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Transient Behavior of the Halfin-Whitt Diffusion
Johan S.H. van Leeuwaarden& Charles Knes$l

October 24, 2008

Abstract: We consider the heavy-traffic approximation to té/M/s
queueing system in the Halfin-Whitt regime, where both theiper of
serverss and the arrival rata grow large (taking the service rate as unity),
with A = s — 8/s and 3 some constant. In this asymptotic regime, the
queue length process can be approximated by a diffusiorepsabat be-
haves like a Brownian motion with drift above zero and like@mstein-
Uhlenbeck process below zero. We analyze the transientlmehat this
hybrid diffusion process, including the transient densifyproach to equi-
librium, and spectral properties. The transient behagiehiown to depend
on whethers is smaller or larger than the critical valys ~ 1.85722,
which confirms the recent result of Gamarnik and Goldberg [9]

2000 Mathematics Subject ClassificatidiaK25, 60J60, 60J70, 34E05.
Keywords & Phrases: GI/M/s queue; M /M /s queue; Halfin-Whitt
regime; queues in heavy traffic; diffusion; asymptotic szl

1 Introduction

Halfin and Whitt [13] introduced in their 1981 paper a new heamffic limit theorem
for the GI/M /s system. They demonstrated how under certain conditionsjzesee of
normalized queue-length processes converges to a prdwsisethaves like a Brownian
motion with drift above zero and like an Ornstein-Uhlenbgchcess below zero. We
refer to this hybrid diffusion process as tHalfin-Whitt diffusion Our concern is with the
transient behavior of this diffusion.

What is nowadays known as the Halfin-Whitt regime refers ¢osttaling of the arrival
rate A and the numbers of servessuch that, while both ands increase toward infinity,
the traffic intensityp = \/s approaches one and

(1-p)Vs— B, B € (~00,00). (1.1)

This type of scaling was already proposed by Erlang (see€f@8fhe M /M /s/s system,
and by Pollaczek [22], p. 28, for the//D/s system. Halfin and Whitt [13] presented a
formal limit theorem for the=1 /M /s system. Then, some two decades later, the regime
got immensely popular due to its application to call cen{ee® [2, 8, 14]). The scaling
(1.1) combines large capacity with high utilization suchtttine probability of delay con-
verges to a non-degenerate limit away from both zero andang.21). Limit theorems

for other, more general systems were obtained in [10, 120,21, 24]. For delay systems
like M/D/s andGI/M /s one should imposg € (0, c0) to guarantee stability.
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In [13] it is established that by setting the traffic intepsit= 1 — 3/./s, 5 € (0, c0),
the number of customers in thé /)M /s system can be roughly expressedas /s X ()
for s sufficiently large and X (¢));>¢ the Halfin-Whitt diffusion. It is further shown
that properties of the limiting diffusion process for t6€ /M /s system can be obtained
from (X (t)):>0 as well. The boundary between the Brownian motion and thestéim
Uhlenbeck process can be thought of as the number of sea$,X ()):>o will keep
fluctuating between these two regions. The process mimiasgéesserver queue above
zero, and an infinite server queue below zero, for which Brawmotion and the Ornstein-
Uhlenbeck process are indeed the respective heavy-trafiits| As 3 increases, capacity
grows and the Halfin-Whitt diffusion will spend more time o®lzero.

The diffusion proces§X (t)):>o can thus be employed to obtain simple approximations
for the system behavior. The steady-state properties dithesion are well studied, but
less is known about the transient behavior. Transienttsesahance our understanding of
how theGI /M /s system behaves over various time and space scales. Resiifts fnean
hitting time were presented in Maglaras and Zeevi [20]. Wl sterive explicit results for
the transient density of the diffusion, both exact and agptig

We first derive the Laplace transform over time, which leada tepresentation of the
density as a contour integral, from which a spectral expansiay be obtained by analyz-
ing the complex singularities of the integrand. The spéetxpansion can be interpreted
as a large-time expansion in which the first term, corresjmontdb the singularity at zero,
gives the steady-state density (which exists it 0). The other singularities of the Laplace
transform provide finite-time corrections to the steadtesdensity. This facilitates us to
study how, and in what time (relaxation time), the proceswemes to its steady state.

The approach to equilibrium is governed by the singularityhie left half-plane with
the largest real part. This dominant singularity turns oubé either a branch point or a
pole, depending on whethétis smaller or larger than the critical valyg ~ 1.85722.
This confirms the recent result of Gamarnik and Goldberg [99 vdentifieds, using the
framework of Karlin and McGregor [16] for birth-death prgses, and the result of van
Doorn [6] on the spectral gap of the /M /s queue. We shall also show how the branch
point and the pole each give rise to different large-timengstptics for the density. The
main results are presented in Section 2 and the proofs asergesl in Section 3.

2 Mainresults

The Halfin-Whitt diffusion is a Markov process on the reaklinith continuous paths and
densityp = p(z, t) that satisfies the forward Kolmogorov equation

g A 1—82 B 2.1
ap(w,t) = —%[ (z)p(z,t)] + 581’2[ (z)p(z,1)]. (2.1)
HereB(z) = 2,
_ _/67 r > 07
A(z) = { —o—B, w<0, (2.2)

and there are the initial conditigi(z, 0) = d(x — x() (the Dirac function) and the bound-
ary conditionsp(oco,t) = p(—oo,t) = 0. This diffusion process applies directly to the
M /M /s system. For th&I /M /s system we would need to first take the diffusion coeffi-
cient B(x) = (1 + ¢?), with ¢> > 0, and scaler so as to maké3(z) = 2, and then scale
[ by the same factor as(see [13], Theorem 4).



Define the Laplace transform over timédy

p(x;0) = / Ooe—"tp(x,t)dt, R(O) > 0. (2.3)
0
Let D (p)
A
B0) = 5, 5) 24

with D, (z) the parabolic cylinder function with indexand argument. Below we give
expressions fop, where we must distinguish the casgs> 0 andzy < 0.

Theorem 1. Considerzy > 0.
() Forz >0,
e%ﬂ(mo—m)
pla;h) = ———— (e"m—%\\/m _ 6—($+$0)\/0+ﬂ2/4>
(5% + 460

e3B(x0—a) o—(z+10)/0+52 /4

2.5
VT R Ryl6) 2
(i) Forz <0,
Ls 1 (=B — 320B—x0r/0+52/
plz;0) = e 1% efiﬁxD o(-—2) e o . (2.6)
D_o(=B) /0+3%/4— Rs(9)
Theorem 2. Considerzy < 0.
(i) Forz >0,
Lo o1 (=B — —%a}ﬂ—m\/ﬂ 32/4
pa;0) — eluderpmDool=B—z0) e T e
D_o(=B) /0 + 32/4— Rs(0)
(i) Forx <0,

p(z;0) = A(H)ei(xg*xQ)e%ﬁ(“Ofx)D,g(—ﬁ—

z)
+1{zo < 2 < 0}et @2 ¢2B(@o—2) I'(9)

2T
X [D_g(=B —w0)D_g(B + ) — D_g(B + w0)D_o(—f — )],

2.8)
where
A®) = S [D-o(5+ a0

o(—B — x0) v9+52/4+Rﬁ(9)] (2.9)
D_y(—p) VO + 324 — Rs(6) I '



In (2.8) 1{-} is the indicator function. Theorems 1 and 2 coincidegif— 0, and yield
the Laplace transform if we start the process at the origin.
We can rewrite (2.8) in the following alternate form:

pla:60) = f};ei@%”’e%ﬁ(mﬂ | D—o(B+ @)D~ — <)
D_y(B)
Doy Do~ D=5 - 0)|

+e1(@3—2%) o 3B(z0—) D_g(=B—x)D_g(=f — x0)
D2 ,(-B)[\/0 + B2/4 — Rg(0))’

wherex-. = max{z,z9} andz. = min{z,z¢}. The equivalence of (2.8) and (2.10)
follows from the Wronskian identity
V2T

1) = D_g(2)D_y(—2) + D_g(—2)D"_y(2), (2.11)

(2.10)

which is independent of.

While it does not seem possible to invert the Laplace transfdn Theorems 1 and 2
to get the density(x, t) explicitly, parts ofp can be inverted. For, > 0 we note that the
first part ofp in the right-hand side of (2.5) inverts to

1 152, 1 1 2 1 2
=318t 5 B(o—z) ( ,—3(@—w0)?/t _ —5(z+z0)?/t
2\/He 7 ten (e 4 e 1 >, (2.12)

which corresponds to a Brownian motion with absorptior at 0. The inversion of the
second part of in (2.5) seems less straightforward.

Forzy < 0 we can invert the first term in the right-hand side of (2.10hc8T'(0) has
simple poles al = —n, n =0, 1,2, ..., with residueg—1)" /n!, andD_g(-) is an entire
function of#, the first term inverts to

1/,2 .2y 1 _ > —1)”67"1‘/
1(zg—%) o 56(z0 90)2 D, (= — x0) Dy (3 + (7
‘ ‘ Z (=h = 20)Dnll ¥ o)1

This corresponds to the transient solution of an Ornstdiletbeck process, starting-af
attimet = 0 (see e.g. [17]). The remaining two terms in (2.10) repreteneffects of the
“interface” atz = 0, where the form of the drift changes. As— oo (2.13) approaches
exp(—(z + 3)2/2) /2, as only the termy, = 0 remains, andy(z) = e~ */4.

(2.13)

2.1 Relaxation time

In queueing theory, theelaxation timeis a notion that measures the time it takes for the
system to approach its steady-state behavior. There a@musarays to define relaxation
time, but we use the definition

7 =inf{T : p(z,t) — p(z,00) = O(e~"/T)}, (2.14)

in the spirit of [1, 4, 19]. The Laplace transforfris analytic in the entird-plane, except
for singularities in the rang®(0) < 0. Hence, the asymptotic behaviorf:, ¢) (for large



t) is determined by the singulari#j closest to the imaginary axis. In fact, from (2.14) it
follows that

= —R(0). (2.15)
The dominant singularity will either be the branch poinz = —i 2 or the largest
negative solutiop to
w3(0) :== /0 + [%/4— Rs(0) = 0. (2.16)

We have the following result.
Theorem 3. Let3, = 1.85722... represent the smallest positive real solution to

R3(—38%) =0, or Dip, (=) =0. (2.17)
The dominant singularity of the Laplace transform(z:; 6) is then given by

é_ HB:_%ﬁ27 O</8§5*1
a Op, B> B

This completely determines the relaxation time as defineih4). More detailed
information on the distance to steady state can be obtaimed iinvestigatingp in the
vicinity of the dominant singularity; see Theorems 4 and 5heWs < 0 the process is
transient and the large-time behavior is still determingd .

Using the recurrence relations for parabolic cylinder fiows it follows that (2.17) is
equivalent to

(2.18)

—2Dg2 14(—13)

3Dg2a-1(=5)

The left-hand side of (2.19) can be written as (see [12], p410
9 f0°° 2182 /4e—(B-2)%/2 44

B [T a= P e (B=2)2dg

which is the expression derived by Gamarnik and Goldberg [9]

= 1. (2.19)

3% <4, (2.20)

2.2 Limiting density

Let ¢(z) = \/LQ_We*mg/2 and®(z) = V%_w [¥__e~"*/2du, be the density and the distribu-
tion function of a standard normal random variable. Then afeand

[ pe]
C(B) = [1+ ¢(ﬂ)] , (2.21)

which is the non-degenerate limit of the delay probabilitite limiting distribution of the
diffusion process is (see [13])

— Bz
p(,00) = { C(B)pe="*, x>0,

C(ﬁ)ﬂe*%ﬁe*ﬁx, x < 0. (2.22)

This also follows from our expression for the Laplace transfp. SinceDy () = e P4,
we haveRz(0) = %ﬂ, and the functiorp has a pole af = 0 if 5 > 0 (the stable case).
Calculating the residue yields

( ) 1 [e Pz, x>0,
r,00) = —————
PAT; 1 — BR(0) ﬁeféﬁe_ﬂx, x <0,

and some further algebra shows that ind&d0) = —&(3)/¢(53).

(2.23)
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2.3 Largetimeasymptotics

We give the approach to equilibrium, distinguishing theesas xy positive or negative.
We note thap(z, 00) = 0if 5 < 0.

Theorem 4. Considerzg > 0.
(i) Forxz > 0,8 < (., ands # 0,

1 152, 1
_ ~— = e3Pt 3 B(wo—)
p(z,t) — p(z, 00) 2ﬁt3/26 1P e2

T+ T 1

S S ey R Ty R
(i) Forz < 0,8 < By, andp # 0,
p(z,t) — p(z, 00) Nmﬁe—%ﬁgte—%aﬂe%ﬁ(zo—z)
[1 — 2oR3(—p/4)] Dg2ya(—f — x) (2.25)
R3(—32/4) D2 /4(—5)
(i) Forx > 0andg > f.,
, te%ﬁ(zo—m)e—(m—l—xo)\/m
p(x,t) — p(z,00) ~e’? AT . (2.26)
(iv) Forxz < 0andg > S,
C1p2 150D g (—B — x) e3mof—o\/Br iR/
p(x,t) — p(x, 00) ~efPle P T Dlgl_jg(P(ﬂ—ﬁ)x) € AT . (2.27)
(v) Forx > 0andg = G.,
p(@,4) — pla, 00) N%e L6236, (0—a), (2.28)
(vi) Forz < 0andg = g,
p(z,t) — p(z, 00) N\/%e4ﬁ2t e~ 0%’ g3 B(zo—2 D%Z(/z;(ﬁ*ﬂ:)x)' (2.29)
Theorem 5. Considerzy < 0.
(i) Forx > 0,0 < By andfg # 0,
p(x,t) — p(x, 00) N2\/E1t3/2 e~ 1%t g3B(@o—a) o 37f
Dy2ja(=6 — z0) z 1 . (2.30)

Dg2ys(=B) | Ra(=B%/4)  RE(—3%/4)

6



(i) Forz < 0,8 < By, andp # 0,

1 1 1
—Zﬁ2te§ﬁ(xo—z)ez(m%—x2)

1
p(.’IJ,t) —p(x,oo) NQﬁtg/ze

1 Dpg24(=B — 2)Dg2 /4(—8 — x0)

“RCF D% (=) (231

(i) Forz > 0andg > g,

D_g, (=B — z0) o~ 38B—z\/0p+6%/4

D_g,(=P) ©;5(0p) (2:32)

p(z,t) — p(z, 00) ~efPt 8o 38%0

(iv) Forx < 0andg > f.,

D_g, (=8 —x0)D_g,(—8 —x)
D2, (—=B)p;(0p) '

p(z,t) — p(z, 00) Pt (@i —2%) g5 B(xo—2)
(2.33)

(v) Forz > 0andg = 3.,

Dy . —
p(z,t) — p(z, 00) Nie 1Bt 473 ¢ 3Px (w0—2) g2/a(=0 ) (2.34)

\/E Dﬁ2/4( ﬁ*)
(vi) Forx < 0andg = .,
p(z,t) — p(z,00) N%e‘iﬁgte%($3_$2)e%ﬂ*(“_$>
v
Dz ja(—f — ) Dga (B —
y 32/4(=Bx — ) Dpg2 /4 (=3 960)' (2.35)
62/4( 5*)

Here )y (0p) = (40p + %)~1/% — Rj(6p), as in (2.16). Whens = 0 the result is
independent oty and we have

1 1
{ : z >0, (2.36)

p(x,t) v e 2 g <.

vt
2.4 Spectral properties

We now examine some properties of the spectrum of the Halfitt\iffusion.

Theorem 6. While keepingy = = + 6 andyy = x¢ + [ fixed, and lettingd — oo,
the Halfin-Whitt diffusion converges to the free-space @insUhlenbeck process with
densityq(y, t) satisfyingg(y,0) = (v — vo),

9wty = L batw o)+ Latwt), yer (2.37)
8tq y7 - ay yq y7 aqu y7 9 y bl .
and with solution
_ 1 1 (Y —yoe ")
q(y,t) = oo\ T em &P [ di e | VE R. (2.38)
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This Ornstein-Uhlenbeck process is well known to have alpualiscrete spectrum, with
the corresponding Laplace transform having poles atl, —2, ... and the eigenfunctions
being Hermite polynomials. That is, (2.38) can be writtefisa® [17])

1wy 2 p (
€4 n yO)Dn(y) —nt

1) = e ™ yeR. 2.39
q(y,t) o nEZO | Y (2.39)

HereD,, (y) = e ¥*/42-"/2H, (y/+/2) where H,,(-) is thenth Hermite polynomial. Thus
the spectrum of the Halfin-Whitt diffusion should approakt set{0, —1,—2,...} asf
increases toward infinity. AS increases throughwe see the appearance of a polé,as

B increases through, = .1 ~ 1.85722 a second pole appears in the rariges? /4, 0),

and this pole rapidly settles tel as/ increases further. Further poles appear in the range
(—3%/4,0) at the critical valueg, » ~ 2.72133, B, 3 =~ 3.37465, B, 4 ~ 3.92155, and so

on. The critical values are squtionstﬁ2/4(—ﬁ) = 0; see Figure 1.

Figure 1: The functiorD’2/4(—ﬁ) for 8 € [0, 4].

The pole that first appears whgn= (3, n then settles to the valueN quickly, and the
spectrum thus approaches that of the Ornstein-Uhlenb&desgs in this manner. Lép
denote the location of th&-th pole (sofp = 6p1). Then we have the following estimate
of the approach of p v to —IV.

Theorem 7. As3 — oo we have

Opn + N L o B3 N =19 (2.40)
PN (N—l)' \/% ) — L& .
3 Proofs

3.1 Laplacetransforms

We now present the proofs of Theorems 1 and 2 détisfies (2.1) its Laplace transform

satisfies ) )
H d . d“p(x;
0p(x;0) = 0(x — o) = ———[A(2)p(x;0)] + %2),

— (3.1)



where B-Lp(x;0) 0
sz o) = PP 0), T
——[A(@)p(;0)] = { (o ) fop(:6) + plai0), = < 0.

First we takery > 0 so thatdo(z — xz9) = 0 in the ranger < 0. Forz < 0 we write
p = e~2*/4e¢=B2/2y and then (3.1) reduces to the differential equation (Eid@lyp. 116)

(3.2)

V' 4+ [2—0— L+ ) v =0, (3.3)

whose solution i®(x;0) = a1 (0)D_g(—3 — x), wherea, is still to be determined. Note
that D_y(—z) has Gaussian decay as— —oo, while D_y(z), which is a second solution
to the parabolic cylinder equation (3.3), grows |@é€z2/4) asz — —oo.

Forx > 0 the functionp = ¢"* satisfies the homogeneous version of (3.1) if

w® 4 fw — 0 =0, (3.4)
with solutionsw = 3[—3— /B2 + 40] andw, = 1[—3+ /B2 + 46)]. It thus follows that

. as(0)e"® + az(0)e**, 0<zx<w
p(x;@):{ 2() 3() 0

ay(f)e™*, x > x, (3.5)

whereas, ag anday still need to be determined. Continuity at= g yieldsﬁ(xar; 0) =
p(x, ;) and the derivative has a jumpag, with

g 0) — plag;0) = — /O d(z — xg)dz = —1, (3.6)

which translates into

e 4+ aze™* 0 = ue™™o, (3.7)

wae”? —wage — w,azeT = —1. (3.8)
Continuity atz = 0 of p andp, yields the additional relations

as+a3 = aD_p(—p), (3.9)
waz +weaz = —a1[Dy(=f) + 58D_o(—P)]. (3.10)

(3.7)-(3.10) give four equations for the four unknowms as, g anday. Some further
algebra and the definitioRz(6) = D’ ,(—8)/D—¢(—p3) yields

- 1 as(0)/F 140
N T ENTES TPk -

as(0)\/B% + 40 3.12)

" Rp(0) +w+ B/2°

as(f) = —az(0)

1 —TOWs
as(0) = \/ﬁe , (3.13)
a4 (0) = az(0) + as(h)e™o W), (3.14)

We thus obtain Theorem 1. Using the absolute vaiuez| allows us to write the solution
as a single formula that applies for all> 0 (cf. (2.5)).

9



To establish Theorem 2 we note that néw: — z) = 0 in the ranger > 0. Thus we
write

ﬁ(xa 9) = 74(9)6111@" x>0, (315)
and we neeg to decay forr — —oo SO we write
p(x;0) = 71(9)6_%9526_%5””D_9(—ﬂ —z), x<xo<0. (3.16)

But in the rangery < = < 0 the solution will involve both of the parabolic cylinder
functionsD_y(—3 — x) and Dy(8 + z), hence

pla;0) = ¢ 3773 [15(0) D_g(— 5 — z) + 73(0) Dy (8 + )] (3.17)
The functionsy; () are determined by continuity gfand %ﬁ atz = 0, which leads to
Y4 = 72D_o(=B) +13D—9(5), (3.18)
wy3 = —%ﬁm - 'YQD/_G(_ﬁ) + ’YBDI—G(ﬁ)a (3.19)
continuity ofp atx = z,
N1D—g(=B —x0) = v2D_p(=B — x0) +13D—-(3 + 70), (3.20)

and the jump condition of:p atz = z
—1 = S_imge_%ﬂxo |: — ’YQD/—G(_ﬁ - .’EO)
+ 3D g8 +30) + D y(—B—w0)].  (321)

Equations (3.18)-(3.21) givedx 4 linear system whose solution leads to Theorem 2. The
Wronskian identity (2.11) allows us to simplify some of thedfi expressions. In Theorem
2, A(0) is the same as; (0)e*0/4e—Fz0/2,

3.2 Asymptotic results

We now briefly derive the asymptotic results that appear ircféms 4-7. We merely
sketch the relaxation asymptotics that appear in Theorem<bnsider a contour integral
1 9(2) t
I(t) = — ——— ¢e*'dz. 3.22
O 201 o V2 + 1 922

HereBr is a vertical Bromwich contour in the-plane, with the integrand analytic to the
right of Br. First we assume that and g are analytic functions of in the half-plane
R(z) < —gp for somegy > 0 with g(0) # 0 and f(0) # 0. Then the asymptotics as
t — oo are governed by the branch pointzat= 0, if /= + f(z) = 0 has no solutions
in the rangeR(z) > 0. Under these assumptions we can obtain the asymptoticsa#)(3
simply by expanding the analytic functiorfsandg aboutz = 0:

-1 @ — vz 2)| e*tdz
0= 55 o 70) [1 7o) T )} ‘

g(0) d [Lfl (z*1/2> (t)]

~f2(0) dt
A1\ _ 1 g0)
= f2<0)dt(\/ﬁ> NG ON (3.23)

10



HereL !(F(z)) is the inverse Laplace transform Bf z).
If g(0) # 0 but f(0) = 0 then again expanding about= 0 leads to

I = % [ 40) [%+0(\/z)] etdz ~ ‘j/(—z_i. (3.24)

If f(2)++/z = 0hasasolution at = z, inthe rangeR(z) > 0, with f’(z*)+%z;1/2 #

0 then the simple pole at. determines the behavior éft) and we obtain

I(t) ~ : ;J(Z*l) et (3.25)
J(2) + 524

We can also consider the case where the branch point and m@ldose to each other.
Then f(0) would be small so we seft(0) = €. By expanding the integrand about= 0
and introducing the (large) time scale= e =27 we have

1 g(O) zt
I ~ 55 | 7a7=¢ 4
lelsgn(e)  2e T/OO 2
= ¢g(0)y ——— — —=e¢ e “dup. (3.26)
( ) { vl \/7_T VTsgn(e)

Fore > 0 andT — oo we recover the behavior in (3.23), as the right-hand sid&.@6)
become®)(T~3/2). Fore < 0 andT — oo (3.26) behaves as an exponential, as in (3.25).
Finally, if ¢ = 0 (3.26) becomesg(0)/+/7t, so that (3.24) is recovered as a special case.

Since D_y(+) is an entire function of), we immediately obtain Theorems 4 and 5.
Wheng = 0 or 8 = 3, the asymptotics follow from (3.24), wheh > g, (3.25) applies,
while for 3 < . (with 3 # 0) (3.23) holds. We must simply identify(z) and g(z)
from Theorems 1 and 2, which necessitates that we distindngsveen:, ;o positive and
negative.

To establish Theorem 6 we considerzy, < 0, where (2.10) applies. A§ — oo
D_y(—p) grows roughly as?’/4, so that for fixedy = = + g andyy = zo + 3, and
8 — oo, the second and third terms in the right-hand side of (2.40idty decay, as they
contain reciprocal factors dP_y(—). The first term then inverts to (2.13) which is the
same as (2.39) sind®,,(z) = (—1)"D,(—=z).

To derive Theorem 7 we study asymptotically,(as+ oo, the equation

D™D _ i, (3.27)

D_o(—DB)
For 5 — oo the right-hand side becomes
6] 20 262 _
5 [1+@—F+0(5 5. (3.28)
In this limit the parabolic cylinder functions have the emp@an
g a2 00 +1 _
Do) = (-0 [1- 22D o]
V2r 0—1 32 /4 -2
+Wﬁ e 1+0(677)]. (3.29)

11



The second term is exponentially Iar@((zﬁQ/‘l)) while the first term is exponentially
small O(e=7°/4)), unlessd = 0,—1,—2,.... In that casel/T'(9) vanishes and then
D,,(—0) is exponentially small, and proportional to théh Hermite polynomial. Our
analysis of (3.27) will show thaf# must be very close to a negative integer if (3.27)
holds. If this were not the case then the second term in (3:28)ld dominate and
D' ,(=B)/D_¢(—p) ~ —3/2 which could not equals (3.28) fgt — oc.

Forf — —N we have

DY 1
N! 6+ N
which is just the Laurent expansion Bff) near a pole. To balance the two parts of the

right-hand side of (3.29) we need to scéle- N to be roughlyO(e*fﬂ/?), so we define
WN by

r(9) =

+0(1), (3.30)

0+ N =wye P72, (3.31)
Then (3.29) becomes

N(N

D_o(=p) = 6_52/4{(—@]\’ [1 - 72@_ D 0(5—4)]

H=D)V N8N [1 4 0(572)] } (3.32)

wheref could be replaced by N in all factors except /T'(6). Up to an exponentially
small error, (3.28) becomes

8 N N? s

25 B +O0(577). (3.33)
Computing the logarithmic derivative of (3.29), with theabog (3.31), and equating the
result to (3.33) leads to

2
-5 o)
A(B) — V2rNlwy(—F)~N-1 ’ '
where
AB) = P MDy(=8) = (-BV[1 - IN(N - 1)572 + 0(87Y)], (3.35)

so thatA'(3)/A(B) = N/B+ N(N —1)/8% + O(87°) asf3 — oo. Thus the right-hand
side of (3.34), after some further expansion, becomes

f N N(N-1) or N

—— = = - NI(— wn |1+ o(1)]. 3.36
Comparing this to (3.33) we see that the first two terms agramaatically, and agreement
of theO(5~3) terms forces

L VAN ~ (3.37)
wn o~ == ON ~ N1 :

We also see that this analysis would predict that= 0, and indeed = 0 is a solution of
(3.27) (exactly) wherg > 0.

12
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