-011-013-015-

0112-0130) OKV3 : +0V3-(+0N13-0N4) 

OBC3 : +0R3•(-0V3)/(-1*013) OKVlO: +OV10-(+0N10-0N11) 

OBClO: +0Rl0-(-0V10)/(-1*0110) ODC28: +OX34-(+0.0) 

2BC34: +2V34-(+0X34) 2KV34: +2N13-(-2V34)*(·1) 

ODC25: +0C33-(+0.000001) ODC29: +0W2-(-10000) 

0DC24: +0C32-(+0.0001) ODC22: +0X35-(+1.0) 

2BC35: +2V35-(+0X35) 2KV35: +2N1•(-2V35)*(-1) 

ODC23: +0C31-(+0.0000002) 2KV2 +0-(-2V2+2N2) 

2BC14: +2114=(+0Al4/(+l-0Al4)* 

2113) 2KC3 +2117-(+2113+2114) 

2BC17: +2V17-(-2117)/(-l*Q* 

OI17/K/OT13) 2BC18: +2118-(+0Al8/(+1-

0Al8)*2Il7) 

2KC5 : +214-(+2117+2118) 2BC4 : +2V4-(+0R4*214) 

2KV4 : +2N5-(-2V4)*(-1) 2KV17: +2N3•(·2V17-2N5)*(-1) 

2BC13: +2Vl3-(-2113)/(·1*Q* 

OI13/K/OT13) 2KV13: +2N2-(-2Vl3-2N3)*(-l) 

2KV31: +2V31•(+2N1-2N2) 2BC31: +2131-(+0W2*0C31*2V31) 

2KV1 +2V1-(+2N13-2N2) 2BC1 : +211-(-2V1)/(-0R1*1) 

2KC2 +212-(+211-2113+2131) 2BC2 : +2V2-(+0R2*212) 

2BC7 +0-(-2V7+0R7*217) 2BC22: +2122-(+0A22/(+1-0A22) 

*2121) 

2KC7 +216-(+2121+2122) 2BC6 +2V6•(+0R6*216) 

2KC4 +213•(-2114-2118-2121)* 

(-1) 2BC3 +2V3-(+0R3*2I3) 

2KV3 +2N4=(-2V3+2Nl3) 2BC21: +2V21-(-2121)/(·1*Q* 
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0121/K/OTU) 

2KV21: +2N7•(-2V21+2N4) 2KV6 : +2N8-( -2V6+2N7) 

2KV32: +2V32-(+2N8) 2BC32: +2132-(+0W2*0C32*2V32) 

2KC8 : +217-(+216-2132) 2KV7 +2V7-(+2N8) 

OKV37: +0V37-(+0N9) OKC9 : +0137•(+0112-0126-0129 

+0130) 

OBC37: +OR37-(-0V37)/(-l*0137) 1BC34: +1V34-(+0X34) 

1KV34: +1N13-(-1V34)*(·1) 0DC27: +0W1-(+10000) 

1BC35: +1V35-(+0X35) 1KV35: +1N1-(-1V35)*(·1) 

1KV2 +0-(-1V2+1N2) 1BC14: +1114•(+0A14/(+1-0A14) 

*1113) 

1KC3 : +1117-(+1113+1114) 1BC17: +1V17•(-1117)/(-1*Q*0117 

/K/OT13) 

1BC18: +1118-(+0A18/(+1-0A18)* 

1117) 1KCS +114-(+1117+1118) 

1BC4 : +1V4-(+0R4*1I4) 1KV4 +1N5-(-1V4)*(-1) 

1KV17: +1N3-(·1V17-1N5)*(·1) lBC13: +1V13-(-1113)/(-l*Q* 

OI13/K/OT13) 

1KV13: +1N2-(-1V13-1N3)*(·1) 1KV31: +1V31•(+1Nl-1N2) 

1BC31: +1131-(+0W1*0G31*1V31) 1KV1 +1V1-(+1Nl3-1N2) 

1BC1 : +111-(-1Vl)/(-OR1*1) 1KC2 +112-(+111-1113+1131) 

1BC2 : +1V2-(+0R2*112) 1BC7 +D-(-1V7+0R7*117) 

1BC22: +1122-(+0A22/(+1-0A22)* 

1121) 1KC7 +116-(+1121+1122) 

1BC6 : +1V6-(+0R6*1I6) 1KC4 +113-(-1114-1118-1121) *( -1) 

1BC3 : +1V3-(+0R3*1I3) 1KV3 +1N4-(-1V3+1N13) 

1BC21: +1V21•(-1121)/(·l*Q* 

OI21/K/OT13) 1KV21: +1N7-(-1V21+1N4) 

1KV6 : +1N8-(-1V6+1N7) 1KV32: +1V32-(+1N8)· 

1BC32: +1132-(+0Wl*OC32*1V32) 1KC8 : +117-(+116-1132) 

1KV7 : +1V7-(+1N8) 1BC30: +0-(-1I30+0A30/(+l-OA30) 

*1129) 

1BC29: +D-(-1I29+1V29*Q* 

0129/K/OT13) 1KV11: +0-(-1V11+1Nl1-1N12) 

1BC26: +0•(-1I26+0A26/(+1· 

0A26)*1I25) 1BC25: +0-(-1I25+1V2S*Q*OI25 /K/OT13) 

2BC30: +D-(-2130+0A30/(+1-
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0A30)*2129) 2BC29: +0-(-2129+2V29*Q*0129 

/K/OT13) 

2BC26: +0=(-2126+0A26/(+1-

0A26)*2125) 2BC25: +0-(-2125+2V25*Q*0125/K/OT13) 

1KV29: +1N11=(-1V29+1N9) 2BC10: +2V10-(+0R10*2110) 

2KC6 : +215=(-2122-2133)*(-1) 2BC33: +2V33-(-2133)/(-0W2*0C33*1) 

1BC10: +1V10-(+0R10*1110) 1KV10: +1N10-(-1V10-1N11)*(-1) 

1KV25: +1N12-(-1V25+1N10) ODC30: +2N12-(+1600)/(+1N12*1) 

2KV8 +2V8-(+2N12) 2BC8 +218-(-2V8)/(-0R8*1) 

1KV8 : +1V8-(+1N12) 1BC8 : +118-(-1V8)/(-0R8*1) 

1KV9 :+1V9-(+1N10-1N12) 1BG9 : +119-(-1V9)/(-0R9*1) 

1KC10: +1125-(-119-1110) 1KG12: +1111-(-118+119+1125+1126) 

*( -1) 

1BC11: +1V11-(+0R11*1111) 1KG11: +1129-(+1110-1111+1130)*(-1) 

1KV12: +1V12=(+1N13-1N9) 1BC12: +1112=(-1V12)/(-0R12*1) 

1KV37: +1V37=(+1N9) 1BC37: +1137-(-1V37)/(-0R37*1) 

1KG9 : +1133-(+1112-1126-1129 

-1!37)*(-1) 1BC33: +1V33-(-1133)/(-0W1*0C33*1) 

1KV33: +1N6=(-1V33-1N9)*(-1) 1KV5 +1V5-(+1N13-1N6) 

1KC6 : +115=(-1122-1133)*(-1) 1BG5 : +0R5-(-1V5)/(-1*115) 

2BC5 : +2V5-(+0R5*215) 2KV5 : +2N6-(-2V5+2N13) 

2KV33: +2N9=(-2V33+2N6) 2KV12: +2V12-(+2N13-2N9) 

2BC12: +2112-(-2V12)/(-0R12*1) 2KV29: +2N11-(-2V29+2N9) 

2KV10: +2N10-(-2V10-2N11)*(-1) 2KV9 : +2V9-(+2N10-2N12) 

2BC9 : +219-(-2V9)/(-0R9*1) 2KG10: +2125-(-219-2110) 

2KV25: +2V25-(+2N10-2N12) 2KV11: +2V11-(+2N11-2N12) 

2BC11: +2111-(-2V11)/(-0R11*1) 2KC12: +2126-(-218+219+2111+2125) 

*( -1) 

2KV37: +2V37-(+2N9) 2BC37: +2137=(-2V37)/(-0R37*1) 

2KC9 : +2129-(+2112-2126+2133-

2137) 2KC11: +2130-(+2110-2111+2129)*(-1) 

OBC5 : +0V5=(+0R5*015) OKV5 : +0N6-(-0V5+0N13) 

OKV14: +OV14=(+0N4-0N2) OKV18: +0V18-(+0N4-0N3) 

OKV22: +0V22-(+0N6-0N4) OKV26: +0V26-(+0N9-0N10) 

OKV30: +0V30=(+0N13-0N9 ODC21: +0E35-(+0.0) 

OBC35: +0V35=(+0E35) OKV35: +0N1-(-0V35)*(-1) 

OKV36: +0V36-(+0N1) ODC26: +0R36-(+10000) 
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OBC36: +0136-(-0V36)/(-0R36*1) OKCl : +0135-(-0136) 

1KC13: +1134-(-111-113-115-

1112-1130) 1KV14: +1Vl4-(+1N4-1N3) 

1KV18: +1Vl8-(+1N4-1N5) 1KV22: +1V22-(+1N6-1N7) 

1KV26: +1V26=(+1N9-1Nl2) 1KV30: +1V30-(+1Nl3-1Nll) 

1KV36: +1V36-(+1Nl) 1BC36: +1136-(-1V36)/(-0R36*1) 

lKCl : +1135=(-1131-1136) 2KC13: +2134-(-211-213-215-2112-2130) 

2KV14: +2Vl4=(+2N4-2N3) 2KV18: +2Vl8=(+2N4-2N5) 

2KV22: +2V22-(+2N6-2N7) 2KV26: +2V26-(+2N9-2Nl2) 

2KV30: +2V30-(+2Nl3-2Nll) 2KV36: +2V36-(+2Nl) 

2BC36: +2136-(-2V36)/(-0R36*1) 2KC1 : +2135-(-2131-2136) 

The results of the solution of the equations are listed below. The 

values are represented by two numbers, the first number is the real 

part and the second number is the imaginary part of the value. 

ON 13 

ov 1 

ov 2 

ON 4 

01 3 

ov 4 

ON 6 

01 5 

ON 8 

01 6 

01 7 

ov 8 

ON 10 

01 9 

ov 10 

ov 11 

ON 9 

01 12 

ov 13 

ov 14 

ov 17 

.15000E+02 0. 

.11819E+02 0. 

. 31813E+Ol 0. 

.39000E+01 0. 

.12979E-02 0. 

ON 2 

01 1 

01 2 

ov 3 

ON 5 

.23346E+Ol 0. 01 4 

.85532E+Ol .11880E-03 OV 5 

.10252E-03 0. ON 7 

.34172E+Ol 0. 

.10355E-03 0. 

. 10355E-03 0. 

.88024E+Ol 0. 

.91024E+Ol 0. 

.30000E-03 0. 

-.14390E+Ol 0. 

.17390E+Ol 0. 

.11053E+02 0. 

.10120E-03 0. 

. 36381E+00 0. 

. 71872E+00 0. 

.48284E+00 0. 

ov 6 

ov 7 

ON 12 

01 8 

ov 9 

ON 11 

01 10 

01 11 

ov 12 

ON 3 

01 13 

01 14 

01 17 

.31813E+01 0. 

.31942E-04 0 . 

.31813E-04 0. 

.11100E+02 0. 

.23346E+Ol 0. 

.12970E-02 0. 

.64468E+Ol -.11880E-03 

. .34825E+Ol 0. 

.65264E-01 0. 

.34172E+Ol 0 . 

.88024E+Ol 0. 

.40011E-02 0. 

.30000E+00 0. 

.10541E+02 0. 

-.30001E-03 0. 

.37000E-02 0. 

.39467E+Ol 0. 

.28175E+Ol 0 . 

.12970E-04 0. 

.12840E-04 0. 

.12970E-02 0. 
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ov 18 . 10825E+01 0. OI 18 .12840E-02 0 . 

ov 21 .41751E+00 0. 01 21 .10355E-03 0. 

ov 22 . 46532E+01 .11880E-03 01 22 .10252E-03 0 . 

ov 25 . 30000E+00 0. OI 25 .10983E-05 0 . 

ov 26 .19509E+Ol 0. OI 26 .10873E-05 0. 

ov 29 . 51195E+00 0. OI 29 .40000E-02 0 . 

ov 30 . 39467E+Ol 0 .. OI 30 .39600E-02 0 . 

ov 34 .15000E+02 0. OI 34 -.54936E-02 0. 

ON 1 0. 0. ov 35 0. 0. 

OI 35 0. 0. ov 36 0. 0. 

OI 36 0. 0. ov 37 .11053E+02 0. 

OI 37 .60109E-04 0. 1N 13 0. 0. 

1N 2 .99996E+OO .63789E-02 lV 1 -.99996E+00 -.63789E-02 

11 1 -.27026E-05 -.17240E-07 1V 2 .99996E+OO .63789E-02 

11 2 .99996E-05 .63789E-07 1N 4 -.41838E+01 -.25901E-01 

lV 3 .41838E+01 .25901E-01 11 3 .48921E-03 .30286E-05 

1N 5 .99974E+00 .63775E-02 1V 4 .99974E+00 .. 63775E-02 

li 4 .55541E-03 .35430E-05 1N 6 .46060E+02 -.15872E+00 

1V 5 -.46060E+02 .15872E+OO 11 5 -.73244E-03 .25104£-05 

1N 7 -.41673E+01 -.25773E-01 lN 8 -.51611E-04 .66146E-02 

1V 6 -.41672E+Ol -.32387E-01 11 6 -.66146£-02 -.51408E-04 

1V 7 -.51611£-04 .66146E-02 li 7 .40933E-08 .20251E-06 

1N 12 .39998£+02 .36728E+00 1V 8 .39998E+02 .36728E+00 

1I 8 .18181E-01 .16694E-03 1N 10 .41008E+02 .37654E+00 

1V 9 .10092E+01 .92665E-02 11 9 .10092E-02 .92665E-05 

1N 11 .46054E+02 .42288E+OO lV 10 -.50462E+01 -.46335E-01 

11 10 -.10521E-02 -.96625E-05 1V 11 .60553E+01 .55602E-01 

1111 .12884E-01 .11830E-03 1N 9 .46055E+02 .42298E+00 

1V 12 -.46055E+02 - . 42289E+OO 11 12 -.11809E-02 -.10843E-04 

1N 3 .99985E+00 .63782E-02 1V 13 .11068E-03 .70606E-06 

li 13 .55541E-07 .35430E-09 1V 14 -.51836E+01 -.32279E-01 

li 14 .54986E-05 .35076E-07 1V 17 .11068E-03 .70606E-06 

11 17 .55541E-05 .35430E-07 1V 18 -.51835E+01 -.32278E-01 

11 18 .54986E-03 .35076E-05 1V 21 -.16510E-01 -.12832E-03 

11 21 -.66146E-04 -.51408E-06 1V 22 .50227E+02 -.13294E+OO 

11 22 -.65485E-02 -.50894E-04 1V 25 .10092E+01 .92686E-02 

11 25 .42882£-04 .39376E-06 1V 26 .60561£+01 .55705E-01 
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11 26 .42453E-02 .38991E-04 1V 29 .90049E-03 .82705E-05 

11 29 .13936E-03 .12796E-05 1V 30 -.46054E+02 -.42288E+00 

11 30 .13796E-01 .12671E-03 1N 1 .10000E+01 0. 

1V 31 .40692E-04 -.63789E-02 11 31 .12758E-04 .81383£-07 

1V 32 -.51611E-04 .66146£-02 1I 32 -.66146E-02 -.51611£-04 

1V 33 .53405E-02 -.58161E+OO 1I 33 .58161E-02 .53405E-04 

1V 34 0. 0. 1I 34 ·.12370E-01 -.12139E-03 

1V 35 .10000E+01 0. 1I 35 • .11276E-03 ·.81383E-07 

1V 36 . 10000E+01 0. li 36 .10000E-03 0 . 

1V 37 .46055E+02 .42289E+00 1I 37 .25045E-03 .22997£-05 

OR 1 . 37000E+06 0. OR 2 .10000E+06 0 . 

OR 3 .85522E+04 0. OR 4 .18000£+04 0. 

OR 5 .62886£+05 -.11588E+01 OR 6 .63000E+03 0. 

OR 7 .33000E+05 0. OR 8 .22000E+04 0. 

OR 9 .10000E+04 0. OR 10 .47965E+04 0. 

OR 11 .47000E+03 0. OR 12 .39000E+05 0. 

OT 13 .30000E+03 0. OA 14 .99000E+00 0. 

OA 18 .99000E+00 0. OA 22 .99000E+00 0. 

OA 26 . 99000E+00 0. OA 30 .99000E+00 0 . 

OE 34 .15000E+02 0. OE 35 0. 0. 

OR 36 .10000E+05 0. OR 37 .18389E+06 0. 

oc 31 .20000E-06 0. ow 1 0 . .10000E+05 

oc 32 . 10000E-03 0. oc 33 .10000E-05 0. 

ox 34 0. 0. ox 35 .10000E+01 0. 

ow 2 0. -.10000E+05 2N 13 0. 0 . 

2N 2 . 99996E+00 -.63789E-02 2V 1- -.99996E+00 .63789E-02 

2! 1 ·.27026E-05 .17240E-07 . 2V 2 .99996E+00 -.63789E-02 

2! 2 .99996E-05 -.63789£-07 2N 4 ·. 41838E+01 .25901E~Ol 

2V 3 .41838E+01 -.25901E-01 2I 3 .48921E-03 -.30286E-05 

2N 5 .99974E+00 -.63775E-02 2V 4 .99974E+00 -.63775E-02 

2I 4 .55541E-03 -.35430E-05 2N 6 .46062E+02 .15691E+00 

2V 5 -.46062E+02 -.15691E+00 2I 5 -.73247E-03 -.25086£-05 

2N 7 • .41673E+Ol .25773E-01 2N 8 -.51660£-04 -.66147£-02 

2V 6 - .41672E+01 .32387E-01 21 6 -.66146£-02 .51408£-04 

2V 7 -.51660£-04 -.66147E-02 2I 7 .36813E-07 -.25145E-06 

2N 12 .39998E+02 -. 36728E+OO 2V 8 .39998E+02 -.36728£+00 

2I 8 .18181E-01 -.16694E-03 2N 10 .41009E+02 -.37836E+00 
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2V 9 .lOlllE+Ol - .11079E-Ol 2! 9 .10111E-02 -.11079E-04 

2N 11 .46056E+02 - .42469E+00 2V 10 -.50461E+Ol .46334E-01 

2! 10 -.10521E-02 .96625E-05 2V 11 .60573E+Ol -.57413E-01 

2! 11 .12888E-01 -.12216E-03 2N 9 .46056E+02 -.42470E+00 

2V 12 - .46056E+02 .42470E+00 2! 12 - .11809E-02 .10890E-04 

2N 3 .99985E+00 -.63782E-02 2V 13 .11068E-03 -.70606E-06 

2! 13 .55541E-07 -.35430E-09 2V 14 -.51836E+Ol .32279E-Ol 

2! 14 .54986E-05 -.35076E-07 2V 17 .11068E-03 -.70606E-06 

2! 17 .55541E-05 -.35430E-07 2V 18 -.51835E+01 .32278E-01 

2! 18 .54986E-03 -.35076E-05 2V 21 -.16510E-Ol .12832E-03 

2! 21 -.66146E-04 .51408E-06 2V 22 .50229E+02 .13113E+00 

2! 22 ·.65485E-02 .50894E-04 2V 25 .10111E+Ol -.11079E-Ol 

2! 25 .40905E-04 .14193E-05 2V 26 .60582E+Ol -.57421E-01 

2! 26 .42411E-02 -.35128E-04 2V 29 .90049E-03 -.82705E-05 

2I 29 .14350E-03 -.50756E-05 2V 30 -.46056E+02 .42469E+OO 

2I 30 .13796E-01 -.12674E-03 2N 1 .10000E+Ol 0. 

2V 31 .40692E-04 .63789E-02 2! 31 .12758E-04 -.81383E-07 

2V 32 ·.51660E-04 -.66147E-02 2! 32 -.66147E-02 .51660E-04 

2V 33 .53403E-02 .58160E+OO 2I 33 .58160E-02 -.53417E-04 

2V 34 0. 0. 2! 34 -.12369E-01 .12137E-03 

2V 35 .lOOOOE+Ol 0. 2! 35 -.11276E-03 .81383E-07 

2V 36 .lOOOOE+Ol 0. 2! 36 .10000E-03 0. 

2V 37 .46056E+02 -.42470E+00 2! 37 .25046E-03 -.23095E-05 

7.2 Fault location in an amplifier 

To demonstrate fault location we use the circuit shown in Fig. 7.3. 

The parameters which can be faulty are: 

R2• R3, R4, Rs, R6• R7, A10• A14· 
The measurable quantities are the nodal voltages: 

N2, N4, Ns, N6, 

and the, source currents: I 1 , I 8 . 

The matrix G is shown in Fig. 7.4. If we want to compute all the 

parameters with the same relative accuracy and we assume that all the 

variables can be measured with the same relative accuracy, the 

sensitivities are all normalized to values 1 for parameters, voltages 

and currents. This normalization does not affect the linear 

dependence of the rows and columns. 
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@ 

Figure 7.3. circuit for fault location 

N2 N4 Ns N6 Il Is 

R2 -9.5E-3 6.9E-2 -6.2E-2 7.5E-2 -0.5 5.4E-2 

R3 4.1E-l -3.0 2.7 -3.2 -21 -2.3 

R4 -4.2E-l 3.0 -2.7 3.3 21 2.3 

Rs 0 -1.2 0 -1.3 0 -1.0 

R6 S.OE-3 7.2E-l 3.6E-l 7.7E-l -4.1E-l S.OE-1 

R7 0 7.2E-2 0 8.2E-2 0 -7.5E-l 

A10 1.1 -9.4 7.4 -10 -5.9 -7.3 

A14 0 7.2 0 7.6 0 6.4 

Figure 7.4. The sensitivity matrix 

Because of the fact that there are eight parameters and six 

measurable voltages and currents, at least two computations are to be 

made to detect the faulty parameter (we assume that only one 

parameter is faulty). So in each computation we need to incorporate 

only four unknown parameters. 

By searching for the best conditioned submatrix in G we find: 

- parameters A1o• Al4• Ro7• Ro6· 
-measurements: 1o1· No6· 1os• Nos· 

For finding the parameters and measurements for the second 

computation we first delete the rows in G associated with the 

parameters: 
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A10• Al4• R07• R06· 
For the second computation we find: 

- parameters : a04 , a05 , a02 , R03 
-measurements: r01 , N06 , N05 , los· 

(note that the measurements are the same as in the first case). 

The nominal values for the-parameters are: 

Ro2- 10000 Ro6 - 460 

Ro3 - 12000 Ro7 7500 

Ro4- 320000 A10 ~o.99 

Ros= 64000 A14 =0.99 

In the first computation three parameters, 

computed to be faulty, so we must conclude 

R07 , A10 and A14 are 

that the assumption that 

R04 , R05 , Ro3 and R02 are correct is wrong. The second assumption 

reveals RoJ as being the faulty component with a value of 10000 

instead of 12000. 
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8. CONCLUSIONS 

In this thesis a new approach for interactive design for electronic 

circuits is presented. It is shown that the fault location problem 

is a closely related problem, and large parts of the proposed 

interactive design program can be used to solve this problem. 

A number of observations can be made: 

1. By treating design constraint equations in exactly the same way 

as the equations describing the circuit, an efficient way of 

determining element values in circuits is obtained. 

2. By using the the same concept for the fault location problem, 

an easy way is found to handle multiple faults in a circuit, 

without excessive computation time. 

3. It is valuable for a designer to have information about the 

solvability of the set of equations describing the design 

problem. With this information he is able to identify the 

parts of the circuit being "overdefined", and in this way 

having an indication how to change the formulation of the 

design problem. 

4. The computation time for solving the set of equations 

describing the design problem is reduced by reordering the 

equations in such a way that large parts of the equation set 

can be solved by back substitution. 

5. By using design constraint equations prescribing voltages and 

currents in the circuit, the equation set falls apart into a 

large number of small strong components, being advantageously 

for the computation time and convergence of the Newton Raphson 

method. 

1 am grateful for the fruitful discussions with Professor J.A.G. 

Jess, who also gave me the opportunity to write this thesis. 
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9. APPENDIX A 

The syntax of an equation is presented in a BNF notation. 

<equation> 

<term> 

<factor> 

: := {<term> }+ "-" (<term> }+. 

::- <sign> { ((<factor> [<power>]) I 
<exp_ln> <composite_factor>) 

<mult_div>)+. 

::- <constant> 

<variable> 

<composite_factor>. 

<composite_factor>: :-"(" ( <sign> ( (<variable> 

<constant> 

[<power>] 

<mult_div> )+ )+")". 

<power> : :- "**" <sign> <constant>. 

<sign> ::- "+" I 

"-" 

<mult_div> ::- "*" J 

"/". 

<exp_ln> ::- "exp"l 

"ln". 

Below this syntax is presented in a more visual way, which should 

clarify the meaning of the various meta symbols. 
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equation 

term : 

composite_factor 

'--------1 mul t _ di v ~+--------"' 

factor : 

.........,.--'-3-"'l>l constant 1----,-~ 

t----i~~~>~ variable 1-----1 

~composite factor~ 

composite_factor 

power 

sign : 

exp_ln : 

mult_div : 
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10. APPENDIX B 

INP: The description and the design constraint equations are 

read and checked for syntax errors. If there exist no 

syntax errors, the incidence matrix is generated. 

DEC: The maximal matching is computed, and the strong components 

are determined. 

SHO: With SHO it is possible to display the incidence matrix, or 

parts of the incidence matrix. It is also possible to 

obtain information about in which strong component a 

variable or equation occurs. 

RES: The command RES calls the routines, necessary to compute 

the minimal essential set of a strong component. 

FOR, GEN: FOR activates the formula manipulator. With GEN the 

formulas are generated in a standard form. 

FOR, EXP: With EXP the matching variables are written explicitly. 

BER, SUF: BER activates the part of the program to solve the 

equations. SUF converts the formulas to suffix notation, 

and generates the derivatives of the equations. 

BER, COM: With COM the equations are actually solved. 

BER, PRI: PRI prints the results. 
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11. APPENDIX C 

The circuit and the design constraint equations are described in the 

file circ/dat. 

The file consists of six parts: 

1. A circuit name consisting of two characters. 

2. The reference node (>-1, <51). 

3. Lines describing the topology of the circuit. 

4. A line starting with a "f", indicating the end of the 

description of the circuit. 

5. Lines describing the design constraint equations. 

6. A line starting with a "f", indication the end of the file. 

Each line starting with a "#" is seen as comment. 

In the topology part three kinds of lines are permitted: 

1. Stringlength- 7. 

The first two characters give the branch number i of the 

element. (0 < i <100). 

The third character indicates the type of the branch: 

"r": resistor. 

"d": diode. 

"e": controlled voltage source. 

"j": controlled current source. Character four and five give 

the positive node p of the element. (0 < p < 51) 

Character six and seven give the negative node q of the 

element. (0 < q < 51) 

2. Stringlength- 11. (dependent sources}. 

The first seven characters describe an element of type "e" or 

Character eight gives the type of the controlling quantity ( 

"v" or "i" for voltage or current). 

Character nine and ten give the number p of the controlling 

quantity (0 < p < 100}. 

Character ten gives the the name of the parameter describing 
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the controlled source. 

3. Stringlength- 11. Transistor. 

The first two characters give the branch number i of the 

transistor. (0 < i <100). 

The third character is a "t" for transistor. 

Character four and five give the node number c of the collector 

(0 < c <51). 

Character six and seven give the node number e of the emitter 

(0 < e <51). 

Character eight and nine give the node number b of the base (0 

< b <51). 

Character ten indicates the type of the transistor ("p" for pnp 

and "n" for npn). 

Character eleven is a "h" or a "f". A "h" indicates a half 

Ebers Moll model, containing two branches. A "f" indicates a 

full Ebers Moll model, containing four branches. 

The syntax of a design constraint equation is: 

"DC• <number> "(" <variables incident with the design constraint 

equation> ")-" <design constraint equation>. 

1. <number> consists of two characters. 

2. The variables in the list of incident variables are separated 

by ",". The following variables may occur: 

length 

1 

3 

7 

elements 

t 

vk, ik, 

udu <x> 

nk, 

"/t" 

description 

temperature 

Pk voltage, current,node 

or parameter. 

xe (vk, ik, nk} 

sensitivity 

9 "d" <x> "/d" <y> x E {vk, ik, nk) 

y e {vk, ik, pk} 

sensitivity 

voltage 

3. The design constraint equation has to obey the syntax describe 

in appendix A: 
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12. APPENDIX D 

Each variable name consists of four 

<a><n><m><ii> 

fields: variable name: 

<a>: indicates the number of the AC system. If this number is 

zero it may be skipped. (one digit). 

<ii>: indicates the branch or node number to which the equation 

or variable refers to. (two digits). 

<n> <m>: For these two entries are a number of possibilities. They 

are listed below. For columns (variables) we have the 

following possibilities: 

j 

<n> <m> 

n 

v 

i 

<p> 

n <j> 

v <j> 

i <j> 

<j> v 

<j> c 

<j> b 

d <j> 

e <j> 

f <j> 

<J> p 

description 

voltage of node number ii 

voltage across element ii 

current through element ii 

p is a variable indicating the parameter of 

element ii 

voltage of node ii in delta system J 
voltage across element ii in delta system 

J 
current through element ii in delta system 

transposed kirchhoff voltage law equation 

of element ii 

in adjoint system J. 
transposed kirchhoff current law equation 

of element ii in adjoint system J. 
transposed branch constraint equation 

of element ii in adjoint system j. 

sensitivity in delta system j,the response 

variable is a branch voltage 

sensitivity in delta system j,the response 

variable is a br.anch current 

sensitivity in delta system j,the response 

variable is a node voltage 

sensitivity in adjoint system, exiting 



- 98 -

entity is a parameter 

<j> q sensitivity in adjoint system, exiting 

entity is a voltage of a branch 

<j> r sensitivity in adjoint system, exiting 

entity is a current through a branch 

For the rows (equations) are the following possibilities: 

<n> <IIi> 

k v 

k c 

b c 

d c 

v <j> 

c <j> 

b <j> 

<j> n 

<j> v 

<j> i 

d <j> 

e <j> 

f <j> 

<j> p 

<j> q 

ii 

description 

kirchhoff voltage law equation of element 

kirchhoff current law equation of node ii 

branch constraint equation of element ii 

design constraint equation of element ii 

kirchhoff voltage law equation in 

deltasystem j 

kirchhoff current law equation of node ii 

in delta system j 

branch constraint equation of element ii in 

delta system j 

transposed voltage of node ii in adjoint 

system j 

transposed voltage of element ii in adjoint 

system j 

transposed current through element ii in 

adjoint system j 

row with sensitivities in delta system j, 

responding variable is the voltage of 

element ii 

row with sensitivities in delta system j, 

responding variable is the current through 

element ii 

row with sensitivities in delta system j, 

responding variable is the voltage of node 

i.i 

row with sensitivities in adjoint system j, 

exiting variable is parameter ii 

row with sensitivities in adjoint system j, 
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exiting variable is the voltage of element 

ii 

row with sensitivities in adjoint system j, 

exiting variable is the current through 

element ii 
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Een interactief ontwerp en fouten localisatie hulpmiddel voor 

electronische schakelingen 

Het onderzoek bestaat uit bet realiseren van een programma pakket, 

waarmee bet mogelijk is om interactief een analoge niet lineaire 

electronische schakeling met een gegeven topologie, te analiseren en 

te ontwerpen. Hierbij worden de eisen die de ontwerper aan bet 

systeem stelt op gelijke wijze behandeld als de vergelijkingen die 

bet circuit beschrijven, waardoor er een set vergelijkingen ontstaat 

die geanaliseerd en opgelost moet worden. Hierbij wordt gebruik 

gemaakt van incidentie matrices en grafen, die afgeleid zijn van de 

vergelijkingen. In deze grafen worden "matchings" en "sterke 

componenten" bepaald. Hatchings geven een indicatie over de 

oplosbaarheid van het stelsel vergeljkingen, en sterke componenten 

geven een leidraad voor de volgorde waarin de vergelijkingen opgelost 

moeten worden. Naast de bovengenoemde technieken worden er tevens 

formule manipulatie technieken en methoden voor het oplossen van een 

stelsel niet lineaire vergelijkingen (Newton Raphson) gebruikt. 

Naast bet gebruik als ontwerp tool, kan het systeem tevens gebruikt 

worden als fouten localisatie hulpmiddel. Beide problemen zijn 

namelijk conceptueel gelijk aan elkaar: 

Het ontwerp probleem kan omschreven worden als: 

Gegeven een aantal ontwerpeisen, bereken (alle) componentwaarden in 

de voorgestelde schakeling. 

Het fouten localisatie probleem kan omschreven worden als: 

Gegeven een aantal gemeten responsies van de schakeling, bereken 

(alle) componentwaarden van de te testen schakeling. 

Naast het oplossen van de vergelijkingen behorende bij de hoven 

omschreven problemen, kan bet beschreven programma pakket ook een set 

adequate metingen berekenen, waarmee de schakeling getest kan worden. 

Hierbij wordt rekening gehouden met gevoeligheden van componenten ten 

opzichte van metingen. 
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Stellingen 

1. Een van de vaak onterecht aangehaa1de oorzaken van een niet 

goed functionerende geautomatiseerde administratie is: "De 

computer doet het niet". 

2. De scheiding tussen software en hardware onderhoudstechnici 

voor computer systemen, wordt steeds inadequater. 

3. Lettend op de (neven}effecten van bet 1oonbe1eid voor 

ambtenaren, en bet UHD beleid, zou men moeten conc1uderen dat 

de regering niet geinteresseerd is een goed universitair 

onderzoek en onderwijs. 

4. Het gebruik van PLA's in IC ontwerpen wordt hoofdzake1ijk 

veroorzaakt door een gebrek aan software om "random logic" op 

een "optimale manier" te implementeren. 

5. Het zou een zegen voor het onderwijs in de informatica zijn als 

de programmeertaal BASIC, veel gebruikt in de home computer 

sfeer, in populariteit zou inboeten ten voordele van een 

krachtigere en leerzamere taal zoals bijvoorbeeld Pascal. 

6. De nieuwe ontwikkelingen op bet 

digitale schakelingen (signature 

gebied van 

zullen binnen enkele jaren veel 

analysis, 

test- en 

overbodig maken. 

het testen van 

build in test}, 

meetapparatuur 

7. Het invoeren van arbeidstijdverkorting he eft voor veel 

werknemers de consequentie dat hun wer~zaamheden in minder 

tijd gedaan moeten worden, wat vaak resulteert in onbetaald 

overwerk. 

8. Lettend op het aantal componenten van moderne mini-computers, 

moet men concluderen dat bedrijven veel geld verdienen aan 

onderhoudscontracten, die nog steeds 7 tot 15% per jaar van de 

nieuwprijs bedragen. 


