
 

Bifurcation theory for the L-H transition in magnetically
confined fusion plasmas
Citation for published version (APA):
Weymiens, W., Blank, de, H. J., Hogeweij, G. M. D., & Valença, de, J. C. (2012). Bifurcation theory for the L-H
transition in magnetically confined fusion plasmas. Physics of Plasmas, 19(7), Article 072309.
https://doi.org/10.1063/1.4739227

DOI:
10.1063/1.4739227

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1063/1.4739227
https://doi.org/10.1063/1.4739227
https://research.tue.nl/en/publications/66fb1d12-20be-47e5-920b-41753c3d1827


Bifurcation theory for the L-H transition in magnetically confined
fusion plasmas

W. Weymiens,a) H. J. de Blank, G. M. D. Hogeweij, and J. C. de Valença
FOM Institute DIFFER—Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM,
Trilateral Euregio Cluster, P.O. Box 1207, Nieuwegein, The Netherlands

(Received 13 April 2012; accepted 3 July 2012; published online 23 July 2012)

The mathematical field of bifurcation theory is extended to be applicable to 1-dimensionally

resolved systems of nonlinear partial differential equations, aimed at the determination of a certain

specific bifurcation. This extension is needed to be able to properly analyze the bifurcations of the

radial transport in magnetically confined fusion plasmas. This is of special interest when describing

the transition from the low-energy-confinement state to the high-energy-confinement state of the

radial transport in fusion plasmas (i.e., the L-H transition), because the nonlinear dynamical

behavior during the transition corresponds to the dynamical behavior of a system containing such a

specific bifurcation. This bifurcation determines how the three types (sharp, smooth, and

oscillating) of observed L-H transitions are organized as function of all the parameters contained in

the model. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739227]

I. INTRODUCTION

The transport from the hot core to the cold edge of

magnetically confined fusion plasmas, like the tokamak,

determines the energy confinement and therewith the per-

formance of the fusion reactor. This radial transport is domi-

nated by turbulence which greatly limits the pressure build

up in the core. However, under certain circumstances, the

plasma reorganizes to a self-sustained state in which locally

the turbulence is suppressed. This bifurcation in the radial

transport arises when, for instance, the heating power

exceeds a threshold value. The resulting state of the plasma

is called the high-confinement-mode, or H-mode, and was

first discovered by the ASDEX Team in 1982.1 The physical

mechanism causing this transition from the L-mode (low-

confinement-mode) to the H-mode is not yet fully identi-

fied;2 however, the nonlinear dynamics observed during the

L-H transition can be identified as certain fundamental bifur-

cations, which give directions to the possible underlying

dynamical equations. Bifurcation theory categorizes all topo-

logical changes of the solutions of dynamical systems as

function of a corresponding control parameter. The L-H and

H-L transitions are quite naturally characterized as fold

bifurcations, which describe the creation and disappearance

of stationary solutions by slight changes of the relevant

parameters. This fold bifurcation then describes the sudden

disappearance of the L-mode stationary state by increasing

the heating power slightly above a threshold value, therefore

forcing the system to sharply transit to the only stationary

state left, i.e., the H-mode. Because the back transition from

the H-mode to the L-mode occurs at a different value of the

heating power, there must be a separate fold bifurcation

causing the disappearance of the H-mode. Thus, two separate

fold bifurcations are needed to describe hysteresis like

behavior. With bifurcation theory, it is proven that the exis-

tence and magnitude of the hysteresis between L-H and H-L

transitions can be controlled by two types of parameters.

By varying the first type of parameter, the disappearance of

hysteresis occurs when the two fold bifurcations meet in a

so-called cusp bifurcation. Varying the second type of

parameter can cause the hysteresis (two stable solutions) to

be replaced by limit cycle oscillations (no stable solutions)

due to a Hopf bifurcation of the system. These two different

regimes where the hysteresis has disappeared are also

observed in tokamak plasmas. The first one results in smooth

transitions3 for both the L-H and H-L transitions without any

bifurcations. The second one results in oscillatory behavior

corresponding to a phase of dithering H-mode2,4 before the

system settles into the final H-mode. How these different

types of L-H transition phenomena are ordered relative to

each other as function of the parameters of the model is

determined by the underlying bifurcations. Indeed, hysteresis

behavior in a dynamical system is governed by two separate

fold bifurcations. As noted before, there are two ways of

destroying this hysteresis behavior according to bifurcation

theory. Correspondingly, there are two types of parameters

which will do this. One leading to the cusp bifurcation at

which the magnitude of the hysteresis has shrunk to zero,

and the other leading to a Hopf bifurcation due to which the

hysteresis is replaced by oscillations. These two separate

directions in parameter space branch off out of the underly-

ing co-dimension 3 bifurcation. With the analysis of this

bifurcation, it is possible to find with which parameter or

combination of parameters the system evolves towards the

different transition regimes [sharp (i), smooth (ii), and oscil-

lating (iii)], and simultaneously to determine the threshold

values of these parameters or combination of parameters.

The lowest order dynamical system containing this co-

dimension 3 bifurcation is the FitzHugh-Nagumo model5,6

_x ¼ �a� bx� x3 þ cy; _y ¼ �x� y; (1)

which allows a clear visualization of the different types of

directions for the different bifurcations and therewith thea)w.weymiens@differ.nl.
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fundamental structure of the ordering for the different types of

L-H transition phenomena around a co-dimension 3 bifurca-

tion. For c¼ 0, the steady state solutions obviously can have

one or multiple possibilities depending on the parameters a and

b. The number of fixed points can only be changed at the fold

bifurcations of the system which determine the characteristic

cusp-shaped curve plotted in Fig. 1(a) bounding the region with

multiple solutions. This directly indicates that the b-parameter

is the one which can shrink the hysteresis to vanishing size by

merging the two fold bifurcations at the origin of the graph,

i.e., the cusp bifurcation. For c 6¼ 0, the bifurcation structure of

the system stays actually exactly the same, only until c is

increased above some threshold value ccrit ¼ 1 a region of limit

cycle solutions will appear, i.e., the shaded region in Fig. 1(b),

which covers the cusp bifurcation and its fold bifurcations

branching off of it. Passing through this region of oscillations

(iii), indeed, no hysteresis will be present.

Thus, knowing that this co-dimension 3 bifurcation is

present in a dynamical system, it is automatically proven

that this system contains sharp transitions between different

stationary states which exhibit hysteresis, that there are also

smooth transitions between the different states, and that there

are oscillatory transitions (see Fig. 2). If a detailed model for

the edge transport barrier dynamics contains such a co-

dimension 3 bifurcation, it is clear that the regions of param-

eter space with L-mode, H-mode, hysteresis, and dithering

are organized in the same way as the (a, b, c) parameter

space of system Eq. (1). The determination of these bifurca-

tions is straightforwardly possible in coupled systems of or-

dinary differential equations (ODEs)7 as given above.

However, for the determination of bifurcations in radially

resolved systems described with partial differential equations

(PDEs), the bifurcation theory is strongly lacking. In Sec. II,

a new analysis method is developed especially aimed at

determining this co-dimension 3 bifurcation in systems of

PDEs, which is, however, also applicable on the ODE cases

as is shown in Sec. III. In Sec. IV, the new method is applied

onto a 1-dimensional transport model for the L-H transition

introduced by Zohm.8 It then becomes clear how to use this

new method on radially extended dynamical models, leading

to clear criteria for different types of transition behavior and

the corresponding threshold values.

II. GENERALIZED BIFURCATION THEORY

In this section, a general method is introduced to find a

co-dimension 3 bifurcation in dynamical systems specified

both by PDEs and by ODEs. This is possible by realizing

that one can view a system of PDEs as an infinite system of

ODEs. Where one of these ODEs describes the evolution of

a single point along the spatial direction coupled to its neigh-

boring points which are separately described by their own

ODE. So an infinite set of these coupled ODEs construct the

entire spatial direction

_v ¼ fðvÞ; (2)

where v will be a finite dimensional vector for a set of ODEs

and an infinite-dimensional vector for a set of PDEs, and f

can be any (nonlinear) operator not incorporating spatial

derivatives. The steady states of such a system are simply

defined as

fðv0Þ ¼ 0: (3)

For the co-dimension 3 bifurcation of our interest, it is suffi-

cient to Taylor expand the system up to second order around

the fixed points

FIG. 1. (a) The fold bifurcations surrounding the region with multiple stable

stationary states (which are indicated by the numbers) that merge at the cusp

bifurcation at the origin of the graph. The cusp bifurcation divides the pa-

rameter space in a region (bþ c < 0), where sharp transition with hysteresis

occurs [trajectory (i)], and a region (bþ c > 0) with smooth transitions

without bifurcations [trajectory (ii)]. This structure is valid for all c < ccrit in

the FitzHugh-Nagumo model. (b) If c > ccrit the cusp bifurcation gets cov-

ered with a region of limit cycle solutions, indicated by the shaded area,

where the solid curve corresponds to the Hopf bifurcation and the dashed

curve to a nonlocal bifurcation (described in Sec. III) both generating the

limit cycles. Thus, the region to the left [containing trajectory (i) describing

a sharp transition] and the region to the right [containing trajectory (ii)

describing a smooth transition] are now separated by a region with oscilla-

tory transitions [the shaded region containing trajectory (iii)].

FIG. 2. The three qualitatively different transition solutions of the FitzHugh-Nagumo model for c¼ 3, corresponding to the trajectories of Fig. 1. (i) b¼�5,

the black curve is the solution of the forward transition indicated by trajectory (i). The grey curve corresponds to the inverse trajectory describing the back tran-

sition, clearly showing hysteresis. (ii) b¼ 0, the solution of the evolution during a smooth transition. (iii) b¼�2.5, with increasing control parameter a(t), the

system enters a regime of oscillatory solutions (limit cycles) until a second threshold is reached, after which the system settles into the other stationary state.
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_v ’ fðv0Þ þM1ðv� v0Þ þ
1

2
ðM2ðv� v0ÞÞðv� v0Þ; (4)

where the linear operator M1 ¼ @f=@v (i.e., 2-tensor) and the

operator M2 ¼ @2f=@v@v (i.e., 3-tensor); note that in the fi-

nite dimensional cases, the matrix multiplications are

implied. If the parameters of the system are chosen such that

the system is at the fold bifurcation, the linear operator M1

becomes singular, implying a single vanishing eigenvalue

with eigenvector v1. This is also true in the adjoint picture:

the image space of M1 has co-dimension 1. Thus, at the fold

bifurcation, there are vectors v1 and u1 which satisfy

M1v1 ¼ 0;

uT
1 M1 ¼ 0;

(5)

The two different possibilities of destroying the hystere-

sis behavior, as described in Sec. I, are caused by two differ-

ent types of bifurcations: the cusp bifurcation and the Hopf

bifurcation. The Hopf bifurcation arises from an underlying

bifurcation, namely, the Bogdanov-Takens bifurcation7 at

which the Hopf bifurcation coincides with one of the fold

bifurcations. At the cusp bifurcation, both the fold bifurca-

tions coincide; if all three bifurcations coincide (i.e., the two

fold bifurcation and the Hopf bifurcation) the system is at the

co-dimension 3 bifurcation. At this point, in parameter space,

the system is both at the cusp bifurcation and the Bogdanov-

Takens bifurcation at the same time, so combining the two

restrictions for the cusp bifurcation and the Bogdanov-

Takens bifurcation leads to the subspace of parameter space

at which the co-dimension 3 bifurcation occurs. First of all,

the cusp bifurcation is given by the point where the two fold

bifurcations meet tangentially, so when the vectors v1 and u1

can be found (at the fold bifurcation) additionally the second

term in the Taylor expansion [Eq. (4)] evaluated in the same

direction as the fold condition must vanish,

uT
1 ðM2v1Þv1 ¼ 0: (6)

Second, for the Bogdanov-Takens bifurcation, we need

to combine the Hopf bifurcation together with the fold bifur-

cation. At the Hopf bifurcation, the real part of a pair of

complex conjugated eigenvalues vanishes. At the fold bifur-

cation, the imaginary and real part of an eigenvalue vanishes.

Thus, at the Bogdanov-Takens bifurcation, a pair of eigen-

values must become zero simultaneously (i.e., k2 ¼ 0).

Then, according to the Cayley-Hamilton theorem,9 there

must be some generalized eigenvector, v2, and a generalized

co-eigenvector, u2, satisfying

M2
1v2 ¼ 0; uT

2 M2
1 ¼ 0: (7)

At this Bogdanov-Takens bifurcation point, these general-

ized eigenvectors can be related to the eigenvectors which

have a vanishing eigenvalue at this point, leading to

M1v2 ¼ v1; uT
2 M1 ¼ uT

1 : (8)

These conditions imply

uT
2 � v1 ¼ uT

1 � v2: (9)

The Bogdanov-Takens bifurcation will be given by the fold

condition [Eq. (5)] combined with the condition

uT
1 � v1 ¼ 0: (10)

Summarizing, if in a general dynamical system, two vectors,

v1 and u1, can be found which simultaneously satisfy

M1v1 ¼ 0;

uT
1 M1 ¼ 0;

uT
1 ðM2v1Þv1 ¼ 0;

uT
1 � v1 ¼ 0;

(11)

then the system contains the co-dimension 3 bifurcation.

This analysis by itself is sufficient to conclude that the

considered system has multiple steady states between which

sharp transitions, smooth transitions, and oscillating transi-

tions can occur and, moreover, that the sharp transitions

exhibit hysteresis between the forward and backward transi-

tions. However, a bit more extended bifurcation analysis

might also specify for which parameter values these different

types of transition take place and what the threshold values

will be. For this, it is necessary to get a condition for the

fold bifurcation and for the Hopf bifurcation separately. The

fold bifurcation can be found quite straightforwardly by

qualitatively analyzing the steady state conditions, as will

become clear in Secs. III and IV where an example of a set

of coupled ordinary and partial differential equations are

considered, respectively. The Hopf bifurcation, however,

needs some further investigation. It is already noted that the

Hopf bifurcation arises out of a Bogdanov-Takens bifurca-

tion at which there are two simultaneously vanishing eigen-

values. The Hopf bifurcation can be found by unfolding the

Bogdanov-Takens bifurcation in all its parameters and by

identifying the specific direction which keeps the eigenval-

ues purely imaginary, i.e., the Hopf condition

Mðv� vnewÞ ¼ ixðv� vnewÞ; (12)

where M ¼ M1 þ dM is the linear operator of the system

with the perturbed parameters. Additionally, it must be noted

that the steady state solution, v0 ! vnew, is also shifted. The

complex solution can be decomposed in factors of ix where

the real frequency x is the small parameter which reduces to

zero at the Bogdanov-Takens bifurcation,

v ¼ vnew þ ðv1 þ ixv2 � x2v3 � ix3v4Þeixt: (13)

Consistent ordering requires that dM ¼ x2M3, combin-

ing the same orders of ix in the eigenvalue equation [Eq.

(12)] then leads to

M1v1 ¼ 0;

M1v2 ¼ v1;

M3v1 �M1v3 ¼ �v2;

M3v2 �M1v4 ¼ �v3;

(14)
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where the first two orders give the Bogadanov-Takens point

and the last two orders give the change of stability of the sta-

tionary states in the neighborhood of the Bogdanov-Takens

point for small x, i.e., the Hopf bifurcation. To avoid deter-

mining the vectors v3 and v4, these equations can be dotted

into the adjoint vectors uT
1 and uT

2 , while using the Bogdanov-

Takens properties of M1, and smartly combining them leaves

us with a single condition for the Hopf bifurcation that is

invariant under renormalizations of the perturbation operator

M3,

uT
1 � v2ðuT

1 M3v2 þ uT
2 M3v1Þ ¼ uT

2 � v2ðuT
1 M3v1Þ: (15)

Note that all expressions, including this result, are invariant

under transformations,

u2 ! u2 þ kuu1; ðu1; u2Þ ! juðu1; u2Þ;
v2 ! v2 þ kvv1; ðv1; v2Þ ! jvðv1; v2Þ:

(16)

In Sec. III, this new analysis is proved to work properly

for the already known bifurcations of a set of ordinary differ-

ential equations which contain the co-dimension 3 bifurca-

tion. Thereafter, the method can reliably be used for the

bifurcation analysis of a 1-dimensional transport model pro-

posed in 1994 by Zohm8 to explain the dithering behavior

during L-H transitions.

III. FINITE DIMENSIONAL CASE

To test the new general method for finding the co-

dimension 3 bifurcation in a set of coupled dynamical equa-

tions, it will now be applied on an already known finite

dimensional example of a system containing this bifurcation.

Moreover, it helps to get a feeling for the abstract machinery

developed in Sec. II. As introduced in Sec. I, the FitzHugh-

Nagumo model [Eq. (1)] is such a finite dimensional model

which contains the co-dimension 3 bifurcation. The steady

states are straightforwardly found to be satisfying y0 ¼ �x0

and x3
0 þ ðbþ cÞx0 þ a ¼ 0. Taylor expanding this system

up to second order around these stationary state solutions

leads to a linear operator

M1 ¼ �3x2
0 � b
�1

c
�1

� �
: (17)

The corresponding eigenvector with vanishing eigenvalue

and its adjoint can be given by

v1 ¼
1

�1

� �
and u1 ¼

1

c

� �
; (18)

as long as the fold condition is satisfied,

det M1 ¼ 3x2
0 þ bþ c ¼ 0; (19)

which corresponds to a surface in the 3-dimensional parame-

ter space given by

a2 ¼ � 4

27
ðbþ cÞ3: (20)

This indeed leads to the characteristic cusp shaped curves

which are plotted in Fig. 3 with the long dashed lines. For the

cusp bifurcation, where the fold bifurcations come together, it

is necessary to consider the second order term consisting of

the 3-tensor M2; in this case, however, seven of the eight com-

ponents are zero and only the dx2-component is nonzero, lead-

ing to a simple restriction for the cusp bifurcation,

uT
1 ðM2v1Þv1 ¼ �6x0 ¼ 0: (21)

Combining this with the fold condition leads to a line in pa-

rameter space given by

bcusp ¼ �ccusp and acusp ¼ 0: (22)

The Bogdanov-Takens bifurcation can straightforwardly be

found to be

uT
1 � v1 ¼ 1� c ¼ 0; (23)

leading to the Bogdanov-Takens curve in parameter space

given by

cBT ¼ 1 and a2
BT ¼ �

4

27
ðbBT þ 1Þ3: (24)

The intersection of these two lines gives the point in parame-

ter space at which the co-dimension 3 bifurcation occurs,

ða; b; cÞ ¼ ð0;�1; 1Þ: (25)

In conclusion, this model indeed has the dynamical

behavior corresponding to a co-dimension 3 bifurcation,

which is ordered according to the description in Sec. I. The

fold bifurcations are already found to have their characteris-

tic shape. However, it would be nice if this match can also

be done for the Hopf bifurcation. For the determination of

the Hopf bifurcation, it is necessary to unfold the parameters

around the Bogdanov-Takens bifurcation in the direction

which keeps the eigenvalues purely imaginary, this leads to

the following perturbed linear operator:

FIG. 3. 2D parameter space for fixed c > 1 with two fold bifurcations

(long-dashed curves) merging into a cusp bifurcation at a ¼ bþ c ¼ 0, and

a Hopf bifurcation indicated by the solid curve. The short-dashed curve, cor-

responding to a nonlocal bifurcation, ends at Bautin bifurcations7 (black

dots). The shaded area corresponds to the parameter range where stable limit

cycle solutions of the system exist.
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M ¼ M1 þ dM ¼ �3x2
new � bBT � db
�1

cBT þ dc
�1

� �
: (26)

Subtracting the linear operator evaluated at the

Bogdanov-Takens point, M1, leaves the perturbation of the

linear operator to be

x2M3 ¼ dM ¼
��3x2

new � ðbBT þ dbÞ � 1

�1

dc
�1

�
: (27)

And xnew is the new shifted fixed point, satisfying

�ðaBT þ daÞ � ðbBT þ dbþ cBT þ dcÞxnew � x3
new ¼ 0:

(28)

This only leaves the determination of the generalized

eigenvectors, v2 and u2, before the general Hopf criterium

[Eq. (15)] can be used. Choose them to be

v2 ¼
2

�1

� �
and u2 ¼

2

1

� �
; (29)

such that the Hopf bifurcation restriction becomes

�3x2
new � ðbBT þ dbÞ � 1 ¼ 0; (30)

which leads to a surface in parameter space directly in terms

of the Bogdanov-Takens values plus their perturbation.

Since, this analysis is true for an arbitrarily sized perturba-

tion, it is allowed to redefine the shifted parameters as the

original parameters (e.g., aBT þ da ¼ a) such that the Hopf

bifurcation is described by the following expression:

a2 ¼ � 4

27
ðbþ 1Þ bþ 3

2
c� 1

2

� �2

; (31)

which is shown as a solid curve in Fig. 3. In the region of pa-

rameter space surrounded by the Hopf bifurcation, there are

no stable fixed points and there is one stable limit cycle caus-

ing the oscillatory behavior. Such a region only exists for

c > ccrit ¼ 1 and its size increases with c. This indeed corre-

sponds to the co-dimension 3 bifurcation from which this

Hopf bifurcation must branch off, as was expected.

Further bifurcation analysis reveals a tiny region of pa-

rameter space outside the Hopf bifurcation curve where there

are still stable limit cycle solutions (i.e., in the shaded

region) of the system surrounded by the short-dashed curve

in Fig. 3. These cannot be found by the local analysis

described in Secs. I–III, where a Taylor expansion around

the fixed points is used. This global bifurcation appears

when a pair of limit cycles gets created (one stable and one

unstable) and separate from each other. This does not happen

locally around a fixed point, but globally along the entire

contour of both limit cycles simultaneously. Importantly is

to note that also this bifurcation is a characteristic of the co-

dimension 3 bifurcation, so even though the exact boundary

of this global bifurcation is probably impossible to determine

in an infinite dimensional system of equations, it will still

enlarge the region of stable limit cycles in that case.

IV. TRANSPORT MODEL FOR THE L-H TRANSITION

The radial transport in a fully ionized fusion plasma

from the hot core towards the cold edge can effectively be

described by a continuity equation for the density and the

energy

@n

@t
¼ � @C

@r
; (32a)

@

@t

nT

c� 1

� �
¼ � @q

@r
; (32b)

for this it is assumed that the transport barrier occurs in a

thin layer at the edge such that a slab geometry description is

allowed. Furthermore, a single temperature description is

used, Ti ¼ Te ¼ T, and it is assumed that all the particle and

energy deposition into the plasma is somewhere in the core

outside our modeled domain, such that there are no sources

inside the domain and all the particles and energy enter as a

flux which is fixed by the boundary conditions. Inside the do-

main, the particle and heat flux are described by

C ¼ �D
@n

@r
;

q ¼ �vn
@T

@r
þ CT

c� 1
:

(33)

The particle flux, C, is governed by some effective parti-

cle diffusion due to the anomalous transport of electrons and

ions. The heat flux, q, is a combination of some effective

heat diffusion and heat advection due to the net flow

described by the particle flux, with c the adiabatic index. A

change from low confinement to high confinement can,

therefore, be described by a reduction of the transport coeffi-

cients: particle diffusivity, D, and heat conductivity v. The

exact mechanism reducing the anomalous transport coeffi-

cients is not yet known; however, some theories10–12 and

experiments13,14 suggest that flows in the plasma can tear

apart turbulent eddies reducing the radial extent of the trans-

ported particles and heat. In the transport model used in this

paper, only a mean flow due to E� B-drift is used, such that

the transport coefficients become a direct function of the nor-

malized radial electric field,

Z ¼
qpeEr

Ti
; (34)

as is shown in Fig. 4.

To describe the dynamics during possible transitions of

the transport, the evolution of the radial electric field8,15,16

must be taken into account, via Ampères law which balances

temporal changes of the radial electric field with the radial

currents,

e
@Z

@t
¼ l

@2Z

@r2
þ cn

T

n2

@n

@r
þ cT

n

@T

@r
� GðZÞ; (35)

where e ¼ B2
p=ðB2�iÞ is the dielectric constant of the polar-

ized plasma. The radial currents are caused by the anomalous

shear viscosity of the E� B-drift17 (first term of right-hand

072309-5 Weymiens et al. Phys. Plasmas 19, 072309 (2012)

Downloaded 01 Oct 2012 to 131.155.151.8. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



side (RHS) where l � q2
p is the ratio of viscosity to collision

frequency). The second and third terms are due to the bipolar

part of the anomalous cross field flux, i.e., the excess flux of

electrons relative to that of ions.18 Furthermore, radial cur-

rents can be generated due to multiple different mecha-

nisms17,18 which depend on the radial electric field itself, e.g.,

ion orbit losses, bulk viscosity (due to the inhomogeneity

of the magnetic field), Reynolds stress, collisional processes

(e.g., ripple diffusion, gyro viscosity), charge exchange,

external current drive, etc., resulting in a function of the

radial electric field with many terms. However, the cusp

bifurcation of the radial electric field and the corresponding

transition behavior in its neighborhood in parameter space

can only occur around an inflection point of this function.

Therefore, it is sufficient to Taylor expand this function of

many terms around its inflection point, because the character-

istic transition behavior described in Sec. I will occur right

there. This leads to an effective description of the last term of

the electric field evolution equation

GðZÞ ¼ aþ bZ þ Z3: (36)

This closed set of coupled partial differential equations [Eqs.

(32a), (32b), and (35)] is evaluated on a spatial region which

must be considerably larger than the size of the transport bar-

rier to exclude boundary effects, but small enough that the

core boundary stays away from the particle and heat sources

in the core of the plasma. The outer edge of the plasma at the

scrape-off layer (SOL) side is fixed at r¼ 0. The inner

boundary of the considered spatial region is located at

r ¼ �1, this is allowed because compared to the size of the

transport barrier the inner boundary is far enough away. Due

to the absence of sources in the considered region, the total

amount of particles and heat enters as a constant flux at this

inner boundary

Cðr ¼ �1Þ ¼ constant ¼C�1;

qðr ¼ �1Þ ¼ constant ¼ q�1:
(37)

At the other boundary of the system, i.e., the outer edge of

the plasma, the temperature, and the density are forced to

drop toward zero with a certain e-folding length into the

scrape-off layer,

T0e
Te
¼ �1

kT
and

n0e
ne
¼ �1

kn
; (38)

with constant gradient lengths kT and kn, and where from

now on the subscript “e” is used for SOL edge values and

primes will denote total derivatives with respect to space.

Due to the absence of sources, the continuity equations

can be integrated such that the steady state particle- and

heat-fluxes are constant over the entire spatial domain

(q0 ¼ 0 and C0 ¼ 0, since we assume slab geometry) and

can, therefore, be matched to the fluxes coming from the

core,

0 ¼ �C�1 � DðZ0Þn00;

0 ¼ �q�1 � vðZ0Þn0T00 þ
T0

c� 1
C�1;

0 ¼ �GðZ0Þ þ cn
T0n00
n2

0

þ cT
T00
n0

þ lZ000 ;

(39)

where the steady state solutions are indicated with a sub-

script “0”. Because it is not expected that the L-H transition

behavior is initiated by some specific difference between the

transport coefficients, it is not necessary to keep track of

them separately. So, without the loss of generality, it is

allowed to make the following assumption on the transport

coefficients:

vðZÞ ¼ DðZÞ
fðc� 1Þ : (40)

This assumption allows us to solve the steady state density

and temperature profiles as a function of the particle diffusiv-

ity alone,

n00ðrÞ ¼ �
C�1

D
; (41a)

n0ðrÞ ¼ n0e � C�1

ðr

0

dr

D
; (41b)

T00ðrÞ ¼
fDðZeÞ
knD

ðT0e � T�1Þn̂�1�f; (41c)

T0ðrÞ ¼ T�1 þ ðT0e � T�1Þn̂�f; (41d)

with

n̂ � n0

n0e
; n0e ¼

C�1kn

DðZeÞ
;

T0e ¼
T�1

1þ kn

fkT

; T�1 ¼ ðc� 1Þ q�1
C�1

;
(42)

where the functions of the radial electric field, like D and G,

are always functions of the steady state profile, Z0, because

deviations from steady state of those functions will always be

written as a Taylor-expansion, e.g., DðZÞ � DðZ0Þ þDZZ1.

So, only the steady state profile of the radial electric field

is needed, because the resulting diffusivity profile leads

straightforwardly to the density and temperature profiles.

FIG. 4. The dependence of the transport coefficients (particle diffusivity, D,

and heat conductivity, v) on the normalized radial electric field, Z. Neither

the exact shape of the curve is important, nor the relative sizes of the minima

and maxima as long as there is some significant difference between the mini-

mum and maximum values, and the transition occurs for both transport coef-

ficients around the same value of Z, which is chosen to be zero but can be

shifted towards any other value.
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Thus, consider the steady state equation for the radial electric

field

0 ¼ G� cT
T0
0

n0

� cn
T0n0

0

n2
0

;

¼ G� T�1n00
n2

0

ðcn þ cgn̂�fÞ; cg �
fcT � cn

1þ f kT

kn

; (43)

where the l-term is neglected. This simplification is allowed

by realizing that the radial electric field jumps from a L-mode

value [positive root of Eq. (43)] at the core side to a H-mode

value [negative root of Eq. (43)] inside the transport barrier.

This instantaneous jump (for l ¼ 0) is only smeared out due

to this extra second derivative term (for l 6¼ 0) in a region of

the order of l� 1. Thus, in the majority of the plasma, the

value of the radial electric field is determined by the roots of

Eq. (43) which are given by

�GðZÞDðZÞ ¼ T�1DðZeÞ2

C�1k2
n

ðcnn̂�2 þ cgn̂�f�2Þ; (44)

where the left-hand side (LHS) is a pure function of the ra-

dial electric field and the RHS is a pure function of the den-

sity, and the density is a smooth monotonic function of the

radius starting from a constant n0e at r¼ 0 and increasing to

infinity at r ¼ �1. Therefore the RHS of Eq. (44) (and

therefore also the product �GD) is a smooth monotonic

function of the radius too, growing from zero at the core

boundary to a constant value at the edge given by

�GðZeÞDðZeÞ ¼ ðcn þ cgÞ
ðc� 1Þq�1

C2
�1k2

n

DðZeÞ2: (45)

This restriction of the edge radial electric field corresponds

to the intersection of the tilted dashed line with the curved

solid line plotted in Figure 5.

From this figure, it can be clearly seen that the system

can have high diffusivity (L-mode transport) or low diffusiv-

ity (H-mode transport) at the edge of the plasma depending

on the slope of the tilted dashed line, h,

h ¼ C2
�1k2

n

q�1ðc� 1Þ
1

ðcn þ cgÞ
: (46)

This parameter combines most of the control parameters

which can move the system into and out of the H-mode. The

intersection in Fig. 5 defined in Eq. (45) determines the edge

value of the radial electric field, Ze. Combining this with the

knowledge about the monotonic function of the radius �GD
gives the steady state profile for Z and, therefore, also for D
such that we can use Eqs. (41b) and (41d) to produce the

steady state profiles for the density and temperature of this

system. As is already suspected from Fig. 5, there will be dif-

ferent types of solutions for different values of the parameter

h. To find the transition behavior and its threshold values,

the bifurcation analysis of Sec. III is applied to this set of

PDEs.

For the bifurcation analysis, it is necessary to Taylor

expand the system to second order around the steady states

which we just found. The linear operator becomes

M1 ¼
@f

@v
¼

rDr 0 rn00DZ

rDT00 þrDT0r rDn00 þrDn0r rðn0T00 þ n00T0ÞDZ

�2cn
T0n00
n3

0

� cT
T00
n2

0

þ cT

n2
0

r cn
n00
n2

0

þ cT

n0

r �GZ ðþlr2Þ

0
BB@

1
CCA; (47)

with this it is possible to construct the eigenfunctions which

satisfy M1v1 ¼ 0 where v1 ¼ ðvn; vT ; vZÞT together with the

co-eigenvector, u1 ¼ ðun; uT ; uZÞT , satisfying uT
1 M1 ¼ 0 and

therewith find the fold bifurcation of the system. Doing the

whole analysis, it turns out that the existence condition for

v1 and u1 reduces to a condition on the edge values. This

reduction exists because the conservation laws for energy

and density in steady state have a particle and heat flux

which is constant over the whole radial domain, which are,

therefore, equal to their boundary values. The perturbed sys-

tem can also be integrated which leads to the integration con-

stants, C1 and q1; however, if these would be nonzero, they

would also add to the particle and heat flux at the edge,

which is not allowed because these nonzero perturbations do

not satisfy the boundary conditions. The perturbed system is,

therefore, restricted to integration constants C1 ¼ q1 ¼ 0

FIG. 5. The steady state solution at the edge of the plasma, Ze, is determined

by the intersection of the solid curve (where the arrows indicate the mono-

tonic increase of Z) with the tilted dashed line, as is dictated by Eq. (45).
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such that the boundary values of the eigenfunctions, vn, vT ,

and vZ, will restrict the eventual profile of the perturbation,

similar to what was possible for the steady states. Eventually,

it turns out that it is only possible to find the eigenfunctions

with a vanishing eigenvalue if and only if

d

dZ

G

D

� ����
e
¼ 0: (48)

This can indeed be recognized visually in the edge steady

state condition for the radial electric field (plotted in Fig. 5),

as is shown by the threshold values of h in Fig. 6(a).

The cusp condition is defined as uT
1 ðM2v1Þv1 ¼ 0; the

3-tensor M2 ¼ @M1=@v0 can straightforwardly be found by

differentiating the first order operator M1 with respect to v and

then contracting it twice with the eigenvector v1 after which

the inner product must be taken with the co-eigenvector u1.

This leads again to an expression of the radial electric field at

the edge as is visualized in Fig. 6(b), at which the two fold

bifurcations merge together,

d2

dZ2

G

D

� ����
e
¼ 0: (49)

For the determination of the co-dimension 3 bifurcation, it is

additionally necessary to find the Bogdanov-Takens bifurca-

tion by checking for which parameters the following condi-

tion is satisfied:

ð0

�1
ðunvn þ uTvT þ uZvZÞdx ¼ 0: (50)

Combining the fold condition, the cusp condition, and the

Bogdanov-Takens condition leads to the point in parameters

space corresponding to the co-dimension 3 bifurcation

ða; b; hÞ ¼ ð0; 0;1Þ: (51)

Thus, it is now proven that this system contains all the

transition dynamics which are related to this co-dimension 3

bifurcation, i.e., sharp, smooth and oscillating transitions of

the radial transport. It would also be very useful to be able to

find the exact parameter space of where these different types

of transitions may occur. For that it is necessary to find a sep-

arate condition for the Hopf bifurcations as was argued at the

end of Sec. II. Following the expression of Eq. (15), the gen-

eralized eigenvector v2 and generalized co-eigenvector u2

are needed. These can be found by solving Eq. (8). This sys-

tem can be integrated leading to integration constants, C2

and q2, which depend on the normal eigenfunctions vn

and vT ,

C2 ¼
ð0

�1
vndr; (52a)

q2 ¼
ð0

�1

T0vn þ n0vT

c� 1
dr: (52b)

For M3 the linear operator M1 needs to be perturbed in

all its parameters leading to an enormous matrix which must

be contracted multiple times with different eigenvectors to

generate the right Hopf criterium. This is possible, however,

the extensive algebra is omitted here and replaced by a less

formal analysis of guessing when the steady state profiles

will destabilize, eventually ending up with the same result.

From the steady state restriction for the radial electric field

of Eq. (44), it was already noted that the product of functions

–G(Z) D(Z) will always be a monotonic function of the ra-

dius. However, if the slope h is decreased from L-mode val-

ues towards H-mode values, at a certain point just before

reaching the fold bifurcation –GD will change from increas-

ing to decreasing at the edge. Because Z is a continuous

function of the radius the profile of D2 is found by following

the solid curve along the direction of the arrows in Fig. 5.

This means that for those values of h also the function –GD
must first increase when going inwards before it will

decrease again. However, this was not allowed because –GD
must be monotonous, which indicates that the steady state L-

mode profile must turn unstable already before the fold bifur-

cation is reached at those points where

d

dZ
ðGDÞ

���
e
¼ 0: (53)

This indeed leads to the required Hopf bifurcation condition.

The same reasoning can be applied for the back transition;

both transitions are plotted in Fig. 7(a).

It can be noted from Fig. 7 that the eventual transition

behavior does qualitatively change when the order changes

in which the bifurcations are encountered when decreasing

h. For example, in Fig. 7(a) at hH�L, the H-mode becomes

stable due to the Hopf bifurcation of that stationary state; so

by the time hL�H is reached and the L-mode turns unstable,

the system will rapidly transit to the stable H-mode. The op-

posite holds for the back transition, when increasing h first,

the L-mode becomes stable again, and when hH�L is reached,

the system rapidly jumps towards the stable L-mode. Both

transitions occur at different values of the control parameter

h leading to hysteresis behavior. If another type of parameter

is changed the two Hopf bifurcations might change order,

leading to Fig. 7(b) where there are still sharp transition only

without the hysteresis. Until the Hopf bifurcations are or-

dered as in Fig. 7(c), where the L-mode already becomes

FIG. 6. (a) The visual representation of the fold bifurcation, Eq. (48), giving

the threshold values (hf 1 and hf 2) of the control parameter. (b) The two fold

bifurcations merge into a cusp bifurcation (hf 1 ¼ hf 2 ¼ hcusp) by slight

changes in the nonlinear function G(Z) [e.g., the b-parameter of Eq. (36)]

until the cusp condition is satisfied [see Eq. (49)].
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unstable while the H-mode is also unstable. At those points

in parameter space where this holds, the edge stationary state

cannot be on a stable fixed point but will be on a stable limit

cycle solution of the system. So this will be the parameter re-

gime of this model where the dithering solutions are situated.

The same type of parameter can be changed even further

such that both Hopf bifurcations merge and disappear such

that there are only smooth transitions left as is indicated in

Fig. 7(d). These four different types of transitions can be

indicated in a complete parameter scan of this type of param-

eter (for this model for instance the b-parameter). As can be

seen from Fig. 8, this parameter space is qualitatively similar

to the parameter space of the FitzHugh-Nagumo model (see

Fig. 3), which must be the case because they both have the

same underlying bifurcation of co-dimension 3.

V. CONCLUSION AND DISCUSSION

In this paper, a general method has been introduced to

find a certain bifurcation of co-dimension 3 in systems of

both partial differential equations and ordinary differential

equations. This is very useful to predict the complex nonlin-

ear dynamical behavior of systems which describe spatial

and temporal evolutions simultaneously. This can especially

be exploited in systems which exhibit self generated transi-

tions, such as the L-H transition in magnetically confined

fusion plasmas. This co-dimension 3 bifurcation combines

two different ways of controlling the existence and magni-

tude of the hysteresis in such systems. One is to merge the

two separate fold bifurcations (which cause the separate L-H

and H-L transitions), eventually leading to smooth transi-

tions. The other way changes the two stable stationary states

(L-mode and H-mode) into unstable stationary states leading

to a stable limit cycle solution of the system, resulting in

dithering-like transitions. Therefore, this bifurcation is par-

ticularly useful for L-H transition models, which must

describe these observed transition phenomena. Thus, finding

this bifurcation of co-dimension 3 in any dynamical system

makes that system a candidate for a L-H transition model.

The other way around if this bifurcation is not present in a

model for the L-H transition, it is not capable of describing

all transition phenomena.

Besides this global criterium for L-H transitions, addi-

tional threshold criteria for the L-H and H-L transitions fol-

low directly from the bifurcation analysis in terms of all

relevant parameters incorporated in the model. For the exam-

ple of Zohm’s model,8 this leads to the physical control pa-

rameters nicely combined in the single bifurcation parameter

h [defined in Eq. (46)]. So, as is expected, increasing the

heating power will lead to increasing the heat flux coming

from the core, q�1, and with that it decreases h towards its

H-mode value. Remarkably, however, this model predicts

that increasing the particle flux has the opposite effect of the

heating power. This may be interpreted as just extra cooling

of the plasma due to these extra particles. This is not

observed probably because even in neutral beam heated plas-

mas, it is hard to increase the particle flux without heating

the plasma, also the beneficial effect of extra momentum and

flow due to these extra particles is not taken into account in

this model. Furthermore, it is noted that many other parame-

ters play a role in the L-H transition such as the edge gradi-

ent lengths determined by scrape-off layer physics.

Additionally, the exact region of parameter space where

dithering transitions are predicted is found due to the bifurca-

tion analysis, as is plotted in Fig. 8.

The usefulness of this new method for future work, is

that it is a tool which can be used to compare different L-H

transition mechanisms with one another. This can be done in

several ways, one is to do the bifurcation analysis on a com-

pletely different model and see which other parameters will

lead to the different transitions. The other is to incorporate

new mechanisms into the transport model of Zohm and see

FIG. 8. The control parameter space of the 1-D transport model, for fixed

a < 0, describing L-H transitions by decreasing h, e.g., the arrows corre-

sponding to the edge steady states visualized in Fig. 7 [(a)–(d) is from left to

right]. The short-dashed (cusp shaped) lines correspond to the two fold bifur-

cations which merge at the cusp bifurcation point (Fig. 6). The Hopf bifurca-

tion curve consists of two parts; the dashed part corresponding to the sharp

hysteresis like transitions and the solid curve surrounds the dither regime

(Fig. 7).

FIG. 7. The Hopf bifurcations of the edge stationary states in four different

cases.
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how these influence the bifurcating behavior of the model.

For instance, a more physics based description of the diffu-

sivity and conductivity can be incorporated, if this mecha-

nism would, for instance, pull the fold bifurcations further

apart, then it will probably be a lot easier to go deep into

H-mode. The size of the transport barrier and its parametric

dependencies can also be determined, because this 1-D system

also describes spatial transitions from the L-mode core to the

H-mode edge in the region where multiple stationary states

are allowed. Another possibility is to see how several mecha-

nisms (as discussed in Sec. IV) influence the parameters of

the function G(Z). The entire system can also be extended to

incorporate extra dynamical degrees of freedom, such as, for

instance, the evolution of the turbulence level in combination

with the zonal flows19–21 and/or geodesic acoustic modes.22,23
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K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Mül-

ler, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr,
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