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Abstract

Motivated by applications in production and computer-communication systems, we study an N-queue
polling system, consisting of an inner part and an outer part, and where products receive service in
batches. Type-i products arrive at the outer system according to a renewal process and accumulate into
a type-i batch. As soon as D; products have accumulated, the batch is forwarded to the inner system
where the batch is processed. The service requirement of a type-¢ batch is independent of its size D;. For
this model we study the problem of determining the combination of batch sizes D©PY) that minimizes a
weighted sum of the mean waiting times. This model does not allow for an exact analysis. Therefore,
we propose a simple closed-form approximation for DY and present a numerical approach, based
on the recently-proposed mean waiting-time approximation in [1]. Extensive numerical experimentation
shows that the numerical approach is slightly more accurate than the closed-form solution, while the
latter provides explicit insights into the dependence of the optimal batch sizes on the system parameters
and into the behavior of the system. As a by-product, we observe near-insensitivity properties of Dlert),
e.g. to higher moments of the interarrival and switch-over time distributions.

Keywords: Polling systems, renewal arrivals, batch arrivals, optimal batch sizes

1 Introduction

This paper is motivated by the stochastic economic lot scheduling problem (SELSP), where multiple stan-
dardized products have to be produced on a single machine (see [23] for a survey on the SELSP). Often-
times, in this setting a group of products is combined in a batch for production at the machine. The time
required to process such a batch depends at most weakly on the size of the batch, because the processing
itself affects the entire batch at once. Common examples are an oven that heats multiple items at once,
a paint bath which may paint several items at a time, the production of pharmaceuticals, or the blending
of gasoline (cf. [25]). Moreover, for a case study on the SELSP with batch service we refer to [24].
Batch-service processing is also widely applicable in the field of computer-communication systems, such
as videotex systems and Time Division Multiple Access (TDMA) systems [9]. Management of production
facilities often faces a complex trade-off concerning the determination of batch sizes. On the one hand, the
smaller the batch size the less product inventory is needed and the shorter the waiting times within a batch.
On the other hand, the larger the batch size the fewer batches require processing, which leads to reduction
of the workload and the waiting times for the batch as a whole. The goal of this paper is to propose and
evaluate methods for properly balancing this trade-off.

In many practical settings the products are produced according to a fixed production sequence, which
naturally leads to the modelling via a so-called polling system. A typical polling system consists of a
number of queues, attended by a single server in a fixed order. There is a body of literature available on
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non-polling queueing systems with batch service, both from a performance-evaluation perspective [6, 7],
and from a design perspective [3, 21, 25]. Despite the fact that the analysis and optimization of polling
models have been studied extensively [8, 17, 18], remarkably little attention has been paid to polling models
in combination with batch service. As an exception, Boxma et al. [2] study batch-service polling models
in which batches are served integrally. Vlasiou and Yechiali [19] study the case where the service of un-
derlying jobs may be abandoned and pushed to the batch of the next visiting period when the current visit
time is up. Optimal dynamic routing policies for these systems are studied when the server has complete
freedom of visits in [9] and when routing must be done in subsequent Hamiltonian tours in [20]. In [14],
the question is studied whether upon arrival the server should poll a station or idle until more products
have arrived at the station when the server assumes a cyclic routing mechanism. These studies mostly
assume that the server can take in any number of products for service at a time and that products arrive
according to Poisson arrival processes. For polling models with renewal arrivals, hardly any exact results
are known, except for asymptotic regimes for heavy traffic [13] or large switch-over times [22]. Faced by
this, approximations have been developed for the mean waiting time [1], recently extended to the complete
waiting-time distribution [4].

In the batch-service models addressed above, there is no limit to the number of products served during
one visit of the server to a queue. In this paper, we consider a model that is fundamentally different, and
that a type-: batch consists of exactly D; products. More precisely, we study an /N-queue batch-service
polling system consisting of an inner part and an outer part. Type-i products arrive at the outer system
according to a renewal process and accumulate into a type-i batch until exactly D; products have accu-
mulated; thus, products have to wait in the outer part until the batch is full. Then, the batch is forwarded
to the inner system (which can be seen as a regular polling system). In the inner system the batch, and
thus its constituent products, wait until the batch is processed by the server. It is assumed that the service
requirement of a type-¢ batch is independent of its size D;. For this model, we study the problem of de-
termining the combination of batch sizes D7) = (D{**" . D{¢"")} that minimizes a weighted sum of
the total mean waiting times of products in the outer and the inner system. In the absence of exact anal-
ysis, we present two approaches to approximate D©PY): (1) a numerical approach, and (2) a closed-form
approximation. The numerical approach is built upon the mean waiting-time approximation developed in
[1], which is accurate over the entire range of parameters. Extensive validation shows that the numeri-
cal approach is slightly more accurate but does not scale in the number of queues, while the closed-form
approximation works particularly well for large numbers of queues. As a by-product of the closed-form
approximation, we observe near-insensitivity properties of the batch sizes with respect to the higher mo-
ments of the interarrival and switch-over time distributions. Moreover, the results suggest that the ratio of
the optimal batch sizes of two queues is nearly insensitive to the characteristics of other queues.

The structure of this paper is as follows. In Section 2 the model is introduced and the optimization problem
is formulated. In Section 3 we analyze the performance of the system. In Section 4 we consider opti-
mization of the system performance, and propose two approximative solution approaches. In Section 5 the
accuracy of these two approaches is extensively validated by a large simulation testbed. Finally, in Section
6 we address a number of topics for further research.

2 Model description and notation

We consider a polling systems consisting of an outer part and an inner part (see Figure 1). The outer
system consists of N > 1 accumulation stations, where type-i products accumulate at their type-specific
station, and the inner system is a classical cyclic-service polling system consisting of N infinite-sized
buffers, denoted by )1, ...,Qn. Type-i products arrive at the outer part according to a renewal arrival
process, where the interarrival times are i.i.d. samples from a random variable AE"““. The arrival rate of
type-i products is A\”*" = 1/E[A{°*"], and A := SN A s the total arrival rate to the system.
Type-¢ products have to wait in the outer system until exactly D; > 0 type-¢ products have accumulated
in the outer part. As soon as D; type-i products have accumulated, they form a type-¢ batch, which is im-
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Figure 1: Ilustration of the model for NV = 8.

mediately forwarded to ); in the inner system. Note that the arrival of batches at @); also forms a renewal
process. The interarrival times of these batches are denoted by the random variable AE””, whose distribu-
tion is the D;-fold convolution of A", The type-i batch-arrival rate is denoted by A\ := 1/E[A!™)],
and the total arrival rate is denoted by A("™) := Zf\;1 )\gm). Note that )\EM) = )\gout)/Di.

In the polling system, batches in each queue are served in the order of arrival. The service time of a type-i
batch is denoted by the random variable B;, independent of the fixed batch size D;; thus, the batch size
D; has no impact on the service requirement B; of the batch itself. Whenever a batch is being processed,
it is assumed that the constituent products are all served simultaneously, such that there is no underlying
product in the batch that has its service requirement completed before the batch as a whole is served. Let
B denote the service time of an arbitrary batch, regardless of its type. The server attends the queues ac-
cording to an exhaustive service discipline, i.e., when attending ;, the server will commence moving to
another queue if and only if @); is empty. The server moves along the queues in a cyclic manner, in the
order Q1,Q2,...,QN,Q1,.... The time needed to switch from (); to the next is denoted by a random
variable S;. We define a cycle at (); as the time between two successive departures of the server from Q);.
Let S := Ef\il S; denote the total switch-over time per cycle. Let p; = /\EM)IE[Bi] be the load offered to
Q;,and let p := Zf\i 1 pi be the total load offered to the (inner) system.

A necessary and sufficient condition for the stability of the inner system, and hence of the whole sys-
tem, reads p < 1 (cf. [5]). Throughout it is assumed that the stability condition is met. Note that for given
service-time distributions and arrival rates to the outer system, the load p to the inner system generally
depends on D. Let D be the set of possible values for D for which the stability condition p < 1 holds.

The following notation is useful. For a non-negative random variable X with finite variance, we denote its
residual counterpart by X ("**)_ and the squared coefficient of variation (SCV) by c3 . Moreover, let 1 4 be
the indicator function on the event A. Finally, to properly define light- and heavy-traffic limits (i.e., p | 0
and p 1 1, respectively), we scale the system such that the total arrival rate at the outer system A(°%?) is
varied while the batch-size vector, service-time distributions and the ratios between the individual external
arrival rates are kept fixed. Moreover, it proves convenient to represent with & the value of each variable x



that is a function of p, evaluated at p = 1. Finally, let

N N N
o = YA (Var[Bi] +c§i<in>E[Bi]2) cand §:= 3 S pine 1)
i=1 ‘ j=1k=j+1
Optimization problem
The optimization problem studied in this paper concerns the ‘optimal’ choice of the vector of batch sizes

—

D :=(Dy,...,Dy). To this end, note that the waiting time W; of a type-i product can be decomposed as
Wi _ Wi(OUt) + W’L(zn)’ (2)

where Wl-(o“t) is the time a type-¢ product has to wait in the outer system until its type-¢ batch is full, and
where Wi(m) is the time a type-i product spends waiting in the inner system at (); before entering service.
‘We define the cost function as follows: for D € D,

N N
C(D) =Y cEW] = Y (EIW ]+ EW™]), 3)
i=1

i=1

where ¢; > 0 denotes the cost per time unit for a type-i product in the system. Then for given weight
vector @ = (c1,...,cy) the optimization problem is to find a vector D(°Pt) = (Dg‘”’”, . ,Dg\‘;pt)) that
minimizes C(D) over all D € D.

3 Analysis

To tackle the optimization problem, we observe that a closed-form expression for E[Wi(out)] can be ob-
tained by conditioning. To this end, let F;; be the event that an arbitrary arriving type-¢ product is the j-th

arriving product in a type-i batch (j = 1,..., D;). Then by conditioning on FE;; we have
D;
E(W "] = 3 EW{|E,j|PEy) )
j=1
where

D j
(out) ’

1
E[W ") |E;;] = and P[E;j] = = forallj=1,....D;. 5)

Unfortunately, there is no exact expression available for E[Wi(m)]. However, Boon et al. [1] recently
proposed the following approximation for E[Wi(m)], considered as a function of the load p to the inner
systemfor: =1,...,N,p < 1:

Ko+ Ky ip+ Ky ip?

(in)] (in) 7 .
]E[Wz ] ~ E[Wi,app] T 1— P ’ (6)
where the constants K, K ; and K> ; are defined as follows:
E[S?]
Ky =E[8M™)] = ——= 7
cc .
- 2 4 AP (res)
K= pi (CA(_in)) 1 R +202L7+1]l , —1 E[Bi ]
‘ {c (in) Sl} AEM) {CAgrin) >1}
N—1 j
(res) A (res) 1 ~
+E[B"] + pi(E[S"] — E[S]) — E[S] > piwVar(S; ], (®)
7=0 k=0
Koy = L0 0—2+E[S] — Ko — Ky ©9)
2,0 — 2 2% 0 1,2+



Note that the approximation in (6)-(9) is asymptotically exact both in light-traffic (i.e. when p | 0) and
in heavy-traffic (i.e. p 1 1), and highly accurate over a wide range of parameter combinations [1]. Next,
combining (3)-(6), the cost function C'(D) can be approximated by the following expression: for D € D,

C(D) % Capp(D) : Za( Out)+E[W,-<,Z;L]>, (10)

i

where the first term between the brackets follows directly from (4)-(5), noting that Zf;l j = Di(D; +
1)/2, and where E[W(m) ] is defined in (6)-(9).

1, app

4 Optimization

In this section we discuss two approaches to the optimization problem. The first approach, which will
throughout be called the numerical approach, is simply based on solving the non-linear optimization prob-
lem obtained by minimizing C,,,(D), defined in (10), numerically with respect to D € D. To this end,
standard numerical algorithms for non-linear optimization are available. Numerical results will show that
this approach works very well when the number of stations N is not too large, however computation times
become prohibitively large when [V is large (see Section 5 for details). Furthermore, this approach may be
cumbersome to implement and does not reveal explicitly how the optimal batch sizes depend on the system
parameters.

To overcome these problems, we will now proceed to develop a closed-form approximation for Dlort),
Unfortunately, we observe that the functional form in the approximation for C'(D) defined in (6)-(10) is too
complex to obtain closed-form approximations for D(°P*), For this reason, we will now further simplify

the approximation for E[Wi(m)] and assume that it has the following form fori =1,..., N, p < 1:
(in,simple); @ + b7p
E[W; app l=4— . (11)

The coefficients a and b; will be taken such that the approximation is asymptotically exact in the known
limiting cases of light-traffic (LT) and heavy-traffic (HT), respectively. To this end, note that in LT, we have

that lim,, ;o E[IW"™] = E[S("*9)], so that

E[S?]
_ (res) _
a =E[S ] oE[S]’ (12)
In the case of HT, we have (cf. [12]): fori=1,...,N,p 11,
EWI™) = L o((1—p) ), with wi= (T gl (13)
i 1—p Py T\ 2

and where o2 and § are defined in (1). Moreover, if we assume for simplicity (see Remark 4.1) that the
arrival process is deterministic (so that ci(om) = 2 (ny = 0), it is readily seen that w; defined in (13) is

Ai
further simplified into
1—p; (o2 N
simple — Pi a 3 (in
wiappp )= 3 < 2§p +E[S}>, with O‘app Z)\E )Var[Bi], (14)
i=1
and hence,
a+b; = 1;?11 (1- P)E[Wi(i”)] _ wz(fz;;)ple). (15)



Finally, the combin_gtion of (11), (12), (14) and (15) leads to the following simplified approximation for the
cost function: for D € D,

Q

N (simple)
A simple) [ 1 D, -1 E[S? Wy am P
C(D) ~ Clgy™ (D) = 3 e <2A(out> * 5 [5} 17 ) | (16)

We will now use (16) to derive closed-form approximations for D(P")  In Section 4.1 we consider the
homogeneous case in which the batch sizes are required to be the same for all queues. Subsequently, in

Section 4.2 we consider the heterogeneous case in which the batch sizes are allowed to be different.

Remark 4.1: For later reference, an important observation is that WPl Gefined in (14), only de-

1,app
pends on the batch sizes D= (D1, ..., Dy) through their ratios D;/D;. In other words, if the batch-size
vector D is parameterized as D = ad, with d = (dy,...,dn) the vector of relative batch sizes, nor-
malized such that S~ d; = 1, and the scalar & > 0 a scalmg parameter, then wfscfz,p ') is the same

for all ov. To this end, note that both A" = A{°? /D, = Al /(ad;) and the per-queue load-values

= M"™E[B;] = A"YE[B;]/(ad;) do depend on «, but that this dependence cancels out when taking
its heavy-traffic limit. Note that by definition it holds that 1 = p = vazl pi» Which is readily seen to imply
that

3 ut)

N { (out { (out)
)\ 2 (in A A di
E }, and hence A\ = 2t — = / ; a7

which is independent of the batch-size scaling parameter «, because all parameters S\EOW‘/), E[B;] and d;
are by definition independent of . This observation, which provides a strong simplication in the functional
form of C52"') (3) considered as a function of D in (16), will be useful for later reference.

4.1 Homogeneous case: one-dimensional problem

In this section, we study the optimization problem under the restriction that D1 = Dy = ... = Dy =: D,
for D a positive integer. In that case, the approximate cost function, defined in (16), reduces to, for
D=1,2,...,

) N IE[SQ] ZN C'w(simple) le\il /\EOUt)E[Bi]

N (D -1 ;
Chom (D) = E A VAR c; 4 &=l T iapp
) < ) z:zl QE[S] D— sz\il )\Eout)E[Bz]

(18)

Note that Remark 4.1 readily implies that in this case wz(sjgzp ©) does not depend on D. Then, if we consider

Chom () as a function of the continuous parameter 2 > 0, optimize with respect to = and then round off
appropriately, we immediately obtain the following closed-form approximation for the optimal value of D:

t) t) .
Drt) ~ Dg‘;’;) := round(x), (19)
where
N N -1 /N 4 N
T = Z)‘Eout)E[Bi] + 412 (Z )\(Ofm)> (Z ciwl(f;;’;pl@)) (Z )\ZQO/ut)E[Bi]> 20)
i=1 i=1 A i=1 i=1

and the round-function rounds its input to the nearest integer if the resulting batch size results in a stable
system or rounds to the nearest larger integer otherwise.

Remark 4.2: Note that the approximation in (19)-(20) can easily be generalized to the case where the
batch sizes are not necessarily the same, but have fixed proportions (i.e., D; = ad; with Zivzl d; =1).



4.2 Heterogeneous case: multi-dimensional problem

When we drop the restriction that the batch sizes need to be the same, the optimization problem is an V-
dimensional non-linear optimization problem with integer-valued parameters D € D. This type of problem
generally does not scale to large problem instances, in the sense that the computation times then become
prohibitively large. Therefore, in this section we propose a further simplification of the approximate cost
function defined in (16) based on the following argument. Consider the parameterization of the batch sizes
in Remark 4.1 (i.e., D; = ad;, with Zi\; d;), and scale the batch sizes such that a > 0 is varied while the
relative batch sizes (dy, ..., dx) are kept fixed. Using this parameterization, the batch sizes, and hence the
waiting times in both the inner and the outer system, generally depend on . As for the outer system, for
each ¢ the batch size D; and hence also the mean waiting times in the outer system ]E[Wi(out)], character-
ized in (4)-(5), will increase only linearly in o. However, as for the inner system, it follows directly from
(in)

]

the asymptotic expansion in (13) that when the load on the inner system p is high, E[IV; is extremely

sensitive to p, and hence, even a small increase in o will lead to a strong decrease in E[Wi(m)}. Hence,
one may suspect that the optimal value of «, and hence of the batch sizes, will be large such that the inner
system is only lightly loaded (i.e., p close to 0), so that the last term in (16) becomes negligible.

Using these arguments, and omitting the terms that do not depend on D, the optimization problem is
further simplified to the problem of finding the batch-size vector D(°P!) that

minimizes ; \ 1(35)7 subject to the condition ﬁ; A(OUZ)?H::[BL] =p<L1l 21)
This is equivalent to the problem of finding 3 = (B1,-..,0N) that
minimizes i %, subject to g: Bi; <1, with v; := ¢;E[B;] and B; := W7 (22)
— f5; p i
where 7; (i = 1,..., N) are constants, and where 3; (i = 1,..., N), via D, defined above, are decision

variables. If we take 5 to be continuous, a standard Lagrangian-multiplier approach leads to the solution

ﬁi("p - Vi (Zivzl fy,») fori =1,..., N. Translating this back to batch-size ratios, we have

D(opt) N /\,EOUt)]E[Bi]/ﬁi(OPt) B )\gout) CjE[Bi]

2

D](»Opt) AEottt)E[Bj]/ﬂj(opt) )\E.OUt) CiE[Bj]

(23)

It should be noted that replacing the constraint in (22) with Ziil B; = c for any value of ¢ € (0, 1]
would have lead to (23), thus also when demanding that p equals a value close to 0 in accordance with the
arguments above.

Now that the batch-size ratios have been approximated in (23), it remains to approximate the absolute
values of these batch sizes via the scalar . Therefore we go back to an arbitrarily loaded system with a
cost function as defined in (16) and we write D = ad. As stated in Remark 4.2 the problem of determining
the (near-)optimal value of v can be obtained via the same argumentation as in the homogeneous case,
which leads to the following result: fori =1,..., N,

2,app * app t,app

D(Opt) ~ DY .— round ( (Opt)d(()pf)) 24)

with

-1

N | (out) N ;(opt) N N (out)
ACE(B,] cid| ACE(B,]
(opt) . _ M 2 1,app  (simple) Ay LDy
Qapp '*Z glort) 42 <Z 3 (out) Zczwi,app E J(ont) , (25)
i

i=1 i,app i=1 i=1 i=1 i,app

(out) B ]
(opt) _ N [Bil/ci (26)

S p— .
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Variable | Parameter Parameter values
- Symmetry {Symmetric, Asymmetric }
N Number of queues {2,5}
(it) Type-averaged arrival rate {1/(2N),2/N}
E[B] Type-averaged mean service time {1}
E[S] Type-averaged mean switch-over time | {0,0.2,1,10}
,24<°’“‘> SCV external interarrival times {0.25,1,2}
CQBZ SCV service times {0,1,4}
3 SCV switch-over times {0,1}
¢ Weight vector LD Alemy (1,1),(2,1)} for N = 2
or
out out out out out
() 20 3000 3000 5(ou)
(1,1,1,1,1),(5,4,3,2,1)} for N = 5

Table 1: Parameter values of the simulation testbed.

and the round-function as in the homogeneous case. The obtained approximation in (24)-(26) requires little
or no computation time, even for systems with a large number of queues. In the next section, the accuracy
of the approximations is evaluated.

5 Validation

In this section, we evaluate the performance of the approximation methods presented in Section 4 using a
large simulation testbed.

Description of the simulation testbed

To validate the results for a wide variety of parameter combinations, experiments were done on a testbed
containing 1260 parameter combinations, such that the parameter space is well covered. To structure the
instances, let

N
(out) _ (out) D1 . 1 )
: N E )\ , E[B]:= N ig:l E[B;] and E =N E E[S 27

be the type-averaged arrival rate, mean service time and mean switch-over times, respectively. The param-
eters of the 1260 instances are then obtained by taking every combination of the parameter values found
in Table 1. For every instance, each queue shares the same value for cA<Om), cQBi and c% For symmetric

instances, we of course also have that A{°*") = X(Om), E[B;] = E[B] and E[S;] = E[S] fori = 1,..., N.

For the asymmetric instances however, the parameters are taken asymmetrically through the formulas

ou 21 —(out) 2i — 2(N+1—1)
At . =N E[B;] := E[B] and E[S;] := =2 ——
N+1 .+ E[B N+1HM1 5] N+1
for: = 1,..., N. For the sake of validation of the numerical approach, an implementation of a Newton
type-algorithm for unconstrained minimization was used (see [16] for details).

E[S], (28)

Relative errors
To quantify the accuracy of the approximations, the relative error in the cost function is defined as follows:

C(ﬁapp) — C(B(Opt))
C(Dlort)

A% = x 100%, (29)

where C(D Opt)) is the real cost of the optimal batch-size vector D(r?) (both obtained by simulation), and
C (Dapp) is the real cost (obtained by simulation) belonging to the batch-size approximation methods.



Experimental results

Tables 2 and 3 show the averages of the relative cost differences A% of both the numerical approach and
the results based on the closed-form approximation, as well as the distribution of these relative errors over
several bins. The results show that both solution techniques perform very well, with average errors up to

Numerical approach
Average Differences categorized in bins
Testbed difference 0% >0-2% 2-5% 5-20% >20%
Symmetric 0.30% 82.1% | 12.5% | 2.98% | 2.38% | 0.00%
Asymmetric 0.65% 74.5% | 193% | 2.78% | 2.91% | 0.53%

Table 2: Averages of the the values of A% and their distribution.

Closed-form approximation

Average Differences categorized in bins
Testbed difference 0% >0-2% 2-5% 5-20% >20%
Symmetric 1.62% 732% | 14.7% | 4.17% | 5.75% | 2.18%
Asymmetric 4.85% 59.2% | 25.1% | 4.37% | 4.63% | 6.75%

Table 3: Averages of the the values of A% and their distribution.

only a few percent. The majority of the differences is concentrated in the bin which represents errors of
0%; that is, in most cases the approximations for D lead to the correct optimum D(°P?),

Table 3 shows that the approximations work well for the symmetric model instances, but that the accu-
racy of the closed-form approximation tends to degrade for asymmetric model instances.
Next, we evaluate the accuracy of the approximations, where the individual input parameters are varied.
Table 4 shows the average relative differences A% in cost performances categorized in the approximation
methods (i.e, numerical and closed-form), for the type-averaged arrival rate (a), the number of queues (b),
the SCV of the switch-over times (c), the type-averaged mean switch-over time (d), the weight vector (e),
the SCV of the interarrival times (f), and the SCV of the service times (g).

The results in Table 4 lead to a number of observations. Generally, whenever total mean waiting times

become longer (for example, in the case when E[S] = 10, or N = 5), both the numerical and closed-form

approximation become increasingly accurate. In case waiting times are generally short (for example when
— ~(out)

E[S] =0or A = 1/(2N)), the batch-size vector found by the numerical approach and the closed-form
approximation usually coincide. However, whenever a difference in the obtained batch-size vector does
occur, the difference in terms of cost of that particular system may be considerable. However, it should
be noted that although large relative differences may occur in these cases, the absolute differences are still
quite small, due to the fact that the waiting times themselves are small. When considering the particular
role of the value of N, a similar effect is observed. We see that when N = 2, the numerical approach is
slightly more accurate than the closed-form approximation, but when N = 5, both approximation methods
tend to work well, although the numerical approach still marginally outperforms the closed-form approx-
imation. In this context, recall that when N gets large, the computation times for the numerical approach
inevitably become prohibitively large, so that the closed-form approximation is preferred. Table 4(f) and
4(g) show that both methods are quite resistant against variability in the interarrival times and the service
times.

Remark 5.1 (Near-insensitivity to the higher moments of the interarrival and switch-over time dis-
tributions) .
The closed-form approximation for D(°P!) in (24)-(26) is insensitive to the second and higher moments



(@)

2 — 19N 2 _ o /N
Testbed Numerical | Closed-form Numerical | Closed-form
Symmetric 0.520% 1.013% 0.086% 2.234%
Asymmetric 0.696% 4.543% 0.594% 5.153%
(b)
N=2 N=5
Testbed Numerical | Closed-form Numerical | Closed-form
Symmetric 0.428% 2.776% 0.178% 0.471%
Asymmetric 0.870% 7.715% 0.419% 1.981%
(©
c?gv =0 c%v =1
Testbed Numerical | Closed-form Numerical | Closed-form
Symmetric 0.329% 1.978% 0.279% 1.859%
Asymmetric 0.763% 5.837% 0.683% 5.649%
(d)
E[S]=0 E[S]=0.2
Testbed Numerical | Closed-form Numerical | Closed-form
Symmetric 1.066% 3.981% 0.309% 2.976%
Asymmetric 1.272% 12.009% 1.477% 9.393%
E[S]=1 E[S]=10
Testbed Numerical | Closed-form Numerical | Closed-form
Symmetric 0.208% 0.766% 0.011% 1.545%
Asymmetric 0.221% 0.000% 0.000% 0.026%
©
e= QAL ALy or A ALY T @ = (LD or (1,1,1,1,1) =) or (54321
Testbed Numerical Closed-form Numerical | Closed-form Numerical | Closed-form
Symmetric 0.250% 0.635% 0.250% 0.635% 0.356% 2.613%
Asymmetric 0.328% 3.400% 0.637% 7.139% 0.969% 4.004%
()
Ciw” =0.25 Cigom =1 ngom) =2
Testbed Numericzal Closed-form Numerical | Closed-form Numerical | Closed-form
Symmetric 0.231% 0.352% 0.312% 1.420% 0.365% 3.099%
Asymmetric 0.826% 0.626% 0.643% 4.510% 0.465% 9.408%
(8
CQB’ =0 CQB’_ =1 cZB, =4
Testbed Numerical | Closed-form | Numerical | Closed-form Numerical | Closed-form
Symmetric 0.082% 2.789% 0.262% 0.687% 0.565% 1.395%
Asymmetric 1.140% 10.626% 0.627% 3.491% 0.168% 0.427%

Table 4: Average relative difference of the cost A% of the approximation methods over categorized subsets
of the testbed.

of the interarrival-time and switch-over time distributions. To investigate the sensitivity of the optimal
(out) 9
=20¢ =1

9

= c% =: ~. Figure 2 shows the mean optimal ‘exact’ batch

batch sizes, consider a symmetric five-queue system with, for all ¢ = 1,...,5, A
E[B;] = E[Si] = 1, E[Bf] = 2 and 6,24<°“‘>

i

size as a function of -y, where v € [0, 40]. Apart from some noise, which especially for large gamma is due
to simulation error, the figure shows a near-constant line, which supports the near-insensitivity property of
D(P) with respect to the second and higher moments of the interarrival and switch-over time distributions.

Remark 5.2 (Near-insensitivity of ratios to other types or queues)

Equations (23)-(26) indicate that the ratios between the optimal batch sizes of an arbitrary couple of queues
(i.e., D;/D,) are (fully) insensitive to the parameters of the other queues k # 4, j. This suggests near-

10



25
I

Mean batch size
15

10

Figure 2: Mean batch size as a function of the SCV of the interarrival and the switch-over time distributions.

insensitivity of the ratios of optimal batch sizes with respect to the parameters of the other queues. To in-
vestigate this, consider a three-queue system with Poisson arrivals and exponential switch-over times, and
with (N7 A0 N7) = (4,2, ), (E[B1,E[By). E[Ba)) = (1,0.5,k), (E[B}] E[B3], E[B3)) =
(2,0.25, k%), and where all switch-over times have a mean duration 1. Figure 3 shows the ratio of
Déop 2 D%OP Y for k € [1,3]. Note that varying the value of k means that the parameters for queue 3
are varied, while the parameters for queues 1 and 2 are kept fixed. Moreover, it is readily verified from
(23) that the approximated ratio Dy/D; equals 1/2, independent of k. The results in Figure 3 show that
DPY DLPY) s indeed nearly-insensitive to the value of %, which underlines the fact that the ratio of two
optimal batch sizes is nearly-insensitive to the characteristics of other queues.

6 Conclusions and Further research

In this paper we have studied a batch polling system as a model for a multiple product single production
capacity with batching constraints. The proper use of the batching mechanisms is not understood fully and
rules for implementing optimal batch values are not available in the open literature. This would almost
suggest that the scheduling problem does not exist in practice; yet the multiple product single machine
system is quite common in industry and batching of demand is done frequently to avoid small production
runs and loss of capacity due to set-ups. Our objective has, therefore, been the derivation of these batch
sizes so as to minimize a weighted sum of the mean waiting times and, thus, the mean queue lengths. In
the absence of exact analysis, we present two novel approaches to approximate the optimal batch sizes, i.e.,
a numerical approach and a closed-form approximation. The numerical approach is in general the most
accurate, but the computation times become prohibitively large when the number of queues in the system
increases. Furthermore, it acts as a kind of black box and can, therefore, contribute to the understanding
of the system behavior only to a limited extent. It is, for instance, rather difficult to study the impact of
parameters like the occupation rates on the optimal batch sizes. The closed-form solution is very simple
and, therefore, loses some of the accuracy but still captures the major factors important for efficient opera-
tion. It can be concluded that it complements the numerical approach explicitly showing the impact of all
system parameters and pointing out near-insensitivity properties.

The research presented in this paper suggest a variety of directions for further research. First, in this
paper we focus on minimization of a weighted sum of the mean waiting times. An interesting extension

11



[
~
w
©
10 -2 ~9 -2
< SN c-o-0" S e
= o o-o-o” o
Sow
R =
S
=
™
AR
g -
[a=}
=g
T T T T T
1.0 15 20 25 30
k
. . piert) .
Figure 3: Ratio Dy s a function of k.
1

from an application point of view would be to add restrictions on for example tail probabilities of the delay
figures. A good starting point may be the recently-proposed approximations for the tail probabilities in
[4]. Second, the assumptions of exhaustive services at all queues may be relaxed to include more general
branching-type policies [15], such as single-phase or multi-phase gated service [11]. Following the lines
of the present paper, one would expect that also for these cases simple closed-form approximations can be
determined. Third, the results may be extended to the case of periodic, non-cyclic, server routing, taking
the results in [13] as the starting point. Fourth, from an application point of view it would be interesting
to include some level of dependence between the batch size and its service time. To this end, note that the
extreme case of linear dependence corresponds to the classical batch-polling system analyzed in [10]. Fi-
nally, an interesting extension is one where the switch-over times depend on the actual state of the system.
For example in production systems it may be interesting to let the server skip a queue that is empty, or let
the server reside in idle mode when there are no jobs in the system. The approximation techniques in [1]
can readily be extended to the case of state-dependent switch-over times, and may be used to extend the
current results to this situation as well.

Acknowledgement: The authors wish to thank Marko Boon for placing parts of his polling system simu-
lation program at their disposal, and for useful comments on earlier drafts of this paper.
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