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Chapter 1 

Introduction 

In this thesis we deal with several questions in which the spin-polarization of atomie 

hydrogen is involved: 

- Can we improve (our insight into) the operation of one of the most important 

devices based on the properties of spin-polarized atomie hydrogen: the hydrogen 

maser? 

- What is the mechanism of one of the main processes by which the spin-polarization 

in a gas of atomie hydrogen disappears: the recombination reaction H + H + H -+ 

H2 + H in three-body collisions? 

In this introductory chapter we wilt sketch briefly the physical background of these 

questions to help the reader in understanding the broader context of this thesis work. 

1.1 The hydrogen maser 

The origin of the maser dates back to the year 1954. Ina series ofpublications [1H3] 

Townes et al. announced the development of a new apparatus, called a maser, whieh is 

an acronym of "mierowave amplification by stimulated emission of radiation". Based on 
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Figure 1.1: Schematic drawing of the experimental setup of the hydrogen maser. 

one of these papers [3], Ramsey et al [4],[5] gave, in 1962, a description of a so-called 

hydrogen maser. One of the changes is the replacement of the electric dipole transition 

involved in the ammonia maser of Townes et al by a magnetic dipole transition. The 

weakness of this transition is compensated by the much longer interaction time of the 

atoms with the maser field, which is realized by storing the atoms in a certain volume, 

instead of using an atomie beam. 

The experimental setup of the hydrogen maser is schematically shown in Fig. 1.1 

[5]. Molecular hydrogen is dissociated in an atomie hydrogen source. In the beam of 

hydrogen atoms leaving the source the atoms are distributed between all four hyperfine 

levels of the ls-groundstate (see Fig. 1.2). The hydrogen maser is based on the c to a 

transition for B ~ 0, i.e., f = 1, m 1 = 0 --+ f = 0, m 1 = 0, where the lower-case 

symbols denote single-atom spins. In order to create the overpopulation of c-state atoms 

with respect to a-state atoms necessary for maser oscillation to take place the beam is 

passed through a state selector. Tuis state selector consists of a magnet producing a 

magnetic field, e.g., a sextupole field, which is zero at the axis and increases away from 

it. The a and b atoms, the so-called high-field seeking atoms, are removed from the 
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Figure 1.2: The four hyper.fine levels of the hydrogen ls-groundstate as function of the 

magnetic field. The î denotes the electron spin projection whereas f denotes the proton 

spin projection. Furthermore, ahf is the hyperfine splitting at zero magnetic field and the 

mixing angleO isgiven bytan20 = !ahf/[(µe + µp)BJ, with µe (µp) the electron (proton) 

magnetic moment. 

beam, whereas the c and d atoms, the low-field seeking atoms, are bent towards the axis 

and are focussed into a storage bulb which is placed in a microwave cavity. In this cavity 

the maser oscillation takes place. The atoms reside in the storage bulb for times between 

one and ten seconds before leaving through the same opening they originally entered. 

This whole system is operated at room temperature. 

To this date the room temperature hydrogen maser is the most stable frequency 

standard for measuring times between one second and several days with a relative 

frequency instability observed to be below one part in 1015 for measuring times of one 

hour (6]. As such the hydrogen maser is being used in tests of genera! relativity, very 

long baseline interferometry (VLBI) and interplanetary navigation such as the Voyager 

2 mission (6]-[8]. In order to keep track of the position of the Voyager on its way to 

Neptune three earth-based radio telescopes emitted signa Is to the Voyager which returned 

them to these telescopes. By measuring the time elapsed between sending and receiving 
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the signals the radial and angular positions of the Voyager could be determined. At each 

telescope two hydrogen masers were used to achieve the required accuracy in the time 

measurement. 

The optimization of the freq uency stability, which is necessary to perform even more 

accurate measurements, requires a detailed theoretical knowledge of the processes which 

influence this stability. Tuis is the subject of Chapter 2 of this thesis. For an evaluation 

of the frequency stability it is essential to realize oneself that the atomie transition is not 

the only oscillator in the hydrogen maser: The cavity also is an oscillator in its own right. 

The maser frequency is thus the resonance frequency of a system of two nonlinearly 

coupled oscillators, each with its own frequency. It is determined by the cavity-pulling 

relation [S),[9],[10) 

(1.1) 

where Wm is the maser frequency, Wa1 the atomie transition frequency, Wc the cavity 

frequency, and fat and fc the width of the frequency profiles of the atomie transition 

and the cavity mode, respectively. This relation indicates which parameters determine 

the frequency of the maser. A time dependence of these parameters, e.g" a systematic 

drift or fl.uctuations, will lead to a time dependence and thus an instability of the maser 

frequency. 

Processes which influence the stability can, according to Eq. (1.1), be separated in 

two different groups, namely those which affect the cavity frequency and width and those 

which affect the atomie transition frequency and width. In order to reduce the infiuence 

of the former, the ratio r ai/f c is made as small as possible. Tuis is achieved in two 

different ways. By storing the atoms as long as possible in the storage bulb without a 

significant loss of coherence the interaction time with the field is increased and thus, by 

Heisenbergs uncertainty principle, the atomie linewidth is reduced. The loss rate of the 

cavity is subsequently increased up to the point were r c is as large as possible while still 

maintaining maser oscillation. Due to the small ratio of f ai to f c the infl.uence of the 

cavity on the stability of the maser is negligible [11 ]. 

The atomie transition frequency and linewidth entering Eq. (1.1) differ from the 

values fora hydrogen atom in free space. For example, during their stay in the storage 
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bulb, the hydrogen atoms will colli de many times with the walls of this bulb and with a 

certain probability wil 1 stick to it. Only in the case of sticking, due to the long interaction 

time, the perturbation of the energy levels of the hydrogen atoms has to be taken into 

account. Tuis causes a shift in the atomie transition frequency. A statistica! distribution 

of the sticking times, furthermore, causes a broadening of the atomie line. Tuis effect, 

however, is reproducible and time-independent which means that it does not affect the 

stability of the maser. Other effects that infiuence the atomie transition are the finite 

storage time, inhomogeneities in the statie magnetic field and the second order Doppler 

effect. The effect, however, which is of most concern to the stability of the maser and 

which is treated in Chapter 2 of this thesis are collisions between hydro gen atoms. 

Qualitatively, the intluence of collisions on w.1 and r.1 may be understood as follows. 

The wave function of a hydrogen atom participating in the maser oscillation can be 

written as a superposition of the c and the a state 

(1.2) 

with e0 and €11 the energies of the c and a level, respectively, ( e0 - e")/li the transition 

frequency in the absence of collisions, and C0 and Ca. amplitudes. After an elastic 

collision of such an atom with another atom both parts of Eq. (1.2) are multiplied by a 

different diagonal element of the scattering matrix. Tuis causes a phase shift tl.</> and 

with N collisions per second this leads toa frequency shift tl.w11 = d</:i/dt = N tl.</>. The 

number of collisions per atom will not be equal but will be statistically distributed as will 

the velocities of the two colliding atoms. Apart from the shift of the atomie transition this 

also causes a broadening. It is clear that this effect depends on the density of hydrogen 

atoms in the storage bulb. In practice, a tluctuation in the density has a large effect on 

the stability of the maser. 

The broadening and shift of the atomie transition were calculated in 1963 by Bender 

[12), based on earlier work of Wittke and Dicke [13] and Dalgarno [14]. Semiclassical 

methods were used, neglecting the hyperfine splitting in the collision. A year later 

Balling et al. (15] made a full quantum mechanica! calculation, still neglecting, however, 

the hyperfine interaction. Both theories led essentially to the same result and gave rise to 

a procedure called spin-exchange cavity tuning [16],[17]. Tuis method uses two effects 
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which influence the maser frequency, cavity pulling and collisions between atoms. The 

above calculations showed that the frequency shift due to collisions is proportional to 

the atomie linewidth. In that case the cavity pulling relation (1.1) can be written as 

Wm-W~1 = {;c(wc-w~1)+a}r.1 , (1.3) 

where w~1 is the transition frequency in the absence of collisions and ais a proportionality 

constant. In Eq. (1.3) the difference between w~1 and Wm has been neglected in the 

righthand side. By choosing Wc = w~l - r cO the maser frequency can be made stable 

against fluctuations in rat and thus fluctuations in the density. The stability of the maser 

is then determined by thermal noise and receiver noise. 

In 1975 Crampton and Wang [18] performed a semiclassical calculation of the col­

lision process in which they included the hyperfine splitting. Tuis introduced an extra 

contribution to the frequency shift which is not proportiona_I to the total atomie linewidth 

but only to the collisional part r~11 : 

wm-w~1 = {;c(wc-w~1)+a}r.1+.Br~11 , (1.4) 

= { ;c (wc - w~1 ) + a + ,B}r.1 - ,ar~11 
with r~, the single-atom contribution to the atomie linewidth and .B a proportionality 

constant. The main contribution to r~l is due to the storage time of the atoms in the 

storage bulb. Equation (1.4) shows that the extra contribution to the frequency shift 

remains density independent after cavity tuning, but leads to a dependence of the maser 

stability on fluctuations in r~r lt turns out that this source of frequency instability is 

negligible fora hydrogen maser operating at room temperature. 

In 1978 two groups, Crampton et al. [19] and Vessot et al. [20], proposed to construct 

a hydrogen maser operating at sub-Kelvin temperatures, the cryogenic hydrogen maser 

(CHM). The main advantages would be much smaller collisional cross sections, allowing 

for much larger densities and thus a larger output power, less thermal noise and a 

better control over the cavity. In 1982 Berlinsky and Hardy [21] predicted that with 

the cryogenic hydrogen maser an increase in frequency stability can be achieved with 

respect to the room temperature maser of three orders of magnitude. Essential in this 

approach is again the possibility of spin-exchange cavity tuning. Three groups [22]-[24] 
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succeeded in building such a cryogenic hydrogen maser almost simultaneously in 1986. 

Stabilization of the hydrogen gas at these low temperatures is possible by covering the 

walls of the storage bulb with superfluid helium [25]. Due to the virtual absence of 

a spin-dependent interaction between hydrogen and helium atoms and the low binding 

energy of hydrogen to a helium film the atoms can hit the walls of the storage bulb many 

times without a significant loss of coherence. 

In our group at Eindhoven University of Technology calculations on volume and 

surface collisions of hydrogen atoms had been going on since 1982. This knowledge, 

however, was applied to the hydrogen maser only after 1985, as stimulated by a request 

from Crampton. For the first time the expressions for the frequency shift and line 

broadening were based on a systematic derivation from the BBGKY hierachy [26],[27]. 

A fundamentally new aspect discovered in this work was the insight that the hyperfine 

splitting of the internal states of the colliding atoms contributes to the line shift in a way 

which precludes its compensation by spin-exchange cavity tuning. Not only does the 

maser stability become dependent on the storage time of the atoms as in the semiclassical 

calculations of Crampton and Wang, but the frequency shift depends on the density even 

after cavity tuning. Specifically, it means that the proportionality parameter fJ in Eq. (1.4) 

becomes density dependent. Although this contribution is rather small, it turns out to be 

so important in the sub-Kelvin hydrogen maser [26)-[28] that most of the improvement 

of the frequency stability is lost: The maximum improvement in frequency stability 

realizable with respect to the room temperature hydrogen maser was shown to be a factor 

of 10, two orders of magnitude less than originally predicted. 

This fact is the main motivation for Chapter 2 of this thesis. The hydrogen maser 

is normally operated at very low magnetic field strengths of less than 10-6 T. Both the 

hyperfine energies and the spin structure of the states involved in the maser transition 

show a dependence on the magnetic field (see Fig. 1.2). This means that by varying the 

magnetic field collisions between hydrogen atoms will evolve in a totally different way 

since the interaction between these atoms will change considerably. This could have 

a pronounced effect on the frequency shift, in particular its dependence on the partial 

densities, which might be used to improve the frequency stability. In this connection 

it should be noted that the hyperfine-induced changes of collisional T-matrix elements 
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are in genera! a very small part of the total T-matrix elements, so that already a rather 

small new effect could introduce a considerable infiuence. In Chapter 2 the effect of an 

introduction of a magnetic field is treated and it is shown that the hoped for improvement 

in frequency stability can not be realized [29]. 

Recently, two experiments, one at room temperature (30],[31] and one at sub-Kelvin 

temperatures [32],(33], as well as a reanalysis [11] of the earliest room temperature 

experiment [18] to measure the hyperfine-induced collisional shifts have shown a dis­

crepancy with the quantum mechanica! calculations of our group. Specifically, one of the 

collisional shift terms which is the direct consequence of the inclusion of the hyperfine 

interaction has a different sign, although its order of magnitude is correct. Two possible 

causes for this sign difference have been proposed. The original papers in which our 

group presented the calculations [26],[27] could contain a sign error in the hyperfine­

induced shifts. In this connection it is of importance to notice that in Eq. (13) of Ref. 

[26] and Eqs. (56), (57) and (58) of Ref. [27] a sign convention for ti1 is used which is 

different from that in the final results. A rigorous check on the calculations, however, 

has ruled out the possibility of a sign change in the final results. A second possible cause 

was given by Silvera et al. (30],[31 ], in which they cast doubt on the hydrogen potentials 

used in the numerical calculations. A recalculation with the most up-to-date data on 

these potentials shows virtually no differences with previous calculations. As yet, there 

is no solution for this problem which will be the subject of further study. Measurements 

of the magnetic field dependence of the collisional frequency shifts and a comparison 

with the predictions of Chapter 2 of this thesis may shed further light on this problem. 

Both experimental and theoretica! work on the hydrogen maser have during the last 

three decades been concentrated on its use as a primary frequency standard. Interest 

in phenomena taking place inside the maser itself has arisen only in the last 5 years 

[10],[34]-[37]. Some of these phenomena are treated in Chapters 3, 4and 5. 

A process which does not contribute to the frequency instability in the hydrogen 

maser but is nevertheless important for its operation is the above-mentioned wall shift 

resulting from the fact that the atomie transition frequency at the surface is different from 

the frequency in the volume. The size of this effect depends on the construction and on 

the specific operating conditions of the maser, such as the area to volume ratio of the 
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storage bulb and the exact temperature [38]-[41]. For the room temperature hydrogen 

maser it depends in addition on the purity of the material which is used for the wall of 

the storage bulb, i.e., teflon. As a consequence the atomie transition frequency but also 

the maser frequency is determined by device parameters and by the specific operating 

conditions. Tuis inhibits the use of the hydrogen maser as a primary time standard. lf, 

however, the fraction of time that the atoms spend at the surface would be much smaller 

than in the present sub-Kelvin maser this device dependent shift would disappear and 

the possibility arises that the hydrogen maser could indeed be used as a primary time 

standard. Tuis, however, is not possible in the sub-Kelvin hydrogen maser. The so-called 

wall shift can only be reduced by increasing the temperature of the maser given a fixed 

si.ze of the storage bulb. Not only do the collisional cross sections increase in this case 

but due to the evaporation of the superfluid helium film the ra te at which hydrogen atoms 

collide with helium atoms in the volume increases as well which introduces an additional 

frequency shift (21],[42],[ 43]. In fact, the sum of the Jatter shift and the wall shift is only 

stationary with respect to temperature changes at 0.5 K. 

Tuis is the motivation to investigate the possibility tooperatea maser in which most of 

the atoms are adsorbed on the superfluid helium surface. By decreasing the temperature 

it is possible to interchange the roles of surface and volume and it is even possible to 

reduce any shifts occurring due to the presence of the volume which is desirable from the 

point of view of a primary time standard, but now based on the transition frequency of 

hydrogen atoms adsorbed on a superfluid helium surface. This is the subject of Chapter 

3. A new method is developed to describe the interaction of the maser field with both 

the atoms residing in the volume and at the surfäce. Starting from this description the 

realizability of a so-called surface cryogenic hydrogen maser (SCHM) is investigated. It 

tums out that it is indeed possible to operate such a surface cryogenic hydrogen maser 

but that such a device does not have the prospects to serve as a primary time standard. 

lt does have the potential, however, to be an accurate source of new information on the 

hydrogen-liquid helium surface system [37]. 

Chapters 4 and 5, finally, emphasize the dynamics of the hydrogen maser. Instead of 

focussing on collisions between hydrogen atoms these chapters deal with the interaction 

between the atomie magnetization, the population inversion and the oscillating electro­

magnetic field in the cavity. In analogy to Haken in 1975 [44] the equivalence between 
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the Maxwell-Bloch equations which govern the hydrogen maser and the Lorenz equa­

tions is demonstrated. These equations appeared in 1963 in a study by the meteorologist 

Lorenz [ 45] as a strongly simplified model of the Navier-Stokes equations. Although 

it soon became clear that they were not an accurate approximation in this specific sit­

uation these equations have been the subject of many investigations and are one of the 

primary examples of equations known to exhibit so-called chaotic behavior (46]. In 

Chapter 4 we show that the hydrogen maser is indeed a very clear example of a system 

governed by these equations and that it is possible to reach a regime of time-dependent 

chaotic, but also periodic, pulsed behavior in the sub-Kelvin maser in contrast to the 

room temperature maser (10]. In Chapter 5 the Lorenz equations are further examined 

for the parameter regime of the sub-Kelvin hydrogen maser and by a systematic search 

a detai\ed picture of the expected behavior is given. Apart from being an interesting 

subject of study of nonlinear dynamics, the time-dependent regime promises to give more 

detailed information on the hydrogen maser itself, including collisional phenomena, than 

the time-independent regime does [36]. 

1.2 Mechanisms for three-body recombination 

The storage of hydrogen atoms by covering the walls of the storage bulb with a film of 

superfluid helium as applied in the sub-Kelvin hydrogen maser is one of the experimental 

techniques which during the past one and a half decade have been developed to produce 

gaseous samples of atomie hydrogen at such low temperatures and high densities that the 

conditions for Bose-Einstein condensation (BEC) are fulfilled [25],[47]-[50]. Amore 

recent line of research is based on ( evaporative) cooling of samples of atomie hydrogen 

in a magnetic trap [51]-[55]. The contrast between these two approaches is visible 

in Fig. 1.3, taken from Refs. [56),[57]. In this figure the condition for Bose-Einstein 

condensation is given along with the densities and temperatures achieved in various 

experiments. Whereas the storage of hydrogen in a gas cell covered with superfluid 

. helium is used in attempts to achieve Bose-Einstein condensation by increasing the 

density the cooling of atoms in a magnetic trap is intended to produce a relatively low 

density sample of hydrogen atoms with a temperature low enough to observe Bose· 

Einstein condensation. Tuis last approach is outside the scope of this thesis. 
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Figure 1.3: Phase diagram lor BEC in spin·polarized atomie hydrogen, with Te the 

critical temperature at a given density: a Ref. [25], b Ref. [47], c Reis. [48],[49], d Ref. 

[50], e Ref. [51], f Ref. [52], g Ref. [53] and h Ref. [54]. The progress towards BEC is 

indicated lor experiments with superfluid helium covered walls by the line connecting a, 

b, c and d and lor trap experiments by the line connecting e, f, g and h. 
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Figure 1.4: Schematic picture of the Kagan dipole mechanism. Only the double spin-flip 

contribution arising from the dipole interaction is presented. 

In experiments devised to observe Bose-Einstein condensation in the high-density 

scheme a gas cell is loaded with a and b atoms at high magnetic field strengths. In the b 

state both the electron and proton spins are down (see Fig. 1.2), whereas in the a state the 

electron spin is down and the proton spin is up but there is a small admixture of electron 

spin up and proton spin down. At low temperatures a large fraction of the gas is adsorbed 

at the wall of the gas cel!. Due to the small admixture of electron spin up in the a state 

a collision of two a atoms and a collision of an a and b atom evolve partially via the 

singlet interaction which means that the two atoms can recombine to form a molecule if 

the collision takes place at the surface. 1\vo b atoms, however, can not recombine. This 

process, which is cal!ed preferential recombination of the a atoms, produces a sample of 

hydrogen gas in which almost all atoms are in the b state. 

The only way in which a gas of purely b atoms can decay is by the magnetic dipole 

interaction between the spins of the atoms. In a collision of two b atoms the dipole 

interaction can induce an electron-spin flip by the transfer of atomie orbital momentum 

to intrinsic angular momentum. An atom which has undergone such a spin flip can 

subsequently recombine with a batom at the surface. Another possible decay mechanism, 

which is the subject of Chapter 6, is the three-body recombination of atomie hydrogen. 

Up to now all experiments which have tried to reach Bose-Einstein condensation 

in the high-density scheme have failed due to the large three-body decay rates of the 
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Figure 1.5: Schematic picture of the dipole-exchange mechanism. The essential differ­

ence with Fig. 1.4 is that the dipole-interacting pair of atoms eventually recombines. 

gas. Tuis bas given rise to a considerable effort, both experimentally [58),[59) and 

theoretically [60)-[68), in the study of this process. Specific attention bas been paid 

to the possibility that by varying the applied magnetic field the decay constants can be 

manipulated in such a way that Base-Einstein condensation is possible. 

One of the earliest descriptions of the three-body recombination process bas been 

given by Kagan et al. {60). In this description one starts with three atoms all with 

their electron spin down, i.e., three b atoms. 1\vo of these atoms interact via the dipole 

interaction. Although the total spin state of these two atoms remains triplet the precession 

of bath electron spins in their mutual dipole fields introduces a singlet component with 

respect to the third atom. lt is then possible for one of the atoms to recombine with this 

third atom. Tuis process is schematically depicted in Fig. 1.4. 

Although these calculations have given a good insight in the properties of atomie 

hydrogen gas at low temperatures the discrepancies with experimental data showed that 

this mechanism is not sufficient to describe the observed decay rates. As a solution our 
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Figure 1.6: The two momenta involved in a three-body problem: the relative momentum 

p between two atoms and the relative momentum if of the third atom relative to the center 

of mass of the pair. A numerical solution of the Faddeev equations by discretization of 

these two momenta is not possible at present lor the final state. 

group in Eindhoven proposed a different mechanism which has turned out to be the most 

important contribution to the decay process, the dipole-exchange mechanism which is 

schematically drawn in Fig. 1.5 [62],[65]. Again the dipole interaction introduces a 

precession of the spins of two of the atoms while preserving their triplet spin state. 

Instead of a recombination of one of these atoms with the remaining third atom the 

strong centra! interaction causes a spin-exchange between this latter pair of atoms. The 

spin state of the two atoms which originally interacted via the dipole interaction has thus 

acquired a singlet component and it is possible for these two atoms to recombine. lt 

should be noted that, contrary to the Kagan dipole process, it is the dipole-interacting 

pair of atoms that eventually recombines. Using various approximations our group bas 

calculated the three-body recombination rate including this dipole-exchange mechanism 

[ 62],[ 63],[ 65]-[ 68]. 

The approach which is taken treats the magnetic dipole interaction between the 

electron spins in first order. Tuis bas tumed out to be a very well satisfied approximation. 

The calculation of the decay rate thus involves the evaluation of a matrix element of 

the interatomic magnetic dipole interaction between an initia! and a final state. In both 

these states the centra! singlet/triplet interaction is included in an exact way. Already in 

the first approach the initia! state has been calculated rigorously by solving the Faddeev 

equations. It turned out that an approach in which this initia! state was replaced by a 
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Jastrow approximation introduced only slight deviations in the decay rates of less than 15 

% [62],[65]. The final state can, in principle, be calculated in the same way. Due to the 

large number of channels in the final state, i.e., the large number of bound states, however, 

the "conventional" method of solving the Faddeev equations, i.e" a discretization of the 

two momenta involved in this problem (see Fig. 1.6), makes the problem too cumbersome 

for present-day supercomputers. Therefore our group basso fartried to calculate the final 

state in an approximate way. Ina first approach [63],[65] the calculation of the final state 

involved the collision of an atom with a molecule. This molecule underwent all possible 

changes in its intemal states except a change of identity of the atoms it consists of. This 

means that rearrangement and thus the dipole-exchange mechanism was not included 

in this approach. The large discrepancies with experiment [58],[59],[66],[68] were 

another indication that this mechanism is essential in the description of the three-body 

recombination. In a subsequent calculation also rearrangement was included [67],[68]. 

The results of this approach, the resonating group theory, showed that a resonance effect 

caused by quasi-bound S = 1/2 states of the H3 molecule contributes significantly to the 

recombination process. In this state the dominant configuration of the hydrogen atoms is 

an equilateral triangle with an interatomic distance of about 7 ao. The largest bound state 

of the hydrogen molecule H2, however, extends to approximately 5 a0• This means that 

a description of three-body recombination in which only bound states of the hydrogen 

molecule are included is not sufficient. The continuum should also be taken into account. 

A1though an inclusion of the continuum is necessary to describe the recombination 

process the asymptotic form of the wave function still consists of a molecule and a 

freely moving atom. The continuum is thus only important in a part of space in which 

the three atoms are closely together, i.e" there is only "virtual break-up". This fact 

forms the basis for the present approach. Stimulated by a suggestion of Glöckle a set of 

functions is created which are orthogonal to the bound state wave functions and which 

are eigenfunctions of the centra! two-body singlet/triplet interaction problem within the 

subspace spanned by this selected set [67]-[70]. Tuis set represents the continuum in 

our calculations. If it would contain an infinite number of functions the representation 

would be exact. However, we restrict ourselves to a finite number of functions which 

are localized in space at a position where the relevant H3 resonances are expected to 
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be located. With these functions the Faddeev equations are solved. The expectation 

is that only a few cleverly chosen functions are sufficient to obtain convergence in the 

calculations. Tuis method thus enables us to solve the Faddeev equations. 

The validity of the method has been tested on an important three-body process in 

nuclear physics: neutron-deuteron scattering. In this case a neutron collides with a 

deuteron which is a bound state of a proton and a neutron, treated as two identical 

particles in different isospin states [70]-[73]. The analysis of this problem with the above 

mentioned method is presented in Chapter 6. 
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Chapter 2 

Cryogenic H maser in a strong B field 

Published in Physical Review A41, 2614 (1990) 

Abstract 

We study the spin-exchange frequency shift of the cryogenic hydrogen maser for B ::/; 0. A 
genera! expression is derived in terms of populations of ground-state hyperfine levels. The 
coefficients in this expression are calculated in thedegenerate·intemal-statesapproximation, 
as well as to first order in the hyperfine plus Zeeman splitting. Numerical results are 
comparecl with rigorous coupled-channel calculations. Some implications are pointed out 
for the frequency stability of the H maser in a magnetic field. 

2.1 Introduction 

Almost thirty years after its first realization by Goldenberg, Kleppner, and Ramsey [1 ], 

the hydrogen maser continues to be the most stable of all frequency standards. For 

measuring times of about 1 h the relative frequency instability is observed to be below 

one part in 1015• This extreme stability makes the hydrogen maser a very valuable 

research tool in fields as diverse as physics, astronomy, geodesy, and metrology. 

As pointed out a decade ago [2],[3], a hydrogen maser operating at liquid-helium 

temperature would have an even better frequency stability. Tuis is mainly due to the 

much smaller collisional line broadening at lower temperatures, allowing fora larger 

23 
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radiating atom density, and hence for a larger radiated power without increasing the 

atomie linewidth above the room-temperature value. Furthermore, lower temperatures 

also increase the signal-to-noise ratio by decreasing thermal noise, and help to get a 

better control of the cavity resonance frequency. A third advantage is the possibility at 

sub-Kelvin temperatures to use a very reproducible wall coating of superfluid helium, 

with an associated wall frequency shift going through a minimum at T = 0.52 K [4], 

which produces a very high thermal stability. Berlinsky and Hardy [5] predicted that 

with such types of cryogenic hydrogen masers an improvement in frequency stability 

of more than two orders of magnitude over that of a room-temperature hydrogen maser 

· should be realizable. 

Up until now we did not mention the frequency shifts due to collisions between 

hydrogen atoms. Analysis of the effect of spin-exchange collisions [6] showed that they 

shift the maser frequency in the same way as cavity pulling does: via a proportionality to 

the atomie linewidth. Tuis opens the possibility to tune the cavity such that cavity pulling 

and spin-exchange frequency shifts compensate one another. The above-mentioned 

papers, however, all ignored the effect of the hyperfine energy-level separation during 

the collisions, which is an essential omission in the case of cryogenic H masers as was 

shown in two more recent papers [7],[8]. The effect of the hyperfine interaction during 

collisions introduces large frequency shifts which cannot be eliminated by the above 

spin-exchange cavity tuning method and strongly limit the achievable stability. For a 

survey of the present experimental and theoretica! situation we refer to Ref. [9]. 

In this paper we investigate the magnetic field dependence of the spin-exchange 

frequency shift in the H maser. This may be of interest for experiments in which the 

H maser is operated in a much stronger field than usual. In this context one could 

think in the first place of attempts to improve the frequency stability by eliminating the 

hyperfine-induced shift. For this application it would be essential that persistent-current 

solenoids and superconducting magnetic shields make it possible to operate at a much 

stronger constant field than usual, outside the extreme low-B regime where the first-order 

fluctuations of transition frequency with B vanish. It is outside the scope of the present 

paper to discuss the technica! possibilities to keep a magnetic field of, for instance, 

0.05 T stable to within a required relative variation of 10-18• We confine ourselves 

to the question whether a magnetic field might eliminate the "dangerous" terms in the 
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hyperfine-induced spin-exchange frequency shift. To that end it is necessary to derive 

the dependence of this shift on the partial densities of the four ls hyperfine levels. At first 

sight it does not look improbable that such an elimination might succeed. Introducing a 

magnetic field of the order of 0.05 T changes the hyperfine spin wave functions and thus 

the collision amplitudes significantly. In addition, we will see that the symmetry lost in 

a collision by B :/; 0 introduces contributions from inelastic elements to the frequency 

shift besides the elastic S-matrix elements, which already play a role for B = 0. 

A second application is the present experimental activity in measuring the various 

contributions to the spin-exchange frequency shift. Experimental groups are interested 

in measuring them as a function of various experimental parameters, in particular, the 

atomie density in the storage bulb, to compare them with theoretica! predictions but 

also to provide information on the population dynamics in the H maser, which is of 

interest for the sight in to its operation. · Extension of such measurements and analyses to 

B :/; 0 would enlarge the scope of present experiments. The introduction of a stronger 

magnetic field not only influences the collisional frequency shift, but has also a more 

direct influence on the maser operation, for instance, on the maser oscillation condition. 

A third type of application is associated with the use of the H maser as a precision 

instrument enabling one to measure very sensitively certain phenomena in atomie hydro­

gen gas. For some of these phenomena it may be desirable or even essential to opera te 

the maser at stronger B fields. In this context one could think of the possibîlity to detect 

bulk or surface spin waves [10], as well as possibilities for measuring magnon effects 

[11] by means of the cryogenic H maser. 

Tuis paper is organized as follows. In Sec. 2.2 we derive the general expression 

for the B :/; 0 spin-exchange frequency shift starting from the quantum Boltzmann 

equation. In Sec. 2.3 we evaluate the various terms of zeroth and first order in the 

hyperfine level splitting by an extension of the existing method for B = 0. In Sec. 

2.4 we present numerical results of this approach and of the rigorous coupled-channel 

method and discuss their application to the H maser. Some conclusions will be given in 

Sec. 2.5. 
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2.2 Spin-exchange frequency shift for B -.:/:- 0 

We start from the evolution equation [7],[8] for the one-atom spin-density matrix 

d i ( ) . 1 • 1 • 1 dtp""•+ ii. e" - e"• p,.,.• = p,.,.• rad+ p"", o + p,.,.• c. (2.1) 

The Greek subscripts take values a, b, c, and d, the ground-state hyperfine levels in 

order of increasing energy e". The first term on the right-hand side is the radiation term 

resulting from the interaction of the atomie magnetic moments with the rf cavity magnetic 

field. The second term represents all one-atom terms such as wall collisions, finite cavity 

residence time, and interactions with magnetic field inhomogeneities. The third term, 

the collision term, is the primary point of interest in this paper. We are interested in a 

situation where the cavity mode is almost resonant with a partieular transition x - x'. 

For the corresponding density-matrix element the one-atom and collision terms then have 

the form 

p""• lo = -[(1/Tz)o - i6wo]p,.,.1, (2.2) 

p,.,.•!c = nHp,.,.1 LP1111 L':[(l + 6"À)(l + ê",À)(l + ê"11 )(1+6"111 )]
112 

Il À 

x{vtT""•,11-À}lh, (2.3) 

in which off-resonant terms have been omitted. The complex coefficient (l/T2)0 - iêwo 

generally depends in a complicated way on the values of the diagonal density-matrix 

elements p1111 , but is independent of p"",. The complex "cross sections" O' ""• ,v-À describe 

the contribution of collisions in whieh a v-state atom makes a transition to the ..\ state in 

colliding with an atom which is in a coherent superposition of the x and x' states: 

1r '"' [ 1 l* c""•,11-À = A;l L..,,(21+1) S{ic,\}.{1<v}S {1<'À},{1<'v} - êÀv] • 
1 

(2.4) 

In this equation Greek subscripts between brackets are a shorthand notation for nor­

malized symmetrie (antisymmetric) two-body spin states for even (odd) partial wave 

l. The S-matrix elements are to be calculated fora common relative kinetic energy 

E" =li2k2/mH in the entrance channels {xv} and {x'v }. The brackets Orb in Eq. (2.3) 

denote thermal averaging. 

The calculation of the collision term is based on a two-atom Hamiltonian containing, 

in addition to the centra! interaction and hyperfine interactions already included [7],[8] 
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for B = 0, the Zeeman term 

(2.5) 

with µe (µp) the electron (proton) magnetic moment and uthe Pauli spin vector. Magnetic 

dipolar interactions are again negligible. The collision problem has S0(3)orbiixS0(2)spin 

as a symmetry group, i.e., the direct product of the three-dimensional orbital rotation 

group and the two-dimensional spin rotation group about the z axis (llB). Due to S0(3) 

orbital symmetry the S matrix is diagonal in the relative orbital angular momentum 

quantum numbers l and m1, and independent of m1. Tuis is taken into account in the 

notation of Eq. (2.4). Due to S0(2)spin symmetry the total spin magnetic quantum number 

is conserved. Consequently, for odd l only elastic S-matrix elements play a role in Eq. 

(2.4), i.e., ab -+ ab, eb -+ eb, ad -+ ad, and cd -+ cd, the same combinations as for 

B = 0 but with B ::/: 0 values. For even l we have the elastic elements for aa -+ aa, 

ac -+ ac, and cc -+ cc, and the inelastic elements for aa - ac and ac - cc. The Jatter 

were absent for B = 0 for reasons of symmetry: under a combined 1800 rotation of the 

electron and proton spins of a single atom about an axis in the xy plane la} -+ la} and 

Ic) -+ -Ic}, so that laa} and lee} are invariant and I{ ac}} -+ -1{ ac} }. Note that by the 

same argument the equality of the B = 0 elastic S-matrix elements for ab and ad and 

for eb and cd is lost for B ::/: 0. 

We now concentrate on the experimental situation in which ""/ = ac. Substituting 

p"c(t) = p".(O)exp[i(t:0 - t:a)/li + iSw - l/T2]t (2.6) 

in Eq. (2.1), we find without radiation term the total frequency shift and total atomie 

linewidth 

Sw = Swo + Sw0 , 

Here the collisional contributions are related to the cross sections by 

{2.7) 

(2.8) 

Sw. = ny(v)[(p" - p"")Xo +(Pee+ p"")Ä1 + X2 + (Pdd - Pbb):\3}, (2.9) 

(l/T2)c = ny{v}{(p" - p"")äo + (p" + p"")q, + à2 + (Pdd - Pbb)ö';], (2.10) 
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with 

iÀo - <To = O"cc,c ...... c - O"cic,a. ..... a. - 0"4c,c ...... c + O'a.c,c ...... ci, 

ÎÀt - <11 = <111c,c .... c + <Ta.c,11-11 + <111c,a-c + <Tac,c .... 11 

-!<Tac,b-+b - !<Tac,d .... d 1 (2.11) 

ÎÀ2 - <12 = !<T ac,c:l .... d + !<T ac,b-b , 

iÀ3 - <13 = !<Tac,d .... d - !<Tac,6 .... 6 • 

Note that the new Pdd - Pbb terms arise because of the above-mentioned loss of symmetry. 

2.3 Collisional shift and broadening 

Apparently, the collisional frequency shift and line broadening can be determined once 

the S matrix has been calculated. As for B = 0, this bas been done both by the 

coupled-channel method and by approximate methods. We refer to Refs. [7] and [8] for 

a description of the coupled-channel method as applied to the H maser. 

2.3.1 Degenerate lnternal states 

The calculation is much easier when energy differences of internal states are neglected. 

The advantage of this approximation is that the intemal atomie Hamiltonian reduces 

effectively to a constant times the unit operator. Using this, one can turn to a new 

basis of internal states to simplify the collision problem, i.e., the internal basis with total 

electron and proton spin quantum numbers S Ms I M1, which diagonalizes the interatomic 

interaction. With respect to this basis thè coupled-channel problem reduces toa simpte 

potential-scattering problem for singlet and triplet scattering separately. 

For B = 0 this approximation was relatively straightforward to apply. In Refs. [7] 

and (8) we obtained results in agreement with expressions obtained previously [6]. 1t 

is Iess trivial how the approximation is to be applied most effectively to the inelastic 

processes for B f:. 0. We have shown previously [12],[13] that spin-exchange and 

dipolar transitions in H + H scattering in the sub-Kelvin regime can be described 

very successfully if one does not replace an S-matrix element as a whole by its value 

for degenerate internal states (DIS), but rather a related quantity: one first splits off 
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two factors depending on initia! and final channel wave numbers and subsequently 

approximates the remaining quantity by its value for degenerate internal states, i.e., equal 

wave numbers in all channels. Simple expressions in terms of scattering lengths, but still 

rather accurate for low energies, are obtained by calculating the remaining quantity in 

the zero-energy limit (vanishing wave numbers ). For somewhat higher energies accurate 

agreement with coupled-channel values is obtained by taking the collision energy equal 

to the average of initial and final relative kinetic energies. Recently we applied the same 

so-called DIS method to the scattering of dressed H atoms in a microwave trap [14] and 

to the refiection of H atoms from a superfluid 4He surface [15]. 

As an example we give the S-matrix element for the ac--+ aa transition (even l), 

(2.12) 

In this expression kac (k"") is the initia! (final) wave number, k is their "average," 

ÓT (ós) is the triplet (singlet) scattering phase, and () is the usual B-dependent angle 

characterizing the hyperfine states 

(2.13) 

Making use of such expressions the À; and u; cross sections are easily obtained, 

). (DIS) = 2~2 (1- 3cos228) E (21 + l)sin2.ó.ó1
, 0 

1 even 

. ,\(DIS) 
1 = ).~DIS) = o, 

).~DIS) = -;2cos28 L(2l + l)sin2.ó.8, 
lodd 

(DIS) = 8~2 sin248 E (2l + l)x~, (2.14) O'o 
leven 

(DIS) = ~ E (21+1)[(1 + cos228)sin2.ó.ó1 + lsin248x~] 0'1 
leven 

-:2 L(2l + 1)(1 + cos228)sin2.ó.ó1
, 

lodd 

(DIS) = ;
2 

L(2l + 1)(1 + cos228)sin2.ó.ó1
, 0'2 

1 odd 
(DIS) 

0'3 = o, 

in which .ó.81 stands for ~ - ó~ and the x coefficients for 
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x~(k) = (kk>fk;)21+1sin2Aó~ + (kk<fk~)21+1sin2Aó~ 

-2sin2aó', 
x~(k) = (kk>fk;)21+1sin2Aó~ - (kk<fk~)21+1sin2Aó~. 

(2.15) 

In these expressions k is the wave number in the entrance channel, k> is a larger wave 

number obtained by adding the a-c level splitting at the magnetic field strength considered 

to the initia! relative kinetic energy, and k< is a similar wave number found by subtracting 

the same splitting. Furthermore, iè> and k< are wave numbers corresponding to averaged 

initia! and final kinetic energies. Finally, Aó~ and AÓ~ are the Aó1 phase differences at 

the average wave numbers k> and k<-
Apparently, À iDIS) and ,\~DIS) vanish as for B = 0. This is a centra! conclusion of the 

present paper. For B = 0 we obtained dangerous ,\1 and À2 terms only as a correction 

of first order in the hyperfine level splitting. Nonvanishing values of ÀlDIS) and ,\~DIS) 

for B ;!: 0 would have implied the possibility of a drastic change of these parameters 

already upon application of a weak magnetic field and hence, in principle, the possibility 

of a vanishing or density independent frequency stability parameter [7] f!. On the basis 

of the above-mentioned result we can only expect a nonvanishing value of À1 and À2 for 

B ::f:. 0 in first order in the hyperfine level splitting. lntuitively, one thus expects that 

the purpose of eliminating the effect of the dangerous terms can only be achieved with 

stronger B fields at least of order Bo ~ 50. 7 mT. 

One can understand the vanishing values of À1ors) and ,\~DIS) on the basis of a symmetry 

argument. Since the DIS two-body Hamittonian no longer contains the two proton spins, 

one can carry out the above 1800 rotations for electrons and protons about perpendicular 

axes in the xy plane. This induces the transformations la) - ilc), Ic) - -ila), 

lb) - ild), and Id) - -ilb), so that laa) - -lee), etc. As a consequence, the cross 

sections u"","_" and u...,,"_c are complex conjugated, as are O'ac,b-b and O'ac,d-d, while 

u...,,"_c and O'ac,c-a are real. By the same symmetry argument u)DIS) = O. 

2.3.2 First-order correction 

The vanishing values of À1 and Àz for degenerate intemal states prompt us to resort to a 

more rigorous approach for gaining insight into the B #- 0 frequency stability. This leads 
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us to calculate first-order corrections in the hyperfine level splittings. As pointed out in 

Refs. [7] and [8], these cannot be calculated by straightforward first-order perturbation 

theory, i.e., the Born approximation: The perturbation Vhr + vz - ë, in which lis the 

average intemal energy, does not fall offwith interatomic distance, so that distorted-wave 

Born integrals do not converge. We have shown that a first-order method previously 

devised for nuclear reactions [16] can also be applied successfully to individual partial 

waves in sub-Kelvin H + H elastic scattering. In this paper we have to deal also with 

inelastic S-matrix elements, i.e., we would like to dispose of a first-order correction 

to the above-mentioned DIS approximation. The following elegant expression can be 

derived [17]: 

~s~cr'/3'},{ cr/3} = ( ka'/3' ka/3 /k2 )1+1
/
2 

x({o:'.B'}l(PT - Ps)(vhr + vz - l)(PT - Ps)l{o:.B}) 

x~1(k), (2.16) 

where 

~l(k) = Î ffiH ( fo ( 1(0) 1(0))2d 4T o uT -us r 

1 1coi 1co> 2 [ - a - ] ) +
2
k(ST -Ss ) Wr 01(k,r),

8
k01(k,r) (2.17) 

For the notation we refer to Refs. [7] and [8]. The integral term in Eq. (2.17) is the 

Born-type integral that would have been obtained with a perturbation Vhr + vz - l 

confined to a sphere with radius ro in relative orbital space, enclosing the range of the 

centra) interaction Vc(r ). The Wronskian surface term takes into account the effect of 

the perturbation outside this sphere. 

As an example we give the expression for one of the inelastic S-matrix elements, 

corresponding to the zeroth-order equation (2.12), 

~SI = (k k /'P)l+l/2! r;;2s. 462t:a - t:b - t:a "'l(k-) aa,{ac} aa ac 8 V ,t; ID '/i, L.l • (2.18) 

Making use ofsuch expressions we find the hyperfine-plus-Zeeman-induced frequency­

shift parameters 
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?ra 
D...\o = lik2 L (21+1)[(! - ~cos220)Ime~ - !sin2Bcos220Im71~], 

1 even 

D..-\1 
?ra • 1 1 = fik2 L(2l + l)!sm20Im(fr +es) 

lodd 

-;:i L (21 + l)(sin29Ime~ + !sin20cos220Im71~), 
1 even 

D..-\2 
?ra L( 1 • , , = -lik2 21 + lhsm20Im(fr +es), 

lodd 

D.,\3 = 0, (2.19) 

D.O"o = ;:i L (21 + l)sin20{Ree~ - icos220Re[2(e~ - e~) + 71~]}' 
1 even 

D.0"1 = -;; L (21+1)[(! + !cos220)Ree~ + f6sin240Re71~], 
leven 

D.0"2 = o, 
Do0'3 = -;; L(2l + l)!sin49Re(e~ -e~), 

lodd 

in which the shorthand notation 

e~(k) = D.'.(k)e2i6Hk) (2.20) 

has been introduced for triplet scattering and similarly for the singlet case, while 

11~(k) = (kk>fk;)21+1[e~(k>) -e~(k>)l + (kk<fk~)21+1[e~(k<) - e~(k<)I 

-2[e~(k) - e~(k)J, (2.21) 

11~(k) = (kk>fk;)2'+1[e~(k>) -e~(k>)l - (kk<fk~)21+1[e~(k<) - e~(k<)J. 

2.4 Numerical results and consequences for H maser 

The introduction of a strong B field has a numberof consequences for the operation of the 

hydrogen maser which are associated with the dependence of hyperfine spin functions 

and level splittings on B. In the first place the coupling of the a and c levels due 

to the interaction with the magnetic field of the radiation mode varies with B. As a 

consequence, B has a direct infiuence on the maser operation and in particular on the 

oscillation condition. Tuis can be derived in complete analogy to the B = 0 case [18]. 

The result is 

(2.22) 
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where (Pee. - p,...)o characterizes the substate populations for the H atoms entering the 

cavity. The further notation follows Ref. [18]. 

A second effect. on which we have concentrated already in the foregoing, is the 

infiuence of B on H + H collisions and consequently on hyperfine population dynamics 

and collisional frequency shift. Elastic S-matrix elements, which already determine this 

frequency shift for B = 0, change considerably by the introduction of a B field of, 

for instance, 0.05 T. In addition, significant contributions from inelastic transitions are 

introduced. 

We evaluated the above-mentioned DIS frequency parameters corrected to first order 

for the hyperfine level splitting. The total parameters have also been calculated rigorously 

using the coupled-channel method. Deviations are expected to occur close to and below 

inelastic thresholds, for instance, in the aa channel due to the cc channeL As for B = 0 

[7], discontinuities due to these thresholds are described by the coupled-channel method, 

but not by the DIS approximation plus first-ordercorrection. Despite these shortcomings, 

the DIS plus first-order method is very useful because it leads to more explicit expressions, 

especially with respect to the B dependence, which facilitates qualitative insight. In 

addition, it serves as an important test case for the coupled-channel calculations. 

In Fig. 2.1 we present the >. and u parameters as a function of Bat a fixed collision 

energy of 0.6 K, as predicted by the coupled-channel calculations. lt turns out that the 

field dependence is remarkably accurately (to the percent level relative to the values at 

the maxima) described by the simple DIS plus first-order polynomials in sin28 and cos28 

of the expressions (2.14) and (2.19). In particular, the sin28 proportionality of .:\ 1 and 

>.2 is fully confirmed, as well as the 1 + cos228 dependence of o-1 and 0-2. It is also of 

interest to point to the change of sign of Ào at B = 35.9 mT, due to its 1 - 3cos228 field 

dependence. At this field strength the spin-exchange tuned cavity frequency is expected 

to be equal to the atomie frequency. We note also that Ào, À3, ui, and 0-2 are dominated 

by their DIS contributions and Ài. Àz, and 0-3 by their first-order parts. The uo cross 

section receives significant contributions from both zeroth- and first-order parts. 

The same characteristics are found at higher collision energies. As pointed out 

previously, for lower collision energies pronounced deviations occur due to thresholds 

in inelastically coupled channels. The Boltzmann averaged frequency shift parameters 

at the relevant temperatures T = 0.52 K and higher are, however, much less sensitive to 
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such deviations. Using the simple field dependences, the Àï and ü, parameters may be 

expressed simply in their previously given values [7],[8] for B = 0, except for ö-0, X3, 

and Ö'3. The latter two are "new" parameters, which vanish at B = 0. In Fig. 2.2 we give 

them at B = Bo ~ 50. 7 mT. Va lues for other fields may be obtained from their field 

dependences cosW and sin40, respectively. Furthermore, üo can be expressed linearly 

in terms of its previously given values at B = 0 and those at B = Bo, 

üo(B, T) = üo(O, T)sinW(l - 2cos2W) + üo(B0 , T)2~in20cos220. (2.23) 

In Fig. 2.2 we also present üo(Bo, T). 

We now turn to the implications of a stronger B field for the frequency stability. 

With present experimental possibilities in connection with hyperfine state selection in 

H masers it is possible to inject equal populations of the b and d hyperfine levels into 

the storage bulb. Making use of conservation of the total electronic plus nuclear spin 

projection along B, one thus expects that the Pà.tl. - p;; term in the frequency shift can be 

sufficiently eliminated. We are then left with a collisional frequency shift of the form 

(2.24) 

with coefficients X,(B, T). From a self·consistent calculation of the H-maser oscillation 

similar to that for B = 0, we again find Pt.t: - Po.a to be proportional to the transverse 

relaxation rate 

liv;,(1 + .ó.2) x-1 
P= - Pa.a. = mHµo(µe + µp)2qQcVr,sin22() 2 ' 

(2.25) 

which again contains a B-dependent sin220 factor. For the further notation we refer to 

Ref. [7]. lt follows that the spin-exchange cavity tuning procedure can still be used to 

eliminate the Pee - Pao. term of the frequency shift. On the basis of the usual very weak 

magnetic field the remaining frequency shift could not be eliminated by a similar cavity 

tuning procedure. For the prospects for B '/:- 0 to be more favorable, it should be possible 

to write the shift as a linear function of 

(2.26) 

In this equation we have left out a negligible üo(P= - Pa.a.) term. Clearly, the remain­

ing collisional frequency shift is insensitive to experimental fluctuations in nH if the 
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dimensionless frequency-shift parameter 

n = _ À1(Pcc +Pee)+ À2 
Ö'1(Pcc +Pee)+ Ö'2 

is zero or at least independent of Pee + Pee· 

37 

(2.27) 

For B -:/:- 0 it follows from Eq. (2.14) that n is again a hyperfine splitting induced 

quantity. From Fig. 2.1 and Refs. [7] and [8] it follows that À1 and À2 are both negative 

and ä'1 and Ö'2 both positive for all reasonable field strengths, so that a value zero for n 
cannot be expected to be achieved. In fact, because of the similar field dependences of 

À1 and À2, and of u1 and u2, n depends on B via a sin2ll /(1 + cos22ll) overall factor. 

The next-best possibility, an n value independent of Pee+ Pee. would be possible when 

for certain B the ratio "5.2/À1 would be equal to ä'2/ä'1 at T = 0.52 K. Since these ratios 

are in good approximation field independent, this weaker condition is already excluded 

by our previous B = 0 results: à'2/iJ1 is at least two orders of magnitude smaller than 

'5..2/'5..1• We conclude that a stronger B field does notcreate new possibilities to eliminate 

the frequency instability associated with fluctuations in nH. 

2.5 Conclusions 

The operation of the (cryogenic) H maser, especially its recent recirculating version, 

depends on a complicated in terp lay of hyperfine level occupations and coherences. A 

valuable source of information on these quantities is the maser oscillation frequency. 

From its measured value as a function of experimental parameters such as cavity fre­

quency and atomie flux, and using its dependence on level populations it is possible to 

gain information on the population dynamics. From this point of view it would seem 

very useful to introduce an external constant magnetic field as an additional experimental 

parameter to diagnose the population dynamics. In this paper we have predicted the theo­

retica! B dependence of the maser oscillation frequency needed for the above-mentioned 

analysis. We have derived a B -:f:. 0 expression for the collisional frequency shift in 

terms of hyperfine level populations. The coefficients À; in this expression, as well as 

the corresponding quantities Ö'i determining the transverse relaxation rate, have been 

calculated in zeroth and first order in the hyperfine level splittings, as well as on the basis 

of the rigorous coupled-channel method. 
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A second context in which our results might be useful is associated with a possible 

use of the ( cryogenic) hydrogen maser as a precision instrument for measuring specific 

phenomena in a dilute quantum gas. lnsofär as an external magnetic field is essential 

for such effects, for instance, in the case of nuclear or electronic. spin waves in atomie 

hydrogen, it is essential to understand the influence of a B field on the operation of the 

H maser. 

Finally, we have discussed the implications of our calculated frequency-shift param­

eters for the frequency stability of the cryogenic H maser. We find that the introduction 

of a stronger B field does not eliminate the söurce of frequency instabilities pointed out 

previously for the conventional setup based on a very weak B field. 
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Chapter 3 

The surface state hydrogen maser 

Abstract 

We describe a hydrogen maser operating at very low temperatures in which most of the 
hydrogen atoms are condensed on a supertluid helium surface in Jong-Jived states. This 
proposed maser can be used to obtain new information on the properties of the hydrogen­
liquid helium surface system. In addition, it promises to be an interesting system from the 
point of view ofnonlinear dynamics. It is found that the surf ace recombination to molecular 
hydrogen, which might be considered as undesirable, is actually necessary to achieve the 
masing conditions. We develop the maser equations and consider a number of realistic 
conditions for operation. 

3.1 Introduction 

In this paper we propose a new type of maser, the surface cryogenic hydrogen maser 

(SCHM), in which the dominant species coupled to the radiation field are the hydrogen 

atoms condensed on a superfiuid helium surface. The SCHM provides a new means of 

studying hydrogen-surface interactions, as well as an interesting device to study nonlinear 

dynamic behavior. 

Our analysis treats atoms in the volume and surface states on an equal footing, 

using the Maxwell-Bloch equations coupled with the rate equations for the density of 

41 
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the hydrogen hyperfine states. We find the unexpected result that recombination of the 

hydrogen atoms is required to satisfy the masing condition. We analyze a "conventional" 

mode of operation in which the masing takes place on the a to c transition, shown in 

the hyperfine diagram, Fig. 3.1. In addition, we consider the unusual operation on the a 

to b transition in which the population inversion is produced not only by the incoming 

beam, but also by surface recombination of hydrogen in the cavity. Operating conditions 

are presented in both cases. Before entering into details of the analysis we present some 

introductory discussion. 

The room temperature atomie hydrogen maser is the most stable time standard cur­

rently available for measurement intervals between 1 and 104 seconds. More recently 

a sub-Kelvin version, called a cryogenic hydrogen maser {CHM), has been proposed 

[l] and constructed [2]. The CHM works in essentially the same manner as the room 

temperature maser, bul has a number of advantages due to the low temperature which 

promise stability greatly enhanced over that of the room temperature maser. The CHM 

involves atoms in the cavity volume coupled to the radiation field, but perturbed by the 

helium surface, resulting in a wall frequency shift which depends on temperature as wel! 

as the area to volume ratio. The CHM operates at a temperature of about 500 mK. 

The SCHM takes advantage of the H-liquid helium adsorption isotherm. By cooling to 

the 50-100 mK temperature range H atoms populate long-lived surface states. In this 

regime we find conditions in which the surface plays a more prominent role than that 

of perturbing the effective volume parameters. In this connection one could think of 

a situation in which the pulse time in a pulsed oscillation regime [3] is so short that it 

becomes of the order of the average sticking time of atoms to the surface. In this case 

surface and volume atoms could have different time-dependent spin behaviors and by 

enhancing the number ofatoms at the surface relative to those in the volume, the surface 

state atoms dominate the maser behavior. Note that due to the sensitivity to perturbations 

in between pulses the exact time-dependent spin behavior of surface atoms could already 

be important for the operation of the CHM in the pulsed regime. 

A second motivation for the present research is the possibility to use the dependence 

of the maser operation on the surface for precision measurements. Partially, this has 

already been done in CHM experiments in which it has been possible to determine the 

transition frequency of hydrogen atoms adsorbed at the superfiuid helium surface with 
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B 

Figure 3.1: Schema tic diagram of the ene.rgy of theiour hyperfine levels of the hydrogen 

1s-groundstate as a function of the applied magnetic field. In the "conventional" maser 

oscillation takes place between the a and c levels, indicated with an arrow. For the 

SCHM the a-b transition is also considered. 
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great accuracy [ 4]. One can imagine that in a maser in which the dominant species 

coupled to the radiation field are hydrogen atoms condensed at the surface, much more 

information can be obtained about hydrogen-surface interactions, e.g., a new, possibly 

more accurate, determination of the surface adsorption energy and the influence of dipolar 

collisions and recombination on the atomie linewidth. 

A third motivation for the investigation& is the possibility to use the transition fre­

quency of hydrogen atoms adsorbed at the helium surface as the basis fora primary time 

standard. The wall shift inhibits the use of present hydrogen masers as a primary time 

standard. In a SCHM one would obviously have to deal with a volume shift. Whereas 

the wal! shift can not be eliminated in the CHM there is every reason to hope that a 

volume shift can be made arbitrarily small by keeping the atoms at the surface longer, 

i.e., by lowering the temperature. 

In the following, we first generalize the conventional Maxwell-Bloch equations to a 

combined set of equations for volume and surface in Sec. 3.2. In Sec. 3.3 we show how 

the usual maser equations and maser parameters follow from the generalized Maxwell­

Bloch equations in the limit of small sticking times. In Sec. 3.4 we concentrate on new 

phenomena both for the traditional scheme in which oscillation takes place between the 

a and c levels of the hydrogen ground state and fora maser which oscillates between the 

a and b levels. In Sec. 3.5 we consider some aspects that are related to the experimental 

realization of the SCHM. Some conclusions are presented in Sec. 3.6. 

3.2 Generalized Maxwell-Bloch equations 

The usual way to describe the dynamics of the hydrogen maser is by using the Maxwell­

Bloch equations 

i3 = -(11: + iwc)B + gM, 

M = -bJ. + iwai)M + gB!:::., (3.1) 

il. = -111(!:::. - !:::.o) - 2g(BM* + B* M), 

for the complex magnetic field B, the complex magnetization Mand the population 

inversion !:::.. The field B is normalized so as to equal the square root of the number of 

photons, whereasM = N Pc~ and!::.= N(pcc-p...,) in tennsoftheone-atom spin-density 
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matrix pand the number N of atoms in the storage bulb. The cavity resonance frequency 

is denoted by wc, the atomie transition frequency by Wa1t the cavity damping rate by 

~ = wc/2Q c = 1 /Tc, with Q c the quality factor of the cavity, and the damping rates for 

Mand A by /J. = l/T2 and /Il = 1/Ttt the transverse and longitudinal relaxation rates. 

The equilibrium value of A in the absence of atom·field interaction is denoted by Ao. 
Finally, the one-photon Rabi frequency gis given by 

2 f.lo(f.le + µ") 2
'f'/Wc 

g = 2/iV:: ' (3.2) 

with Vc the cavity volume, µo the vacuum permeability, f.le (µ") the electron (proton) 

magnetic moment and 'f'/ the filling factor. 

The atomie transition frequency w11 and the transverse and longitudinal relaxation 

rates /J. and /Il entering Eqs. (3.1) differ from the values for an unperturbed hydrogen 

atom due to collisions with other hydrogen atoms and helium atoms and due to the finite 

residence time in the cavity field. Another effect which infiuences the frequency and 

the width of the atomie iransition, and which is the primary interest of this paper, is the 

sticking of atoms to the wall of the storage bulb. The atoms traverse the storage bulb 

many times before leaving it. Each time an atom hits the wall it has a finite probability to 

stick. In the case of a sticking event it will desorb after an average timer,. The average 

time r, of a sticking event and the average time r11 between subsequent stickings are 

given by 

kT -E&/kT 
r, = 271"/i.se ' 
1 (3.3) 

(_E_J i/2 Ao s' 
21rmH Vb 

1 
= 

T" 

where kis Boltzmann's constant, T is the temperature, s (= 0.33 K-1 T) is the sticking 

probability and E& is the binding energy of hydrogen atoms to the superfluid 4He surface 

(E& = 1.0 K). The mass of the hydrogen atom is denoted by mH whereas the surface 

area of the storage bulb is given by A6 and its volume by Vo. The energy levels of a 

hydrogen atom bound to the surfäce will be perturbed due to the interaction with the 

helium surface which results in a shift of the transition frequency. This means that the 

transition frequency bas two different values, one in the volume and one at the surface. 

The net phase effect of two alternating transition frequencies bas been discussed by 

Anderson and Weiss [5] and applied to the hydrogen maser by Morrow and Hardy [6]. 
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The phase shift which the atoms undergo per sticking event due to the difference in 

atomie transition frequencies is calculated assuming that the sticking time and the time 

between stickings are distributed according to Poisson statistics. In the usual situation 

for the cold hydrogen maser the result takes on a particularly simple form. The rapid 

exchange of atoms among volume and surface states and the very short sticking time 

compared to the time in the volume result in a shift (wal! shift) of the volume frequency 

due to the influence of the transition frequency at the surface and it is not necessary to 

deal with the surface atoms explicit\y. Consequently, the Maxwell-Bloch equations (3.1) 

remain valid but with effective values for wa1 and /.L: 

1 ef>o 
Wa1 = w" + T" l + </>'5 , 

(3.4) 

Il 1 ef>Ö 
1.L = 1.L + r" 1 +<Pa' 

where w" and i'l are the atomie transition frequency and transverse relaxation rate in the 

volume and t/>o = r,(w, -w") is the average phase shift per sticking event with w, being 

the atomie transition frequency at the surface. 

This approach is va lid as long as there is a rapid exchange of atoms between surface 

and volume and the total time spent at the surface is short compared to the time spent in 

the volume. Tuis approach also neglects recombination and relaxation effects and any 

independent interaction with the radiation field during the time that the atoms reside at 

the surface. 

Generalizing the usual derivation [3] of Eqs. (3.1) to the case of a combined system 

of atoms at the surface and in the volume, we obtain 

ÉJ = -(11: + iwc)B + g(M" + M'), 

M" = -(1!+iw")M"+gB6.11 -2-M11 +..!..M•, 
T11 T, 

M' = -(1~ + iw,)M' + gB.ó.' + ..!..M" - ..!..M· 1 (3.5) 
T11 T1 

À" = -1ji(6."-60)-2g(BM"*+B*M")-2_6"+..!..6', 
T11 T1 

À' = -1û(.6.' - 6~) - 2g(BM'* + B* M') + .!_6" - .!_6,, 
Tv T, 

with separate quantities Mi and 6i (i = v, s) for volume and surface. The 1 coefficients 

are the transverse and longitudinal relaxation rates in the volume and at the surface and 
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the .ó.0 coefficients stand for the equilibrium values of the population inversion in the 

absence of atom exchange and atom-field interaction. 

In order to evaluate possible operating conditions for the SCHM knowledge of the 

various constants in Eqs. (3.5) is essential. As far as the operation of the hydro gen maser 

depends on specific device parameters we have assumed values which correspond to the 

Harvard-Smithsonian CHM [2], except for the area to volume ratio of the storage bulb 

which we consider to be a free parameter. 

The relaxation rates in the volume describe the loss of coherence and population 

inversion primarily due to atoms leaving the storage bulb and to spin-exchange collisions. 

We neglect the hyperfine-induced contribution to ïl· Specifically, ïtt = /b + n"(v"}ü 

and ïl = /b + !n"(v"}&, where /b is the rate at which atoms Jeave the storage bulb, 

n" is the density of atoms in the volume, (v"} is the thermal velocity of atoms in the 

volume and {j = (v"fic)/(v"), with fic the spin-exchange cross section. We take Ïb 

to be proportional to v1T with the value 0.2 s-1 at T = 0.5 K and for ü we take a 

constant value of 8 · 10-17 cm2 [7] in the temperature range under consideration, using 

Pee + p"a = Pbb + Pdd = !· The equilibrium value of the population inversion in the 

volume is determined by the influx of atoms into the storage bulb and by collisions, 

ïtt.Ó.~ = !(pee - p"a)eotr + n"(v")ü.ó.:, with I the flux of atoms into the storage bulb, 

(Pee - Paa)entr == ! the population inversion of these atoms and .a: determined by the 

thermal Boltzmann distribution. 

As the direct in- and outflow of atoms is absent at the surface, the relaxation rates and 

the equilibrium value of the population inversion at the surface are primarily determined 

by collisions. In analogy with the volume parameters we have 11j = fI(v.)l and 11 = 

!fI(v.)l, with f7 the number of atoms at the surface per cm2, {v.) the thermal velocity 

of atoms at the surface and l the thermally averaged collisional cross Jength. We take 

this cross length as a sum of contributions from recombination and from two-body 

scattering due to the spin-exchange potential and the dipole-dipole interaction. For 

the recombination contribution to l we take the value 3 · 10-9 cm [8]. Calculations 

.for the spin-exchange contribution neglecting motion perpendicular to the surface [9) 

and order of magnitude estimates for the dipolar contribution [8],[10] indicate that 

these are at most equally important. The product ïû.ó.~ is a sum of /.Ó. products from 

the above processes. The .ó. value associated with recombination vanishes, while the 
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spin-exchange and dipole-dipole contributions have Boltzmann equilibrium values. It 

should be noted that the above-mentioned parameter choices are partly based on order 

of magnitude estimates. The existing theoretica! description of two-body exchange and 

dipolar collisions and two-body recombination at the surface is still rather incomplete. 

The determination of actual experimental SCHM operating parameters will be a very 

welcome addition to the available knowledge of the properties of the hydrogen-surface 

system. 

In the a-c maser both .6.g and .ó.ó decrease due to collisions. Ina maser based on the a 

to b transition, however, one has the interesting situation that preferential relaxation and 

recombination of the a-state atoms increase the popuiation inversion, which facilitates 

maser oscillation. This effect will be dealt with in Sec. 3.4. The remaining parameters 

in Eqs. (3.5) are of the same order of magnitude for the a-b maser as for the a-c maser. 

Note that in the derivation of Eqs. (3.5) it was tacitly assumed that the total number 

of atoms in the volume (N") and at the surface (N,) are constant. If this restriction 

is relaxed, Eqs. (3.5) have to be supplemented with additional equations for the time 

dependence of N" and N,. 

Taking into account the persistent problem from dipolar relaxation in experiments 

with hydrogen on a helium film, one would expect that the dipolar interaction would 

also affect the performance of a surface maser drastically. One should, however, keep 

in mind some differences with the more usual situation of gas samples which are almost 

completely doubly polarized (Hl t or (Hî t ). Whereas for the Jatter dipolar relaxation 

dominates over the direct surface recombination, the situation is different in both the 

a-c and a-b surface maser because of the large fraction of a-state atoms. Two different 

processes have to be distinguished, i.e., the loss of coherence and population inversion due 

to hyperfine state changing collisions and the loss of coherence due to the phase which the 

oscillating magnetic dipole moment acquires during an elastic dipolar collision. Since 

we are considering zero magnetic field the dipolar interactions are dominated by the 

electron spins. Tuis might suggest a large contribution to 'Ytt and 'Yi. However, at zero 

magnetic field also the recombination rate is large. The magnitude of the dipolar T1-
1 

and T2-
1 due to hyperfine state changing collisions turns out to be negligible compared 

to the recombination contribution [8] under the conditions considered (Pee (Ph6) ~ Pa.a.)• 

Tuis is not necessarily true for the second process mentioned above, i.e., the change of 
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phase of the oscillating magnetic dipole moment in the magnetic field of a neighboring 

atom. However, in the case of the a-b maser one can choose a setup based on including 

in the storage volume a configuration of very smooth plates analogous to that used in 

Ref. [11 ], so that variations in the orientation of the surface norrnal would be negligible 

producing a single atomie transition frequency at the surface. The dipolar width of the 

order of 10S-HJ6 Hz, observed in Ref. [10], would be reduced by the lOS times lower 

surface densities (see later) to a value of at most the same order as the recombination 

r2-
1, given above. In the case of the a-c maser an average dipolar field would be absent 

if Pbb = Pdd· 

3.3 The influence of the surface for short sticking times 

Under the usual operating conditions of the sub-Kelvin hydrogen maser the atoms spend 

most of their time in the volume and T, is by far the shortest time constant in Eqs. 

(3.5). A treatment in which T, is considered as a small parameter therefore seems to be 

appropriate. However, even for short sticking times the dephasing at the surface can be 

considerable due to the large difference between w11 and w,. In view of this we eliminate 

a rapid time dependence exp - iw11t, introduce the reduced timet= t/T, and transform 

to quantities Mand ä, which can take on the maximum value 1, 

Ë = Beïw.t, f;fi = Mié'•t/Ni, ä' = t:..'/N;, (i = v,s), (3.6) 

with N,/N11 = T,/Tv· By a standard two-times approach [12] we find the rapid changes 

by leaving out all terms containing T,, except <f.io. On the time scale T, we thus find that 

Ë, M" and äv are constant, while M' and ä• decay rapidly to the values 

- 1 - - -
M' = -1 .... Mv' !::..' = !::..". + i'l'o 

(3.7) 

Substituting these values in the terms of order T, we find on a Jonger time scale the 

usual maser equations (3.1) with precisely the effective atomie frequency and transverse 

relaxation rates (3.4), found usually by the more complicated derivation in Refs. [5],[6]. 



50 Ch. 3. The surface state hydrogen maser 

3.4 Prospects for constructing a surface maser 

The description in which the surface magnetization and population inversion adiabatically 

follow their volume counterparts requires sticking times that are short compared to other 

characteristic times appearing in Eqs. (3.5), such as 1/ K, 1/ïji, 1/ï
1
j, lfïI, lh1. 1/ gB 

and TIJ. lf, however, the temperature of the maser is lowered considerably below present 

values, r, becomes of the order of or even larger than a number of these time constants. 

The approach of the previous section is then not justified and the dynamics of the surface 

has to be included in the description of the hydrogen maser . 

.As r, increases, the number of atoms which reside at the surface increases as well. A 

situation might occur in which the surface atoms determine the behavior of the maser and 

in which the volume can be treated as a perturbation in much the same way as the surface 

is treated as a perturbation to the volume frequency. Given the before-mentioned various 

possible applications for such a surface cryogenic hydrogen maser, it is interesting to 

investigate under what conditions it might opera te. 

Based on the knowledge of the last section it seems logica! to follow a similar approach 

but now for small T 11 • Eliminating in this case the rapid time dependence exp - iw,t, 

introducing the reduced time f = t/r" and transforming to normalized magnetizations 

and population inversions as previously, leads toa system of coupled equations for the 

time derivatives of fJ, M1 and b.1• Note that due to the increased recombination at the 

surface the ratio of the number of atoms at the surface to the number of atoms in the 

volume is no Jonger given by the relation N,/N11 = r,/r". lnstead, the two are related 

via 

(3.8) 

where n, is the density of atoms per unit volume at the surface (defined as n, = O' Ah/Vi,) 

and /~en, is the recombination rate. Consistent with Sec. 3.2 we have assumed nlJ = 

n, = 0, which implies a restriction to steady oscillation taking into account that 7~ 

depends on the populations of the a and c levels, i.e" on the population inversion, which 

may be time-dependent. An example of the behavior of n, and n11 as a function of 

temperature is displayed in Fig. 3.2, fora flux of 2 · 1013 atoms per second and an 

area to volume ratio of 300 cm-1• At temperatures below 500 mK the temperature 

dependence of the densities starts to deviate from the curves obtained by neglecting 
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Figure 3.2: Surface density per unit volume n, and volume density n" as a function 

of temperature for a flux of 2 · 1013 atoms per second and an area to volume ratio of 

300 cm-1. For comparison the curves corresponding to n./n" = T8 /T", i.e., neglecting 

recombination, are given. The low temperature part of these curves, where the surface 

density saturates, is omitted. 
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the recombination. This is due to the fact that a significant part of the incoming flux is 

needed to compensate for recombination at the.surface, instead of building up the density. 

As, however, the recombination time is still large compared to the residence time at the 

surface the equality n,/n" = T,/T" is still valid. Only for temperatures below 80 mK. 

when the volume density starts to increa.se again, is the recombination time equal to or 

smaller than the residence time and is Eq. (3.8) needed to describe the relation between 

n, and n". 
In the spirit of the last section, we now try to express M" and ..& " in the corresponding 

surface quantities. This is possible by neglecting all terms containing T" in the dynamica! 

equations for M" and .Ó.". It is essential, however, to keep the T" terms containing M', 
</>1 = T"(w" -w,), 6.0 and..&•. Here we take into account that </>1 is large compared to 1, 

that M' and ..& • have to be included to retain the coupling between surface and volume 

and that the 6.0 term is essential for maintaining the population inversion. The result is 

M-" -- __ l_T"N.M-·, ÄV T"N.Ä• "6.8 
u = --p;ru +T"")'ll l\r ' 

1 + i</>1 -r,N" T,H" Hv 
(3.9) 

No te that M" is 90° out of phase with M •. Substituting these expressions in the remaining 

equations and including 0(-r") terms again leads to the usual maser equations (3.1) with 

the effective parameters 

1 </>1 
= w, + -r, 1 + ef>i ' 

• 1 ef>i 
")'J. = "l'J. + T, 1 + ef>I ' 

= 6.ó + 1'~6.0. 
111 

(3.10) 

It is interesting to point out that the maser will oscillate at a frequency determined by 

the hyperfine frequency at the surface, i.e., Wat is very close to w, as indicated in Fig. 

3.3, which should be a characteristic feature of a surface maser. This follows also from 

our simulations. It is thus indeed possible to make the volume shift small by decreasing 

the temperature. This means that one of the device dependent processes that affect the 

transition frequency can possibly be eliminated. In order to assess the feasibility of 

the SCHM as a primary time standard, however, other processes which influence the 

transition frequency, such as collisions, have also to be examined. Another important 

fact is that "l'J. (:::::! "l'i + 1/T,) turns out to have approximately equal contributions from 
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Figure 3.3: Ratio of the volume shift as given by Eqs. (3.10) to the transition frequency 

as a function of temperature lor an area to volume ratio of 300 cm-1• 
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"Yl and dephasing in the volume under the specific conditions of the SCHM that we will 

examine. Note, furthermore, that the effective value of 60, which deviates significantly 

from the pure surface value ~' is a result of the present treatment and does not follow 

from the method of Anderson and Weiss. An analogous significant surface correction to 

6~ did not occur in the previous case of the CHM. 

In order to assess the realizability of a surface maser these parameters have to be 

substituted in the oscillation condition, which on resonance is given by 

(3.11) 

For usual values of the incident flux the minimum required cavity Q value is determined 

by Î.l.• i.e., by the surface density and the temperature via "Yl and r.. For typical 

device parameters we have taken the values common to the current hydrogen maser, 

as mentioned in Sec. 3.2, with the exception of the area to volume ratio of the storage 

bulb where we used the value given in a recent paper of Pollack et al. [11]. For the 

temperature-density combination 70 mK/109 cm-3 we then find the oscillation condition 

to be satisfied with Q. = 3 · lü6. Tuis result is confirmed by a numerical simulation of 

the unapproximated set of F.qs. (3.5), leading to Figs. 3.4·3.9. For higher temperatures 

oscillation can be achieved for higher Q 0 values. In Figs. 3.4-3.6 the output power of the 

maser is shown as a function of density, temperature and cavity quality factor. Figure 

3.4 shows the importance of recombination to obtain maser oscillation: instead of the 

usual characteristic quadratic dependence of the power on the density with a decrease 

at higher densities, the power now continues to increase. In the CHM the influx of 

atoms is proportional to the density. At low densities 60 is determined by this influx 

whose increase is sufficient to compensate for the accompanying increase of Î .l.. At high 

densities, however, the increase of 6 0 with density is less than linear due to longitudinal 

relaxation, eventually making oscillation impossible. Due to recombination the influx is 

a quadratic function of the density in the SCHM. In this case the oscillation condition 

will always be fulfilled above a certain minimum density. The sharp decrease of the 

power for higher temperatures displayed in Fig. 3.5 indicates the importance of the 

dephasing in the volume on the effective atomie linewidth. At the low temperature side 

Î.l. is determined by îl· At the high temperature side the dephasing term becomes more 

important. Tuis results in a rapid increase of the transverse relaxation rate which inhibits 
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Figure 3.4: The output power of the a-c maser as a function of the total density in the 

storage bulb for Ab/V,, = 300 cm-1, T = 70 mK, Qc = 3 · 106 andw. = w,. 
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Figure 3.5: The output power of the a-c maser as a function of temperature for A6/l'6 = 

300 cm-1, n8 + n" = 109 cm-3, Qc = 3 · 106 and 3 • 107 and Wc= w •. 
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Figure 3.6: The output power of the a-c maser as a function of the cavity quality factor 

lor A1i/V1i = 300 cm-1, n. + n" = 109 cm-3, T = 70 mK and wc= w •. 
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maser oscillation. The relationship between the power and the cavity quality factor in 

Fig. 3.6, finally, implies the expected linear relationship between the number of photons 

in the cavity and the quality factor (IBl2
"' PQc}· 

To shed further light on the interesting role of recombination it is instructive to see 

what happens if surface recombination would be absent. Without recombination the 

transverse relaxation rate as given by Eqs. (3.10} will be greatly reduced, which might 

suggest a fävorable condition for operation of a surface maser. An evaluation of the 

oscillation condition (3.11), however, shows that in this case no oscillation can exist 

for reasonable maser parameters. The main cause is the importance of ~o in sustaining 

maser oscillation. In order for the maser to operate enough population-inverted influx 

should be supplied to the storage bulb per unit time. In the absence of recombination, 

however, the flux of new atoms into the storage bulb equals the flux out. This flux 

is determined by the number of atoms in the volume, which is only a small fraction 

of the total number of atoms in the storage bulb under the surface-maser conditions 

examined above (see Fig. 3.2). The flux of new population inversion 11j~0 is then 

too small to support maser oscillation. With recombination the incoming flux not only 

compensates the outgoing flux, but in order to maintain a constant density the atoms 

which disappear due to recombination must also be replaced. This implies a larger influx 

of new population inversion for the same value of the surface density and thus a more 

favorable condition for maser oscillation. 

In the previous considerations we needed ~o foroscillation. A fascinating alternative 

would be a surface maser based on the a-b transition. In this case, due to preferential 

recombination and relaxation of the a atoms, ~~ is positive, i.e" oscillation can in 

principle be realized even without population invers ion in the incoming beam. However, 

it is possible to feed the storage bulb with an incoming beam of b atoms (this will be 

discussed in the next section}. The same analysis which has been applied to the a-c maser 

can now be used for the a-b maser. For the same operating conditions as above both 

the oscillation condition and the numerical simulations show that oscillation is already 

possible for Q0 = 4 ·lef, which is almost 10 times lower than for the a-c maser. More 

advantages are clearly shown in Figs. 3.7-3.9. Not only does the a-b maser operate at 

much lower Q0 values, for equal Qc values it also operates at lower densities and, even 

more important, at higher temperatures. These higher temperatures could possibly make 
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Figure 3. 7: Same as Fig. 3.4 lor the a-b maser. The inset shows the minimum required 

densities lor maser oscillation for botb the a-b and a-c maser obtained by magnifying the 

lelt-band si des of Fig. 3.4 and this tigure. 
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Figure 3.8: Same as Fig. 3.5 lor the a-b maser. 
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Figure 3.9: Same as Fig. 3.6 for the a-b maser. 
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the a-b maser easier to operate. 

Comparing the condîtions underwhich the SCHM operates with the normal operating 

conditions of the CHM it is clear that for the former a cavity quality factor is needed 

which is several orders of magnitude larger. Partially, this is due to the magnitude of 6.o 

which involves different physics. In the CHM the influx of atoms into the storage bulb 

re places directly the atoms flowing out. In the SCHM new atoms primarily re place atoms 

which have recombined. The increase of Q c is also due to the larger transverse relaxation 

ra te. In the CHM both the storage time of the atoms and the collisional relaxation time are 

of the order of one second with only a small contribution from dephasing at the surface. 

For our example temperature-density combination of 70 mK/109 cm-3, in contrast, the 

resonant linewidth 'YJ. is equal to about 50 s-1 with approximately equal contributions 

from dephasing .in the volume and 'Yi. To compensate for this rapid loss of coherence a 

much better cavity is needed. 

3.5 Experimental considerations 

In this section we discuss some experimental aspects connected with the realization of a 

SCHM. We first consider some cryogenic questions. Temperatures of the order of 50-

100 mK are easily attainable with a 3He-4He dilution refrigerator, with cooling powers 

of a few hundred microwatts. Recombination of hydrogen can put a large heat load 

on the refrigerator. We calculate the heat load for the SCHM we have analyzed, with 

q = n. V,,/ Ai. = 3 · 1<>6 cm-2 where the area Ai. = 6 · lü4 cm2• The heat produced is 

Q = (3.12) 

where Do = 7 • 10-19 J is the recombination energy released per pair of atoms. Using 

the experimental value of the recombination constant K, = 3 • 10-s K-112 ,/T cm2 s-1 

from Morrow et al. (8] we find 2 µW, which is easily absorbed by a dilution refrigerator. 

A connected problem posed by temperatures in the range 50-100 mK is that a gas of 

hydrogen loses thermal contact due to the Kapitza resistance between the helium film 

and the substrate. However, in the maser described here due to the low hydrogen surface 

densities, the heat production is substantially lower than has been experimentally studied 

in the past. Thus, the thermal gradients which develop may be smaller, resulting in some 
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Figure 3.10: Schematic picture of an experimental design to Joad pure b-state atoms in 

theSCHM. 

flexibility in the range of accessible temperatures. 

Finally, we consider the filling fluxes required for the SCHM. These are of the order 

of 1013 atoms per second. Such fluxes are easily achieved with existing discharge sources 

which can deliver 1014-1016 atoms per second toa cell. 

One of the interesting ideas to emerge from this study is the possibility of a maser 

working on the a-b transition. An experimental design which can produce a flux of 

almost pure b-state stoms is shown in Fig. 3.10. A low temperature discharge produces 

hydrogen atoms populating the four hyperfine states. A small (,..,, 1-2 tesla) magnet repels 

the c and d atoms and confines the a and b atoms in a volume at a low temperature (- 300 

mK). This density of atoms converts to pure b-state atoms by preferential recombination. 

The magnetic field and temperature ofthis volume can be adjusted so that b-state atoms 

can reach the maser by thermal escape with a flux sufficient for the a-b SCHM. A small 

superimposed field can prevent Majorana transitions among the hyperfine states. 
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3.6 Discussion and conclusions 

The opemtion of the sub-Kelvin hydrogen maser is usually described by the Maxwell­

Bloch equations. Short periods during which the atoms stick to the surface enter these 

equations through effective values for the atomie transition frequency and transverse 

relaxation rate. We have extended these Maxwell-Bloch equations to a description in 

which the surface is treated symmetrically with the volume, rather than as a perturbation, 

opening in particular the possibility to treat the pulsed operation of the maser in a regime 

where the sticking time is comparable to the pulse duration. Work along this line is under 

way [13]. We have shown that for current versions of the sub-Kelvin hydrogen maser, 

i.e., for short sticking times, the usual equations and effective parameters are recovered. 

Starting from this new description, we have investigated the possibilities to construct 

a maser whose properties are mainly determined by atoms which reside at the surface, 

i.e., a surface maser. We have shown that for a maser which is based on the traditional 

scheme of a transition between the a and c levels of the hydrogen ground state a surface 

maser is realizable for realistic experimental parameters, for instance: T = 70 mK, 

n, + n" = 109 cm-3
, Ah/Vb = 300cm-1, Qc = 3 · la6. This result was obtained both 

by a simulation of the full set of Eqs. (3.5) and on the basis of the effective surface 

equations. The prospects for an a-b maser are even more favorable. 

Apart from the intrinsic interest in the operation of the SCHM, such as the interesting 

role of recombination and the possibility to observe pulsed oscillation, two important 

motives for studying the infiuence of the surface on the maser operation and in partic­

ular the SCHM are the possibility to create a primary time standard and the precision 

measurement of properties connected with a two-dimensional gas of atomie hydrogen. 

In this connection one could think of an extension of the measurement of the surface 

adsorption energy in Ref. [10] to a situation with lower surface densities, made possible 

by the greater sensitivity, with the associated advantage of a more reliable temperature 

determination. Another possibility worth considering would be to measure 1
1
j and 11 

as a function of surface density and field orientation. In principle, this would enable an 

independent determination of the dipolar Tz [10]. This could stimulate the development 

of a satisfactory theory of line-broadening including the coherent contribution of all 

dipolar fields. The main parts of 1fi and 11. due to recombination, would also be 
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a welcome addition to the knowledge desired for developing a satisfactory theory of 

surface recombination. 

In order to obtain a primary time standard it is essential that the effective atomie 

frequency Wat is independent of specific device parameters, such as those which determine 

the wall (volume) shift, but also spin-exchange and dipolar shifts, the influence of the 

substrate and the thickness of the helium film. From our analysis it follows that the volume 

shift can be suppressed in the SCHM. It is very unlikely, however, that the influence of 

the other processes can also be sufficiently reduced. For example, Morrow and Berlinsky 

[9] have calculated the spin-exchange frequency shift for hydrogen atoms adsorbed on 

a surface. Although in this calculation the motion of the atoms perpendicular to the 

surface is neglected it gives a good indication whether this effect seriously infl.uences the 

operation of the SCHM. For our reference temperature-density combination this leads to 

a frequency shift ~wa1 !::::! 10 rad s-1, given the fact that (Pee - p,,.,,.) is approximately 0.1 in 

our simulations. It is clear that already this effect is much too large to open possibilities 

for the SCHM as a primary time standard. 

Under the conditions studied the resonance linewidth îJ. (!::::! 50 s-1) is still much 

smaller than the typical cavity loss rate 1< ( !::::! 1500 s-1 ). Although the ratio between these 

two is less than in the CHM, fluctuations in the cavity frequency are still sufficiently 

suppressed to measure with great accuracy the above-mentioned surface processes. 
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Chapter 4 

Stability limit of the cryogenic hydrogen maser 

Published in Physical Review Letters 64, 2630 (1990) 

Abstract 

It is pointed out that the usual oscillation condition of the H maser is only a necessary 
condition Cor steady operation. Reducing the coupled field-matter dynamics to the complex 
l.orenz equations we derive a second requirement which together with the first forms a set 
of necessary and sufficient conditions for the steady operation to be stable. The instability 
of the steady state predicted by the equations should be easily accessible experimentally for 
the cryogenic H maser. Il will be characterized by a pulsed output power which, depending 
on the detuning, is either periodic or chaotic. 

Since its first realization by Goldenberg, Kleppner, and Ramsey [1] the hydrogen maser 

has been the most stable of all atomie frequency standards for short and intermediate 

measuring times. The relative stability of the hydrogen maser is observed to be better than 

one part in 1015, which makes it a very useful instrument for long-baseline interferometry, 

tests of genera! relativity, precision interplanetary navigation (Voyager 2 mission), and 

various other applications both inside and outside physics. 

A hydrogen maser operating at liquid-helium temperatures should have an even 

better frequency stability [2],[3]. Although early estimations predicted an improvement 

of more than 2 orders of magnitude [4], present indications show that it has an increased 

frequency stability of close to 1 order of magnitude [5]-[8]. 
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1 

Figure 4.1: Power of H maser vs surplus flux of upper level. 

The operation of the hydrogen maser has been described in Refs. [1] and [9]. A 

centra! result (see Fig. 4.1) is the so-called oscillation condition, 

!_ = -2q2 [!...) 2 

+ (1 - Cq)!_ - 1 > o, 
Pc lw lw 

(4.1) 

in which P is the total power radiated by the atoms, 1 is the surplus flux of atoms 

entering the storage bulb in the upper level of the maser transition relative to the lower 

level, lw is the threshold flux ifwe neglect density-dependent relaxation, Pc is the critica! 

power, q is the maser quality factor, and C = (Tf /T'/) 112 + 2(Tf/Tf)112 with Tf (Tf} 

the density-independent longitudinal (transverse) relaxation time [9]. 

It has not been recognized until now that the condition (4.1) is only necessary but 

by no means sufficient. More precisely, condition ( 4.1) expresses the existence of the 

steady-state solution for the number of photons in the cavity and therefore for the output 

microwave power. lt remains to determine the domain in which this is also a stable 

solution. 

The purpose of this Letter is to show that within the flux limits determined by condition 
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Maser 1 

Laser 108 
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ÏJ.. /Ç g 

1 10S 10-2 

108 107-1010 104 

Table 4.1: Tnne constants (in sec-1) forcryogenic H maser compared to typical laser. 

(4.1) two regimes can exist, one in which the steady-state solution is stable and another 

in which spontaneous modulation of the amplitude and phase of the electromagnetic field 

takes place. Tuis spontaneous modulation can be either periodic or chaotic, depending 

on the values adopted for the various parameters, and will affect in a similar way the 

output microwave power. We show that this time-dependent regime can be rather easily 

reached for the subkelvin hydrogen maser. 

The maser dynamics can be described by essentially the same Maxwell-Bloch equa­

tions as a single-mode laser with homogeneous broadening. However, interesting differ­

ences exist between these two systems. A first aspect is that the two classes of systems 

display periodic and chaotic behavior in a very different range of parameters, because 

the maser decay rates are very different from the usual values found in the visible or ir 

domains (see Table 4.1). As a consequence, the analysis of the dynamica! equations bas 

to be specialized for this new domain of parameters. A second aspect which is worth 

stressing is that the derivation of the Maxwell·Bloch equations [see Eqs. ( 4.2)] for the H 

maser req uires far less simplifying assumptions than in the case of the laser. For instance, 

the H maser is naturally homogeneously broadened. Furthermore, the cavity dimension 

is of the order of the maser wavelength so that effects related to the space dependence of 

the coupling constant are negligible. 

Apart from the intrinsic interest associated with the availability ofa system displaying 

deterministic chaos with a very low noise level, the observation of instability may have 

important applications for obtaining information on the maser which would be very 

difficult to obtain otherwise. lt is a priori to be expected that the nonsteady regime 

will offer much more information than the frequency and the amplitude, obtainable from 

stationary operation. Tuis is especially welcome in view of the overwhelming number 

of experimental parameters, such as hyperfine populations, which determine the maser 
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operation and are notoriously difficult to diagnose. 

Reformulating the dynamics of the maser [9}, the operation of the cryogenic H maser 

can conveniently be described by the Maxwell-Bloch equations 

Ê = -iw.B - içB + gM , 

M = -iw11M - "'(J.M + gBD., (4.2) 

t:r_ = -"'t11(D. - D..o) - 2g(BM* + B*M), 

for the complex magnetic field B, the complex magnetization M, and the inversion 

D.. Explicitly B is defined as the expectation value of the photon annihilation operator. 

In terms of the one-atom spin-density matrix we have, furthermore, M = N pCtJ,, D. = 
N (Pee - p""), where Nis the number of atoms. The cavity resonance frequency is denoted 

by Wc, the atomie frequency by Wah the cavity damping rate by iç = w./2Qc = 1/T., and 

the damping rates for Mand D. by "'/J. = 1/Tz. and 'Yll = l/T1. The equilibrium value of 

D. in the absence of atom-field interaction is denoted by D.o. Finally g, the one-photon 

Rabi frequency, is given by 

(4.3) 

with V. being the cavity volume,µ. (µp) the electron (proton) magnetic moment, and 1/ 

the filling factor. 

In this Letter we will only discuss the stability properties of the steady state, following 

the analysis made by Mandel and Zeghlache [10} fora detuned laser. We transform Eqs. 

( 4.2) by introducing the new parameters 

and new variables 

B = ("'IJ./2g)(x1 + ix2)exp(-iwmt), 

M = (D..o/2R)(Y1 + iyz.)exp(-iwmt), 

D. = D..o(l - z/R), 

(4.4) 

(4.5) 

where Wm is the yet unk.nown operating frequency of the maser. After rescaling the time 

according to t = T2 r, Eqs. ( 4.2) take the form 
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:c' 1 = -a(z1 + éc:C2 - Y1), 

:c~ = -a( :&2 - Óc:C1 - Y2) 1 

y~ = -y1 + &1 + Dac!/2 - Z1Z 1 (4.6) 

y~ = -Y2 + &2 - Óa1Y1 - :c2z , 

z' = -bz + :&1!/1 + :&2!12 , 

in which the prime stands for d/ dr and 

l: _ Wai-Wm 
Vat - 1 

'YJ. 

l: - Wm -Wc 
Oc - • ,,. (4.7) 

In the case of perfect tuning (w11 = w111 = wc), Eqs. (4.6) have a class of solutions for 

which z2 = 112 = 0 for all times. The remaining variables :c = :ei. y = yi, and z obey 

the usual Lorenz equations [11 ]. 

To study the steady-state solutions of Eqs. ( 4.6), we set the derivatives in these 

equations equal to zero. Since w111 is the operating frequency in the steady state, z2 can 

be chosen to be zero. This leads to the dispersion equation or cavity-pulling relation 

é., = éc = é and to three fixed points: :c1 = y1 = 112 = z = 0 and :c1 = Y1 = ±(bz)112, 

y2 = =fé(bz)112, z = R - 1 - é2, respectively. The last two solutions are physically 

identical, since they differ in phase only. For R :S 1 + é2 only the trivia! zero-field 

solution exists and is stable. A necessary condition for the finite-field solution to exist is 

R > 1 + é2, which generalizes Eq. (4.1) fora detuned cavity. 

The inequality R > 1 + é2 gives a lower bound for the domain of existence and 

stability of the finite-amplitude solution. However, the linear stability analysis of this 

solution indicates that a second threshold may occur at higher photon numbers, when R 

reaches a critica! value RH which depends in a rather complicated way on the parameters 

of the problem. Using the relative magnitudes of the parameter values given in Thble 

4.1 and retaining the dominant contributions in e = 1/u with band é being functions 

of the order of 1, we find that there is always an upper bound for the stability of the 

steady state. It is reached when the photon number equals the critica! value IBHl2 = 
(RH -1- é2)/4T1T2g2• Restrictingourselves to the case of small detuning (t-é2 > e), 

the second requirement for stable steady oscillation is 

T1 P - PH = (-zq + 1 1 - 36
2 

) !__ _ Tf < O ( 4.S) 
Tt PH KTt (1 + é2)2 11h 1t ' 
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Figure 4.2: Power P vs surplus flux, compared to threshold power PH for onset of 

nonsteady oscillation. Solid lines: actual parameter values for the University of British 

Columbia maser. Dashed lines: increased Q 0 value. 

in which Tt = (TPT:r) 112
• 

In Fig. 4.2 we display graphically the two conditions ofstability ( 4.1) and ( 4.8) for the 

steady state. We present the radiated power Pas well as the quantity PH. Fordefiniteness 

we take fi = 0, and for TP = Tf and the product qQ0 we take the University ofBritish 

Columbia cryogenic-maser [7] values 0.6 sec and 27, respectively. Clearly, from Fig. 4.2 

we see that the actual Qc value of order 1700does not admit nonsteady oscillation. It has 

been kept low deliberately to reduce fiuctuations of the maser frequency due to cavity 

pulling, but may easily be increased to reach the unstable domain Qc > wcf2g..,flS:ö, 

which is equivalent to the condition R > RH when fi = 0. For instance, Fig. 4.2 shows 

that the newoscillation regime can be reached by increasing Q0 tovaluesoforder 5 x tOS. 
Calculations for the Harvard-Smithsonian maser [12] with qQ0 = 17 show that in 

this case an increase of Q0 from the present magnitude 7 x 104 by a factor of order 20 

would be sufficient. From a similar analysis it follows that unstable oscillation is very 

difficult to achieve for room-temperature H masers. Tuis is mainly due to the much lower 

maximum densities allowed by the oscillation condition ( 4.1) due to the faster collisional 
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Figure 4.3: Field amplitude as a fünction of time lor zero detuning, both scaled as 

described in text. 

relaxation. 

Hence, the cryogenic H maser prornises to be an experirnental realization of the 

Lorenz equations in the dornain R, " ~ 1 and b ~ 1. This domain, partly investigated 

by Fowler and McGuinness [13], is characterized by pulses for x and y, i.e" for the 

field and rnagnetization amplitudes. An exarnple of this behavior is displayed in Fig. 

4.3. A detailed analysis of Eqs. ( 4.2) in the relevant dornain of parameter space will be 

published in a separate paper. 
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Chapter 5 

Dynamics of the cryogenic hydrogen maser 

Published in Physical Review A 44, 608 (1991) 

Abstract 

We ex.amine the dynamica] behavior of the cryogenic hydrogen maser. Studying the 
coupled field-matter equations, which have been reduced to the complex Lorenz equations, 
we obtain two operating domains, one in which steady-state oscillation takes place and a 
time-dependent domain that Is characterized by a pulsed output power. For the Jatter we 
obtain bifurcation diagrams, both with and without detuning, that display both periodic and 
chaotic attractors. Finally, we study the infiuence of thermal noise on this time-dependent 
domain and show that Cor reasonable experhnental conditions the pulse triggering will be 
stochastk, but the pulse buildup and decay can be deterministlc. 

S.1 Introduction 

From the moment it was first proposed and constructed 30 years ago [1] interest in the 

hydrogen maser bas been concentrated almost without exception on its steady oscillation 

mode. Tuis is understandable in view of its practical use as the most stable existing 

frequency standard for averaging times of seconds to days: Achievable relative frequency 

instabilities are 10-1s for the room·temperature H maser and 10-16 for its sub-Kelvin 

version [2],[3], in both cases for 1-h averaging time. A recent review of the history, 

principles, and applications of the H maser can be found in Ref. (4]. Although the 
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condition for the steady oscillation to be stable had been derived for masers in general 

[5H8], it was recognized very early already that the circumstances prevailing in the 

conventional room-temperature H maser are far removed from an unstable regime. In 

fact, it was pointed out that the relative magnitudes of the relaxation rates allow for 

an adiabatic elimination of the magneti:mtion, leading to the conclusion that the field 

amplitude would tend either to zero or to steady oscillation. 

Only recently [9] it was noticed by the present authors that the unstable regime is 

much closer for sub-Kelvin H masers. lt can be reached, starting from the usual operating 

conditions, by a readily achievable increase of the cavity quality factor Q c· In addition, 

we dealt briefl.y with the kind of time-dependent behavior to be expected in the new 

regime and pointed to the interest that would be associated with its observation. First, 

the time-dependent regime will offer much more information than the frequency and 

amplitude parameters which are given by the stationary operation. Given the number 

of experimental parameters which determine the maser dynamics and which are often 

difficult to diagnose, this extra information is especially welcome. A second point 

of interest is that the sub-Kelvin hydrogen maser is a reali:mtion of the (complex) 

Lorenz equations in a parameter regime [R,u ~ 1, b = 0(1)] which has hardly been 

investigated. Although Fowler and McGuinness [10] have partially investigated the real 

Lorenz equations in this parameter regime, the behavior of the complex Lorenz equations 

is largely unknown in that domain of parameters. 

In this paper we treat these aspects in amore detailed way. In Sec. 5.2 we recapitulate 

the derivation of the dynamica! equations - on the one hand, to make our discussion 

self-contained and, on the other hand, to give an unambiguous definition of variables and 

constants. The Jatter is desirable since more than one convention is in use. Moreover, 

we have to deal with a magnetic transition, contrary to the more usual situation, in which 

an electrical transition is involved. In Sec. 5.3 we study the linear stability of the steady 

solution and determine numerically typical bifurcation diagrams. In particular, we show 

that, even on resonance, periodic solutions are the rule and chaotic solutions have only 

a set of restricted domains. Finally, in Sec. 5.4 we analyze numerically the infl.uence of 

noise on the deterministic evolution studied so far. We determine the spread in putse 

frequency and peak intensity due to noise. We also determine the conditions in which 

the time evolution of a pulse will be deterministic, given the fact that its triggering will 
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always be stochastic in the domain of parameters considered. 

5.2 The Maxwell"Bloch equations 

We start the derivation of the Maxwell-Bloch equations for the cryogenic H maser by 

expanding [11] the electromagnetic (EM) field in the cavity in modes n, with frequency 

B(r, t) = L ~Pnhn(r), E(r, t) = L w;_qnen(r), (5.1) 
n C'\fEO n 'VEo 

with {bn(r)} and { en(r)} being orthonormal vector fields in the cavity of the hydrogen 

maser and c the velocity of light. Using Maxwell's equations, it is easily seen that 

the expansion coefficients Pn and qn can be interpreted as the canonical variables of a 

harmonie oscillator. Quantizing the EM field in analogy to the harmonie oscillator and 

introducing creation and annihilation operators al and an, Eqs. (5.1) can be rewritten as 

i [liw ) 1/2 
B(r, t) = - ~-;; ~ (an - al)b,..(r), (5.2) 

E(r, t) = ·~ (7~) 
112 

(an+ al}en(r). 

From now on, we will confine ourselves to a monomode EM field corresponding to the 

TEo11 mode of the cavity and will leave out the subscript n. 

The Hamiltonian of the total system of atoms and field is 

(5.3) 

with 

Ha1om = .piwa1 E u3, , 
i 

Hr.e1d = liwca ta, (5.4) 

Hinteract = ilig L:(atu,: - aut). 
i 

In Eqs. (5.4), 0"3 and u= are the familiar Pauli spin matrices for the atomie two-level 

system, w11 (wc) is the atomie transition (cavity) frequency, and g is the Rabi frequency 

divided by the square root of the number of photons in the cavity 

g = ( µo(Pe ~t:)2Wc11) 1/2 ' (5.5) 
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where 17 is the filling factor and V.: is the volume of the cavity. The summation over i is 

a summation over the atoms in the storage bulb. 

The Hamiltonian H can now be used to obtain the Heisenberg equations of motion 

da i ..;..iwca + gJ- 1 = Ä[H,a] = dt 
dJ- ~[H,r} -iwa1J- + gaJ3 , Tt = = (5.6) 

dh i 
-2g(aJ+ + atr), dt = Ä[H,J3J = 

where we have introduced the notation 

J= = L: ut , h = L: 0'3i • (5.7) 
i i 

Taking the expectation value on both sides of Eqs. ( 5.6) and neglecting quantum ftuctu­

ations in the EM field then leads us to 

dB 
-iwcB+gM, Tt = 

dM 
-iwa1M + gBt::. , Tt = (5.8) 

dl:::. 
-2g(BM* + B*M), Tt = 

with the field, magneti:zation, and population inversion defined by 

B = (a) , M = (r} , t::. = (J3) . (5.9) 

Note that the field B is normalized so as to equal the square root of the number of 

photons, whereas M and !:::. are normalized so as to be equal to N Pee and N(Pcc - Par.i), 

respectively, in terms of the number of atoms N and the one-atom density matrix p. 

Equations (5.8) are the field-matter equations for the hydrogen maser in the absence 

of relaxation. Including the phenomenological relaxation terms, we find 

dB 
-(iwc + x:)B + gM, Tt = 

dM 
-(iw.1 + 'YJ..)M + gBt::., (5.10) Tt = 

dl:::. 
-111(!:::.. - l:::..o) - 2g(BM* + B· M) • Tt = 

The cavity loss rate is denoted by" = 1/Tc and the relaxation rates for the magneti:zation 

and population inversion by 'YJ.. = 1/Tz and 'Yll = 1/Ti. the so-called transverse and 



5.3. Dynamics of the cryogenic H maser 79 

Jongitudinal relaxation rates. The Jatter are primarily determined by the finite residency 

time of the atoms in the storage bulb and by collisional relaxation. The value towards 

which A relaxes in the absence of field-matter interaction is denoted by A0• 

Eqs. (5.10) are the Maxwell-Bloch equations. They describe the time-dependent 

behavior ofboth the room-temperature and sub-Kelvin hydrogen masers. In the following 

sections we will discuss the correspondence between these equations and the Lorenz 

equations and investigate the time-dependent behavior of the solutions. 

5.3 Dynamics of the cryogenic H maser 

To analyze the Maxwell-Bloch equations, we first introduce the following sealing: 

B = (ÎL/2g)Xexp(-iwmt), 

M = (Ao/2R)Yexp(-iw,,.t), 

A = Ao(l - Z/R), (5.11) 

T = Îl.t' 

R = g2Aof(KÎL), 

(j = K/Îl., b = Îllhl.' 

where w,,. is chosen to be the maser operating frequency in steady state. In terms of this 

sealing, the Maxwell-Bloch equations (5.10) are transformed into the complex Lorenz 

equations [12] 

dX 
u[-(1 - ió~)x + Y] , dT = 

dY 
-(1 + ió.,)Y + RX - XZ, dT = (5.12) 

dZ 
-bZ + !(XY* + X*Y) , 

dT = 
where the detunings are defined by 

(5.13) 

Let us consider the time scales involved in our problem. Typical values (in sec-1) for 

the time constants of the cryogenic H maser are 

Îll !::::: Îl. = 1 , K = lû5, g = 10-2
• (5.14) 
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Note the unusual orders of magnitude, in comparison with typical laser values. The value 

of g follows directly from Eq. (5.5). The maser 1 values are of the order of the inverse 

residency time in the storage bulb. Spontaneous emission contributions are completely 

negligible. One of the advantages of the sub-Kelvin H maser relative to its room­

temperature version is the fact that atomie densities and thus ~o can be much higher for 

the same collisional relaxation rates. This makes it possible to achieve steady oscillation 

with modest cavity quality factors, which is of importance in reducing the frequency 

instability due to cavity pulling. The higher atomie density and lower temperature also 

provide fora reduced influence of thermal noise on steady oscillation by increasing the 

signal-to-noise ratio. 

Given the large difference between the field and atomie decay rates of the cryogenic 

maser, it would seem natural to adiabatically eliminate the field variable which may be 

thought to relax five orders of magnitude faster than the atomie variables. However, the 

consideration of the unperturbed time scales is not sufficient to justify the asymptotic 

expansion known as adiabatic elimination of the fast variables. This point was discussed 

by Lugiato et al. [13], who stressed that the classification in slow and fast variables must 

be based on the relaxation times of the full problem including the effect of field-matter 

interaction (see also Oppo and Politi [14] for an alternative point of view). An analysis 

of these effective time scales wil! be presented after we have discussed the stability 

properties of the steady solutions of Eqs. (5.12). For simplicity, we restrict ourselves 

throughout this paper to the special case b = 1, in which we can use the explicit analytic 

results obtained previously [15] for the complex equations (5.12). The case b :f; 1 has 

been treated recently by Ning and Haken [16] and the results are considerably more 

complicated. With b = 1, Eqs. (5.12) have a trivial steady state, 

x = y = z = o, 

corresponding to the absence ofstimulated photons, and a finite steady state, 

Re(X) = Re(Y) = ±../Z, Z = R - 1 - 62 
, 

Im(X) = 0, lm(Y) = ";f6../Z, ba1 = be = c5. 

(5.15) 

(5.16) 

The trivia! solution (5.15) is stable below the first threshold of oscillation defined by 

R 1 = 1 + lfZ. At thls threshold the nontrivial steady solution emerges as a stable solution. 
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In the bad cavity situation (a > 2) which is prevalent in the cryogenic maser, the steady 

solution (5.16) loses its stability at the "maser second threshold" RH. The critica! control 

parameter RH or the corresponding critica! photon number IXHl2 = RH - 1 - 62 (in 

units of the saturation photon number N,) for the second threshold is the real positive 

solution of 

a1IXHl4 + ailXHl2 + ao = 0, 

a2 = (1+3u)(u-2), 

ai = (u + l)(u + 2)(2u2 - 5u - 5) - ö2(u -1)2(6u2 + 7u + 4), 

ao = -2(u + l)[(u + 1)2 + 62(u - 1)2][(u + 2)2 + 62(u - 1)2
]. 

(5.17) 

In the limit u -+ oo, whose consideration is suggested by the parameters (5.14), two 

domains have to be distinguished: a small detuning region, where 

(1 + 62)2 
1- 362 > 0 and IXHl2 = u 

1 
_ 362 + 0(1), (5.18) 

and a large detuning region, where 

1- 362 < 0 and IXHl2 = ju2(362 -1) + O(a). (5.19) 

As proved in Ref. (15], the Hopf bifurcation which takes place at R = RH is subcritical 

in the small detuning domain, the only domain we shall analyze for the cryogenic maser 

parameters. In this case a linear stability analysis does not give information on the nature 

of the long-time solution which is reached beyond the second threshold. 

With these results, we are now in a position to explain why the adiabatic elimination 

of the field variable is notpossible. As shown by Fowler and McGuinness [10], the 

solutions of Eqs. (5.12) for R > RH with a :;)> 1 and on resonance (i.e., 6a1 = 6c = 0) 

are pulse trains which can be either periodic or chaotic. This remains true for 681 and 6c 

sufficiently small. For the sake of this discussion, we introduce the sealing 

X = ux, Y = uy, Z = uz, t = UT = 1d , R = ur, (5.20) 

t: = 1/u < 1, 6c = 0(1), 681 = 0(1), r = 0(1). (5.21) 

In these variables, Eqs. (5.12) become 

x' = -(1 - i6c)X + y 1 

y' = -e:(l + i6.1)y + rx - xz , (5.22) 

z' = -ez + !(xy* + x*y), 
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Figure 5.1: Bifurcation diagram of the complex Lorenz equations on resonance: plot of 

the maximum maser magnetic-Jield amplitude IXI (divided by q) vs the reduced pump 

parameter R/ q. Crosses indicate periodic solutions while circles correspond to chaotic 

solutions. The fixed point loses its stability at RH/<1. 

where the prime stands for the derivation with respect to f. These equations have two 

types ofsolutions. Between pulses, x and y become exp[-0(1/f)] and z = 0(1). This 

solution depends on the slow-time variable T = d given by (5.11) and the variable z can 

be adiabatically eliminated. The pulses themselves, however, are described by solutions 

for which all three variables x, y, and z are 0(1) functions that depend on the fast time 

f. Hence, during the pulses no variable can be adiabatically eliminated. As a result, the 

adiabatic elimination of the field X in Eqs. (5.12) is not valid to describe the nonsteady 

solutions. 

The number and the nature of the attractors which Eqs. (5.12) can display besides 

the fixed points have been investigated by direct numerical integration of the differential 

equations. Although we know from the work of Fowler and McGuinness that chaotic 

and periodic solutions are expected to exist and to coexist, no general picture of the 
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Figure 5.2: Example of a periodic solution above the maser second threshold: the real 

part of the maser magnetic field (in units of q) vs ur = 1d = t/Tc. 

bifurcation diagram has been provided in the special limit 

u ::> 1 , R = 0(1) . (5.23) 

A bifurcation diagram is displayed in Fig. 5.1 for u = 200 and on resonance (6 = 0). 

For each value of R, Eqs. (5.22) are integrated and the maximum of the field amplitude 

is recorded. When the solution is found to be periodic, the maxima are represented in the 

diagram by crosses. For legibility, only large maxima, such that max(IXl)/u = 0(1), 

are drawn. Five branches of solutions are visible in Fig. 5.1. The topological difference 

between these branches is the number of smaller maxima in each period. In the lowest 

branch, there is one smaller maximum per period. Each of the next branches has one 

more small maximum than the previous branch. lf we classify the maxima in each 

period of a periodic solution by order of increasing size, each maximum is larger than 

the previous one by about two orders of magnitude. It is therefore difficult to show 

more than two of them in a figure. A typical periodic solution is shown in Fig. 5.2. To 

increase the resolution, we have plotted the real part of X rather than the modulus of X. 

The abcissa coordinate is UT = x,t. Tuis solution bas five extrema per period but only 
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Figure 5.3: Time evolution of z( t) and lx(l) 1 showing the coupling between the variations 

of the two variables. This figure is obtained by sol ving Eqs. (5.22) on reson11I1ce (6 = 0) 

with the parameters r = 1.5 lllld e = 0.01. 

the first two are resolved graphically. Some solutions are chaotic in time. Their 0(1) 

maxima, which are recorded over the same time duration for the entire figure (Fig. 5.1) 

are represented by circles. An example of a chaotic solution is given in our previous 

report on this subject [9]. 

When the maser is in the pulsing regime (periodic or chaotic), a complex interplay 

between the atoms and the field takes place. Between pulses, the atomie population 

inversion .6. builds up (hence, z decreases) due to the fact that atoms enter the storage 

bulb in the upper state while the number of photons in the cavity is negligible. When a 

critica! population inversion is reached, a burst of photons is emitted, which corresponds 

to a sudden atomie deexcitation and the consequent release of stimulated photons in the 

maser cavity leading to the pulse. Tuis is shown in Fig. 5.3. 

Quite surprisingly, the domain of periodic solutions is much larger than the domain of 

chaotic solutions. Furthermore, the first three branches overlap with the domain of stable 

steady state. The coexistence of periodic, chaotic, and steady solutions was recently 

reported by Ning and Haken [17] for <T = 2 and b = 0.01 in a study of anomalous 
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switch ing. The left-hand sides of the four upper branches show a similar structure. As R 

is decreased, a period-doubling sequence is observed and a chaotic solution is reached. 

In many instances, higher-period solutions were observed but not reported in the figure, 

to retain some clarity. For example, many instances of period-8 solutions were recorded 

over very narrow domains. 

The bifurcation diagram of Fig. 5.1 is very sensitive to detuning. Figures 5.4 and 5.5 

display how the bifurcation diagram is affected by increasing 6. Already for é = 0.01, the 

chaotic domains have disappeared (or they are so small that they escaped our numerical 

capabilities) but the branches of periodic solutions are still very distinct. However, as é 

is increased to 0.1, only two branches of periodic solutions remain. They still differ by 

the number of extrema. The simplification of the bifurcation diagram with increasing 

detuning bas already been reported [18] in the case of finite <1. 

Returning to the resonant case, we have analyzed the influence of a. Using the 

procedure described earlier, we have also obtained the bifurcation diagrams for u equal 

to 100 and to 50. They are shown in Figs. 5.6 and 5.7, respectively. As u decreases, 

the number of branches of solutions decreases as well. Furthermore, a comparison of 

the three diagrams obtained under resonant condition suggests that the pulse peak scales 

like u: 

max(X) ex a. (5.24) 

One aspect which is not apparent in these bifurcation diagrams is the extension of 

each solution's basin ofattraction. For instance, in the case <1 = 100 depicted in Fig. 

5.6, if we start on the steady state and increase R by sufficiently small steps, the solution 

wil! jump onto the chaotic part of the second branch rather than on to the periodic part of 

the first branch. Hence, the bifurcation diagrams do not yet teil the complete story. 

Another useful piece of information is the variation of the frequency of the periodic 

solutions versus R, i.e., the inverse of the time duration between two consecutive 0( 1) 

pulses. For our reference bifurcation diagram given in Fig. 5.1, the frequencies are 

displayed in Fig. 5.8. Domains of period doubling and chaos are not reported in this 

figure. The frequency varies significantly versus <1. Tuis is clearly realized by comparing 

Fig. 5.8 with Fig. 5.9 where the frequency of the periodic solutions is displayed on 

resonance for u = 50. Let us consider the period measured on time traces such as that 
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shown in Fig. 5.2. On resonance and for R = 1.2<7, for instance, we have 

X(l) = X(l + p) :: X[11:(t + p)] 

and the following numerical values are obtained: 

C! = 50 , Kp = 48.22 1 

U = 100 1 Kp = 93.63 1 (5.25) 

(! = 200 1 Kp = 170.91. 

Hence, 11:p is an 0( u) function and the physical ûequency is of the order of the atomie 

polariz:ation decay rate "/J.· This is indeed coherent with the fact that we are dealing with 

a bad cavity. Despite this result, we have drawn our ûequency plots in units of Tc-1 

because they were obtained by solving Eqs. (5.22) for which Te-1 is the natura! unit. 

5.4 Influence of thermal noise 

In the previous sections, we have studied the deterministic evolution of the maser equa­

tions. However, two physical mechanisms may induce a stochastic contribution to the 

time evolution of the magnetic field: spontaneous emission and thermal noise. As 

mentioned previously, spontaneous emission is negligible for the cryogenic maser, but 

thermal noise contributes to the average photon number the amount 

(n)m = l/[exp(h11/ kT) - 1]. 

For the cryogenic maser at 11 = 1.42 GHz (corresponding toa wavelength of 21.1 cm), 

the thermal photon number (n)m equals 14.2 at 1 K, 6.85 at 0.5 K, and 1.02 at 0.1 K. 

Although these photon numbers are fairly small, they are in fact large compared with 

the photon numbers obtained between pulses in the deterministic periodic and chaotic 

domains. Therefore, we have to investigate to what extent they may affect our analysis. 

A convenient way to model the influence of thermal noise is to add a stochastic 

source term Ç(t) to the equation for the magnetic field Bin (5.10). The corresponding 

modification to Eqs. (5.22) on resonance is 

x' = -x + y + 10-"Y[Ç1(i) + i{i(l)], 

y' = -f.y + rx - xz , (5.26) 

z' = -f.z + Hxy• + x"y), 
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Figure 5.10: Distribution of the maxima vs the noise amplitude in the pulsed regime in 

the presence ofnoise forr = 1.5, CT= 50, and on resonance. The vertical lines give the 

spread of the distribution and the horizon tal bars are the mean values lor a sample taken 

during 2000 time units. 

where 10-"Y = (2g/K-h/(n)m· We have solved these stochastic equations numerically 

using for Ç1 ( f) and 6( f) a pseudo-random-number Gaussian distribution, with zero mean 

and unit variance. Although no de tuning was included, we kept the complex form of the 

equations and a complex noise source to account for phase and amplitude fluctuations of 

the magnetic field. In Fig. 5.10 we plot the distribution of peaks of the periodic solution 

for r = 1.5 and CT = 50 versus the parameter 7. The horizontal bars are the average 

values. For the same sample, we plot in Fig. 5.11 the frequency distributions. We 

observe that in these two figures, the averages practically do not vary with î· For small 7 

(i.e., large noise amplitudes) there is a significant spread around the mean. For 7 > 4.5, 

this spread becomes constant. We have verified that this spread is also present when the 

noise is turned off; it corresponds therefore to the numerical precision of our calculation. 
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Figure 5.11: Distribution of the peak frequencies for the samples used in Fig. 5.10. The 

vertica.l lines give the spread of the distribution and the horizontal bars are the mean 

values. 

When u is increased, these results are significantly altered. For u = 100, we see in Fig. 

5.12 that as î increases, two domains occur. For î < 5, the mean value increases with î 

but the spread of the distributions does not vary in the same ratio as the added noise. In 

the second domain, î ;;?: 5, the mean values remain practically constant and the variance 

decreases. For u = 200, only the first domain (increasing mean value with ï) is observed 

in the whole range studied, up to î = 6.5. To interpret these results, it should be borne in 

mind that the domain u :> 1 which we investigate is characterized by pulsed rather than 

harmonie solutions in the nonsteady regime. In particular, in the time domain comprised 

between two consecutive pulses, it was shown [10] that x and y are exponentially small, 

being typically exp[-0( 1/ e )] functions. This is much smaller than either added noise or 

numerical roundoff errors. Therefore, one expects that the triggering of the pulse, which 

takes place when x and y are larger than exp[-0(1/e)] but still smaller than 0(1), will 

not be deterministic in numerical simulations. However, in the absence of added noise, 
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Figure 5.12: Same as in Fig. 5.10 but fora= 100. 

the variance of the distributions is so small that it does not appear in the Figs. 5.1 and 

5.4-5.9. As the value of ;i; and y between pulses becomes progressively smaller with 

increasing a, thermal noise will have a larger influence for higher values of a. This is 

apparent in Figs. 5.10-5.12, where convergence of the maxima versus 'i takes place at 

progressively higher "'/ values. When these results are extrapolated to the <J' values and 

the noise levels found in a realistic cryogenic hydrogen maser, it is expected that the 

pulsed behavior will be triggered by the stochastic noise, i.e., the hydrogen maser is in 

the first domain of Fig. 5.12 where the maxima have not yet converged as a function of 

The influence of thermal noise will be largest between two pulses. The remaining 

q uestion is whether the pulse shape itself is determined by stochastic processes or that the 

time development of a pulse is a deterministic evolution. If the latter is the case, study 

of the pulse would still yield useful information on both the parameters determining the 

behavior of the hydrogen maser and the complex Lorenz equations. lf, however, the 

evolution of a pulse would be a stochastic process as the evolution between the pulses, 
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observation of the time.dependent domain would yield information on the infl.uence of 

the noise on the system but not on the Lorenz equations themselves. To analyze whether 

the pulse is deterministic or not, we have plotted in Figs. 5.13·5.15 the maximum of lxl2 

versus r - z at the beginning of the pulse for er = 50, 100, and 200, and for various 

va lues of/. The choice of r - z instead of z is a matter of convenience only. The value 

of z at the beginning of the pulse [10] is called Zm and is determined by the condition 

lxl2 + IYl2 = e.2• The reason for this is that the pulse itself can be described by the 

Lorenz equations neglecting all terms of order f with x, y, and z being 0(1). As a 

result, f can be chosen as the zero level for the pulse. It can be seen in Figs. 5.13·5.15 

that for each er there are two domains separated by a critica! value /c- Below 10 , there 

is no correlation between zat the beginning of the pulse and max(lxl2): We observe a 

cloud of points indicating a stochastic process. Above / 0 , there is a clear correlation 

between the two variables and all points fall nicely on a single curve when the pulse 
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samples with 7 ~ 4. 

triggering is stochastic or are concentrated in a very small domain (whose width is due 

to the numerical noise) when the triggering is deterministic. The surprising result is 

that in all three cases displayed in Figs. 5.13-5.15, we have found that /e :::: 4. More 

precisely, for O' = 50, we have 4 < Ie < 4.5, while for O' = 100 and 200, we have 

3.5 < /e < 4. Hence, this critical parameter is only weakly dependent on u, at least in 

the range considered here. Extrapolating the constant value of /e to the high-u regime 

of a realistic hydrogen maser, we expect the corresponding value of 7, i.e., about 6, to 

be larger than /e, so that the pulse evolution will be deterministic. 

For the discussion which we have given, the actual value of the thermal noise is of 

crucial importance. This, however, depends on a couple of control parameters: x:, T, and 

11. Whereas changing x: would merely change the infiuence of any noise on the maser 

operation, changing the latter two parameters would also change the ratio of thermal to 
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quantum noise. Although quantum tluctuations are negligible with respect to the thermal 

noise for T = 0.5 K and B = 0, they become progressively more important for smaller 

T and larger B (i.e., larger 11). Experimental realization of this new regime would thus 

be very interesting from the point of view of the study of the Lorenz equations with both 

thermal and quantum noise. 

A source of noise which is unavoidable in the computer calculations is the numerical 

noise due to roundoff errors and the inherent limited precision in the integration code. 

With the code used to solve Eqs. (5.26), we have verified explicitly that in the absence of 

noise ( "/ = oo ), the solutions are periodic (with a precision of three significant digits) after 

a sufficiently long time. However, when the numerical precision was changed, max(lxl2) 

appeared as a sensitive function of the numerical noise, white the period was remarkably 

independent of that noise. Although numerical noise has probably introduced a bias in 

our calculations, a strictly noise-free experiment is also impossible. Hence, the possible 

bias introduced in our numerical results should also be found in the experimental results. 

5.5 Conçlusions 

The cryogenic hydrogen maser is a device which is known for its extreme frequency 

stability. We have shown that apart from this stable steady oscillation, a second operation 

mode exists that is readily achievable in the cryogenic hydrogen maser by increasing 

the quality factor of the maser cavity. By analyzing the dynamical maser equations, 

the Maxwell-Bloch equations, we have identified this operation mode with a pulsed 

output consisting of very sharp pulses separated by relatively long periods of al most zero 

output power. By systematically scanning through parameter space, bifurcation diagrams 

have been obtained that have enabled us to make statements about the complex Lorenz 

equations in a domain of parameter space [R, u > l, b = 0(1)] which had hardly been 

investigated. 

Furthermore, we have analyzed the intluence of thermal noise on the operation of the 

cryogenic maser. Whereas the number of stimulated photons is large compared to the 

number of thermal photons in the steady mode of operation allowing fora deterministic 

semiclassical description of the maser operation, it is small in between the pulses in the 

time-dependent domain. We have modeled the thermal noise by including a stochastic 
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Gaussian noise term in the Maxwell-Bloch equations and have concluded that the time­

dependent regime of the cryogenic hydrogen maser will still be characterized by pulsed 

behavior. The sequence of pulses, however, will not be deterministic but stochastic, 

both in the maxima of the pulses and the periods in between them, as the pulses will be 

triggered by the thermal noise. The evolution of a single pulse, on the other hand, can 

still be deterministic. 

In terms of the Lorenz equations, our numerical work gives a good picture of the 

behavior to be expected in this part of the parameter space. The occurrence of only a 

few small domains of chaotic bebavior compared to relatively large domains of periodic 

behavior is especially remarkable. Furthermore, the coexistence ofa stable steady state, 

a periodic solution, and a chaotic solution is apparent. As a last point, the stabilizing 

effect of the detuning should be noted. The question remains, however, whether the 

cryogenic hydrogen maser is useful to study the Lorenz equations as such, due to the 

influence of thermal noise. Jf, on the other hand, one is interested just in this influence, 

the hydrogen maser will be an excellent tool, thereby giving the possibility to observe a 

gradual transition from thermal to quantum noise in a single experimental setup. 

The second context in which our work is of interest is from the viewpoint of the 

hydrogen maser. As mentioned before, the operation of the hydrogen maser is determined 

by the interplay of a large number of parameters which are often difficult to diagnose. In 

this case the influence of thermal noise means that the sequence of pulses wil! not give 

the information which can be expected from the operation without noise. As, however, 

the evolution of a single pulse can remain deterministic, the time-dependent domain may 

still prove to be an interesting domain from this point of view as wel!. 
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Chapter 6 

A new method to calculate three-body scattering 

below the break-up threshold 

Abstract 

We propose a new method to solve the Faddeev equations for three-nucleon scattering below 
the threshold for break-up. Instead of a discretization ofboth relative positions or momenta 
we expand the Faddeev component in a set of two-nucleon basis states. These basis states 
incorporate al ready the effect of the two-nucleon forces. This method is applied to neutron­
deuteron scattering using local s-wave Malfliet-Tjon potentials. The calculaûons sbow 
rapid convergence and good agreement with previous calculations for quartet scattering. 
Convergence is Jess for doublet scattering due toa node occurring in the configuraûon space 
Faddeev component at short distances in the two-nucleon subsystem. 

6.1 Introduction 

Three-nucleon scattering is an important test laboratory for nuclear dynamics. Dynamica! 

models for nuclear interactions can be probed in a highly non trivia! manner by comparing 

their predictions to a rich bulk of experimental data. With the advent of supercomputers 

it became possible to solve the three-nucleon Faddeev equations directly for any type 

of nucleon-nucleon (NN) interaction [1 ]. Tuis went parallel with an increased precision 

99 
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and sophistication of experiments [2]. So far agreement between theory and experiment 

is in genera! rather good [3], using realistic NN farces with all their complexities, but 

there are also a few exceptions. One of them is the low energy analyzing power A 11 

where a striking discrepancy sticks out [ 4] and still poses a puzzle. Tuis discrepancy 

is even present below the nucleon-deuteron break-up threshold [5]. New experiments 

are planned measuring more complicated spin observables below break-up [6]. It is 

therefore of great practical interest to supplement the very few existing techniques which 

solve the Faddeev equations precisely [1],[7]-[9] for any type of realîstic NN forces 

by new and possibly more efficient methods. lt is the aim of this paper to propose a 

simpte but nevertheless precise approach which has already been successfully used for 

three-nucleon bound state calculations in the nonrelativistic [1 O] and relativistic context 

[11]. 

With the exception of Ref. [9] the existing precise techniques in momentum or 

configuration space treat both types of relative coordinates explicitly. In contrast, here we 

express the dependence on the two-nucleon subsystem coordinate through a judiciously 

chosen set of basis states. These basis states incorporate already the effect of two-nucleon 

farces in the two-nucleon subsystem and therefore it is expected that only few are needed 

to provide a well converged description. Tuis reduces the dimension of the total problem 

dramatically and allows to perform such a calculation even on small workstations. Since 

the basis states are square integrable the method is first of all only suited for scattering 

below the threshold for real break-up. Since it is an exact method it describes of course 

fully the virtual break-up. 

The proposed method is not only of interest for three-nucleon scattering but is also 

relevant in an atomie physics context, i.e" three-body recombination of atomie hydrogen 

which has been the limiting process in a class of experiments trying to reach Bose-Einstein 

condensation [12]. The calculation of the recombination rate involves the evaluation of 

a matrix element of the interatomic magnetic dipole interaction between an initia! state 

and a final state [13]-[19]. The initia! state has been calculated rigorously by solving 

the Faddeev equations [14],[16]. The final state can, in principle, be calculated in the 

same way. However, due to the large number of channels which have to be included in 

the calculation this is not possible with present supercomputers. The method which we 

develop in this paper can be used to solve the Faddeev equations also for the final state. 
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This paper is organized as follows. The formalism is described in Sec. 6.2. An 

application to neutron-deuteron (n-d) scattering using local s-wave NN forces is given 

in Sec. 6.3. In Sec. 6.4 we present some conclusions. 

6.2 Theory 

A system of three parti cl es, e.g., three nucleons or three hydrogen a toms, can be described 

by state vectors llP':l:) which are eigenstates of the Hamiltonian 

H = Ho+V, (6.1) 

where V represents all two-body interactions. We neglect a possible three-body force. 

Using the spectator-index notation [20] V can be written as 

V = ,EV,a:: Va+V", 
13 

and a channel Hamiltonian can be defined as 

Ha = Ho + Vc, • 

(6.2) 

(6.3) 

From now on we take a = 1. The kinetic energy in the center of mass system together 

with the intemal energies are represented by Ho. 

We consider a state vector 1'11+) describing the scattering process initiated by a particle 

incident on a bound two·particle target system. In the application to atomie hydrogen 

we have to find a state of the type 1'11-), since we want to describe the final state after 

the operation of the dipole interaction. Such a solution can, however, be obtained from 

a jli'+) state by time-reversal. The Jatter can be written as 

(6.4) 

where P = P12P23 + PuP23 is the sum of two cyclic permutation operators and 11/11) is 

a Faddeev component. This Faddeev component satisfies the Faddeev equation 

(6.5) 

or equivalently 

(6.6) 
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where l<P1) describes the initial state of the scattering process, i.e., l<P1) is an eigenstate 

of the channel Hamiltonian H1• The resolvent operator 1/(E+ - Ho) is denoted by 

Gó, t 1 is the two-body transition operator for pair 1 and E+ = E +ie. Equation 

(6.6) is often solved in the momentum basis consisting of the relative momentum pof 

the two particles in pair 1 and the momentum q of the third particle relative to pair 1, 

discretizing these momenta and performing a matrix inversion. As already indicated 

in the introduction it would be of interest to dispose of an additional technique which 

in the case of three-nucleon scattering would be more efficient, allowing it to run also 

on smaller computers, and in the case of hydrogen would make it possible to solve the 

final state exactly including virtual break-up which has been neglected up to now in the 

calculations but has turned out to give a large contribution to the recombination process 

[18],[19]. In the following we will restrict ourselves to three-nucleon scattering. 

In the present approach the dependence of the Faddeev component on the two­

nucleon subsystem coordinate is described by basis states. These basis states first of all 

comprise the complete set of bound states of the two-nucleon system. The remaining 

basis states describe the continuum, i.e., the virtual break-up. Including scattering states 

of pair 1 seems to be difficult, however, since it involves a non-denumerable set of non­

localized wave functions. A possible way out was already suggested in Refs. [18],[19]. 

Since the three-nucleon break-up channel is closed, the two-nucleon continuum has to 

build up only configurations in a restricted part of three-nucleon configuration space. 

Therefore, the possibility arises to add a (expectedly small) set of judiciously cho5en 

states. Tuis discrete representation of the continuum, previously successfully applied in 

a somewhat different way to three-nucleon bound state calculations [10],[11], is treated 

in the following. 

We have to deal with two different kinds of two-nucleon subsystems: those which 

contain bound states and those which do not contain bound states. In both cases the 

continuum is generated by including the lower states of a potential consisting of a har­

monie oscillator potential added to the two-nucleon interaction potential. Ifbound states 

exist the projections on the bound subspace are eliminated by Schmidt orthogonalization 

and in both cases the rigorous two-nucleon Hamiltonian is diagonalized in the added 

subspace. Tuis procedure ensures that all the characteristics of the two-nucleon force are 

already present in the basis states. 
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Denoting the set of momentum wave functions thus obtained by cfa~' (p ), with l 

the relative orbital angular momentum quantum number of the two nucleons, t their 

combined isospin, s their combined spin and n the radial quantum number, it is now 

possible to give an explicit expression for the Faddeev component ltfi1). lt is given by 

ltfi1) = ~ J dpp2 J dqq2c/J~'(p)b~'"(q). 
nlta>. . 
lpq(l.\)LML(t!)TMx(s!)SMs)i, (6.7) 

where b~'"(q) represents the yet unknown motion of the third nucleon with respect to 

the nucleons in pair 1, with relative orbital angular momentum quantum number >.. The 

summation over n contains both the bound states and the continuum states. Furthermore, 

land>. are coupled to form Land ML whereas t (s) and Î couple to T (S) and Mx (Ms). 

The fermionic character of the nucleons requires l + t + s to be odd. Ifthe summat:on in 

Eq. (6.7) would be carried out over an infinite number of basis states the expansion would 

be exact The calculation of the scattering process has now been reduced to calculating 

ll~·" { q). 

By operating on the Faddeev equation (6.6) from the left with 1(pq(l>.)LML(tî)T Mxl 

1 ((s!)SMsl and after some manipulations the following equation for ll~'"( q) is obtained 

with 

Vn1t1>.,n111t'""'(qq1
) = j dpp2 c/J~'(p) j dpp12</>~f''(p1) • 

1(pq(l>.)LML(t!)TMx(si)SMslVi • 

(6.8) 

Plp'q1(l1>.1)LML(t1i)TMx(s1!)SMs)t. (6.9) 

The subscript 0 in Eq. (6.8) denotes the initia! state consisting of a bound state and a 

free nucleon. Tuis term represents the inhomogeneous solution. The nucleon mass is 

denoted by mande~' is the energy value for the wave function c/>'~'(p) in the subspace 

of the bound states and added continuum states. For the evaluation of the matrix element 

in Eq. (6.9) we refer to Ref. [20]. Equation (6.8) is formally identical toa two-body 



104 Ch. 6. A new method to calculate three-body scattering below ." 

Lippmann-Schwinger equation and can be solved in the usual way by the introduction 

of the half-shell T-matrix: 

(6.10) 

We thus, finally, obtain 

Tuis equation is solved numerically by matrix inversion. 

6.3 Numerical method and results 

The theory of the previous section has been applied to n-d scattering using s-wave 

Malfliet-Tjon potentials. The initia! isospin state is given l(t!)T MTh = l(Of )!MTh· 

Two different scattering processes are possible, i.e., doublet and quartet scattering. In 

the latter we start from a totally symmetrie spin state l(s!)SMs)t = l(l!HMs)t. 

Furthermore, confinement to s-wave scattering means l = 0 and À = 0. The req uirement 

of l + t + s to be odd implies that the above channel is the only channel involved in the 

calculations. The two-nucleon interaction potential for t = 0 is taken to be [21 ],[22] 

(6.12) 

with the numerical values given in Table 6.1 as the MT III (spin-triplet) potential. 

Tuis potential has one bound state with an energy of -2.23 MeV, corresponding to the 

deuteron. In the case of doublet scattering we start from the spin state !(s!)SMs)1 = 

l(l!)ÏMs)i. Since the two-nucleon subsystem bast = 0, the two-nucleon interaction 

in this channel is again given by the MT III potential. However, a coupling exists with 

the channel having l(s!)SMs)t = l(O!}tMs)i and l(t!)TMT)t = l(l!)!MTh· The 

analytica! form of the interaction in the two-nucleon subsystem in this channel is given 

by Eq. (6.12) but with different numerical values for the constants, corresponding to 

t = 1. Tuis potential is the MT 1 (spin-singlet) potential for which the parameters are 

given in Table 6.1. 
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MTI MTIII 

VA (MeV fm) 513.968 626.885 

µA (fm-1) 1.550 1.550 

VR (MeVfm) 1438.720 1438.720 

µR (fm-1) 3.110 3.110 

Table 6.1: Potential parameters for the Malfliet-Tïon models [22). 

In order to obtain the wave functions ef>~' (p) in momentum space the Schrödinger 

equation has been solved in configuration space using a modified Numerov integration 

method. The continuum functions have been generated by adding a harmonie oscillator 

potential to the "real" NN potentials, as described in the previous section. With the 

functions thus obtained the Schmidt orthogonalization has been performed, also in con­

figuration space. Care should be taken that the lowest state of the potential generating 

the continuum is sufficiently different from the bound state of the real potential. lf this 

is not the case the Schmidt orthogonalization will result in an amplification of numerical 

noise. The two-nucleon Hamiltonians have, subsequently, been diagonalized. The sec­

ond derivative with respect to the distance between the nucleons in the kinetic energy 

part of the Hamiltonians has been discretized by using a five-points discretization. 

This total set of basis wave functions has been transformed to momentum space. 

The advantage of calculating the basis wave functions in configuration space and a 

subsequent transformation to momentum space as compared toa calculation done directly 

in momentum space is that the latter requires a matrix inversion since the two-nucleon 

interaction potentials adopted are not diagonal in momentum space. This makes the 

calculations very time consuming if a sufficiently good accuracy is to be achieved. 

The expression f dpp2 ef>~'(p)V1t•(pp'), with V1t•(pp') the two-nucleon interaction in 

momentum space, which naturally arises in the evaluation of Eq. (6.9), is obtained in 

a similar way by transforming the product ef>~'(r)V(r) to momentum space. It is then 

possible to evaluate the matrix element in Eq. (6.9) and to perform the matrix inversion 

which will solve Eq. (6.11). We discretized the q variable in Eq. (6.11) and then solved 

Eq. (6.11) for progressively moren values, i.e., we increased the number of continuum 
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functions until convergence took place. 

In comparing the results with previous calculations the following should be noted. 

The value of T~t•À(q) on the energy shell corresponds to the transition matrix element 

for n-d scattering. Tuis transition matrix is connected to the scattering matrix via 

lt.).( ) ~ ~ ~ ~ ~ 411'im lt.).( ) s" q = (/nno(/l/o(/tto(/uo(/).).o + -3-vqqoF" q ' (6.13) 

which is a unitary matrix. Since both the doublet and the quartet scattering processes are 

elastic the single S-matrix element involved can be written as 

(6.14) 

The phase shift 6 is the quantity which we compare with previous calculations together 

with the scattering length a which is related to the phase shift via 6 ,.., -qoa for qo -+ 0. 

First of all we have calculated the quartet scattering. The continuum has in this case 

been created by choosing the spring constant kof the harmonie oscillator potential !kr2 

equal to 0.5 MeV fm-2 and including 20 continuum states. In Table 6.2 the value of 

the phase shift for quartet scattering 64 is given as a function of the number of basis 

states used in the calculations fora laboratory energy of 2.45 Me V. In Table 6.3 64 is 

given fora laboratory energy of 3.27 Me V. Both these energies are below the deuteron 

break-up threshold. In Tuble 6.4 the scattering length a4 is given, obtained at an energy 

of 10-6 Me V. Thesè values should be compared with 64(2.45 Me V) = 113.3°, 64(3.27 

MeV) = 106.4° and a4 = 6.442 fm given by Payne et al (22),(23]. The agreement 

between these values and our calculations is excellent. Furthermore, convergence takes 

place after only a few added continuum functions, which is a very satisfactory result and 

shows that the present method is indeed very efficient. 

The situation is completely different in the case of doublet scattering. In this case the 

doublet scattering length a2 has been calculated and compared with the value a2 = 0.70 

fm by Payne et al [22]. Although the calculations show results which are close to 

this value (± 10 %) convergence does not take place fora satisfying number of added 

continuum states. 

The marked difference between quartet and doublet scattering can be understood by 

studying the configuration space calculations of Ref. [22]. Due to the Pauli principle 

only two of the three nucleons can come close together in the quartet case. Tuis means 
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n Ó4 n Ó4 n Ó4 

(deg) (deg) (deg) 

1 126.6 8 113.2 15 113.2 

2 124.9 9 113.2 16 113.2 

3 117.5 10 113.2 17 113.2 

4 114.1 11 113.2 18 113.2 

5 113.5 12 113.2 19 113.2 

6 113.3 13 113.2 20 113.2 

7 113.3 14 113.2 21 113.2 

Table 6.2: The quartet phase shift 64 as a function of the numberofbasis states n included 

in the calculation fora laboratory energy of 2.45 Me V. 

n Ó4 n Ó4 n Ó4 

(deg) (deg) (deg) 

1 123.2 8 106.6 15 106.6 

2 122.9 9 106.6 16 106.6 

3 115.1 10 106.6 17 106.6 

4 108.2 11 106.6 18 106.6 

5 107.0 12 106.6 19 106.6 

6 106.7 13 106.6 20 106.6 

7 106.6 14 106.6 21 106.6 

Table 6.3: The quartet phase shift Ó4 as a function of the numberofbasis states n included 

in the calculation for a laboratory energy of 3.27 Me V. 
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n a4 n a4 n a4 

(fm) (fm) (fm) 

1 5.831 8 6.421 15 6.419 

2 6.297 9 6.418 16 6.419 

3 6.351 10 6.420 17 6.419 

4 6.421 11 6.419 18 6.419 

5 6.408 12 6.419 19 6.419 

6 6.424 13 6.419 20 6.419 

7 6.416 14 6.419 21 6.419 

Table 6.4: The qurutet scattering length a4 as a function of the number of basis states n 

included in the calculation. 

that the deuteron structure in the two-nucleon subsystem is hardly disturbed and only 

a few smooth continuum functions are needed to describe the Faddeev component. In 

the doublet case, however, the perturbation of the deuteron structure is much more 

pronounced, even leading to a node in the Faddeev component at very short distances in 

the two-nucleon subsystem. 

The continuum for doublet scattering has been obtained in the same way as for 

quartet scattering, i.e., the lower states of a harmonie oscillator potential added to the 

two-nucleon interaction potential have been calculated. Whereas in the latter case only 

a few states are necessary to get a converged description, for doublet scattering not only 

continuum functions are needed that describe the long wavelength deviations from the 

deuteron structure, but also short wavelength functions that describe the node in the 

Faddeev component. Ifboth these types of functions are created by one single harmonie 

oscillator potential many continuum states have to be included in order to describe the 

system which makes the method less efficient as is evident from the above calculations. 

Il should be noted, however, that this problem is not inherent to the present approach. 

The only requirements for the continuum states are that they are square integrable and 

orthogonal to each other and the bound state. There are no limitations, however, to 

the way in which the continuum states are obtained. In particular, it is possible to 
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create a combination of two sets of functions, one with a harmonie oscillator potential 

having a small spring constant for the long-wavelength behavior and one with a harmonie 

oscillator potential having a large spring constant to describe the node in the Faddeev 

component. The remainder of the calculations would be the same as described in Sec. 

6.2. lt is expected that by this method also the calculations for doublet scattering will 

converge after only a few added extra basis states. At the moment, however, these 

calculations have not yet been performed. 

6.4 Conclusions 

We have proposed a new method to calculate three-body scattering below the break-up 

threshold. This method calculates the state vector by solving the Faddeev equations. 

Instead of the conventional method which solves the Faddeev equations by using two 

different relative position or momentum variables this method replaces the role of the 

eigenstates ofone of the two varia bles by an expectedly smaller set of basis states, which 

are better adapted to the actual problem and in particular more suitable for describing 

virtual break-up. Essential in this approach is the way in which the continuum is treated. 

Due to this new approach the problem should be solvable with smaller computers. 

The new method bas been tested by means of n-d scattering with s-wave Malfliet­

Tjon potentials. We find very good agreement between our calculations of the phase 

shift and the scattering length for this process and the values given in the literature in the 

case of quartet scattering. Furthermore, our calculations show a rapid convergence as a 

function of the number of channels which have to be included in the calculations in this 

case. The results for doublet scattering are Jess positive, not showing convergence after 

many added continuum states. 

We have identified the problems in the case of doublet scattering with a node occur­

ing in the configuration space Faddeev component at short distances which cannot be 

calculated with a few basis states which are lyingjust above the break-up threshold. In­

stead, short wavelength functions have to be incorporated in the approach, automatically 

resulting in the inclusion of many more basis wave functions if the continuum is crea ted 

by adding a harmonie oscillator potential to the NN interaction potential. A possible 

solution would be to create a combination of two sets of functions, one for the long- and 
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one for the short wavelength behavior. Expectations are that in this way also the results 

for doublet scattering wil! show a rap id convergence as a function of the number of basis 

states which are used in the calculations. 
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Summary 

The room temperature hydrogen maser is the most stable time and frequency standard 

currently available for measurement intervals between 1 and 104 seconds. The relative 

frequency stability of state-of-the-art room temperature hydrogen masers is typically 

better than one part in 101' for averaging times of 10'4 seconds. Some years ago a sub­

Kelvin version bas been developed. This cryogenic hydrogen maser was expected to have 

an increased frequency stability by three orders of magnitude. These expectations were 

supported by both quantum mechanical and semiclassical calculations on the influence 

of collisions on the atomie Jineshift and -broadening. Calculations done in our group 

at Eindhoven University of Technology, however, in which the hyperfine structure was 

included in a proper way, showed that the maximum increase of the frequency stability 

is restricted to one order of magnitude. 

The availability of an extremely stable frequency standard is desirable for various 

fields of research, such as very-long baseline interferometry, tests of general relativity 

and interplanetary navigation. For this reason it is of interest to search for possibilities 

to increase the stability of the hydrogen maser despite the above-mentioned influence 

of collisions. In Chapter 2 such a possibility is considered. In particular, the effect 

of a permanent magnetic field on the collisions between two hydrogen atoms and the 

subsequent influence on the stability of the cryogenic hydrogen maser are treated. lt is 

shown that the introduction of a magnetic field does not produce the hoped for increase 

in frequency stability. 

The hydrogen maser is not only used for very precise time keeping, but due to the 

very narrow linewidth of the maser output it is also suited to obtain information on the 

hydrogen gas. In Chapter 3 a variation on the cryogenic hydrogen maser is proposed, 

i.e., the surface cryogenic hydrogen maser. Tuis proposed maser operates at lower 

temperatures and has an increased area to volume ratio of the storage bulb compared to 

the cryogenic hydrogen maser. The operating conditions for such a maser are evaluated 

and it is pointed out that the output characteristics are determined by the two-dimensional 

gas of hydrogen atoms at the surface of the storage bulb. Tuis maser could be used to 

obtain new and more accurate information on the properties of hydrogen gas adsorbed at 

a superfluid 4He surface. 
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The two subjects mentioned above, i.e., the use as a frequency standard and the 

description of the properties of a gas of atomie hydrogen, have fora long time been the 

only applications of the hydrogen maser. In recent years, however, interest has also been 

devoted to the use of the hydrogen maser outside these areas. In Chapters 4 and 5 the 

operation of the cryogenic hydrogen maser is described in a regime of operation which 

is characterized by a pulsed output power. By studying the hydrogen maser it is possible 

to obtain information on the behavior of solutions of the Lorenz equations, of which the 

hydrogen maser is a faithful realization and which are a basic set of equations in the field 

of nonlinear dynamics, in a parameter regime which has hardly been investigated. 

During the last decade various experiments with atomie hydrogen have been per­

formed other than the hydrogen maser. Many experiments have been set up in order to 

achieve Base-Einstein condensation. Up to now, however, these attempts have failed 

due to the large decay rates of the hydrogen gas. lt has turned out that three-body recom­

bination of the hydrogen atoms plays the most important role in this decay. In Chapter 

6 a new method is proposed to calculate the recombination rate. As an example this 

method is applied to a basic scattering problem in nuclear physics, i.e" the scattering of 

a neutron from a deuteron. 

Samenvatting 

De kamertemperatuur waterstof maser is de meest stabiele tijd en frequentie standaard 

voor meettijden tussen 1 en lü4 seconden. De relatieve frequentie stabiliteit van de 

huidige kamertemperatuur waterstof masers is in zijn algemeenheid beter dan één op 

1015 voor middelingstijden van 104 seconden. Enkele jaren geleden is een sub-Kelvin 

versie ontwikkeld. Van deze cryogene waterstof maser werd verwacht dat hij een fre­

quentie stabiliteit zou hebben die drie orden van grootte beter was. Deze verwachtingen 

werden ondersteund door zowel quantummechanische als semi-klassieke berekeningen 

aan de invloed van botsingen op de atomaire lijnverschuiving en -verbreding. Berekenin­

gen gedaan in onze groep aan de Technische Universiteit Eindhoven echter, waarin de 

hyperfijn struktuur op een correcte wijze was meegenomen, toonden aan dat de maximale 

verbetering van de frequentie stabiliteit beperkt blijft tot één orde van grootte. 

Het voorhanden zijn van een extreem stabiele frequentie standaard is wenselijk voor 
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verschillende vakgebieden, z.oals very-Jong baseline interferometry, het testen van de 

algemene relativiteitstheorie en interplanetaire navigatie. Daarom is het van belang om 

te zoeken naar mogelijkheden om de stabiliteit van de waterstof maser te verbeteren 

ondanks de bovengenoemde invloed van botsingen. In Hoofdstuk 2 wordt een dergelijke 

mogelijkheid onderzöcht . .In het bijzonder wordt het effect van een permanent statisch 

magneetveld op de botsingen tussen twee waterstof atomen behandeld en de daaruit 

volgende invloed op de stabiliteit van de cryogene waterstof maser. Er wordt aangetoond 

dat de invoering van een magneetveld geen aanleiding geeft tot de intuïtief verwachte 

toename in de frequentie stabiliteit. 

De waterstof maser wordt niet alleen gebruikt als erg stabiele klok, maar vanwege 

de kleine bandbreedte van het uitgangssignaal van de maser is hij ook geschikt om 

informatie te verkrijgen over het waterstof gas. In Hoofdstuk 3 wordt een variatie op 

de cryogene waterstof maser voorgesteld, namelijk de oppervlakte cryogene waterstof 

maser. De maser in dit voorstel werkt bij lagere temperaturen en heeft een grotere op­

perv lak/volume verhouding dan de cryogene waterstof maser. Het werkingsgebied voor 

een dergelijke maser wordt onderzocht en er wordt op gewezen dat het uitgangssignaal 

bepaald wordt door het twee-dimensionale gas van waterstof atomen aan het oppervlak 

van de opslagbol. Deze maser kan gebruikt worden om nieuwe en meer nauwkeurige 

informatie te verkrijgen over de eigenschappen van waterstof gas dat geadsorbeerd is 

aan een met superfluide 4He bedekt oppervlak. 

De twee bovengenoemde onderwerpen, namelijk het gebruik als frequentie stan­

daard en het beschrijven van de eigenschappen van een gas van atomair waterstof, zijn 

gedurende lange tijd de enige toepassingen van de waterstof maser geweest. Recentelijk 

hebben wij echter ook aandacht besteed aan het gebruik van de waterstof maser buiten 

deze gebieden. In de Hoofdstukken 4 en 5 wordt de werking van de waterstof maser 

beschreven in een regime dat gekenmerkt wordt door een pulserend uitgangsvermogen. 

Door het bestuderen van de waterstof maser is het mogelijk informatie te verkrijgen 

over het gedrag van oplossingen van de Lorenz vergelijkingen, waarvan de waterstof 

maser een getrouwe weergave is en die een elementair stelsel vergelijkingen zijn in de 

nietlineaire dynamica, in een parameter regime dat nog nauwelijks onderzocht is. 

Gedurende de laatste tien jaar zijn er naast de waterstof maser nog verscheidene 

andere experimenten gedaan met atomair waterstof. Een groot aantal experimenten is 
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uitgevoerd om Bose-Einstein condensatie te bereiken. Tot nu toe zijn deze pogingen 

echter mislukt vanwege het snelle verval van het waterstof gas. Het is gebleken dat drie­

deeltjes recombinatie van de waterstof atomen de belangrijkste rol speelt in dit verval. 

In Hoofdstuk 6 wordt een nieuwe methode voorgesteld om de recombinatie constante te 

berekenen. Als voorbeeld wordt de methode toegepast op een elementair probleem in de 

kernfysika, namelijk de verstrooiing van een neutron aan een deuteron. 
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1 

Door de wijze waarop het triplet-continuüm wordt behandeld in de berekening van 

drie-deeltjes recombinatie in atomair waterstof m.b.v. "resonating-group theory" wordt 

het sterk repulsieve karakter van de triplet-potentiaal voor een belangrijk deel buiten 

beschouwing gelaten. 

H. T. C. Stoof, B. J. Verhaar, L. P. H. de Goey en W. Glöckle, Phys. Rev. B 40, 9176 

(1989). 

H. T. C. Stoof (privé mededeling). 

2 

In de afleiding van de triplet-potentiaal tussen twee waterstof atomen door Jamieson et al. 

op basis van resultaten van Frye et al. wordt geen rekening gehouden met de beperkingen 

die Frye et al. zelf reeds aan hun berekeningen toekennen. 

M. J. Jamieson, A Dalgarno en J. N. Yukich, Phys. Rev. A46, 6956 (1992). 

D. Frye, G. C. Lie en E. Clementi, J. Chem. Phys. 91, 2366 (1989). 

E. Tiesinga (privé mededeling). 

3 

In het experimenteel relevante regime van lage intensiteiten is een één-manifold quan­

tummechanische berekening van een optische botsing waarschijnlijk voldoende om het 

deeltjesverlies uit een (magneto-optische) trap te beschrijven. 

H. M. J. M. Boesten, B. J. Verhaar en E. Tiesinga, Phys. Rev. A (ingezonden ter publi­

catie). 

4 

Door een incorrecte behandeling van het regime van grote impulsoverdrachten is de 

werkzame doorsnede voor het omklappen van een spin onder absorptie of emissie van 

een magnon vele malen kleiner dan door Bashkin voorspeld. 

E. P. Bashkin, Pis'ma Zh. Eksp. Teor. Fiz. 49, 320 (1989) [JETP Lett. 49, 363 (1989)]. 



s 

Voor een laser gebaseerd op een overgang tussen het bovenniveau en een lineaire su­

perpositie van de twee ondemiveaus in een drie-niveau systeem, waarbij de atomen in 

de ondemiveaus ingevangen zijn in een andere, niet-wisselwerkende superpositie, is het 

gebruik van de term "laserwerking zonder toestandsinversie" misleidend. 

0. Kocharovskaya en P. Mande!, Phys. Rev. A 42, 523 (1990). 

6 

Bij het evalueren van supercomputers is vanuit gebruikersoogpunt niet de werkelijke 

rekentijd van belang maar de totale tijd die verstreken is vanaf het versturen van de job 

tot het verkrijgen van de output. 

7 

De matige kwaliteit van veel voordrachten tijdens conferenties maakt het belang van vol­

doende aandacht voor het presenteren van resultaten tijdens de stage- en afstudeerperiode 

duidelijk. 

8 

Het verdient aanbeveling faxapparatuur zodanig te construeren dat het nummer ingetoetst 

kan worden voordat het papier moet worden ingevoerd. 


