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Transient Behavior of the Halfin-Whitt Diffusion

Johan S.H. van Leeuwaarden◦ & Charles Knessl•

October 24, 2008

Abstract: We consider the heavy-traffic approximation to theGI/M/s
queueing system in the Halfin-Whitt regime, where both the number of
serverss and the arrival rateλ grow large (taking the service rate as unity),
with λ = s − β

√
s andβ some constant. In this asymptotic regime, the

queue length process can be approximated by a diffusion process that be-
haves like a Brownian motion with drift above zero and like anOrnstein-
Uhlenbeck process below zero. We analyze the transient behavior of this
hybrid diffusion process, including the transient density, approach to equi-
librium, and spectral properties. The transient behavior is shown to depend
on whetherβ is smaller or larger than the critical valueβ∗ ≈ 1.85722,
which confirms the recent result of Gamarnik and Goldberg [9].

2000 Mathematics Subject Classification:60K25, 60J60, 60J70, 34E05.
Keywords & Phrases:GI/M/s queue; M/M/s queue; Halfin-Whitt
regime; queues in heavy traffic; diffusion; asymptotic analysis.

1 Introduction

Halfin and Whitt [13] introduced in their 1981 paper a new heavy-traffic limit theorem
for theGI/M/s system. They demonstrated how under certain conditions a sequence of
normalized queue-length processes converges to a process that behaves like a Brownian
motion with drift above zero and like an Ornstein-Uhlenbeckprocess below zero. We
refer to this hybrid diffusion process as theHalfin-Whitt diffusion. Our concern is with the
transient behavior of this diffusion.

What is nowadays known as the Halfin-Whitt regime refers to the scaling of the arrival
rateλ and the numbers of serverss such that, while bothλ ands increase toward infinity,
the traffic intensityρ = λ/s approaches one and

(1 − ρ)
√

s → β, β ∈ (−∞,∞). (1.1)

This type of scaling was already proposed by Erlang (see [3])for theM/M/s/s system,
and by Pollaczek [22], p. 28, for theM/D/s system. Halfin and Whitt [13] presented a
formal limit theorem for theGI/M/s system. Then, some two decades later, the regime
got immensely popular due to its application to call centers(see [2, 8, 14]). The scaling
(1.1) combines large capacity with high utilization such that the probability of delay con-
verges to a non-degenerate limit away from both zero and one;cf. (2.21). Limit theorems
for other, more general systems were obtained in [10, 11, 15,20, 21, 24]. For delay systems
like M/D/s andGI/M/s one should imposeβ ∈ (0,∞) to guarantee stability.
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In [13] it is established that by setting the traffic intensity ρ = 1 − β/
√

s, β ∈ (0,∞),
the number of customers in theM/M/s system can be roughly expressed ass +

√
sX(t)

for s sufficiently large and(X(t))t≥0 the Halfin-Whitt diffusion. It is further shown
that properties of the limiting diffusion process for theGI/M/s system can be obtained
from (X(t))t≥0 as well. The boundary between the Brownian motion and the Ornstein-
Uhlenbeck process can be thought of as the number of servers,and(X(t))t≥0 will keep
fluctuating between these two regions. The process mimics a single server queue above
zero, and an infinite server queue below zero, for which Brownian motion and the Ornstein-
Uhlenbeck process are indeed the respective heavy-traffic limits. Asβ increases, capacity
grows and the Halfin-Whitt diffusion will spend more time below zero.

The diffusion process(X(t))t≥0 can thus be employed to obtain simple approximations
for the system behavior. The steady-state properties of thediffusion are well studied, but
less is known about the transient behavior. Transient results enhance our understanding of
how theGI/M/s system behaves over various time and space scales. Results for the mean
hitting time were presented in Maglaras and Zeevi [20]. We shall derive explicit results for
the transient density of the diffusion, both exact and asymptotic.

We first derive the Laplace transform over time, which leads to a representation of the
density as a contour integral, from which a spectral expansion may be obtained by analyz-
ing the complex singularities of the integrand. The spectral expansion can be interpreted
as a large-time expansion in which the first term, corresponding to the singularity at zero,
gives the steady-state density (which exists ifβ > 0). The other singularities of the Laplace
transform provide finite-time corrections to the steady-state density. This facilitates us to
study how, and in what time (relaxation time), the process converges to its steady state.

The approach to equilibrium is governed by the singularity in the left half-plane with
the largest real part. This dominant singularity turns out to be either a branch point or a
pole, depending on whetherβ is smaller or larger than the critical valueβ∗ ≈ 1.85722.
This confirms the recent result of Gamarnik and Goldberg [9] who identifiedβ∗ using the
framework of Karlin and McGregor [16] for birth-death processes, and the result of van
Doorn [6] on the spectral gap of theM/M/s queue. We shall also show how the branch
point and the pole each give rise to different large-time asymptotics for the density. The
main results are presented in Section 2 and the proofs are presented in Section 3.

2 Main results

The Halfin-Whitt diffusion is a Markov process on the real line with continuous paths and
densityp = p(x, t) that satisfies the forward Kolmogorov equation

∂

∂t
p(x, t) = − ∂

∂x
[A(x)p(x, t)] +

1

2

∂2

∂x2
[B(x)p(x, t)]. (2.1)

HereB(x) = 2,

A(x) =

{

−β, x > 0,
−x − β, x < 0,

(2.2)

and there are the initial conditionp(x, 0) = δ(x− x0) (the Dirac function) and the bound-
ary conditionsp(∞, t) = p(−∞, t) = 0. This diffusion process applies directly to the
M/M/s system. For theGI/M/s system we would need to first take the diffusion coeffi-
cientB(x) = (1 + c2), with c2 > 0, and scalex so as to makeB(x) = 2, and then scale
β by the same factor asx (see [13], Theorem 4).
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Define the Laplace transform over timep̂ by

p̂(x; θ) =

∫ ∞

0
e−θtp(x, t)dt, ℜ(θ) > 0. (2.3)

Let

Rβ(θ) =
D′

−θ(−β)

D−θ(−β)
(2.4)

with Dν(z) the parabolic cylinder function with indexν and argumentz. Below we give
expressions for̂p, where we must distinguish the casesx0 > 0 andx0 < 0.

Theorem 1. Considerx0 > 0.

(i) For x > 0,

p̂(x; θ) =
e

1

2
β(x0−x)

√

β2 + 4θ

(

e−|x−x0|
√

θ+β2/4 − e−(x+x0)
√

θ+β2/4
)

+
e

1

2
β(x0−x)e−(x+x0)

√
θ+β2/4

√

θ + β2/4 − Rβ(θ)
. (2.5)

(ii) For x < 0,

p̂(x; θ) = e−
1

4
x2

e−
1

2
βx D−θ(−β − x)

D−θ(−β)

e
1

2
x0β−x0

√
θ+β2/4

√

θ + β2/4 − Rβ(θ)
. (2.6)

Theorem 2. Considerx0 < 0.

(i) For x > 0,

p̂(x; θ) = e
1

4
x2
0e

1

2
βx0

D−θ(−β − x0)

D−θ(−β)

e−
1

2
xβ−x

√
θ+β2/4

√

θ + β2/4 − Rβ(θ)
. (2.7)

(ii) For x < 0,

p̂(x; θ) = A(θ)e
1

4
(x2

0−x2)e
1

2
β(x0−x)D−θ(−β − x)

+1{x0 < x < 0}e 1

4
(x2

0
−x2)e

1

2
β(x0−x) Γ(θ)√

2π

× [D−θ(−β − x0)D−θ(β + x) − D−θ(β + x0)D−θ(−β − x)] ,

(2.8)

where

A(θ) =
Γ(θ)√

2π

[

D−θ(β + x0)

− D−θ(β)D−θ(−β − x0)

D−θ(−β)

√

θ + β2/4 + R−β(θ)
√

θ + β2/4 − Rβ(θ)

]

. (2.9)
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In (2.8)1{·} is the indicator function. Theorems 1 and 2 coincide ifx0 → 0, and yield
the Laplace transform if we start the process at the origin.

We can rewrite (2.8) in the following alternate form:

p̂(x; θ) =
Γ(θ)√

2π
e

1

4
(x2

0−x2)e
1

2
β(x0−x)

[

D−θ(β + x>)D−θ(−β − x<)

− D−θ(β)

D−θ(−β)
D−θ(−β − x)D−θ(−β − x0)

]

+e
1

4
(x2

0
−x2)e

1

2
β(x0−x) D−θ(−β − x)D−θ(−β − x0)

D2
−θ(−β)[

√

θ + β2/4 − Rβ(θ)]
, (2.10)

wherex> = max{x, x0} andx< = min{x, x0}. The equivalence of (2.8) and (2.10)
follows from the Wronskian identity

−
√

2π

Γ(θ)
= D−θ(z)D′

−θ(−z) + D−θ(−z)D′
−θ(z), (2.11)

which is independent ofz.
While it does not seem possible to invert the Laplace transforms in Theorems 1 and 2

to get the densityp(x, t) explicitly, parts ofp̂ can be inverted. Forx0 > 0 we note that the
first part ofp̂ in the right-hand side of (2.5) inverts to

1

2
√

πt
e−

1

4
β2te

1

2
β(x0−x)

(

e−
1

4
(x−x0)2/t − e−

1

4
(x+x0)2/t

)

, (2.12)

which corresponds to a Brownian motion with absorption atx = 0. The inversion of the
second part of̂p in (2.5) seems less straightforward.

Forx0 < 0 we can invert the first term in the right-hand side of (2.10). SinceΓ(θ) has
simple poles atθ = −n, n = 0, 1, 2, . . ., with residues(−1)n/n!, andD−θ(·) is an entire
function ofθ, the first term inverts to

e
1

4
(x2

0
−x2)e

1

2
β(x0−x)

∞
∑

n=0

Dn(−β − x0)Dn(β + x)
(−1)ne−nt

n!
√

2π
. (2.13)

This corresponds to the transient solution of an Ornstein-Uhlenbeck process, starting atx0

at timet = 0 (see e.g. [17]). The remaining two terms in (2.10) representthe effects of the
“interface” atx = 0, where the form of the drift changes. Ast → ∞ (2.13) approaches
exp(−(x + β)2/2)/

√
2π, as only the termn = 0 remains, andD0(z) = e−z2/4.

2.1 Relaxation time

In queueing theory, therelaxation timeis a notion that measures the time it takes for the
system to approach its steady-state behavior. There are various ways to define relaxation
time, but we use the definition

τ = inf{T : p(x, t) − p(x,∞) = O(e−t/T )}, (2.14)

in the spirit of [1, 4, 19]. The Laplace transform̂p is analytic in the entireθ-plane, except
for singularities in the rangeℜ(θ) ≤ 0. Hence, the asymptotic behavior ofp(x, t) (for large
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t) is determined by the singularitŷθ closest to the imaginary axis. In fact, from (2.14) it
follows that

τ−1 = −ℜ(θ̂). (2.15)

The dominant singularitŷθ will either be the branch pointθB = −1
4β2 or the largest

negative solutionθP to

ϕβ(θ) :=
√

θ + β2/4 − Rβ(θ) = 0. (2.16)

We have the following result.

Theorem 3. Letβ∗ = 1.85722... represent the smallest positive real solution to

Rβ(−1
4
β2) = 0, or D′

β2/4(−β) = 0. (2.17)

The dominant singularitŷθ of the Laplace transform̂p(x; θ) is then given by

θ̂ =

{

θB = −1
4β2, 0 < β ≤ β∗,

θP , β ≥ β∗.
(2.18)

This completely determines the relaxation time as defined in(2.14). More detailed
information on the distance to steady state can be obtained from investigatingp̂ in the
vicinity of the dominant singularity; see Theorems 4 and 5. Whenβ ≤ 0 the process is
transient and the large-time behavior is still determined by θB .

Using the recurrence relations for parabolic cylinder functions it follows that (2.17) is
equivalent to

−2Dβ2/4(−β)

βDβ2/4−1(−β)
= 1. (2.19)

The left-hand side of (2.19) can be written as (see [12], p. 1064)

2

β

∫ ∞
0 x1−β2/4e−(β−x)2/2dx
∫ ∞
0 x−β2/4e−(β−x)2/2dx

, β2 < 4, (2.20)

which is the expression derived by Gamarnik and Goldberg [9].

2.2 Limiting density

Let φ(x) = 1√
2π

e−x2/2 andΦ(x) = 1√
2π

∫ x
−∞ e−u2/2du, be the density and the distribu-

tion function of a standard normal random variable. Then we define

C(β) =

[

1 +
βΦ(β)

φ(β)

]−1

, (2.21)

which is the non-degenerate limit of the delay probability.The limiting distribution of the
diffusion process is (see [13])

p(x,∞) =

{

C(β)βe−βx, x > 0,

C(β)βe−
1

2
x2

e−βx, x < 0.
(2.22)

This also follows from our expression for the Laplace transform p̂. SinceD0(β) = e−β2/4,
we haveRβ(0) = 1

2β, and the function̂p has a pole atθ = 0 if β > 0 (the stable case).
Calculating the residue yields

p(x,∞) =
1

1 − βR′
β(0)

{

βe−βx, x > 0,

βe−
1

2
x2

e−βx, x < 0,
(2.23)

and some further algebra shows that indeedR′
β(0) = −Φ(β)/φ(β).
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2.3 Large-time asymptotics

We give the approach to equilibrium, distinguishing the casesx, x0 positive or negative.
We note thatp(x,∞) = 0 if β ≤ 0.

Theorem 4. Considerx0 > 0.

(i) For x > 0, β < β∗, andβ 6= 0,

p(x, t) − p(x,∞) ∼ 1

2
√

πt3/2
e−

1

4
β2te

1

2
β(x0−x)

×
[

xx0 −
x + x0

Rβ(−β2/4)
+

1

R2
β(−β2/4)

]

. (2.24)

(ii) For x < 0, β < β∗, andβ 6= 0,

p(x, t) − p(x,∞) ∼ 1

2
√

πt3/2
e−

1

4
β2te−

1

4
x2

e
1

2
β(x0−x)

×
[

1 − x0Rβ(−β2/4)
]

R2
β(−β2/4)

Dβ2/4(−β − x)

Dβ2/4(−β)
. (2.25)

(iii) For x > 0 andβ > β∗,

p(x, t) − p(x,∞) ∼eθP t e
1

2
β(x0−x)e−(x+x0)

√
θP +β2/4

ϕ′
β(θP )

. (2.26)

(iv) For x < 0 andβ > β∗,

p(x, t) − p(x,∞) ∼eθP te−
1

4
x2

e−
1

2
βx D−θP

(−β − x)

D−θP
(−β)

e
1

2
x0β−x0

√
θP +β2/4

ϕ′
β(θP )

. (2.27)

(v) For x > 0 andβ = β∗,

p(x, t) − p(x,∞) ∼ 1√
πt

e−
1

4
β2
∗
te

1

2
β∗(x0−x). (2.28)

(vi) For x < 0 andβ = β∗,

p(x, t) − p(x,∞) ∼ 1√
πt

e−
1

4
β2
∗
te−

1

4
x2

e
1

2
β∗(x0−x)

Dβ2
∗
/4(−β∗ − x)

Dβ2
∗
/4(−β∗)

. (2.29)

Theorem 5. Considerx0 < 0.

(i) For x > 0, β < β∗, andβ 6= 0,

p(x, t) − p(x,∞) ∼ 1

2
√

πt3/2
e−

1

4
β2te

1

2
β(x0−x)e

1

4
x2
0

×
Dβ2/4(−β − x0)

Dβ2/4(−β)

[

x

Rβ(−β2/4)
− 1

R2
β(−β2/4)

]

. (2.30)
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(ii) For x < 0, β < β∗, andβ 6= 0,

p(x, t) − p(x,∞) ∼ 1

2
√

πt3/2
e−

1

4
β2te

1

2
β(x0−x)e

1

4
(x2

0
−x2)

× 1

R2
β(−β2/4)

Dβ2/4(−β − x)Dβ2/4(−β − x0)

D2
β2/4

(−β)
. (2.31)

(iii) For x > 0 andβ > β∗,

p(x, t) − p(x,∞) ∼eθP te
1

4
x2
0e

1

2
βx0

D−θP
(−β − x0)

D−θP
(−β)

e−
1

2
xβ−x

√
θP +β2/4

ϕ′
β(θP )

. (2.32)

(iv) For x < 0 andβ > β∗,

p(x, t) − p(x,∞) ∼eθP te
1

4
(x2

0
−x2)e

1

2
β(x0−x) D−θP

(−β − x0)D−θP
(−β − x)

D2
−θP

(−β)ϕ′
β(θP )

.

(2.33)

(v) For x > 0 andβ = β∗,

p(x, t) − p(x,∞) ∼ 1√
πt

e−
1

4
β2
∗
te

1

4
x2
0e

1

2
β∗(x0−x)

Dβ2
∗
/4(−β∗ − x0)

Dβ2
∗
/4(−β∗)

. (2.34)

(vi) For x < 0 andβ = β∗,

p(x, t) − p(x,∞) ∼ 1√
πt

e−
1

4
β2
∗
te

1

4
(x2

0
−x2)e

1

2
β∗(x0−x)

×
Dβ2

∗
/4(−β∗ − x)Dβ2

∗
/4(−β∗ − x0)

D2
β2
∗
/4

(−β∗)
. (2.35)

Hereϕ′
β(θP ) = (4θP + β2)−1/2 − R′

β(θP ), as in (2.16). Whenβ = 0 the result is
independent ofx0 and we have

p(x, t) ∼ 1√
πt

{

1, x > 0,
e−x2/2, x < 0.

(2.36)

2.4 Spectral properties

We now examine some properties of the spectrum of the Halfin-Whitt diffusion.

Theorem 6. While keepingy = x + β and y0 = x0 + β fixed, and lettingβ → ∞,
the Halfin-Whitt diffusion converges to the free-space Ornstein-Uhlenbeck process with
densityq(y, t) satisfyingq(y, 0) = δ(y − y0),

∂

∂t
q(y, t) =

∂

∂y
[yq(y, t)] +

∂2

∂y2
q(y, t), y ∈ R, (2.37)

and with solution

q(y, t) =
1√
2π

√

1

1 − e−2t
exp

[

−(y − y0e
−t)2

2(1 − e−2t)

]

, y ∈ R. (2.38)
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This Ornstein-Uhlenbeck process is well known to have a purely discrete spectrum, with
the corresponding Laplace transform having poles at0,−1,−2, ... and the eigenfunctions
being Hermite polynomials. That is, (2.38) can be written as(see [17])

q(y, t) =
e

1

4
(y2

0−y2)

√
2π

∞
∑

n=0

Dn(y0)Dn(y)

n!
e−nt, y ∈ R. (2.39)

HereDn(y) = e−y2/42−n/2Hn(y/
√

2) whereHn(·) is thenth Hermite polynomial. Thus
the spectrum of the Halfin-Whitt diffusion should approach the set{0,−1,−2, . . .} asβ
increases toward infinity. Asβ increases through0 we see the appearance of a pole at0, as
β increases throughβ∗ = β∗,1 ≈ 1.85722 a second pole appears in the range(−β2/4, 0),
and this pole rapidly settles to−1 asβ increases further. Further poles appear in the range
(−β2/4, 0) at the critical valuesβ∗,2 ≈ 2.72133, β∗,3 ≈ 3.37465, β∗,4 ≈ 3.92155, and so
on. The critical values are solutions ofD′

β2/4(−β) = 0; see Figure 1.

0 1 2 3 4

Figure 1: The functionD′
β2/4(−β) for β ∈ [0, 4].

The pole that first appears whenβ = β∗,N then settles to the value−N quickly, and the
spectrum thus approaches that of the Ornstein-Uhlenbeck process in this manner. LetθP,N

denote the location of theN -th pole (soθP = θP,1). Then we have the following estimate
of the approach ofθP,N to−N .

Theorem 7. Asβ → ∞ we have

θP,N + N ∼ 1

(N − 1)!

e−β2/2

√
2π

β2N−3, N = 1, 2, . . . . (2.40)

3 Proofs

3.1 Laplace transforms

We now present the proofs of Theorems 1 and 2. Ifp satisfies (2.1) its Laplace transform
satisfies

θp̂(x; θ) − δ(x − x0) = − d

dx
[A(x)p̂(x; θ)] +

d2p̂(x; θ)

dx2
, (3.1)
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where

− d

dx
[A(x)p̂(x; θ)] =

{

β d
dx p̂(x; θ), x > 0,

(x + β) d
dx p̂(x; θ) + p̂(x; θ), x < 0.

(3.2)

First we takex0 > 0 so thatδ(x − x0) = 0 in the rangex < 0. For x < 0 we write
p̂ = e−x2/4e−βx/2v and then (3.1) reduces to the differential equation (Erdelyi [7], p. 116)

v′′ + [1
2
− θ − 1

4
(x + β)2]v = 0, (3.3)

whose solution isv(x; θ) = α1(θ)D−θ(−β − x), whereα1 is still to be determined. Note
thatD−θ(−z) has Gaussian decay asz → −∞, while D−θ(z), which is a second solution
to the parabolic cylinder equation (3.3), grows likeO(ez2/4) asz → −∞.

Forx > 0 the functionp̂ = ewx satisfies the homogeneous version of (3.1) if

w2 + βw − θ = 0, (3.4)

with solutionsw = 1
2 [−β−

√

β2 + 4θ] andw∗ = 1
2 [−β +

√

β2 + 4θ]. It thus follows that

p̂(x; θ) =

{

α2(θ)ewx + α3(θ)ew∗x, 0 < x < x0

α4(θ)ewx, x > x0,
(3.5)

whereα2, α3 andα4 still need to be determined. Continuity atx = x0 yields p̂(x+
0 ; θ) =

p̂(x−
0 ; θ) and the derivative has a jump atx0, with

p̂(x+
0 ; θ) − p̂(x−

0 ; θ) = −
∫ x+

0

x−

0

δ(x − x0)dx = −1, (3.6)

which translates into

α2e
wx0 + α3e

w∗x0 = α4e
wx0, (3.7)

wα4e
wx0 − wα2e

wx0 − w∗α3e
w∗x0 = −1. (3.8)

Continuity atx = 0 of p̂ andp̂x yields the additional relations

α2 + α3 = α1D−θ(−β), (3.9)

wα2 + w∗α3 = −α1[D
′
−θ(−β) + 1

2
βD−θ(−β)]. (3.10)

(3.7)-(3.10) give four equations for the four unknownsα1, α2, α3 andα4. Some further
algebra and the definitionRβ(θ) = D′

−θ(−β)/D−θ(−β) yields

α1(θ) = − 1

D−θ(−β)

α3(θ)
√

β2 + 4θ

Rβ(θ) + w + β/2
, (3.11)

α2(θ) = −α3(θ) − α3(θ)
√

β2 + 4θ

Rβ(θ) + w + β/2
, (3.12)

α3(θ) =
1

√

β2 + 4θ
e−x0w∗ , (3.13)

α4(θ) = α2(θ) + α3(θ)ex0(w∗−w). (3.14)

We thus obtain Theorem 1. Using the absolute value|x−x0| allows us to write the solution
as a single formula that applies for allx > 0 (cf. (2.5)).
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To establish Theorem 2 we note that nowδ(x − x0) = 0 in the rangex > 0. Thus we
write

p̂(x; θ) = γ4(θ)ewx, x > 0, (3.15)

and we need̂p to decay forx → −∞ so we write

p̂(x; θ) = γ1(θ)e−
1

4
x2

e−
1

2
βxD−θ(−β − x), x < x0 < 0. (3.16)

But in the rangex0 < x < 0 the solution will involve both of the parabolic cylinder
functionsD−θ(−β − x) andDθ(β + x), hence

p̂(x; θ) = e−
1

4
x2

e−
1

2
βx [γ2(θ)D−θ(−β − x) + γ3(θ)D−θ(β + x)] . (3.17)

The functionsγj(θ) are determined by continuity of̂p and d
dx p̂ atx = 0, which leads to

γ4 = γ2D−θ(−β) + γ3D−θ(β), (3.18)

wγ3 = −1
2
βγ4 − γ2D

′
−θ(−β) + γ3D

′
−θ(β), (3.19)

continuity of p̂ atx = x0,

γ1D−θ(−β − x0) = γ2D−θ(−β − x0) + γ3D−θ(β + x0), (3.20)

and the jump condition ofddx p̂ atx = x0

−1 = e−
1

4
x2
0e−

1

2
βx0

[

− γ2D
′
−θ(−β − x0)

+ γ3D
′
−θ(β + x0) + γ1D

′
−θ(−β − x0)

]

. (3.21)

Equations (3.18)-(3.21) give a4×4 linear system whose solution leads to Theorem 2. The
Wronskian identity (2.11) allows us to simplify some of the final expressions. In Theorem
2, A(θ) is the same asγ1(θ)e−x2

0
/4e−βx0/2.

3.2 Asymptotic results

We now briefly derive the asymptotic results that appear in Theorems 4-7. We merely
sketch the relaxation asymptotics that appear in Theorems 4-5. Consider a contour integral

I(t) =
1

2πi

∫

Br

g(z)√
z + f(z)

eztdz. (3.22)

HereBr is a vertical Bromwich contour in thez-plane, with the integrand analytic to the
right of Br. First we assume thatf and g are analytic functions ofz in the half-plane
ℜ(z) < −ε0 for someε0 > 0 with g(0) 6= 0 andf(0) 6= 0. Then the asymptotics as
t → ∞ are governed by the branch point atz = 0, if

√
z + f(z) = 0 has no solutions

in the rangeℜ(z) > 0. Under these assumptions we can obtain the asymptotics of (3.22)
simply by expanding the analytic functionsf andg aboutz = 0:

I(t) =
1

2πi

∫

Br

g(0)

f(0)

[

1 −
√

z

f(0)
+ O(z)

]

eztdz

=
g(0)

f(0)

d

dt

{

1

2πi

∫

Br

[

1 −
√

z

f(0)
+ O(z)

]

ezt

z
dz

}

∼ − g(0)

f2(0)

d

dt

[

L−1
(

z−1/2
)

(t)
]

= − g(0)

f2(0)

d

dt

(

1√
πt

)

=
1

2
√

π

g(0)

f2(0)
t−3/2. (3.23)
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HereL−1(F (z)) is the inverse Laplace transform ofF (z).
If g(0) 6= 0 but f(0) = 0 then again expanding aboutz = 0 leads to

I(t) =
1

2πi

∫

Br
g(0)

[

1√
z

+ O(
√

z)

]

eztdz ∼ g(0)√
πt

. (3.24)

If f(z)+
√

z = 0 has a solution atz = z∗ in the rangeℜ(z) > 0, with f ′(z∗)+ 1
2z

−1/2
∗ 6=

0 then the simple pole atz∗ determines the behavior ofI(t) and we obtain

I(t) ∼ g(z∗)

f ′(z∗) + 1
2z

−1/2
∗

ez∗t. (3.25)

We can also consider the case where the branch point and pole are close to each other.
Thenf(0) would be small so we setf(0) = ε. By expanding the integrand aboutz = 0
and introducing the (large) time scalet = ε−2T we have

I(t) ∼ 1

2πi

∫

Br

g(0)√
z + ε

eztdz

= g(0)

{

|ε|sgn(ε)√
πT

− 2ε√
π

eT

∫ ∞
√

T sgn(ε)
e−u2

du

}

. (3.26)

For ε > 0 andT → ∞ we recover the behavior in (3.23), as the right-hand side of (3.26)
becomesO(T−3/2). Forε < 0 andT → ∞ (3.26) behaves as an exponential, as in (3.25).
Finally, if ε = 0 (3.26) becomesg(0)/

√
πt, so that (3.24) is recovered as a special case.

SinceD−θ(·) is an entire function ofθ, we immediately obtain Theorems 4 and 5.
Whenβ = 0 or β = β∗ the asymptotics follow from (3.24), whenβ > β∗ (3.25) applies,
while for β < β∗ (with β 6= 0) (3.23) holds. We must simply identifyf(z) and g(z)
from Theorems 1 and 2, which necessitates that we distinguish betweenx, x0 positive and
negative.

To establish Theorem 6 we considerx, x0 < 0, where (2.10) applies. Asβ → ∞
D−θ(−β) grows roughly aseβ2/4, so that for fixedy = x + β andy0 = x0 + β, and
β → ∞, the second and third terms in the right-hand side of (2.10) rapidly decay, as they
contain reciprocal factors ofD−θ(−β). The first term then inverts to (2.13) which is the
same as (2.39) sinceDn(z) = (−1)nDn(−z).

To derive Theorem 7 we study asymptotically, asβ → ∞, the equation

D′
−θ(−β)

D−θ(−β)
=

√

θ + β2/4. (3.27)

Forβ → ∞ the right-hand side becomes

β

2

[

1 +
2θ

β2
− 2θ2

β4
+ O(β−6)

]

. (3.28)

In this limit the parabolic cylinder functions have the expansion

D−θ(−β) = (−β)−θe−β2/4

[

1 − θ(θ + 1)

2β2
+ O(β−4)

]

+

√
2π

Γ(θ)
βθ−1eβ2/4

[

1 + O(β−2)
]

. (3.29)
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The second term is exponentially large (O(eβ2/4)) while the first term is exponentially
small (O(e−β2/4)), unlessθ = 0,−1,−2, . . .. In that case1/Γ(θ) vanishes and then
Dn(−β) is exponentially small, and proportional to thenth Hermite polynomial. Our
analysis of (3.27) will show thatθ must be very close to a negative integer if (3.27)
holds. If this were not the case then the second term in (3.29)would dominate and
D′

−θ(−β)/D−θ(−β) ∼ −β/2 which could not equals (3.28) forβ → ∞.
Forθ → −N we have

Γ(θ) =
(−1)N

N !

1

θ + N
+ O(1), (3.30)

which is just the Laurent expansion ofΓ(θ) near a pole. To balance the two parts of the
right-hand side of (3.29) we need to scaleθ + N to be roughlyO(e−β2/2), so we define
ωN by

θ + N = ωNe−β2/2. (3.31)

Then (3.29) becomes

D−θ(−β) = e−β2/4
{

(−β)N
[

1 − N(N − 1)

2β2
+ O(β−4)

]

+(−1)NN !ωNβ−N−1
[

1 + O(β−2)
]

}

, (3.32)

whereθ could be replaced by−N in all factors except1/Γ(θ). Up to an exponentially
small error, (3.28) becomes

β

2
− N

β
− N2

β3
+ O(β−5). (3.33)

Computing the logarithmic derivative of (3.29), with the scaling (3.31), and equating the
result to (3.33) leads to

β

2
− N

β
− N2

β3
+ O(β−5)

∼ −∆′(β) + β∆(β)/2 −
√

2πN !ωN (−β)−N/2

∆(β) −
√

2πN !ωN (−β)−N−1
, (3.34)

where

∆(β) = eβ2/4DN (−β) = (−β)N [1 − 1
2
N(N − 1)β−2 + O(β−4)], (3.35)

so that∆′(β)/∆(β) = N/β + N(N − 1)/β3 + O(β−5) asβ → ∞. Thus the right-hand
side of (3.34), after some further expansion, becomes

β

2
− N

β
− N(N − 1)

β3
−

√
2π

∆(β)
N !(−β)−NωN [1 + o(1)]. (3.36)

Comparing this to (3.33) we see that the first two terms agree automatically, and agreement
of theO(β−3) terms forces

ωN ∼ −1√
2πN !

(−β)N−3∆(β)N ∼ β2N−3

√
2π(N − 1)!

. (3.37)

We also see that this analysis would predict thatω0 = 0, and indeedθ = 0 is a solution of
(3.27) (exactly) whenβ > 0.
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