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A queue with skill based service under FCFS-ALIS: steady

state, overloaded system, and behavior under abandonments

Ivo Adan∗ Gideon Weiss†

May 23, 2012

Abstract

We consider a queueing system with servers S = {m1, . . . ,mJ}, and with customer types
C = {a, b, . . .}. A bipartite graph G describes which pairs of server - customer type are
compatible. We consider FCFS-ALIS policy: A server always picks the first, longest waiting
compatible customer, a customer is always assigned to the longest idle compatible server. We
assume Poisson arrivals and exponential service times. We derive an explicit product-form
expression for the steady state distribution of this system when service capacity is sufficient.
We analyze the system under overload, when partial steady state exists. Finally we describe
the behavior of the system with generally distributed abandonments, under many arrivals -
fast service scaling.

Keywords: Service system; multi type customers; multi type servers; matching infinite se-
quences; product form solution; first come first served policy; assign longest idle server
policy; complete resource pooling; abandonment.

1 Introduction

In this paper we study a service system which serves several types of customers, labeled a, b, c, . . .,
we denote the set of customer types by C. Service is provided by J servers, labeled m1, . . . ,mJ ,
we denote the set of servers by S. Service is skill based, in the sense that each server mj has
a non-empty subset of customer types which it can serve, given by C(mj) the union of which
is C, and customers of type c have a non-empty set of servers which can serve them, given by
S(c). This can be described by a bipartite graph between the servers and the customer types,
with directed arc (c,mj) if c can be served by mj . We assume that this graph is connected.
The motivation for such systems is that while they provide custom tailored service to the various
types of customers, the overlap of server skills allows for resource pooling and reduced congestion.

We assume that arrivals are Poisson and service is exponential. Customers arrive at the
system in independent Poisson streams with rates λc, c ∈ C. Servers work at rates µm1

, . . . , µmJ
,

with independent exponential service times. Note that service durations of customers depend on
the server which provides the service and not on the type of customer.

Service discipline in the system is a combination of first come first served (FCFS) and assign
longest idle server (ALIS). Arriving customers which find no compatible server available wait in
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a single queue, and are processed in a FCFS order as long as it is possible. This means that
as soon as a server finishes a service it takes the first customer in the queue that it can serve,
possibly skipping several earlier customers that it cannot serve. Customers which upon arrival
find some available compatible servers, are assigned to the one of them that has been idle for the
longest time, and else they join the end of the queue.

Under this combined FCFS-ALIS regime the system is Markovian. A full description of the
system will then consist of three parts: first the list of all the customers in the system in their
order of arrivals, including customers which are being served, second the location in this list of
each of the busy servers, where we imagine that the servers are situated in the queue at the
position of the customer that they are serving, and third the list of all idle servers ordered by
increasing idle time.

To illustrate we consider a system with three servers and three customer types, as shown
in Fig. 1: there are three job types a, b, c and three servers with C(m1) = {a, b}, C(m2) =
{a, c}, C(m3) = {a}.

µm2

µm1

λa ,λb ,λc

a
µm3

a,c

m1 m2m3

ab c a,b
m1

m2

m3

Figure 1: A system with three types of customers and three servers.

Three possible situations of this system are depicted in Fig. 2, which employs the following
way to describe the state of the system: The customers are denoted by circles and the servers by
rectangles. Customers in service have a rectangle drawn around them with the identity of the
server inside. Idle servers are denoted by rectangles with a ∗ instead of a circle. The customers
are ordered from left to right by increasing time of arrival, followed on the right by the idle
servers, ordered from left to right by increasing idle times. One can visualize the dynamics of the
system with customers arriving from the right, scanning the idle servers to pick the rightmost
(longest idle) one that is compatible, and joining the queue at the rightmost position with this
server, or without a server if none is compatible. Concurrently when a service is completed
the customer is removed from the queue. The server that completed service moves to the right
looking for the earliest waiting customer which is compatible, and starts serving it, or if no
compatible customer is found the server joins the idle servers in the leftmost position. Note that
waiting customers to the left of a server in this picture must be incompatible with that server,
because of the FCFS rule.

In Fig. 2 part (i) there are 12 customers in the system, and all the servers are busy. Server
m1 is serving the first customer in line, which must therefore be either of type a or of type b.
Following the queue to the right, server m2 is serving the first customer in the line which it can
serve, which is the 5th customer in the line, and must therefore be either type a or type c. Server
m3 is serving the first customer in the line (apart from customers 1 and 5) which it can serve,
and must be of type a. There are 3 customers waiting between servers m1 and m2. These cannot
be served by either server m2 or by server m3, so they must be type b customers. There are 4
customers waiting between m2 and m3, those cannot be served by server m3, so they must be
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m3

* *

a/b/c

m1

a/b/cb/c b/c b/c b/cb b b

m2 m3

a/b a/c a

m1

b b ba/b

m2

*
m1

b b ba/b

m3

a

(i) All servers busy, servers move left to right, arrivals come from the right

(ii) Two servers busy, no possible customers between m3  and m1 (iii) Two servers are idle,m3 has been idle longest time

m2

Figure 2: A possible state for the system in Fig. 1.

of types b or c. Finally there are 2 customers at the tail of the queue, behind server m3, which
may be of types a, b, or c. The situation in part (ii) of Fig. 2 is that servers m3,m1 are busy,
with server m3 serving the earlier customer, while server m2 is idle. There can be no customers
waiting after server m3 and before the next server, because servers m1,m2 combined can serve
all types, and would have picked up the next customer after server m3. The situation in part
(iii) of Fig. 2 is that only server m1 is busy, with 3 type b customers waiting and servers m2,m3

are idle, with server m3 the one that became idle first. If the next arriving customer is of type
a it will go to server m3 (and not to m2, because of ALIS). If it is of type c it will go to server
m2. If it is of type b the two servers will remain idle and the customer will join the queue in the
last position.

We will actually aggregate some of the states in this detailed description, to simplify the
model while retaining the Markovian property.

In the first part of this paper (Section 2) we will define the Markovian system, derive its
transition rates, and set up partial balance equations. We will solve those to obtain conditions
for ergodicity and an explicit product-form expression for the steady state distribution of the
system. We will also derive the waiting time distribution for this system. Our system here has
been analyzed in [24] under a different policy, in which service is FCFS but arriving customers
are assigned to idle servers randomly, according to some assignment probability distributions.
Surprisingly, we show that under these two different policies the stationary distributions of the
system coincide.

In the second part of the paper (Section 3) we analyze the system under overload conditions.
We define complete resource pooling of the system if the system is stable whenever the total
arrival rate λ =

∑
c∈C λc is less than the total service rate µ =

∑J
j=1 µmj

. Under complete
resource pooling, if λ > µ the system is transient with the number of customers in the system
growing without bound as t→∞. However, we show that at the same time, as t→∞ the servers
stay together, and only the queue behind the last server grows without bound, while the state of
the servers and the customers waiting between them converges to a stationary distribution which
is the same as that obtained for FCFS infinite matching in [3]. We also consider the case when
complete resource pooling does not hold. In that case the system under overload will decompose
in a unique way to a partition of the servers, where each subset of servers stay together and serve
a subset of the customers, and queues grow without bound between these groups of servers.
Again, the state of each subset of servers and the customers waiting between them will converge
to a stationary distribution given by [3].

In the third part of the paper (Section 4) we will consider the overloaded system with aban-
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donments. We will assume that each customer type c has some general patience distribution
Fc. We will then consider the system when λ and µ are large, so that many customers arrive
and leave within a typical patience time span. We will then argue that under this scaling the
system will stabilize. Again we will distinguish the case of complete resource pooling and of
incomplete resource pooling. Under complete resource pooling there will be a single W such that
all customers with patience exceeding W will be served after waiting for a total time W , while
all customers with patience less than W will abandon. The system will contain a large number of
customers, all arrivals over the last W length time interval, but the servers will progress together,
with the distribution of servers and customers waiting between servers given by [3]. Without
resource pooling the system will decompose uniquely into a partition of servers and of customer
types, where each subset of servers with their customers will have their own value of W , and will
behave again according to [3]. These results go some way towards confirming the conjectures
stated in [23], and answering some of the questions posed in that paper.

Our model in this paper is described in the standard customer server language used for
queueing models. However, it should find as much use also to describe the flow of jobs in a
manufacturing system with non-homogenous machines, skill based routing of calls to operators
in a call center, wireless messages to ad hoc nodes, calculations to processing chips, and so on.
See in particular [5, 6, 8, 10, 17, 18, 19, 20, 21, 25].

2 The stable system

In this section we define a continuous time Markov chain to describe the dynamics of our system.
We derive conditions for ergodicity for this Markov chain, and we obtain its stationary distri-
bution, which is of product form. To define the Markov chain we aggregate some of the states
in the detailed description, to simplify the model while retaining the Markovian property. We
retain the identity and location of the busy servers, but we do not specify the type of customer
which they are working on. Also we only record the number of jobs between the busy servers,
and do not specify the string of job types. Finally, we retain the order of the idle servers. Thus
the state of the system in Fig. 2(i) is denoted (m1, 3,m2, 4,m3, 0), the state in Fig. 2(ii) is
(m3, 0,m1, 3,m2), and the state in Fig. 2(iii) is (m1, 3,m2,m3). Note that each busy server is
followed by a number which counts how many (could be zero) customers are waiting behind him,
while idle servers are not followed by a number.

We introduce the following notation:

M := an arbitrary server M from the set of servers S = {m1, . . . ,mJ}.
The capitalised M points to one of the servers mj . Note that the
names (or labels) of the servers mj are not capitalised.

λX :=
∑
c∈X

λc, where X ⊂ C

µY :=
∑
mj∈Y

µmj
, where Y ⊂ S

C(Y) := total set of customer types that can be handled by the servers in
Y ⊂ S, which is equal to

⋃
mj∈Y C(mj).

U(Y) := set of customer types unique to the servers in Y ⊂ S, thus the set
of customer types that cannot be served by servers outside Y. We

have U(Y) = C(Y)
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S(X ) := total set of servers that can serve customer types in X ⊂ C, which
is equal to

⋃
c∈X S(c).

2.1 State definition and dynamics of the Markov chain

We define the state in general as:

(M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ): State in which there are i busy servers and J − i
idle servers with corresponding numbers of customers waiting between the busy servers. Here
M1, . . . ,MJ is a permutation of m1, . . . ,mJ . Servers M1, . . . ,Mi are serving customers of in-
creasing arrival times, with nj customers waiting between servers Mj and Mj+1, and servers

Mi+1, . . . ,MJ are idle, with increasing idle times. There is a total of i +
∑i
j=1 ni customers in

the system.
The state space is denoted by S and to simplify the notation we use s to denote an arbitrary

state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S. Fig. 3 shows a system in state s. There are a

M2 Mi

   

ni

U (M1,M2)  U (M1,…,Mi )

n2

M1

n1

 

U (M1)
Mi+1

*

MJ

*
  

Figure 3: General system in state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ).

few things that are important to note about this state description:
First, the waiting customers between servers Mj and Mj+1 can only be handled by the servers

M1, . . . ,Mj and not by any of the servers Mj+1, . . . ,MJ . This is due to the FCFS serving order.
Thus waiting customers between servers Mj and Mj+1 can only be of type c ∈ U({M1, . . . ,Mj}).
The ni waiting customers in the back of the queue cannot be handled by any of the idle servers
and have to be of type c ∈ U({M1, . . . ,Mi}).

Second, since each part of the queue between two machines contains jobs from different subsets
of job types it is necessary to keep these sets separated in the state description. It is not possible
to aggregate the state description any further without losing the Markov property. However,
each of the nj customers within one of these queues is a customer of type c with probability

λc

λU({M1,...,Mj})
independent of all the others. This is because the queue between servers Mj

and Mj+1 contains all the customers of types U({M1, . . . ,Mj}) that arrived between the two
customers served by Mj ,Mj+1, in their original order of arrival.

Third, it is possible that the set of customer types U({M1, . . . ,Mj}) is empty for a certain
set of servers {M1, . . . ,Mj}. In this case there are no customers which cannot be handled by
any of the servers Mj+1, . . . ,MJ . Thus there can be no waiting jobs between Mj and Mj+1, and
therefore nj can only be equal to zero. In that case one also has that n1, n2, . . . , nj−1 = 0.

Fourth, it is important to note that in this state description we lose customer type information
about the customers that are in service, since we only denote the server that is handling the
customer and not the type of the customer. This aggregation preserves the Markov property
since all types are processed by server mj at rate µmj

. We conjecture that specifying the customer
types in service will destroy the possibility of a product form solution.

The dynamics of the Markov chain are as follows: when the system is in state s the following
transitions are possible:
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(i) When a customer of type c arrives it will activate server MJ if c ∈ C(MJ), it will activate
server Mj for i+ 1 ≤ j < J if c ∈ C(Mj)\C({Mj+1, . . . ,MJ}). The customer will move to
the end of the queue with the activated server which will then become Mi+1 with ni+1 = 0.
If c ∈ U({M1, . . . ,Mi}) then the customer will move to the end of the queue and wait, the
idle servers will remain unchanged, and ni will increase by one.

(ii) When server Mj completes service, it will scan the customers in queue from left to right,
starting with the nj customers queued behind it, and continuing with the queues behind
servers Mj+1, . . . ,Mi. It will skip a customer in the queue behind Mk if the customer
type is c ∈ U({M1, . . . ,Mk})\C(Mj), and will pick up the first customer of type c ∈
U({M1, . . . ,Mk}) ∩ C(Mj). If it finds no customer to serve it will join the idle servers, in
the leftmost position.

It is readily verified that the Markov chain on S is irreducible (cf. Sect. 3.1 in [24]). In the
next section we will specify the transitions and transitions rates of the Markov chain in detail.

2.2 Transitions and transition rates into a state s

In order to formulate the equilibrium equations it is convenient to list all the transitions into
a state s, and obtain their transition rates. Transitions into s can be caused by completion of
service and a departure of a customer or by an arrival of a new customer.

(i) Transitions into state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S due to completion
of service and departure of customer:

When a service is completed a customer departs and the server scans queueing customers from
left to right to find the first customer that it can serve. There are two different ways that state
s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S can be reached.

(1) The server does not find a customer to serve and becomes idle. This transition is illustrated
in Fig. 4. Such a transition is possible to state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) from state
(M1, n1, . . . ,Mk, nk − l,Mi+1, l, . . . ,Mi, ni,Mi+2, . . . ,MJ), where server Mi+1 is situated in the
queue between Mk and Mk+1. We denote this state by idlekl(s). In this state there are nk − l

Mi+1 Mi

nk − l

   

nil

 

Mk+1

 

idlekl (s)

s

Mk Mi+2

Mi

nk − l

   

nil

 

Mk+1

 

Mk Mi+1 Mi+2

*

**

MJ

MJ

*

* 

 

Figure 4: Transition from state idlek,l(s) to state s

customers between Mk and Mi+1 and l customers between Mi+1 and Mk+1. The customers
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between servers Mi+1 and Mk+1 can only be of type c ∈ U({M1, . . . ,Mk,Mi+1}), thus with
probability

λU({M1,...,Mk})

λU({M1,...,Mk,Mi+1})
,

such a customer cannot be served by server Mi+1. A customer between server Mj and Mj+1,
j > k, cannot be served by server Mi+1 with probability

λU({M1,...,Mj})

λU({M1,...,Mj ,Mi+1})
.

Thus, if server Mi+1 completes a service, then, with probability pk,l(s), he will not find a customer
in the queue that he can handle and will move to position i + 1 and become idle, where pk,l(s)
is defined as:

pk,l(s) := δk(Mi+1)lδk+1(Mi+1)nk+1 . . . δi(Mi+1)ni ,

with

δj(M) :=
λU({M1,...,Mj})

λU({M1,...,Mj ,M})
, j = 1, 2, . . . , J. (1)

By convention we set δj(M) = 0 when U({M1, . . . ,Mj}) = U({M1, . . . ,Mj ,M}) = ∅. Thus with
probability pk,l(s) a transition is made from state idlek,l(s) to state s, given that server Mi+1

completes service.
In the special case of k = 0, before the transition into s server Mi+1 is serving the first

customer in the queue, and in that case l = 0, since otherwise all customers between the first
and second busy servers must be of type in U({Mi+1}), and server Mi+1 will be able to serve
the first of them and not become idle. Hence for k = 0 the only transition in which server Mi+1

becomes idle is from idle0,0(s) to s, and in fact:

p0,0(s) = p1,n1(s).

(2) The server finds a customer to serve and moves to the right in the queue. This transition is
illustrated in Fig. 5. In this case one of the busy servers completes a service and finds somewhere

M j+1M j M j−1

   

nj−1l

Mk+1

 

swapklj (s)

Mi+1

*

MJ

*  

nj

 

M j+1M jM j−1

   

nj−1l

Mk+1

 

s

Mi+1

*

MJ

*    

nj

Figure 5: Transition from state swapk,l,j(s) to state s.

in the queue a new customer that he can serve. The state s can be reached by such a transition
from state

(M1, n1, . . . ,Mk, nk − l,Mj , l, . . . ,Mj−1, nj−1 + 1 + nj ,Mj+1, . . . ,MJ).
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This state will be denoted by swapk,l,j(s) with j − 1 ≥ k. In this state, server Mj is located
between server Mk and Mk+1. Between servers Mj−1 and Mj+1 there are nj−1 + 1 + nj(> 0)
customers; note that this is not possible if U({M1, . . . ,Mj}) = ∅ (since then there can be no
customers between Mj−1 and Mj+1). When server Mj completes service a transition is made to
state s if the first customer that Mj can serve is the nj−1 + 1-th customer in the queue between
Mj−1 and Mj+1. The probability of this event is:

qk,l,j(s) = δk(Mj)
lδk+1(Mj)

nk+1 . . . δj−1(Mj)
nj−1 (1− δj−1(Mj)) ,

with δj(S) defined in (1). The system makes a transition from state swapk,l,j(s) to state s with
probability qk,l,j(s), given that Mj completes service.

In the special case that k = j − 1 server Mj starts and ends its move between servers Mj−1
and Mj+1, and there are initially nj + 1 + l customers between Mj and Mj+1 and nj−1 − l
customers between Mj−1 and Mj . This state is denoted by swapj−1,l,j(s) and the probability
that a transition is made from this state to state s equals qj−1,l,j(s).

Slightly different is the special case that k = 0, where there are two possibilities: If j = 1
then k = j − 1 = 0, and the originating state is swap0,0,1(s). In the transition from swap0,0,1(s)
to s server M1 was serving the first customer in the system, and there were n1 + 1 customers
queued between it and server M2, and upon completion of service the server moves to the next
customer. Because the next customer is in U({M1}) the probability for this transition is

q0,0,1(s) = 1.

Otherwise, if j > 1 then we must have that in the originating state server Mj is serving the first
customer in the system, and there are no customers between Mj and the next server M1, so we
have l = 0. In that case the originating state is swap0,0,j(s) and the transition probability is

q0,0,j(s) = q1,n1,j(s).

(ii) Transitions into state s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S due to arrival of a
new customer:

When a customer arrives he will scan the idle servers from right to left to find a server, and will
move to the end of the queue with or without a server. There are two different ways that state
s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S can be reached.

(1) The customer does not find an idle server: Such a transition is possible to state s =
(M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) from state (M1, n1, . . . , . . . ,Mi, ni− 1,Mi+1, . . . ,MJ), where
ni > 0. We denote this state by wait(s). In this transition the new customer cannot be served
by any of the idle servers, and simply joins the end of the queue to become the ni-th customer
behind server Mi. Transition from wait(s) to s will happen if the customer is of type c and
c ∈ U({M1, . . . ,Mi}). The rate of the transitions from wait(s) to s is λU({M1,...,Mi}).

(2) The customer finds an idle server and activates it: This transition is illustrated in Fig.
6. Such a transition is possible to state s = (M1, n1, . . . ,Mi, 0,Mi+1, . . . ,MJ) in which Mi

is active but ni = 0, from a state in which the last active server is Mi−1 and server Mi

is idle, and is located with the idle servers Mi+1, . . . ,MJ , where the possible positions for
Mi are before Mk, where k = i + 1, . . . , J , or after MJ . The originating states are then:
(M1, n1, . . . ,Mi−1, ni−1,Mi+1, . . . ,Mk−1,Mi,Mk, . . . ,MJ), where k = i+ 1, . . . , J , which we de-
note by activatek(s), or from originating state (J1, n1, . . . , Ji−1, ni−1,Mi+1, . . . ,MJ ,Mi), which
we denote (as a convention) by activateJ+1(s). Transition from state activateJ+1(s) to state s
happens if a customer of type c ∈ C(Mi) arrives. Transition from state activatek(s) to state s
happens if a customer of type c arrives and it cannot be served by Mk, . . . ,MJ but it can be served
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M1 Mi−1

  

ni−1
activatek (s )

MJ

* 

s

Mi+1

* 

Mi Mk

 **

M1 Mi−1

  

Mi MJ

* 

Mi+1

* 

Mk

 *

Figure 6: Transition from state activatek(s) to state s.

by Mi, that is if c ∈ C(Mi)\C({Mk, . . . ,MJ}). The rate of transitions from activateJ+1(s) to s
is λC(Mi). The rate of transitions from activatek(s) to s is λC(Mi)\C({Mk,...,MJ}), k = i+ 1, . . . , J .

2.3 Equilibrium equations

We can now formulate the set of equilibrium equations. The equilibrium probability of being in
the state s is denoted by π(s). The state s can be reached by (i-1) a departure of a customer
from a server that then finds no other customer and becomes idle, (i-2) a departure of a customer
from a server which then finds another customer in the queue, (ii-1) an arrival of a customer that
finds no idle server and waits at the end of the queue, (ii-2) an arrival of a customer that finds
an idle server to serve it and activates that server. The equilibrium equations display these four
possibilities. The left hand side of the equations equals the total probability flux out of state s.
The right hand side of the equations equals the probability flux into state s and consist of four
parts, corresponding to respectively (i-1), (i-2), (ii-1) and (ii-2).

In part (i-1) the busy server that becomes newly idle in the transition into s must be server
Mi+1, and we need to sum over all states with one more customer being served by Mi+1, so
that the summation is over all k, l for which idlek,l(s) ∈ S. In part (i-2) we need to sum over
all busy servers M1, . . . ,Mi in s, and over all the positions of these servers in the queue before
the transition, so it is over all states swapk,l,j where k ≤ j − 1 and swapk,l,j(s) ∈ S. Part (ii-1)
consists of a transition from the single state wait(s) of one less customer in the queue behind
the last busy server, if indeed ni > 0 in s, and if U({M1, . . . ,Mi}) 6= ∅. In part (ii-2) we have
that Mi is newly activated in s, and we need to sum over all positions in which Mi was among
the idle machines prior to the transition, so we need to sum over states activatek(s). The terms
are non-zero only if λC(Mi)\C({Mk,...,MJ}) 6= ∅

The equilibrium equations are for all states s = (M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ) ∈ S given
by: (

λC + µ{M1,...,Mi}
)
π(s) = λU({M1,...,Mi})π(wait(s)) (ii-1)

+µMi+1PMi+1(s) (i-1)

+

i∑
j=1

µMjQMj (s), ni > 0 (i-2)
(2)
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(
λC + µ{M1,...,Mi}

)
π(s) =

J∑
k=i+1

λC(Mi)\C({Mk,...,MJ})π(activatek(s))

+λC(Mi)π(activateJ+1(s)) (ii-2)
+µMi+1

PMi+1
(s) (i-1)

+

i∑
j=1

µMj
QMj

(s), ni = 0 (i-2)

(3)

where

PMi+1
(s) =

i∑
k=1

nk∑
l=0

pk,l(s)π(idlek,l(s)) + p1,n1
(s)π(idle0,0(s)),

QMj
(s) =

j−1∑
k=1

nk∑
l=0

qk,l,j(s)π(swapk,l,j(s)) + q0,0,jπ(swap0,0,j(s)).

The above definition of QMj
(s) assumes U({M1, . . . ,Mj}) 6= ∅. If this set is empty, the states

swapk,l,j(s) are not feasible (see (i-2) in Sect. 2.2), and then QMj (s) is set to 0.

2.4 Partial balance equations

We will in fact show that the process satisfies partial balance equations as follows, for state s:

(i) The total probability flux out of state s due to an arrival of a customer that activates a
server (with arrival intensity λC({Mi+1,...,MJ})) equals the total probability flux into state
s due to a departure of a customer of server Mi+1 after which server Mi+1 becomes idle:

λC({Mi+1,...,MJ})π(s) = µMi+1
PMi+1

(s). (4)

(ii) The total probability flux out of state s, due to an arrival of a customer that cannot be
served by any of the idle servers (with arrival intensity λU({M1,...,Mi})), equals the total
probability flux into state s, due to the departure of a customer from a server which then
finds another customer to serve, so that the set of busy servers {M1, . . . ,Mi} remains the
same in both transitions:

λU({M1,...,Mi})π(s) =

i∑
j=1

µMj
QMj

(s). (5)

Note that, since C({Mi+1, . . . ,MJ}) and U({M1, . . . ,Mi}) are a partition of C, the left
hand sides of (4)-(5) add up to λCπ(s), which is the total probability flux out of state s
due to an arrival.

(iii) The total probability flux out of state s in which ni = 0 due to a departure of a customer,
equals the total probability flux into state s, due to an arrival of a customer which activates
server Mi:

µ{M1,...,Mi}π(s) =

J∑
k=i+1

λC(Mi)\C({Mk,...,MJ})π(activatek(s))

+λC(Mi)π(activateJ+1(s)), ni = 0. (6)
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(iv) The total probability flux out of state s in which ni > 0 due to a departure of a job, equal
the total probability flux into state s, due to an arrival of a customer which does not find
an idle server to serve it, and joins the end of the queue Mi:

µ{M1,...,Mi}π(s) = λU({M1,...,Mi})π(wait(s)), ni > 0. (7)

2.5 The stationary distribution

The following theorem states that the stationary distribution has a product form.

Theorem 1 The solution to the equilibrium equations (2)-(3) is given by

π(s) = B

i∏
j=1

λU({M1,...,Mj})
nj

µ{M1,...,Mj}
nj+1

J∏
j=i+1

λC({Mj ...,MJ})
−1. (8)

The Markov chain is ergodic if the two equivalent conditions hold:

λC < µS(C), for C ⊂ C, C 6= ∅, C,
λU(S) < µS , for S ⊂ S, S 6= ∅,S, (9)

After normalisation this solution becomes the stationary distribution, with normalization con-
stant:

B =

∑
PJ

J∑
i=0

i∏
j=1

(
µ{M1,...,Mj} − λU({M1,...,Mj})

)−1 J∏
j=i+1

(
λC({Mj ,...,MJ})

)−1−1 , (10)

where PJ is the set of all the permutations of {m1, . . . ,mJ}.

Proof. The proof consists of verifying the partial balance equations (i)-(iv) formulated in the
previous section. For a permutation M1, . . . ,MJ of the servers we use the notation:

θj =
λU({M1,...,Mj})

µ{M1,...,Mj}
, j = 1, . . . , J.

To verify (iv):
Substitute (8) into the l.h.s. of (7) to get:

µ{M1,...,Mi}B

 i∏
j=1

µ{M1,...,Mj}

J∏
j=i+1

λC({Mj ...,MJ})

−1 θn1
1 · · · θ

ni−1

i−1 θ
ni
i

and into the r.h.s of of (7) to get:

λU({M1,...,Mi})B

 i∏
j=1

µ{M1,...,Mj}

J∏
j=i+1

λC({Mj ...,MJ})

−1 θn1
1 · · · θ

ni−1

i−1 θ
ni−1
i .

These are equal since:

θi =
λU({M1,...,Mi})

µ{M1,...,Mi}
.
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To verify (iii):
Substitute (8) into the l.h.s. of (6) to get:

µ{M1,...,Mi}B

 i∏
j=1

µ{M1,...,Mj}

J∏
j=i+1

λC({Mj ...,MJ})

−1 θn1
1 · · · θ

ni−1

i−1 ,

since ni = 0. Substitute (8) into the r.h.s of (7) to get:

J∑
k=i+1

λC(Mi)\C({Mk,...,MJ})B

i−1∏
j=1

µ{M1,...,Mj}

 k−1∏
j=i+1

λC({Mj ...,Mi,Mk,...,MJ})

λC({Mi,Mk,...,MJ})

J∏
j=k

λC({Mj ,...,MJ})

−1 θn1
1 · · · θ

ni−1

i−1

+λC(Mi)B

i−1∏
j=1

µ{M1,...,Mj}

 J∏
j=i+1

λC({Mj ,...,MJ ,Mi})

λC(Mi)

−1 θn1
1 · · · θ

ni−1

i−1 .

We need to verify that: J∏
j=i+1

λC({Mj ...,MJ})

−1

=

J∑
k=i+1

λC(Mi)\C({Mk,...,MJ})

 k−1∏
j=i+1

λC({Mj ...,Mi,Mk,...,MJ})

λC({Mi,Mk,...,MJ})

J∏
j=k

λC({Mj ,...,MJ})

−1

+λC(Mi)

 J∏
j=i+1

λC({Mj ,...,MJ ,Mi})

λC(Mi)

−1 ,
or:

J∑
k=i+1

λC(Mi)\C({Mk,...,MJ})
∏k−1
j=i+1 λC({Mj ...,MJ})

λC({Mi,Mk,...,MJ})
∏k−1
j=i+1 λC({Mj ...,Mi,Mk,...,MJ})

+

∏J
j=i+1 λC({Mj ...,MJ})∏J

j=i+1 λC({Mj ...,MJ ,Mi})
= 1. (11)

This holds trivially for i = J , as the sum and products are empty (by convention, an empty
sum is 0, an empty product is 1).

For i = J − 1 we obtain:

λC(MJ−1)\C(MJ )

λC({MJ−1,MJ})
+

λC(MJ )

λC({MJ−1,MJ})
= 1.

Generally, for i < J we proceed by induction. We rewrite the l.h.s. of ( 11) as:

l.h.s =
λC(Mi)\C({Mi+1,...,MJ})

λC({Mi,Mi+1,...,MJ})
+

λC({Mi+1...,MJ})

λC({Mi,Mi+1,...,MJ})

×

[
J∑

k=i+2

λC(Mi)\C({Mk,...,MJ})
∏k−1
j=i+2 λC({Mj ...,MJ})

λC({Mi,Mk,...,MJ})
∏k−1
j=i+2 λC({Mj ...,Mi,Mk,...,MJ})

+

∏J
j=i+2 λC({Mj ...,MJ})∏J

j=i+2 λC({Mj ...,MJ ,Mi})

]

=
λC(Mi)\C({Mi+1,...,MJ})

λC({Mi,Mi+1,...,MJ})
+

λC({Mi+1...,MJ})

λC({Mi,Mi+1,...,MJ})
= 1,
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where we used the induction hypothesis to say that the quantity in brackets equals 1.
To verify (i):
The terms into the r.h.s of (4) are:

µMi+1

(
i∑

k=1

nk∑
l=0

pk,l(s)π(idlek,l(s)) + p1,n1
(s)π(idle0,0(s))

)
.

Substituting (8) into an individual term in the summation we get:

µMi+1
pk,l(s)π(idlek,l(s))

= µMi+1δk(Mi+1)lδk+1(Mi+1)nk+1 . . . δi(Mi+1)niπ(idlek,l(s))

= µMi+1B

 k∏
j=1

µ{M1,...,Mj}

i∏
j=k

µ{M1,...,Mj ,Mi+1}

J∏
j=i+2

λC({Mj ...,MJ})

−1

θn1
1 · · · θ

nk−l
k

(
δk(Mi+1)

λU({M1,...,Mk,Mi+1})

µ{M1,...,Mk,Mi+1}

)l
(
δk+1(Mi+1)

λU({M1,...,Mk+1,Mi+1})

µ{M1,...,Mk+1,Mi+1}

)nk+1

· · ·
(
δi(Mi+1)

λU({M1,...,Mi,Mi+1})

µ{M1,...,Mi,Mi+1}

)ni

= µMi+1
B

 k∏
j=1

µ{M1,...,Mj}

i∏
j=k

µ{M1,...,Mj ,Mi+1}

J∏
j=i+2

λC({Mj ...,MJ})

−1

θn1
1 · · · θ

nk−l
k

(
λU({M1,...,Mk})

µ{M1,...,Mk,Mi+1}

)l
(

λU({M1,...,Mk+1})

µ{M1,...,Mk+1,Mi+1}

)nk+1

· · ·
(

λU({M1,...,Mi})

µ{M1,...,Mi,Mi+1}

)ni

= µMi+1
B

 k∏
j=1

µ{M1,...,Mj}

i∏
j=k

µ{M1,...,Mj ,Mi+1}

J∏
j=i+2

λC({Mj ...,MJ})

−1

θn1
1 · · · θ

ni
i

(
µ{M1,...,Mk}

µ{M1,...,Mk,Mi+1}

)l( µ{M1,...,Mk+1}

µ{M1,...,Mk+1,Mi+1}

)nk+1

· · ·
(

µ{M1,...,Mi}

µ{M1,...,Mi,Mi+1}

)ni

= λC({Mi+1,...,MJ})B

 i∏
j=1

µ{M1,...,Mj}

J∏
j=i+1

λC({Mj ...,MJ})

−1 θn1
1 · · · θ

ni
i

µMi+1

µ{M1,...,Mk,Mi+1}

(
µ{M1,...,Mk}

µ{M1,...,Mk,Mi+1}

)l( µ{M1,...,Mk+1}

µ{M1,...,Mk+1,Mi+1}

)nk+1+1

· · ·
(

µ{M1,...,Mi}

µ{M1,...,Mi,Mi+1}

)ni+1

= λC({Mi+1,...,MJ}) π̃(s) (1− γk) γlk γ
nk+1+1
k+1 · · · γni+1

i ,

where we put π̃(s) for the presumed form of π(s) according to (8), and define

γj =
µ{M1,...,Mj}

µ{M1,...,Mj ,Mi+1}
.

For the 0, 0 term on the r.h.s. of (4) we get similarly:

µMi+1
p1,n1

(s)π(idle0,0(s))
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= µMi+1δ1(Mi+1)n1 · · · δi(Mi+1)niπ(idle0,0(s))

= µMi+1
B

µMi+1

i∏
j=1

µ{M1,...,Mj ,Mi+1}

J∏
j=i+2

λC({Mj ...,MJ})

−1
(
δ1(Mi+1)

λU({M1,Mi+1})

µ{M1,Mi+1}

)n1

· · ·
(
δi(Mi+1)

λU({M1,...,Mi,Mi+1})

µ{M1,...,Mi,Mi+1}

)ni

= λC({Mi+1,...,MJ}) π̃(s) γn1+1
1 · · · γni+1

i .

We can therefore rewrite the r.h.s. of (4) as

λC({Mi+1,...,MJ}) π̃(s)

[(
i∑

k=1

nk∑
l=0

(1− γk) γlk γ
nk+1+1
k+1 · · · γni+1

i

)
+ γn1+1

1 · · · γni+1
i

]
.

We now argue that the sum of all the γ terms on the left hand side is 1. We note that the
γk represent probabilities for Bernoulli trials, of which there are altogether

∑i
k=1(nk + 1) trials,

starting with ni + 1 trials with success probability of (1 − γi), followed by nk + 1 trials with

success probability (1 − γk), for k = i − 1, . . . , 2, 1. The summation of terms
∑i
k=1

∑nk

l=0 sums
up the probabilities that the first success will be on the first, the second, . . . or the last of the
trials, while the last summand of the right hand side is the probability of no success at all. These
obviously add up to 1.

We have therefore shown that the r.h.s. of (4) equals the presumed form of the l.h.s. according
to (8), which verifies (i).

The argument to verify (ii) is similar; see also [24].
Calculation of the normalization constant is straightforward from summation of the geometric

sequences; note that it is the inverse of a sum of J ! terms. �
Note that, if U({M1, . . . ,Mj}) = ∅, then λU({M1,...,Mj}) = 0 and hence, π(s) = 0 for all

s = (M1, n1, . . . ,Mj , nj , . . . ,MJ) with nj > 0, as it should.

2.6 Comparison with random assignment model

In a recent paper [24] the same queueing system under a different policy has been analysed.
Surprisingly we show in this section that the steady state distribution under that policy is the
same as for the system under FCFS-ALIS which we derived here.

The policy used in [24] is as follows: When a server becomes available he still will take the
longest waiting customer that he can serve, FCFS. However, when a customer arrives and finds
several idle servers which can serve him, he will not go to the longest idle server, but will instead
choose one of the compatible idle servers randomly, using a random assignment probability.
Thus, if a customer of type c arrives to find servers M1, . . . ,Mi busy, he will go to server Mj

which is idle and for which c ∈ C(Mj) with probability P (c,Mj |{M1, . . . ,Mi}). It is shown in
[24] that these probabilities can always be chosen in such a way that the queueing system (if it
is stable) will have a product form solution. While these special assignment probabilities may
not be unique, they will determine unique values of λMj

({M1, . . . ,Mi}), the rate at which idle
server Mj will be activated when servers {M1, . . . ,Mi} are busy. These unique activation rates
can be calculated recursively from:

λC(S\{M1,...,Mi}) =
∑

M 6∈{M1,...,Mi}

λM ({M1, . . . ,Mi}), (12)
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λMj
({M1, . . . ,Mi})

λC(S\{M1,...,Mi})
=
(

1 +
∑

Mk 6∈{M1,...,Mi,Mj}

λMk
({M1, . . . ,Mi,Mj})

λMj
({M1, . . . ,Mi,Mk})

)−1
,

i ≤ J − 2, Mj 6∈ {M1, . . . ,Mi}.

These activation rates have the special property that:

i∏
j=1

λMj ({M1, . . . ,Mj−1}) =

i∏
j=1

λMj
({M1, . . . ,M j−1}) (13)

for every permutation M1, . . . ,M i of M1, . . . ,Mi.
The dynamics of the system under the random assignment policy are described by a Markov

chain Y (t), whose states list the busy servers in order, and the number of customers queueing
between them, given by M1, n1, . . . , ni−1,Mi, ni, where the idle servers are S\{M1, . . . ,Mi}.
The steady state distribution, when the assignment probabilities and the activation rates are as
described above, are given by (see [24], Theorem 2)

πY (M1, n1, . . . , ni−1,Mi, ni) = πY (0)

i∏
j=1

λU({M1,...,Mj})
nj

µ{M1,...,Mj}
nj+1

i∏
j=1

λMj
({M1, . . . ,Mj−1}). (14)

We will now denote the steady state probabilities of the system under FCFS-ALIS as derived in
Theorem 1 by πX(·) to distinguish them from πY (·).

Theorem 2 The system under random assignment, satisfying the assignment condition of [24],
and the system under FCFS-ALIS share the same stationary behavior in the sense that:

πY (M1, n1, . . . , ni−1,Mi, ni) =
∑

Mi+1,...,MJ∈P({Mi+1,...,MJ})

πX(M1, n1, . . . , ni−1,Mi, ni,M i+1, . . . ,MJ)

where P({Mi+1, . . . ,MJ}) denotes the set of all the permutations of Mi+1, . . . ,MJ .

Proof. Comparing (8) and (14), and recalling that πX and πY both sum to 1, what we have to
show is that for some constant D (which is the same for any M1, . . . ,Mi):

i∏
j=1

λMj
({M1, . . . ,Mj−1}) = D

∑
Mi+1,...,MJ∈P({Mi+1,...,MJ})

J∏
j=i+1

(
λC({Mj ,...,MJ})

)−1
.

We take

D =

J∏
j=1

λMj
({M1, . . . ,Mj−1}).

By the assignment condition, D is the same for all permutations of M1, . . . ,MJ , and so it is the
same for all choices of M1, . . . ,Mi. We note that

i∏
j=1

λMj
({M1, . . . ,Mj−1}) = D

( J∏
j=i+1

λMj
({M1, . . . ,Mj−1})

)−1
.

Hence we need to show that:( J∏
j=i+1

λMj
({M1, . . . ,Mj−1})

)−1
=

∑
Mi+1,...,MJ∈P({Mi+1,...,MJ})

J∏
j=i+1

(
λC({Mj ,...,MJ})

)−1
. (15)
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We prove (15) by induction starting from i = J and going down to i = 0. For i = J
the products are empty, and there is nothing to prove. For i = J − 1, equation (15) says that
λC({MJ}) = λMJ

({M1, . . . ,MJ−1}), i.e. the only idle server MJ is activated at the rate of arrivals
from C({MJ}), which is obviously true. We assume that (15) holds for i+ 1 and prove it for i.

∑
Mi+1,...,MJ∈P({Mi+1,...,MJ})

J∏
j=i+1

(
λC({Mj ,...,MJ})

)−1
=
(
λC({Mi+1...,MJ})

)−1 J∑
k=i+1

∑
Mi+2,...,MJ∈P({Mi+1,...,MJ}\Mk)

J∏
j=i+2

(
λC({Mj ,...,MJ})

)−1
=
(
λC({Mi+1...,MJ})

)−1 J∑
k=i+1

( J∏
j=i+2

λMj
({M1, . . . ,Mi,Mk, . . . ,M j−1})

)−1
=
(
λC({Mi+1...,MJ})

)−1 J∑
k=i+1

λMk
({M1, . . . ,Mi})×

(
λMk

({M1, . . . ,Mi})
J∏

j=i+2

λMj
({M1, . . . ,Mi,Mk, . . . ,M j−1})

)−1
=
(
λC({Mi+1...,MJ})

)−1 J∑
k=i+1

λMk
({M1, . . . ,Mi})

( J∏
j=i+1

λMj
({M1, . . . ,Mj−1})

)−1
=
( J∏
j=i+1

λMj
({M1, . . . ,Mj−1})

)−1
.

In the first equality we write the permutations of {Mi+1, . . . ,MJ} as starting with Mk, followed
by a permutation of {Mi+1, . . . ,MJ}\Mk, and add them up over k = i + 1, . . . , J and we

take out the common term of
(
λC({Mi+1...,MJ})

)−1
. The second equality uses the induction

hypothesis, for M1, . . . ,Mi,Mk. Note that here Mi+1 = Mk and for j = i + 2 one needs to
read M j−1 = Mi+1 = Mk. In the third equality we multiply and divide each summand by
λMk

({M1, . . . ,Mi}). In the fourth equality we then use the assignment condition (13), to rewrite
all the products in the order Mi+1, . . . ,MJ . In the final equality we take out the common term,
and we then use equation (12) to see that the remaining terms equal 1. This completes the
induction, and completes the proof of the theorem. �

We note that the results of this section are similar to those obtained for a skill based service
Erlang loss system [2, 4]. It is shown in [4] that these loss systems under a random assignment
policy which satisfies the same assignment condition (13), or under ALIS policy, share the same
stationary behavior. This is proved in [4], Theorem 2, and the proof of that theorem is the same
as the proof given here. We repeat the proof here, because we are using completely different
notation.

2.7 Waiting time distribution

The waiting time distribution for a customer of type c that arrives at the system is derived in
[24], for the random assignment policy. By Theorem 2 in the previous section, a customer of type
c that arrives at the system when the system is governed by the FCFS-ALIS policy, will, under
steady state, see exactly the same distribution of states as under the random assignment policy
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of [24]. As a consequence, the waiting time distribution for a customer of type c will be exactly
the one derived in [24], Theorem 3. We thus quote this theorem here as for our FCFS-ALIS
system.

Let Si denote all the ordered subsets of servers of length i. Let π(M1, ·, . . . ,Mi, ·) denote the
steady state probability that servers M1, . . . ,Mi are busy in that order, so that:

π(M1, ·, . . . ,Mi, ·) =

=

∞∑
n1,...,ni=0

∑
(Mi+1,...,Mi)∈P(S\{M1,...,Mi})

π(M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ)

= B

i∏
j=1

(
µ{M1,...,Mj} − λU({M1,...,Mj})

)−1 ∑
(Mi+1,...,Mi)∈P(S\{M1,...,Mi})

J∏
j=i+1

λC({Mj ...,MJ})
−1

= B

i∏
j=1

(
µ{M1,...,Mj} − λU({M1,...,Mj})

)−1( J∏
j=i+1

λMj
({M1, . . . ,Mj−1})

)−1
. (16)

The following theorem specifies the steady-state waiting time distribution of type c customer.

Theorem 3 The LST of the steady-state waiting time Wc of a job of type c, under FCFS-ALIS
policy is given by

E(e−sWc·) =

J∑
i=0

∑
(M1,...,Mi)∈Si

π(M1, ·, . . . ,Mi, ·)×

i∏
j = 1

c ∈ U({M1, . . . ,Mj})

µ{M1,...,Mj} − λU({M1,...,Mj})

µ{M1,...,Mj} − λU({M1,...,Mj}) + s
, (17)

where π(M1, ·, . . . ,Mi, ·) is given by (16).

This has the following interpretation: Consider the system in steady state. Jobs of type c
arrive as a Poisson stream, and hence they see the queue in steady state, and find machines
(M1, . . . ,Mi) busy with probability π(M1, ·, . . . ,Mi, ·). If some of the idle machines can process
a job of type c, the arriving job will go into service immediately, and the waiting time will
be 0. This is expressed in (17) by noting that in that case c 6∈ U({M1, . . . ,Mi}), and so the
product is empty (and thus equal to 1). Otherwise the job will have to wait a sum of exponential
waiting times as follows: let k be such that c 6∈ C(Mj) for j = k + 1, . . . , i, but c ∈ C(Mk).
Then there will be an exponential waiting time for each of the servers k, . . . , i. The waiting time
for server Mj will be like an M/M/1 waiting time, i.e. it will be exponential with parameter
µ{M1,...,Mj} − λU({M1,...,Mj}).

Hence, when a job of type c arrives, his waiting time can be interpreted as going through a
tandem sequence of M/M/1 queues, until he can be served by the last of them. Note that this
interpretation is not really what happens: while it is true that the job of type c has to wait until
server k or one of the earlier servers 1, . . . , k − 1 will reach him, it is not the case that all the
customers ahead of him will be served before him, and that he will be skipped by all the servers
k + 1, . . . , i. It is possible that server k will skip over all the other jobs and servers, and take
the job of type c immediately, and it is also possible that one of the earlier servers 1, . . . , k − 1
will skip over all the intervening jobs and servers and take the job of type c. This is again one
of those mysteries that one encounters from time to time in queueing theory.
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3 The overloaded system

In this section we consider the system as before, with total arrival rate λ =
∑
c∈C λc and total

service rate µ =
∑J
j=1 µmj

. We introduce the following notations: the total traffic intensity
ρ = λ/µ, the fraction arrivals for the customer types αc = λc/λ and the fraction service capacity
for the servers βmj

= µmj
/µ. Also, for subsets, αX = λX /λ, X ⊆ C, and βY = µY/µ, Y ⊆ S.

It is convenient in this section to rewrite the stationary probabilities as:

π(s) = B̃(ρ)

i∏
j=1

(
ραU({M1,...,Mj})

)nj

β{M1,...,Mj}
nj+1

J∏
j=i+1

(
ραC({Mj ...,MJ})

)−1
(18)

with

B̃(ρ) = B/µJ =

∑
PJ

J∑
i=0

( i∏
j=1

(
β{M1,...,Mj} − ραU({M1,...,Mj})

)−1 J∏
j=i+1

(
ραC({Mj ,...,MJ})

)−1 )−1 .
We will study what happens as the total traffic intensity increases. We will assume that

α, β are fixed, µ is fixed, and the total arrival rate λ increases. Under these conditions, for
ρ > 1 the system becomes unstable with some of the queues growing without bounds. We will
discover that when some of the queues grow without bounds, the rest of the system stabilizes
and has a stationary behavior, which is identical to that observed for FCFS matching of two
infinite sequences (of servers and of customers) as discussed in [3]. We will distinguish a case of
complete resource pooling and a case of incomplete resource pooling. For the latter we will find
a unique decomposition of the system.

We state the infinite matching model of [3] here (see also [12]): There are two infinite se-
quences, a sequence of customers c1, c2, . . . chosen i.i.d. from C with probabilities α, and a
sequence of servers (or of services) s1, s2, . . . chosen i.i.d. from S with probabilities β, and a
bipartite graph of compatibilities. Servers and customers are matched on a FCFS basis. The
process XI(N) (the subscript I stands for Infinite-matching) is a discrete time Markov chain
that describes the state of this system after matching the first N servers, and it is defined as
follows: After matching the first N servers to customers, the sequence of customers has an initial
segment in which all are matched, followed by a middle segment in which some are matched
and some are not, followed by a last infinite segment where none are matched. XI(N) describes
this middle segment. The state is of the form (M1, n1, . . . ,MJ−1, nJ−1,MJ), where M1, . . . ,MJ

is a permutation of S that lists the last matched server of each type according to its order of
appearance in the sequence of customers, and nj is the number of unmatched customers between
Mj and Mj+1. It is shown in [3] that XI(N) is an ergodic Markov chain and has a product form
steady state distribution given by:

πI(M1, n1, . . . , nJ−1,MJ) = BI
J∏
j=1

αU({M1,...,Mj})
ni

β{M1,...,Mj}
ni+1 , (19)

with

BI =

∑
PJ

J−1∏
j=1

(
β{M1,...,Mj} − αU({M1,...,Mj})

)−1−1 . (20)

The analogy between XI and our system is clear: The permutation of the last match of server
of type j is the permutation of the servers mj , and the unmatched customers correspond to the
queues between the servers.
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The rest of this section is structured as follows: In Section 3.1 we define complete resource
pooling, under which the system is stable for all λ < µ, and show that as λ ↗ µ the steady
state distribution of the system converges to that of XI(N). In Section 3.2 we study the fluid
approximation to our queueing system. This contains information on the dynamics of the system
which cannot be gleaned from its steady state distribution. The rest of the section deals with
overloaded systems. In Section 3.3 we study the limiting behavior of the overloaded system
under complete resource pooling. We show that while the last queue grows to infinity, the rest
of the system converges in law to the steady state distribution of XI(N). In particular, while
the last queue grow to infinity, the remaining queues remain well behaved, and the servers stay
close together. In Section 3.4 we study a network maximal flow problem related to the stability
of our system and derive a unique decomposition the system when there is incomplete resource
pooling. In Section 3.5 we study the limiting behavior of the overloaded system under incomplete
resource pooling.

3.1 Complete resource pooling

We say that the system satisfies complete resource pooling if the following three equivalent state-
ments hold:

β{M1,...,Mi} > αU({M1,...,Mi}), {M1, . . . ,Mi} 6= ∅,S,
β{M1,...,Mi} < αC({M1,...,Mi}), {M1, . . . ,Mi} 6= ∅,S, (21)

α{c1,...,ci} < βS({c1,...,ci}, {c1, . . . , ci} 6= ∅, C.

As we state in the next theorem, under complete resource pooling the system will be stable for
all ρ < 1, and as ρ↗ 1 its steady state distribution will converge to the steady state distribution
of XI(N), the process describing FCFS matching of two infinite sequences in [3].

We will use the notation (similar to (16)):

π(M1, n1, . . . ,Mj , nj ,Mj+1, ·, . . . ,Mi, ·,Mi+1, . . . ,MJ)

=

∞∑
nj+1,...,ni=0

π(M1, n1, . . . , ,Mi, ni,Mi+1, . . . ,MJ).

Theorem 4 Consider the system with fixed µ, α, β, and let λ vary. Assume that complete re-
source pooling holds.

(i) The system is ergodic for all λ < µ.

(ii) For states when not all servers are busy,

lim
ρ↗1

π(M1, n1, . . . , ,Mi, ni,Mi+1, . . . ,MJ) = 0, for i < J.

(iii) For states when all servers are busy

lim
ρ↗1

π(M1, n1, . . . ,MJ−1, nJ−1,MJ , ·) = BI
J∏
j=1

αU({M1,...,Mj})
ni

β{M1,...,Mj}
ni+1 = πI(M1, n1, . . . ,MJ−1, nJ−1,MJ),

where:

BI = B̃(1) =

∑
PJ

J−1∏
j=1

(
β{M1,...,Mj} − αU({M1,...,Mj})

)−1−1 .
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(iv) The same results with the same limiting values hold also for the stationary distribuiton of
the Markov chain of jumps.

Proof. We note that αU({M1,...,Mi}) < β{M1,...,Mi} implies that λU({M1,...,Mi}) < µ{M1,...,Mi}
whenever λ < µ, and so the system is ergodic for all λ such that λ < µ, by Theorem 1. This
proves (i).

Next we observe that the value of B̃(ρ) is:

B̃(ρ) =

∑
PJ

J−1∑
i=0

( i∏
j=1

(
β{M1,...,Mj} − ραU({M1,...,Mj})

)−1 J∏
j=i+1

(
ραC({Mj ,...,MJ})

)−1 )

+
∑
PJ

(
(1− ρ)−1

J−1∏
j=1

(
β{M1,...,Mj} − ραU({M1,...,Mj})

)−1 )−1 .
The term (1 − ρ)−1 is there because of β{M1,...,MJ} = αU({M1,...,MJ}) = 1. All the expressions
inside the square brackets remain bounded as ρ ↗ 1, except for (1 − ρ)−1 which tends to ∞.
Hence:

lim
ρ↗1

B̃(ρ) = 0,

lim
ρ↗1

B̃(ρ)(1− ρ)−1 =

∑
PJ

J−1∏
j=1

(
β{M1,...,Mj} − ραU({M1,...,Mj})

)−1−1 = BI .

For a single permutation M1, . . . ,MJ with servers M1, . . . ,Mi busy, i < J we calculate:

π(M1, ·, . . . ,Mi, ·,Mi+1, . . . ,MJ) =

∞∑
n1,...,ni=0

π(M1, n1, . . . ,Mi, ni,Mi+1, . . . ,MJ)

= B̃(ρ)

i∏
j=1

(β{M1,...,Mj} − ραU({M1,...,Mj}))
−1

J∏
j=i+1

(ραC({Mj ...,MJ}))
−1.

All terms in this expression except B̃(ρ) remain bounded, and hence the whole expression tends
to 0 as ρ↗ 1. This proves (ii).

On the other hand, when all J servers are busy we calculate:

π(M1, n1, . . . ,MJ−1, nJ−1,MJ , ·) =

∞∑
nJ=0

π(M1, n1, . . . ,MJ , nJ)

= B̃(ρ)

J−1∏
j=1

(
ραU({M1,...,Mj})

)nj

β{M1,...,Mj}
nj+1 (1− ρ)−1

where we again used β{M1,...,MJ} = αU({M1,...,MJ}) = 1. As ρ↗ 1, B̃(ρ)(1− ρ)−1 → BI , and we
obtain (iii).

To prove (iv) we note that the transition rates of the process are bounded between λ and
λ+µ, and so the jump chain and the continuous process are both ergodic or both non-ergodic at
the same time. Furthermore, all the stationary probabilities of states when not all the servers are
busy will tend to zero for the jump chain as well as for the continuous process, as ρ↗ 1. Finally,
the transition rate at which jumps occur when all the servers are busy is λ+ µ, independent of
the state. Hence the stationary probabilities for the jump chain and the continuous process, for
states when all servers are busy, will tend to the same limits as ρ↗ 1. This proves (iv). �
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3.2 Fluid limits of the FCFS queueing system with multitype cus-
tomers and servers

The steady state distribution of a Markovian system provides complete information about long
term performance measures, and is therefore very useful. However, it does not provide any
information about the dynamics of the system. The dynamics of a Markovian system are of
interest when the system is stable, as they provide information about its short term behavior,
and for unstable systems it provides information on the transient behavior of the system. Exact
analysis of the dynamics is almost always intractable, however the dynamics can be approximated
by studying fluid or diffusion approximations to the system. In this section we study the fluid
approximation of our system. For an introduction to the study of these fluid limits see [11, 13, 14].

We introduce a different notation for our Markov process. We letX(t) = (S(t), Q1(t), . . . , QJ(t)).
Here S(t) = (M1(t), . . . ,MJ(t)) is a permutation of S. The total number of customers in the
system is |Q(t)| =

∑
Qj(t), ordered in order of arrival with Q1 earlier than Q2 earlier than

Q3, and so on. Of the queues at time t the first k(t) queues are non-empty, the remaining are
empty. Server Mj(t) is serving the first of the customers of Qj(t) (the 1 +

∑
i<j Qi(t) customer

in the queue), where j = 1, . . . , k(t), and servers Mj(t), j = k(t) + 1, . . . , J are idle, ordered
by increasing idle time. The customer in service at Mj(t) is of course of type c ∈ C(Mj). The
remaining waiting customers in Qj(t) are all of them of types in U(M1(t), . . . ,Mj(t)).

We also introduce the following processes that give an alternative description of the system.
Assume each customer upon arrival is given a number which counts its position in the arrival
stream. We let A(t) be the total number of arrivals by time t, where the last arrival was numbered
A(t). We also let Y1(t) < · · · < YJ(t) be the positions of the servers in the sequence of customers
up to time t, so that Yi(t) is the number in the sequence of the customer currently served by the
ith server, which is server Mi(t). If k(t) < J servers are busy we will let the positions of the idle
servers Mk(t)+1(t), . . . ,MJ(t) be (Yk(t)+1, . . . , YJ(t)) = (A(t)+1, . . . , A(t)+J−k(t)). We denote
Y (t) = (Y1(t), . . . , YJ(t)). Note that A(t), Y1(t), . . . , YJ(t) are all monotone non-decreasing in t.
We shall let A(0), Y1(0), . . . , YJ(0) ≥ 0 be some initial state, not necessarily empty.

The fluid scaling of an arbitrary function z(t) is denoted z̄r(t) = z(rt)/r. Let z(t, ω) be
a stochastic process with paths in Dd (real vector functions in the d dimensional Euclidean
space, which are right continuous with left limits). Let ω denote a fixed sample path, and let
r be a divergent sequence of integers. If z̄r(t, ω) converges u.o.c (uniformly on compacts) to a
deterministic function z̄(t) as r →∞ then we call z̄(t) a fluid limit.

We shall for simplicity take λ + µ = 1 and think of our system as powered by a Poisson
process with rate 1. Each event of the process is either an arrival or a service completion. An
arrival of a customer of type c occurs with probability λαc. A service completion by server mj

occurs with probability µβmj
. A customer departs at a service completion only if server mj is

not idle. This process is the primitive building block of our system and it obeys the FSLLN
(fucnctional strong law of large numbers). All our statements about fluid limits will hold, for
every sample path of the Poisson processes of arrivals of the various customer types and service
completions of the various servers, for which FSLLN convergence holds.

The dynamics of our system are described by the system process Z(t) = (S(t), Q(t), A(t), Y (t), T (t))
where T (t) = (T1(t), . . . , TJ(t)) are the actual (non-idling) cumulative processing times on servers
m1, . . . ,mJ . Fluid limits of components of Z(t) exist, as shown, for example, by Dai and Lin
[14]. Fluid limits of T (t) exist, because of the equi-continuity of the fluid scalings of T (t). This
implies also that fluid limits of Q(t), Y (t) exist. A small addition to the arguments of Dai and Lin
is needed for our system, since in standard queueing networks, queues change at each completion
of service by at most 1, while in our system the change in the corresponding components of Q
and Y is a random integer. However these random integers are geometrically distributed random

21



variables, with probability of success ≥ minc αc > 0, so by the law of large numbers we retain
continuity of Q̄ and Ȳ as a function of T̄ , and in fact both Q̄(t), Ȳ (t) are Lipschitz continuous. In
particular they are differentiable almost everywhere and they are equal to the integrals of their
derivatives. We say that t is a regular point of the fluid limit if all components of Q̄(t), Ȳ (t), T̄ (t)
are differentiable at t.

Note that S(t) is not included in the fluid limits, since it is a random permutation, and while
fluid acceleration of time i.e. S(rt) makes some sense, fluid scaling of S, i.e S(rt)/r makes no
sense. We can however trace the behavior of S under fluid scaling: for all t, Y1(t) < · · · < YJ(t),
so S(t) is uniquely defined. In the limit however we only have Ȳ1(t) ≤ Ȳ2(t) ≤ · · · ≤ ȲJ(t). So
we define S̄(t) as an ordered partition of the servers, where for example we will have S̄(t) =
(M1, {M2,M3},M4, . . .) if Ȳ1(t) < Ȳ2(t) = Ȳ3(t) < Ȳ4(t) < · · ·. We will on occasion write
S̄(t) = (S1, S2, . . . , SL) with (S1, S2, . . . , SL) a partition of S, even when we have more detailed
information on the order of servers within some of the subsets Si.

We will now study the dynamics of the fluid limits. Let Z̄(t) be a fluid limit, and assume that
it starts from a fluid initial state Z̄(0). Of course, if we start with a finite initial state Z(0), then
Z(r 0)/r → 0 as r → ∞, but one can assume a sequence of starting states such that Z̄(0) 6= 0,
and because our system is Markovian, this sequence of initial states is irrelevant. We do however
assume that Z̄(0) is obtained from feasible states, i.e. given S(0), the contents of Qi(t) include
only customers from U({M1(0), . . . ,Mi(0)}). In the following propositions we study the behavior
of the components of Z̄(t). For example we know, by the FSLLN that Ā(t) = λt almost surely.

In addition to Ā(t) = λt we have the following immediate relation between Ȳ (t) and Q̄(t):

Proposition 5 The following relation holds almost surely and for all regular t:

Q̄i(t) =
(
Ȳi+1(t)− Ȳi(t)

)
αU({M1,....Mi}),

d
dt Q̄i(t) =

(
d
dt Ȳi+1(t)− d

dt Ȳi(t)
)
αU({M1,....Mi}),

Q̄J(t) = Ā(t)− ȲJ(t)
d
dt Q̄J(t) = λ− d

dt ȲJ(t)

i = 1, . . . , J − 1. (22)

Proof. We note that while Yi+1 − Yi counts all arrivals from the position of server Mi to the
position of server Mi+1 at time t, Qi(t) consists only of those customers which have not been
processed by Mi+1, . . . ,MJ , so conditional on Yi+1(t)−Yi(t), Qi(t) is a Binomial random variable,
Qi(t) ∼ Binomial

(
Yi+1(t)− Yi(t), αU({M1,...,Mi})

)
. Under the fluid scaling we get

Q̄ri (t)→
(
Ȳi+1(t)− Ȳi(t)

)
αU({M1,...,Mi}),

from which the first part of (22) follows, the second part is immediate at all regular points. The
equations for the fluid queue after the last server follow similarly. �

We now study the dynamics of Ȳ (t). Our first result examines the dynamics of the fluid
system when Q̄i(t) > 0 for all i = 1, . . . , J , or equivalently, Ȳ1(t) < Ȳ2(t) < · · · < ȲJ(t).

Proposition 6 Consider a fluid limit for which Ȳ1(t) < Ȳ2(t) < · · · < ȲJ(t), and let S̄(t) =
(M1, . . . ,MJ). Then almost surely at all regular points:

d

dt
Ȳi(t) = µ

βMi

αU({M1,...,Mi}) − αU({M1,...,Mi−1})
, i = 1, . . . , J. (23)

Proof. Consider a sample path ω and sequence r →∞ such that Z̄r(t, ω) converges to Z̄. Assume
that the sample path ω obeys FSLLN and that t is a regular point. We will now show that for
such a sample path, the fluid limit satisfies (23). Since every fluid limit is obtained from some ω
and some r →∞, this implies that every fluid limit satisfies (23) with probability one for almost
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all t. This preliminary framework is standard, and will be used in all subsequent propositions
on fluid limits.

Because Ȳi are continuous, there exists ∆ > 0 such that for all τ ∈ (t−∆, t+∆) the order of Ȳi
is unchanged, Ȳ1(τ) < Ȳ2(τ) < · · · < ȲJ(τ), and so for r large enough, for τ ∈ (t−∆/2, t+ ∆/2),
Ȳ r1 (τ) < Ȳ2

r
(τ) < · · · < Ȳ rJ (τ), and so we have, for large enough r that Y1(s) < Y2(s) < · · · <

YJ(s), s ∈ I = (rt−r∆/2, rt+r∆/2). In particular this means that servers do not overtake each
other, and the order of the servers is given by the permutation S(s) = (M1, . . . ,MJ) and it is
unchanged over s ∈ I. Also, by (22), Q̄i(s) > 0, i = 1, . . . , J − 1, for s ∈ I.

Consider now the movement of server Mi, during s ∈ I. Since Q̄i(t) > 0, we have that
Qi(s) > 0 for s ∈ I, and so server Mi will be busy all the time. Hence during the time interval I
it will complete a total of L services, where L ∼ Poisson(µβMi

r∆). Server Mi will serve customers
which are in C(Mi), and which have not been served by any of the servers Mi+1, . . . ,MJ , i.e it
will serve customers in U({M1, . . . ,Mi})\U({M1, . . . ,Mi−1}). Hence, it will skip all customers
which are not in U({M1, . . . ,Mi})\U({M1, . . . ,Mi−1}), and so at each service completion it will
move a random number of places G in the sequence of customers, where G is a geometric random
variable with probability of success αU({M1,...,Mi})−αU({M1,...,Mi−1}). Hence, the total change in
Yi over the interval I will be:

Yi(rt+ r∆/2)− Yi(rt− r∆/2) =

L∑
l=1

Gl, with Gl i.i.d distributed like G.

Hence:

Ȳ ri (t+ ∆/2)− Ȳ ri (t−∆/2) =

∑L
l=1Gl
r

,

which by Wald’s equation and the FSLLN converges as r →∞ to

Ȳi(t+ ∆/2)− Ȳi(t−∆/2) = ∆µβMi

1

αU({M1,...,Mi}) − αU({M1,...,Mi−1})

from which (23) follows. �
Proposition 6 clarifies how single isolated servers move in the fluid limits. The next proposi-

tion studies movement of servers which stay together in the fluid limit.

Proposition 7 Consider a fluid limit for which Ȳk−1(τ) < Ȳk(τ) = · · · = Ȳl(τ) < Ȳl+1(τ) for
some k < l and for all τ ∈ (t−∆, t+ ∆). Let S̄(τ) = (S′, {Mk, . . . ,Ml}, S′′}) for the same range
of τ , where S′, S′′ are the subsets of servers preceding and succeeding Mk, . . . ,Ml (their order
may be known, but it is irrelevant here). Then:

d

dt
Ȳi(t) = µ

β{Mk,...,Ml}

αU({M1,...,Ml}) − αU({M1,...,Mk−1})
, i = k, . . . , l. (24)

Proof. We consider the processes Yk(s), . . . , Yl(s), s ∈ I = (rt− r∆/2, rt+ r∆/2), and the fluid
scaling, Ȳ rk (τ), . . . , Ȳ rl (τ), τ ∈ (t −∆/2, t + ∆/2). As before, because Q̄k−1(τ) > 0, Q̄l(τ) > 0,
for r large enough these processes move in isolation from the other Yj during s ∈ I, and they
consist of the movement of the fixed set of servers S = {Mk, . . . ,Ml}. Note that these servers
may change their order many times during the time interval I. For r large enough we have that
Ȳ rk (t − ∆/2) ≈ · · · ≈ Ȳ rl (t − ∆/2), and also Ȳ rk (t + ∆/2) ≈ · · · ≈ Ȳ rl (t + ∆/2), where we can
choose r large enough that ≈ will be a distance which is negligible relative to ∆.

The servers in S are working all the time, so they will process a total of L ∼ Poisson(µβ{Mk,...,Ml}r∆).
They will all start approximately at the same place, and end up approximately at the same
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place, processing all the customers of types in U({M1, . . . ,Ml})\U({M1, . . . ,Mk−1}, and skip-
ping all the other customers, between their approximately common starting and ending positions.
The total distance travelled by all the processors in S will therefore be approximately equal
to
∑L
l=1Gl where Gl are again i.i.d. geometric random variables with probability of success

αU({M1,...,Ml}) − αU({M1,...,Mk−1}).
Thus, proceeding to the limit as in the proof of Proposition 6 we get that

Ȳi(t−∆/2)− Ȳi(t+ ∆/2) = ∆µ
β{Mk,...,Ml}

αU({M1,...,Ml}) − αU({M1,...,Mk−1})

and (24) follows. �
For the next proposition we will make use of the following elementary lemma, the proof of

which may be found in [15]

Lemma 1 Let g(t) be an absolutely continuous nonnegative function on t ≥ 0 and let ġ(t) denote
its derivative whenever it exists.

(i) If g(t) = 0 and ġ(t) exists, then ġ(t) = 0.

(ii) Assume the condition that for some ε > 0, whenever g(t) > 0 and ġ(t) exists, then ġ(t) <
−ε. Then g(t) = 0 for all t > δ where δ = g(0)/ε. Furthermore g(·) is nonincreasing and
hence, once it reaches zero, it stays there forever.

Proposition 8 Assume that complete resource pooling holds, and that we start from Q̄i(0) =
0, i = 1, . . . , J − 1, Q̄J(0) > 0. Then for some ∆ > 0 we will have Q̄i(t) = 0, i = 1, . . . , J − 1,
and d

dt Ȳi(t) = µ, i = 1, . . . , J , for 0 < t < ∆.

Proof. By continuity of Q̄ we can find ∆ > 0 such that Q̄J(t) > 0, 0 < t < ∆, and so during
0 < t < ∆ all servers will be busy. We wish to show that all the servers move at the same rate.
We will show that indeed, if Q̄i(t) > 0 at some 0 < t < ∆, then d

dt Q̄i(t) < −ε < 0 which by
Lemma 1 implies that Q̄i(t) = 0, i = 1, . . . , J − 1 for 0 < t < ∆. Applying formula (24) to S we
then get d

dt Ȳi(t) = µ for 0 < t < ∆. We proceed in three stages.
(i) We show that it is not possible for the servers to break into two groups, each of which is

moving together. Assume we have for all 0 < t < ∆ that Ȳ1(t) = · · · = Ȳi(t) and Ȳi+1(t) = · · · =
ȲJ(t), and assume that for some time t in the interval, Q̄i(t) > 0. Let S1 = {M1(t), . . . ,Mi(t)}
and S2 = {Mi+1(t), . . . ,MJ(t)}. Specializing Proposition 7 to the sets S1 and S2 we have:

d

dt
Ȳj(t) = µ

βS1

αU(S1)
, j = 1, . . . , i,

d

dt
Ȳj(t) = µ

βS2

αC(S2)
, j = i+ 1, . . . , J.

By complete resource pooling, βS1 > αU(S1) while βS2 < αC(S2). In other words, the front part
of the split into S1, S2 moves at rate < µ while the back part moves at rate > µ. As a result we
have that d

dt Q̄i(t) < 0. In fact, looking at all possible splits we can find ε > 0 such that for any

S1, S2 as above, d
dt Q̄i(t) < −ε < 0. Hence, by Lemma 1, if the sets of servers S1 move together

and the set of servers S2 move together, then starting with Q̄i(0) = 0 we will have that Q̄i(t) = 0
for all 0 < t < ∆.

(ii) Assume now that the servers split into more subsets which move together. Let S1 be as
before, but S2 splits into S3, . . . , SL. While S1 moves behind, the remaining servers will move
together in subsets, with servers of S3 moving at the slowest rate, behind S4, and so on, and
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servers SL moving at the fastest rate ahead of all the other subsets. Service by these subsets of
servers will split into serving the following disjoint subsets of customer types:

C(S2) =
(
U(S1 ∪S3)\U(S1)

)
∪
(
U(S1 ∪S3 ∪S4)\U(S1 ∪S3)

)
∪ · · · ∪

(
C(S2)\U(S1 ∪ · · · ∪SL−1)

)
Note that if we regard S2, C(S2) as a system on its own, we do not know that it has complete
resource pooling, hence we need indeed consider the possibility that the servers of S2 will split
up. If they do split up, then we will have that these subsets of processors will move at rates

µ
βS1

αU(S1∪S3)\U(S1)
< µ

βS2

αU(S1∪S3∪S4)\U(S1∪S3)
< · · · < µ

βSL

αC(S2)\U(S1∪···∪SL−1)
.

By the elementary inequality:

a

b
<
c

d
⇐⇒ a

b
<
a+ c

b+ d
⇐⇒ a+ c

b+ d
<
c

d
,

we then have that

µ
βS1

αU(S1∪S3)\U(S1)
< µ

βS2

αC(S2)
.

It then follows by comparing with part (i) of the proof that the servers in subset S1 move faster
than those in S3, and so again we get that d

dt Q̄i(t) < −ε < 0.
(iii) What we have seen so far is that if the servers are split, then the last subset of servers

will catch up with the one before last. We now proceed step by step: Because of what we
showed, if Q̄1(t) > 0 then d

dt Q̄1(t) < −ε < 0, and so we conclude that if Q̄1(0) = 0 then it
will stay 0 for all 0 < t < ∆. We then move to Q̄2. Because Q̄1(t) = 0, servers M1,M2 move
together. Hence, again by part (ii), d

dt Q̄2(t) < −ε < 0, and we conclude that also Q̄2(t) = 0 for
all 0 < t < ∆. Repeating this step for the 3rd queue, 4th queue and so on, we conclude that
Q̄i(t) = 0, i = 1, . . . , J − 1 for all 0 < t < ∆ as required. �

Complete resource pooling is also necessary for all the servers to move together as the next
Proposition shows:

Proposition 9 Assume that there is no complete resource pooling. Assume we start from
Q̄i(0) = 0, i = 1, . . . , J − 1, Q̄J(0) > 0. Then immediately the set of servers will split into
more than one subset, which will move at different rates.

Proof. Assume to the contrary that all servers move together. Then by Proposition 8, for all
servers d

dt Ȳi(t) = µ, 0 < t < ∆.
If there is no resource pooling then there is a subset of servers S such that βS < αU(S). We

will show that for any time t some of the servers in S will move at a rate which is < µ. This will
prove the proposition.

Assume first that the servers in S move together, and are behind all other servers. Then the
rate at which they move will be, by Proposition 7, d

dt Ȳi(t) = µ βS

αU(S)
< µ. Assume next that the

servers in S split into S = S1 ∪ · · · ∪SL subsets, each of which moves together, and that all these
subsets are behind all the servers in S. Then as argued in the proof of Proposition 8, the servers
of the last subset S1 will move at a rate slower than µ βS

αU(S)
< µ.

Finally, if these subsets of S which move together are not behind all the servers in S, then
the servers of the last subset S1 will have more customers to serve than if they were moving in
the very back. Hence the rate of moving for i ∈ S1 will be:

d

dt
Ȳi(t) ≤

βS1

αU(S1)
≤ βS
αU(S)

< µ.
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�
We now extend the results of Propositions 8, 9 to any subset of servers, to be able to say

when Ȳk, . . . , Ȳl might be moving together. To do so we need the following definition of relative
complete resource pooling, as follows:

Definition 10 Consider a partition of the servers into subsets S′, S, S′′. We say that S has
complete resource pooling between S′ and S′′ (the order of S′ before S′′ is important here), if the
subsystem which consists of servers mi ∈ S, and the customer types c ∈ U(S′ ∪ S)\U(S′), with
β̃mi

= βmi
/βS, α̃c = αc/αU(S′∪S)\U(S′) has complete resource pooling.

Proposition 11 Consider a fluid limit for which Ȳk−1(t) < Ȳk(t) = · · · = Ȳl(t) < Ȳl+1(t) for
some k < l and for some t. Let S̄(t) = (S′, {Mk, . . . ,Ml}, S′′) be the corresponding partition
of the servers. Then Ȳk, . . . Ȳl will continue to move together, i.e. Ȳk(τ) = · · · = Ȳl(τ) for
t < τ < t + ∆ for some ∆ > 0 if and only if {M1, . . . ,Mk} have complete resource pooling
between S′ and S′′.

Proof. Because Q̄k−1(t) > 0 and Q̄l(t) > 0 the servers S = {Mk, . . . ,Ml} will move in isolation
of all the other servers during a time interval t < τ < t + ∆, and will be between servers S′

and S′′. In their movement they will process all the customers in U(S ∪ S′)\U(S′), and only
those customers. The condition that S has complete resource pooling between S′ and S′′ means
that in a system that would consist only of servers S and customer types U(S ∪ S′)\U(S′), with
β̃, α̃ as defined above, there would be complete resource pooling. Hence, by Propositions 8, 9,
it would be necessary and sufficient for the servers of these subsystems to move together. But
the movement of the servers S when they are between S′, S′′ and Q̄k−1(t) > 0 and Q̄l(t) > 0, is
exactly as if they were a separate system, with the only difference that they will actually also
skip over all the customers types in C(S′′). Hence, by Propositions 8, 9 they will stay together
if and only if S has complete resource pooling between S′ and S′′. �

3.3 The overloaded system under complete resource pooling

We consider now the behavior of the system under complete resource pooling, when λ > µ. Here
clearly the Markov process is transient. However, what we will see is that while the queue behind
the last server grows without bound, the servers and the queues between them tend to a limiting
distribution which is again that of the FCFS infinite matching model. We will use the notation
and the results on the fluid dynamics from Section 3.2. We will also need the following lemma,
the proof of which is given in [1].

Lemma 2 Let X(n) = (X1(n), X2(n)) be a Markov chain on countable state space with Xi(n) ∈
Z+. Assume the following:

1. limn→∞X2(n) =∞ almost surely.

2. P (X1(n + 1) = j|X1(n) = i, X2(n) = l) = Pi,j, for all values of l > 0, where Pi,j are
transition probabilities of an ergodic Markov chain with stationary probabilities πj.

Then for all initial i0, j0:

sup
j

∣∣∣P (X1(n) = j |X1(0) = i0, X2(0) = j0
)
− πj

∣∣∣→ 0, as n→∞

i.e. X1(n) converges in distribution to π in total variation norm.

We can now prove the following theorem:
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Theorem 12 Assume complete resource pooling and λ > µ.

(i) From any fixed initial state, as t→∞:

k(t)→ J a.s.

QJ(t)/t→ (λ− µ) a.s. (25)

(ii) As t→∞, P (S(t) = (m1,m2, . . . ,mJ), Q1(t) = n1+1, . . . , QJ−1(t) = nJ−1+1) converges to
πI(m1, n1, . . . , nJ−1,mJ) in total variation distance, where πI is the stationary distribution
of XI(N), the Markov chain describing the FCFS infinite matching model, given in (19),
(20)

Proof. We consider first the fluid limits for the overloaded system. By the results of the previous
section, we have that d

dt ȲJ(t) ≤ µ. This will hold, because by Proposition 7 the front subset

of servers S will move at a rate µ βS

αC(S)
, and by complete resource pooling, βS < αC(S). Since

Q̄J(t) = Ā(t)− ȲJ(t) we have:

d

dt
Q̄J(t) =

d

dt
Ā(t)− d

dt
ȲJ(t) = λ− µ βS

αC(S)
≥ λ− µ > 0.

Hence Q̄J(t)→∞ as t→∞, and then of course QJ(t) will diverge almost surely. In particular
this implies that k(t)→ J almost surely as t→∞.

Consider now the behavior of our Markovian system whenQJ(t) > 0. WhenQJ(t) > 0, all the
servers are busy, and the queues Qj(t), j = 1, . . . , J − 1 have transitions which occur irrespective
of the current state at times which are a Poisson process of rate µ. The sequence of states
following each transition form a discrete time process, with Markovian transition probabilities
which are exactly those of the FCFS infinite matching model, and do not depend on the value
of QJ(t). Hence, the conditions of Lemma 2 are fulfilled, and the discrete time jump process of
states will converge in law to πI . As a result the continuous time process will also converge in
law to πI .

Because Q1(t), . . . , QJ−1(t) converge to a steady state distribution, Q̄1, . . . , Q̄J−1 converge
almost surely to 0. Hence, in the fluid limit all the servers will move together at rate µ and for
any fixed initial state, Q̄J(t) = (λ− µ)t. Hence, QJ(t)/t→ λ− µ almost surely. �

3.4 Unique decomposition under incomplete resource pooling

We again consider the system with fixed α, β, µ and let λ increase, but we now consider the case
that complete resource pooling does not hold. We show that there exists a unique decomposition
of the system when it is overloaded. To do so we associate with our system the following network
(see Fig. 7): The nodes are c ∈ C, mj ∈ S, a source node o, and a sink node t. The arcs are
(o, c) of capacity λc for all c ∈ C, (mj , t) of capacity µmj for all mj ∈ S, and (c,mj) of infinite
capacity for all (c,mj) in the bipartite compatibility graph.

In what follows we use the terms, notation, and results as formulated in Ford and Fulkerson’s
book [16], pages 1–14, see also [9]. In a directed network with origin and terminal o, t, a cut is
given by a partition of the nodes into two sets, one of which includes o and the other includes
t. For our network it is given by {o, C, S} and {t, C, S}, for some subset of customer types C
and some subset of servers S, where C, S are the complements of C, S. The capacity of the cut
is the sum of the capacities of arcs directed from the o part to the t part. For our network this
will be the sum of the capacities of the arcs from o to the nodes in C, the arcs from the nodes of
S to t, and the arcs from C to S. For any cut with finite capacity, C and S must be such that
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Figure 7: s–t maximal flow problem with minimum cut through C(λ), S(λ).

there are no arcs in the compatibility graph from C to S. We will only consider cuts with finite
capacity, for which the arcs from the o to the t part of the network are exactly the arcs from the
o to C and the arcs from S to t. Rather than talk about the cut as a partition we will describe
a cut by the sets C and S. Note that for cuts with finite capacity we will have that S(C) ⊆ S,
and that C(S) ⊆ C. The celebrated max-flow min-cut theorem states that the maximal o to t
flow through the network equals the capacity of the minimal cut.

The maximal flow in the network is related to the stability of our system through the following
proposition.

Proposition 13 A necessary condition for stability is that the maximal flow from o to t is λ.
A sufficient condition is that there exists ε > 0 such that if the capacities of the arcs (o, c) are
increased to (1 + ε)λc the maximal flow is (1 + ε)λ.

Proof. The proof is similar to proofs that were given in [7, 12], we give it here for completeness.
For sufficiency, assume that with o to c flow capacities (1+ε)λc, the maximal flow in the network
is (1 + ε)λ. Then for any subset of customer types C, the total flow from o to the nodes in C
equals (1 + ε)λC , so the total flow from C to the server nodes S(C) equals at least (1 + ε)λC (it
may be more since S(C) may receive flow from additional customer nodes), and so the total flow
from server nodes S(C) to t equals at least (1 + ε)λC . But the capacity of the arcs from server
nodes S(C) to t equals µS(C), so if the maximal flow is (1+ ε)λ we have µS(C) ≥ (1+ ε)λC > λC .
Hence the condition (9) for stability of the queueing system with total arrival rate λ holds, and
the system is stable.

For necessity, assume that the total arrival rate of the queueing system is λ. Then the
maximal flow in the network must be ≤ λ. Assume now that the maximal flow is < λ. By the
max-flow min-cut theorem there exists a minimal cut of capacity < λ. Let such a minimal cut
be defined by the arcs from o to C and the arcs from S to t. Then as observed above, S(C) ⊆ S.
The capacity of the cut is λC + µS < λ. We now see that µS(C) ≤ µS < λ − λC = λC . But

µS(C) < λC contradicts the condition (9) for the stability of the system. Thus if the queueing
system is stable, then the maximal flow in the network must equal λ. �

The following theorem describes the solution of the o to t maximum network flow problem,
as a function of λ. Fig. 8 illustrates this theorem as well as the following Corollary 15.
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Figure 8: Maximal flow as a function of λ

Theorem 14 Consider the o–t maximum network flow problem as λ increases. Then:

(i) The maximal flow f(λ) is a continuous piecewise linear non-decreasing concave function of
λ, with breakpoints 0 = λ(0) < λ(1) < · · · < λ(L) < λ(L+1) = ∞, which has slope 1 for
0 < λ < λ(1), and is constant and equal to µ for λ > λ(L).

(ii) For each interval (λ(i−1), λ(i)) there exist a set of customer types C(λ(i−1), λ(i)) and a set
of servers S(λ(i−1), λ(i)) such that they form a cut, which is the unique minimal cut for all
λ in the interval.

(iii) The sets C(λ(i−1), λ(i)) are decreasing in i and the sets S(λ(i−1), λ(i)) are increasing in i,
in the sense that: C(λ(0), λ(1)) ⊃ C(λ(1), λ(2)) ⊃ · · · ⊃ C(λ(L), λ(L+1)) and S(λ(0), λ(1)) ⊂
S(λ(1), λ(2)) ⊂ · · · ⊂ S(λ(L), λ(L+1)).

Proof. (i) The maximal flow problem for each fixed λ is a linear program with feasible and
bounded solutions, and when it is considered with varying λ it is a parametric linear program.
As such it will have intervals in which the same basis is optimal, and such intervals will cover
the whole line of λ > 0. Within such an interval the flows of the optimal solution will be
affine functions of λ. The optimal maximal flow objective f(λ) is clearly a continuous non-
decreasing function of λ. Consider now the optimal flows for λ′ and λ′′ with λ′ < λ′′ and look at
λ = (1− θ)λ′ + θλ′′. The convex combination of the optimal flows for λ′ and for λ′′ is a feasible
flow for λ with objective value (1− θ)f(λ′) + θf(λ′′) which can only be suboptimal. This proves
the concavity. Finally, if 0 < λ < min{µm1 , . . . , µmJ

} the maximal flow is λ, so the slope of the
initial interval of f(λ) is 1, and for λ such that minc∈C λc > µ the maximal flow is µ, so the
slope of f(λ) in the last half infinite interval is 0.

(ii) Consider an interval λ(i−1) < λ < λi in which the maximal flow is f(λ) = a + bλ. For
fixed λ0 in the interval, consider a minimum cut, so its capacity is a+bλ0. For any other λ in the
interval the capacity of this cut will an affine function of λ, and it will be at least f(λ) because
any cut capacity is an upper bound on the flow. This implies that the capacity of the cut is
equal to a+bλ for all λ(i−1) < λ < λi, and hence the cut is a minimal cut for all λ(i−1) < λ < λi.
Hence we have shown that any minimal cut for λ0 is in fact a minimal cut for the whole range
of values λ(i−1) < λ < λi.

Assume now that there are two different minimal cuts, given by the partitions {o, C1, S1},
{t, C1, S1} and {o, C2, S2}, {t, C2, S2}. The capacity of these minimal cuts will be λαC1 + µβS1

and λαC2 +µβS2 respectively, where both expressions are equal to a+bλ. By Corollary 5.4 in [16],
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the cut formed by C1∩C2 and S1∪S2 will also be a minimal cut, with capacity λαC1∩C2+µβS1∪S2 .
Recall that αc > 0 for all customer types c ∈ C. Hence we cannot have equal capacities for the
three cuts for a range of values of λ unless C1 = C2. Once we have that C1 = C2, we see that
we cannot have equality of the capacities of the three cuts unless also S1 = S2. This proves the
uniqueness in each interval.

(iii) We consider λ′ < λ′′. Let the minimal cut for λ′ be given by subsets C, S, where the arcs
across the cut are the arcs from o to C, and the arcs from S to t. We partition the network into
two subnetworks, the first consists of {o, t, C1,S1} where C1 = C, S1 = S, and the second consists
of {o, t, C2,S2}, where C2 = C, S2 = S. We look at the solution of the o–t maximal network flow
problem for each of the subnetworks, where the inflows to the two networks are increased by a
factor of λ′′/λ′. For the first subnetwork the maximal flow remains constant for all λ′′ > λ′ and
equal to f1 = µβS , and the minimal cut consists of the arcs from S1 to t. By part (ii) we have
a unique minimal cut also for the second subnetwork problem, given by unique sets C3 ⊆ C2

and S3 ⊆ S2 and the maximal flow equals the capacity of this cut f2 = λ′′αC3
+ µβS3

. We now
claim that using the combined maximal flows of these two networks will give us the maximal
flow for the original full network, with total arrival rate λ′′. To see this we note the following:
(1) The combined flow is a feasible flow for total arrival rate λ′′, and it equals the sum of the
flows f1(λ1) + f2(λ2), which equals the capacities of the two minimal cuts. (2) The sets of nodes
{o, C1 ∪ (C2\C3), S1 ∪S3} and {t, C3, S2\S3} provide a partition and are a cut. (3) There are no
links from C1 or from C2\C3 to S2\S3, and so the capacity of this cut is finite, and equal to the
capacities of the arcs o to C3 and S1 ∪S2 to t, which is f1(λ1) + f2(λ2). Thus we have a feasible
flow equal to a cut capacity, which implies optimality.

We have shown that the minimal cut for λ′′ is given by C3 and S1 ∪ S3, while the minimal
cut for λ′ is given by C2 and S1, so that C3 ⊆ C2, and S1 ∪ S3 ⊇ S1, which is the monotonicity
we needed to show. Strict monotonicity holds if λ′, λ′′ belong to different intervals. �

Theorem 14 induces a decomposition of the servers and of the customer types as detailed in
the next Corollary. The decomposition is illustrated in Fig. 9. In this figure we have minimal cuts
which belong to a case where there are 4 breakpoints in f(λ), which correspond to 5 intervals,
and 5 minimal cuts as numbered.

C(1)

C(2)

C(3)

C(4)

S(1)

S(2)

S(3)

S(4)

o s

1
2

3

4

5

2

3

4

Figure 9: Decomposition of servers and of customer types

Corollary 15 If the maximal flow f(λ) has breakpoints 0 = λ(0) < λ(1) < · · · < λ(L) < λ(L+1) =
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∞, then there is a unique partition of the set of servers into non-empty subsets S(1), . . . ,S(L)
and of the set of customer types into non-empty subsets C(1), . . . , C(L), such that:

(i) The minimal cut for λ(i−1) < λ < λ(i) consists of

C(λ(i−1), λ(i)) =
⋃
k≥i

C(k), S(λ(i−1), λ(i)) =
⋃
k<i

S(k),

for i = 1, 2, . . . , L+ 1.

(ii) The maximal flow f(λ) where λ(i−1) < λ < λ(i), is:

f(λ) = λ
∑
k≥i

αC(k) + µ
∑
k<i

βS(k) ,

for i = 1, . . . , L+ 1.

(iii) The values of the breakpoints are:

λ(1) = µ
βS(1)

αC(1)
< λ(2) = µ

βS(2)

αC(2)
< · · · < λ(L) = µ

βS(L)

αC(L)

.

(iv) Consider the subsystem composed of servers S(i) and customer types C(i), with arrival rates
λαc for customers of type c. Then this system is stable for λ < λ(i) and unstable for
λ ≥ λ(i).

(v) Consider the subsystem composed of servers
⋃L
k=i S(k), and customer types

⋃L
k=i C(k), with

arrival rates λαc for customers of type c. Then this system is stable for λ < λ(i) and
unstable for λ ≥ λ(i).

(vi) For λ(i−1) < λ < λ(i) the maximal flow solution of the whole system will have zero flow on
arcs from customers c ∈ C(k) to servers mj ∈ S(l) for all k ≥ i > l.

Proof. Parts (i) and (ii) and (iii) follow directly from the construction of minimal cuts in Theorem
14. Parts (iv) and (v) then follow from Theorem 13 and the expression in (iii). Finally, for part
(vi) we note that when λ(i−1) < λ < λ(i) then the servers S(j) receive flow µβS(j) from customer
types C(j) for j = 1, . . . , i − 1, so there can be no additional flow to any of them from nodes of
customer types in C(i), . . . , C(L). �

The following corollary gives another way of solving the max plow problem and decomposing
the sets of servers and customer types, and pinpoints the nature of this decomposition:

Corollary 16 The sets C(i),S(i) have the following characterization:

C(i) = arg minC⊆C\
⋃

k<i C(k)

βS(C)

αC
, S(i) = S(C(i)).

Proof. One way to see this is that, by Corollary 15 (iv), for each C ⊂ C(i) we have
βS(C)

αC
<

βS(i)
αC(i)

,

and by (iv)
βS(i)
αC(i)

are monotone increasing in i. �

Intuitively the picture is as follows: Under complete resource pooling C(1) = C, S(1) = S.
When there is no resource pooling, for some subsets of customers the requirement that αC <
βS(C) is violated. As λ increases the subset of customers which have the least value of βS(C)/αC

becomes overloaded when λ reaches µ
βS(C)

αC
, and this defines C(1) and S(1). This leaves servers
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S\S(1) to serve the remaining customer types C\C(1). Note that even if c ∈ C\C(1) can be served
by a server in S(1), this will not happen in the max flow solution, since all the servers in S(1) are
fully occupied by C(1). The remaining servers and customer types now behave like a subsystem

with α̃c = αc

1−αC(1)
, β̃mj

=
βmj

1−βS(1)
. If in the remaining subsystem

β̃S(C)

α̃C
≥ 1 for all subsets, then

L = 2 and the minimum of these ratios will be reached by S\S(1), C\C(1). Else, if the minimum
is again < 1, the subsets C,S(C) with minimal ratio of βS(C)/αC will be S(2), C(2), and the

servers in S(2) will become overloaded when λ = µ
βS(2)
α

C(2)
, and so on (see Figs. 8 and 9).

3.5 Limiting behavior of overloaded system under incomplete resource
pooling

Following our study of the fluid limits of our system, and the decomposition of the set of servers
and of customer types when there is no resource pooling, we can now describe the limiting
behavior of our system as t → ∞ in the case that there is no resource pooling, as a function of
the total arrival rate λ. In the following theorem we use the notation developed in Section 3.4.

Theorem 17 Assume the system has incomplete resource pooling, as in Section 3.4 and that
the total arrival rate is λ(l) < λ < λ(l+1). Then as t →∞ the following convergences will occur
for the state of the system, s = (S(t), Q1(t), . . . , QJ(t)):

(i) The permutation S(t) as t → ∞ will consist of a permutation of S(1) followed by a per-
mutation of S(2) and so on up to a permutation of S(l), followed by a permutation of the
remaining servers.

(ii) As t → ∞ the queue between the last server of S(k) and the first server of S(k+1), for

k = 1, . . . ,min{l, L− 1} will diverge, growing at a rate µ

(
βS(k+1)

αC(k+1)

− βS(k)

αC(k)

)
α⋃

j≤k C(j) .

If l = L, i.e. λ > λL, the queue after the last server will grow at rate: µ

(
λ− βS(L)

αC(L)

)
.

(iii) For k = 1, . . . , l, the probability distribution of the permutation of S(k) and the queue length
between the servers S(k) will converge to the stationary distribution of the FCFS infinite
matching model for the subsystem of C(k),S(k).

(iv) If l < L, then the probability distribution of the permutation of the remaining servers and
the queue lengths between them and behind the last of them, and the ordered set of idle
servers, will converge to the steady state distribution of the stable system consisting of⋃
k>l C(k),

⋃
k>l S(k), as given by Theorem 1.

The diverging queues will diverge almost surely. The convergence of the probabilities to stationary
probabilities will be in total variation distance. The overloaded subsystems and the remaining
stable system will converge in distribution to independent processes.

Proof. It follows from the results of Sections 3.2 and 3.4 that the fluid limits of the processes Yk
for the various servers will eventually coalesce into subsets which will move together, with the
servers of the subsets S(k) moving together at rates increasing with k for k = 1, . . . , l, and the
remaining servers will move together with A(t) at the rate λ. This implies (i). The rates in (ii)
are obtained directly from (22) and (24).

It is then seen that for each subsystem the transition rates, conditional on the diverging
queues being > 0 are exactly those of the FCFS matching model for the subsystems k = 1, . . . , l,

32



and for the remaining subsystem they are equal to those of a stable system consisting of⋃
k>l C(k),

⋃
k>l S(k). Parts (iii) and (iv) then follow by Lemma 2.

The independence follows since the various subsystems have independent transitions given
that the diverging queues are > 0. �

4 The overloaded system with abandonments

We now consider our system with the added feature of abandonments. We assume that customers
of type c have patience distribution Fc which we take for simplicity to be absolutely continuous,
and a customer abandons the system when his waiting time before service exceeds his patience.
These abandonments assure the stability of our system. We study the behavior of the system
under uniform acceleration, where we assume that the arrival rate λ and the service rate µ
increase, while the patience distribution remains constant.

In a seminal paper Talreja and Whitt [23] have studied a system with multi-type customers
and multi-type servers under FCFS, in the presence of abandonments and under uniform acceler-
ation. Our results in this paper, with the added assumption of memoryless arrivals and services,
allow us to give a more complete description with more details on its behavior.

While exact analysis of systems with abandonments is difficult, their asymptotic description
under uniform acceleration is much simpler. For a single stream of customers with abandonments,
under uniform acceleration, if the offered load is < 1 the speed with which customers move
means that there are very few abandonments and in the limit they disappear. When the system
is overloaded, with offered load > 1, there are many customers with sufficient patience in the
system at all times, and successive customers will have approximately the same waiting time,
so that there will be an effective cutoff time w, such that customers with patience less than w
will not be served, while customers with patience ≥ w will in the limit be served after waiting
exactly w. These results are obtained by studying the fluid and diffusion approximations of the
process. Similar results were obtained also for multi-type customers, by Jennings and Reed [22].
The case of offered load close to 1 is much harder, and leads to the Halfin-Whitt limiting regime.

It is to be expected that similar behavior under uniform acceleration also occurs in our multi-
type server multi-type customer FCFS system with abandonments. In what follows we do not
prove the asymptotic behavior under uniform acceleration, and we do not consider the case of
offered load close to 1. We assume that the asymptotic results hold, and under this assumption
we derive the behavior of our system.

We now discuss four cases in order of increasing complexity, in the limit under uniform
acceleration:

Uniform patience, complete resource pooling

Assume all customers have the same patience distribution, Fc = F and the system has complete
resource pooling. If the system is overloaded then a value w will be uniquely determined by
µ = λ(1 − F (w)). This will be the effective arrival rate of customers that do not abandon, the
system will be stable, and include at any time µw customers which have enough patience to be
served, while losing customers that abandon at a rate λF (w). Note that all the different types of
customers will have the same fraction of abandonments, and those customers that will be served
will have the same waiting time before service. Talreja and Whitt [23] refer to this as global first
come first served.

The system will then evolve on two time scales. On the fluid scale it will have a large ∼ µw
number of customers, all of them behind the last server, and all the servers will move together at
rate µ. On the detailed scale the servers will behave like servers in the FCFS infinite matching

33



model, with the servers ordered according to a random permutation, with stable queues between
them, and the permutation of servers and the queues between the servers will have the steady
state distribution πI .

Uniform patience, incomplete resource pooling

Assume common patience distribution F and no resource pooling, so that the max flow as
function of λ and the resulting system decomposition are as described in Section 3.4. If the
system is overloaded so that λ > λ(L) and we go to uniform acceleration, by increasing both λ
and µ, then all the servers will be overloaded, and the system will split into L subsystems, with
S(i) serving only customers of C(i). There will be individual wi for i = 1, . . . , L, where wi is
determined by λαC(i)(1 − F (wi)) = µβS(i) . Here the fraction of abandonment and the waiting
times are the same within each subsystem, but they are different for each of the subsystems,
with w1 > w2 > · · · > wL.

Now each subsystem evolves independent of the others, similar to the behavior of the whole
system when resource pooling holds.

If λ(l) < λ < λ(l+1), then only subsystems 1, . . . , l will be overloaded, and under uniform ac-
celeration subsystems l+1, . . . , L will form one subsystem which is stable, with no abandonments
in the limit. The steady state distribution of this subsystem will be that given by Theorem 1.

Individual patience distribution, complete resource pooling

Assume now that the patience distribution of customers of type c is Fc, and that complete
resource pooling holds. If the system is overloaded, because of complete resource pooling there
will be global first come first served, and the waiting time cutoff w will be determined as the
unique value that satisfies:

λ
∑
c∈C

αc(1− Fc(w)) = µ

That w is unique follows from the monotonicity of all the Fc. Now under uniform acceleration
all the customers that have patience greater or equal to w will be served after waiting exactly
w. However, different customer types will have different abandonment fractions, given by Fc(w)
for customers of type c.

Again the system will evolve on two time scales, with a queue of length ∼ µw, and all the
servers moving together on the fluid scale, and on the detailed scale the servers and customers
between them will have steady state distribution given by πI , which however needs to be mod-
ified as follows: because different types have different fractions that abandon, the new i.i.d.
distribution of the types of customers that get served is given by α̃c = αc(1− Fc(w))λ/µ.

It is however possible that with the new values of α̃c the system will not have complete
resource pooling. This leads to the behavior of the next, most general case.

Individual patience distribution, incomplete resource pooling

In that case the system will decompose into several subsystems, each of which will behave in-
dependently of the others. One of the subsystems may not be overloaded, and under uniform
acceleration will behave like our stable queueing network of Section 2. All the other subsystems
will evolve as overloaded systems with individual patience distribution, and complete resource
pooling.
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Within the overloaded subsystems the following will be true: Each subsystem S(i), C(i) will
have its own wi, satisfying:

λ
∑
c∈C(i)

αc(1− Fc(wi)) = µβS(i) ,

and the subsystem of S(i), C(i) will have complete resource pooling with the modified

α̃c = αc(1− Fc(wi))
λ

µβS(i)

, c ∈ C(i).

It remains to show that this decomposition is unique, and how to obtain it. We proceed
as follows: We start from w = ∞, only customers with infinite patience will be served, so
everyone abandons, and the effective arrival rate is 0. We then decrease w. As a result, λ(w) =∑
c∈C λαc(1 − Fc(w)) which is the effective arrival rate, of customers that will be served if we

serve only those with patience ≥ w, will increase. For each such value of w we will also have
the fractions of customers of each type, which will be proportional to α̃c = αc(1 − Fc(wi)). As
w decreases and the arrival rate increases we will get a first set of servers which is overloaded,
S(1) and a value w1. With it we have C(1) = U(S(1)). We now exclude S(1), C(1), and continue in
the same way for the remaining servers and customer types, where we now continue to decrease
w further beyond w1. This procedure will yield a decomposition, and a sequence of waiting
times w1 > w2 > · · ·. It will end either when all the servers and customer types have been
put into subsets, with a last, smallest wL, in which case all the servers are overloaded, or when
some servers and customer types are still left and w has reached the value 0, in which case
these remaining servers are not overloaded, and can serve all their customer types even without
abandonments.

The subsystems will then evolve independently as for the previous three cases. Within each
subsystem there will be global FCFS but the fraction that abandon will be different for different
customer types, given by the individual Fc(wi). On the detailed scale the overloaded subsystems
will have steady state distribution πI with the appropriate parameters. The last subsystem
which is not overloaded will have in the uniform acceleration limit no abandonments, and have
steady state distribution as in Theorem 1.
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