
 

Low Complexity Sequential Probability Estimation and
Universal Compression for Binary Sequences with
Constrained Distributions
Citation for published version (APA):
Shamir, G. I., Tjalkens, T. J., & Willems, F. M. J. (2009). Low Complexity Sequential Probability Estimation and
Universal Compression for Binary Sequences with Constrained Distributions. In Information Theory, 2008. ISIT
2008. IEEE International Symposium, Toronto, Ontario, Canada, 06 - 11 July 2008 (pp. 995-999). Institute of
Electrical and Electronics Engineers. https://doi.org/10.1109/ISIT.2008.4595136

DOI:
10.1109/ISIT.2008.4595136

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.1109/ISIT.2008.4595136
https://doi.org/10.1109/ISIT.2008.4595136
https://research.tue.nl/en/publications/d37e07bf-b30c-4097-8632-55c9d8db6a2c


Low-Complexity Sequential Probability Estimation
and Universal Compression for Binary Sequences

with Constrained Distributions
Gil I. Shamir, Tjalling J. Tjalkens, and Frans M. J. Willems

Abstract— Two low-complexity methods are proposed for se-
quential probability assignment for binary independent and
identically distributed (i.i.d.) individual sequences with empir-
ical distributions whose governing parameters are known to
be bounded within a limited interval. The methods can be
applied to different problems where fast accurate estimation
of the maximizing sequence probability is very essential to
minimizing some loss. Such applications include applications in
finance, learning, channel estimation and decoding, prediction,
and universal compression. The application of the new methods
to universal compression is studied, and their universal coding
redundancies are analyzed. One of the methods is shown to
achieve the minimax redundancy within the inner region of the
limited parameter interval. The other method achieves better
performance on the region boundaries and is more robust
numerically to outliers. Simulation results support the analysis
of both methods. While non-asymptotically the gains may be
significant over standard methods that maximize the probability
over the complete parameter simplex, asymptotic gains are
in second order. However, these gains translate to meaningful
significant factor gains in other applications, such as financial
ones. Moreover, the methods proposed generate estimators that
are constrained within a given interval throughout the complete
estimation process which are essential to applications such as
sequential binary channel crossover estimation. The results for
the binary case lay the foundation to studying larger alphabets.

I. INTRODUCTION

Universal sequence probability assignment and sequence

probability estimation are important in applications in finance,

learning, channel estimation, prediction, universal compres-

sion, and more. The goal is to assign probability as large as

possible to a sequence, whose governing parameters under a

known governing statistical model are unknown in advance.

Classical universal sequential probability assignment methods

(see, e.g., [3], [9]) assign such a probability under the as-

sumption that the governing parameters can be at any point in

the complete parameter simplex. Averaging over the complete

parameter space with some weighting prior gives simple add-

constant estimators, such as the add-
� � �

Krichesvky-Trofimov
(KT) estimator [3]. Such estimators give each symbol a con-

stant number of occurrences prior to the start of the sequence.

In many cases, there may exist some advance knowledge

that indicates that the governing parameters can be only inside
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F. M. J. Willems are with the Eindhoven University of Technology, Electrical
Engineering Department, 5600 MB Eindhoven, The Netherlands, e-mails:
T.J.Tjalkens@tue.nl, F.M.J.Willems@tue.nl. The work of the first author was
partially supported by NSF Grant CCF-0347969.

a subset of the parameter space. The use of such knowledge

can reduce losses attained due to lack of prior knowledge

of the actual governing parameters. Consider, for example, a

binary independent and identically distributed (i.i.d.) sequence

for which it is known that the maximum likelihood (ML)

estimate of a
�

bit ��
is within a limited interval � 	 � 
 � � � � � � � .

In [2], the minimax universal coding redundancy (for the best

code and worst sequence) was derived for this case, and was

shown to reduce from the standard case. Designing sequential

estimators that average only over a subset of the parameter

space, however, is more complicated than the standard case.

In this paper, we consider the simple binary i.i.d. case

described as a basis to a more general case. We design low-

complexity probability assignment methods for a sequence� � whose unknown ML parameter ��
is known to be inside

the interval � 	 � 
 � . We then bound the universal compression

redundancy obtained by these schemes and show the gains

that can be attained over the standard methods. These gains

asymptotically reduce the second order of the redundancy.

However, they can be significant for shorter data blocks.

Furthermore, they can accumulate to large gains with larger

alphabets if the source parameters are described by decom-
posing the parameters into binary trees. When compressing

sources with memory with an algorithm such as the context
tree weighting (CTW) [9], the statistics in each state of the

source are of an i.i.d. source. If gains are achieved for each

state, they can accumulate to large overall gains in practice.

Gains may extend well beyond compression to applications

in prediction, estimation, universal investment portfolios [1],

and more. While the loss in compression is logarithmic in the

ratio between the maximizing probability and the assigned one

(i.e., the attenuation of the maximizing probability by the esti-

mator), other loss functions may be linear in this attenuation.

A single bit gain in compression reflects a factor of
�

gain in

this ratio. Consider a process constantly selecting reinvestment

between two investment types. With some probability one

investment will double, while the other will be lost. With the

remaining probability, the opposite outcome will take place.

Universal compression redundancy gain of � bits is equivalent

to an increase in wealth here by a factor of � .

Unlike the standard KT estimator, the initial estimates of

the new estimators are already biased in the proper direction,

leading to earlier convergence to the maximizing probability

and to the gain in performance. Some applications, such as

crossover probability estimation of a binary symmetric channel
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(BSC), cannot tolerate estimators outside some known interval,

which may lead to catastrophic performance.

Two methods are proposed for the sequential estimator.

The first directly mixes over the limited parameter space

with a normalized truncated Dirichlet-
� � �

prior. Over the

complete interval, this prior gives the KT estimator. The

second addresses the bounded parameter interval as that of a

parameter that results from passing a sequence � � generated

with a parameter � 
 � 
 � � � through a noisy binary channel

to generate � � (see, e.g., [6], [7]). The estimator attempts to

estimate the parameter of the “clean” sequence and transform

it to the noisy sequence.

II. NOTATION AND PRELIMINARIES

Let � � �� � � � � � � � � � � � � � � be a sequence of � i.i.d. bits,

consisting of � � � � � � �
bits and � ! � � � � 
 bits. Its ML estimate

of the probability of
�

is "# � � � � � � � � � . It is assumed that"# 
 � $ � ' � , 
 ) $ , ' ) �
, where $ and ' are known in

advance. The ML probability of � � is given by. 01 � � � � � "# � 3 5 6 8 9 ; � � = "# � � > 5 6 8 9 � (1)

The individual sequence redundancy of a code that assigns

probability ? � � � � to � � is given by 1@ � � ? � � � � �� B C D . 01 � � � � = B C D ? � � � � � (2)

The individual minimax redundancy of a class E is that of

the best code for the worst sequence that can be produced by

the class. The minimax redundancy for the class F H I J of binary

i.i.d. sequences whose governing parameter is constrained to

the interval � $ � ' � was computed in [2], and shown to be 2@ � � F H I J � � �� B C D � K B C D M H I J = �� B C D O � K Q R � T � U � W � (3)

whereM H I J � Y J
H 
 � Z [ �\ � � � = � � � R ^ _ ` T � \ ' = ^ _ ` T � c $ W � (4)

The minimax redundancy derivation allows for sequences � �
for which "# f
 � $ � ' � . The ML estimator "# i

for such sequences

must still be constrained such that "# i 
 � $ � ' � . Thus if "# ) $
then "# i � $ and if "# k ' then "# i � ' . Here, we only

consider "# 
 � $ � ' � .
In the special case of � $ � ' � � � 
 � � � , M ! I � � O � �

, yielding@ � � F ! I � � � �� B C D � K �� B C D O � K Q R � T � U � W � (5)

Practical probability assignments for this case can be obtained

by mixing (averaging) the sequence probability over the com-

plete parameter space with some prior o � # � that integrates to�
over this space. This gives a sequence � � probability

? � � � � � Y �
! o � # � # � 3 5 6 8 9 � � = # � � > 5 6 8 9 [ # � (6)

1The logarithm function is taken to the base of p . We ignore integer length
constraints, and treat q s t v w x y { | as the code length.

2For two functions } x ~ | and � x ~ | , } x ~ | � � x � x ~ | | if � � � � ~ � , such
that, � ~ � ~ � , � } x ~ | � � � � � x ~ | � ; } x ~ | � � x � x ~ | | if � � � ~ � , such that,� ~ � ~ � , � } x ~ | � � � � � x ~ | � .

A uniform prior gives the well-known add-1 Laplace estimator.

While this estimator attains good redundancy in the inner

part of the interval, it fails to perform well in the boundaries

(around 
 and
�
). A Dirichlet-

� � �
(beta) prior, given by

o � # � � �
O \ # � � = # � (7)

gives the well-known add-
� � �

KT estimator [3], which can be

assigned to � � sequentially. The KT estimator is initialized to? � � ! � � �
, and is updated by

? � � � � � � � ? � � � � ; � 6 � � 3 � � � � K 
 � Z� K � (8)

where � 6 � � 3 � � � � is the occurrence count of bit � � � � in the

prefix sequence � � .

The KT estimator performs more uniformly over the interval� 
 � � � , but is yet not minimax optimal (see, e.g., [11]) in second

order due to losses that still occur in the boundaries. Specifi-

cally, in the binary case, it achieves asymptotic redundancy@ � � ? � � � � � � ) �� B C D � K �� B C D O � K   � � � (9)

if "# 
 � � T ¡ � � = � T ¡ � for an arbitrarily small ¢ k 
 .

Otherwise,@ � � ? � � � � � � ) �� B C D � K �� B C D O � K �� � B C D £ K Q ¦ �
� § (10)

as long as 
 , "# , �
. Finally,@ � � ? � � � � � � ) �� B C D � K �� B C D O K Q ¦ �

� § (11)

for "# � 
 or "# � �
. In [9], it was shown that even for small� ,

@ � � ? � � � � � � is guaranteed not to exceed 
 � Z B C D � K �
.

III. METHOD I: SCALED CUT OFF DIRICHLET-
� � �

PRIOR

To derive a sequential probability estimate within � $ � ' � , we

can cut off the Dirichlet-
� � �

prior to the interval � $ � ' � and

scale the resulting prior. This leads to

? � � � � � Y J
H

�� M H I J \ # � � = # � # � 3 5 6 8 9 � � = # � � > 5 6 8 9 [ # �
(12)

The constant M H I J results from the scaling. It is given in (4)

and guarantees that the prior integrates to
�

over � $ � ' � .
Theorem 1: The probability assigned to � � in (12) can be

computed sequentially by an initialization step ? � � ! � � �
,

and an update step,

? � � � � � � � ? � � � � ; � 6 � � 3 � � � � K 
 � Z� K � K
� � � � � � = � � ; $ � 3 5 6 � 9 � ! « ¬ � � = $ � � > 5 6 � 9 � ! « ¬� M H I J ; � � K � � =
� � � � � � = � � ; ' � 3 5 6 � 9 � ! « ¬ � � = ' � � > 5 6 � 9 � ! « ¬� M H I J ; � � K � � � (13)

Note that the KT estimator is a special case of the above

sequential assignment with � $ � 
 � ' � � � . Specifically, in

that case, M H I J � O � �
, and (13) reduces to the binary form of
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the KT estimator in (8). The proof of Theorem 1 is presented

in [6] and [8] and is based on integration by parts and the fact

that � � � � � � � � � � � � � � � � � 
 � , where the latter two denote

concatenation of � and


, respectively, to the string � � .

Theorem 1 derives a limited interval version of the KT esti-

mator. A similar approach can be taken with a uniform prior,

yielding a limited interval version of the Laplace estimator.

Theorem 2: Fix � arbitrarily small, and let � be sufficiently

large. Let 
� � � � � � � � � � � � � � � � be the ML estimator of a

sequence � � . Define � � �� 
 � ! � � " $ . Then,

% � � � � � � � '



( ) * , � � ) * , / 0 1 2 3 

( ) * , 4 ( � 6 � 
 � (14)

for 
� � � � � � � � � 3 � � � . Second,

% � � � � � � � '



( ) * , � � ) * , / 0 1 2 3 

( ) * , 4 9 � 6 � 
 � (15)

for 
� � � � � � � � � � or 
� � � � 3 � � � � � where in both cases
 � � � " < $ ' 
� ' 
 3 
 � � � " < $ . Finally,

% � � � � � � � '



( ) * , � � ) * , / 0 1 2 3 

( ) * , 4 > � 6 � 
 � (16)

for 
� @� B 
 � � � " < $ � 
 3 
 � � � " < $ D .

Theorem 2 shows that the sequential estimator of Theorem 1

asymptotically achieves the minimax redundancy in (5) in the

inner part of the interval � � � � � . At the boundaries of the

interval, there is a penalty of



bit, unless the interval boundary

is close to either � or


. In the latter case, a lower penalty above

the minimax redundancy in (5) of

 � (

bit is obtained.

The bounds of (14) and (16) reduce to the respective

asymptotic bounds of the KT estimator for 
� � � � � 
 � . The

new estimator gains (a reduction of) ) * , � 4 � ( � 3 ) * , / 0 1 2 bits

over the KT estimator. The gain is reduced in inner boundaries

because the mixture does not include the other side of the

boundary. The universal gains over standard KT encoding

shown in Theorem 2 are in second order performance. As

shown in the numerical results in Section V, these gains

are essential for moderate to short block sizes. However, the

universal compression gains can translate in other applications

to significant factors of probability estimator attenuation gains.

The proof of Theorem 2 is rather complicated and is

presented in [8]. The idea is to compute the redundancy as

a difference of logarithms, and insert
H JK � � � � into the kernel

integral. Then, the integration interval is reduced, such that

any point within the integral is asymptotically in the vicinity

of 
�
. This allows approximations that bring the integral into

one over a Gaussian distribution. The integration interval is

carefully designed, so that the integral approaches



for the

inner part of the interval, and

 � (

at the boundaries. Adjusting

constants, the redundancy bounds are obtained. Boundary

bounds plotted in Section V are more precise than (15). A

different approach is taken for � � � or � � 

.

IV. METHOD II: TRANSFORMED DIRICHLET-

 � (

PRIOR

The sequential estimator in Theorem 1 appears to be the

generalization of the KT estimator for a limited parameter

interval, and has similar properties with respect to minimax

performance in its parameter space. It thus looses in perfor-

mance at the boundaries. For specific values of � , � , and � ,

it may be possible to obtain more uniform performance with

a different estimator.

A bigger problem of the estimator in Theorem 1 is its

numerical robustness. Unlike sequential estimators based on

the standard approach (see, e.g., [3], [4], [5], [9], [10]) which

may generate several probability estimators and add them to

provide � � � � � , the estimator of Theorem 1 adds but may also

subtract a bias from a quantity updated sequentially. The sign

of the bias depends on the actual bits in � � . Subtraction of

very small biases from very small probabilities can lead to

lack of numerical stability, resulting in inaccurate probabil-

ity estimators, including negative estimates. This problem is

enhanced when the actual 
�
is outside the assumed interval� � � � � . This leads to the necessity of a more standard approach

estimator.

As shown in [6], [7], one can view a sequence � � governed

by
� � � � � � � as a noisy version of a “clean” sequence N �

governed by O � � � � 
 � . The clean sequence is transformed

through a binary channel with
H � R � 
 U V � � � � W andH � R � � U V � 
 � � Y to produce the noisy one, where capital

letters denote random variables. This setting implies that

� � � 
 3 O � W � O � 
 3 Y � \ O � � 3 W
 3 Y 3 W (17)

The relation between � , � and W , Y is � � W and � � 
 3 Y .

Using (17), a Dirichlet-

 � (

prior over O transforms to

^ � � � � 

4 _ � � 3 W � � 
 3 Y 3 � � � 


4 _ � � 3 � � � � 3 � � a
(18)

Alternatively, a probability can be assigned to � � by as-

signing it first to N � and transforming N � over the channel.

Due to the stochastic nature of the channel, however, a

sequence � � can result from all possible sequences N � with

the proper bits inverted. Hence, the assignment of � � � � � is

a sum of mixtures. For every possible N � , a mixture over the

parameter O is performed. Then, assignments over all possibleN � are summed together with proper weights. Each � � N � � is

weighted by the probability that N � transforms to the given � � .

For simplicity, let b � � d � � � � and e � � � � � � � . For a specific

pair N � and � � , use f d d � f d d � N � � � � � � f d � � f d � � N � � � � � �f � d � f � d � N � � � � � � and f � � � f � � � N � � � � � to denote the

joint occurrence count of the subscript pair in � N � � � � � . The

conditional probability that � � is produced at the output of the

channel with input N � is given byH � � � U N � � � � 
 3 W � i j j W i j m � 
 3 Y � i m m Y i m j a (19)

With prior ^ � O � ,

� � N � � � p
�

d ^ � O � � 
 3 O � i j j q i j m O i m j q i m m r O (20)

and the probability assigned to � � is given by

� � � � � � s t
u � � N � � H � � � U N � � a (21)
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Theorem 3: Let � � � � be the Dirichlet-
� � 	

prior over 
 � 
 � �
given in (7). Then, the assignment in (21) satisfies

� � � � � � � �
�

� � � � � � � � � ! � � � " � � � �
$ % � � ! & � � ' ! � � ( ) � * (22)

Theorem 3 shows that mixing the probability assigned to + �
over � and transforming + � to � � is identical to directly mixing

the probability assigned to � � using the prior over
�

in (18)

that results from mapping � to
�

.

Proof: Observing that - . . 1 - 3 . � 4 and - . 3 1 - 3 3 � 7
and that for a given sequence � � , there are precisely 8 :; " " = 8 ?; " � =
sequences + � that together with � � have the joint composition� - . . 
 - . 3 
 - 3 . 
 - 3 3 � , it follows that

� � � � � � C D � � 3
. � � � � E � � ! � � � � ! G � H ; " " E � � ! � � G H ; " �

( E � I H ; � " E � � � ! I � H ; � � ) �
� � 3

. � � � � :CK L . ?CM L . O 4P Q O 7R Q E � � ! � � � � ! G � H K
( E � � ! � � G H M E � I H : S K E � � � ! I � H ? S M ) �� � 3

. � � � � E � � ! � � � � ! G � 1 � I H :( E � � ! � � G 1 � � � ! I � H ? ) � (23)

Substituting the Dirichlet-
� � 	

prior to � � � � , changing vari-

ables following (17), recalling that 4 � U . � � � � , 7 � U 3 � � � � ,& � G , and ' � � ! I , (23) yields (22).

It remains to show how (21) can be implemented with a

low-complexity sequential algorithm. This can be done using

a state transition diagram which resembles those proposed in

[4], [5], [10]. A state W at time
X

represents the composite

(type) of all sequences + Y with equal empirical distributions.

It will be denoted by U 3 � + Y � for all + Y leading to W . Therefore,

there are
X 1 �

states W � � 
 � 
 * * * 
 X
at time

X
. Each state is

assigned a weight[ Y 8 W 
 � Y = � CD \ ^ � � � D \ � L ` � 8 + Y = a 8 � Y b + Y =
(24)

that is the contribution of its type to � � � Y � . Then,

� 8 � Y = � YC ` L . [ Y 8 W 
 � Y = * (25)

State weights are updates sequentially. Initially, only W � �
exists, and its weight is initialized by

[ . 8 W 
 � . = � �
. At anyX

,
[ Y � W 
 � Y � � � for all W f � or W g X

, by definition. Then,

for every W � � 
 � 
 * * * 
 X
, the following update is performed at

time
X
,[ Y 8 W 
 � Y =

(26)� 
 � � ! G � � � ! � Y � 1 G � Y � ( X ! W ! � * hX ( [ Y S 3 8 W 
 � Y S 3 = 1

 � � ! I � � Y 1 I � � ! � Y � � ( W ! � * hX ( [ Y S 3 8 W ! � 
 � Y S 3 = *

After updating all existing states at time
X
, (25) is used to

update � � � Y � . The idea is that regardless of � Y , each state W ,

0 0000

1

432

1-p

10t

yt 1 00

1 1 1 1

2 2 2

3 3

4

1-p

1-p

1-p

1-p

p

p

p

p

p

q q

q

q

q

1-q

1-q

1-q

1-q

1-q

Fig. 1: State transition diagram for the probability assignment

in (25)-(26) for the sequence � j � � � � � .

� f W f X
, can be entered either from itself, by + Y � � , or fromW ! �

if + Y � �
. State W � � can only be entered from itself

with + Y � � , and state W � X
only from

X ! �
by + Y � �

. The

first term in each component of the sum in (26) gives
a � � Y b + Y �

for the proper state transition (either from W to W or from W ! �
to W ). The second term is the KT probability of + Y , which

implements the mixture over � . Figure 1 illustrates a transition

diagram. The updates of the first terms in the products in (26)

are denoted on the transitions.

Unlike the fixed per-symbol complexity assignment of

Theorem 1, the method in (25)-(26) has linear per-symbol

complexity (quadratic overall). However, on the other hand,

it is numerically more robust, because no subtractions are

performed. It is possible to lower the complexity by keeping

only a small fraction of surviving states in the diagram,

consisting of W � U 3 � + Y � , for which
b U 3 � + Y � � X ! � b o q ,

where � is the transformed value of
� � U 3 � � Y � � X

in (17).

The reduction of complexity using this method is beyond the

scope of this paper, but is studied in future work.

The asymptotic redundancy achieved by the probability

assignment in (25)-(26) is summarized below

Theorem 4: Fix r arbitrarily small, and let U be sufficiently

large. Let s� � U 3 � � � � � U t 
 & 
 ' � be the ML estimator of a

sequence � � . Define r 3 y� � � z U 3 S | . Then,} � � � 
 � � � o �	 ~ � � U 1 �	 ~ � � $ 	 1 �	 ~ � � O � ! & s� Q
1 �	 ~ � � O � ! � ! '� ! s� Q 1 � � � � (27)

for s� t 
 & 1 r 3 
 ' ! r 3 � . For s� � & g � ,} � � � 
 � � � o � 1 r� ~ � � U 1 �	 ~ � � � 	 $ � 1 �	 ~ � � ' ! &% & � � ! & � 1 � � � �
(28)

and for s� � ' f �
,} � � � 
 � � � o � 1 r� ~ � � U 1 �	 ~ � � � 	 $ � 1 �	 ~ � � ' ! &% ' � � ! ' � 1 � � � � *

(29)
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Fig. 2: Individual sequence redundancy for the KT estimate

and the two sequential estimators for bounded intervals for

� � � � � � ,
� � 
 � � 
 � � � � � and the same range of ��

.

Theorem 4 shows that the redundancy of this scheme depends

on the value of ��
. The redundancy in the first region can be

uniformly bounded by

� � � � � � � � �



� � � � � �



� � � � ! � � � � � " # $% " � 
 # $ � � ( � 
 � �
(30)

Unlike the method in Theorem 1, the method here gains in

first order in the region boundaries, reducing the first order

redundancy term by a factor of
�
. The proof of Theorem 4

appears in [8], and applies similar techniques of the proof of

Theorem 2, although somewhat differently.

V. NUMERICAL RESULTS

Figures 2 and 3 show redundancy obtained for the KT

estimator and the two bounded probability interval estimators

proposed. Each figure shows � � � � bits coded with parameter

within a different interval. The gains of the new methods over

the KT estimator are clear and are significant even for � � � �
bits. The performance of the estimators in the simulations

matches the bounds in Theorems 2 and 4. The performance

of the first estimator of Theorem 1 is shown to be better and

almost uniform in the inner part of the interval, while the

second estimator is better around non-extreme boundaries.

VI. SUMMARY AND CONCLUSIONS

Two low-complexity sequential estimators were proposed

for probability assignment to binary sequences whose em-

pirical parameter is known to be confined within an interval


 $ � " � with $ - � , and " / 

. The redundancy performances

of universal compression codes that use the estimators were

bounded. Due to the use of the confined interval, the estimators

were shown to gain on standard methods as the KT estimator.

One estimator, based on cutting off and scaling the standard

Dirichlet-

 1 �

for the interval 
 $ � " � , was shown to perform

rather uniformly in the inner part of the interval. The other
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Fig. 3: Individual sequence redundancy for the KT estimate

and the two sequential estimators for bounded intervals for

� � � � � � ,
� � 
 � � � � � � and the same range of ��

.

was stronger in non-extreme boundaries. The methods can be

used for many applications, including applications in which

losses are linearly proportional to the ratio between assigned

probability and the maximizing probability, such as financial

applications. The gains over standard methods then become

even more significant. Finally, the methods proposed in this

work lay the foundation to the more general non-binary case,

in which the parameters governing a sequence are possibly

confined to only a small subspace of the parameter space.
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