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A Probabilistic �max��� Approach for Determining

Railway Infrastructure Capacity

A�F� de Kort � B� Heidergott y H� Ayhan z

Abstract

We consider the problem of determining the capacity of a planned railway

infrastructure layout under uncertainties� In order to address the long�term

nature of the problem� in which the exact �future� demand of service is un�

known� we develop a �timetable	�free approach to avoid the speci
cation of a

particular timetable� We consider a generic infra�element that allows a con�

cise representation of many di�erent combinations of infrastructure� safety

systems and tra�c regimes� such as mixed double and single track lines �e�g�

a double track line including a single tunnel tube�� and train operations on

partly overlapping routes at station yards� We translate the capacity assess�

ment problem for such a generic infra�element into an optimization problem

and provide a solution procedure� We illustrate our approach with a capac�

ity assessment for the newly built high�speed railway line in the Netherlands�
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� Introduction

Capacity assessment for railway infrastructure plays a key role in the design of

layouts of infra�elements� such as tunnels� bridges� lines and complex railway

yards� such as stations� We de�ne capacity of a railway infra�element �denoted

by Nsys� as the maximal number of train movements that can be executed on the

particular infra�element in T time units �e�g� T � 	
 minutes� with probability

greater than or equal to p where p is a prede�ned reliability threshold� During

railway capacity assessments it is examined whether the proposed infrastructure

layout can handle the intended tra�c load �denoted by Nintended� within a pre�

de�ned level of quality� If capacity assessments yield negative results� that is� if

Nsys � Nintended with probability greater than p� alternative track layouts have to

be considered� In this way� railway planners can adequately weigh involved con�

struction costs against expected revenues �in terms of quality of service o
ered��

In fact� changes in the European railway market show that this cost awareness

argument for performing capacity studies is of growing importance� see �	��

The capacity of an infra�element is determined by �a� structural aspects� like

the proposed track layout and the underlying safety system� �b� timing aspects�

such as running times and dwelling times of trains as well as the amount of time

required for boarding and alighting� and �c� the timetable �precise arrangement

of train arrivals and departures in time and space�� Structural aspects remain

constant for many years ahead� and they are usually known during the planning

phase� This is in contrast to the timing aspects as well as the timetable� As

for the timing aspects� they are typically unknown during planning stages for

two reasons� ��� the future service demand �like the expected numbers of pas�

sengers traveling by train� and the types of rolling stock to be deployed during

operation� is unknown� and ��� external in�uences �like weather conditions and

malfunctioning of material� may cause �uctuations in the �actual� process times�

On the other hand� the timetable is usually altered at least once a year� and�

hence� it is not practical to use a particular timetable to assess the infrastructure

capacity�

The uncertainty about the timing aspects is dealt with by letting the correspond�
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ing variables be stochastic� and in order to obtain a capacity measurement that

is insensitive to a particular timetable� we apply �Wakob�s razor�� ��� we let

trains arrive to the infra�element with interarrival time 
� and ��� we assume

that initially there are in�nitely many trains waiting in reservoirs to enter the

infra�element� This saturation type of approach was introduced in ��
�� while

its e
ectiveness in practice was demonstrated in De Kort et al� ���� Apart from

avoiding the speci�cation of a particular timetable� Wakob�s razor has the bene�

�t that the measured capacity is independent of stochastic perturbations of the

�outer� system� that is� the cause of any observed delay has to be the layout of

the infra�element�

In order to model the infra�element according to steps ��� and ��� above� we de�

termine Nsys� the maximal number of train movements that can be executed in T

time units �e�g� T � 	
 minutes� with probability p � Hence� we consider the ca�

pacity to be su�cient if and only if Nsys � Nintended� A mathematical framework

most suitable for the analysis of transportation systems� such as train networks�

is the �max��� semi�ring �to be introduced presently�� and we model dynamics

of the train system �including the impact of the underlying safety system� by a

set of stochastic di
erence equations that are linear in the �max� �� semi�ring�

Heidergott � De Vries ��� provide a state�of�the�art overview of the applications

of �max��� techniques to the control of train networks�

The paper is organized as follows� Section � provides a brief introduction to

�max��� algebra� In Section �� we introduce our generic building block and we

derive the di
erence equations that describe the temporal dynamic behavior of

the building block� In Section �� we formulate the optimization problem and

provide a solution procedure� In Section �� we apply our approach to a real�

life situation� a capacity assessment for the new high�speed railway line in the

Netherlands� Section 	 concludes the paper�
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� The �Max��� Algebra

In this section we introduce the so�called �max��� algebra which will be the basic

reference algebra throughout this paper� Let � � �� and let us denote by IR�

the set IR � f�g� For elements a� b � IR� we de�ne the operations � and � by

a� b � max�a� b� and a � b � a� b �

where we adopt the convention that for all a � IR max�a���� � max���� a� � a

and a����� � ���a � ��� The set IR� together with the operations � and

� is called the �max����algebra and is denoted by IRmax� In particular� � is the

neutral element for the operation � and absorbing for �� that is� for all a � IR�

a� � � �� The neutral element for � is e � 
�

The name ��max����algebra� is only historically justi�ed since IRmax is by no

means an algebra in the classical sense� Structures like IRmax are referred to as

semi�rings� in the literature� Moreover� IR� is idempotent� that is� for all a � IR�

a�a � a� Idempotent semi�rings are called dioids in ���� Hence� the correct name

for IRmax would be �idempotent semi�ring� or �dioid� �which might explain why

the name ��max����algebra� is still predominant in the literature�� The structure

IRmax is richer than that of a dioid since � is commutative and has an inverse�

However� in what follows we will work with matrices over IRmax and thereby

lose� like in conventional algebra� commutativity and general invertability of the

product�

Observe that the idempotency of � implies that � has no inverse �which explains

why IRmax is not an algebra�� Indeed� if a �� � had an inverse element� say b�

w�r�t� �� then a � b � � would imply a � a � b � a � �� By idempotency� the

left�hand side equals a� b� whereas the right�hand side is equal to a� Hence� we

have a� b � a� which contradicts a� b � ��

We extend the �max����algebra operations to matrices in the following way� For

�A semi�ring is a set R endowed with two binary operations� � and �� so that� is associative

and commutative with zero�element �� � is associative and has zero�element e� � distributes

over � and � is absorbing for ��
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A�B � IRm�n
� � we de�ne A�B as follows

�A� B�ij � Aij � Bij � i � �� � � � � m� j � �� � � � � n�

For A � IRm�l
� and B � IRl�n

� � we de�ne A�B by

�A� B�ij �
lM

k��

Aik � Bkj � max
k

�Aik � Bkj� � ���

� The �max��� model of a generic infrastructure

element

This section provides the mathematical analysis of a generic infrastructure el�

ement� called �generic building block�� Here the term �generic� means that the

infrastructure element contains all basic elements of railway infrastructure� Par�

ticularly� the generic building block allows a concise representation of many dif�

ferent combinations of infrastructure� safety systems and tra�c regimes� such as

mixed double and single track lines �e�g� a double track line including a single

tunnel tube�� and train operations on partly overlapping routes at station yards�

The term �building block� stems from the fact that a complex railway network

can easily be represented by linking as many of these generic building blocks as

desired�

The overall capacity of a complex network can be approximated by the capacities

of its individual generic building blocks in the following way� First� the capacities

of the �building blocks� are determined in order to identify the potential bottle�

neck �building block� and then the capacity of this building block is taken as an

indicator for the capacity of the complex network� This is a common approach

in the railway planning business� see e�g� Schwanh�au�er � ��

This section is organized as follows� Section ��� introduces the generic building

block� In Section ��� we determine conditions for the departure times of trains

at speci�c locations of the generic building block� Based on these conditions�

we derive in Section ��� a set of di
erence equations for the dynamic behavior

of the generic building block that are linear in the �max��� semi�ring� Finally�
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in Section ��� we explain the stochasticity that is incorporated in this �max���

model�

��� Layout of the generic building block

Throughout this section we consider the generic building block given in Figure � �

In fact� the layout of this building block resembles that of an elementary bottle�

neck in any complex railway infrastructure network� Our generic building block

contains two parts of double track �i�e� separate tracks for opposite running di�

rections�� linked together by a single railway track� Each track lies between two

adjacent nodes� numbered from � to �
� Altogether� the building block thus rep�

resents a network of seven railway tracks� These tracks are numbered �� � � � � ��

as shown in Figure � �

In line with Wakob�s razor� we let an in�nite number of trains reside in reservoirs

in front of the isolated building block� For our model� we require two reservoirs�

one for each direction� which in turn are represented by nodes � and 	� respec�

tively� Hence� trains are generated at either reservoir and move to the downstream

node �either node � or �� where they enter the building block� From these points�

trains run on consecutive tracks according to the arrows� So� trains running from

left to right will visit tracks ��� ��� �� and �� �in consecutive order�� whereas trains

from right to left will do so via tracks ��� ��� �� and �	� Trains leave the building

block at nodes � and �
� respectively� Therefore� we call nodes � and �
 sinks�

As a �nal remark� observe that �� is used by all trains from both directions�

Consequently� this track should only be occupied by one train at a time to prevent

deadlocks and train collisions� Because of this� �� acts as the bottleneck of our

building block�

insert Figure � here

	



��� Departure conditions on the generic building block

In what follows� we provide conditions for departure times of a train from each

node in the generic building block� as a function of departure times of previous

trains� To this end� we de�ne xi�k� as the departure time of the kth train from

node i� for i � �� � � � � �
�

For the internal nodes of the system �i�e� all nodes except the reservoirs and

the sinks�� the departure time of the kth train depends on two conditions� ���

the train must be ready to leave the node� ��� the safety system should have

authorized the train to enter the downstream track�

Clearly� condition ��� means that the departure time of the kth train from node

i can not be earlier than its arrival time at node i which is equal to the sum

of its departure time from the node upstream of i �according to its running

direction�� say ��i�� and the travel time on the track between ��i� and i� Let

ai �
i��k� represent the required travel time between ��i� and i for the kth train

�including all relevant time components for running� dwelling� etc��� Then� the

�rst condition becomes

xi�k� � x�
i��k� � ai �
i��k� for k � � � ���

where ai j � 
 if j � ��i� and ai j � �� otherwise for all � 	 i 	 �
 and k � IN�

Condition ��� is satis�ed if the rear end of the �k � ��th train has reached a safe

position in front of the kth train� For simplicity� assume that this �track release�

is achieved some time after the front of the �k� ��th train has departed from the

node downstream of i� say ��i�� Then� the �track access condition� reads

xi�k� � x�
i��k � �� � ri �
i��k � �� for k � � � ���

where ri j�k� denotes the time elapsed before the track between i and j is released

by the kth train �emphasizing that train length must not be neglected�� We call

this type of time variable the release time of the associated track� Furthermore�

we have ri j � 
 if j � ��i� and ri j � �� otherwise for all � 	 i 	 �
 and k � IN�

Remark� Condition ��� represents a wide variety of safety regimes� More precisely�

we can make the condition suitable for any speci�c safety principle by choosing the
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appropriate value for the release time� For example� setting ri j � �� no more than one

train will occupy the track between nodes i and j at a time� whereas setting ri j � �

enables track occupation by several trains at the same time �e�g� with a moving block

safety system�� Bailey 	�
 provides a detailed overview of principles and properties of

safety and signaling systems in Europe�

At track ��� we actually have two track access conditions� namely one condition

for consecutive trains running in the same direction �see above� and another

condition for trains running in the opposite direction� In the latter case� we

have to deal with the order of succession in which trains enter track ��� For our

analysis� we assume that trains from either direction visit track �� alternately�

starting with a train running from left to right� This agrees with common railway

practice where dispatchers will only deviate from this alternate passing of trains

on single track parts of infrastructure to prevent large disturbances� As for our

formal analysis� the �xed order assumption allows us to model the generic building

block with the �max��� semi�ring �see Heidergott �����

The above �xed order assumption implies that the kth train running from right

to left will occupy �� after the kth train in the opposite direction has done so�

Accordingly� the kth departure time from node ! depends on the kth departure

from node � according to

x��k� � r���k� � x��k� � k � �� �� � � � �

where r���k� is again a release time� like r���k�� However� here r���k� refers

to the release time between opposite train movements� whereas r���k� applies to

trains running in the same direction� Conversely� the kth departure from node �

depends on the �k � ��th departure from node  � Hence�

x��k� � r�
�k � �� � x
�k � �� � k � �� �� � � � �

The departure conditions for the reservoirs are

x��k� � z��k� � x��k � �� � k � �

and

x��k� � z��k� � x��k� �� � k � � �

!



where zi�k� denotes the time between generation of the �k � ��th train and the

kth train �corresponding interarrival times at the entrance nodes � and � of the

system�� However� we assume that initially� an in�nite number of trains are

waiting at both sources� Moreover� we assume that there is a train ready to

enter the system at any time� Accordingly� we may set z��k� � z��k� � 


�deterministic�� Consequently� we have

x��k� � x��k � �� and x��k� � x��k � �� �

In addition� trains cannot leave either reservoir unless the respective downstream

track is released� Thus� track access conditions given in ��� should also be ful�lled

at the reservoirs�

Finally� trains leave the system immediately� once they have arrived at the sinks�

Consequently� train departure times from the sinks only depend on the required

travel time along the respective upstream tracks� that is� track access conditions

can be omitted in this case� Thus� the departure conditions from the sinks are

expressed as

x��k� � x��k� � a� ��k� � k � �

x���k� �x
�k� � a�� 
�k� � k � � �

��� Di�erence equations in �max��� algebra

We assume that each train departure from the respective nodes takes place im�

mediately after all conditions derived in Section ��� are satis�ed� We then obtain

 



the following di
erence equations in �max��� notation������������������������������
�����������������������������

x��k�� x��k � ��� �r�	�k� ��� x	�k� ���

x	�k�� �a	��k�� x��k��� �r	��k � ��� x��k � ���

x��k�� �a�	�k�� x	�k��� �r���k � ��� x��k � ���� �r�
�k � ��� x
�k � ���

x��k�� �a���k�� x��k��� �r���k � ��� x��k � ���

x��k�� a� ��k�� x��k�

x��k�� x��k � ��� �r���k� ��� x��k� ���

x��k�� �a���k�� x��k��� �r���k � ��� x��k � ���

x��k�� �r���k�� x��k��� �a���k�� x��k��� �r�
�k � ��� x
�k � ���

x
�k�� �a
��k�� x��k��� �r
���k� ��� x���k � ���

x���k�� a��
�k�� x
�k�

for k � �� �� � � � with the initial condition

x��� �

�
x���� � � � x�����

�T
�

�

 � � � � 
 � � � �

�T
�

We can simplify the above expressions for x��k� and x��k� as follows� We have

assumed that� independent of the release times rij � the kth train running from

left to right always passes track �� before the kth train from right to left� Conse�

quently� the �k � ��th departure time from node  dominates over the �k � ��th

departure time from node � in the release of ��� that is

r���k � ��� x��k � �� 	 r�
�k � ��� x
�k � �� �

Hence� we conclude that the term r���k � �� � x��k � �� is super�uous in the

expression for x��k� and

x��k� � �a� 	�k�� x	�k��� �r�
�k � ��� x
�k � ��� �

Likewise� we have

r�
�k � ��� x
�k � �� 	 r���k�� x��k� �

Consequently� we can leave out the term r�
�k� ��� x
�k� �� in the expression

for x��k�� which in turn results in

x��k� � ��r���k�� x��k��� �a���k�� x��k�� �

�




In matrix form� the above recursion then reads

x�k� � A��k�� x�k��A��k�� x�k � �� � ���

with

A��k� �

�
																												


�

a	��k� �

� a�	�k� �

� a� ��k� �

� a���k��

� � �

�a���k� �

r���k� � � a���k� �

� a
 ��k� �

� a��
�k��

�
����������������������������


and

A��k � �� �

�
																												


e r�	�k� �

� r	��k��

� � � � � � r�
�k� �

�r���k��

� � �

e r���k� �

� r���k� �

� � �

� r
���k�

�

�
����������������������������


�

In recursion ���� the term x�k� occurs on both sides of the equation� Using

basic results from the theory of the �max��� semi�ring� we transform ��� into a

recursion of type x�k � �� � A�k�� x�k�� To this end� we set

b�k� � A��k�� x�k � ��

then ��� reduces to

x�k� � A��k�� x�k�� b�k� � ���

��



For �xed k� the above equation can be written as x � A��x�b� It is well�known

that x � A�
� � b solves this equation� see Theorem ���� in ���� where

A�
� �

�M
i��

Ai
�

and

Ai
� � A� � � � �� A�� �z �

i times

denotes the ith power of A�� in particular� A�
� � E �a matrix with its diagonal

entries equal to e and the o
�diagonal entries equal to �� that is� E is the unit

element of matrix multiplication in the �max��� semi�ring�� If A� is a lower

triangular matrix� which is true in our case� then a �nite integer n exists such

that

A�
� �

nM
i��

Ai
� � �	�

and it is easily checked that in our case n � 	 �by determining the longest path in

the precedence graph associated with A��k�� i�e� containing the largest number

of edges� see Figure ���

insert Figure � here

Thus� ��� reads as

x�k� � A�
��k�� b�k� �

or� more explicitly�

x�k� � A�
��k��A��k�� x�k � �� � ���

As a �nal step� we set

A�k� � A�
��k � ���A��k � �� �

and obtain

x�k � �� � A�k�� x�k� �!�

as our �max��� model for the dynamic behavior of the generic building block�

Elements of the A�k� matrix are given in the appendix�

��



��	 The stochastic properties of the model

As explained in Section �� we assume that �a� the �internal� time variables� like

travel times� are stochastically independent� �b� the travel times on a particular

track are identically distributed� and �c� all random variables are de�ned on

a common probability space �"�F �P�� Note that� even though the travel and

release times are stochastically independent� the entries of A�k� are in general

dependent�

Remark� Observe that �max�
� models like in ��� do not distinguish between classes of

items �like trains in our case�� This implies that all time variables contained in A�k� apply

to all respective trains� However� in practice� each train may in fact be of di�erent type�

that is requiring di�erent travel times and release times� Still� we can incorporate class�

dependent travel times and release times into our �max�
��linear model by constructing

distributions that are weighted mixtures of the distributions corresponding to the present

distinct train types�

� Formulation of the capacity assessment problem

Our objective is to �nd the maximum number of train movements the system

can handle within a prede�ned period of time� denoted by T � In railway practice�

T is usually set equal to 	
 minutes as the intended operation involves the same

arrival and departure times during every operating hour�

Observe that x�k� contains the kth departure times from all nodes� In particular�

x��k� refers to the departure time of the kth train running from left to right�

and x���k� refers to the departure time of the kth train running from right to

left at the respective sinks� Thus� at time max�x��k�� x���k��� � 
 k trains have

left the system� This is tantamount to saying that the matrix A�k� describes the

transitions of the system for the kth train running from right to left and also for

the kth train running from left to right� simultaneously� Hence� for the rest of the

paper we will consider the kth pair of trains�

The �xed train order assumption for track �� implies that x���k� � x��k� �since

��



the kth train from left to right will be the �rst one to occupy ���� In other

words� at time x���k� the kth pair of trains has left the system� Consequently�

for any time period T � the number of train movements handled by the system

is determined by the last train from right to left which departed from node �


�just� before time T �

Since the entries of A�k� in �!� are stochastic� fx�k�g becomes a random sequence�

As a consequence� the state dynamics which we observe are those along a par�

ticular sample path 	 � "� denoted by fx�k�	�g� Moreover� since the number of

train movements is directly related to departure times at node �
� the number

of trains that can be processed in a time span T � i�e� the capacity� also becomes

random� In order to evaluate the system�s capacity� we introduce a pre�speci�ed

probability value p � �
� ��� which can be regarded as a measure for reliability of

train operations� and we evaluate the capacity Nsys of the generic building block

by solving the following optimization problem

max k

s�t�

P fx���k� 	 Tg � p

The optimal solution k� of the above optimization problem is equal to Nsys and

it can be computed as

k��inff k jP fx���k� 	 Tg � p g � ��

Hence� one needs to compute P fx���k� 	 Tg� Let 
k be the set of travel times

and release times that exist in the expression of x���k�� Then

P fx���k� 	 Tg �

Z
Sk

F �ds�� 
 
 
 � ds�k�

where F is the joint distribution of the random variables in the set 
k and

Sk � IRj�k j is the image of the event fxk��
� 	 Tg� Thus� computation of

P fx���k� 	 Tg requires the evaluation of a multi�dimensional integral� Exploit�

ing the property that Sk is a convex polytope� Ayhan and Wortman ��� convert

this cumbersome integral to a more straightforward optimization problem� Since

��



their technique also provides bounds for P fx���k� 	 Tg� in some cases the feasi�

bility of the constraint in the above optimization problem can be checked without

actually computing P fx���k� 	 Tg� The interested reader could refer to ��� for

the details of this algorithm� Note that for each value of p we need to solve this

optimization problem only once in order to determine k� �� Nsys��

� Application	 capacity assessment for HSL South


�� Problem statement

As an application� we consider the capacity assessment problem for the Nether�

lands portion of HSL South� the new high�speed railway line which is being built

in the Netherlands and will connect Amsterdam with Brussels and Paris via Rot�

terdam and vice versa� The Dutch part of the line will be operational in �

�

and from then on� the expected tra�c load will be ! trains per hour �in both

directions�� increasing up to �	 trains per hour by �
���

The Dutch part of the line includes three special tunnels� each with separated

tunnel tubes for both running directions� Figure � shows the line schematically�

with the tunnels under consideration represented by boxes� From North to South

�left to right�� the tunnels are called �Groene Hart� tunnel� �Oude Maas� tunnel

and �Dordtsche Kil� tunnel� respectively� The nodes are �ctitious points distin�

guishing the track parts for which we provide time values later on in this section�

The corresponding track distances are depicted in kilometers�

insert Figure � here

Due to the absence of emergency exits� at each tunnel only one tube may be used

at a time� in order to guarantee passengers a safe escape route �to the opposite

tunnel tube� in case of an emergency� In other words� if a train occupies one of the

tunnel tubes� the opposite tube is immediately blocked for other trains� Conse�

quently� even though HSL South is an entirely double track line� all three tunnels

��



behave like single track parts and as such� the capacity of the entire line may

be restricted too much to achieve the expected tra�c loads as indicated above�

An alternative would then be to build an extra tube �e�g� a service channel��

However� drilling a railway�tunnel tube costs about #�
�


 per running meter

�including the installation of all equipment�� which explains the importance of

carefully examining the capacity of the line�


�� Capacity assessment procedure

In order to determine whether the two�tube tunnel layout for HSL South o
ers

su�cient capacity to process the expected tra�c load� we proceed as follows�

Since each tunnel behaves as a single track part� we may split up the line into

three tunnel elements� each of which can be considered as a generic building

block� Following the line of argument in Section ���� we obtain for each of the

three tunnel elements a �max���model x
i��k��� � A
i��k��x
i��k� � i � �� � � � � ��

As a �rst step� we evaluate the capacity of each tunnel element� denoted by N

i�
sys�

for a �xed value of p � �
� ��� Subsequently� we take

Nsys � minfN 
i�
sys � � 	 i 	 � g

as an estimator for the capacity of the entire HSL South� Indeed� using the

minimum of these capacity indicators as an indication for the overall capacity is

a commonly adopted approach in railway planning� �see for example �!�� � � for

Schwanh�au�er�s funnel argument and also ��
���

Finally� we check if this capacity is su�cient to process the expected tra�c load

Nintended� Recall that ! 	 Nintended 	 �	� Thus� the capacity is su�cient if

Nsys � Nintended � ! �


�� Values for all time variables

According to the above assessment procedure� we have to evaluate A
i��k� for

each tunnel element� To this end� we have to de�ne the type of distributions that

�	



apply to every relevant time variable� More speci�cally� the following assumptions

are made�

� All non�negligible travel times consist of both a deterministic and a stochas�

tic component� Hence� aij�k� � aij��ij�k�� with aij denoting the determin�

istic travel time and �ij�k� denoting the delay for the kth train �k � �� �� � � ���

the distribution of which is given by

�ij�k�
Unif��
� ��� with probability 
� � and

�ij�k�
Exp��� with probability 
�
� �

where �
� � � �
aij
	 � while aij is expressed in minutes� So� for example�

if a train with a deterministic travel time of �
 minutes is delayed� then

the expected �large� delay is �� minutes� Although estimation of delay dis�

tributions is still an ongoing research topic� historical data indicates that

the majority of trains on the Netherlands railways are less than three min�

utes late on every trip� whereas large deviations are proportional to the

scheduled travel times�

� Once a train has left either reservoir� it immediately enters the generic

building block� Consequently� we have a	��k� � a���k� � 
� for k � ��

� All release times rij�k� are deterministic and �xed for all k � ��

� The single track part ���� is �released� for the next train immediately after

the front of the previous train has reached the exit node at either side of

the tunnel �i�e� node � or !�� Accordingly� we set r�
 � r�� � 
�

Tables �� � contain values for all relevant time variables that apply to HSL

South� from North to South and vice versa� respectively� All values are expressed

in minutes and determined for one speci�c type of rolling stock� namely two

coupled TGV trains� denoted TGV�� the main characteristics of which are given

in Table �� Among all types of rolling stock that will actually run on this line�

this particular type requires the smallest travel times� In this respect� we thus

obtain a best�case indication of the capacity� Furthermore� we assume that the

��



line is equipped with a moving block safety system� while allowing a maximum

speed of �

 km$h �where possible�� That is why negative release times appear

in Tables �� ��

insert Table � here

Finally� all trains are supposed to dwell twominutes at Rotterdam Central Station

for an intermediate stop� which is located between the Groene Hart tunnel and

Oude Maas tunnel� We refer to �	� for more technical details behind these values�

One should be aware that� in Tables � and �� the indices i and j refer to the node

de�ned in Figure �� rather than to the nodes belonging to a generic building

block� For example� a���k� in Table � corresponds to the travel time on track ��

of the generic building block for the Oude Maas tunnel� whereas it applies to the

travel time on �� with respect to the generic building block for the Groene Hart

tunnel�

insert Table � here

insert Table � here


�	 Numerical results

We present our numerical results in Table �� For each reliability measure p� we

provide the capacity of each tunnel as well as the capacity of the whole line� The

amount of time it takes to compute N

i�
sys for a given value of p and i �i � �� �� ��

takes only a few minutes �on a ��� MHZ PC�� Based on the outcomes for the

whole line �third column�� it is immediately clear that the expected tra�c load

lies signi�cantly higher than the capacity of the line for all values of p� That is�

Nsys 	 �� whereas Nintended � !� The Oude Maas tunnel acts as bottleneck for

HSL South� Moreover� the punctuality objectives of the Netherlands Railways

require a reliability measure p � 
� �� which in turn implies a capacity of at

most three trains per hour per direction for the entire line according to Table ��

Therefore� we conclude that the original layout with two�tube tunnels while per�

�!



mitting only one train at a time in each tunnel does not provide su�cient capacity

and hence either extra tunnel tubes are needed or the strategy that prevents the

simultaneous occupation of both tunnel tubes has to be abandoned �which of

course requires additional measures to guarantee that passengers can still safely

escape to the opposite tunnel tube in case of an emergency�� As a result� studies

on both options are now being performed to increase capacity of HSL South�

insert Table � here


 Conclusions

In this paper we illustrate that the �max��� semi�ring is a suitable mathematical

framework for analyzing the impact of infrastructure constraints� the underlying

safety system and special tra�c regimes� on the capacity of a given railway track

layout� Moreover� the generic building block concept allows a similar assessment

of infrastructure elements� lines and complex junctions since it focuses on the

potential bottlenecks of the layout under consideration� By adopting the principle

of Wakob�s razor �isolating the infrastructure while letting an in�nite number of

trains reside at the boundaries of the building block�� any observed delay can be

attributed to the track layout� In order to account for the stochastic nature of all

time variables� we consider the maximum number of trains per direction that can

be processed in T time units with a prede�ned probability p as our performance

measure�

An assessment for HSL South� concerning the capacity o
ered by the proposed

two�tube tunnel layout� shows that this probabilistic �max��� approach can be

e
ectively adopted to obtain insight into the long�term perspectives of railway

infrastructure� Since the computational e
orts are very small� it may serve as a

useful substitute to simulation in similar cases�

� 
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Appendix

Based on A�k� � A�
��k� ��� A��k � �� �see Section ����� we get

A�k� � �A���k� 
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Figure �� Layout of the generic building block
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Figure �� Precedence graph of A��k� �with its longest path shown bold�
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Figure �� Distances along HSL South and its three tunnels
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Table �� Main characteristics of TGV� rolling stock

length �

 m

maximum speed �

 km
h

emergency break

���
��
��
m
s	� if speed � ��� km
h

���m
s	� if speed 	 ��� km
h
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Table �� Relevant time values for HSL South from North to South �min� �see Figure ��

travel deterministic delay release deterministic

time part �ij�k� time part

aij�k� aij with p � 
� � with p � 
�
� rij�k� rij

a	��k� !�
� Unif��
���� Exp�
���� r�	�k� ����


a�	�k� ���� Unif��
���� Exp�
���� r	��k� 
���

a���k� � �	
 Unif��
���� Exp�
�
!� r���k� �� �
�

a���k� 
�!� Unif��
���� Exp�
�� � r���k� 
��


a���k� ��
� Unif��
���� Exp�
��!� r���k� �
���

a���k� 
� ! Unif��
���� Exp�
�� � r���k� 
���

a���k� ���� Unif��
���� Exp�
���� r���k� ����!
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Table �� Relevant time values for HSL South from South to North �min� �see Figure ��

travel deterministic delay release deterministic

time part �ij�k� time part

aij�k� aij with p � 
� � with p � 
�
� rij�k� rij

a��
�k� �� ! Unif��
���� Exp�
���� r
���k� �����

a�����k� 
� ! Unif��
���� Exp�
�� � r�����k� 
���

a�	���k� 
� � Unif��
���� Exp�
�� � r���	�k� �
���

a���	�k� 
� 
 Unif��
���� Exp�
�� � r�	���k� 
��!

a�����k� � �
� Unif��
���� Exp�
�
!� r�����k� ��!��!

a�����k� ���� Unif��
���� Exp�
���� r�����k� 
���

a�����k� !��� Unif��
���� Exp�
���� r�����k� �����
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Table �� Capacity for various values of reliability measure p �T  �� min��

N

i�
sys

p i � � i � � i � � Nsys � minfN

i�
sys � � 	 i 	 � g
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