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Recurrence and Transience Criteria for

Directed�edge�reinforced Random Walk and

Random Walk in Random Environment on

Some Tube�like Graphs

Michael S� Keane � Silke W� W� Rolles y

October ��� ����

Abstract

We introduce directed�edge�reinforced random walk and prove that

the process is equivalent to a random walk in random environment� Us�

ing Oseledec�s multiplicative ergodic theorem� we obtain recurrence and

transience criteria for random walk in random environment on graphs with

a certain linear structure and apply them to directed�edge�reinforced ran�

dom walk�

� Introduction

Let G be a �nite or in�nite connected locally �nite graph with all edges directed�
We introduce directed�edge�reinforced random walk �DRRW� on G as follows�
Each edge is given a strictly positive real number as initial weight� In each step
the random walker traverses a directed edge pointing from her current location
to an adjacent vertex with probability proportional to the weight of the edge
chosen� Each time an edge is traversed� its weight is increased by ��

We prove that DRRW is equivalent to a random walk in random environment
�RWRE� with independent environment �Theorem ��� If all initial values are
equal to �� then the transition probabilities at vertex v are distributed according
to a uniform distribution on the d	dimensional simplex with d equal to the out
degree of v
 transition probabilities at di�erent vertices are independent� In case
of general initial values the transition probabilities have a Dirichlet distribution�

We are interested in the question on which graphs DRRW is recurrent� It
follows immediately from Solomon�s criterion for RWRE 
Sol��� that DRRW on
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Z with all initial values equal to � is recurrent� For the two	dimensional integer
lattice the recurrence question seems to be open�

In this article we study the recurrence problem for DRRW and RWRE on Z�
G with G a �nite connected graph� We assume that the transition probabilities
of the RWRE at the di�erent levels fig �G� i � Z� are i�i�d�� Using Oseledec�s
multiplicative ergodic theorem� we �nd necessary and su�cient conditions for
recurrence and transience of RWRE in terms of the Lyapunov exponents of
certain random matrices� This approach is similar to the one in 
Key��� where
RWRE on Z with jumps of bounded size is studied� We prove that RWRE is
recurrent if the transition probabilities have a certain symmetry property� In
particular� we obtain recurrence of DRRW with all initial values equal�

After �nishing this paper� we learned that Bolthausen and Goldscheid 
BG���
have a characterization of recurrence and transience of RWRE on Z�G in terms
of the top Lyapunov exponent of certain non	negative randommatrices� It seems
that Corollaries � to � can be proved using their results� However they do not
discuss reinforced random walks� and the random matrices we consider are more
intuitively de�ned�

Every graph can be turned into a directed graph by replacing each edge by
two directed edges with opposite directions� DRRW on this graph di�ers from
so called edge	reinforced random walk which has been introduced by Copper	
smith and Diaconis in ����� Edge	reinforced random walk �ERRW� is a nearest
neighbour random walk on a non	directed graph� Each edge has a strictly posi	
tive number as a weight� Each time an edge is traversed� its weight is increased
by �� independent of the direction in which the edge is traversed� The random
walker moves in each step to an adjacent vertex with a probability proportional
to the weight of the traversed edge�

The �rst time a vertex v is visited� the probabilities to leave vertex v depend
in case of ERRW on the edge that has been traversed to reach v� whereas they
do not depend on this edge for DRRW� The small di�erence in the de�nition of
ERRW and DRRW results in a signi�cant di�erence of the processes� On �nite
graphs for example� ERRW is equivalent to a reversible RWRE with dependent
environment 
KR���� whereas DRRW is equivalent to a non	reversible RWRE
with independent environment�

For ERRW not much is known about recurrence� It is easy to show that
ERRW on Z is recurrent� but even forZ�f�� �gwe do not know of any recurrence
proof�

The exposition is organized as follows� In Section �� we de�ne DRRW and
RWRE on a general graph� and state our results� In Section �� we study the
potential equations on Z� G� They can be written in terms of products of
random matrices� In Section �� we use Oseledec�s multiplicative ergodic theorem
to obtain an abstract characterization of recurrence and transience for RWRE�
We obtain also a su�cient criterion for recurrence which is easy to verify� In
Section �� we prove that DRRW is equivalent to a RWRE� and apply the criteria
from section � to DRRW�
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� De�nitions and Results

Let G � �V�E� be a connected graph with vertex set V and edge set E� We
assume that each vertex has only �nitely many neighbours and all edges are
directed� Between two vertices u and v with u �� v there may be two parallel
edges� one from u to v and one from v to u� For simplicity of notation� we do not
allow parallel edges with the same direction� All proofs remain valid without
this assumption� For a directed edge e � �u� v� from vertex u to vertex v� we
call �e �� v the head of e and �e �� u the tail of e� We do not require that head
and tail of an edge are di�erent�

Each edge is given a strictly positive weight� At time � the weights are
non	random
 edge e has weight a�e�� We denote by wn�e� the weight of edge e
at time n �just after the nth step� and by wn�v� the sum of the weights of the
edges incident to vertex v�

Let v� � V � We de�ne directed�edge�reinforced random walk with starting
point v� to be a sequence X � �X�� X�� X�� � � � � with Xi taking values in V �
P �X� � v�� � � and

P �Xn�� � vjX�� X�� � � � � Xn� �

���
wn�Xn� v�

wn�Xn�
if �Xn� v� � E

� otherwise�

and the weights satisfy w��e� � a�e��

wn���e� �

�
wn�e� � � if �Xn� Xn��� � e
wn�e� otherwise�

Next we de�ne random walk in random environment �RWRE� on G� An
environment is a function � � E � 
�� �� with the property that ��e� � � for all
e � E and X

fv�V ��u�v��Eg

��u� v� � �

for all u � V � We denote the set of all environments by �� Let Pv��� denote
the distribution of the Markov chain on G induced by the environment � with
starting point v�� Pv����Y� � v�� � � and

Pv����Yn�� � vjY�� Y�� � � � � Yn� �

�
��Yn� v� if �Yn� v� � E
� otherwise�

Let P be a probability measure on �� The measure

Pv���� ��

Z
�

Pv������P�d��

is the distribution of the random walk in random environment with environment
distributed according to P and starting point v�� We call the environment inde�
pendent if under P the transition probabilities f��v� ��
 v � V g are independent�
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De�nition � We call a sequence �u�� u�� u�� � � � � with n � �� ui � V and
�ui��� ui� � E for all i � � an in�nite path with starting point u�� We call an
in�nite path recurrent if it contains each vertex in�nitely often and transient
if it contains each vertex at most �nitely often� We call DRRW or RWRE on
a graph G recurrent � transient� if with probability one the paths are recurrent
�transient��

Proposition � RWRE with independent environment is either recurrent or
transient�

Proof� This follows from the same arguments as Lemma � in 
Kal���� page ����
�

Let G � �V�E� be a �nite connected graph with all edges directed� We study
recurrence of DRRW and RWRE on G� � Z�G� More precisely� G� � �V �� E��
with V � � Z� V and

E� � f�ui� vi� � �u� v� � Eg � f�vi� vi���� �vi� vi��� � v � V� i � Zg

with vi � �i� v� for v � V � We set Vi � fig � V and de�ne the length of vi by
jvij � i� We call G� a tube and Vi level i of the tube�

Let � be an environment on Z�G� and let �i � ���e� � �e � Vi� e � E�� denote
the transition probabilities to leave level i� For the rest of this article we make
the following assumption on the environment� �i� i � Z� are independent
and identically distributed withZ

�

log��e�P�d�� � �	 for all e � E�� ���

We apply Oseledec�s multiplicative ergodic theorem to products of random
matrices Ai describing the potential equations for the environment� This yields
to the following characterization of recurrence and transience in terms of Lya	
punov exponents�

Theorem � Let �� 
 �� 
 � � � 
 ��d be the Lyapunov exponents of the sequence
Ai� i � �� de�ned in Section � by �	�� The RWRE on Z�G


� is recurrent i� �d � �d�� � ��

�� satis�es limn�� jYnj � �	 i� �d � � and �d�� � ��

�� satis�es limn�� jYnj � �	 i� �d � � and �d�� � ��

In general it seems impossible to calculate the sign of �d � �d��� If G has
only one vertex� all the Lyapunov exponents can be calculated� and we obtain
Solomon�s criterion 
Sol����

Corollary � Let q��� � ��v��v��
��v��v��

� The RWRE on Z


� is recurrent if E log q � ��

�



�� satis�es limn�� jYnj � �	 if E log q � ��

�� satis�es limn�� jYnj � �	 if E log q � ��

We de�ne the re
ected environment e� by

e��e� � ��e�� for e � E� with �e� �e � Vi for some i�e��vi� vi��� � ��vi� vi����e��vi� vi��� � ��vi� vi���� for v � V� i � Z�

e� is obtained from � by interchanging for all i� the probability to jump from
vi to vi�� and the probability to jump from vi to vi��� We use Theorem � to
derive the following su�cient criteron for recurrence�

Corollary � If P is invariant under the re
ection e� then RWRE on Z� G is
recurrent�

Corollary � and Corollary � can be applied to DRRW� Recall that a�e�
denotes the initial weight of edge e�

Corollary � Let a� b � �� and let a�i� i� �� � a� a�i� i � �� � b for all i � Z�
DRRW on Z


� is recurrent if a � b�

�� satis�es limn�� jXnj � �	 if a � b�

�� satis�es limn�� jXnj � �	 if a � b�

Corollary � Let av � �� v � V � and let a�vi� vi��� � a�vi� vi��� � av for all
v � V� i � Z� Then DRRW on Z�G is recurrent�

� Potential Equations

In this section� we study the potential equations on Z� G� Let � be an envi	
ronment on Z�G� The potential equations for � are given by�

xvi��� � ��vi� vi���xvi�� ��� � ��vi� vi���xvi�� ���

�
X

fu�V ��v�u��Eg

��vi� ui�xui ���� ���

for i � Z� v � V � These equations are for example satis�ed for i � � and xvi���
equal to the probability of never reaching level � under the law Pvi���

Let d � jV j be the cardinality of the vertex set of G� We denote the d � d
identity matrix by Id and the d � d zero matrix by �d� We de�ne the d � d
matrix Bi��� � �Bi����u� v�
u� v � V � by

Bi����v� v� �
�

��vi� vi���
� v � V�

Bi����v� u� � �
��vi� ui�

��vi� vi���
� if �u� v� � E�

�



and Bi����u� v� � � for all other choices of u� v� We denote by Ci��� the d� d
diagonal matrix with

Ci����v� v� � �
��vi� vi���

��vi� vi���
� v � V�

and Ci����u� v� � � if u �� v� The potential equations ��� can be rewritten as

xi����� � Ai���xi��� ���

with

Ai��� �

�
Bi��� Ci���
Id �d

�
� ���

xi��� �
�
�xvi ���
 v � V �� �xvi�� ���
 v � V �

�t
� ���

where we denote the transpose of a matrix M by M t� Iterating equation ���
gives for n � �

xn����� � Sn���x���� with Sn��� � An���An����� � � �A����� ���

Lemma � For any � � �� the matrix Ai��� is invertible� Its inverse is given
by

A��i ��� � U eAi���U

where

U �

�
�d Id
Id �d

�
� U� � I�d�

and eAi��� � Ai�e���
Proof� This is an easy calculation� �

� Characterizations of Recurrence and Transience

For our further analysis we need the multiplicative ergodic theorem of Oseledec�
For b � R

r we denote by jjbjj the Euclidean norm of b� For an �r� r�	matrix M
we use the norm

jjM jj � supfjjMbjj � b � Rr � jjbjj 
 �g�

Theorem � 	Oseledec
s multiplicative ergodic theorem�Ose�
�� Let
Mi� i � �� be independent and identically distributed real�valued �r�r��matrices
on some probability space ��o�F � ��� and suppose log� jjM�jj is integrable� where
log� x � maxf�� logxg� Let Tn � MnMn�� � � �M�� Then there exist constants

�	 
 �� 
 �� 
 � � � 
 �r �	

and a strictly increasing non�random sequence of integers � � i� � i� � � � � �
is � is�� � r�� satisfying �i� � �i� � � � � � �is and �ij � �k for ij 
 k � ij���
� 
 j 
 s such that for ��almost all � � �o the following is true�

�




� For every b � Rr � limn�� n�� log jjTn���bjj exists or is �	�

�� For every j 
 s�

W �j� �� ��
n
b � Rr � lim

n��
n�� log jjTn���bjj 
 �ij

o
is a random linear subspace of Rr with dimension ij�� � ��

�� If W ��� �� � f�g� then b �W �j� �� nW �j � �� �� implies

lim
n��

n�� log jjTn���bjj � �ij �

	� limn���T t
n���Tn����

���n �� ���� exists and all entries of ���� are �nite�
The eigenvalues of ���� are exp��i�� � 
 i 
 r� For every j 
 s� the
orthogonal complement of W �j � �� �� in W �j� �� is the eigenspace of
���� corresponding to the eigenvalue exp��ij ��

The �ij are called Lyapunov exponents�

The following identity will be useful to calculate the Lyapunov exponents in
a special case�

Lemma � Suppose j detM�j � � ��almost surely and the expected value c ��R
��

log j detM����j��d�� is �nite� Then
Pr

i	� �i � c�

Proof� Let �n��� � �T t
n���Tn����

���n� Then det�n � �
Qn

i	� j detMij�
��n

and
consequently�

log�det�n� � n��
nX
i	�

log j detMij�

By Oseledec�s theorem the left	hand	side converges to log�det�� �
Pr

i	� �i�
The right	hand	side converges to c by Birkho��s ergodic theorem� �

For a proof of the following lemma see for example 
CMP���� Lemma ����

Lemma � Let Mi� i � �� be independent and identically distributed real�valued
�r � r��matrices� Suppose M���� is invertible for almost all �� and log�jjM�jj
and log�

		M��
�

		 are integrable� Let ��� ��� � � � � ��d be the Lyapunov exponents

of the sequence Mi�i � �� Then the Lyapunov exponents of the sequence M��
i �

i � �� are given by �������� � � � ����d�

We want to apply Oseledec�s Theorem and Lemma � to the matrices Ai andeAi de�ned in Section ��

Lemma � The following expected values are �nite� E log� jjA�jj�

E log�
		A��� 		� E log� 		 eA�

		� E log� 		� eA��
��
		�

�



Proof� Since jjA�jj � �� log� jjA�jj � log jjA�jj� For simplicity� we write A
instead of A� for the rest of this proof� and we denote the entries of A by Aij �
� 
 i� j 
 �d� Observe that for any matrix jjAjj 
 ��d��max��i�j��d jAij j and
therefore

log jjAjj 
 � log��d� �
X

f��i�j��d�Aij �	�g

log jAij j�

Using ���� it follows that E log jAij j is �nite for all non	zero entries of A� Hence

E log� jjA�jj �	� and the same argument applies to eA�� Together with Lemma
�� the assertions about the inverses follow� �

Next we determine the sign structure of the Lyapunov exponents for the
sequence Ai�

Lemma � Let �� 
 �� 
 � � � 
 ��d be the Lyapunov exponents of the sequence
Ai� i � �� and let e�� 
 e�� 
 � � � 
 e��d be the Lyapunov exponents of the
sequence eAi� i � �� Then for � 
 i 
 �d

e�i � ���d�i���

Proof� By Lemma ��

Tn �� A��n A��n�� � � �A
��
� � U eAnUU eAn��U � � �U eA�U � U eSnU

with eSn � eAn
eAn�� � � � eA�� Therefore for b � R

r � jjTnbjj � jjeSnUbjj and

limn�� n�� log jjTnbjj � limn�� n�� log jjeSnUbjj� By Oseledec�s Theorem� the

Lyapunov exponents of the sequences A��i � i � � and eAi� i � � agree� The
claim follows from Lemma �� �The integrability assumptions from Oseledec�s
Theorem and Lemma � are satis�ed by Lemma ��� �

Theorem � The Lyapunov exponents �� 
 �� 
 � � � 
 ��d of the sequence Ai�
i � �� satisfy one of the following conditions�


� �d � � and �d�� � �

�� �d � � and �d�� � �

�� �d � � and �d�� � �

Proof� We denote by 	� the hitting time of level ��

	� � minfn � � � Xn � V�g�

For u� v � V and i � Z we set

xuvi ��� � Pvi���	� �	� X�� � u���

By the Markov property� xuvi��� satis�es the potential equations ��� for i �
�� From ��� we know that xun����� � Sn���x

u
� ��� with xun��� de�ned by

�



���� Since all components of xun����� have values in 
�� ��� it follows that
limn�� n�� log

		Sn���xu� ���		 
 �� Observe that xuu���� � � and xuv���� � �
for all v � V n fug� Hence the vectors xu� ���� u � V � are linearly independent�
and the linear space

W ��� ��
n
b � R�d � lim

n��
n�� log jjSn���bjj 
 �

o
has dimension dim�W ���� � d� Thus �d 
 ��

Recall that the matrix eAi is obtained from Ai by re�ection of the envi	
ronment� Therefore the previous argument applies to eAi� i � �� and the dth

Lyapunov exponent satis�es e�d 
 �� By Lemma �� �d�� � �e�d � ��
Let � denote the vector in R�d with all components equal to �� Since Ai� � �

for all i� Sn� � � for all n and limn�� n�� log jjSn�jj � �� Thus either �d � �
or �d�� � �� �

The sign structure of the Lyapunov exponents can be used to characterize
recurrence and transience of the RWRE� We will make use of the following
lemma�

Lemma � RWRE on N� �G is transient i� there exists c � � such that

lim
n��

n�� log



max
v�V

Pvn���	� �	� X�� � u��

�

 �c

for all u � V � P�almost all ��

Proof� We denote by 	i the hitting time of level i�

	i � minfn � � � Xn � Vig�

First we consider a �xed environment �� If level � is reached from a starting
point at level n� then level n� � must be reached before level �� Hence

Pvn���	� �	� X�� � u�� � Pvn���	n�� �	� 	� �	� X�� � u���

An application of the Markov property at time 	n�� shows that the last proba	
bility equals

Evn���PX�n��
���	� �	� X�� � u��
 	n�� �	�


 Pvn���	n�� �	�max
t�V

Ptn�����	� �	� X�� � u���

Repeating this argument yields

max
v�V

Pvn���	� �	� X�� � u�� 

n��Y
i	�

max
v�V

Pvi�����	i �	��

We conclude

n�� log



max
v�V

Pvn���	� �	� X�� � u��

�

 n��

n��X
i	�

log�Zi���� ���

�



with Zi��� � maxv�V Pvi�����	i � 	�� Observe that Zi� i � �� is a sta	
tionary sequence under P with E log�Z�� 
 �� By Birkho��s ergodic theo	

rem� n��
Pn��

i	� log�Zi� converges almost surely as n � 	 to a limit U with
E�U� � E 
log�Z����

Suppose E log�Z�� � �� Then Z� � � P	almost surely� If for some v�
Pv����	� �	� � �� then Pv����	� �	� � � for all v� Consequently� Pv����	� �
	� � � for all v P	almost surely� and similarly Pvi�����	i � 	� � � for all v
and i � � P	almost surely� We conclude that in this case� the RWRE on N� �G
is recurrent�

Suppose E log�Z�� � �� Then there exists c � � such that on a set of positive

P	measure limn�� n��
Pn��

i	� log�Zi� 
 �c� Since xuvi � Pvi���	� � 	� X�� �
u�� satis�es the potential equations� we conclude from Oseledec�s theorem that
the limit of the left	hand	side of ��� is 
 �c P	almost surely� In particular�
limn��maxv�V Pvn���	� �	� X�� � u�� � � and the RWRE is transient� �

Lemma � RWRE on N� �G is transient i� �d � ��

Proof� Suppose RWRE on N� �G is transient� Then by Lemma ��

W ��� ��
n
b � R�d � lim

n��
n�� log jjSn���bjj � �

o
has dimension dim�W ���� � d� By Oseledec�s Theorem� �d � ��

Suppose �d � �� Then by Theorem �� dim�W ���� � d� For the rest of
this proof we �x a typical environment � and suppress the dependence on �
in the notation� Let b��b�� � � � �bd be a basis of W � For � 
 j 
 d� we
let ci denote the vector in R

d consisting of the last d components of bi� We
claim that c�� c�� � � � � cd are linearly independent� Suppose not� Then there
exists a non	zero vector f� � W with the last d components equal to �� We
set fn�� � Snf� with fn � ��fvn � v � V �� �fvn�� � v � V ��t� and we de�ne the
function f � N� �G� R� vi �� fvi � We say that the function f is induced by f��
By de�nition� fvi satis�es the potential equations ��� for i � � and fv� � � for
v � V � Since f� � W � limn�� fvn � � for v � V � In particular� v is bounded
and attains its maximum in N �G� By a standard argument� we conclude that
f is identically zero� This is a contradiction to f� �� �� and we conclude that
c�� c�� � � � � cd are linearly independent�

Hence there exists a vector g� � W with the last d components equal to ��
We denote by g the function on N� �G induced by g�� We set

f�v� � Pv���	� �	�

for v � N� � G� Then f�vi� and g�vi� satisfy the potential equations ��� for
i � ��

Fix vi � N �G� Let Nn � f�Yn	���� n � �� with n � 	� � minfn� 	�g� Then
Nn� n � �� is a bounded martingale under Pvi��� Hence it converges in L� to a
limit N�� and

f�vi� � Evi��N� � Evi��N�

� Evi��

�
lim
n��

f�Yn	���
 	� �	


�Evi���N�
 	� �	��

��



Using f�Y��� � �� we obtain

f�vi� � f�vi� �Evi���N�
 	� �	��

Thus Evi���N�
 	� �	� � �� We set N �
n � f�Yn	���� g�Yn	���� n � �� Then

N �
n� n � �� is a bounded martingale under Pvi��� Hence it converges in L� to a

limit N �
�� and

f�vi�� g�vi� � Ev��N
�
� � Evi��N

�
� � Evi�� �f�Y���� g�Y���
 	� �	�

�Evi���N�
 	� �	��Evi��

�
lim
n��

g�Yn	���
 	� �	



� �Evi��

�
lim
n��

g�Yn	���
 	� �	


�

because f�Y��� � g�Y��� � �� If Pvi���	� � 	� � �� the Markov chain is
transient and limn�� jYnj � 	 Pvi��	almost surely� Since g � W � we have
limn�� g�un� � � for u � V � and we conclude g�vi� � f�vi�� Since vi � N �G
is arbitrary� we have shown f � g� Using g� � W we conclude from Lemma �
that the RWRE is transient� �

Proof of Theorem �� Suppose �d � � and �d�� � �� By Lemma ��
the RWRE restricted to N� � G is transient� thus limn�� jYnj � �	� To
apply Lemma � to the RWRE restricted to �N� �G� we consider the re�ected
environment on N� � G� For the potential equations� this means that Ai is
replaced by eAi� By Lemma �� e�d � ��d�� � �� hence by Lemma � the RWRE
restricted to �N� � G is recurrent� This implies that the RWRE on Z� G
satis�es limn�� jYnj � �	�

Suppose �d � �d�� � �� Using the same argument as above� we see that
RWRE restricted to N� �G and �N� �G are recurrent� Hence the RWRE on
Z�G is recurrent�

The case �d � � and �d�� � � is treated similarly� �

Proof of Corollary �� We apply Theorem � with G equal to the graph
with precisely one vertex� Then

A���� �

�
�

��v��v��
���v��v��

��v��v��

� �

�
�

Using Lemma �� we obtain

�� � �� � E log j detA�j �

Z
�

log



��v�� v��

��v�� v��

�
P�d���

The statement follows from Theorem �� �

Proof of Corollary �� Suppose P is invariant under re�ection� TheneAi has the same distribution as Ai and consequently both sequences have the
same Lyapunov exponents� Using Lemma � and Theorem �� we conclude that
�d � ��d�� � �� Theorem � implies recurrence of the RWRE� �

��



� Application to DRRW

Recall the de�nition of directed	edge	reinforced random walk �DRRW� from
Section �� First we show that DRRW on a general graph G� is equivalent to a
RWRE� then we apply Corollary � and Corollary ��

We recall the de�nition of a generalized Polya urn with parameters a�� � � � � ak
� �� The urn contains  balls! of k di�erent colours� ai balls of colour i at time ��
At each time unit� a ball is drawn from the urn and returned with an additional
ball of the same colour� The sequence of colours of the balls drawn from the urn
is called a generalized Polya urn process with parameters a�� � � � � ak� Clearly�
this process is well	de�ned for any strictly positive paramaters ai although the
analogy with balls makes only sense for integer	valued parameters�

For a � � we denote the value of the gamma function at a by "�a�� We
recall the density of the Dirichlet distribution with parameters a�� � � � � ak�

D�a�� � � � � ak��x�� � � � � xk� �
"�a� � � � �� ak�Qk

i	� "�ai�

kY
i	�

xai��i � xi � ��

kX
i	�

xi � ��

We attach to each vertex of the graph G� a Polya urn� urns at di�erent
vertices being independent� For a vertex v we denote by E�v the set of edges in
G� with tail v� E�v � fe � E� � �e � vg� We assume that the parameters of the urn
at vertex v are �a�e�� e � E�v�� so the urn at vertex v contains balls of as many
di�erent types as there are edges with tail v� We de�ne a nearest neighbour
random walk on G� starting at v� as follows� If the random walker is at vertex
v her next step is decided with the Polya urn at vertex v
 the ball drawn from
the urn determines which edge she traverses next� Writing down the �nite	
dimensional distributions for the location of the random walker� it is easy to see
that they agree with the �nite	dimensional distributions of the DRRW� Using
de Finetti�s theorem� each Polya urn can be replaced by a Dirichlet distribution
with the same parameters �
MW���� Section ���

We have proved the following theorem�

Theorem � DRRW is equivalent to a RWRE with an independent environ�
ment� The transition probabilities at vertex v are distributed according to a
Dirichlet distribution with parameters �a�e�� e � E�v��

Proof of Corollary �� By Theorem �� DRRW on Z is equivalent to a
RWRE with �i� i � Z� independent and identically distributed� The transition
probabilities at vertex v have a beta distribution with parameters a and b� To
verify the integrability condition ���� let 
 � � such that a� 
 � �� There exists
c � � such that log���p� 
 cp�� for all p ���� ��� Hence

� 


Z
�

� log��e�P�d�� �

Z �

�

�� log p�D�a� b��p� �� p�dp


 c

Z �

�

p��D�a� b��p� �� p�dp�

��



The last integral is �nite because the integrand is up to a constant the beta
density D�a� 
� b�� It remains to compute the sign of

I ��

Z
�

log



��v�� v��

��v�� v��

�
P�d�� � c

Z �

�

log

�
p

�� p

�
pa����� p�b��dp

with c a normalizing constant� We write the last integral as a sum of two
integrals� the �rst over 
�� ����� the second over 
���� ��� Substituting q � �� p
in the �rst integral yields

I � c

Z �

���

log

�
p

�� p

�
pa����� p�b��

�
��

�
p

�� p

�b�a
�
dp�

Since p���� p� � � for p � 
���� ��� the statement follows from Corollary �� �

Proof of Corollary �� We apply Corollary �� Using the assumption on
the initial values and the symmetry property of the Dirichlet distribution� we
see that the distribution of the environment is invariant under re�ection� The
other assumptions are veri�ed similarly to the proof of Corollary �� �
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