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Chapter 1

Introduction

ABSTRACT

This chapter discusses the growth process and electronic properties of self-assembled

quantum dots, with an emphasis on (In,Ga)As/GaAs quantum dots. We give an

overview of the most influential experimental work on this type of quantum dots. We

explain for what purpose controllable g factors are needed, and discuss a gedankenex-

periment on spin echo’s without radio-frequency waves.
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1.1 Self-assembled III-V semiconductor quantum dots

Self-assembled semiconductor quantum dots are crystalline clusters of a semiconductor

compound embedded in a semiconductor host material. Since the late 1980’s, they have

been studied in fundamental physics and applied in opto-electronics. Next to the ap-

plications in for example lasers, they can act as memory devices or (infrared) detectors

as well. The quantum dot can be described by a potential well, confining charge car-

riers in all three directions. As their name suggest, sizes of quantum dots (diameter

∼ 10 − 30 nm, height ∼ 2 − 8 nm) are such that a zero-dimensional electronic system

is formed. Their fully quantized energy spectrum makes them attractive for quantum

information processing purposes (Loss and DiVincenzo, 1998), which is the main moti-

vation of this thesis. We, however, first focus on the general properties of quantum dots

and introduce the growth procedure, electronic structure and some important experi-

ments on quantum dots.

Growth procedure

The epitaxial techniques which can be employed for the growth of quantum dots are

molecular beam epitaxy (MBE), metal-organic vapor deposition (MOCVD), and chem-

ical beam epitaxy (CBE) (for an overview, see Petroff and DenBaars (1994) and Nötzel

(1996)). Quantum dot growth can be performed in the Stranski-Krastanow growth

mode, a type of epitaxial growth of two semiconductor compounds with a different lat-

tice constant. In this growth mode, a thin (wetting) layer of the material with the

largest lattice constant is formed on the substrate. Lattice strain builds up during this

process. At a critical thickness, determined by the lattice mismatch of the materials,

the strain can not be accommodated anymore and coherently strained quantum dots

are formed. A transition from two-dimensional to three-dimensional growth is made at

this point. Since the three-dimensional islands have a coherent strain distribution, no

defects are formed, which results in good optical properties.

A Stranski-Krastanow growth mode is, for example, possible for InAs on GaAs,

where InAs forms the quantum dots in the GaAs host material. These materials have a

lattice mismatch of 7.2 %. For (In,Ga)As island formation to occur, the concentration

of In should at least be 20 %, which corresponds to a minimum lattice mismatch of

about 1 %. Typical (In,Ga)As quantum dot islands have a height between 2 nm and

8 nm and a base diameter between 10 nm and 30 nm. Both lens-shaped and truncated

pyramid shapes have been observed for these quantum dots (Bruls et al., 2002; Gong

et al., 2004). In the process of (In,Ga)As quantum dot formation, up to 50-60 % Ga

can be intermixed into the quantum dot (Heyn and Hansen, 2003; Heyn et al., 2005).

8



Introduction

0 100 200 300 400 500
0

100

200

300

400

500

x HnmL

y
Hn

m
L

-2 nm

8 nm

0 nm

Figure 1.1: An atomic-force microscopy (AFM) image of a 500 × 500 nm surface on which
Stranski-Krastanow quantum dots are grown. These quantum dots have a surface density
4.5 × 1010 cm−2, a base diameter of 25 ± 5 nm and a height of 6.7 ± 1.5 nm. The 0 nm in the
scale refers to the height above which only quantum dots occur (see also Fig. 3.9).

The size, shape, degree of intermixing, and surface density can be controlled by the

temperature of the sample substrate, deposition rate, growth interrupts, and possible

treatment afterwards, like annealing (Joyce et al., 1998; Alloing et al., 2007). Quantum

dot surface densities range from 108 cm−2 up to 1011 cm−2. Figure 1.1 shows an example

of a 500× 500 nm surface on which quantum dots are grown, measured by atomic-force

microscopy (AFM).

Figure 1.2 shows the bandgap and lattice constant of a large number of III-V semi-

conductor compounds which can be used in MBE growth. The open circles in Fig. 1.2

denote the binary compounds, whereas the lines represent ternary compounds. Note

that not all combinations of compounds are suitable for confining quantum dots. The

compounds with a lighter mass of the constituent components, like GaAs, InP, and

GaP, have larger bandgaps, and are therefore commonly applied as host material for

the quantum dots. The relatively large difference in bandgap between InAs and GaAs

is attractive, since this results in well-confining quantum dots, even at higher tempera-

tures.

Besides the self-assembled quantum dots, colloidal and electrostatically-defined quan-

tum dots are currently investigated extensively. Colloidal quantum dots are smaller

9



Figure 1.2: The bandgap energy as a function of the lattice constant for the III-V semicon-
ductor compounds. Figure is from Tien (1988).

(3-10 nm) than Stranski-Krastonow-grown quantum dots, have good optical properties,

and have promising applications in medicine (Rajh et al., 1993). Qubit operation has

already been demonstrated by Petta et al. (2005) and Koppens et al. (2006) for the

electrostatically-defined quantum dots.

Electronic structure

The density-of-states of solid state structures can be derived from the dispersion rela-

tion of the band structure and dimensionality of the system. One finds an increasing,

constant, and decreasing behavior as a function of energy for the three-, two-, and

one-dimensional structures, respectively, which is illustrated in Fig. 1.3. A discrete

density-of-states is formed for zero-dimensional structures, i.e., quantum dots. The first

experimental observation of such a discrete energy spectrum was made by Reed et al.

(1987, 1988).

The discrete energy levels of an electron in a quantum dot can be determined from

the Hamiltonian

Ĥ = Ĥkin + V̂ + ∆̂Z (1.1)

where Ĥkin is the kinetic part of the Hamiltonian and V̂ is the confinement potential of

10
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Figure 1.3: The density-of-states as a function of the energy E, shown for the bulk, quantum
well, quantum wire and quantum dot. An increasing confinement leads to a lower ’overall’
density-of-states. The subscripts, like 112 in E112 in the graph for the quantum dot, are
the principal quantum number for each of the confinement directions. Courtesy of F. Scholz
(Geiger, 1998, University of Ulm).

the quantum dot. The Zeeman term ∆̂Z relates to the spin part of the wavefunction,

describing the energy splitting between spin-up and spin-down energy level, and can be

written as

∆̂Z = gµBB · S (1.2)

where S denotes the spin and B is the magnetic field, µB is the Bohr magneton and g is

the Landé g factor. The Bohr magneton is the magnetic dipole moment of an electron

with an angular momentum of ±~, and reads µB = 0.058 meV/T. The g factor describes

the ratio of the magnetic moment and orbital angular momentum (of the spatial part

of the wavefunction), or the ratio of the magnetic moment and the associated ’intrinsic’

angular momentum of the spin (for the spin part of the wavefunction). Values for the

g factor occur in a wide range, which is further explained in Ch. 2.

Calculated energy spectra of (In,Ga)As quantum dots are characterized by an energy

spacing of the order ∼ 30 meV (Stier et al., 1999; Schliwa et al., 2007). One should note,

however, that these energies depend on numerous parameters, like the size, shape and

material composition of the dot. Other important parameters, which are more difficult

to estimate, are the piezoelectric potential distribution and band lineup of the materials

(Stier et al., 1999; Schliwa et al., 2007). If one considers multiple carriers in the quantum

dot, Coulomb terms do affect the spectrum as well.

In this work, we focus on self-assembled (In,Ga)As quantum dots, grown on GaAs

host material. These have transition energies ranging from 1.0 eV up to 1.3 eV and are

11



smaller than the II-VI quantum dots with transition energies over 2 eV. Differences

between the materials occur, for example, in the polarity of the bonding of the crystal:

the III-V materials have a weaker polar character. Moreover, the III-V quantum dots

have a weaker coupling to the acoustic phonon bath. When spin relaxation is driven

by acoustic phonons, one can therefore expect that III-V quantum dots have larger

spin relaxation times. This leads to longer spin relaxation times, which we discuss in

Ch. 4. Besides this difference between II-VI and III-V quantum dots, one can generally

expect a more dense spectrum for the valence electrons than for the conduction electrons

in (In,Ga)As quantum dots, due to the band lineup and larger effective mass of the

valence electron. Furthermore, intermixing of Ga into the InAs quantum dot decreases

the confinement potential well depth, which leads to an overall increase of transition

energies.

Both electrical measurements, like C-V measurements (Reuter et al., 2005), as well

as optical experiments (Blokland et al., 2007) have been performed to measure the

electronic spectrum of (In,Ga)As quantum dots. Optical experiments even have shown

results on the fine structure (e.g., exchange energies) (Gammon et al., 1996; Ware et al.,

2005). The electric measurements have the advantage that they can easily differenti-

ate between the conduction and valence electron spectrum. Experimental values for

the confinement-induced energy spacing between subsequent energy levels (e.g., ground

state and first excited state) for the valence electron are ∼ 40 meV (Reuter et al.,

2005). For the exciton, these energies range from ∼ 15 meV (Ediger et al., 2007) up to

∼ 70 meV (Blokland et al., 2007), which is deduced from the peaks of subsequent levels

in photoluminescence spectra.

We consider the optical selection rules between the conduction and valence electron,

since we measure the degree of circular polarization of the photoluminescence in mag-

netic field. The polarization of the photons is determined by the Bloch functions of

the conduction and valence bands. The materials InAs and GaAs have a s-type Bloch

function (L = 0) for the conduction electron and a p-type Bloch function (L = 1) for

the valence electron. One has to couple the spin S with the angular momentum L of the

Bloch function, such that J = L+S. This results in fourfold degenerate J = 3/2 states

at the top of the valence band and twofold degenerate J = 1/2 states for the split-off

subband.

Due to confinement in the quantum dot, the fourfold degenerate J = 3/2 levels split

into two twofold degenerate subbands with Jz = ± 3/2 (heavy holes) and Jz = ± 1/2

(light holes). The Jz = 3/2 states are at the top of the valence band, and are therefore

involved in the lowest-energy optical transitions. We measure the degree of circular

polarization from the Sz = ± 1/2 conduction electron states to the Jz = ± 3/2 valence

12
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Figure 1.4: Optical transitions in the quantum dot occur from the Sz = ±1/2 to the Jz =
±3/2 (emission of σ∓ photons) and Jz = ∓1/2 (emission of σ± photons) level. The oscillator
strength for the transitions involving Jz = ±1/2 are three times lower. Note that we use a
valence electron point-of-view for the transitions, and not a hole point-of-view.

electron states. When the magnetic field and the propagation direction of the emitted

σ± photons (i.e., right- (+) and left-handed (-) circularly polarized photons) are pointing

in the same z-direction, the optical transitions from the conduction to valence electrons

can be written as ± 1/2 → ± 3/2 + σ∓ (see Fig. 1.4). The angular momentum

of the conduction electron of ±~ is transferred to the photon. Transitions between the

conduction electron and the Jz = ± 1/2 subband are also allowed, and can be written as

± 1/2 → ∓ 1/2 + σ±. Due to a different overlap of the heavy- and light-hole Bloch

functions, the transition strength for light-holes is three times smaller. Throughout the

thesis, we only use the terminology of heavy- and light-hole when differentiation between

the Jz = ± 3/2 and Jz = ± 1/2 states is required.

Besides the polarization of the photons, originating from the symmetry of the Bloch

functions, the oscillator strength f of these transitions is determined by the overlap of

the envelope of the orbital part of the electron and hole wavefunction. The oscillator

strength is proportional to the squared matrix element between the initial and final

envelope ψi and ψf . When the symmetry of the states ψi and ψf are orthogonal (e.g., a

s-type and p-type envelope function), the oscillator strength can be zero: the transition

would then be forbidden.

A commonly applied notation for the electron-hole pair is the exciton notation. To

introduce this, we denote the Sz = ± 1/2 conduction electron states and Jz = ± 3/2

valence electron states with |±1/2〉 and |±3/2〉, respectively, which is applied throughout

the thesis. A bright | ± 1〉 exciton is formed from the | ∓ 1/2〉 conduction electron and

the | ∓ 3/2〉 valence electron (or | ± 3/2〉 hole). Similarly, dark | ± 2〉 excitons can be

formed from a |±1/2〉 conduction electron and |∓3/2〉 valence electron. Only the |±1〉
states are optically active, which optical transitions can be written as |±1〉 → σ±. In

(In,Ga)As quantum dots, the | ± 1〉 states are at a higher energy than the | ± 2〉 states,

13



due to the exchange interaction energy of the order of > 200µeV (Bayer et al., 1999).

In the case of intermixing of the light hole state into the heavy hole state, one can

not expect a complete conversion into photons with one type of helicity. The light-

hole fraction in predominantly heavy hole state, quantized by its squared amplitude

in the state, emits with opposite helicity (to that of the heavy hole) at a three times

weaker strength, which ’dilutes’ the conversion. Experiments (Cortez et al., 2001) and

calculations (Sheng, 2007), however, have indicated that this light-hole fraction is very

small, and does not exceed 10%.

Important experiments on quantum dots

We briefly discuss some experimental breakthroughs in the field of quantum dots, where

we focus on the experiments related to the subjects of this thesis.

Among the most difficult experiments in this field are probably those involving coher-

ence and control of the coherence of charge carriers. The complexity in these measure-

ments arise from the quantum mechanical nature of coherence, for which any environ-

mental disturbance is destructive. These conditions can be met at low temperatures and

in a well-controllable system. One of the first measurements on coherence in quantum

dots, involving four-wave-mixing to probe the absorbtion spectrum, revealed a long de-

coherence time T ∗
2 in quantum dots (compared to other solid state structures) (Birkedal

et al., 1999; Borri et al., 2001). An other study on coherence effects in quantum dots was

done by Chen et al. (2000), where they measured a coherent superposition of Zeeman

levels. Later, quantum beats in time-resolved photoluminescence spectra proved the

coherent precession between two exchange-interaction-split levels (Flissikowski et al.,

2001). Rabi oscillations, which occur in the case of coupling of the light field to the

discrete levels under strong optical excitation, were observed by Stievater et al. (2001),

Zrenner et al. (2002) and Li et al. (2003).

A study with an enormous impact was the measurement on the longitudinal spin

relaxation time T1 of the conduction electron by Kroutvar et al. (2004), which was

actually anticipated by Paillard et al. (2001) and Hanson et al. (2003). This revealed

that spin relaxation up to milliseconds was possible, and that the spin relaxation times

of the conduction electron follow a power law behavior as a function of the magnetic field

(i.e., T1 ∼ B−5). This measurements matched exactly with the theoretical predications

on spin relaxation, made some years before (Khaetskii and Nazarov, 2000, 2001). In

this thesis, we point out that such a power law behavior also exists for the excitons, like

in the theoretical prediction (Tsitsishvili et al., 2003), but with a weaker magnetic field

dependence (i.e., T1 ∼ B−3).
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Kerr/Faraday rotation measurements were introduced to the quantum dot research

field by Gupta et al. (1999), which was, however, a study on colloidal quantum dots.

The first study on embedded III - V quantum dots (MOCVD-grown InP dots on GaAs)

was presented by Kanno and Masumoto (2006). The technique had already been applied

extensively to bulk semiconductor (Awschalom et al., 1985) and semiconductor quantum

wells (Koopmans and de Jonge, 1999; Salis et al., 2001). The first study on (In,Ga)As

quantum dots was done by Greilich et al. (2006a), who also exploited the coherence

properties of the two-level spin system (Greilich et al., 2006b). Their study was based on

annealed quantum dots†. We present the first study on un-annealed (In,Ga)As quantum

dots with high-energy luminescence. Generally speaking, un-annealed quantum dots

contain a smaller fraction of Ga than their annealed counterparts.

Besides the optical techniques we have discussed so far, electrical measurements have

been performed. They were initially executed on electrostatically-defined quantum dots,

which for instance revealed the shell filling behavior of the electrons (i.e., the quantum

numbers and chemical potentials of subsequently added electrons) (Tarucha et al., 1996).

For self-assembled quantum dots, capacitance-voltage measurements revealed that the

hole is positioned at the apex of the quantum dot (Fry et al., 2000b). The same technique

showed the filling behavior of the holes in self-assembled quantum dots (Reuter et al.,

2005).

Among the milestones in of quantum computation and quantum information, the ex-

periments demonstrating a single spin readout from Elzerman et al. (2004) in

electrostatically-defined quantum dots should be mentioned. A slightly different op-

tical counterpart, demonstrating the spin state preparation in self-assembled quantum

dots, was achieved some years later (Atatüre et al., 2006). Coherent control over the

single spins has recently been demonstrated by electron spin resonance (Koppens et al.,

2006) in electrostatically-defined quantum dots, which was one of the crucial steps to

overcome. This research was succeeded by a demonstration of spin control by alternat-

ing electric fields (Nowack et al., 2007). These experiments employed, in fact, actual

single qubit quantum computers, allowing full coherent control over the spin. The later

experiments of Berezovsky et al. (2006, 2008), Atatüre et al. (2007) and Mikkelsen et al.

(2007) should also be mentioned for their measurements of single spins in quantum dots

by Kerr and Faraday rotation techniques.

†The reason for the annealing procedure is the consequent lowering of the transition energy, due to
intermixing of Ga. Since the Kerr/Faraday rotation experiments are performed (quasi-)resonantly, the
transition energy of the quantum dot and laser should overlap. Because of the decreasing performance
of the regularly used Ti:Sapphire laser for wavelengths above 900 nm, an annealing procedure to reduce
the transitions wavelengths below 900 nm is desirable.
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1.2 Motivation and context of this thesis

The quantized energy spectrum of quantum dots, as well as their long spin relaxation

time, makes them attractive for quantum information processing purposes (Loss and Di-

Vincenzo, 1998). As possible candidates for quantum information devices, they require

a controllable g factor for selective addressability of the qubits. A general necessity for

these devices is to have a long decoherence time, since quantum information employs

the phase of the spin. These two issues have been addressed in this thesis, as well as a

result on the control of radiative recombination times.

Quantum information typically exploits two-level systems, like the two polarization

states of the photon or the spin-up and spin-down states of the electron. Such a system

is called a qubit, where the levels are commonly denoted by |0〉 and |1〉. Contrary

to the regular bit, which adapts 0 or 1, the qubit can be described by a (coherent)

superposition of these states, like Ψ = α|0〉 + β|1〉, where |α|2 + |β|2 = 1. The decay of

the phase difference between the |0〉 and |1〉 state is then described by the decoherence

time.

Control over the g factor

An important parameter for the spin-up and spin-down two-level system is the energy

splitting between the levels in a magnetic field, given by the Zeeman energy. This

energy difference arises due to an oppositely directed magnetic moment associated with

the spin-up and spin-down state.

Let us consider the qubit formed by the Zeeman levels of the quantum dot. Oper-

ations on such qubits can be performed by electron spin resonance (ESR), which has

recently been demonstrated by Koppens et al. (2006) in electrostatically-defined quan-

tum dots. Control over the qubit is achieved when the ESR radio-frequency matches

with the precession frequency of the spin state in a magnetic field. Since one wants to

address individual qubits in an array of quantum dots, it is desirable to have control

over the Zeeman energy in each quantum dot (Kane, 1998; Vrijen et al., 2000). Such

control over the Zeeman energy, which is proportional to the g factor, has already been

demonstrated in bulk semiconductor material (Kato et al., 2003) and quantum wells

(Salis et al., 2001). In this thesis, we show evidence of control of both the in-plane and

growth direction g factor of the quantum dot Zeeman levels by an electric field.

A g factor which can be reversed in sign would even have more advantages in spin

processing schemes. We describe a gedankenexperiment on the possible implications of

a sign-controllable g factor. Generally speaking, the control of the spin is performed

using radio-frequency waves. Typical control schemes make use of 90◦ and 180◦ pulses

16
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Figure 1.5: Figure A shows a geometric representation of the quantum mechanical two-
level system, known as the Bloch sphere, where a state is uniquely determined by the angles
θ and φ. The state can be written as ψ = cos (θ/2)|0〉 + sin (θ/2)eiφ|1〉, where |0〉 and |1〉
are the eigenstates of the spin in a magnetic field pointing in the Z-direction. Longitudinal
spin relaxation times T1 are associated with the spin flip along the Z-direction (or the angle
θ), whereas decoherence times T2 are associated with the precession in the X/Y plane (or
the phase φ). Figure B and C show the X/Y plane of the Bloch sphere, where one should
read from the left to the right figure. A magnetic field in the Z-direction induces the spin to
precess in the X/Y plane with a frequency gµBB

~
. A 180◦ pulse on the Y axis (Fig. B) would

mirror the spin, which leads to a spin echo. Alternatively, a spin echo can be achieved by a
reversible g factor (Fig. C). Note, however, that this is an idealized description, or rather a
gedankenexperiment, which does not take into account the effect of the electric field on the
decoherence process.

that perform rotations of the spin in the Bloch sphere (i.e., a graphical representation of

the quantummechanical two-level system, shown in Fig. 1.5A). Since the time-evolution

of a coherent superposition of the two spin eigenstates | ↑〉 and | ↓〉 can be written

as Ψ(t) = | ↑〉 + eiδt| ↓〉, where δ describes the precession frequency of the state by

δ = gµBB
~

(where µB is the Bohr magneton and B is the magnetic field), a sign change

of the g factor would result in a reversal of the precession. This has the same effect as a

radio-frequent pulse of a certain time duration, resulting in a rotation of the spin on the

Bloch sphere. A sign reversible g factor could therefore replace the 180◦ pulse. Figure

1.5B and 1.5C display the in-plane part (compared to the magnetic field direction) of

the Bloch sphere, and show how a reversed g factor can be employed to form a spin

echo. Note, however, that this idealized description does not take into account the

decoherence induced by the electric field.
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Spin relaxation times

Besides the control over the g factor, long decoherence times T ∗
2 and longitudinal re-

laxation times T1 of the spin system are a general requirement for proper quantum

information processing with quantum dots. Preskill (1998) states that approximately

104 operations should be performed in a decoherence period, for quantum error correc-

tion (i.e., a certain type of algorithm in quantum information processing) schemes to

work correctly.

Demonstrations on atoms (Anderlini et al., 2007) and electrostatically-defined quan-

tum dots (Elzerman et al., 2004; Gorman et al., 2005; Koppens et al., 2006) have shown

that spin operations (typically a 180◦-pulse) can be performed in approximately 100 ns.

A recent proposal of Pioro-Ladrière et al. (2007) introduces an additional lateral mag-

netic field on this electrostatically-defined structures to reduce the operation speed below

100 ns. While the operation times were initially estimated to be at least 25 ns (Sherwin

et al., 1999), recently more efficient methods of operation have been proposed. For

instance, quantum operations based on spin-flip Raman transitions could perform op-

erations in the order of 10 ps (Chen et al., 2004). A combination of operation time

and the required number of operations leads to an estimate of ∼ 100 ns as the required

minimum for the decoherence time.

The current experimental results on decoherence times in (In,Ga)As quantum dots

have reached ∼ 10 ns (Mikkelsen et al., 2007), although decoherence times exceeding

100 ns occur in low doped n-type bulk material (Kikkawa and Awschalom, 1999). Mea-

surements on the longitudinal spin relaxation time, however, reveal values exceeding

1 ms for both the electron (Kroutvar et al., 2004) and hole (Gerardot et al., 2008) in

(In,Ga)As quantum dots. In this thesis, we show that also the exciton T1 can exceed

100 ns.

The methods and results of this thesis

In this thesis, we investigate a single layer of self-assembled (In,Ga)As quantum dots

in the center of p-i-n structure. The quantum dots experience an electric field in the

growth direction, which can be controlled by photo-created carriers of an (additional)

excitation laser. For increasing excitation densities of the laser, the electric field over the

quantum dots is suppressed due to screening. The screening effect is very well observed

in the Stark shift (i.e., a shift in energy due to the electric field) of the PL spectra.

In chapter 4, we discuss the steady-state photoluminescence and the degree of circu-

lar polarization of this photoluminescence to determine the (sign of) the exciton g factor

in the growth direction and the longitudinal spin relaxation time T1 of the exciton. A

remarkable sign change of the degree of circular polarization as a function of excitation
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Introduction

density (i.e., electric field) is associated with a sign change of the g factor of the exciton

of the (ensemble of) (In,Ga)As quantum dots. The longitudinal spin relaxation times

T1 exhibit a power law dependence as a function of the magnetic field B, which has been

theoretically predicted by Tsitsishvili et al. (2003). We find T1 ∼ B−2.9±0.4, matching

well with the theoretical prediction of T1 ∼ B−3 of Tsitsishvili et al. (2003).

Chapter 5 discusses a combined measurement of the spectrally- and time-resolved

photoluminescence (PL) spectra. The PL intensity decay exhibits a non-single expo-

nential decay, which we do not assign to a ’broadening’ of radiative lifetimes due to

different quantum dot sizes, since we measure at a fixed energy. Instead, we associate

the non-single exponential decay to a varying radiative recombination time as a function

of time, since the electric field varies in time. We correlate the electric field as a function

of time, monitored by the Stark shift in time, with the variable recombination time to

deduce its dependence on the electric field. Electric fields up to 200 kV/cm can enlarge

the radiative recombination time by a factor 4.

Finally, chapter 6 presents time-resolved Kerr rotation measurements on the sin-

gle layer of (In,Ga)As quantum dots. Besides the pulsed pump- and probe laser, an

additional He:Ne laser is used to control the effective electric field over the quantum

dots. Like in chapter 4, the electric field can be measured via the Stark shift in the

PL spectra. When an in-plane magnetic field is applied, the signal oscillates, which can

be interpreted as the precession of the spins in the (ensemble of) quantum dots. The

frequency of the precession is proportional to the in-plane g factor, and the decay time

of the signal can be interpreted as the spin decoherence time in the (In,Ga)As quantum

dots. When the electric field over the quantum dot is increased, the in-plane g factor

increases marginally.

The values presented in this thesis embody the longitudinal spin relaxation time T1

of the exciton, the spin decoherence time T ∗
2 of the conduction and valence electron, the

radiative recombination time τrec of the exciton, the longitudinal exciton g factor, and

the in-plane valence electron g factor in quantum dots. On the latter, no experimen-

tal data did exist for un-annealed (In,Ga)As quantum dots. Finally, Stark shifts up to

40 meV, associated with electric fields up to F ∼ 200 kV/cm, have been observed in elec-

troluminescence, steady-state photoluminescence and time-resolved photoluminescence

spectra.
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Chapter 2

Quantum dots in magnetic and

electric fields

ABSTRACT

This chapter gives an overview of the Zeeman effect in semiconductor nanostructures,

in particular quantum dots. We recall some general theory of the energy levels of

semiconductor structures in magnetic field, and discuss ways to approximate these effects

in low-dimensional structures. The exciton g factor is introduced as a combination of

the conduction and valence electron g factor. The theoretical and experimental results

of growth direction g factors in quantum dots are discussed. We comment on the

experimental methods to probe the g factor in the growth and in-plane direction and

its restrictions. Finally, we discuss the Stark shift, induced by an electric field over

quantum-confined structures, and tunneling of charge carriers out of the quantum dot.
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2.1 Magnetic field effects in semiconductor nanostructures

A magnetic field results in a diamagnetic shift of the energy levels due to stronger

localization of the spatial part of the wavefunction, and into a Zeeman energy between

the spin-up and spin-down part of the wavefunction. The Zeeman energy ∆Z is given

by Eq. 1.2 in Ch. 1. When the magnetic field B is pointing in the z-direction, the

Hamiltonian reduces to ∆Z = gµBSzB. For a Landé g factor of 2 (i.e., the value of the

electron g factor in vacuum), Zeeman energies are approximately 100µeV for a magnetic

field of 1 T.

For a confined charge carrier (e.g., in a quantum dot), one should incorporate, besides

the spin-dependent Zeeman splitting, the effect of the angular momentum of the spatial

part of the wavefunction. In the case of a weak coupling between the spin S and

the angular momentum L, one can sum the angular momentum and spin to write the

Hamiltonian

H = µB(gLL + gSS) · B (2.1)

Such a system is fully determined by the quantum numbers {L, lz, S, sZ}, where lz and

sz describe the projection of the angular momentum and the spin on the axis of the

magnetic field. The g factors gL and gS of the angular momentum and spin of the

wavefunction have the values 1 and 2, respectively.

We measure optical transitions between the conduction and valence electron, and

therefore must consider the Zeeman energies of both charge carriers. The valence elec-

tron Bloch functions in GaAs and InAs experience strong spin-orbit coupling. One has

to introduce a new quantum number J for these states, where J = L+S. Equation 2.1

can be rewritten with the new quantum number J , and reads,

H = gJµBJ · B, (2.2)

where we have introduced the Landé factor gJ for the coupled system. This Landé

factor is a linear combination of the Landé factors for the angular momentum (gL) and

spin (gS). The coupled g factor gJ is determined by the quantum numbers L and S and

reads

gJ = gL
J(J + 1) − S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
, (2.3)

where gL = 1 and gS = 2. The Zeeman energy in the strongly coupled system is

determined by the quantum numbers {J, Jz, L, S}, and its g factor by {J, L, S}. The

heavy and light hole states have quantum numbers {J, L, S} = {3
2
, 1, 1

2
}, which yields

gJ = 4
3
. They differ in their Zeeman energy due to a different projection of the angular
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Quantum dots in magnetic and electric fields

momentum, which is Jz = ±3
2

for the heavy-holes and Jz = ±1
2

for the light holes. The

split-off band, which is not involved in our optical transitions, has {J, L, S} = {1
2
, 1, 1

2
},

resulting in gJ = 2
3
. Since Eq. 2.2 contains, besides the g factor, also the projection

of the angular momentum of the wavefunction on the magnetic field axis, the Zeeman

energy for the heavy hole (Jz = ±3
2
, gJ = 4

3
) can still be larger than for the conduction

electron (Sz = ±1
2
, gS = 2).

Throughout this whole work, we employ the ’experimental’ definition of the g factor,

regardless of the (coupled) angular momentum J of the charge carrier wavefunction,

which is defined as

g∗ =
E↑ − E↓
µBB

, (2.4)

where E↑(↓) is the energy of the spin up (down) state of the conduction or valence

electron. All discussions on the g factor are performed from an electron point-of-view,

to avoid confusion due to the positive charge of the hole (Pryor and Flatté, 2007).

Certain authors, like Babinski et al. (2006), use the definition where the g factor of

the valence electron describes the Zeeman energy between the Jz = +1
2

and Jz = −1
2

angular momentum states, whereas in our definition of Eq. 2.4, it is the difference

between Jz = +3
2

and Jz = −3
2

state. Therefore, our valence electron g∗ factor is three

times larger than the value used by Babinski et al. (2006). The g∗ in Eq. 2.4 embodies

also possible spin-orbit effects, and is thus called the effective g factor.

To write down the Zeeman Hamiltonian for the complete wavefunction, one should

incorporate a spin-orbit term L ·S between the angular momentum and spin part of the

wavefunction (Heine, 1993). For the eight most important bands (2× conduction, 4×
valence, and 2× split-off band), one can write

Hc = µB(L + 2S) · B + λcL · S (Conduction electron) (2.5)

Hv = µB(L +
4

3
J) · B + λvL · J (Valence electron) (2.6)

Hso = µB(L +
2

3
J) · B + λsoL · J (Split − off electron) (2.7)

where the L’s in Eq. 2.5 − 2.7 are the angular momenta associated with the envelope

part of the carrier wavefunction. The parameter λ describes the spin-orbit contribution

to each band and depends on the geometry of the system.

Equations 2.5 − 2.7 can be written in terms of the effective g factor we have just

introduced. The conduction Hamiltonian becomes H = g∗cµBBSz, the valence electron

Hamiltonian H = g∗vµBBS̃z, and the split-off electron Hamiltonian H = g∗soµBBS̃z.

Note that the S̃z indicate the (pseudo) spin projections with S̃z = ±1
2
, because of our
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definition of Eq. 2.4. For the conduction electron g factor, one can write, due to the

spin-orbit effects (Roth et al., 1959),

g∗c = 2 − Ep∆0

3E0(E0 + ∆0)
(2.8)

where Ep = 2〈S|P |X〉2
m

is the Kane energy (Kane, 1957, 1959; Yu and Cardona, 2001).

Values for III−V semiconductors range from +0.4 for the light compounds like AlGaAs

to −50 for the heavy compounds like InSb. Our research is focussed on GaAs, which

has a conduction electron g factor of −0.44 (Oestreich and Rühle, 1995), and InAs, with

a conduction electron of −15. Heavy hole g factors are −9 and −45 for GaAs and InAs,

respectively, whereas the light holes have a g factor of −3 and −15 (Yu and Cardona,

2001).

In optical experiments on quantum dots, like micro-PL (abbreviated µ-PL, i.e., the

PL of a small area of the order of 1 µm2, typically revealing the discrete energy levels

of quantum dots), one effectively probes on the g factor of both charge carriers. It

is therefore convenient to introduce the g factor of the exciton. If we disregard the

exchange interaction for a moment, one can write a combined g∗ factor for the exciton

of g∗exc = −g∗c +g∗v for the bright optical transitions. For the exciton, a similar definition

as Eq. 2.4 exists: g∗exc = Eσ+−Eσ−

µBB
, where Eσ± is the exciton energy level which emits

predominantly σ± photons.

Landé g factors in the growth direction in III-V semiconductor quantum dots

The g factor in the growth direction (i.e., the [100] direction in the crystal) of charge

carriers in quantum dots depends on numerous parameters (like the shape, composition

and size), which results in a large range of g∗ factors. It is possible to give the range

of possible g∗ factors of all semiconductor structures. The Hamiltonians Eqs. 2.5 − 2.7

depend on the spin-orbit parameters λc, λv and λso. In GaAs and InAs, these have a

positive value (Yu and Cardona, 2001), which leads to a preferential antiparallel align-

ment of the angular momentum L and spin S. For the conduction electron, therefore,

only g factors between the bulk g factor and the vacuum value of 2 occur. For the

valence electron, g factors between the bulk g factor and g∗v = 4 occur, where 4 is the

value for the g factor of the Bloch part of the wavefunction.

From Eqs. 2.5 − 2.7, one can read that, when the angular momentum L of a state

goes to zero, known as the quenching of the envelope angular momentum, the response

in magnetic field is determined by the Bloch functions. The quenching of the envelope

angular momentum embodies the reduced coupling between conduction and valence

band, since the envelope wavefunction in the quantum dot differs strongly from the bulk

24



Quantum dots in magnetic and electric fields

-6

-4

-2

0

2

4

Bulk............Large dots.............Small dots
g*

fa
ct

or

Cond. Electron

Val. electron

Exciton

Figure 2.1: A schematic representation of the qualitative behavior of the effective g factor
in the growth direction as a function of the confinement. The effective g factor converges to
the g factor of the Bloch state when the confinement increases. The exciton g factor follows
from g∗exc = −g∗c + g∗v .

envelope wavefunction in magnetic field. The g factors of the states with a quenched

envelope angular momentum are therefore determined by the g factor of the Bloch part of

the wavefunction (which are g∗c = 2 and g∗v = 4 for the conduction and valence electron,

respectively). It can be shown that quenching of the angular momentum occurs when

spatially symmetric eigenstates (e.g., px, py, pz) are nondegenerate in the potential (van

Vleck, 1932).

The effect of the reduced envelope angular momentum is schematically drawn in

Fig. 2.1. The x axis in this figure is a qualitative measure for the confinement level.

When this is increased, the angular momentum is reduced (Pryor and Flatté, 2006),

which leads to convergence of the growth direction g factor to g∗c = 2 and g∗v = 4 for

the conduction electron and valence electron, respectively. The g∗exc in Fig. 2.1 can be

written as g∗exc = −g∗c + g∗v .

In the theoretical literature, there have appeared several calculations on the growth

direction g factor in self-assembled (In,Ga)As quantum dots, which either apply a k · p
calculation (Nakaoka et al., 2004, 2005; Pryor and Flatté, 2006, 2007) or tight-binding

calculation (Sheng and Babinski, 2007; Sheng, 2007). In these studies, the dependence

on several parameters, like the shape, Ga content and size are investigated. One can

draw several conclusions from these calculations. First of all, they indicate that the

conduction electron is less sensitive to the variation in the size, shape and composition

than the valence electron. Values for g∗c range from −1 to 0. There is a tendency for

the conduction electron g factor to increase when (i) the quantum dot contains more

Ga (Nakaoka et al., 2004) or when (ii) the quantum dot size gets smaller (Pryor and

Flatté, 2006, 2007).

The valence electron, on the other hand, has values ranging from −7 (Pryor and
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Flatté, 2006, 2007) to +1 (Nakaoka et al., 2004). The largest (negative) values are

found in quantum dots consisting of pure InAs. The g∗v increases with decreasing size

of the quantum dot (Nakaoka et al., 2004), which can be associated with the quenching

of the angular momentum (see Fig. 2.1). Little effect is observed from the increase of

Ga content in the dot (Nakaoka et al., 2004), although this remains difficult to conclude

since their presentation does not allow to extract the behavior by changing this single

parameter. Sheng and Babinski (2007) show that the valence electron g factor can cross

zero when the height of the quantum dot increases. Moreover, Sheng (2007) showed

that the valence electron is very sensitive to the elongation (i.e., the ratio of the longest

and shortest axis of the footprint) of the quantum dots.

To summarize these calculations, one can say that g∗v occurs in a large range and is

most sensitive to the size of the quantum dot. Therefore, the valence electron line in

Fig. 2.1 immediately acts as a crude representation of the g∗v of self-assembled (In,Ga)As

quantum dots.

We note that the calculations show that there exist positive valence electron g factors

(Nakaoka et al., 2004). In the calculation of Nakaoka et al. (2004), a positive g factor for

the valence electron is found for quantum dots with large Ga content, diameter sizes in

the range of 10 nm, and a truncated pyramid shape. The PL emission of such quantum

dots occurs in the energy range from 1.25 eV to 1.30 eV.

Experimental methods to determine the g factor in the growth direction in

quantum dots

One can determine the g factor in the growth direction most accurately by µ-PL mea-

surements, where one should apply a Faraday geometry. An extraction of the growth

direction g factor can also be done from the method we present in this work, which

is a macro-PL measurement, and from electrical measurements like C-V spectroscopy

(Medeiros-Ribiero et al., 2003; Hanson et al., 2003; Björk et al., 2005; Reuter et al.,

2005). In 2007, two ’new’ methods have appeared, which employ linear dichroism ro-

tation spectroscopy (Yugova et al., 2007) and dynamic nuclear spin polarization (Tar-

takovskii et al., 2007; Kaji et al., 2007). For the g factor determination by a macro-PL

measurement, one does need the spin relaxation time and radiative relaxation time as

extra input parameters.

From electrical measurements, it is hard to distinguish the sign of the growth di-

rection g factor (which is relatively easy determined from the polarization in optical

measurements). The possibility to discriminate between the conduction and valence

electron g factor, however, is an advantage in electrical measurements (Medeiros-Ribiero
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Table 2.1: Effective g factors g∗v , g
∗
c and g∗exc in the growth direction, determined from

optical experiments in a Faraday geometry, for (In,Ga)As, (In,Al)As and (Al,Ga)As quantum
dots. The red. strain refers to an additional strain reducing layer in the quantum dot growth
(Nakaoka et al., 2005).

Author (Year) Material g∗v g∗c g∗exc

Bayer et al. (1995) (In,Ga)As |g∗exc|=2
Bockelmann et al. (1997) (Al,Ga)As (0.7,2)
Kuther et al. (1998) (In,Ga)As -3.02
Toda et al. (1998) (In,Ga)As |g∗exc|=(1.21,1.73)
Bayer et al. (1999) (In,Ga)As -2.21 -0.81 -3.02
Goni et al. (2000) (In,Ga)As, annealed (-0.7,-0.3)
Kotlyar et al. (2001) In0.1Ga0.9As, etched -6
Finley et al. (2002) (In,Ga,Al)As |g∗exc|=2.25
Nakaoka et al. (2004) (In,Ga)As (-2.5,-2)
Nakaoka et al. (2005) (In,Ga)As, red. strain -1
Mensing et al. (2006) (In,Ga)As (-0.4,0)
Babinski et al. (2006) (In,Ga)As |g∗exc| < 0.8
Yugova et al. (2007) (In,Ga)As |g∗exc| = 0.16
Kaji et al. (2007) (In,Al)As |g∗v |=2.54 -0.37

et al., 2003; Reuter et al., 2005). It is possible to distinguish between conduction and

valence electron g factor by optical measurements (Bayer et al., 1999), but this requires

a cumbersome method and a search for specific peaks† in the spectrum. The method

of Kaji et al. (2007), employing dynamic nuclear polarization, also allows to distinguish

between g∗c and g∗v .

Table 2.1 shows values of exciton g factors from optical measurements. One should

note that a large range of g∗exc has been observed. Bayer et al. (1995) specifically notes

that both positive and negative g∗exc can be observed among quantum dots. Measure-

ments on AlGaAs structures have a positive g factor (Bockelmann et al., 1997), which

could be expected from the reduced spin-orbit contributions due to incorporation of Al.

Most of the other authors find a negative values for g∗exc. Recently, measurements on

quantum dots with a large Ga content showed a g∗exc factor close to zero (Mensing et al.,

2006), which matches with the theoretical trend. All absolute values for the exciton g∗exc

factor of self-assembled quantum dots are smaller than 3.

Small g factors in the growth direction (|g∗exc| < 0.5) were observed in linear dichroism

rotation spectroscopy measurements (Yugova et al., 2007), as well as µ-PL measurements

(Mensing et al., 2006; Babinski et al., 2006). Each of these authors associate this with

†This should be peaks for optical states which are partially intermixed with dark excitons. From
their behavior in magnetic field one can distinguish between a conduction and valence electron g factor.
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an increased size of the quantum dot, together with increased Ga content due to an

annealing procedure. Recent calculations of J.A.S.F. Pingenot and M.E. Flatté also

indicate relatively small g factors for large (In,Ga)As quantum dots with 50% Ga.

Experimental methods to determine the in-plane g factor in quantum dots

Considerably less literature is available on the in-plane g factors in self-assembled quan-

tum dots. Among the most applied methods are the time-resolved Kerr/Faraday rota-

tion technique (for colloidal quantum dots: Gupta et al. (1999), for (In,Ga)P quantum

dots: Kanno and Masumoto (2006), for (In,Ga)As quantum dots: Greilich et al. (2006b);

Yugova et al. (2007)) and Hanle depolarization measurements (Epstein et al., 2001; Ma-

sumoto et al., 2006). Generally speaking, the values for the in-plane g factor are much

smaller than the g factor in the growth direction. The in-plane g factor ranges from 0.1

(Dutt et al., 2005) to ∼ 0.6 (Greilich et al., 2006b; Yugova et al., 2007) for the conduc-

tion electron in (In,Ga)As quantum dots. In chapter 6, we present the first results on

the in-plane g factor of the valence electron, presumably, in (In,Ga)As quantum dots.
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2.2 Electric field effects in semiconductor nanostructures

Two main electric field effects occur for the localized carrier wavefunctions in quantum

dots. First of all, the electric field leads to a quantum-confined Stark shift for the

energy levels of the states. Secondly, at high electric fields, carriers can tunnel out of

the quantum dot.

The quantum-confined Stark effect in quantum dots consists of a linear and quadratic

term with the electric field. The linear term arises from the built-in dipole in the

quantum dot, which is constituted by the electron-hole pair. The quadratic term arises

from a perturbation calculation on the state. The complete quantum-confined Stark

shift ∆S can be described by

∆S = βF 2 + p · F, (2.9)

where β describes the polarizability and p the built-in electric dipole. Note that the

orientation of the dipole, which can either be directed from base-to-apex or from apex-

to-base in the quantum dot†, has a significant influence on the response of the state in

an electric field. Due to the symmetry of the potential, the dipole is generally aligned

(either parallel or anti-parallel) along the growth direction, which in our case matches

with the electric field direction. We can therefore simplify Eq. 2.9 to ∆S = βF 2 + pF ,

where p is the scalar value of the built-in dipole.

Several observations of the polarizability β and the built-in dipole p have been gath-

ered in Tab. 2.2. Only Hsu et al. (2001) state a value for β in their work. The values for

p ranges from 0 to 8 eÅ. According to these parameters, the Stark shifts for quantum

dots at an electric field of 100 kV/cm appear in the range 10 ∼ 30 meV. We find Stark

†There is no full consistency in the observations of the orientation of the built-in electric dipole.
Most of the observations (Fry et al., 2000b; Hsu et al., 2001) reveal an orientation where the hole is
found at the apex of the quantum dot. However, observations of an oppositely oriented dipole (Jin
et al., 2004) also exist, which is also observed in our measurements. The variation can be explained by
the strong dependence of the dipole on the In gradient within the quantum dot.

Table 2.2: Experimental values for the built-in dipole p and the polarizability β of the
exciton ground state in self-assembled (In,Ga)As quantum dots. The abbreviations ER and
PC mean electroreflectance and photocurrent spectroscopy, respectively, whereas µ−EL stands
for micro-electroluminescence.

Author (Year) Method β (10−4meV/(kV/cm)2) p (eÅ)
Itskevich et al. (2000) µ−EL 3.5 ± 1
Fry et al. (2000b) PC 4 ± 1
Hsu et al. (2001) ER, PC, PL 5.5 ± 0.5 6.2 ± 1.3
Jin et al. (2004) ER -4
Finley et al. (2004) µ−PL 0 < p < 8
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Figure 2.2: A schematic picture of the energy levels in a quantum well (dot) with width
(height) L, both without (Fig. A) and with (Fig. B) electric field. A comparison between the
parameter eFL (Fig. B) and the confinement energy ~ω0 (i.e., difference between the bottom of
the band and energy of a state, shown in Fig. A), can be an important parameter to determine
whether the wavefunction is strongly deformed or not. This is an edited figure from Miller
et al. (1986).

shifts ∆S ∼ 40 meV for electric fields F ∼ 200 kV/cm. Such values have also been cal-

culated by Wang et al. (2006) for (In,Ga)As quantum dots of different shapes and In-Ga

compositions. Similar values for the Stark shift have been observed in quantum well

structures (Miller et al., 1984, 1985, 1986), as well as in CdSe nanocrystallite quantum

dots (Empedocles and Bawendi, 1997).

Figure 2.2 shows the lowering of the energy levels of the carriers in a quantum well.

An important parameter in this process is eFL, which describes the energy drop along

the growth direction over a distance L, the height of the quantum dot or the width

of the quantum well. This energy can be compared with the confinement energy, ~ω0,

which has the largest contribution from the confinement in the growth direction. When

the energy associated with the confinement is smaller than eFL, the confinement height

is affected, which deforms the carrier wavefunction. This could also be a situation at

which the g factor of the carrier wavefunction is strongly affected.

Tunneling through the barrier (see Fig. 2.2) occurs for charge carriers in a quantum

well or quantum dot subjected to high electric fields. The tunneling process can be mon-

itored either by photoluminescence (Fry et al., 2000a) or photocurrent measurements

(Chang et al., 2000). Experimental studies of Fry et al. (2000a) and Finley et al. (2004)

indicate that photoluminescence quenches (due to tunneling) between 120 kV/cm and
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150 kV/cm. The escape rate τ−1
tunnel from a quantum dot can be approximated by (Fry

et al., 2000a)

τ−1
tunnel =

~π

2m∗L2
exp

(

−4

3

√

2m∗E 3
ion(F )

e~F

)

(2.10)

where m∗ is the effective mass of the charge carrier and Eion(F ) is the ionization energy

of the carrier, which is a function of the electric field F . In the case of an electric field,

the energy levels lower their electric field due to a Stark shift (see Eq. 2.9), but the depth

of the potential well can also be slightly reduced by the electric field. It is therefore

hard to find an approximation for the function Eion(F ). Most authors (Fry et al., 2000a;

Oulton et al., 2002) assume a constant dependence. Equation 2.10 indicates that, under

equal circumstances for the conduction and valence electron, conduction electrons start

to tunnel at lower electric fields, due to their smaller effective mass. Kuo and Chang

(2000) and Larkin and Vagov (2003) have presented more detailed studies on tunneling

effects in quantum dots.
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Chapter 3

Experimental techniques & sample

ABSTRACT

In this research, we have used magneto-optical photoluminescence, micro-

photoluminescence (µ-PL), time-resolved photoluminescence and time-resolved Kerr ro-

tation spectroscopy as techniques, which each require a setup. The magneto-optical

setup was used to measure the degree of circular polarization of photoluminescence,

which is utilized to determine the spin relaxation time and sign of the growth direc-

tion g factor of the exciton. Radiative recombination times of the electron-hole pairs

in quantum dots were determined by the time-resolved PL setup. We give arguments

for an omission of a deconvolution procedure with the instrument response function of

the detector in the time-resolved PL setup. The µ-PL setup was used to measure the

g factors of single quantum dots in the Faraday geometry, whereas the Kerr rotation

setup was allowed us to obtain the spin decoherence time and in-plane g factor of (an

ensemble of) the quantum dots. In the final section, we discuss the growth of the sample

and its electrical characterization.

33



3.1 Magneto-optical setup

This setup contains a superconducting magnet which can generate magnetic fields up

to 7 T. The sample is mounted in a Helium bath, which can be evacuated to reach

temperatures of 2 K. A complete scheme of the setup is shown in Fig. 3.1. We use a

continuous wave Ti:Sapphire laser for the excitation. A diffraction limit of 40µm for the

excitation spot was determined for a laser beam diameter of ∼ 1 cm and focal distance

of 40 cm of the last lens. The geometry of the lenses is such that one fiftieth of the

PL emission reaches the monochromator. Note that for a spot diameter of 100µm2 and

quantum dot surface density 1010cm−2, we probe ∼ 3 × 106 quantum dots.

We employ a double-stage monochromator to spectrally resolve the luminescence

with a maximum resolution of ∼ 0.08 nm at a slit width of 100µm. The highest reso-

lutions are, however, not exploited in our polarization measurements, since we perform

macro-PL measurements on this setup.

The detection on the double-stage monochromator is done by a water-cooled InGaAs

photomultiplier tube (PMT) in the photon counting mode, which has an increasing

quantum efficiency from 0.3% to 1% in the energy range from 1.24 eV to 1.38 eV. The

dark count rate of the PMT is approximately 20 counts per second throughout all mea-

surements. The response time of the PMT on a photon detection event is ∼ 3 ns, which

is negligible compared to the counting time period of the dual-gate counter (> 1µs).

For the simultaneous measurements of the Stark shift and the polarization, an addi-

tional single-stage monochromotor with a Si-CCD camera was used. A beam splitter

was put in the detection track to distribute the signal to both monochromators.

To perform measurements on the degree of circular polarization in real-time, we

use a photo-elastic modulator, denoted by PEM, together with a linear polarizer. The

Figure 3.1: A scheme of the magneto-optical setup.
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photons are counted by the PMT for these measurements. The active axis of the linear

polarizer is oriented at an angle of 45◦ with the slit and grating of the monochromator.

The PEM consists of a silica crystal operating at its eigenfrequency of 42 kHz, and

induces a phase difference φ(t) = A0 sin (ωt) along the active axis (where 2πω = 42kHz,

corresponding with a period of 23.9µs). For the measurements on the degree of circular

polarization in Ch. 4, we employ a maximum phase difference of A0 = π
2
, corresponding

to the action of a ±λ/4 plate at the maximal compression/extraction of the PEM. When

passing the PEM, linearly polarized light is alternatingly turned into σ+ and σ− light.

Equivalently, circularly polarized light is turned into linearly polarized light. The PEM

module gives an electrical trigger to a home-built dual-gate counting module at the

PEM frequency. The temporal resolution of the counting module is 0.1µs.

To determine the spin relaxation times and monitor the g factors in the quantum

dots in Ch. 4, we measure the degree of circular polarization. After passing the PEM, the

circularly polarized light is turned into linearly polarized light of alternating direction.

The linear polarizer, placed behind the PEM, is transparent for only one type of linear

polarization. The dual-gate counter opens its counting bins exactly synchronously with

the +λ/4 and −λ/4 action of the PEM, thereby counting the photons with opposite

circular helicity in the separate bins.

Temporal calibration of the PEM

For a proper timing of the counting windows of the dual-gate counter, we have to

determine at what time after the electrical trigger pulse from the PEM module, the

crystal acts as a λ/4 or −λ/4 plate.

As a first experiment, we determine the points where the PEM does not modulate

the signal. This can be determined in a setup shown schematically in Fig. 3.2A. In this

alignment, two crossed linear polarizers have their axis orthogonally oriented, and the

PEM crystal is placed in between them. We apply a maximum phase shift of A0 = π
2
.

If there would be no PEM crystal, transmission of light would be blocked. Figure 3.2B

shows the signal intensity as we vary the position of a window of 0.5 µs throughout

the whole cycle time of 23.9 µs. The curves for three different wavelengths show a

minimum at 8-8.5 µs and 20.5 µs, which correspond to the times where the PEM does

not modulate the light. The PEM thus acts as a ±λ/4 plate at 2.5 µs and 14 µs.

In the second experiment, we check the efficiency of the detection of the polarization,

by a setup displayed in Fig. 3.3A. We perform this experiment to determine which

counting window width we should apply. This setup is similar as in Fig. 3.2A, but now

with an extra λ/4 plate in front of the PEM. The axis of the λ/4 is at the same angle

as the active axis of the PEM. The linearly polarized light, described by 1√
2
(|X〉+ |Y 〉)
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Figure 3.2: Figure A shows the scheme which can be used to determine when the light is
passing unmodulated. The transmission data at several energies, shown in Fig. B, reveal that
this occurs at t = 8 − 8.5µs and t = 20.5µs after the electrical trigger.
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Figure 3.3: In this setup (Fig. A), we measure the polarization of a 100% circularly polarized
beam as a function of the positioning of two narrow windows (0.5µs) separated half the PEM
cycle period (11.9µs). Figure B shows that efficiencies over 95% were found at times from 0µs
up to 4.5µs. The solid line in Fig. B is prescribed by Eq. 3.1.
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in Fig. 3.3A, becomes circularly polarized light when passing the λ/4 plate, described

by 1√
2
(|X〉 + i|Y 〉). When the circularly polarized light hits the PEM, and the PEM

acts as a +λ/4 (−λ/4) plate, the polarization aligns with the probing linear polarizer

at |X〉 + |Y 〉 (|X〉 − |Y 〉). The signal intensity is therefore alternatingly blocked and

unblocked.

To interpret the calibration results, we exercise the property that the transmission

T is proportional to cos (α)2 for a polarization vector at α◦. For the PEM-modulated

signal, the transmission T of a 100% circularly polarized beam can therefore be approx-

imated by Tσ+(t) ∼ cos2 (π
2

sin(ωt)), since the phase difference induced by the PEM is

φ(t) = π
2

sin (ωt). If we would enter with 100% polarized beam of the opposite circular

polarization, the transmission would follow Tσ−(t) ∼ cos2 (π
2

sin (ωt+ π
2
)).

Figure 3.3B presents the degree of circular polarization ρ(t) from two narrow windows

with width 0.5µs, separated by half the cycle period (11.9 µs). The variable on the x

axis denotes the time after the PEM trigger pulse at which the first counting gate

opens. Since we enter with a 100% circularly polarized light beam, we expect a probed

polarization of 100% at the times where the PEM acts as a ±λ/4 plate. From the

transmission of the σ+ and σ− photons, we can now write

ρ(t) =
Tσ+(t) − Tσ−(t)

Tσ+(t) − Tσ−(t)
=

cos2 (π
2

sin(ωt)) − cos2 (π
2

sin (ωt+ π
2
))

cos2 (π
2

sin(ωt)) + cos2 (π
2

sin (ωt+ π
2
))
. (3.1)

The line in Fig. 3.3B is a plot of Eq. 3.1 (with ω ∼ 46 kHz/2π and an extra phase

difference of ∆φ = 0.063 at t = 0). Almost a perfect overlap exists between the

predicted and measured data. We observe polarization exceeding 95% in the range

from 0µs to 4.5µs, which allows us to use relatively wide counting windows without

correcting the signal afterwards. Based on Fig. 3.3B, we use a counting window width

of 4.5µs, positioned at 0µs and at 12µs. No corrections are made for the deviation

from 100% within the windows.

Sign of the exciton g-factor

The sign of the degree of circular polarization is calibrated using a (static) λ/4 plate,

the PEM and two linear polarizers. With a linear polarizer and λ/4 plate, we can create

light with a known circularity, specified by the manufacturer. The PEM and the linear

polarizer for the detection are placed such that a beam of predominantly σ+ photons

generates a positive polarization.

One should further note that the magnetic fields in this work are pointing into the

direction of the detection track, which is shown in Fig. 3.1. Since one knows both

the direction of the magnetic field and the dominating circularity of the luminescence,
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Figure 3.4: The standard deviation of data with small polarizations (ρ > 10%) as a function
of the number of counts N . The data shows a behavior δρ ∼ N−0.5, which matches the
prediction in Eq. 3.4.

one can determine the sign of the g factor. In Ch. 2, we associated a positive g-factor

with predominantly σ− photons (if the magnetic field direction and photon propagation

direction are pointing in the same direction). Since there is a one-to-one relation between

the predominant polarization of the photons and the sign of the degree of circular

polarization, we can conclude that a positive (negative) degree of circular polarization

corresponds to a negative (positive) g factor of the exciton.

Errors

An error in the degree of circular polarization, δρ, should be incorporated due to sta-

tistical nature of the detection by the photomultiplier. The detection of photons in the

beam follows a Poisson distribution, which is characterized by p(k, λ) = 1
k
λke−λ, where

p(k, λ) is the change for a discrete event to occur k times, given a mean λ for the system.

The Poisson distribution has a standard deviation of
√
λ, which we employ to derive

the error arising due to the detection system.

To consider the error in the polarization, we write

δρ

ρ
=
δ(N+ −N−)

N+ −N−
+
δ(N+ +N−)

N+ +N−
, (3.2)

which is the regular summation of relative errors in the case of division. We consider

small polarizations, since these are observed in our measurements. In that case, the

condition (N+ −N−) ≪ (N+ +N−) holds, equivalent to N+ ∼ N− ∼ N . Without loss
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of generality, we assume that N+ > N−. If one neglects the second term in Eq. 3.2, one

can write

δρ

ρ
≃ δ(N+ −N−)

N+ −N−
,

δρ

ρ
≃ 2δN

∆N
, (3.3)

where ∆N = N+ − N− and δN = δN+ = δN−. Since the statistics follow a Poisson

distribution, the error δN can be written as δN =
√
N . Therefore, one can write the

absolute error in the polarization, δρ, as

δρ ≃ 2δN

∆N
ρ ≃ 2δN

∆N

∆N

2N
≃ N−0.5, (3.4)

which is independent of ∆N . The behavior of Eq. 3.4 was checked by the standard

deviation of data with small polarizations (ρ > 10%) as a function of the count rate,

presented in Fig. 3.4. A fitting procedure with a power law function, ∼ Nm, resulted in

m = −0.5, matching with the prediction in Eq. 3.4. Figure 3.4 and Eq. 3.4 show that

one requires 104 counts to achieve an error below 1%. Most of our data of the degree

of circular polarization was obtained with ∼ 105 counts, leading to errors below 1%.

However, some of the data of the degree of circular polarization in Ch. 4 could not be

obtained with a total count number of ∼ 105, which resulted in larger errors.
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Micro-photoluminescence setup

In addition to the magneto-optical setup for macro-PL, we have a µ-PL setup at our

disposal. The µ-PL setup can be used for an exact determination of the exciton g

factors of individual quantum dots. Figure 3.5 shows an example of a spectrum, where a

degenerate pair of levels is split up by the Zeeman energy. The µ-PL setup can generate

magnetic fields up to 5 T. Contrary to the bath-type setup we described before, the

sample in this setup is mounted on a cold finger. Excitation is done by a He:Ne or

continuous wave Ti:Sapphire laser, where the excitation beam is focussed through a

50 x or 100 x objective. The laser spot can be focussed to an area of ∼ 1µm2, thereby

crudely defining the spatial resolution without additional masking. We use a triple-stage

monochromator and a Si-CCD camera to resolve and detect the PL.

Depending on the density of the quantum dots in the sample, it might be neces-

sary to deposit additional masking on the top of the sample. We used circular masks

with a diameter of 2µm, 1µm, 800 nm and 400 nm. It was possible to perform µ-PL

measurements with all mask diameters.
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Figure 3.5: The µ-PL setup can be used to determine the exciton g factor very accurately.
This figure shows µ-PL spectra with an increasing Zeeman energy with increasing magnetic
field. The spectra in this figure were measured on a sample with equivalent quantum dots
as the main sample of this thesis. The sample structure, however, did not contain a built-in
electric field.
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3.2 Time-resolved Photoluminescence setup

Figure 3.6A shows the scheme of the time-resolved setup, which consists of a sample on

a micropositioner, a 50 x or 100 x objective, a monochromator and detector. We use a

picosecond-pulsed excitation laser with a repetition rate of 76 Mhz, a single stage 0.5 m

monochromator, and an avalanche photodiode (APD) detector. Additional hardware

is used to record the arrival times of the photons, which electronics has a maximum

resolution of 37 ps.

Figure 3.6B shows the instrument response function (IRF) of the APD, which is the

response of the APD to a laser pulse. The IRF has a full width at half maximum of

∼ 600 ps and has a rather symmetric shape. The observed decay is convoluted with the

IRF of the detector. The signal can therefore be described by

F (t) ∼
∫ t

0
f(τ)IRF (t−τ)dτ , where F (t) is the measured (convoluted) signal and f(t) is

the actual intensity decay of the quantum dots. Since our measured signal is convoluted,

it needs to be deconvoluted to determine f(t).

We did not apply a deconvolution procedure, because the quality of the signal (i.e.,

the signal-to-noise ratio) is strongly reduced by the deconvolution procedure. In chap-

ter 5, we analyze the variable decay rates of time-resolved photoluminescence. These

variable decay rates are interpreted as a temporarily varying recombination time. The

recombination time is determined from the derivative of the natural logarithm of the in-

tensity (since the intensity decay is described by I(t) ∼ e−t/τrec). To investigate whether

the omission of the deconvolution procedure is permitted, we investigate the ratio of the

derivatives of the of an unconvoluted and convoluted signal:

D(t) =
ln (f(t))′

ln (F (t))′
=

(

f ′(t)

f(t)

)

(

∫ t

0
f(τ)IRF (t− τ)dτ

∫ t

0
f(τ)IRF ′(t− τ)dτ

)

, (3.5)

where we have employed that IRF (0) = 0. In fact, the function D(t) represents the
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Figure 3.6: Figure A shows the scheme of the time-resolved setup. Figure B shows the
instrument response function of the APD.
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Figure 3.7: Figure A shows the calculated unconvoluted (f(t)) and convoluted (F (t)) inten-
sity decay of a signal with τrec = 1.8 ns on a logarithmic scale. Figure B shows the function
D(t) of Eq. 3.5 of both decays, for τrec = 1.8 ns and τrec = 4.0 ns. Significant errors arise only
before 2 ns.

ratio of the measured and actual recombination times in time. Note that D(t) a function

of the recombination time τrec (not written in Eq. 3.5).

Figure 3.7A shows the (calculated) convoluted and unconvoluted decay for a recom-

bination time of 1.8 ns, where we have employed the measured IRF for the convolution.

The derivatives of both functions appear rather constant and similar, except in the range

from 0 to 2 ns. Figure 3.7B shows the function D(t) of Eq. 3.5 as a function of time for

the recombination times of 1.8 ns and 4.0 ns (which is the typical range of recombination

times we will encounter). Since the measured IRF function is involved, one observes an

increased signal-to-noise ratio near t = 8 ns. The differences are below 20% after 2 ns.

Since larger deviations occur before 2 ns, these derivatives are not incorporated in the

analysis of the decay rates in Ch. 5.
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3.3 Time-resolved Kerr rotation setup

The orientation of the spins of electrons in quantum dots can be monitored by measuring

the Kerr rotation, which is based on a change in reflection coefficient for right- and left-

handed circularly polarized light.

Introduction Kerr rotation

Linearly polarized light can be described as a superposition of two circularly polarized

beams. The Kerr effect occurs when these circularly polarized components have a

different reflection coefficient. We introduce the complex Fresnel reflection coefficient,

written as r̃+ = r+e
iΦ+ and r̃− = r−e

iΦ− for σ+ and σ− light, respectively, to introduce

the two components of the Kerr effect:� the Kerr rotation (θK), which rotates the linear polarization of the incoming beam

with an angle. This rotation can be written in terms of the complex phase shift

of the Fresnel coefficients: θK = 1
2
(φ+ − φ−).� the Kerr ellipticity (ηK), which arises due to a difference in amplitude of both

reflection coefficients and causes ellipticity. The ellipticity is described as ηK =
r+−r−
r++r−

.

As a next step, we derive the values for θK and ηK from the dielectric tensor of a material,

~ǫ, consisting of the elements ǫij (i, j = x, y, z). We assume the material to be invariant

for rotations around the z axis, which leads to ǫxx = ǫyy and ǫxy = −ǫyx. Moreover, we

assume a polar geometry, where the magnetization (of the spins) is directed orthogonal

to the sample plane. In that case, the off-diagonal elements ǫxz, ǫyz, ǫzx and ǫzy of the

dielectric tensor of the material are zero. The dielectric tensor ~ǫ can be written as

~ǫ =







ǫxx ǫxy 0

−ǫxy ǫyy 0

0 0 ǫzz






. (3.6)

In a polar geometry, the Fresnel reflection coefficients r̃± can be expressed in terms of the

complex index of refraction n± for circularly polarized light by r̃± = 1−n±

1+n±
. Furthermore,

one can write the complex index of refraction in terms of the elements of the dielectric

tensor by n2
± = ǫxx ± iǫxy. If we assume the Kerr rotation and Kerr ellipticity to be
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small, one can approximate these parameters by combining the expressions for n±, r̃±,

θK and ηK , yielding

θK − iηK ≃ f(ǫxx)(ǫxy +O(ǫ3xy) ), (3.7)

where f(ǫxx) is a function of (only) ǫxx. Equation 3.7 explains that the Kerr rotation θK

is proportional to ǫxy in a first approximation. The parameter ǫxy itself is proportional

to the relative imbalance in spin up and spin down charge carriers in the system. Note,

however, that one should include a spectral dependence as well, and that the Kerr

rotation of a light beam does not have to be at resonance with the transition energy of

the charge carriers with the spin. The Kerr rotation signal is composed of contributions

of oriented spins of charge carriers at all transition energies.

Setup

The time-resolved Kerr rotation setup is based at the group ’Physics of Nanostructures’

of the Eindhoven University of Technology. The main experimentalists, associated with

this setup during our collaboration, have been J.H.H. Rietjens and C.A.C. Bosco.

A scheme of the time-resolved Kerr-rotation setup is shown in Fig. 3.8. We use

a pulsed Ti:Sapphire laser with a repetition rate of 82 MHz. The laser pulses have a

duration of 70 ps, which corresponds to a spectral width of 10 ∼ 15nm. The setup does

not contain a device which corrects for the group velocity dispersion, therefore, the pulse

duration is slightly larger.

The laser beam is divided into a pump and probe beam by a beam splitter. The power

of the pump beam is typically 3 − 5 times higher than the power of the probe beam. An

optical delay is installed to allow for time-resolved measurements (up to 1.2 ns). The

pump beam is modulated into circularly polarized pulses by a PEM module operating at

a frequency fPEM = 50 kHz, which is much smaller than the laser repetition frequency.

The first lock-in amplifier in Fig. 3.8 is utilized to extract the signal from the modulation

of the 50 kHz PEM module.

The probe beam, consequently, passes a 60 Hz chopper to improve the signal-to-

noise ratio, which involves the second lock-in in Fig. 3.8. Furthermore, it passes an

additional λ/2 and linear polarizer for variation in the excitation density. Interaction

of the beam with the sample leads to a change in the linear polarization, due to the

Kerr effect, and is measured by a λ/4 plate, a linear analyzer and a photodiode. The

λ/4 plate is installed for measurements of the ellipticity, which are not performed in our

measurement series.
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Figure 3.8: The time-resolved Kerr-rotation setup.

3.4 Sample structure

The structure, grown by molecular beam epitaxy in the group ’Photonics and Semicon-

ductor Nanophysics’, consists of a p−type GaAs substrate (Be-doped, 5 × 1018 cm−3),

a 200 nm p−type (buffer) layer, a 60 nm undoped GaAs and 20 nm n−type GaAs (Si-

doped, 5 × 1018 cm−3). The self-assembled quantum dots are positioned in the middle

of the undoped layer. Since the quantum dots are only 50 nm below the surface of the

structure, losses due to absorbtion of laser light are less than 5%. The layer growth

sequence is terminated with a growth of identical uncapped quantum dots, which were

investigated by AFM measurements. An example of a 500× 500 nm AFM image of our

sample has been shown in Fig. 1.2 (in Ch. 1), which revealed an average base diameter

of 25± 5 nm, height of 6.7± 1.5 nm, and density of 4.5× 1010 cm2. Besides these densi-

ties and average sizes, Fig. 1.2 shows that the quantum dots have an elongated shape.

For self-assembled (In,Ga)As quantum dots, the longest axis is pointing in the [110]

direction, while the short axis is aligned along the [110] direction. The average aspect

ratio of the long and short axis is found to be 1.6 for our quantum dots. Calculations

by Pryor and Flatté (2006, 2007) and Sheng (2007) indicate that the g factor of the

quantum dot is very sensitive to the elongation of the quantum dot.

The growth process is initiated by deposition of a wetting layer of 2.1 monolayers of

InAs at a relatively high temperature of 525◦C. The high temperature leads to inter-

mixing and to larger dots, since one can expect a larger diffusion path over the surface
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Figure 3.9: Figure A shows the quantum dot height probability distribution of the AFM
measurement. The height of 0 nm is considered to be the threshold above which only quantum
dots occur. Quantum dot heights vary between 4 and 8 nm.

at higher temperatures. Heyn and Hansen (2003) show that the percentage of Gallium

in the quantum dot is likely to reach over 50 % for a growth at 525◦C. Furthermore, it is

shown that the intermixing levels are not uniform throughout the quantum dot (Bruls

et al., 2002; Offermans et al., 2005; Heyn et al., 2005).

Fig. 3.9 shows the probability distribution of the heights throughout of the AFM

image in Fig. 1.2 in Ch. 1. The quantum dots height varies between 4 and 8 nm. Based

on this figure, one would estimate the height of the quantum dots to be slightly smaller

than ∼ 6 nm (due to the logarithmic scale).

The band-structure of the sample, shown in Fig. 3.10, can be calculated by a sim-

ulation program (Tan et al., 1990). This yielded a maximum built-in electric field of

240 kV/cm in the undoped region, where the quantum dots are located. Equivalently,

one can estimate this value from the voltage drop of ∼ 1.5 V over the 60 nm width of

the undoped region.

3.5 Electrical characterization of the structure

This work was initially focussed on electrical spin injection into quantum dots. For

this reason, mesas were processed from the wafer. The process consisted of the photo-

lithography of the wafer to form circular mesas with a diameter of 200µm, followed by

a wet etch of approximately one minute of a diluted mixture of H2O2 and H2SO4. The

process was finished by contacting the top of the mesa with several tens of nanometers

of Ti and a thinner layer of gold. On top of this gold surface, a wire was bonded.

Current-voltage (I-V) characteristics could be recorded for approximately 20% of the

(at least) 50 processed mesas.
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Figure 3.10: Band diagram of the p-i-n structure with a single layer of (In,Ga)As quantum
dots in a Faraday geometry. The built-in electric field of the structure is F = 240 kV/cm.
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temperature) of 21 diodes, determined by Eq. 3.8. The line shows the power law dependence
A× (nidVth)m, where A = 0.005 and m = 8.2.

The I-V curves are described by

I(V ) = Isat(e
V

(nidVth) − 1), (3.8)

where the ideality factor nid indicates the quality of the diode, Vth is the thermal voltage,
kT
e

, and Isat is the saturation current. We determined the product nidVth and Isat from

the measured I-V curves by a least-squares fitting procedure employing Eq. 3.8, which

results are shown in Fig. 3.12. The median of the saturation currents from this sample

of diodes is 1.9 × 10−10 A. The data reveal a power law dependence between Isat and

nidVth, which can be written as Isat ∼ A × (nidVth)
m, where A = 0.005 and m = 8.2.

The power law behavior is not fully understood up to now.

The values for nidVth are much larger than one expects on the basis of the thermal

voltage at 5 K and a common ideality factor between 1 and 2. At the temperature of 5

K, where we measure, the thermal voltage should be Vth ∼ 4×10−4 V, whereas Fig. 3.12

reveals values a hundred times larger. The differences could be explained by parasitic

resistances.

Electroluminescence

Besides the I-V curves of the diodes, we were able to observe electroluminescence (EL)

from the quantum dots. Figure 3.13A shows the EL spectra as a function of the current,

where the spectrum at each current has been normalized. The spectrum shifts to higher

energies with increasing current, which is due to a reduced Stark shift through screening.

The Stark shifts reach up to 40 meV. Moreover, Fig. 3.13B shows that the integrated

EL intensity depends linearly on the current for currents above ∼ 3µA.
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Figure 3.14 shows the EL spectrum as a function of voltage. The relatively large

voltage which is required to achieve EL can be explained by the work function of the

Ti contact.
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Chapter 4

All-optical control of the exciton

g factor in (In,Ga)As quantum dots

ABSTRACT

In this chapter, we demonstrate optical tunability of the exciton g factor of an ensemble

of (In,Ga)As quantum dots (Quax et al., 2008). The (In,Ga)As quantum dots are

embedded in the center of a p-i-n structure and, therefore, experience a built-in electric

field. Control over the electric field is achieved by a CW laser, since the photo-generated

charge carriers can screen the electric field. We employ a Faraday geometry, where the

sign of the degree of circular polarization of the PL of the quantum dots is a measure

of the sign of the g factor of the quantum dots in the growth direction. Moreover,

the Stark shift in the PL spectra acts as a measure for the electric field. Since we

observe a sign change in the degree of polarization exactly at the excitation densities

where the Stark shift varies, we associate the sign change with the electric field. In

fact, we interpret the (sign of) the growth direction g factor to be controllable with

electric field, which is demonstrated by all-optical means in this work. Furthermore, the

magnitude of the degree of circular polarization of the PL allows us to determine the

longitudinal spin relaxation time T1 of the exciton. We develop a model for the degree

of circular polarization for both low and high excitation densities. The spin relaxation

time decreases with increasing magnetic field, following a power law behavior, ∼ Bm,

where m = −2.9 ± 0.4. This value is in fair agreement with theoretical predictions of

Tsitsishvili et al. (2003).
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4.1 Introduction

In chapter 1, we have discussed the possible benefits of (sign) controllable g factors for

quantum information processing (Kane, 1998; Vrijen et al., 2000). Among the experi-

ments aimed at control over the g factor in nanostructures, both static control over the

g factor in magnetically doped semiconductor quantum dots (Schmidt et al., 2006), as

well as dynamic control over the g factor in quantum wells (Salis et al., 2001) and bulk

semiconductors (Kato et al., 2003) have been demonstrated. In the cases of dynamic

control, an electric field is used to deform the charge carrier wavefunction, resulting in a

modified g factor. Besides the modification of the shape of the wavefunction, an applied

electric field can be used to induce an additional g factor variation by modifying the

wavefunction overlap in materials with different g factors (Salis et al., 2001). In the

case of quantum dots, calculations have shown that the g factor of a strongly confined

exciton in a small quantum dot can have a sign opposite to the g factor of a less confined

exciton in a large quantum dot (Nakaoka et al., 2004; Sheng and Babinski, 2007). This

sensitivity of the g factor to the degree of exciton confinement, in combination with

large spin relaxation times, makes quantum dots attractive for quantum information

devices.

The second part of this chapter focusses on the magnetic field dependence of lon-

gitudinal spin relaxation time T1. Like the controllable g factor, long spin relaxation

times (and spin decoherence times) are one of the technological requirements for quan-

tum computers. After the first observation of Paillard et al. (2001), it appeared that

quantum dots indeeed have a good spin memory, with spin relaxation times exceed-

ing the recombination time of the exciton. Later, Kroutvar et al. (2004) and Heiss

et al. (2007) have shown that the longitudinal spin relaxation time show a strong mag-

netic field dependence. Gerardot et al. (2008) have recently presented longitudinal spin

relaxation times in the order of a millisecond for holes. Generally speaking, the ex-

perimental evidence (Kroutvar et al., 2004; Heiss et al., 2007) matches well with the

theoretical predictions for the conduction electron (Khaetskii and Nazarov, 2000, 2001;

Woods et al., 2002; Westfahl et al., 2004) and holes (Woods et al., 2004; Lü et al.,

2005). Whereas there exists a theoretical prediction for the spin relaxation time of the

exciton (Tsitsishvili et al., 2003), no experimental evidence for this behavior has been

presented so far. In Section 4.5 of this chapter, we show the first experimental evidence

of the T1 ∼ B−3 power law behavior of the exciton (Tsitsishvili et al. (2003), see also

Tsitsishvili et al. (2005)).

In the experiments in this chapter, we measure the photoluminescence (PL) and

degree of circular polarization of the PL to probe the g factor and the spin relaxation

time. We measure circular polarization, since we employ a Faraday geometry where
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exciton levels emit photons with opposite helicity. Due to this Faraday geometry, the

g factor in this chapter is the g factor in the growth direction. The degree of circular

polarization depends on both the growth direction g factor and spin relaxation time T1,

although stronger on the spin relaxation time in our measuring conditions. Section 4.2

describes the two-level model for the bright exciton, to get insight in how the polarization

signal depends on the aforementioned parameters, whereas Section 4.3 discusses the

overall properties of the PL and the Stark shifts as a function of excitation density.

Section 4.4 and 4.5 discuss the two main results on the g factor and spin relaxation

time, respectively.

4.2 Model

As an introduction to the model, we recall that we excite the sample with a continuous

wave unpolarized Ti:Sapphire laser at 1.61 eV. Since we excite with unpolarized light, we

create a balanced amount of spin up and spin down carriers above the GaAs bandgap.

Spin relaxation before capture into the quantum dot is neglected. We describe the

PL signal to be composed of emission of the two (Zeeman) ground-state exciton levels,

denoted by |+1〉 and |−1〉, and exclude emission from excited states. Emission from an

exciton level is assumed to be proportional to its average occupancy. The experiments

are performed in a Faraday geometry with magnetic fields up to 7 Tesla. In such

magnetic fields, the Zeeman energy of the ground state exciton can exceed the thermal

energy.

The relative occupancy of both Zeeman levels can be investigated since the respective

levels emit photons with an opposite polarization. We neglect intermixing between

the light- and heavy hole bands in the quantum dot for the moment, which implies

that each of the levels emits hundred percent polarized σ± photons. Transitions of

(predominantly) light holes states are not participating, since these are split apart by

several (tens of) meV in the electronic spectrum of the quantum dots. The degree of

circular polarization of the PL is defined as

ρ =
Iσ+1 − Iσ−1

Iσ+1 + Iσ−1

, (4.1)

where Iσ±1 represents the intensity of σ± photons, which thus can only be identified

with the polarization of the occupancy of the exciton levels when one excludes heavy-

hole/light-hole intermixing.

We denote the up- and downward longitudinal spin relaxation time between the

two exciton levels by τs,↑ and τs,↓. The downward arrow corresponds to a process

where the final state has a lower energy than the initial state. Since the exciton is
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Figure 4.1: The spin levels p and q of the ground state exciton experience an equal capture
rate G in our experiments. Both levels are assumed to have the same recombination time τrec.
Each of the levels emit hundred percent polarized σ± light. The degree of circular polarization
in the photoluminescence originates from a difference in the occupation of level p and q, induced
by a difference in downward spin relaxation time τs,↓ and upward spin relaxation time τs,↑.

composed of the conduction and valence electron, the exciton spin relaxation time can

be described as a product of the spin relaxation times of both charge carriers. For

a transition from a bright exciton state to the other bright exciton state, both the

conduction and the valence electron have to flip their spin. We can therefore write, for

example, (τ|+1〉→|−1〉)
−1 = (τ|− 1

2
〉→+| 1

2
〉)

−1 (τ|− 3
2
〉→|+ 3

2
〉)

−1 where τ is the spin relaxation

time and the subscripts refer to the exciton (| ± 1〉), conduction electron (| ± 1
2
〉), and

valence electron (| ± 3
2
〉).

The two Zeeman levels of the ground state exciton, denoted by p and q, are shown

in Fig. 4.1. Note that p and q represent Zeeman levels and are nondegenerate. Their

average occupancy is expressed by a value between 0 and 1, and their energies are split

by gµBB. The time-dependent evolution of the occupancy of the levels (p(t) and q(t))

is described by the differential equations (Hyland et al., 1999; Mackowski et al., 2003;

Flissikowski et al., 2003)

ṗ = G− p

τrec

− p

τs,↓
+

q

τs,↑
,

q̇ = G− q

τrec

+
p

τs,↓
− q

τs,↑
, (4.2)

where G is the generation rate (i.e., capture rate) in the levels, τrec is the radiative re-

combination time of a single exciton for the levels, and τs,↓(↑) is the downward (upward)

spin relaxation time. Equations 4.2 describe the two-level exciton system at low exci-

tation densities, such that a transition between the exciton levels (by spin relaxation)

or capture is never inhibited because of an already occupied final state. Transitions are

thus only dependent on the occupation of the initial state. The case of high excitation

densities is discussed later in this section. The spin relaxation times τs,↓ and τs,↑ in
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Eq. 4.2 are related to the longitudinal spin relaxation time T1 by (Hyland et al., 1999;

Marshall and Miller, 2001; Tsitsishvili et al., 2003)

T1 ≡ (
1

τs,↓
+

1

τs,↑
)−1, (4.3)

≃ τs,↓ when (
1

τs,↑
) → 0, (4.4)

where the condition in Eq. 4.4 occurs for gµBB ≫ kT .

One can consider two possible mechanisms of relaxation between the Zeeman lev-

els: phonon-assisted relaxation and Auger recombination. In the literature, relaxation

processes dominated by both phonon-assisted relaxation (Adler et al., 1996) as well as

Auger recombination (Morris et al., 1999) have been observed, although Auger recombi-

nation processes between Zeeman levels have not been reported. Auger recombination

is inefficient when (i) the temperature is low (Uskov et al., 1997), (ii) the quantum dot

sizes are large (due to reduced wavefunction overlap with charge carriers outside the

quantum dot) (Uskov et al., 1997; Ferreira and Bastard, 1999), and when (iii) the 3D

carrier concentration in the surrounding bulk material is high (due to effective screen-

ing of surrounding charge carriers) (Uskov et al., 1997). Furthermore, it is required

that the spin is conserved in a two-identical-particle Auger process (e.g., employed by

Ferreira and Bastard (1999)). Since our measurements are performed in high magnetic

fields, at low temperatures (i), in relatively large quantum dots (ii), and with a CW

laser creating charge carriers in the bulk material surrounding the quantum dot (iii),

one can already expect the Auger process to be inefficient. However, a much stronger,

experimental argument is presented in Ch. 5, where risetimes exceeding 100 ps are ob-

served (see Fig. 5.5). In very recent experiments (data not shown here), such long

risetimes were also observed on equivalent quantum dots by T.E.J. Campbell Ricketts.

These long risetimes can be associated with phonon-assisted recombination (Adler et al.,

1996). Based on this evidence, we assume the spin relaxation process to be dominantly

phonon-assisted.

In the case of phonon-assisted spin relaxation, one can express the upward rate in

terms of the downward rate, because of a different absorption and emission probability

of acoustic phonons. For the downward spin relaxation transition, an acoustic phonon

is emitted, while for an upward transition, an acoustic phonon is absorbed. One can

write (Blum, 1981)
1

τs,↓
∼ (Nωq

+ 1) ,whereas
1

τs,↑
∼ Nωq

, (4.5)

where Nωq
= (e

~ωq
kT − 1)−1 is the thermal phonon distribution (i.e., Bose-Einstein distri-

bution), and ωq is the angular frequency of the acoustic phonon. We assume that the

55



transitions are driven by acoustic phonons, which have an energy ~ωq = gµBB when

the Zeeman energy is gµBB. The ratio between the upward and downward rate, in the

case of an energy difference gµBB, is given by a (Boltzmann) factor
Nωq

Nωq +1
= e−

gµBB

kT .

We can therefore replace 1
τs,↑

by e−
gµBB

kT
1

τs,↓
in Eq. 4.2.

Simple Model

Firstly, we present a simple model to get a sense of the most important parameters in

this chapter: T1 and τrec. The simple model is based on two assumptions:� Transitions are not suppressed because of an already occupied final state.� The Zeeman energy is much larger than the thermal energy kT : gµBB ≫ kT .

This condition holds for our measurements at the highest magnetic fields.

Due to the last approximation, the last term in the Eq(s). 4.2 can be neglected. In the

stationary case, where ṗ = 0 and q̇ = 0, the polarization becomes independent of the

generation rate G, and is described by

ρ(τrec, T1) ≃ τrec

τrec + T1

, (4.6)

ρ(τrec, T1) ≃ τrec

T1

when τrec ≪ T1, (4.7)

where the condition of Eq. 4.7 is occuring in our measurements. Equation 4.6 explains,

that under the condition gµBB ≫ kT , one can determine the spin relaxation time of

the excition from the recombination time τrec and the degree of circular polarization ρ

only.
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Extended Model

To describe the signal in the case of higher temperatures or lower magnetic fields, one

can employ a model using the following conditions:� Transitions are not suppressed because of an already occupied final state.� The Zeeman energy is comparable to the thermal energy kT : gµBB ∼ kT .

Such a condition occurs when the magnetic field is around 3 T in our experi-

ments. Neglection of the upward rate is not possible now and an upward term like
1

τs,↑
= e−

gµBB

kT
1

τs,↓
is included.

Note that in this situation, T1 6= τs,↓, because of Eq. 4.3, and we have to use τs,↓. If

one employs the relation τs,↑ = e
gµBB

kT τs,↓ in the Eqs. 4.2, one finds for the steady-state

polarization

ρ(τrec, τs,↓,
gµBB

kT
) =

(1 − e−
gµBB

kT )τrec

(1 + e−
gµBB

kT )τrec + τs,↓
, (4.8)

ρ(
gµBB

kT
) ≃ tanh (

gµBB

2kT
) when τs,↓ ≪ τrec. (4.9)

To estimate the effects of the exponential term in Eq. 4.8, we investigate the sensitivity

of the polarization ρ on the g factor by plotting the ratio of ρ/ρ0 (where ρ0 is the

polarization in Eq. 4.6) as a function in of the ratio gµBB/kT in Fig. 4.2. The asymptotic

behavior for gµBB ≫ kT in Fig. 4.2 reveals that, independent of the ratio of the

downward spin relaxation time and the recombination time, ρ is only sensitive to the

g factor when gµBB > 4kT . In this regime, the extended model should be applied. At

a temperature of 1.7 K and a g factor of 2, the equality gµBB = 4kT corresponds to a

magnetic field of 5 T. Therefore, application of Eq. 4.8 instead of Eq. 4.6 is required for

magnetic fields below 5 T.

Although posed for reasons of completeness, the condition in Eq. 4.9 (τs,↓ ≪ τrec) is

unlikely to occur in our measurements. It is accepted that the T1 times are much larger

than the radiative recombination time in (In,Ga)As quantum dots (Paillard et al., 2001;

Kroutvar et al., 2004; Gerardot et al., 2008).

Extended model including suppressed transitions

A difficulty arises when the average number of excitons in the quantum dot, n, is not

negligably small. Qualitatively, one can expect that the degree of circular polarization

is reduced, since one can expect a relatively larger contribution from transitions of the

upper spin level. One can quantitatively include this by introducing a ’partial Pauli
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blockade’† in the differential equations of Eq. 4.2. One should incorporate terms like

p(1 − α) and q(1 − β) to express that transitions are blocked when the final state is

already occupied‡. The differential equations can in that case be written as

ṗ = G− p

τrec

− p(1 − α)

τs,↓
+ e−

gµBB

kT
q(1 − β)

τs,↓
,

q̇ = G− q

τrec

+
p(1 − α)

τs,↓
− e−

gµBB

kT
q(1 − β)

τs,↓
, (4.10)

where we have already incorporated the relation τs,↑ = e
gµBB

kT τs,↓. One should in principle

also include a factor of the type (1 − α/β) to describe the reduction in the generation

rate G. However, in the stationary case, the final result is independent of this term. For

the stationary case, where ṗ = 0 and q̇ = 0, we can write

ρ(τrec, τs,↓,
gµBB

kT
, α, β) =

(1 − α− (1 + β)e−
gµBB

kT )τrec

(1 − α+ (1 − β)e−
gµBB

kT )τrec + τs,↓
(4.11)

which results in Eq. 4.8 when α, β → 0. One can identify τs,↓ with T1 when α, β → 0.

The values of α and β represent the relative occupance of both spin levels, and describe

the ’strength’ of the blocking by a number between 0 and 1. Since the lowest spin

level has the largest occupation, the value α should be larger than β (see Eq. 4.10 and

Fig. 4.1). Equation 4.11 confirms that ρ decreases when α increases, and is a translation

of the reduced polarization in the case of biexcitonic transitions.

It is not obvious how the occupation of the spin levels is distributed for the two-

level spin system in the quantum dot. We approximate the distribution of the levels

to follow a Fermi-Dirac distribution, fFD(E − µ) = (1 + e
E−µ
kT )−1, where E represents

the relative energy and µ the chemical potential. The α and β are approximated to be

the Fermi-Dirac probabilities at the energies of the levels p and q. They can be derived

from the following equations

α = fFD(−1

2
gµBB − µ(n)), (4.12)

β = fFD(+
1

2
gµBB − µ(n)), (4.13)

where n = fFD(−1

2
gµBB − µ) + fFD(+

1

2
gµBB − µ), (4.14)

†Strictly speaking, the Pauli blockade is a discrete ’on/off’ process, for example written as 0 or 1.
For the average degree of circular polarization of ∼ 106 quantum dots, however, we assume this effect
to be describable by a real value between 0 and 1.

‡The parameters α and β can be interpreted as the average occupance of both levels: α = q and
β = p. One can also employ factors like (1 − q) and (1 − p) instead of (1 − α) and (1 − β), but the
polarization is in that case dependent on the capture rate. We want to avoid that in this model.
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where µ(n) can be derived as the inverse function of Eq. 4.14. For every n, one can find

an α and β, from which we derive τs,↓ (given ρ). Figure 4.3 shows how α and β increase

when the chemical potential µ increases.

Sign of the polarization

Although the magnitude of the polarization depends on the average number of excitons

in the dot, the sign of the polarization is exclusively determined by the sign of the g

factor of the exciton. Our orientation of the magnetic field and the detection optics

is such, that a negative exciton g factor corresponds to a positive polarization. This

sign determination is confirmed by a calibration of the polarization detection on the

free-to-bound transitions in p-type GaAs (Obukhov et al., 1980).

Circular polarization in the case of ’relaxed optical selection rules’

If each of the exciton levels does not emit fully polarized light due to heavy-hole/light-

hole intermixing, a fraction of the detected photons is misinterpreted. We denote this

fraction of photons with opposite helicity by ǫ, where 0 ≤ ǫ < 1. We assume that the

heavy-hole/light-hole intermixing is ’symmetric’, which means that if one of the exciton

levels emits 5% of photons with a light-hole related helicity, the other exciton level

also emits 5% (again with opposite helicity). This can be quantified by applying the

replacement rules I±1 → (1 − ǫ)I±1 + ǫI∓1 in Eq. 4.1. In the case of intermixing with

a fraction ǫ, the observed degree of polarization ρ∗ of the PL can be expressed in the

polarization of the occupancy of the levels by

ρ∗(ǫ, ρ) = (1 − 2ǫ)ρ, (4.15)

where ρ∗ can only be identified with ρ when ǫ = 0.

Calculations on lens-shaped quantum dots have shown a near unity conversion of

spin- to photon polarization, when measuring in the growth direction, indicating that

ǫ is small (Pryor and Flatté, 2003). Based on experiments of Cortez et al. (2001) and

calculations by Sheng and Babinski (2007), one can estimate ǫ to be at most ∼ 0.1.

Note that ǫ depends on both the squared amplitude of the light hole state (in the

predominantly heavy hole state) and the oscillator strength between the conduction

electron and light hole. For ǫ = 0.1, one can have a squared amplitude of 0.3 for the

light holes, since the oscillator strength between the conduction electron and light hole

is three times smaller.
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Finally, we consider the effects of a nonzero ǫ on our analysis. First of all, one should

note that intermixing does not affect the sign of the polarization. The analysis of the

T1 times, however, is affected. Employing Eq. 4.6 and Eq. 4.15, one can write,

(

T1,ǫ

T1,0

)

=
1

1 − 2ǫ

(

1 − ρ+ 2ǫρ

1 − ρ

)

, (4.16)

≃ 1

1 − 2ǫ
≃ 1 + 2ǫ+O( (2ǫ)2 ) when ǫ≪ 1, (4.17)

where T1,0 is the spin relaxation time based on the assumption of a one-to-one conversion

of occupancy of the exciton levels into the polarization of the light (ǫ = 0). The

T1,ǫ represents the deduced spin relaxation time in the case of heavy-hole/light-hole

intermixing by a fraction ǫ (i.e., the ’observed’ spin relaxation). The ’observed’ spin

relaxation time, deduced from the observed degree of polarization ρ∗ (reduced because

of ǫ > 0), in fact, overestimates T1,0 by a factor ∼ (1+2ǫ). From the maximum ǫ = 0.1,

one can conclude that T1,0 is at least 80% of T1,ǫ.
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4.3 Photoluminescence and Stark shifts

Figure 4.4 shows the normalized PL spectra, the integrated intensity and full width

at half maximum (FWHM) of the PL spectra, respectively, as a function of laser ex-

citation density. At excitation densities below 20 Wcm−2 (regime I), the PL peak is

centered at 1.23 eV and is independent on the excitation density. When the excitation

density is increased above 20 Wcm−2 (regime II), the PL peak is shifted to higher ener-

gies for excitation densities of 40 Wcm−2 (regime III), saturating at 1.27 eV. Regime I

corresponds to the situation where the quantum dots experience the unscreened built-in

electric field. The electric field is progressively screened by photo-created carriers in

regime II. Finally, in regime III, the internal electric field is completely screened by

the photo-created carriers. The maximum value for the Stark shift, which is observed

in regime I, amounts to 40 ± 3 meV and is associated with the calculated electric field

of 240 kV/cm. Such a Stark shift is not uncommon for (In,Ga)As quantum dots (Jin

et al., 2004; Wang et al., 2006). It is, however, the largest Stark shift in quantum dots

observed in an optical experiment. A similar behavior of the PL as a function of the

excitation density for quantum dots in the intrinsic region of a p-i-n structure has been
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Figure 4.4: The top panel shows the normalized PL spectra, and the bottom panel shows
the intensity (�, left axis) and the FWHM (�, right axis) of the spectra, as a function of
excitation density.
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Figure 4.5: The integrated intensity of the quantum dot PL as a function of the excitation
density. In regime I and II, a (nearly) exponential behavior occurs, due to the electric field
over the quantum dots. In regime III, however, the regular linear behavior occurs.

observed before (Bulashevich et al., 2006).

Figure 4.5 shows that the regimes I and II are characterized by a near-exponential

dependence of the intensity on the excitation density, whereas regime III shows a linear

dependence. This indicates that in regime I and II, the electric field induces a reduction

of the PL intensity through tunneling of carriers out of the quantum dot (Fry et al.,

2000a). The lower panel of Fig. 4.4 shows that the total range of intensities covers three

orders of magnitude. This figure also shows that the FWHM is found constant in regime

I and III (where the electric field is also constant) and that a minimum occurs in regime

II.

One can use the relation between the observed Stark shift ∆S in the PL and the

electric field F to assign an electric field to every excitation density. This relation is

quadratic in F , ∆S = βF 2 + pF , where β describes the polarizability and p is the

built-in dipole moment in the dot. A value for β for (In,Ga)As quantum dots has been

determined by Hsu et al. (2001). They report β = (8.8 ± 0.8) × 10−35 C V−1 m2. There

have been observations of built-in dipoles in an apex-to-base orientation (Fry et al.,

2000b; Hsu et al., 2001) and a base-to-apex orientation (Jin et al., 2004). Absolute values

for the dipole range from p = 5 × 10−29 C m (Fry et al., 2000b) to p = 12 × 10−29 C m

(Hsu et al., 2001).

In the PL of Fig. 4.4, we observe a maximum Stark shift of 40 meV. To reach

this Stark shift at 240 kV/cm, with β = 8.8 × 10−35 C V−1 m2 (Hsu et al., 2001), the

dipole should be in a base-to-apex orientation, and is found to be p = (5.4 ± 1.9) ×
10−29C m (= (3.4 ± 1.2) eÅ). If one excludes the built-in dipole, one can estimate a
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β = (11.0 ± 0.8) × 10−35 C V−1 m2 from the maximum Stark shift at 240 kV/cm. The

value for p is relatively small, whereas the β is relatively large (see Table 2.2). This

matches with calculations of Wang et al. (2006), who indicate that strong intermixing of

Gallium into the quantum dots, which we expect to have occured during our quantum

dot growth, leads to reduction of the built-in dipole and increase of the polarizability.

The parameters β and p are used later in our analysis.

Now we have introduced the regimes to discrinate whether the quantum dots expe-

rience a high or low electric field, we comment on how the polarization signal is built

up.
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Corrections of the polarization signal

Figure 4.6A shows the PL of the sample at high excitation density (regime III) in

the energy range 1.22 − 1.53 eV, where we clearly observe the contributions from the

quantum dots (QD in Fig. 4.6A) at 1.22 − 1.34 eV and the free-to-bound transitions from

the p-type material (e-A in Fig. 4.6A) at 1.45 − 1.50 eV. Note that there is PL emission

in the range 1.34 − 1.45 eV, between the peaks, which is associated with emission of

(deep) acceptors as well. These acceptors have their transition energies slightly lowered

due to, for example, a nearby vacancy or other impurity. The intensity of the PL in this

range is several orders of magnitude smaller than from the main acceptor peak at 1.48

eV. We observe the emission of these deep acceptors to be apparent at the quantum dot

energies as well. Therefore, we have to apply a background correction to the measured

degree of polarization of the quantum dots.

Figure 4.6B shows the degree of circular polarization, ρ, at a temperature of 1.7 K

and magnetic field of 7 T in the range from 1.22 − 1.53 eV. The polarization data in

Fig. 4.6B is uncorrected data. From Fig. 4.6B, one can already observe the difference

in the sign of the polarization in Regime I and III (discussed further in Section 4.4). In

the energy range from 1.34 − 1.45 eV, there appears a rather constant value of 4.5%,

independent of the excitation density. The change in the polarization near the main
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Figure 4.6: Figure A shows a PL spectrum at high excitation density, where we identified the
quantum dot transitions (QD) and the free-to-bound transitions in the p type material (e-A).
A maximum of approximately 35% of the transitions occur in the quantum dots. Figure B
shows the uncorrected degree of circular polarization throughout the full energy range, both
for an excitation density in regime I (�) and for excitation density in regime III (�). The
polarization is independent of the excitation density, except for the energies below ∼ 1.34 eV,
where the quantum dots emit.
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Figure 4.7: The fraction of quantum dot signal in the total PL signal, f , as a function of the
excitation density at 1.27 eV. This data is used to extract the polarization data of Fig. 4.8,
employing Eq. 4.18.

acceptor peak at 1.48 eV in Fig. 4.6B has been observed and explained by Obukhov

et al. (1980).

Based on the polarization we observe in the energy range 1.34 − 1.45 eV in Fig. 4.6,

we assume that the 4.5% of polarization in this range also applies to the background

intensity of the quantum dots (1.22 − 1.34 eV). The actual polarization from the quan-

tum dots, ρqd, can be extracted from a weighted average of the polarization of the

background (ρbg = 4.5%) and the quantum dots. We describe the background fraction

by f , where f is a value between 0 and 1. This background fraction depends on the

energy E, therefore we write

ρ(E) = f(E)ρqd(E) + (1 − f(E))ρbg (4.18)

where ρ is the observed polarization. The correction is particularly important in the PL

spectra with low excitation densities.

Figure 4.7 shows the ratio f from the quantum dots at an average energy of 1.27 eV.

We used the integrated intensities from 1.264 eV to 1.276 eV. The ratio f varies from

∼ 0.2 to 0.9.
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4.4 Sign reversal of the exciton g factor

Figure 4.8 shows the degree of circular polarization after correction for the background

by Eq. 4.18, at the center of the PL peak (in high excitation densities, 1.27 eV), in

a magnetic field of 7 Tesla and a temperature of 1.7 K. As the excitation power is

increased, the polarization varies from 25± 4% in regime I to −9.5± 0.5% in regime II.

The degree of circular polarization reverses sign at an excitation density of ∼ 27 W/cm2.

A further increase of the excitation density in regime III leads to a small increase in the

polarization to −7%.

The Stark shift and sign reversal of the degree of circular polarization occur in

the excitation density regime II. We propose that the electric field over the quantum

dot, modified by the excitation density, induces this reversal. The sign reversal of ρ is

interpreted as a sign reversal of the g factor in the growth direction of the ground state

exciton.

We exclude a sign reversal caused by excited (shell) states, since these are not ob-

served in the PL spectra at even the highest excitation densities in our measurements.

We do not exclude that biexcitons transitions occur at the highest excitation densities.

However, these transitions are not expected to become dominant. Furthermore, biexci-

tons would only suppress the polarization, since they emit unpolarized light on average.

Note that the polarization of biexcitons can be described by Eq. 4.11, where n > 1 in

Eq. 4.14.

One can extract an upper boundary for the average number of excitons in a quantum

dot, n, from the input flux of photons. The photon flux is φ = 2.0 × 1020 cm−2s−1 at a
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Figure 4.8: The degree of circular polarization (�, left axis) and Stark shift (�, right axis)
at a magnetic field of 7 Tesla and a temperature of 1.7 K, as a function of the laser excitation
density.
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Figure 4.9: The spectral dependence of the polarization, measured at the boundaries of
regime II (20 kW cm−2 (�) and 40 kW cm−2 (�)).

high excitation density of 50 Wcm−2. The flux per quantum dot is φ/nqd, where nqd is

the surface density of the quantum dots (see Ch. 3). We determined that a maximum

of 35% of the radiative recombination occurs in the quantum dots, by comparing the

overall intensity of the free-to-bound transitions and the transitions from the quantum

dots in the PL spectra. Therefore, the maximum rate of radiative recombination in the

dots is 1.6×109 s−1. We measured a radiative recombination time of 1.0 ns, from which a

maximum average number of excitons per quantum dot n = 1.6 at 50 W/cm2 is deduced.

Note that this calculation does not take into account non-radiative recombination, and

hence acts as an upper boundary.

Figure 4.9 shows the two extrema of the polarization of Fig. 4.8 observed at excita-

tion densities of 20 W/cm2 and 40 W/cm2 at a magnetic field of 7 T. These excitation

densities correspond to the boundaries of range II where we observed the full range of

the polarization sign reversal. Figure 4.9 shows only a weak dependence of the extrema

as a function of energy. The sign reversal of the polarization appears throughout the

whole ensemble, therefore, it has not been necessary to correct for the Stark shift, which

is not done in Fig. 4.9. Moreover, the sign reversal is also observed at the low energy

side of the spectrum, where only ground state transitions occur, which is considered as

additional evidence that the reversal is not driven by excited states transitions.

Since we know the relation between the Stark shift and the electric field, ∆S =

βF 2+pF , one can plot the polarization data as a function of the electric field. Figure 4.10

shows the transformed data for the β = 8.8 × 10−35 C V−1 m2 and p = 5.4 × 10−29 C m,

and for the β = 11.0 × 10−35 C V−1 m2 and p = 0 C m. Both sets of parameters result

in a maximum observed Stark shift at F = 240 kV/cm. Depending on the choice
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Figure 4.10: The degree of circular polarization as a function of the electric field, for a
parameter pair including a built-in dipole (�) and excluding the built-in dipole (�). For
clarity, only one set of data is displayed with error bars.

of parameters and taking into account the error bars, sign reversal occurs between

F = 170 kV/cm and F = 210 kV/cm. The inclusion of a dipole only leads to an

insignificant correction.

The literature on g factors in the growth direction of quantum dots provides insight

into its dependence on size, shape and In-Ga composition in the quantum dot. One

can claim that the electron g factor appears in the range from −1 to 0 (Nakaoka et al.,

2004; Pryor and Flatté, 2006; Sheng and Babinski, 2007; Pryor and Flatté, 2007) for

normal quantum dot parameters. The valence electron g factor occurs in the range

from −5 to +1 (Nakaoka et al., 2004), for parameters yielding PL energies in the range

1.25 ∼ 1.30 eV. It was shown that small dots have a small positive gv, whereas large

dots have a large negative gv. Since ge shows little sensitivity to parameter changes, we

expect the valence electron gv to induce the sign change.

The negative polarization at low electric fields is associated with a positive gexc. We

think that the electric field effectively leads to a reduction of the exciton confinement in

the quantum dot, inducing gv to cancel ge and yielding a sign change of gexc. This in-

terpretation would match qualitatively with the behavior of gexc for increasing quantum

dot sizes (Nakaoka et al., 2004).

Sign reversal at magnetic fields below 7 T

We discussed the sign reversal of the polarization as a function of the excitation density

at a magnetic field of 7 T. The highest available magnetic field was chosen to achieve

largest possible constrast in the sign reversal measurement. In this subsection, we show
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Figure 4.11: Figure A shows the intensities of the PL and Fig. B shows the degree of circular
polarization of the PL, as a function of excitation density at magnetic fields from 3 T to 7 T.
The error range in Fig. B at every excitation density can not be compared between the data
sets, since the polarization was determined from a variable amount of total counts. Figure A
and B show both a difference ∆P ∼ 10 W/cm2 in the excitation density.

severals scans of the polarization at lower magnetic fields, to verify whether the sign

reversal occurs at the same electric field in different magnetic fields.

To achieve a similar mapping as in Fig. 4.10 for different magnetic fields, we per-

formed the scans of the degree of polarization as a function of the excitation density

from 0 T up to 7 T, with steps of 1 T. Whereas Fig. 4.11A shows the intensities asso-

ciated with this PL measurements, Fig. 4.11B shows its degree of circular polarization.

The error range in Fig. 4.11B at every excitation density can not be compared between

the data sets, since the polarization was determined from a variable amount of total

counts. A sign change is observable at all magnetic fields, also for the data at 1 T and
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Figure 4.12: This figure shows the degree of circular polarization and the iso-polarization
lines of −5%, 0%, 5%, and 10% as a function of the magnetic field and electric field.
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2 T, which is not shown in Fig. 4.11B.

The most important observation in Fig. 4.11A is that the PL intensities show a clear

magnetic field dependence. The excitation density difference, ∆P , is not induced by

drift of the detector, since the measurements are performed in a couple of hours after

each other. In fact, the difference ∆P of approximately 10 W/cm2 in excitation density

could be caused by a magnetic field dependent capture rate. The magnetic length (i.e.,

the radius of the cycle of an electron in a magnetic field) might play an important

role here. At 3 T, the magnetic lenght roughly equals the diameter of the quantum

dot, which could suppress capture and lower the PL efficiency, as shown in Fig. 4.11A.

The suppression of capture could possibly be described by a kind of Bragg reflectance

in the case of resonance between the charge carrier magnetic length and quantum dot

diameter.

Since the excitation density difference ∆P is also observed in the measurements

of the degree of polarization in Fig. 4.11B, we expect that ∆P does not represent a

magnetic field dependence of the sign change of the exciton g factor (which Fig. 4.11B

suggests in first instance). Also the Stark shifts in the PL (data not shown here), like

the intensities in Fig. 4.11A, exhibited a excitation density difference ∆P .

By combining the PL spectra (with Stark shifts) and polarization data, we formed

the plot in Fig. 4.12. No exact overlap was found between this Stark shift measurement

at 7 T and the Stark shift in Fig. 4.4 and Fig. 4.8 (difference of ∼ 35 kV/cm), which is

likely due to the difference in the sensitivity of the detector (each of the detectors has

its own sensitivity curve as a function of energy). We have, however, matched the zero-

crossing in this figure with the F = 170 kV/cm in Fig. 4.10. The dashed iso-polarization

lines respresent polarization values of −5%, 0%, 5% and 10%. Values at 0 T are below

0% (due to a systematical error in the alignment) and are therefore just left of the 0%

iso-polarization line.

Figure 4.12 shows that a sign reversal is achieved between 130 kV/cm and 170 kV/cm,

which we, regarding the coarse method, consider to be constant. This confirms that the

g factor in the growth direction changes sign as a function of the electric field only,

independent of the magnetic field.
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4.5 Spin relaxation time as a function of magnetic field

In Section 4.1, we noted the importance of long spin relaxation times for applications

of the spin of charge carriers to act as a qubit. This section presents measurements on

the spin relaxation times of the exciton in magnetic fields from 3 T to 7 T. The data

reveals a power law behavior for T1, as predicted by Tsitsishvili et al. (2003).

The downward spin relaxation process of the exciton at the highest energy is char-

acterized by the emission of an acoustic phonon. The typical time associated with this

process, the downward spin relaxation time, can be written as (Tsitsishvili et al., 2003)

T1 ≃ τs,↓ ∼ (
(Elh − Ehh)

∆ex

)2(gµBB)−3, (4.19)

where the ∆ex is the exchange interaction energy between the bright and dark exciton

and (Elh−Ehh) is the energy difference between the light hole (lh) and heavy hole (hh).

Equation 4.19 shows that spin relaxation times get smaller when the energy difference

between the light hole exciton and heavy hole exciton gets smaller or when the exchange

interaction ∆ex gets larger. In this work, however, we focus on the magnetic field

dependence of the spin relaxation time. We derive the behavior for the polarization as

a function of the magnetic field from the differenct scans in Fig. 4.11B. The dependence

is investigated for low electric fields (regime III in Fig. 5.3).

To select a comparable set of polarization data at every magnetic field, we combine

Fig. 4.11A and Fig. 4.11B to form Fig. 4.13. This figure shows that the point at which
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Figure 4.13: The degree of circular polarization as a function of PL intensity. The top axis
represents the maximum occupancy in the quantum dot, n. The data has not been corrected
for the −0.5% of background.

72



All-optical control of the exciton g factor in (In,Ga)As quantum dots

0 1 2 3 4 5 6 7

0

2

4

6

8

10

 

| 
 - 

ci
rc

ul
ar

 | 
(%

)

Magnetic Field (T)

Figure 4.14: The absolute value of the average of the degree of circular polarization as a
function of the magnetic field. The values have been corrected for a background of −0.5%.
The error range represents the variation of the polarization data within the selection. The line
is a guide to the eye.

the circular polarization strongly changes its derivative with excitation density (e.g., the

minimum in ρ at 7 T), in fact, occurs at the same PL intensity of ∼ 104 counts per second

for every magnetic field. On the top axis in Fig. 4.13, we have shown the maximum

occupancy of the quantum dot, nmax, where we used the estimate of nmax = 1.6 at

50 W/cm2. For such a linear mapping between the intensity and n, the rate of biexciton

emission should be small.

Since we are interested in the degree of circular polarization as a function of the

magnetic field at low electric fields, we incorporate the polarization data of regime III. In

Fig. 4.13, regime III corresponds to intensity rates exceeding 2×104 counts/s. We should,

however, avoid to incorporate the polarization data associated with a high occupancy of

the quantum dot (because this suppresses the polarization, recall Eq. 4.11). Since the

descending trends (in absolute value) of the polarization data with increasing excitation

density for the magnetic fields of 6 T and 7 T suggest that some biexciton transitions

occur, we include the polarization data only up to 4 × 104 counts/s. For the same

reason, we also include the data in the range from 1× 104 to 2× 104, which experience

a small electric field (this boundary is also suggested by the minimum of ρ at 7 T).

The variation of the degree of circular polarization within the final range of intensities

between 1×104counts/s and 4×104 counts/s in Fig. 4.13 is translated into an error bar.

Figure 4.14 shows the absolute value of the polarization at high excitation densities

as a function of the magnetic field, where the error range represents the variation of

the polarization data within the intensity range selection. A background correction of

0.5% has been applied to the both the data series (due to a systematical error in the
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Figure 4.15: The spin relaxation times as a function of the magnetic field. The data has
been obtained employing Eq. 4.8 with a g factor of 2. A power law behavior, ∼ Bm, where
m = − 2.9 ± 0.4 is observed, in close agreement with the prediction of Tsitsishvili et al.
(2003). The solid line shows the fit of CBm with C = 2.8µs and m = −2.9, whereas the slopes
of the dotted lines correspond with m = −2.5 and m = −3.3.

alignment), based on the average polarization at 0 T. The data points at 1 T and 2 T

have been discarded in the analysis of the spin relaxation times, since their error range

crosses zero.

We start the analysis using Eq. 4.8. This equations hold for the condition that the

excitation density is low, such that n≪ 1. The recombination time τrec has been found

to be 1.0 ns, which will be discussed in Ch. 5. Figure 4.15 shows the spin relaxation times

τs,↓ as a function of the magnetic field, applying Eq. 4.8 with g = 2. The value for the

g factor is determined by µ-PL measurements. The error bars in Fig. 4.15 correspond

to the errors of the polarization at every magnetic field in Fig. 4.14.

Figure 4.15 shows a lower boundary for the spin relaxation time of ∼ 70 ns at 3 T.

Exceeding this magnetic field, a strong decrease of the spin relaxation time occurs,

reaching T1 = 10.9 ± 1.4 ns at 7 T. The data in the range from 3 to 7 T shows a

linear descending trend on the double-logarithmic plot, which corresponds to a power

law behavior. A fitting procedure with CBm, where B is the magnetic field, yielded

m = −2.9 ± 0.4, close to the predicted m = −3 of Tsitsishvili et al. (2003). Each of

the data points has been weighted inversely proportional to their error range on the

logarithmic scale in Fig. 4.15. The dotted lines in Fig. 4.15 correspond to a power law

behavior with m = −2.5 and m = −3.3.

Besides the polarization at high excitation densities, we investigated the dependence

at low excitation densities (data not shown). This data did not reveal a threshold at

3 T, like in Fig. 4.14, and showed a nearly linearly increasing dependence. Like for the

74



All-optical control of the exciton g factor in (In,Ga)As quantum dots

3 4 5 6 7
0.1

1

10

100

 

 

 n     0
 n = 0.6
 n = 1.2
 n = 1.8

Sp
in

 re
la

xa
tio

n 
tim

e,
 

s,
   

 (n
s)

Magnetic Field (T)

~ B-3

Figure 4.16: This figure shows the spin relaxation time in the range from 3 T to 7 T at
several average occupations n, determined by Eq. 4.11 and the parameters α and β in Eq. 4.12
and Eq. 4.13. The lines show a B−3 power law behavior, but are not actual fits.

high excitation density data, we performed a fitting procedure with CBm. A fit with

g = 0.5 in Eq. 4.8 yielded a factor m = 0 (i.e., τs,↓ is constant), whereas a fit with g = 2

resulted in m = −0.9. One can therefore conclude that at high electric fields, the power

law behavior with m ∼ −3 is not maintained, which is probably due to leakage of the

carrier wavefunction out of the quantum dot. Instead of m ∼ −3, one can claim that

−1 ≤ m ≤ 0 in the high electric field regime.

Since the data in Fig. 4.15 is measured at high excitation densities, we derive τs,↓

also for the case when n ≪ 1 is not applicable anymore. For these conditions, we use

Eq. 4.11 for ρ, where we introduced the parameters α (Eq. 4.12) and β (Eq. 4.13) to

include inhibited transitions. Figure 4.16 shows the spin relaxation time for occupations

of n = 0.6, n = 1.2, and n = 1.8. An overall shift to lower values for the spin relaxation

time occurs when n increases, but this decrease is at most one order of magnitude.

Figure 4.16 reveals, most importantly, that the behavior with increased n still shows a

power law behavior T1 ∼ CBm, where m ∼ −3. For n = 1.8, one can expect a larger

(absolute value of the) exponent than |m| = 3 in the power law.

The values for C in the fitting procedure with CBm, which represent the spin relax-

ation time at 1 T, yielded a lower boundary of C = 0.4µs at n = 1.8. One can therefore

safely claim that the spin relaxation time T1 exceeds 0.4µs at 1 T and 1.7 K. Upper

boundaries for C are found to be 48µs (for n→ 0), which is larger than the estimate of

C = 13µs by Tsitsishvili et al. (2003). Equation 4.19 explains, however, that the spin

relaxation time is very sensitive to the heavy-hole/light-hole energy splitting and the

exchange interaction.
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To compare these values, the literature presents numerous results on the longitudi-

nal spin relaxation time, both in (In,Ga)As quantum dots (Gotoh et al., 1998; Paillard

et al., 2001; Laurent et al., 2005; Kroutvar et al., 2004; Takeuchi et al., 2004; Gündoǧdu

et al., 2005; Smith et al., 2005; Gerardot et al., 2008) and in CdSe quantum dots (Mack-

owski et al., 2003; Flissikowski et al., 2003). A dependence of the spin relaxation time

on the magnetic field was measured for the conduction electron (Kroutvar et al., 2004),

and recently also for the valence electron (Heiss et al., 2007). While some authors have

presented shorter values for the spin relaxation times of the exciton in (In,Ga)As quan-

tum dots (Gotoh et al., 1998; Takeuchi et al., 2004) than we observe, others presented

comparable values (Paillard et al., 2001). Differences with Gotoh et al. (1998) can be

explained by the different geometry and sizes of the system.

The method we employ can be considered crucial to observe such long spin relaxation

times. For example, from a method where one compares the PL decay rates after

circularly polarized excitation (Paillard et al., 2001), it would have been harder to

determine a spin relaxation time of the order of 100 ns.

The fact that the power law with m ∼ −3 was retrieved, even when n ≪ 1 is not

applicable anymore, acts as strong experimental evidence for the theory of Tsitsishvili

et al. (2003). To our knowledge, this is the first observation of this behavior for excitons

in quantum dots. Since the strong power law behavior is abandoned when an electric

field is applied, one can conclude that confinement within the quantum dots is crucial

for good spin memory. This experiment confirms that quantum dots indeed ’freeze’ the

spin very well.
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Chapter 5

Radiative recombination times of

(In,Ga)As quantum dots in

electric fields

ABSTRACT

In this chapter, we present the electric field dependence of the radiative recombination

time of (In,Ga)As quantum dots embedded in a p-i-n structure. This dependence is de-

termined from spectrally- and time-resolved PL data. The photo-created carriers of the

pulsed laser system quench the built-in electric field of the p-i-n structure temporarily,

which can be monitored via the time-resolved Stark shift in the PL. Nearly 1 ns after

the laser pulse arrival, the quenching effect (i.e., lowering of the built-in electric field)

reaches a maximum. The electric field builds up again after this maximum, with a

typical time-scale of several nanoseconds. Besides the time-dependent Stark shift, the

PL intensity showed a clearly non-exponential decay. The irregular, non-exponential

decay is associated with a temporally varying recombination time. We find a reduced

recombination rate (i.e., increasing recombination time) as a function of time, which

is associated with the increasing electric field as a function of time. The data of the

non-exponential decay and the time-resolved Stark shift are combined to extract the

recombination time as a function of the electric field. The recombination time without

electric field is found to be τrec = 1.0 ns, which increases almost a factor 4 when the

electric field is increased to ∼ 150 kV/cm.
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5.1 Introduction

Much research has been focussed on finding possibilities to tune the radiative lifetime

of excitons in modulated semiconductor structures. Increased radiative lifetimes, us-

ing electric fields, were observed in quantum wells by Polland et al. (1985) and Köhler

et al. (1988). By applying electric fields, they control the overlap between the conduc-

tion and valence electron wavefunction. On the other hand, measurements employing

exciton-photon coupling have demonstrated a decrease in radiative recombination time

in quantum wells (Deveaud et al., 1991).

The first studies on recombination times in quantum dots (Mukai et al., 1996; Ray-

mond et al., 1996; Bayer et al., 1999; Dekel et al., 2000) were solely focussed on mapping

the decay processes in quantum dots. Like for the quantum wells, later studies shifted

their attention to create active control over the recombination time, employing special

sample structures and gates to induce and control electric fields over the quantum dots.

For example, Smith et al. (2003) describes the controlled two-exponential decay in a

sample structure with a hole gas next to the quantum dot layer. To control the radia-

tive lifetime, even the quantum-electrodynamical Purcell effect has been exploited in

quantum dots in microcavities (Gerard et al., 1998; Graham et al., 1999; Kiraz et al.,

2001; Solomon et al., 2001; Gayral et al., 2001; Reithmaier et al., 2004; Peter et al.,

2005), as well as coupled quantum dots (Bayer et al., 2000). Like the experiment by

Smith et al. (2003), Kroutvar et al. (2004) also employ a gate to control the occupation

of one of the charge carriers in the quantum dot, hence yielding long recombination

times (τrec > 10 ns). However, Kroutvar et al. (2004) ’ionize’ the exciton by extracting

one of the charge carriers out of the quantum dot, after which recombination is enforced

by having a charge carrier enter the quantum dot again. Contrary to the study of

Kroutvar et al. (2004), where the recombination time is ’dictated’ by the voltage pulse

sequence, this study investigates the ’intrinsic’ increase in recombination time when the

overlap between the charge carrier wavefunctions is reduced by an electric field.

The control of the radiative lifetime in quantum dots can be particularly interesting

for applications as single-photon sources (Santori et al., 2000) and quantum dot lasers

(Anantathanasarn et al., 2008). Furthermore, lifetime-control has been proposed for

quantum information devices (Pellizari et al., 1995; Imamoglu et al., 1999), where cavity

modes would mediate interactions between qubits. An electrically-controllable radiative

lifetime in quantum dots could be applicable in single-photon sources in a relatively

simple fashion, i.e., without implementation of high finesse cavities.

This study is characterized by an integral analysis of the temporal and spectral

response of the photoluminescence (PL) of a single layer of (In,Ga)As/GaAs quantum

dots, embedded in a p-i-n structure. The details of the sample structure have been
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explained in Ch. 3. We employ pulsed excitation which can temporarily quench the

built-in electric field in the structure, due to the screening of the photo-created carriers.

Note that we refer to photo-created carriers outside the quantum dots here. In this sense,

the quantum dots experience a modulated electric field, varying at the pulse frequency

of the laser system. The PL spectra show a time-dependent Stark shift as a signature

of the modulated electric field. The amount of quenching of the built-in electric field

depends on the laser excitation density, and can be measured by the PL peak position

just after the laser pulse arrival. Complete quenching of the built-in electric field can

be achieved at the highest excitation densities.

Besides the Stark shifts observed in the temporal response of the PL, we observe

clear variation in the intensity decay rates (i.e., derivatives) of the time-resolved PL

spectra. We exclude that the variation of decay rates originates from a summation

of single exponential decays from the inhomogeneous size distribution of the quantum

dots, since it is highly unlikely that the range of recombination times within the probed

bandwidth varies so strongly as we observe (almost a factor 4 for a probed bandwidth of

10 meV). Instead, we associate the time-dependent electric field with the varying decay

rates to determine the electric field dependence of the recombination times.

5.2 Model

The pulsed excitation of the laser induces a time-dependent Stark shift in the PL spectra,

which is utilized to determine the time-dependent electric field. We employ the quadratic

dependence of the Stark shift on the electric field, written as ∆S(F ) = βF 2 +pF , where

β is the polarizability and p is the internal dipole of the quantum dot (Fry et al., 2000b;

Hsu et al., 2001; Jin et al., 2004), and the parameters β = 6.0 × 10−4 meV/(kV/cm)

(Hsu et al., 2001) and p = 6.4 eÅ. The time-dependent Stark shifts and electric fields

are schematically drawn in Fig. 5.1A−C.

Figure 5.1D shows a schematic intensity decay of the quantum dots, which was

tracked on the maximum of the PL spectrum at every time-step. In practice, we measure

the intensity on a grid with ranges t ∈ [0; 10] ns for the time and E ∈ [1.175; 1.365] eV

for the energy. The step-sizes in this grid are ∆t = 110 ps and ∆E ∼ 6 mev for the

time and energy, respectively. In our analysis, we make use of interpolated functions at

every time-step to determine the position of the maximum. Consequently, we integrate

the intensity in a bandwidth of 10 meV to obtain the intensity of the signal at every

time t. In this way, we have obtained a tracked intensity decay (i.e., following the

maxima), which evidently did not show a single exponential decay. As stated, we

assume that this is due to the time-dependent electric field. The tracked intensity decay

(Fig. 5.1D) and the time-dependent electric field (Fig. 5.1C) can be used to determine
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Figure 5.1: The left three panels show the schematic behavior of the position of the PL
peak (A), Stark shift (B), and electric field (C) as a function of time. The model introduces a
time-constant for the decrease of the Stark shift, denoted by τq, and a recovery time-constant
τs when the minimum Stark shift at t = t0 has been passed. The electric field as a function of
time (C), is combined with the time-dependent decay rates (D) to determine τrec as a function
of the electric field (E). The values in these schematic figures resemble the values in the actual
experiment.

the recombination time as a function of the electric field (Fig. 5.1E). Our model neglects

the energy dependence of the recombination time (within the bandwidth of 10 meV).

For a single exponential intensity decay of a quantum emitter (i.e., quantum dot in

our case), with a radiative recombination time τrec, one can write I(t) ∼ e−t/τrec . The re-

combination time is found by differentiating the logarithm of the intensity: d(ln I)
dt

∼ 1
τrec

.

Since we ascribe the variation of the decay rates of the intensity to the electric field, we

replace τrec by τrec(F (t)).

We approach the derivative d(ln I)
dt

with a numerical method of finite differences, for

we obtain a finite set of data points for the tracked intensities. For the decay function

I(t) = A exp (− t
τrec(F (t))

), one can write ln I(t) = lnA + −t
τrec(F (t))

. The value of

ln I(t) after one time-step ∆t can be written as ln I(t + ∆t) = lnA + −t+∆t
τrec(F (t+∆t))

.
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Figure 5.2: The raw PL intensity as a function of energy at different times. As time increases,
the maximum of the PL peak shifts to lower energies.

Subtraction of these expressions yields

ln I(t+ ∆t) − ln I(t) =
−t+ ∆t

τrec(F (t+ ∆t))
+

t

τrec(F (t))
. (5.1)

Since the difference of the electric field within the required measurement time ∆t is

small, we approximate the electric field to be constant within a time-step ∆t†. Within

the temporal resolution of the data of ∆t = 110 ps, the PL spectra exhibit a maximum

Stark shift of ∼ 1 meV (∆F ∼ 4.5 kV/cm). Applying the assumption F (t) = F (t+ ∆t)

to Eq. 5.1, one can write

τrec(F (t)) =
∆t

ln I(t+ ∆t) − ln I(t)
. (5.3)

We combine this expression with F (t) to determine τrec(F ).

We approximate the time-dependence of the Stark shift with a single exponential

behavior. In our PL spectra, it is possible to observe the (partial) quench of the built-

in electric field in the Stark shift in the PL spectrum after arrival of the laser pulse,

†We make an error by omitting the chain rule in calculating d ln I

dt
in our analysis. The complete

expression for d ln I

dt
can be written as

d ln I(τ(F (t)), t)

dt
= − 1

τ(F (t))
+
tF ′(t)τ ′(F (t))

τ(F (t))2
(5.2)

The last term is negligible when F ′(t)τ ′(F ) ≪ τ(F )
t

. One can show a posteriori that this condition is
fulfilled.
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until the maximum Stark shift is reached. We characterize the initial behavior of the

Stark shift, due to the electric field quench just after t = 0, by a time-constant τq.

This is shown in Fig. 5.1B. We will, however, not analyze τq in great detail. After a

minimum of the Stark shift at t = t0, the Stark shift ’recovers’ with a time-constant τs

(see Fig. 5.1B). The experiment reveals that the ’quenching’ time-constant τq is much

smaller than the ’recovery’ time-constant of the Stark shift, τs. For the time-dependent

Stark shift ∆S(t), we can therefore write

∆S(t) = ∆0e
− t

τq (1 − e−
(t−t0)

τs ) for t > 0,

≈ ∆0(1 − e−
(t−t0)

τs ) when τq ≪ τs, for t > t0, (5.4)

where ∆0 denotes the maximum observed Stark shift in the applicable time range. The

approximation in Eq. 5.4 is used for the functional dependence of the observed Stark

shifts in time.

5.3 Results

Figure 5.3 shows two PL spectra up to 10 ns, where the spectra have been normalized

by the value of the spectral peak intensity at every time-step. The panels in Fig. 5.3

show these spectra with decreasing excitation density from top to bottom, respectively

12.1 mJ/cm2 (Fig. 5.3A), 8.4 mJ/cm2 (Fig. 5.3B) and 6.5 mJ/cm2 (Fig. 5.3C). The fig-

ures show a dynamic Stark shift as a function of time. The electric field quench (observed

in the Stark shift) becomes larger with increasing excitation density. This can be ex-

plained by a larger screening effect when the amount of photo-created charge carriers

is larger. At t = 10 ns, the Stark shifts in all panels of Fig. 5.3 have not yet saturated.

Other PL data (not shown here), measured at excitation densities below 4.5 mJ/cm2,

reveal that the shift saturates at 1.22 eV. We associate this emission energy with the

maximum built-in electric field of 240 kV/cm. Furthermore, we presented PL data

with continuous wave excitation in Ch. 4, which indicates that the electric field can

be compensated completely. A peak position of the PL of 1.27 eV is associated with

this condition. Figure 5.3A shows that one, in fact, can compensate the electric field

completely with pulsed excitation, since the PL peak reaches 1.27 eV at about 1 ns.

Based on this observation, we apply t0 = 1 ns in Eq. 5.4 for the rest of our analysis. The

extrema of the PL peak positions indicate that the Stark shift can reach up to 50 meV

in this structure, which is not uncommon in (In,Ga)As quantum dots (Jin et al., 2004;

Wang et al., 2006).

We determined the time-dependence of the peak position of the PL to establish the

electric field as a function of time. Stark shifts were derived from the difference of
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Figure 5.3: The dynamic Stark shift of the PL at 12.1 mJ/cm2 (A), 8.4 8.4 mJ/cm2 (B), and
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the peak position with 1.27 eV, associated with the completely quenched electric field.

Figure 5.4 shows the Stark shift as a function of time for 4.8 mJ/cm2, 6.5 mJ/cm2 and

12.1 mJ/cm2. The minimum Stark shift depends on the excitation density due to the

screening effect. For example, at the minimum Stark shift at t = t0, we observe a

Stark shift of ∼ 20 meV at 4.8 mJ/cm2, whereas it is 0 meV (i.e., complete quench) at

12.1 mJ/cm2.

Besides the Stark shift, Fig. 5.3 shows a time-varying full width at half maximum

(FWHM) as well, which is shown in Fig. 5.4B. The largest FWHM was found at the

highest excitation densities, just after the laser pulse arrival, reaching almost 70 meV.

The FWHM showed a decreasing trend in time for all excitation densities, which is

possibly due to tunneling of charge carriers out of the quantum dot. Tunneling is

neglected in our analysis. Since we only include data with t > 2 ns, the FWHM varies

at most 15 meV within the analyzed data set, which is still much smaller than the Stark

shift.

From the time-dependence of the Stark shift, we are able to determine the time-

constants τq and τs of Eq. 5.4 for every excitation density. For the quenching time

τq, only small differences were observed between the different excitation densities. This

value was rather hard to determine since it was not always clear where to assign the peak

in the spectra at t < t0. On the material at hand, we crudely estimate τq = 0.4± 0.1 ns

for all the excitation densities. Note that the quenching is certainly not instantaneous

with the laser pulse arrival. The values of τs were determined by a fitting procedure with

Eq. 5.4. For the high excitation density of 12.1 mJ/cm2, we find τs = 3.3 ns, whereas for

6.5 mJ/cm2, we find τs = 8.6 ns. Although there exists literature on the charge carrier

dynamics in our (open-circuit) structure, we use these parameters as phenomenological
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Figure 5.5: The tracked intensity as a function of time, not deconvoluted for the IRF (see
Ch. 3), at an excitation density of 12.1 mJ/cm2. The inset shows values for the time-dependent
decay rate d ln I

dt , approximated by Eq. 5.3.

parameters and do not focus on the physics behind these characteristic times.

Figure 5.5 shows an example of the tracked intensity of the PL peak (which is not

deconvoluted for the IRF, see Ch. 3), at the excitation density of 12.1 mJ/cm2. The

inset shows the finite difference approximation of the derivative d ln (I)
dt

(Eq. 5.3) as a

function of time. We clearly observe a time-dependent decay rate. From the descending

trend in the inset of Fig. 5.5, one can already determine the increasing trend of τrec in

time. Furthermore, large rise times are observed, exceeding 100 ps, which are associated

with a dominating phonon-assisted relaxation between the levels in the quantum dot

(Adler et al., 1996). In our analysis, we employ a moving average procedure to these

intensity profiles to reduce the noise level.

Figure 5.6 shows the efficiency of the luminescence process at several excitation

densities. The efficiency is calculated by dividing the integrated tracked output intensity

by the input excitation density of the pulsed laser. At low excitation density, the electric

field remains large throughout the whole time range, and is not completely quenched.

We propose that the electric field is high enough to induce cold ionization, i.e., tunneling

of the charge carriers out of the quantum dot. Quite distinctively, the cold ionization

strongly affects the intensity below a threshold excitation density of 5.8 mJ/cm2, whereas

the efficiency is nearly independent of the excitation densities above this threshold. The

boundary at 5.8 mJ/cm2 is not associated with a higher occupation level of the quantum

dot (i.e., n > 1), since one would expect an increasing efficiency in that case. The data

that is obtained below 5.8 mJ/cm2 is not included in the analysis of the electric field

dependence of the recombination time.
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The distinct threshold at 5.8 mJ/cm2 led us to investigate the range of electric fields

at every excitation density. Figure 5.7 shows the lowest and highest electric field per laser

pulse cycle as a function of the excitation density. Like in Fig. 5.6, we observe different

behavior for excitation densities above and below ∼ 6 mJ/cm2. Above the threshold of

6 mJ/cm2, the electric field can not fully recover to its maximum built-in electric field

of 240 kV/cm. Below 6 mJ/cm2, the averaged electric field exceeds a critical value of

F c = 190 kV/cm. We associate this electric field as a threshold for cold ionization to

occur. Therefore, the data with excitation densities below 6 mJ/cm2 is not incorporated

in our final analysis of τrec(F ). The quality of the data (i.e., signal-to-noise ratio) is also

strongly reduced at electric fields above F c. Other authors find a critical electric field of

F c ∼ 120 kV/cm in AlGaAs/GaAs quantum wells (Polland et al., 1985) and (In,Ga)As

quantum dots Fry et al. (2000a). Finley et al. (2004) finds a critical electrical field of

F c ∼ 150kV/cm for quantum dots. The difference between F c = 190 kV/cm and the

other experimental observations can be explained by the dependence of the tunneling

rate on the quantum dot parameters (Fry et al., 2000a), which was expressed in Eq. 1.13

in Ch. 2.

Figure 5.8 shows the dependence of the radiative recombination time on the electric

field τrec(F ). This plot shows data obtained for the excitation densities of 12.1 mJ/cm2,

8.4 mJ/cm2, and 6.5 mJ/cm2. To maintain a clear figure, only the error bars from

the data at 12.1 mJ/cm2 is shown. The overlap between the data sets acts as addi-

tional support for the employed method. The radiative recombination time increases
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monotonically with increasing electric field. Values for the recombination times τrec

range from 1.3 ns to 5.8 ns for electric fields from 30 kV/cm to 190 kV/cm. We find

τrec = 3.7 ± 0.7 ns for an electric field F ∼ 190 kV/cm, which is larger than the typical

recombination times in quantum dots (Hours et al., 2005; Bacher et al., 1999). Electric

fields above F c = 190 kV/cm are associated with a dominant role of tunneling effects,

which is denoted by the dashed area in Fig. 5.8. Few data points could be extracted for

the lowest electric fields, since these could only be reached at 12.1 mJ/cm2.

5.4 Discussion

We associate the increasing recombination times in Fig. 5.8 with a reduced overlap be-

tween the conduction electron and valence electron wavefunction. One can approximate

τrec(F ) by calculating the matrix elements with and without electric field:

τrec(F ) = τ0
|
∫

Ψc(F = 0, r)Ψv(F = 0, r)dr|2
|
∫

Ψc(F, r)Ψv(F, r)dr|2
, (5.5)

where τ0 is the recombination time at F = 0 kV/cm. The Ψc(F, r) and Ψv(F, r) rep-

resent the wavefunction in a r-representation of the conduction and valence electron,

respectively, as a function of the electric field F . In the case of a reduced overlap between

the wavefunctions Ψc and Ψv, the denominator in Eq. 5.5 decreases and τrec increases.

We approximate the electric field dependence only to affect the growth direction (z-

direction) of the wavefunction. We therefore denote the trial wavefunction

Ψc,v = f(x, y) exp [−( z
z0

)2], where z0 is measure of (half) the height of the quantum

dot. Moreover, we approximate the electric field to induce a linear peak-shift in the z-

direction with increasing electric field. The conduction and valence electron exhibit a dif-

ferent dependence on the electric field, respectively denoted by

Ψc(F ) = f(x, y) exp [−( z−αF
z0

)2] and Ψv(F ) = f(x, y) exp [−( z−βF
z0

)2]. The integral

in 5.5 can therefore be written as

τrec(F ) = τ0
|
∫

exp [−2( z
z0

)2]dz|2

|
∫

exp [−( z−αF
z0

)2] exp [−( z−βF
z0

)2]dz|2
= τ0 exp [

(α+ β)2F 2

z2
0

]

= τ0(1 +
(α+ β)2F 2

z0

+O(F 4))(5.6)

= d+ cF 2 +O(F 4) (5.7)

where we have applied a Taylor expansion in the approximation. Such an expansion is

valid as long as (α+β)2F 2 ≪ z2
0 . Note that the dependence for the Stark shift contains

a quadratic term as well. In this sense, the Stark shift can be used as a measure
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for the recombination time (τ(∆s) ∼ ∆s + O(∆2
s)), if one assumes a purely quadratic

dependence, ∆s ∼ F 2.

The quadratic approximation τrec(F ) = cF 2 + d from Eq. 5.7 is used to extrapo-

late the value of the recombination time at F = 0 kV/cm. A fitting procedure yields

c = (7.0 ± 0.3) × 10−6 ns/(kV/cm)2 and d = 1.0 ± 0.2 ns. We therefore write

τrec = 1.0 ± 0.2 ns at F = 0 kV/cm. Note that the approximation is only valid for

electric fields below 190 kV/cm.

If we assume α = β for the moment, we can determine α from the exact Taylor

expansion in Eq. 5.6. The parameter α is, in fact, a measure for the polarizability of

the peak of the electron-hole pair, which depends both on the shape of the potential

of the quantum dot as on the mass of the charge carrier (i.e., band structure of the

material). Employing α = β in Eq. 5.6, we find α = z0 1.9 × 10−3 m/(kV/cm). Our

quantum dots have z0 ∼ 3 nm, and therefore α = 5.7× 10−12 m/(kV/cm). The induced

dipole (equivalent to βF ) at an electric field of 100 kV/cm would be p = 11.4 eÅ, more

than twice as large as 5.5 eÅ, observed by Hsu et al. (2001). However, Hsu et al. (2001)

investigate quantum dots with a height of 4 nm, corresponding to z0 = 2 nm. The

smaller height results in a smaller dipole moment.

From the parameter α, we can determine the position of the peak of the wavefunction

at the critical electrical field F c, denoted by zc, and find zc = αF c = 1.1 nm. The value

zc shows that tunneling effects become dominant when the peak position has shifted a

fraction (zc/z0) ∼ 0.36 of the total height of the quantum dot. Note that the condition

2α2F
2

c = 2z2
c ≪ z2

0 is still fulfilled for this ratio, such that the Taylor expansion is still

valid.

This study shows that control over the recombination time is possible, like in quan-

tum wells, by controlling the overlap of the electron and hole wavefunctions. For ap-

plications in quantum information devices, the ∼ 4 ns of ’operation time’ might not be

sufficient. A design where one of the charge carriers is ionized, applied by Kroutvar

et al. (2004), could be a solution to extend recombination times further.
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Chapter 6

Time-Resolved Kerr rotation

spectroscopy on

(In,Ga)As quantum dots

ABSTRACT

This chapter presents time-resolved Kerr rotation measurements on a single layer of

unannealed self-assembled (In,Ga)As quantum dots, performed in collaboration with

the ’Physics of Nanostructures’ group at the Eindhoven University of Technology. The

single layer of (In,Ga)As quantum dots is embedded in a p-i-n structure, resulting in

a built-in electric field in the growth direction. This system allows us to investigate

the absolute values of the in-plane g factors of these quantum dots, as well as its

electric field dependence. Control over the electric field is achieved by an additional

continuous wave HeNe laser, which photo-created charge carriers screen the built-in

electric field of the p-i-n structure. The Kerr rotation data shows precession of the

spin due to an in-plane magnetic field. A single main frequency is observed, which is

assigned to the spin precession of the valence electron. This assignment is based on

calculations of J.A.F.S. Pingenot and M.E. Flatté. They show that the substantial

elongation of the footprint of the quantum dots, determined in AFM measurements,

leads to strong intermixing of the heavy and light hole states, which is required for the

valence electron in-plane g factor to be larger than the conduction electron in-plane g

factor (Pryor and Flatté, 2006, 2007). The absolute value of the in-plane g factor of

the valence electron, |gv,‖|, is found to be 0.42 ± 0.01. In electric fields of the order

of F ∼ 50 kV/cm and higher, the g factor marginally increases. These observations

of the precession are in fair agreement with similar measurements on the same sample

structure, published by Rietjens et al. (2008), except that Rietjens et al. (2008) assign

the precession to originate from the conduction electron. Values for the conduction
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electron spin decoherence time T ∗
2,c, of the order of 800 ps, are consistently found to be

larger than the valence electron spin decoherence time T ∗
2,v of about 450 ps. Whereas

the valence electron spin decoherence time T ∗
2,v strongly decreases in electric fields, the

conduction electron spin decoherence time T ∗
2,c appears to be independent of the electric

field.
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6.1 Introduction

It is interesting to achieve control over the g factors in nanostructures, particularly quan-

tum dots, because of the application of such nanostructures in quantum computation

(Kane, 1998). Proposed geometries employ a static magnetic field, on which RF pulses

can be superimposed to perform operations on the spin of localized charge carriers. To

achieve control over the spin of charge carriers in individual impurities or quantum dots,

one should have control over the g factor. Such can be realized by static electric fields

(Kane, 1998). Since the sensitivity of the g factor to an electric field can be crucial

for the choice for certain quantum computer geometry or architectures, it is worthwhile

studying the electric field dependence for both the in-plane and the growth direction g

factor. Whereas chapter 4 has focussed on g factors in the growth direction, this chap-

ter focusses on in-plane g factors. We measure the spin precession, which frequency is

proportional to the in-plane g factor, by a time-resolved Kerr rotation technique.

In the last decade, Kerr rotation spectroscopy has been mostly used for the study

of thin film structures of metals (Katayama et al., 1993; Mégy et al., 1995; Koopmans

et al., 1995). The advancement into time-resolved studies of semiconductor quantum

wells (Koopmans and de Jonge, 1999; Salis et al., 2001; Camilleri et al., 2001) and

quantum dots (Gupta et al., 1999; Kanno and Masumoto, 2006), has revealed, among

others, electrically-controllable g factors in quantum wells (Salis et al., 2001) and a gen-

erally wide range of spin decoherence times for such nanostructures. After a study of

electrically-controllable g factors in (Al)GaAs quantum wells (Salis et al., 2001) and bulk

GaAs semiconductor material (Kato et al., 2003), this study treats (In)GaAs quantum

dots. Whereas the aforementioned literature results determine the control of the conduc-

tion electron g factor, the precession in this study is likely due to the valence electron.

This has been indicated by recent calculations of J.A.F.S. Pingenot and M.E. Flatté.

In chapter 3, we discussed how a spin imbalance in a solid state material can induce a

rotation in the polarization of a linearly polarized beam, known as the Kerr rotation θK .

The goal in this chapter is to investigate whether the in-plane g factor and decoherence

times T ∗
2 are dependent on an electric field in the growth direction of the structure.

Like the experiments discussed in Ch. 4 and Ch. 5, the built-in electric field of the p-i-n

structure is varied by the laser excitation density. Since we apply a time-resolved optical

pump-probe technique, we employ an additional continuous wave He:Ne laser to vary

the electric field. The Stark shift in the PL spectra serves as a measure for the electric

field over the quantum dots. Two series of data have been taken: one with and an other

without magnetic field. Both series cover the time-resolved decay of the Kerr rotation

θK(t) at various He:Ne excitation densities (i.e., electric fields over the quantum dots).

We recall some of the equations for the two-level spin system as an introduction to
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the model. For a spin system with a static magnetic field pointing in the z-direction,

there exist the longitudinal spin relaxation time T1 and (in-plane) decoherence time T2.

The T1 is associated with emission of acoustic phonons, whereas the T2 describes the

timescale of the detrimental effects of the environment on the coherence of the states.

A T ∗
2 appears in the (experimental) literature as well, which incorporates the spatially

inhomogeneous properties of the quantum dots (like the g factor and the experienced

nuclear magnetic field) within the quantum dot ensemble in the probing laser spot.

In the case of a static magnetic field in the z-direction, the spin dynamics can be

described by the Bloch equations (see for example Blum (1981)),

Ṡx = ωSy −
Sx

T2

(6.1)

Ṡy = ωSx −
Sy

T2

(6.2)

Ṡz =
Sz,eq − Sz

T1

, (6.3)

where Sz,eq is the equilibrium value of the magnetization. Note that Eq. 6.1 and Eq. 6.2

for the in-plane components Sx and Sy are coupled, but that Eq. 6.3 for the longitudinal

component Sz is uncoupled. The in-plane spin projections process with the (Larmor)

frequency ω =
|g‖|µBB

~
, where |g‖| is the absolute value of the in-plane g factor. The

solutions to Eq. 6.1−6.3 are (Blum, 1981)

Sx(t) = A sin (ωt+ φ)e
− t

T∗
2

Sy(t) = A cos (ωt+ φ)e
− t

T∗
2 (6.4)

Sz(t) = (B − Sz,eq)e
− t

T1 + Sz,eq,

where A, B and φ are constants.

6.2 Model

In the experiment, we prepare the spin of the electron and hole to be orthogonal to the

magnetic field direction (Voigt geometry). A scheme of the geometry is shown in Fig. 6.1.

Absorption of a photon leads to anti-parallel alignment of the conduction electron spin

with the angular momentum vector of the photon. The spin of the valence electron is

aligned parallel with the angular momentum vector upon absorbtion of the photon. In

general, the electron spin state can be written as a linear combination of the eigenstates

| ↑〉 and | ↓〉 with a relative phase difference δ between the states: 1√
2
(| ↑〉 + eiδ| ↓〉). In

a magnetic field, the state will precess due to a difference in energy of both eigenstates,
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Figure 6.1: Figure A shows a side-view (on the x-z plane) of the sample, where the magnetic
field is directed orthogonal to the optically prepared spin. Precession of the spin occurs in
the plane orthogonal to the magnetic field direction (x direction). The angle of the magnetic
field, relative to the [110] and [110] direction, is not recorded. Oscillatory behavior of the z
component of the spin vector, Sz, in time, is shown schematically in Fig. B.

which is described by Eqs. 6.4. The precession can be monitored via the Kerr rotation

of a linearly polarized probe beam.

The spin state is prepared with a pulsed circularly polarized beam at 82 MHz, at an

energy of 1.335 eV and a linewidth of ∼ 15 meV. This energy corresponds to the high

energy side of the quantum dot PL spectrum, which is shown in Fig. 4.4. The transitions

at these energies consist of ground state transitions of small quantum dots, and possibly

some excited states or wetting layer states from larger quantum dots. Relaxation from

excited states to the ground states can occur within the measuring time of ∼ 1 ns after

excitation. Such relaxation behavior can be different for the conduction and valence

electron.

One should note that when the probe beam is at a different energy than the transition

energy Etr of the exciton, one can still observe a Kerr rotation (Bennemann, 1998).

Denoting the energy of the laser by E, the Kerr rotation intensity is proportional to

∼ (E −Etr)
−1, whereas the absorbtion decays as ∼ (E −Etr)

−2. Since the absorbtion

decays more strongly than the Kerr rotation intensity, it is possible to probe the spin

with negligable absorbtion of photons. This property is for example cleverly exploited

by Berezovsky et al. (2006), to perform a ’non-demolition’ measurement on a single spin

in a quantum dot.
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The laser excitation pulse at 1.335 eV creates a conduction and valence electron in

the quantum dot at a pump excitation density of 2 kW/cm2 (which equals 24µJ/cm2

per pulse at 82 MHz. This excitation density yielded the largest contrast between the

Kerr rotation signals under He:Ne laser excitation and without He:Ne laser laser excita-

tion. The probe excitation density, on the other hand, is approximately 3 times smaller,

Pprobe ∼ 700 W/cm2 (i.e., 8µJ/cm2). The excitation densities of the pump and probe

beam are high compared to the He:Ne excitation density range of

25 W/cm2 < PHeNe < 130 W/cm2. One should note, however, that only a small fraction

of the pump pulse is converted into electron-hole pairs, since absorption of the pump

beam is limited by a Pauli blockade: when there are no more states available in the

energy width of the laser, no more absorption takes place. Although the excitation den-

sities of the He:Ne laser are lower, a situation where n > 1 is still likely to be caused by

this laser, since it excites above the GaAs bandgap. While we had an upper boundary

of n = 1.6 for PHeNe = 50 W/cm2 in Ch. 4, in this chapter, we greatly surpass this

excitation densities. Therefore, one can expect a condition with multiple excitons in the

quantum dot (n > 1) at the highest excitation densities.

The oriented spins of the electron-hole pair induce a linear Kerr rotation of the

probe beam. This signal decays in time due to both an conduction electron spin deco-

herence time T ∗
2,c and valence electron spin decoherence time T ∗

2,v. While in principle,

one should be able to distinguish between the T2 decay of the conduction and valence

electron, in practice, we do not observe such a multi-exponential decay. We therefore

use a single magneto-optical decay time TMO to describe this behavior, extracted from

θK(t) ∼ e
− t

τrec
− t

TMO . We have included the recombination time of the electron-hole pair

in this signal decay, which is similarly applied to all models in this chapter.

Tunneling of electrons out of the quantum dot would also lead to additional reduction

of the signal, but this is not incorporated in the models. We assume such effects to be

negligible for the electric fields which appear in these measurements (F < 130 kV/cm),

and solely use the recombination time at zero electric field as input parameter. Tunneling

is likely to be an important cause for the loss of signal at higher electric fields.

The first series of experiments were aimed to determine TMO for the quantum dots

at different excitation densities of the He:Ne laser. In the later series, an additional

magnetic field was applied to observe the precession of the spin in the quantum dots.

From Kerr rotation signals induced by an electron-hole pair in a quantum confined

structure, it is impossible to distinguish between the conduction electron and valence

electron precession. Based on assumptions, however, the precessing of the Kerr rotation

signal in measurements on III-V quantum wells has been commonly attributed to the

conduction electron (Crooker et al., 1996; Kennedy et al., 2006; Chen et al., 2007;
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Zhukov et al., 2007). This is a fair assumption when there is little heavy/light hole

intermixing in the valence band. In that case, the direction of the angular momentum

of the (predominantly) heavy holes is rigidly directed and orthogonal to the magnetic

field vector. This geometry and the strong coupling between the angular momentum

and spins of the heavy holes results in very small Zeeman splittings in a magnetic field.

In the case of a large elongation of the footprint of the quantum dot, however, strong

intermixing between the heavy and light hole occurs. Pryor and Flatté (2006) have

shown that the absolute values of the valence electron in-plane g factor (|gv,‖|) can exceed

the conduction electron g factor (|gc,‖|) several times for strongly elongated geometries.

Since the footprint of our quantum dots has an elongation ratio of 1.6, as determined

by AFM measurements, we expect the valence electron g factor to be larger than the

conduction electron g factor. The ratio between the valence electron and conduction

electron in-plane g factor is maximal at transitions energies near ∼ 1.30 eV (Pryor and

Flatté, 2006), where our quantum dots have their optical transition energy. Because

there is no experimental way to distinguish between the precessing of a conduction

and valence electron in our measurement, we assume in this study that the highest

beating frequencies are arising from the valence electron. We thus assume to probe

|gv,‖|. Moreover, the exact in-plane magnetic field direction, relative to the orientation

of the crystal, was not recorded. We can therefore not distinguish between the g factor

in the [110] and [110] direction.

An example of how our signal is built up is shown schematically in Fig. 6.2. Both

the conduction and valence electron contribute equally to the Kerr rotation, therefore,

the signal is built-up from a (nearly) equal amplitude A and B for, respectively, the

valence and conduction electron. A different relaxation mechanism for the conduction

and valence electron can lead to lower amplitudes of one charge carrier. From the

oscillation frequency ω of the valence electron, one can determine |gv,‖| by ω =
|gv,‖|µBB

~
.

In this chapter, we apply two models to analyze the data. Model 1 can be considered

a balanced model, where the contributions of the conduction electron and valence elec-

tron are set equal. In Model 2, we relax the condition of the strictly equal amplitudes

for the conduction and valence electron by two different amplitudes for the conduction

and valence electron.

Model 1 implies that the oscillatory and non-oscillatory part of the signal have the

same amplitude A. Such a signal can be described as (Chen et al., 2007; Rietjens et al.,

2008)

θK(t) = A cos (ωt)e
− t

τrec
− t

T∗
2,v + Ae

− t
τrec

− t
T∗
2,c +D, (Model 1) (6.5)

where we have included the radiative recombination time τrec in the exponential decays

due to decoherence. We employ the recombination time values of Ch. 5 for τrec and fit
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Figure 6.2: This figure shows a calculated signal (continuous line), containing a component
from the conduction electron and valence electron. The exponential decays of the conduction
electron and valence electron signal are displayed with a dashed line. The signal of the valence
electron, with an amplitude A, contains an oscillatory part and a decoherence time T ∗

2,v. The
precession of the conduction electron is neglected. It only contains an exponential decoherence
term (T ∗

2,c), with an amplitude B.

the 5 parameters values ω, T ∗
2,c, T

∗
2,v and the amplitudes A and D. The term D is a

background term. Note that the oscillatory behavior is attributed only to the valence

electron.

To enhance the flexibility of Model 1, we relax the condition that the amplitude

A should apply to both the conduction and valence electron, but rather ascribe them

to have an independent amplitude A and B. A physical origin of this could be the

different cascaded decay process between excited and ground states for the conduction

and valence electron, occurring within their decoherence time. The complete signal can

be written as (Chen et al., 2007; Zhukov et al., 2007)

θK(t) = A cos (ωt)e
− t

τrec
− t

T∗
2,v +Be

− t
τrec

− t
T∗
2,c +D, (Model 2) (6.6)

where we fit the values for the 6 independent parameters ω, T ∗
2,e, T

∗
2,v, A, B, and D.

The radiative recombination time τrec has been determined in the time-resolved PL

measurements, as discussed in Ch. 5. During all the fitting procedures in this chapter,

the recombination time is set 1 ns. The electric field dependence of the recombination

time is not included, since implementation of such frequently resulted in erroneous fits.

The fitting process is a least-squares fit. We have included the data points from

t = 20 ps to t = 1200 ps. Based on the signal-to-noise ratio in time, we have weighted
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Figure 6.3: The relative weight of the data points as a function of time. The highest weights
are attributed to the data points near t = 0.3 ns, where the signal-to-noise ratio is high.

the data points following a function shown in Fig. 6.3. The points which exhibit the

lowest signal-to-noise ratio, occurring in the time-frame between 0.2 ns and 0.4 ns, have

the largest weight.
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6.3 Results

First of all, we measured the Stark shift in the PL spectra by varying excitation density

of the He:Ne laser. Figure 6.4A shows the Stark shift which was measured both in the

magneto-optical PL setup and the Kerr-rotation setup. The data of the magneto-optical

PL setup coincide with the Stark shift data discussed in Ch. 4. We note that there is

significant uncertainty in the spot sizes of both setups. Since the shape of both curves is

the same, it appeared reasonable to match the excitation densities of the Kerr-rotation

setup with that of the magneto-PL setup, which is done in Fig. 6.4A. Like in Ch. 4, we

use the Roman I, II and III to indicate the regimes of the Stark shift. The sensitivity

of the detection track for the PL on the Kerr-rotation setup is lower, hence, we do not

observe a Stark shift above 20 meV.

Figure 6.4B shows the electric fields associated with this Stark shifts, when we

apply the quadratic equation ∆S = βF 2 + pF for the Stark shift. A similar procedure

has been applied in Ch. 4. The electric fields do not exceed 130 kV/cm. We have

taken β = (5.5 ± 0.5) × 10−4 meV/(kV/cm)2 (Hsu et al., 2001) and the built-in dipole

moment p = 7.6 × 10−2 meV/(kV/cm). These parameters give a Stark shift of 39 meV

at 240 kV/cm, which matches with the data of Ch. 4.

An example of a time-resolved Kerr rotation spectroscopy measurement, both with

and without magnetic field, is shown in Fig. 6.5A. This figure is an example of a mea-

surement obtained at high excitation density (∼ 100 W/cm2) of the He:Ne laser. The

precession measurements are limited by a maximum magnetic field of 280 mT. We

observe only one well-distinguishable period of the precession. Figure 6.5B shows an
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Figure 6.4: The Stark shifts in Fig. A show the same behavior as a function of excitation
density of the He:Ne laser in the magneto-PL setup (�) and Kerr-rotation setup (�). The cor-
responding electric fields, deduced from ∆S = βF 2+pF 2 (where β = 5.5×10−4 meV/(kV/cm)2

and p = 7.6 × 10−2 meV/(kV/cm)), are shown in Fig. B.

100



Time-Resolved Kerr rotation spectroscopy on (In,Ga)As quantum dots

0.0 0.5 1.0

 280 mT
 0 T

 

 

K
 (a

rb
. u

n.
)

Time delay (ns)

A

0.0 0.5 1.0

 

 

 

Time delay (ns)

B

K
(a

rb
. u

n.
)

~ T*
2 ,v

Figure 6.5: The Kerr rotation θK as a function of time, in the case of a compensating CW
He:Ne laser at high excitation density (∼ 100 W/cm2), without magnetic field (�) and with
a magnetic field of 280 mT (�). To highlight the spin precession of the valence electrons, we
show the data after substraction of an exponential decay with time-constant TMO in Fig. B.
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Figure 6.6: The solid data points, corresponding the left axis, show the maximum Kerr
rotation θK(t), measured just after t = 0 (see Fig. 6.5A), either with (�, excitation density
∼ 100 W/cm−2) or without (�) compensation by the He:Ne laser. The ratio between these
maxima, denoted by ON/OFF ratio on the right axis (�, dashed line), increases from 4 to
above 80 for decreasing energies. Since the quantum dots have energies below 1.35 eV, this
curve indicates a contribution of the quantum dots to the Kerr rotation signal.
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example of the signal where a smoothed exponential decay has been subtracted. Spin

precession is clearly visible and has a damping-timescale (∼ T ∗
2,v) of 400 to 500 ps.

Before we continue with the Kerr rotation data, we comment on the origin of the

Kerr rotation signal. Since there exist free-to-bound (deep) acceptor transitions at

the energies ∼ 1.33 eV, the probed Kerr rotation could also be induced by spins of

these impurity states. If we assume that the properties of the free-to-bound acceptor

transtions are energy-independent below the main acceptor peak at 1.47 eV, these optical

transitions can be discarded as an origin of the Kerr rotation signal, since,� First of all, Fig. 6.6 shows that at the quantum dot energies below ∼ 1.36 eV,

the contrast (i.e., the ratio of the maximum Kerr rotation signal with and with-

out HeNe laser, labeled ’ON/OFF ratio’ in Fig. 6.6) of the Kerr rotation signal

increases. The free-to-bound transitions can not induce this increase in contrast.

Instead, we assign this increase to the quantum dots, since the energies of their

optical transitions occur in this region.� Secondly, measurements of the radiative recombination time for the free-to-bound

acceptor transitions between 1.35− 1.45 eV revealed a quick radiative recombina-

tion (τrec < 300 ps) compared to the decay of our magneto-optical signal. Since

we observe τrec > 300 ps, the signal in our measurements should be due to the

quantum dots.� Finally, the magneto-optical decay time TMO is much smaller for the free-to-bound

acceptor transitions. One does expect the decoherence time to be shorter in a bulk

type environment, due to more pronounced decoherence mechanisms like the Bir-

Aharonov-Pikus mechanism. In p-type doped GaAs, where p = 5×1018 cm−3, the

spin decoherence time would be T ∗
2,c > 200 ps at 4 K (Meier and Zakharchenya,

1984) Since we observe TMO > 200ps, we ascribe the signal to be due to the

quantum dots.

For these reasons, we conclude that the Kerr rotation signal indeed originates from

charge carriers in the quantum dots.

Figure 6.7A shows the typical magneto-optical decay time TMO, which is extracted

for the function θK(t) ∼ e
− t

τrec
− t

TMO , for several excitation densities of the He:Ne laser.

The TMO appears to increase from 250 ps up to 500 ps with increasing excitation density.

Since the electric field is not the origin of the increase in TMO in regime III, we associate

this increasing trend with a higher occupancy of the quantum dot (i.e., n > 1). Note that

the excitation densities in this chapter are higher than in Ch. 4, therefore, a situation

where n > 1 is likely to occur.
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Figure 6.7: Magneto-optical decay times TMO as a function of the CW He:Ne laser excitation
density.

In Fig. 6.8, we have plotted example decays with the associated fitted curve and

parameters for Model 1 and Model 2. The differences between the quality of the fits

can not be observed clearly at first sight. Little difference is found in the variances χ2

of the fits for the complete series of data.

Some of the data, like the data in Fig. 6.8, show small negative values at times

t > 800 ps, which can be expected when (i) T ∗
2,c < T ∗

2,v or when (ii) the conduction

electron also exhibits some low frequency oscillatory behavior. Since condition (i) would

contradict the existing experimental evidence of Gündoǧdu et al. (2005), we interpret the

negative data to be due to a second low frequency precession of the conduction electron.

The models 1 and 2 in Eq. 6.5 and Eq. 6.6 effectively incorporate the precession of the

conduction electron by the background term D. Applying a model to the data with two

frequencies, setting D = 0, one rather consistently finds a second frequency to be 10

times smaller than the main frequency, which can be interpreted as a 10 times smaller

in-plane g factor of the conduction electron.

Figure 6.9 shows the in-plane g factors of the valence electron, where we find an

average value |gv,‖| = 0.42 ± 0.01 when there is no electric field (regime III). When the

electric field increases (regime II), Model 1 shows a clearly increasing trend, while the

increasing trend is less obvious for Model 2. Since the amplitude ratio A/B is not found

to be constant for Model 2 for different excitation densities, we consider Model 1 to

be more reliable. We thus conclude that |gv,‖| increases with electric field. This trend

was also observed in the second measurement series, published by Rietjens et al. (2008),

where a model similar to Model 1 is applied. Rietjens et al. (2008), however, assigns

the precession to the conduction electron.

The values for T ∗
2,v and T ∗

2,c, as a function of the HeNe laser excitation density, are
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Figure 6.8: Examples of the magneto-optical signal and their fit at 280 mT and an excitation
density PHeNe = 117 W/cm2 (regime III) for Model 1 and Model 2. Differences in the fitting
quality of both models cannot be clearly observed. Small negative values are observed for
t > 800 ps. The measurement in this figure contained the most negative data of the complete
measurement series.
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Figure 6.9: The in-plane g factor of the valence electron as a function of the excitation
density. Except for the lowest excitation density point of Model 1, the data shows an increasing
trend with increasing electric field. The in-plane g factor in the case without electric field is
|gv,‖| = 0.42 ± 0.01. The line is a guide to the eye.
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Figure 6.10: Values for the conduction electron T ∗
2,c (Fig. A) and valence electron T ∗

2,v

(Fig. B) as a function of the HeNe laser excitation density. The conduction electron is not
affected by the electric field, and has a constant value of T ∗

2,c = 830 ± 70 ps. The valence
electron decoherence time is found to be T ∗

2,v = 490 ± 90 ps, but is strongly reduced by the
electric field. The line in Fig. B is a guide to the eye.

shown in Fig. 6.10. The conduction electron T ∗
2,c in Fig. 6.10A shows larger error bars

for Model 2, since it contains an extra fitting parameter. Model 2 shows an increasing

trend, while Model 1 shows a slightly decreasing trend of T ∗
2,c with increasing electric

field. If one assumes the T ∗
2,c to be constant with electric field, and takes an average of

all the data points, one finds a constant value of T ∗
2,c = 830 ± 70 ps.

The valence electron decoherence time, presented in Fig. 6.10B, shows a clear de-

creasing trend with increasing electric field. In the case without electric field, its value

is T ∗
2,v = 490 ± 90 ps, while at higher electric fields, the values drop to ∼ 200 ps.

One can generally conclude from Fig. 6.10 that the T ∗
2 values for the conduction

electron are always larger than for the valence electron. This condition, T ∗
2,c > T ∗

2,v,

can be explained by a high degree of heavy-hole/light-hole intermixing. In the case of

strong intermixing, one can expect spin-flipping processes to be relatively efficient, which

leads to quicker decoherence. Moreover, as shown in Fig. 6.10B, the valence electron

decoherence time appears to be much more sensitive for the electric field. The shorter

decoherence times could be associated with an increased degree of heavy-hole/light-hole

intermixing when the electric field is increased.
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6.4 Discussion

g factors

The trend observed in our data for the g factors is similar to that described by Rietjens

et al. (2008), except that we assign the precession to the valence electron. The increase

of the in-plane g factor with electric field can be explained by an increased degree of

heavy-hole/light-hole intermixing in the valence band. Our value |gv,‖| = 0.42 ± 0.01

can only be compared to experiments performed on slightly different quantum dots. In

general, comparison of the g factor of quantum dots remains difficult, because its strong

dependence on parameters like composition, geometry (elongation), degree of intermix-

ing, and homogeneity of the sample structure. However, the experiment resembling our

quantum dots and setup most, is performed by Greilich et al. (2006b). They measure

on annealed (In,Ga)As quantum dots and find a value of |g‖| = 0.57, which they assign

to the conduction electron.

Spin decoherence times

Among the literature on spin decoherence times in quantum dots, one can distinguish

between several types of experiments. In experiments which do not employ a magnetic

field (Birkedal et al., 1999; Borri et al., 2001; Paillard et al., 2001; Langbein et al., 2004;

Gündoǧdu et al., 2005; Laurent et al., 2005), one can in principle not discriminate be-

tween T1 and T2 times. These experiments generally reveal spin relaxation times between

∼ 100 ps and (a few) nanoseconds. A special type of experiments is performed at the

Walter Schottky Institute (Garching, Germany), where separation of the electron-hole

pair is performed employing diode-structures. These type of experiments are performed

in magnetic fields, to measure T1, and reveal values exceeding microseconds or even

milliseconds, depending on the magnetic field. Like in the measurements in Ch. 4, a

strong magnetic field dependence was found for the conduction electron T1 (Kroutvar

et al., 2004) and valence electron T1 (Heiss et al., 2007). Further recent state-of-the-art

measurements are single dot Kerr rotation measurements (Mikkelsen et al., 2007) and

the coherent optical manipulation of the electron spin in a quantum dot (Berezovsky

et al., 2008). Mikkelsen et al. (2007) reports a T ∗
2 time of 8.4 ns for the conduction

electron, at a magnetic field of 50 mT. Values for the T1 of the hole in a single quantum

dot have recently been reported as well (Gerardot et al., 2008), reaching over 0.5 ms.

Like for the in-plane g factors, it is hard to compare the different experiments. The

most comparable experiments to our system are done by Gündoǧdu et al. (2005), which

report 120 ps for the conduction electron and ∼ 30 ps for the valence electron. This

experiment has been performed at 77 K, and no magnetic field has been employed.
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Figure 6.11: A distribution in the g factors between different quantum dots in the excitation
spot leads to an nearly exponential decay (if one assumes a Gaussian distribution of g factors).
Figure A shows the signal decay arising only from a distribution of g factors, where g = 0.35
and δg = 0.04. Figure B shows the time constants τδg which approximate the decay for
different standard deviations δg.

Another Kerr rotation experiment, on annealed quantum dots, has been performed by

Greilich et al. (2006b), which revealed T ∗
2,c = 2 ns at a magnetic field of 1 T. In the

experiment by Greilich et al. (2006b), the decoherence time is purely attributed to

the ’reversible’ decoherence due to an inhomogeneous distribution of g factors for the

quantum dots within the probing laser spot.

To investigate the effect of an inhomogeneous distribution of precession frequencies

on the signal decay, we assume a normalized Gaussian distribution f(g) of the g factors

within the probing spot. The Kerr rotation signal decays due to a distribution of

frequencies in the ensemble, and can be written as

I(t) ∼
∫

g

f(g) ×H(t) cos (
gµBB

~
t)dg ≈ cos (

gµBB

~
t)e

−( t
τδg

)
(6.7)

where g is integrated over the complete range of g factors. The function H(t) represents

a Heaviside function, which only selects values with t > 0. The integration over the

periodic signals with a Gaussian distribution f(g) leads to a nearly exponential decay for

the intensity, of which an example is given in Fig. 6.11A. The comparison of this integral

with an exponential decay arises just from the inspection of the calculated graphs and

is not based on an analytical derivation. The time constant of the decay of the signal

due to the g factor distribution with dispersion δg is denoted τδg. Figure 6.11A shows

the signal decay for a g = 0.35 and a standard deviation of δg = 0.04. The dashed

line in Fig. 6.11 shows an exponential decay with τδg = 1.25 ns. Figure 6.11B shows the

values for τδg as a function of δg in the distribution f(g). A larger width δg of the g

factor distribution leads to a decrease of τδg. Greilich et al. (2006b) reports δg ≈ 0.005

for a laser band width of 15 meV. With this value in mind, one can claim that the τδg
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is exceeding 10 ∼ 100 ns.

Besides the reversible decoherence due to an inhomogeneous g factor distribution

(this type of decoherence is reversible since the g factor distribution is static), one should

also include the effects of the hyperfine-induced (reversible) decoherence (Khaetskii

et al., 2002; Merkulov et al., 2002). The origin of this process is the small variation

in the effective nuclear magnetic field per quantum dot, which can be considered static

on the timescale of the decoherence (dipole-interaction of the nuclei is of the order 10−4 s

(Khaetskii et al., 2002)). The associated timescale, T∆, is of the order of nanoseconds,

depending on the type of material and size of the quantum dot. One can therefore expect

that T∆ < τδg. Due to this condition, the hyperfine-induced decoherence is likely to be

the most important source of inhomogeneous broadening effects in the Kerr rotation

signal.

Without precise knowledge of the inhomogeneous broadening effects in the ensemble

of quantum dots, it is hard to make conclusions on the ’pure’ T2. To gain clear insight

in this parameter, one is forced to perform single dot measurements, as executed by

Berezovsky et al. (2006, 2008) and Mikkelsen et al. (2007).
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Summary

Semiconductor quantum dots have improved solid-state laser technology and introduced

a new controllable zero-dimensional system to physicists. Next to laser technology, they

can be applied as memory elements and (infrared) detectors as well. Quantum dots are

commonly grown by epitaxial methods like Molecular Beam Epitaxy (MBE) or Metal-

Organic Chemical Vapour Deposition (MOCVD), where they are embedded as a layer

or multiple layers in a larger bulk-type structure. In this work, we study a MBE-grown

single layer of (In,Ga)As quantum dots, which is embedded in the middle of a p-i-n

junction of GaAs material.

Charge carriers in quantum dots experience little disturbance from the bulk semicon-

ductor environment, which, for example, leads to relatively long spin relaxation times.

For these long spin relaxation times, in particular spin decoherence times (i.e., phase-

related relaxation), quantum dots have been mentioned as possible elements in quantum

information devices. The spin of the electron can be employed for quantum information

purposes, acting as the base element of these systems, the qubit. In one of the proposed

device architectures, each quantum dot of the array hosts a charge carrier, which spin

is addressed by a radio-frequent field. To achieve addressability of each of the charge

carriers in the array, one requires a locally tunable g factor. The g factor is a measure

for the energy splitting between Zeeman levels of the quantum dot in a magnetic field,

and is proportional to the required frequency of the radio-frequent field.

This thesis considers several of these quantum information related subjects for self-

assembled (In,Ga)As quantum dots. First of all, a general introduction to quantum

dots and a motivation is given in Chapter 1. Chapter 2 discusses some more specific

subjects of quantum dots in magnetic and electric fields, whereas chapter 3 discusses

the experimental setups. Chapter 4, 5, and 6 present the main results of the thesis,

pointed out in the next paragraphs.

Chapter 4 presents data on the degree of circular polarization of the photolumines-

cence (PL) of quantum dots. This data is measured in a magnetic field, which leads to

a Zeeman splitting (proportional to the g factor) between spin eigenstates of the energy

levels within the quantum dot. Each of the levels emits circularly polarized photons with

opposite helicity. In the case of an unbalanced occupancy of the levels, one observes a

degree of circular polarization of the PL. This circular polarization contains information

about the sign of the g factor, the magnitude of the g factor and the spin relaxation

times between the Zeeman levels. Furthermore, we employ the built-in electric field of

the p-i-n structure of the GaAs host material. By excitation of an additional continuous
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wave laser, the built-in electric field can be varied, which has its signature in the Stark

shift in the PL spectra of the quantum dots.

The first part of chapter 4 presents data in a magnetic field of 7 T, where the degree

of circular polarization changes its sign in the same excitation density regime where the

Stark shift (i.e., electric field) varies. We associate the sign change of the polarization

with a sign change of the exciton g factor in the growth direction (where the exciton is

a combined particle of the electron and hole). Since the Stark shift provides a measure

for the electric field, we estimate the sign change to occur for electric fields exceeding

150 kV/cm. The sign change of the polarization is observed throughout the whole PL

energy range, including the lowest energies, which excludes a sign change induced by

excited states.

The magnitude of the degree of circular polarization is considered in the second part

of chapter 4. The magnitude of the polarization is a measure for the spin relaxation

time between the exciton spin levels. We measure the magnetic field dependence of the

polarization to determine the magnetic field dependence of the spin relaxation time.

We observe the exciton spin relaxation time to follow a power law behavior with the

magnetic field, which matches with a theoretical prediction of Tsitsishvili et al. from

2003. In high electric fields, the strong power law behavior is left and a much weaker

dependence with magnetic field occurs. This confirms that quantum dots provide good

spin conservation conditions for charge carriers.

Chapter 5 discusses the electric field dependence of the recombination time in quan-

tum dots. We utilize time- and spectrally-resolved PL data to combine the variation

of the signal decay (related to the recombination time) and the time-dependent Stark

shift. Like in chapter 4, the Stark shift at every time is a measure for the electric field.

Recombination times increase from ∼ 1 ns when there is no electric field up to ∼ 4 ns

at electric fields close to 200 kV/cm. Moreover, we observe a significant drop in the PL

intensity at electric fields above 200 kV/cm. This is associated with tunneling of charge

carriers out of the quantum dot.

In addition to the growth direction g factors, studied in chapter 4, we consider

the in-plane g factor in chapter 6. In-plane g factors are difficult to probe in experi-

ments involving luminescence, due to optical selection rules and complex experimental

geometries. A common method to measure them is by time-resolved Kerr rotation spec-

troscopy, where the precession of the signal in a magnetic field is proportional to the

in-plane g factor, which is applied in this chapter as well. Next to the required pulsed

laser to determine the temporal dependence of the signal, we employ a continuous wave

He:Ne laser to control the electric field over the quantum dots. Furthermore, a relatively

small in-plane magnetic field of 280 mT is applied. The oscillations in the signal indicate
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spin precession. Calculations of J.A.F.S. Pingenot and M.E. Flatté indicate that the

highest frequency is likely due to the valence electron. Without electric field over the

quantum dots, the in-plane valence electron g factor is found to be 0.42± 0.01, whereas

in electric fields exceeding 50 kV/cm, the in-plane g increases slightly (not more than

0.02). The spin decoherence time of the valence electron is found to be larger than the

conduction electron for all electric fields. Both are in the order of hundreds of picosec-

onds. We estimate the hyperfine-interaction to induce a significant effect of decoherence

of the spin of the charge carriers.

111



112



Acknowledgements

Let me first thank Andrei Silov and first promotor Paul Koenraad, with who I have spent

a significant amount of time reading and correcting this thesis, and Michael Flatté for
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