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Chapter 1

Introduction

In this thesis we deal with several questions in which the spin-polarization of atomic
hydrogen is involved:

- Can we improve (our insight into} the operation of one of the most important

devices based on the properties of spin-polarized atomic hydrogen: the hydrogen
maser?

- What is the mechanism of one of the main processes by which the spin-polarization

in a gas of atomic hydrogen disappears: the recombination reaction H+ H+ H
H; + H in three-body collisions?

In this introductory chapter we will sketch briefly the physical background of these

questions to help the reader in understanding the broader context of this thesis work.

1.1 The hydrogen maser

The origin of the maser dates back to the year 1954. In a series of publications [1]-[3]
Townes et al. announced the development of a new apparatus, called a maser, which is

an acronym of “microwave amplification by stimulated emission of radiation”. Based on
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Figure 1.1: Schematic drawing of the experimental setup of the hydrogen maser.

one of these papers [3], Ramsey et al. [4],[5] gave, in 1962, a description of a so-called
hydrogen maser. One of the changes is the replacement of the electric dipole transition
involved in the ammonia maser of Townes et al. by a magnetic dipole transition. The
weakness of this transition is compensated by the much longer interaction time of the
atoms with the maser field, which is realized by storing the atoms in a certain volume,
instead of using an atomic beam.

The experimental setup of the hydrogen maser is schematically shown in Fig. 1.1
[5]. Molecular hydrogen is dissociated in an atomic hydrogen source. In the beam of
hydrogen atoms leaving the source the atoms are distributed between ali four hyperfine
levels of the 1s-groundstate (see Fig. 1.2), The hydrogen maser is based on the c to a
transition for B =~ 0, ie., f = 1, my =0 f = 0, my = 0, where the lower-case
symbols denote single-atom spins. In order to create the overpopulation of c-state atoms
with respect to a-state atoms necessary for maser oscillation to take place the beam is -
passed through a state selector. This state selector consists of a magnet producing a
magnetic field, e.g., a sextupole field, which is zero at the axis and increases away from

it. The a and b atoms, the so-called high-field seeking atoms, are removed from the
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Figure 1.2: The four hyperfine levels of the hydrogen 1s-groundstate as function of the
magnetic field. The T denotes the electron spin projection whereas + denotes the proton
spin projection. Furthermore, ay is the hyperfine splitting at zero magnetic field and the
mixing angle § is given by an26 = law/[(pe + pip) B], with i (1) the electron (proton)
magnetic moment.

beam, whereas the c and d atoms, the low-field seeking atoms, are bent towards the axis
and are focussed into a storage bulb which is placed in a microwave cavity. In this cavity
the maser oscillation takes place. The atoms reside in the storage bulb for times between
one and ten seconds before leaving through the same opening they originally entered.
This whole system is operated at room temperature.

To this date the room temperature hydrogen maser is the most stable frequency
standard for measuring times between one second and several days with a relative
frequency instability observed to be below one part in 10'* for measuring times of one
hour [6]. As such the hydrogen maser is being used in tests of general relativity, very
long baseline interferometry (VLBI) and interplanetary navigation such as the Voyager
2 mission [6]-[8]. In order to keep track of the position of the Voyager on its way to
Neptune three earth-based radio telescopes emitted signals to the Voyager which returned

them to these telescopes. By measuring the time elapsed between sending and receiving
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the signals the radial and angular positions of the Voyager could be determined. At each
telescope two hydrogen masers were used to achieve the required accuracy in the time .

measurement.

The optimization of the frequency stability, which is necessary to perform even more
accurate measurements, requires a detailed theoretical knowledge of the processes which
influence this stability. This is the subject of Chapter 2 of this thesis. For an evaluation
of the frequency stability it is essential to realize oneself that the atomic transition is not
the only oscillator in the hydrogen maser: The cavity also is an oscillator in its own right.
The maser frequency is thus the resonance frequency of a system of two nonlinearly
coupled oscillators, each with its own frequency. It is determined by the cavity-pulling

relation [5],[9],[10]

Wiy =Wy W Why

T = T, (1.1)

where w,, is the maser frequency, wy the atomic transition frequency, w, the cavity
frequency, and 'y and T, the width of the frequency profiles of the atomic transition
and the cavity mode, respectively. This relation indicates which parameters determine
the frequency of the maser. A time dependence of these parameters, e.g., a systematic
drift or fluctuations, will lead to a time dependence and thus an instability of the maser
frequency.

Processes which influence the stability can, according to Eq. (1.1), be separated in
two different groups, namely those which affect the cavity frequency and width and those
which affect the atomic transition frequency and width. In order to reduce the influence
of the former, the ratio I',/T'. is made as small as possible. This is achieved in two
different ways. By storing the atoms as long as possible in the storage bulb without a
significant loss of coherence the interaction time with the field is increased and thus, by
Heisenbergs uncertainty principle, the atomic linewidth is reduced. The loss rate of the
cavity is subsequently increased up to the point were I', is as large as possible while still
maintaining maser oscillation. Due to the small ratic of T, to I'. the influence of the
cavity on the stability of the maser is negligible [11].

The atomic transition frequency and linewidth entering Eq. (1.1} differ from the

values for a hydrogen atom in free space. For example, during their stay in the storage
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bulb, the hydrogen atoms will collide many times with the walls of this bulb and with a
certain probability will stick to it. Only in the case of sticking, due to the long interaction
time, the perturbation of the energy levels of the hydrogen atoms has to be taken into
account. This causes a shift in the atomic transition frequency. A statistical distribution
of the sticking times, furthermore, causes a broadening of the atomic line. This effect,
however, is reproducible and time-independent which means that it does not affect the
stability of the maser. Other effects that influence the atomic transition are the finite
storage time, inhomogeneities in the static magnetic field and the second order Doppler
effect. The effect, however, which is of most concern to the stability of the maser and
which is treated in Chapter 2 of this thesis are collisions between hydrogen atoms.

Qualitatively, the influence of collisions on wy and 'y may be understood as follows.
The wave function of a hydrogen atom participating in the maser oscillation can be

written as a superposition of the ¢ and the a state
C.e~tP|c) 4 Cpe~itP|g) | (1.2)

with €, and €, the energies of the ¢ and a level, respectively, (e. — €,)/ the transition
frequency in the absence of collisions, and C, and C, amplitudes. After an elastic
collision of such an atom with another atom both parts of Eg. (1.2) are multiplied by a
different diagonal element of the scattering matrix. This causes a phase shift A¢ and
with N collisions per second this leads to a frequency shift Aw, = d¢/dt = NA¢. The
number of collisions per atom will not be equal but will be statistically distributed as will
the velocities of the two colliding atoms. Apart from the shift of the atomic transition this
also causes a broadening. It is clear that this effect depends on the density of hydrogen
atoms in the storage bulb. In practice, a fluctuation in the density has a large effect on
the stability of the maser.

The broadening and shift of the atomic transition were calculated in 1963 by Bender
[12], based on earlier work of Wittke and Dicke [13] and Dalgarno [14]. Semiclassical
methods were used? neglecting the hyperfine splitting in the collision. A year later
Balling et al. [15] made a full quantum mechanical calculation, still neglecting, however,
the hyperfine interaction. Both theories led essentially to the same result and gave rise to

a procedure called spin-exchange cavity tuning [16],[17]. This method uses two effects
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which influence the maser frequency, cavity pulling and collisions between atoms. The
above calculations showed that the frequency shift due to collisions is proportional to

the atomic linewidth. In that case the cavity pulling relation (1.1) can be written as
1
Wm — wgl = {f‘(wc - w:)!) + a}rai ’ (13)
-4

where W}, is the transition frequency in the absence of collisions and e is a proportionality
constant. In Eq. (1.3) the difference between w2 and wy,, has been neglected in the
righthand side. By choosing w, = w® — I'. the maser frequency can be made stable
against fluctuations in Iy, and thus fluctuations in the density. The stability of the maser
is then determined by thermal noise and receiver noise.

In 1975 Crampton and Wang [18] performed a semiclassical calculation of the col-
lision process in which they included the hyperfine splitting. This introduced an extra
contribution to the frequency shift which is not proportional to the total atomic linewidth

s I,
but only to the collisional part I'¢?":

wm =) = (e = ) + )T+ TS, (19
= {g(o—wl) +a+ B} ALY,

with T'9, the single-atom contribution to the atomic linewidth and 8 a proportionality
constant. The main contribution to I'? is due to the storage time of the atoms in the
storage bulb. Equation (1.4) shows that the extra contribution to the frequency shift
remains density independent after cavity tuning, but leads to a dependence of the maser
stability on fluctuations in I'%. It turns out that this source of frequency instability is

negligible for a hydrogen maser operating at room temperature.

In 1978 two groups, Crampton et al. [19] and Vessot et al. [20], proposed to construct
a hydrogen maser operating at sub-Kelvin temperatures, the cryogenic hydrogen maser
(CHM). The main advantages would be much smaller collisional cross sections, allowing
for much larger densities and thus a larger output power, less thermal noise and a
better control over the cavity. In 1982 Berlinsky and Hardy [21] predicted that with
the cryogenic hydrogen maser an increase in frequency stability can be achieved with
respect to the room temperature maser of three orders of magnitude. Essential in this

approach is again the possibility of spin-exchange cavity tuning. Three groups [22]-[24]
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succeeded in building such a cryogenic hydrogen maser almost simultaneously in 1986.
Stabilization of the hydrogen gas at these low temperatures is possible by covering the
walls of the storage bulb with superfluid helium [25]. Due to the virtual absence of
a spin-dependent interaction between hydrogen and helium atoms and the low binding
energy of hydrogen to a helium film the atoms can hit the walls of the storage bulb many

times without a significant loss of coherence.

In our group at Eindhoven University of Technology calculations on volume and
surface collisions of hydrogen atoms had been going on since 1982. This knowledge,
however, was applied to the hydrogen maser only after 1985, as stimulated by a request
from Crampton. For the first time the expressions for the frequency shift and line
broadening were based on a systematic derivation from the BBGKY hierachy [26],[27].
A fundamentally new aspect discovered in this work was the insight that the hyperfine
splitting of the internal states of the colliding atoms contributes to the line shift ina way
which precludes its compensation by spin-exchange cavity tuning. Not only does the
maser stability become dependent on the storage time of the atoms as in the semiclassical
calculations of Crampton and Wang, but the frequency shift depends on the density even
after cavity tuning. Specifically, it means that the proportionality parameter 8 in Eq. (1.4)
becomes density dependent. Although this contribution is rather small, it turns out to be
5o important in the sub-Kelvin hydrogen maser {26]-[28] that most of the improvement
of the frequency stability is lost: The maximum improvement in frequency stability
realizable with respect to the room temperature hydrogen maser was shown to be a factor
of 10, two orders of magnitude less than originally predicted.

This fact is the main motivation for Chapter 2 of this thesis. The hydrogen maser
is normally operated at very low magnetic field strengths of less than 10~% T. Both the
hyperfine energies and the spin structure of the states involved in the maser transition
show a dependence on the magnetic field (see Fig. 1.2). This means that by varying the
magnetic field collisions between hydrogen atoms will evolve in a totally different way
since the interaction between these atoms will change considerably. This could have
a pronounced effect on the frequency shift, in pasticular its dependence on the partial
densities, which might be used to improve the frequency stability. In this connection

it should be noted that the hyperfine-induced changes of collisional T-matrix elements
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are in general a very small part of the total T-matrix elements, so that already a rather.
small new effect could introduce a considerable influence. In Chapter 2 the effect of an
introduction of a magnetic field is treated and it is shown that the hoped for improvement
in frequency stability can not be realized [29].

Recently, two experiments, one at room temperature [30],[31] and one at sub-Kelvin
temperatures [32],[33], as well as a reanalysis [11] of the earliest room temperature
experiment [18] to measure the hyperfine-induced collisional shifts have shown a dis-
crepancy with the quantum mechanical calculations of our group. Specifically, one of the
collisional shift terms which is the direct consequence of the inclusion of the hyperfine
interaction has a different sign, although its order of magnitude is correct. Two possible
causes for this sign difference have been proposed. The original papers in which our
group presented the calculations [26],[27] could contain a sign error in the hyperfine-
induced shifts. In this connection it is of importance to notice that in Eq. (13) of Ref.
[26] and Egs. (56), (57) and (58) of Ref. [27] a sign convention for Al is used which is
different from that in the final results. A rigorous check on the calculations, however,
has ruled out the possibility of a sign change in the final results. A second possible cause
was given by Silvera et al. [30],[31], in which they cast doubt on the hydrogen potentials
used in the numerical calculations. A recalculation with the most up-to-date data on
these potentials shows virtually no differences with previous calculations. As yet, there
is no solution for this problem which will be the subject of further study. Measurements
of the magnetic field dependence of the collisional frequency shifts and a comparison

with the predictions of Chapter 2 of this thesis may shed further light on this problem.

Both experimental and theoretical work on the hydrogen maser have during the last
three decades been concentrated on its use as a primary frequency standard. Interest
in phenomena taking place inside the maser itself has arisen only in the last § years
[10],[34]-[37]. Some of these phenomena are treated in Chapters 3, 4and 5.

A process which does not contribute to the frequency instability in the hydrogen
maser but is nevertheless important for its operation is the above-mentioned wall shift
resulting from the fact that the atomic transition frequency at the surface is different from
the frequency in the volume. The size of this effect depends on the construction and on

the specific operating conditions of the maser, such as the area to volume ratio of the
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storage bulb and the exact temperature [38]-[41]. For the room temperature hydrogen
maser it depends in addition on the purity of the material which is used for the wall of
the storage bulb, ie., teflon. As a consequence the atomic transition frequency but also
the maser frequency is determined by device parameters and by the specific operating
conditions. This inhibits the use of the hydrogen maser as a primary time standard. If,
however, the fraction of time that the atoms spend at the surface would be much smaller
than in the present sub-Kelvin maser this device dependent shift would disappear and
the possibility arises that the hydrogen maser could indeed be used as a primary time
standard. This, however, is not possible in the sub-Kelvin hydrogen maser. The so-called
wall shift can only be reduced by increasing the temperature of the maser given a fixed
size of the storage bulb. Not only do the collisional cross sections increase in this case
but due to the evaporation of the superfluid helium film the rate at which hydrogen atoms
collide with helium atoms in the volume increases as well which introduces an additional
frequency shift [21],[42],[43]. In fact, the sum of the latter shift and the wall shift is only
stationary with respect to temperature changes at 0.5 K.

This is the motivation to investigate the possibility to operate a maser in which most of
the atoms are adsorbed on the superfluid helium surface. By decreasing the temperature
it is possible to interchange the roles of surface and volume and it is even possible to
reduce any shifts occurring due to the presence of the volume which is desirable from the
point of view of a primary time standard, but now based on the transition frequency of
hydrogen atoms adsorbed on a superfluid helium surface. This is the subject of Chapter
3. A new method is developed to describe the interaction of the maser field with both
the atoms residing in the volume and at the surface. Starting from this description the
realizability of a so-called surface cryogenic hydrogen maser (SCHM) is investigated. It
turns out that it is indeed possible to operate such a surface cryogenic hydrogen maser
but that such a device does not have the prospects to serve as a primary time standard.
It does have the potential, however, to be an accurate source of new information on the
hydrogen-liquid helium surface system {37].

Chapters 4 and 5, finally, emphasize the dynamics of the hydrogen maser. Instead of
focussing on collisions between hydrogen atoms these chapters deal with the interaction
between the atomic magnetization, the population inversion and the oscillating electro-

magnetic field in the cavity. In analogy to Haken in 1975 [44] the equivalence between
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" the Maxwell-Bloch equations which govern the hydrogen maser and the Lorenz equa-
tions is demonstrated. These equations appeared in 1963 in a study by the meteorologist
Lorenz [45] as a strongly simplified model of the Navier-Stokes equations. Although
it soon became clear that they were not an accurate approximation in this specific sit-
uation these equations have been the subject of many investigations and are one of the
primary examples of equations known to exhibit so-called chaotic behavior [46]. In
Chapter 4 we show that the hydrogen maser is indeed a very clear example of a system
governed by these equations and that it is possible to reach a regime of time-dependent
chaotic, but also periodic, pulsed behavior in the sub-Kelvin maser in contrast to the
room temperature maser [10]. In Chapter 5 the Lorenz equations are further examined
for the parameter regime of the sub-Kelvin hydrogen maser and by a systematic search
a detailed picture of the expected behavior is given. Apart from being an interesting
subject of study of nonlinear dynamics, the time-dependent regime promises to give more
detailed information on the hydrogen maser itself, including collisional phenomena, than

the time-independent regime does [36].

1.2 Mechanisms for thrée-body recombination

The storage of hydrogen atoms by covering the walls of the storage bulb with a film of
superfluid helium as applied in the sub-Kelvin hydrogen maser is one of the experimental
techniques which during the past one and a half decade have been developed to produce
gaseous samples of atomic hydrogen at such low temperatures and high densities that the
conditions for Bose-Einstein condensation (BEC) are fulfilled [25],[47}-[50]. A more
recent line of research is based on (evaporative) cooling of samples of atomic hydrogen
in a magnetic trap [51]-[55]. The contrast between these two approaches is visible
in Fig. 1.3, taken from Refs. [56],[57]. In this figure the condition for Bose-Einstein
condensation is given along with the densities and temperatures achieved in various
experiments. Whereas the storage of hydrogen in a gas cell covered with superfluid
‘helium is used in attempts to achieve Bose-Einstein condensation by increasing the
density the cooling of atoms in a magnetic trap is intended to produce a relatively low
density sample of hydrogen atoms with a temperature low enough to observe Bose-

Einstein condensation. This last approach is outside the scope of this thesis.
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Figure 1.3: Phase diagram for BEC in spin-polarized atomic hydrogen, with T, the
critical temperature at a given density: a Ref. [25], b Ref. [47], c Refs. [48],[49], d Ref.
[50], e Ref. [51],  Ref. [52], g Ref. [53] and h Ref. [54]. The progress towards BEC is
indicated for experiments with superfluid helfum covered walls by the line connecting a,

b, ¢ and d and for trap experiments by the line connecting e, f, g and h.
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initial dipole final
state interaction state

Figure 1.4: Schematic picture of the Kagan dipole mechanism. Only the double spin-flip

contribution arising from the dipole interaction is presented.

In experiments devised to observe Bose-Einstein condensation in the high-density
scheme a gas cell is loaded with a and b atoms at high magnetic field strengths. In the b
state both the electron and proton spins are down (see Fig. 1.2), whereas in the a state the
electron spin is down and the proton spin is up but there is a small admixture of electron
spin up and proton spin down. At low temperatures a large fraction of the gas is adsorbed
at the wall of the gas cell. Due to the small admixture of electron spin up in the ¢ state
a collision of two ¢ atoms and a collision of an « and b atom evolve partially via the
singlet interaction which means that the two atoms can recombine to form a molecule if
the collision takes place at the surface. Two b atoms, however, can not recombine. This
process, which is called preferential recombination of the a atoms, produces a sample of
hydrogen gas in which almost all atoms are in the b state.

The only way in which a gas of purely b atoms can decay is by the magnetic dipole
interaction between the spins of the atoms. In a collision of two b atoms the dipole
interaction can induce an electron-spin flip by the transfer of atomic orbital momentum V
to intrinsic angular momentum. An atom which has undergone such a spin flip can
subsequently recombine with a batom at the surface. Another possible decay mechanism,
which is the subject of Chapter 6, is the three-body recombination of atomic hydrogen.

Up to now all experiments which have tried to reach Bose-Einstein condensation

in the high-density scheme have failed due to the large three-body decay rates of the
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Figure 1.5: Schematic picture of the dipole-exchange mechanism. The essential differ-

ence with Fig. 1.4 is that the dipole-interacting pair of atoms eventually recombines.

gas. This has given rise to a considerable effort, both experimentally [58],{59] and
theoretically [60]-[68], in the study of this process. Specific attention has been paid
to the possibility that by varying the applied magnetic field the decay constants can be

manipulated in such a way that Bose-Einstein condensation is possible.

One of the earliest descriptions of the three-body recombination process has been
given by Kagan et al. {60}. In this description one starts with three atoms all with
their electron spin down, i.¢., three b atoms. Two of these atoms interact via the dipole
interaction. Although the total spin state of these two atoms remains triplet the precession
of both electron spins in their mutual dipole fields introduces a singlet component with
respect to the third atom. It is then possible for one of the atoms to recombine with this
third atom. This process is schematically depicted in Fig. 1.4,

Although these calculations have given a good insight in the properties of atomic
hydrogen gas at low temperatures the discrepancies with experimental data showed that

this mechanism is not sufficient to describe the observed decay rates. As a solution our
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»
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Figure 1.6: The two momenta involved in a three-body problem: the relative momentum
* P between two atoms and the relative momentum § of the third atom relative to the center
of mass of the pair. A numerical solution of the Faddeev equations by discretization of

these two momenta is not possible at present for the final state.

group in Eindhoven proposed a different mechanism which has turned out to be the most
important contribution to the decay process, the dipole-exchange mechanism which is
schematically drawn in Fig. 1.5 [62],[65]. Again the dipole interaction introduces a
precession of the spins of two of the atoms while preserving their triplet spin state.
Instead of a recombination of one of these atoms with the remaining third atom the
strong central interaction causes a spin-exchange between this latter pair of atoms. The
spin state of the two atoms which originally interacted via the dipole interaction has thus
acquired a singlet component and it is possible for these two atoms to recombine. It
should be noted that, contrary to the Kagan dipole process, it is the dipole-interacting
pair of atoms that eventually recombines. Using various approximations our group has
calculated the three-body recombination rate including this dipole-exchange mechanism
[62],[63].[65]-[68].

The approach which is taken treats the magnetic dipole interaction between the
electron spins in first order. This has turned out to be a very well satisfied approximation.
The calculation of the decay rate thus involves the evaluation of a matrix element of
the interatomic magnetic dipole interaction between an initial and a final state. In both
these states the central singlet/triplet interaction is included in an exact way. Already in
the first approach the initial state has been calculated rigorously by solving the Faddeev

equations. It turned out that an approach in which this initial state was replaced by a
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Jastrow approximation introduced only slight deviations in the decay rates of less than 15
% [62},[65]. The final state can, in principle, be calculated in the same way. Due to the
large number of channels in the final state, i.e., the large number of bound states, however,
the “conventional” method of solving the Faddeev equations, i.e., a discretization of the
two momenta involved in this problem (see Fig. 1.6), makes the problem too cumbersome
for present-day supercomputers. Therefore our group has so fartried to calculate the final
state in an approximate way. In a first approach [631,{65] the calculation of the final state
involved the collision of an atom with a molecule. This molecule underwent all possible
changes in its internal states except a change of identity of the atoms it consists of. This
means that rearrangement and thus the dipole-exchange mechanism was not included
in this approach. The large discrepancies with experiment [58],[59],[66],[68] were
another indication that this mechanism is essential in the description of the three-body
recombination. In a subsequent calculation also rearrangement was included [67},[68].
- The results of this approach, the resonating group theory, showed that a resonance effect
caused by quasi-bound § = 1/2 states of the H3 molecule contributes significantly to the
recombination process. In this state the dominant configuration of the hydrogen atoms is
an equilateral triangle with an interatomic distance of about 7 ag. The largest bound state
of the hydrogen molecule Hj, however, extends to approximately 5 ag. This means that
a description of three-body recombination in which only bound states of the hydrogen

molecule are included is not sufficient. The continuum should also be taken into account.

Although an inclusion of the continuum is necessary to describe the recombination
process the asymptotic form of the wave function still consists of a molecule and a
freely moving atom. The continuum is thus only important in a part of space in which
the three atoms are closely together, ie., there is only *“virtual break-up”. This fact
forms the basis for the present approach. Stimulated by a suggestion of Glickle a set of
functions is created which are orthogonal to the bound state wave functions and which
are eigenfunctions of the central two-body singlet/triplet interaction problem within the
subspace spanned by this selected set [67]-[70]. This set represents the continuum in
our calculations. If it would contain an infinite number of functions the representation
would be exact. However, we restrict ourselves to a finite number of functions which

are localized in space at a position where the relevant Hj resonances are expected to
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be located. With these functions the Faddeev equations are solved. The expectation
is that only a few cleverly chosen functions are sufficient to obtain convergence in the
calculations. This method thus enables us to solve the Faddeev equations.

The validity of the method has been tested on an important three-body process in
nuclear physics: neutron-deuteron scattering. In this case a neutron collides with a -
deuteron which is a bound state of a proton and a neutron, treated as two identical
particles in different isospin states [70]-[73]. The analysis of this problem with the above
mentioned method is presented in Chapter 6.
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Chapter 2

Cryogenic H maser in a strong B field

Published in Physical Review A 41, 2614 (1990)

Abstract

We study the spin-exchange frequency shift of the cryogenic hydrogen maser for B #0. A
general expression is derived in terms of populations of ground-state hyperfine levels. The
coefficients in this expression are calculated in the degenerate-internal-states spproximation,
as well as to first order in the hyperfine plus Zeeman splitting. Numerical results are
compared with rigorous coupled-channel calculations. Some implications are pointed out
for the frequency stability of the H maser in a magnetic field.

2.1 Introduction

Almost thirty years after its first realization by Goldenberg, Kleppner, and Ramsey [1],
the hydrogen maser continues o be the most stable of all frequency standards. For
measuring times of about 1 h the relative frequency instability is observed to be below
one part in 10", This extreme stability makes the hydrogen maser a very valuable
research tool in fields as diverse as physics, astronomy, geodesy, and metrology.

As pointed out a decade ago [2],{3], a hydrogen maser operating at liquid-helium
temperature would have an even better frequency stability. This is mainly due to the

much smaller collisional line broadening at lower temperatures, allowing for a larger
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radiating atom density, and hence for a larger radiated power without increasing the
atomic linewidth above the room-temperature value. Furthermore, lower temperatures
also increase the signal-to-noise ratio by decreasing thermal noise, and help to get a
better control of the cavity resonance frequency. A third advantage is the possibility at
sub-Kelvin temperatures to use a very reproducible wall coating of superfluid helium,
with an associated wall frequency shift going through a minimum at T’ = 0.52 K [4],
which produces a very high thermal stability. Berlinsky and Hardy [S] predicted that
with such types of cryogenic hydrogen masers an improvement in frequency stability
of more than two orders of magnitude over that of a room-temperature hydrogen maser
‘should be realizable.

Up until now we did not mention the frequency shifts due to collisions between
hydrogen atoms. Analysis of the effect of spin-exchange collisions [6] showed that they
shift the maser frequency in the same way as cavity pulling does: via a proportionality to
the atomic linewidth. This opens the possibility to tune the cavity such that cavity pulling
and spin-exchange frequency shifts compensate one another. The ébove-mentioned
papers, however, all ignored the effect of the hyperfine energy-level separation during
the collisions, which is an essential omission in the case of cryogenic H masers as was
shown in two more recent papers [7],[8]. The effect of the hyperfine interaction during
collisions introduces large frequency shifts which cannot be eliminated by the above
spin-exchange cavity tuning method and strongly limit the achievable stability. For a
survey of the present experimental and theoretical situation we refer to Ref. [9].

In this paper we investigate the magnetic field dependence of the spin-exchange
frequency shift in the H maser. This may be of interest for experiments in which the
H maser is operated in a much stronger field than usual. In this context one could
think in the first place of attempts to improve the frequency stability by eliminating the
hyperfine-induced shift. For this application it would be essential that persistent-current
solenoids and superconducting magnetic shields make it possible to operate at a much
stronger constant field than usual, outside the extreme low- B regime where the first-order
fluctuations of transition frequency with B vanish. It is outside the scope of the present
paper to discuss the technical possibilities to keep a magnetic field of, for instance,
0.05 T stable to within a required relative variation of 10~'%. We confine ourselves

to the question whether a magnetic field might eliminate the “dangerous” terms in the
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hyperfine-induced spin-exchange frequency shift. To that end it is necessary to derive
the dependence of this shift on the partial densities of the four 1s hyperfine levels. At first
sight it does not look improbable that such an elimination might succeed. Introducing a
magnetic field of the order of 0.05 T changes the hyperfine spin wave functions and thus
the collision amplitudes significantly. In addition, we will see that the symmetry lost in
a collision by B # 0 introduces contributions from inelastic elements to the frequency
shift besides the elastic S-matrix elements, which already play a role for B = 0.

A second application is the present experimental activity in measuring the various
contributions to the spin-exchange frequency shift. Experimental groups are interested
in measuring them as a function of various experimental parameters, in particular, the
atomic density in the storage bulb, to compare them with theoretical predictions but
also to provide information on the population dynamics in the H maser, which is of
interest for the sight into its operation. Extension of such measurements and analyses to
B # 0 would enlarge the scope of present experiments. The introduction of a stronger
magnetic field not only influences the collisional frequency shift, but has also a more
direct influence on the maser operation, for instance, on the maser oscillation condition.

A third type of application is associated with the use of the H maser as a precision
instrument enabling one to measure very sensitively certain phenomena in atomic hydro-
gen gas. For some of these phenomena it may be desirable or even essential to operate
the maser at stronger B fields. In this context one could think of the possibility to detect
bulk or surface spin waves [10], as well as possibilities for measuring magnon effects
[11] by means of the cryogenic H maser.

This paper is organized as follows. In Sec. 2.2 we derive the general expression
for the B # 0 spin-exchange frequency shift starting from the quantum Boltzmann
equation. In Sec. 2.3 we evaluate the various terms of zeroth and first order in the
hyperfine level splitting by an extension of the existing method for B = 0. In Sec.
2.4 we present numerical results of this approach and of the rigorous coupled-channel
method and discuss their application to the H maser. Some conclusions will be given in
Sec. 2.5
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2.2 Spin-exchange frequency shift for B £ 0
We start from the evolution equation [7],[8] for the one-atom spin-density matrix

d i . , .
'(E’P:m' + ﬁ‘(en - ﬁn’)i’m’ = Pm'irad + Pnn"O + Pt ;c . (21)

The Greek subscripts take values a, b, ¢, and d, the ground-state hyperfine levels in
order of increasing energy ¢,. The first term on the right-hand side is the radiation term
resulting from the interaction of the atomic magnetic moments with the rf cavity magnetic
field. The second term represents all one-atom terms such as wall collisions, finite cavity
residence time, and interactions with magnetic field inhomogeneities. The third term,
the collision term, is the primary point of interest in this paper. We are interested in a
situation where the cavity mode is almost resonant with a particular transition £ — &',

For the corresponding density-matrix element the one-atom and collision terms then have

the form
paxrlo = —[(1/T2)o — ibuwo]ount » (2.2)
P.M'Ic = NHPxn ZPW Z[(l + 6&))(1 -+ 55';\)(1 + énv)(l + 6&'1;)]1/2
4 A
X{ UG ntyymer it 5 (2.3)

in which off-resonant terms have been omitted. The complex coefficient (1/T2)o — i6wy
generally depends in a complicated way on the values of the diagonal density-matrix
elements p,,,, but is independent of p.. The complex “cross sections” @y, describe
the contribution of collisions in which a v-state atom makes a transition to the A state in

colliding with an atom which is in a coherent superposition of the « and ' states:
T -
O';mf,y-»,k = ? ;{2{ + 1)[Sia.\},{sv}sl{x‘,\},{x'u} - éAp] - (2.4}

In this equation Greek subscripts between brackets are a shorthand notation for nor-
malized symmetric (antisymmetric) two-body spin states for even (odd) partial wave
I. The S-matrix elements are to be calculated for a common relative kinetic energy
Ex =k*k*/mpy in the entrance channels {xv} and {x'v}. The brackets { },; in Eq. (2.3)
denote thermal averaging.

The calculation of the collision term is based on a two-atom Hamiltonian containing,

in addition to the central interaction and hyperfine interactions already included [7}.[8]
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for B = 0, the Zeeman term

v = (He(Ter + T2) ~ (o + 02)] - B, (2.5)

with p, () the electron {proton) magnetic moment and o the Pauli spin vector. Magnetic
dipolar interactions are again negligible. The collision problem has SO(3)omit X SO(2)spin
as a symmetry group, ie., the direct product of the three-dimensional orbital rotation
group and the two-dimensional spin rotation group about the z axis (||B). Due to SO(3)
orbital symmetry the S matrix is diagonal in the relative orbital angular momentum
quantum numbers ! and my, and independent of my;. This is taken into account in the
notation of Eq. (2.4). Due to SO(2), symmetry the total spin magnetic quantum number
is conserved. Consequently, for odd ! only elastic S-matrix elements play a role in Eq.
(2.4), i.e., ab — ab, ¢b — cb, ad — ad, and ¢d — ¢d, the same combinations as for
B = 0 but with B # 0 values. For even ! we have the elastié elements for e — aa,
ac — ac, and cc — cc, and the inelastic elements for ag — ac and ac < ¢cc. The latter
were absent for B = 0 for reasons of symmetry: under a combined 180° rotation of the
electron and proton spins of a single atom about an axis in the zy plane |a) — |a} and
ley = —]¢}, so that |aa) and |ec) are invariant and [{ae}) — —|{ac}). Note that by the
same argument the equality of the B = 0 elastic S§-matrix elements for ab and ad and
for cband cd is lost for B # 0.

We now concentrate on the experimental situation in which &« = ac. Substituting
Pac(t) = pac(0)expli(ec ~ &) /h + ibw — 1/ o)t (2.6)

in Eq. (2.1), we find without radiation term the total frequency shift and total atomic
linewidth

bw = buwy+ 5wc s (27)
1Ty = (1Ta)o+ (1/Ta).. (2.8)

It

Here the collisional contributions are related to the cross sections by

il

S,

(1/T2)e

g (V) [(Pec — Paa) o + (Pec + Paa) b + Xg + (paa — pu)s], (29)
RH(v){(pw - Pan)ac + (Pcc + Paa)a'l + 824 (Pdd - Pbb)a'ﬂ 3 (2'10)
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with
tAo—00 = Tac,cme — Tacama = Fagame T Cac,cma 3
i\ —0y = Tacome + Oagama + Ooegme + Oaceman
"%U ach—b ™ %Unc.d-d ) (211)
ha—02 = §0ucamd + $0achbs
ihy—03 = %dcc,d-’d - iaac.b-—aﬁ .

Note that the new pgq — pgs terms arise because of the above-mentioned loss of symmetry.

2.3 Collisional shift and broadening

Apparently, the collisional frequency shift and line broadening can be determined once
the S matrix has been calculated. As for B = 0, this has been done both by the
coupled-channel method and by approximate methods. We refer to Refs. [7] and [8] for
a description of the coupled-channel method as applied to the H maser.

2.3.1 Degenerate internal states

The calculation is much easier when energy differences of internal states are neglected.
The advantage of this approximation is that the internal atomic Hamiltonian reduces
effectively to a constant times the unit operator. Using this, one can turn to a new
basis of internal states to simplify the collision problem, i.e., the internal basis with total
electron and proton spin quantum numbers S M I M, which diagonalizes the interatomic
interaction. With respect to this basis the coupled-channel problem reduces to a simple
potential-scattering problem for singlet and triplet scattering separately.

For B = 0 this approximation was relatively straightforward to apply. In Refs. [7]
and [8] we obtained results in agreement with expressions obtained previously [6]. It
is less trivial how the approximation is to be applied most effectively to the inelastic
processes for B # 0. 'We have shown previously [12],[13] that spin-exchange and
dipolar transitions in H 4+ H scattering in the sub-Kelvin regime can be described
very successfully if one does not replace an S-matrix element as a whole by its value

for degenerate internal states (DIS), but rather a related quantity: one first splits off



2.3, Collisional shift and broadening ’ 29

two factors depending on initial and final channel wave numbers and subsequently
approximates the remaining quantity by its value for degenerate internal states, i.e., equal
wave numbers in all channels. Simple expressions in terms of scatiering lengths, but still
rather accurate for low energies, are obtained by calculating the remaining quantity in
the zero-energy limit (vanishing wave numbers). For somewhat higher energies accurate
agreement with coupled-channel values is obtained by taking the collision energy equal
to the average of initial and final relative kinetic energies. Recently we applied the same
so-called DIS method to the scattering of dressed H atoms in a microwave trap [14] and
to the reflection of H atoms from a superfluid *He surface [15].

As an example we give the S-matrix element for the ac — aa transition (even ),
Stotaey = (kaakae/F2) Y2}/ 2sindb(exp2i6] — exp2if) . (2.12)

In this expression kqc (kqo) is the initial (final) wave number, & is their “average,”
bt (65) is the triplet (singlet) scattering phase, and @ is the usual B-dependent angle
characterizing the hyperfine states

6 = jarctanBo/B, Bo = jaf(pe+ip), 0 < 6 < % (2.13)

Making use of such expressions the A; and g; cross sections are easily obtained,

7 .
,\(()ms} = ﬁi(l — 3cos226) :Z (21 + 1)sin2A6,
A A(lms) - Agms) =0,
AP _%coszé Y (21 + 1)sin2A8
Todd
a(()DIS} = S”F?Sinz‘w 2 + DK, (2.14)
leven
a_§DlS) = _f% Z (2[ + 1){(1 +c08220)sin2A63 + %Sin240X{|.]
feven
— 57 (2 + 1)(1 + cos2B)sin’ Al
fodd
o9 % Y (21 + 1)(1 + cos*20)sin’ A8’
Todd
Ggms) = 0,

in which Aé' stands for & — &% and the x coefficients for
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X (k) = (kks/R2)HSinPAS, + (kke /R ) 1sin?ASY
—2sin?Aé', (2.15)
(ks [E2 )Y 1sin? A8, — (kko /E2)**sin? AL .

x_(k)
In these expressions k is the wave number in the entrance channel, k; is a larger wave
number obtained by adding the a-c level splitting at the magnetic field strength considered
to the initial relative kinetic energy, and k. is a similar wave number found by subtracting
the same splitting. Furthermore, k» and k. are wave numbers corresponding to averaged
initial and final kinetic energies. Finally, A§), and A&% are the Aé' phase differences at
the average wave numbers ks and k<.

Apparently, A{ID‘S} and Agms) vanish as for B = 0. This is a central conclusion of the
present paper. For B = 0 we obtained dangerous A; and A, terms only as a correction
of first order in the hyperfine level splitting. Nonvanishing values of A(lms) and x§°‘3)
for B # 0 would have implied the possibility of a drastic change of these parameters
already upon application of a weak magnetic field and hence, in principle, the possibility
of a vanishing or density independent frequency stability parameter [7] £2. On the basis
of the above-mentioned result we can only expect a nonvanishing value of A; and ); for
B # 0 in first order in the hyperfine level splitting. Intuitively, one thus expects that.
the purpose of eliminating the effect of the dangerous terms can only be achieved with
stronger B fields at least of order By &~ 50.7 mT.

One can understand the vanishing values of ;\gm) and Agms) on the basis of a symmetry
argument. Since the DIS two-body Hamiltonian no longer contains the two proton spins,
one can carry out the above 180° rotations for electrons and protons about perpendicular
axes in the zy plane. This induces the transformations [a) — ilc), |¢) — —i|a),
|6} — i|d), and |d) — —i|b), so that [aa) — —|cc), etc. As a consequence, the cross
5€CtiONS Fyczq aNA e are complex conjugated, as are 04,44 and 0,44, While

Cac,a-c 200 Oy onq are real. By the same symmetry argument af;ms) = (.

2.3,2 First-order correction

The vanishing values of A; and A; for degenerate internal states prompt us to resort to a
mote rigorous approach for gaining insight into the B # 0 frequency stability. This leads
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us to calculate first-order corrections in the hyperfine level splittings. As pointed out in
Refs. [7] and [8], these cannot be calculated by straightforward first-order perturbation
theory, i.e., the Born approximation: The perturbation V¥ + VZ — g in which & is the
average internal energy, does not fall off with interatomic distance, so that distorted-wave
Born integrals do not converge. We have shown that a first-order method previously
devised for nuclear reactions [16] can also be applied successfully to individual partial
waves in sub-Kelvin H + H elastic scattering. In this paper we have to deal also with
inelastic S-matrix elements, i.e., we would like to dispose of a first-order correction
to the above-mentioned DIS approximation. The following elegant expression can be
derived [17]:

AS{agyasy = (Karpkop/R)H1
x({«'B'H(Pr — Ps)(V* + VZ — &)(Pr — Fs)|{aB})
xAl(k), (2.16)

where

AE) = zmH [/ (@ — Oz,

2k( 5l _ l(o))zWr [0,(1}, r), == akO,(k r)” . (2.17)

For the notation we refer to Refs. [7] and [8]. The integral term in Eq. (2.17) is the
Born-type integral that would have been obtained with a perturbation V¥ 4 VZ — ¢
confined to a sphere with radius ro in relative orbital space, enclosing the range of the
central interaction V¢(r). The Wronskian surface term takes into account the effect of
the perturbation outside this sphere.

As an example we give the expression for one of the inelastic S-matrix elements,

corresponding to the zeroth-order equation (2.12),

DSheg = (kaokao/F2)*1/2/2sinds %S “ANR).  (2.18)

k

Making use of such expressions we find the hyperfine-plus-Zeeman-induced frequency-

shift parameters
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Ta

Ay = i Z (2! + 1)[(% - %coszzﬂ)lm.flT - %sinZBcoszzﬂlan] ,
{ even .
AN = Y@+ 1)dsin20Im(¢r + &)
hE* {55
;I; 42 (21 + 1)(sin20Ime% + 3sin20cos?28Imy’) ,
even
Ay = Ta E (2l + l)fsm201m(.£1~ +£5),
ﬁkz { odd
Al = 0, (2.19)
Aoy = ;:2 3" (21 + 1)sin20{Reéy — Lcos*20Re[2(¢r — L) + 711},
{even
Aoy = ; I; 3 (21 + 1)[(4 + Scos?28)Re + fsin46Ren’, |,
leven
Ao, = 0 ) :
ra
Ao = -ig 3" (21 + 1) isindfRe(¢h — £5),

1 odd
in which the shorthand notation

Eh(k) = A(k)er® (2.20)

has been introduced for triplet scattering and similarly for the singlet case, while

nh(k) = (kks>/R2YMEL(Rs) — E5(5)) + (ke [RL)+[eh(Re) — €5(R))]
—2(¢r (k) - &5(F)], (2.21)
nL(k) = (kk>/RYER(Rs) - E5(k>)] — (ke /RE)H (7 (R<) — E5(R<)] -

2.4 Numerical results and consequences for H maser

The introduction of a strong B field has a number of consequences for the operation of the
hydrogen maser which are associated with the dependence of hyperfine spin functions
and level splittings on B. In the first place the coupling of the a and ¢ levels due
to the interaction with the magnetic field of the radiation mode varies with B. As a
consequence, B has a direct influence on the maser operation and in particular on the
oscillation condition. This can be derived in complete analogy to the B = 0 case [18].
The result is

1. Vs Qepopin(Pec = Paa)o .
T1T2 ﬁVch

sin®20 , (2.22)
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where (pe: — poa)o Characterizes the substate populations for the H atoms entering the
cavity. The further notation follows Ref. [18].

A second effect, on which we have concentrated already in the foregoing, is the
influence of B on H + H collisions and consequently on hyperfine population dynamics
and collisional frequency shift. Elastic S-matrix elements, which already determine this
frequency shift for B = 0, change considerably by the introduction of a B field of,
for instance, 0.05 T. In addition, significant contributions from inelastic transitions are
introduced.

We evaluated the above-mentioned DIS frequency parameters corrected to first order
for the hyperfine level splitting. The total parameters have also been calculated rigorously
using the coupled-channel method. Deviations are expected to occur close to and below
inelastic thresholds, for instance, in the aa channel due to the cc channel. Asfor B =0
[7], discontinuities due to these thresholds are described by the coupled-channel method,
but not by the DIS approximation plus first-order correction. Despite these shortcomings,
the DIS plus first-order method is very useful because it leads to more explicit expressions,
especially with respect to the B dependence, which facilitates qualitative insight., In
addition, it serves as an important test case for the coupled-channel calculations.

In Fig. 2.1 we present the A and o parameters as a function of B at a fixed collision
energy of 0.6 K, as predicted by the coupled-channel caleulations. It turns out that the
field dependence is remarkably accurately (to the percent level relative to the values at
the maxima) described by the simple DIS plus first-order polynomials in sin26 and cos2d
of the expressions (2.14) and (2.19). In particular, the sin28 proportionality of Ay and
Az is fully confirmed, as well as the 1 + cos?*28 dependence of ¢ and ;. It is also of
interest to point to the change of sign of Agat B = 35.9 mT, duetoits 1 — 3cos*2d field
dependence. At this field strength the spin-exchange tuned cavity frequency is expected
to be equal to the atomic frequency. We note also that Ay, As, 03, and o are dominated
by their DIS contributions and A;, A;, and o3 by their first-order parts. The oo cross
section receives significant contributions from both zeroth- and first-order parts.

The same characteristics are found at higher collision energies. As pointed out
previously, for lower collision energies pronounced deviations occur due to thresholds
in inelastically coupled channels. The Boltzmann averaged frequency shift parameters

at the relevant temperatures T = 0.52 K and higher are, however, much less sensitive to
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Figure 2.1: Magnetic field dependence of frequency-shift parameters for fixed collision
energy 0.6 K.
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Figure 2.2: Temperature dependence of &, A, and &3 for fixed magnetic field By ~ 50.7
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such deviations. Using the simple field dependences, the X; and &; parameters may be
expressed simply in their previously given values [7],[8] for B = 0, except for &o, A3,
and 3. The latter two are “new” parameters, which vanishat B = 0. In Fig. 2.2 we give
them at B = By ~ 50.7 mT. Values for other fields may be obtained from their field
dependences cos28 and sindd, respectively. Furthermore, & can be expressed linearly
in terms of its previously given values at B = 0 and those at B = By,

5o(B,T) = &o(0,T)sin26(1 — 2c0s?20) + &o(Bo, T)2v/2sin20cos?28 . (2.23)

In Fig. 2.2 we also present &o{ B;, T).

We now turn to the implications of a stronger B field for the frequency stability.
With present experimental possibilities in connection with hyperfine state selection in
H masers it is possible to inject equal populations of the b and d hyperfine levels into
the storage bulb. Making use of conservation of the total electronic plus nuclear spin
projection along B, one thus expects that the pss — pss term in the frequency shift can be
sufficiently eliminated. We are then left with a collisional frequency shift of the form

6‘*’: = nH(”)[(pcc - 9ca)i0 -+ (Pcc + Pan):il -+ ’-\2] ) (2‘24)

with coefficients A;(B, T). From a self-consistent calculation of the H-maser oscillation
simtilar to that for B = 0, we again find p.; — paa to be proportional to the transverse
relaxation rate

AV.(1+ A% 1
mupo(pe + pp)nQcVosin?20 "2

which again contains a B-dependent sin?20 factor. For the further notation we refer to

Pee = Poa = (2.25)

Ref. [7]. It follows that the spin-exchange cavity tuning procedure can still be used to
eliminate the p.. — pa, term of the frequency shift. On the basis of the usual very weak
magnetic field the remaining frequency shift could not be eliminated by a similar cavity
tuning procedure. For the prospects for B 5 0 to be more favorable, it should be possible

to write the shift as a linear function of
7' = (T7"o + nu(v)[on(pe + paa) + 52] - (2.26)

In this equation we have left out a negligible &o(p. — pao) term. Clearly, the remain-

ing collisional frequency shift is insensitive to experimental fluctuations in ngy if the
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dimensionless frequency-shift parameter

a = _’:\I(Pcc + pea) + §z @27)
51(pec + Poa) + 52
is zero or at least independent of p.. + pqq.

For B # 0 it follows from Eq. (2.14) that €} is again a hyperfine splitting induced
quantity. From Fig. 2.1 and Refs. [7] and [8] it follows that A, and }; are both negative
and &; and &, both positive for all reasonable field strengths, so that a value zero for
cannot be expected 1o be achieved. In fact, because of the similar field dependences of
A1 and Ay, and of ¢, and o3, 2 depends on B via a sin26/(1 + cos?20) overall factor.

The next-best possibility, an 2 value independent of p,+ pae, would be possible when
for certain B the ratio X/}, would be equal to 3/3; at T = 0.52 K. Since these ratios
are in good approximation field independent, this weaker condition is already excluded
by our previous B = 0 results: &,/5; is at least two orders of magnitude smaller than
X2/21. We conclude that a stronger B field does not create new possibilities to eliminate

the frequency instability associated with fluctuations in ng.

2.5 Conclusions

The operation of the (cryogenic) H maser, especially its recent recirculating version,
depends on a complicated interplay of hyperﬁne level occupations and coherences. A
valuable source of information on these quantities is the maser oscillation frequency.
From its measured value as a function of experimental parameters such as cavity fre-
quency and atomic flux, and using its dependence on level populations it is possible to
gain information on the population dynamics. From this point of view it would seem
very useful to introduce an external consiant magnetic field as an additional experimental
parameter to diagnose the population dynamics. In this paper we have predicted the theo-
retical B dependence of the maser oscillation frequency needed for the above-mentioned
analysis. We have derived a B # 0 expression for the collisional frequency shift in
terms of hyperfine level populations. The coefficients J; in this expression, as well as
the corresponding quantities #; determining the transverse relaxation rate, have been
calculated in zeroth and first order in the hyperfine level splittings, as well as on the basis

of the rigorous coupled-channel method.
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A second context in which our results might be useful is associated with a possible
use of the (cryogenic) hydrogen maser as a precision instrument for measuring specific
phenomena in a dilute quantum gas. Insofar as an external magnetic field is essential
for such effects, for instance, in the case of nuclear or electronic spin waves in atomic
hydrogen, it is essential to understand the influence of a B field on the operation of the
H maser.

Finally, we have discussed the implications of our calculated frequency-shift param-
eters for the frequency stability of the cryogenic H maser. We find that the introduction
of a stronger B field does not eliminate the source of frequency instabilities pointed out

previously for the conventional setup based on a very weak B field.
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Chapter 3

The surface state hydrogen maser

Abstract

We describe 8 hydrogen maser operating at very low temperatures in which most of the
hydrogen atoms are condensed on a superfluid helium surface in long-lived states. This
proposed maser can be used to obtain new information on the properties of the hydrogen-
liquid helium surface system. In addition, it promises to be an interesting system from the
point of view of nonlinear dynamics. It is found that the surface recombination to molecular
hydrogen, which might be considered as undesirable, is actuaily necessary to achieve the
masing conditions. We develop the maser equations and consider a number of realistic
conditions for operation.

3.1 Introduction

In this paper we propose a new type of maser, the surface cryogenic hydrogen maser
{SCHM), in which the dominant species coupled to the radiation field are the hydrogen
atoms condensed on a superfluid helium surface. The SCHM provides a new means of
studying hydrogen-surface interactions, as well as an interesting device to study nonlinear
dynamic behavior.

Our analysis treats atoms in the volume and surface states on an equal footing,

using the Maxwell-Bloch equations coupled with the rate equations for the density of

41



42 - Ch. 3. The surface state hydrogen maser

the hydrogen hyperfine states. We find the unexpected result that recombination of the
hydrogen atoms is required to satisfy the masing condition. We analyze a “conventional”
mode of operation in which the masing takes place on the a to ¢ transition, shown in
the hyperfine diagram, Fig. 3.1. In addition, we consider the unusual operation on the a
to b transition in which the population inversion is produced not only by the incoming
beam, but also by surface recombination of hydrogen in the cavity. Operating conditions
are presented in both cases. Before entering into details of the analysis we present some
introductory discussion.

The room temperature atomic hydrogen maser is the most stable time standard cur-
rently available for measurement intervals between 1 and 10* seconds. More recently
a sub-Kelvin version, called a cryogenic hydrogen maser (CHM), has been proposed
[1] and constructed [2]. The CHM works in essentially the same manner as the room
temperature maser, but has a number of advantages due to the low temperature which
promise stability greatly enhanced over that of the room temperature maser. The CHM
involves atoms in the cavity volume coupled to the radiation field, but perturbed by the
helium surface, resulting in a wall frequency shift which depends on temperature as well
as the area to volume ratio. The CHM operates at a temperature of about 500 mK.
The SCHM takes advantage of the H-liquid helium adsorption isotherm. By cooling to
the 50-100 mK temperature range H atoms populate long-lived surface states. In this
regime we find conditions in which the surface plays a more prominent role than that
of perturbing the effective volume parameters. In this connection one could think of
a situation in which the pulse time in a pulsed oscillation regime [3] is so short that it
becomes of the order of the average sticking time of atoms to the surface. In this case
surface and volume atoms could have different time-dependent spin behaviors and by
enhancing the number of atoms at the surface relative to those in the volume, the surface
state atoms dominate the maser behavior. Note that due to the sensitivity to perturbations
in between pulses the exact time-dependent spin behavior of surface atoms could already
be important for the operation of the CHM in the pulsed regime.

A second motivation for the present research is the possibility to use the dependence
of the maser operation on the surface for precision measurements. Partially, this has
already been done in CHM experiments in which it has been possible to determine the

transition frequency of hydrogen atoms adsorbed at the superfluid helium surface with
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B

Figure 3.1: Schematic diagram of the energy of the four hyperfine levels of the hydrogen
1s-groundstate as a function of the applied magnetic field. In the “conventional” maser
oscillation takes place between the ¢ and ¢ levels, indicated with an arrow. For the

SCHM the a-b transition is also considered.
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great accuracy [4]. One can imagine that in a maser in which the dominant species
coupled to the radiation field are hydrogen atoms condensed at the surface, mﬁch more
information can be obtained about hydrogen-surface interactions, €.g., a new, possibly
more accurate, determination of the surface adsorption energy and the influence of dipolar
collisions and recombination on the atomic linewidth.

A third motivation for the investigation§ is the possibility to use the transition fre-
quency of hydrogen atoms adsorbed at the helium surface as the basis for a primary time
standard. The wall shift inhibits the use of present hydrogen masers as a primary time
standard. In a SCHM one would obviously have to deal with a volume shift. Whereas
the wall shift can not be eliminated in the CHM there is every reason to hope that a
volume shift can be made arbitrarily small by keeping the atoms at the surface longer,
i.e., by lowering the temperature.

In the following, we first generalize the conventional Maxwell-Bloch equations to a
- combined set of equations for volume and surface in Sec. 3.2. In Sec. 3.3 we show how
the usual maser equations and maser parameters follow from the generalized Maxwell-
Bloch equations in the limit of small sticking times. In Sec. 3.4 we concentrate on new
phenomena both for the traditional scheme in which oscillation takes place between the
a and ¢ levels of the hydrogen ground state and for a maser which oscillates between the
a and b levels. In Sec. 3.5 we consider some aspects that are related to the experimental

realization of the SCHM. Some conclusions are presented in Sec. 3.6.

3.2 Generalized Maxwell-Bloch equations

The usual way to describe the dynamics of the hydrogen maser is by using the Maxwell-
Bloch equations

B = —(k+iw)B+gM,
M = —(y. +iwg)M +gBA, (3.1)
A = —y(A—-Ag)~29(BM* + B*M),

for the complex magnetic field B, the complex magnetization M and the population
inversion A. The field B is normalized so as to equal the square root of the number of

photons, whereas M = Npgand A = N{p..— ps.) in terms of the one-atom spin-density
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matrix p and the number N of atoms in the storage bulb. The cavity resonance frequency
is denoted by w,, the atomic transition frequency by wy, the cavity damping rate by
& = w.[2Q. = 1/T,, with Q, the quality factor of the cavity, and the damping rates for
M and A by v, = 1/T; and 4y = 1/T3, the transverse and longitudinal relaxation rates.
The equilibrium value of A in the absence of atom-field interaction is denoted by Ag.
Finally, the one-photon Rabi frequency ¢ is given by

e + tp)2nwe
g = Pl %gp) e (32
<

with V; the cavity volume, p the vacuum permeability, p. (i) the electron (protoh)
magnetic moment and 5 the filling factor.

The atomic transition frequency wy and the transverse and longitudinal relaxation
rates v, and - entering Eqgs. (3.1) differ from the values for an unperturbed hydrogen
atom due 1o collisions with other hydrogen atoms and helium atoms and due o the finite
residence time in the cavity field. Another effect which influences the frequency and
the width of the atomic ransition, and which is the primary interest of this paper, is the
sticking of atoms to the wall of the storage bulb. The atoms traverse the storage bulb
many times before leaving it. Each time an atom hits the wall it has a finite probability to
stick. In the case of a sticking event it will desorb after an average time 7,. The average

time 7, of a sticking event and the average time 7, between subsequent stickings are

given by
1 _ kKT _gnr
n = zﬂisc s (3.3)
1 _ [ kT }‘fz A
e  \2zmyg v

where k is Boltzmann’s constant, T' is the temperature, s (= 0.33 K~! T') is the sticking
probability and E} is the binding energy of hydrogen atoms to the superfluid ‘He surface
(Es = 1.0 K). The mass of the hydrogen atom is denoted by mgy whereas the surface
area of the storage bulb is given by A; and its volume by V;. The energy levels of a
hydrogen atom bound to the surface will be perturbed due to the interaction with the
helium surface which resuits in a shift of the transition frequency. This means that the
transition frequency has two different values, one in the volume and one at the surface.
The net phase effect of two alternating transition frequencies has been discussed by
Anderson and Weiss [5] and applied to the hydrogen maser by Morrow and Hardy [6].
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The phase shift which the atoms undergo per sticking event due to the difference in
atomic transition frequencies is calculated assuming that the sticking time and the time
between stickings are distributed according to Poisson statistics. In the usual situation
for the cold hydrogen maser the result takes on a particularly simple form. The rapid
exchange of atoms among volume and surface states and the very short sticking time
compared to the time in the volume result in a shift (wall shift) of the volume frequency
due to the influence of the transition frequency at the surface and it is not necessary to
deal with the surface atoms explicitly. Consequently, the Maxwell-Bloch equations (3.1)
remain valid but with effective values for w, and v, : ‘
1 b

Ty 148’

R %
TR+ 4]

Wy wy -+ 3.4

where w, and 4} are the atomic transition frequency and transverse relaxation rate in the
volume and ¢o = 7,{w, — w, ) is the average phase shift per sticking event with w, being
the atomic transition frequency at the surface.

This approach is valid as long as there is a rapid exchange of atoms between surface
and volume and the total time spent at the surface is short compared to the time spent in
the volume. This approach also neglects recombination and relaxation effects and any
independent interaction with the radiation field during the time that the atoms reside at
the surface.

Generalizing the usual derivation [3] of Egs. {3.1) to the case of a combined system

of atoms at the surface and in the volume, we obtain

B = —(x+iw)B+g(M*+M*),
MY = (7] +iw)M* +gBAY = Lo 4 Lage,
Tv Ts

M* = —(y +iw,)M* +gBA" + -:—M" - ;}-M' , (3.5)
v L.}
AY = —4f(AY - AY) - 29(BM™ + B*M") — -:-A" + _rizy .
v a8
A' = —af(A* - A - 20(BM™ + BM*) + AT~ A",
‘ v ]

with separate quantities M’ and Af (i = v, s) for volume and surface. The 4 coefficients

are the transverse and longitudinal relaxation rates in the volume and at the surface and
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the Aq coefficients stand for the equilibrium values of the population inversion in the
absence of atom exchange and atom-field interaction.

In order to evaluate possible operating conditions for the SCHM knowledge of the
various constants in Egs. (3.5) is essential. As far as the operation of the hydrogen maser
depends on specific device parameters we have assumed values which correspond to the
Harvard-Smithsonian CHM [2], except for the area to volume ratio of the storage bulb
which we consider to be a free parameter.

The relaxation rates in the volume describe the Joss of coherence and population
inversion primarily due to atoms leaving the storage bulb and to spin-exchange collisions.
We neglect the hyperfine-induced contribution to 4}. Specifically, vjf = 7 + n.{v.)d
and 4 =7 + %nv(vv)é, where 7; is the rate at which atoms leave the storage bulb,
n, is the density of atoms in the volume, (v,) is the thermal velocity of atoms in the
volume and & = (v,0.)/{v,), with o, the spin-exchange cross section. We take 73
to be proportional to T with the value 0.2 s™! at T = 0.5 K and for & we take a
constant value of 8- 10~'7 cm? [7] in the temperature range under consideration, using
Pec + Paa = Pt + paa = 3. The equilibrium value of the population inversion in the
volume is determined by the influx of atoms into the storage bulb and by collisions,
TAS = I(pec = Poa)earr + No(v4)FAY, with I the flux of atoms into the storage bulb,
(Pec = Paa)ems = % the population inversion of these atoms and AY determined by the
thermal Boltzmann distribution.

As the direct in- and outflow of atoms is absent at the surface, the relaxation rates and
the equilibrium value of the population inversion at the surface are primarily determined
by collisions. In analogy with the volume parameters we have 4 = o(v,)f and 7§ =
1o (v,)l, with o the number of atoms at the surface per cm?, (v,) the thermal velocity
of atoms at the surface and I the thermally averaged collisional cross length. We take
this cross length as a sum of contributions from recombination and from two-body
scattering due to the spin-exchange potential and the dipole-dipole interaction. For
the recombination contribution to I we take the value 3+ 107 cm [8]. Calculations
for the spin-exchange contribution neglecting motion perpendicular to the surface [9]
and order of magnitude estimates for the dipolar contribution [8],[10] indicate that
these are at most equally important. The product vjAg is a sum of vA produéts from

the above processes. The A value associated with recombination vanishes, while the
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spin-exchange and dipole-dipole contributions have Boltzmann equilibrium values. It
should be noted that the above-mentioned parameter choices are partly based on order
of magnitude estimates. The existing theoretical description of two-body exchange and
dipolar collisions and two-body recombination at the surface is still rather incomplete.
The determination of actual experimental SCHM operating parameters will be a very
welcome addition to the available knowledge of the properties of the hydrogen-surface
system.

In the a-c maser both A§ and Aj decrease due to collisions. In a maser based on the a
to b transition, however, one has the interesting situation that preferential relaxation and
recombination of the a-state atoms increase the population inversion, which facilitates
maser oscillation. This effect will be dealt with in Sec. 3.4. The remaining parameters
in Eqgs. (3.5) are of the same order of magnitude for the a-b maser as for the a-c maser.

Note that in the derivation of Egs. (3.5) it was tacitly assumed that the total number
of atoms in the volume (V,) and at the surface (N,) are constant. If this restriction
is relaxed, Egs. (3.5) have to be supplemented with additional equations for the time
dependence of N, and N,.

Taking into account the persistent problem from dipolar relaxation in experiments
with hydrogen on a helium film, one would expect that the dipolar interaction would
also affect the performance of a surface maser drastically. One should, however, keep
in mind some differences with the more usual situation of gas samples which are almost
completely doubly polarized (H]+ or (HT$). Whereas for the latter dipolar relaxation
dominates over the direct surface recombination, the situation is different in both the
a-c and a-b surface maser because of the large fraction of a-state atoms. Two different
processes have to be distinguished, i.e., the loss of coherence and population inversion due
to hyperfine state changing collisions and the loss of coherence due to the phase which the
oscillating magnetic dipole moment acquires during an elastic dipolar collision. Since
we are considering zero magnetic field the dipolar interactions are dominated by the
electron spins. This might suggest a large contribution to 'yﬁ and 4]. However, at zero
magnetic field also the recombination rate is large. The magnitude of the dipolar 7!
and 75! due to hyperfine state changing collisions turns out to be negligible compared
to the recombination contribution [8] under the conditions considered (pc. (55) = paa)-

This is not necessarily true for the second process mentioned above, i.e., the change of
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phase of the oscillating magnetic dipole moment in the magnetic field of a neighboring
atom. However, in the case of the a-b maser one can choose a setup based on including
in the storage volume a configuration of very smooth plates analogous to that used in
Ref. [11], so that variations in the orientation of the surface normal would be negligible'
producing a single atomic transition frequency at the surface. The dipolar width of the
order of 10°-10° Hz, observed in Ref. [10], would be reduced by the 10° times lower
surface densities (see later) to a value of at most the same order as the recombination
T,;!, given above. In the case of the a-c maser an average dipolar field would be absent

if pyo = pag.

3.3 The influence of the surface for short sticking times

Under the usual operating conditions of the sub-Kelvin hydrogen maser the atoms spend
most of their time in the volume and 7, is by far the shortest time constant in Eqs.
(3.5). A treatment in which 7, is considered as a small parameter therefore seems to be
appropriate. However, even for short sticking times the dephasing at the surface can be
considerable due to the large difference between w, and w,. In view of this we eliminate
a rapid time dependence exp — iw,t, introduce the reduced time { = ¢/, and transform

to quantities M and A, which can take on the maximum value 1,
B = B, M' = Me“tN;,, A" = AYN;, (i = v,3), (3.6)

with N,/N, = r,/,. By a standard two-times approach [12] we find the rapid changes
by leaving out all terms containing 7,, except ¢o. On the time scale 7, we thus find that
B, M and A" are constant, while Af* and A’ decay rapidly to the values

Y 1 \ 1 Al AY
LAY —. ¥/ £ ¢ = R 7
M 1+i%M , A A (3.7

Substituting these values in the terms of order 7, we find on a longer time scale the
usual maser equations (3.1) with precisely the effective atomic frequency and transverse

relaxation rates (3.4), found usually by the more complicated derivation in Refs. [5],[6].
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3.4 Prospects for constructing a surface maser

The description in which the surface magnetization and population inversion adiabatically
folow their volume counterparis requires sticking times that are short compared to other
characteristic times appearing in Eqs. (3.5), such as 1/«, 1/}, 1/, 1/+1, 1/71, 1/¢B
and Ty If, however, the temperature of the maser is lowered considerably below present
values, T, becomes of ‘the order of or even larger than a number of these time constants.
The approach of the previous section is then not justified and the dynamics of the surface
has to be included in the description of the hydrogen maser.

As 7, increases, the number of atoms which reside at the surface increases as well. A
situation might occur in which the surface atoms determine the behavior of the maser and
in which the volume can be treated as a perturbation in much the same way as the surface
is treated as a perturbation to the volume frequency. Given the before-mentioned various
possible applications for such a surface cryogenic hydrogen maser, it is interesting to
investigate under what conditions it might operate.

Based on the knowledge of the last section it seems logical to follow asimilar approach
but now for small 7,. Eliminating in this case the rapid time dependence exp ~ iw,t,
introducing the reduced time { = ¢/r, and transforming to normalized magnetizations
and population inversions as previously, leads to a system of coupled equations for the
time derivatives of B, M* and A’. Note that due to the increased recombination at the
surface the ratio of the number of atoms at the surface to the number of atoms in the
volume is no longer given by the relation N,/N, = 7,/r,. Instead, the two are related
via

ny n,

2
== ol (38)

where n, is the density of atoms per unit volume at the surface (defined as n, = 0 A,/ V)
and v n, is the recombination rate. Consistent with Sec. 3.2 we have assumed 7, =
i, = 0, which implies a restriction to steady oscillation taking into account that 72,
depends on the populations of the a and ¢ levels, i.e., on the population inversion, which
may be time-dependent. An example of the behavior of n, and n, as a function of
temperature is displayed in Fig. 3.2, for a flux of 2 - 10" atoms per second and an
area to volume ratio of 300 cm~!. At temperatures below 500 mK the temperature

dependence of the densities starts to deviate from the curves obtained by neglecting
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no recombination

10°

50 100 T 500 1000
T (mK)

Figure 3.2: Surface density per unit volume n, and volume density n, as a function
of temperature for a flux of 2 - 10" atoms per second and an area to volume ratio of
300 cm™!. For comparison the curves corresponding to n,/n, = /7, i.e., neglecting
recombination, are given. The low temperature part of these curves, where the surface
density saturates, is omitted.
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the recombination. This is due to the fact that a significant part of the incoming flux is
needed to compensate for recombination at the surface, instead of building up the density.
As, however, the recombination time is still large compared to the residence time at the
surface the equality n,/n, = 7,/7, is still valid. Only for temperatures below 80 mK,
when the volume density starts to increase again, is the recombination time equal to or
smaller than the residence time and is Eq. (3.8) needed to describe the relation between
n, and n,,.

In the spirit of the last section, we now try to express M and A in the corresponding
surface quantities. This is possible by neglecting all terms containing 7, in the dynamical
equations for M* and A”. It is essential, however, to keep the 7, terms containing M°,
é1 = 7o(wy, — w,), AY and A’. Here we take into account that ¢, is large compared to 1,
that M* and A* have to be included to retain the coupling between surface and volume

and that the A} term is essential for maintaining the population inversion. The result is

AV 1 T'-’N3 Vi AY T*JN"'.: vAg
= 1+£¢:173N,,M 1 AY = T,N,,A +7'u"}’“Nv. (3.9)

Note that M" is 90° out of phase with M*. Substituting these expréssions inthe remaining
equations and including O(7,) terms again leads to the usual maser equations (3.1) with

the effective parameters

at * T‘1+¢%’
., 1 4

~2
=
|

= "’J..+;::1+¢§ s (3.10)

B = ag+dag.
K
It is interesting to point out that the maser will oscillate at a frequency determined by
the hyperfine frequency at the surface, ie., wy is very close to w, as indicated in Fig.
3.3, which should be a characteristic feature of a surface maser. This follows also from
our simulations. It is thus indeed possible to make the volume shift small by decreasing
the temperature. This means that one of the device dependent processes that affect the
transition frequency can possibly be eliminated. In order to assess the feasibility of
the SCHM as a primary time standard, however, other processes which influence the

transition frequency, such as collisions, have also to be examined. Another important

fact is that v (= 4% + 1/7,) turns out to have approximately equal contributions from
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Figure 3.3: Ratio of the volume shift as given by Egs. (3.10) to the transition frequency

as a function of temperature for an area to volume ratio of 300 cm™".
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44 and dephasing in the volume under the specific conditions of the SCHM that we will
examine. Note, furthermore, that the effective value of Ag, which deviates significantly
from the pure surface value A}, is a result of the present treatment and does not follow
from the method of Anderson and Weiss. An analogous significant surface correction to
AY did not occur in the previous case of the CHM.

In order o assess the realizability of a surface maser these parameters have to be

substituted in the oscillation condition, which on resonance is given by
Fho > KyL. (3.11)

For usual values of the incident flux the minimum required cavity @ value is determined
by 4., ie., by the surface density and the temperature via 4] and 7,. For typical
device parameters we have taken the values common to the cusrent hydrogen maser,
as mentioned in Sec. 3.2, with the exception of the area to volume ratio of the storage
bulb where we used the value given in a recent paper of Pollack et al. [11]. For the
temperature-density combination 70 mK/10° cm~3 we then find the oscillation condition
to be satisfied with Q. = 3 - 10°. This result is confirmed by a numerical simulation of
the unapproximated set of Egs. (3.5), leading to Figs. 3.4-3.9. For higher temperatures
oscillation can be achieved for higher @, values. In Figs. 3.4-3.6 the output power of the
maser is shown as a function of density, temperature and cavity quality factor. Figure
3.4 shows the importance of recombination to obtain maser oscillation: instead of the
usual characteristic quadratic dependence of the power on the density with a decrease
at higher densities, the power now continues to increase. In the CHM the influx of
atoms is proportional to the density. At low densities Ao is determined by this influx
whose increase is sufficient to compensate for the accompanying increase of 4, . Athigh
densities, however, the increase of Ag with density is less than linear due to longitudinal
relaxation, eventually making oscillation impossible. Due to recombination the influx is
a quadratic function of the density in the SCHM,. In this case the oscillation condition
will always be fulfilled above a certain minimum density. The sharp decrease of the
- power for higher temperatures displayed in Fig. 3.5 indicates the importance of the
dephasing in the volume on the effective atomic linewidth. At the low temperature side
7v. is determined by v{. At the high temperature side the dephasing term becomes more

important. This results in a rapid increase of the transverse relaxation rate which inhibits
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P (10° W)

n, + n (10" cm?)

Figure 3.4: The output power of the a-c maser as a function of the total density in the
storage bulb for Ay [V, = 300 cm™!, T = 70 mK, Q. = 3 - 10° and w, = w,.
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Figure 3.5: The output power of the a-c maser as a function of temperature for Ay/V; =
300 cm~Y,ny+n, = 10°cm™3, Q. =3 10% and 3- 107 and w, = w,.
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Figure 3.6: The output power of the a-c maser as a function of the cavity quality factor
for Ay} V, = 300 cm™i, Ty + Ny = 10° cm's, T = 70 mK and w, = w,.
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maser oscillation. The relationship between the power and the cavity quality factor in
Fig. 3.6, finally, implies the expected linear relationship between the number of photons
in the cavity and the quality factor (| B|* ~ PQ.).

To shed further light on the interesting role of recombination it is instructive to see
what happens if surface recombination would be absent. Without recombination the
transverse relaxation rate as given by Egs. (3.10) will be greatly reduced, which might
suggest a favorable condition for operation of a surface maser. An evaluation of the
oscillation condition (3.11), however, shows that in this case no oscillation can exist
for reasonable maser parameters. The main cause is the importance of A§ in sustaining
maser oscillation. In order for the maser to operate enough population-inverted influx
should be supplied 1o the storage bulb per unit time. In the absence of recombination,
however, the flux of new atoms into the storage bulb equals the flux out. This flux
is determined by the number of atoms in the volume, which is only a small fraction
of the total number of atoms in the storage bulb under the surface-maser conditions
examined above (see Fig. 3.2). The flux of new population inversion 9jAj is then
too small to support maser oscillation. With recombination the incoming flux not only
compensates the outgoing flux, but in order to maintain a constant density the atoms
which disappear due to recombination must also be replaced. This implies a larger influx
of new population inversion for the same value of the surface density and thus a more
favorable condition for maser oscillation.

In the previous considerations we needed A} for oscillation. A fascinating alternative
would be a surface maser based on the a-b transition. In this case, due to preferential
recombination and relaxation of the a atoms, Aj is positive, i.e., oscillation can in
principle be realized even without population inversion in the incoming beam. However,
it is possible to feed the storage bulb with an incoming beam of b atoms (this will be
discussed in the next section). The same analysis which has been applied to the a-c maser
can now be used for the a-b maser. For the same operating conditions as above both
the oscillation condition and the numerical simulations show that osciliation is already
possible for Q. = 4 - 10°, which is almost 10 times lower than for the a-c maser. More
advantages are clearly shown in Figs. 3.7-3.9. Not only does the a-b maser operate at
much lower (. values, for equal Q. values it also operates at lower densities and, even

more important, at higher temperatures. These higher temperatures could possibly make
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n, +n, (10" cm®)

Figure 3.7: Same as Fig. 3.4 for the a-b maser. The inset shows the minimum required
densities for maser oscillation for both the a-b and a-c maser obtained by magnifying the
left-hand sides of Fig. 3.4 and this figure.
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Q, = 3x10°

30 40 50 60 70 80 90 100
T (mK)

Figure 3.8: Same as Fig. 3.5 for the a-b maser.
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P (10 W)

Figure 3.9: Same as Fig. 3.6 for the a-b maser.
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the a-b maser easier to operate.

Comparing the conditions under which the SCHM operates with the normal operating
conditions of the CHM it is clear that for the former a cavity quality factor is needed
which is several orders of magnitude larger. Partially, this is due to the magnitude of Ag
which involves different physics. In the CHM the influx of atoms into the storage bulb
replaces directly the atoms flowing out. In the SCHM new atoms primarily replace atoms
which have recombined. The increase of Q. is also due to the larger transverse relaxation
rate. Inthe CHM both the storage time of the atoms and the collisional relaxation time are
of the order of one second with only a small contribution from dephasing at the surface.
For our example temperature-density combination of 70 mK/10° cm™3, in contrast, the
resonant linewidth v, is equal to about 50 s~ with approximately equal contributions
from dephasing in the volume and 4} . To compensate for this rapid loss of coherence a

much better cavity is needed.

3.5 Experimental considerations

In this section we discuss some experimental aspects connected with the realization of a
SCHM. We first consider some cryogenic questions. Temperatures of the order of 50-
100 mK are easily attainable with a 3He-*He dilution refrigerator, with cooling powers
of a few hundred microwatts. Recombination of hydrogen can put a large heat load
on the refrigerator. We calculate the heat load for the SCHM we have analyzed, with
o = n,V;/As = 3+ 10% cm~2 where the area A; = 6 - 10* cm?. The heat produced is

Dy

Q = K.azAb-é-—, (3.12)

where Dp = 7- 1071 J is the recombination energy released per pair of atoms. Using
the experimental value of the recombination constant K, = 3 - 10~5 K~Y/2 /T cm? s™!
from Morrow et al. [8] we find 2 pW, which is easily absorbed by a dilution refrigerator.
A connected problem posed by temperatures in the range 50-100 mK is that a gas of
hydrogen loses thermal contact due to the Kapitza resistance between the helium film
and the substrate. However, in the maser described here due to the low hydrogen surface
densities, the heat production is substantially lower than has been experimentally studied

in the past. Thus, the thermal gradients which develop may be smaller, resulting in some
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Figure 3.10: Schematic picture of an experimental design to load pure b-state atoms in
the SCHM.

flexibility in the range of accessible temperatures.

Finally, we consider the filling fluxes required for the SCHM. These are of the order
of 10" atoms per second. Such fluxes are easily achieved with existing discharge sources
which can deliver 10'4-10'S atoms per second to a cell.

One of the interesting ideas to emerge from this study is the possibility of a maser
working on the a-& transition. An experimental design which can produce a flux of
almost pure b-state stoms is shown in Fig. 3.10. A low temperature discharge produces
hydrogen atoms populating the four hyperfine states. A small (~ 1-2tesla) magnet repels
the c and d atoms and confines the a and batoms in a volume at a low temperature (~ 300
mK). This density of atoms converts to pure b-state atoms by preferential recombination.
The magnetic field and temperature of this volume can be adjusted so that b-state atoms
can reach the maser by thermal escape with a flux sufficient for the a-b SCHM. A small

superimposed field can prevent Majorana transitions among the hyperfine states.
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3.6 Discussion and conclusions

The operation of the sub-Kelvin hydrogen maser is usually described by the Maxwell-
Bloch equations. Short periods during which the atoms stick to the surface enter these
equations through effective values for the atomic transition frequency and transverse
relaxation rate. We have extended these Maxwell-Bloch equations to a description in
which the surface is treated symmetrically with the volume, rather than as a perturbation,
opening in particular the possibility to treat the pulsed operation of the maser in a regime
where the sticking time is comparable to the pulse duration. Work along this line is under
way [13]. We have shown that for current versions of the sub-Kelvin hydrogen maser,
i.e., for short sticking times, the usual equations and effective parameters are recovered.

Starting from this new description, we have investigated the possibilities to construct
a maser whose properties are mainly determined by atoms which reside at the surface,
i.e., a surface maser. We have shown that for a maser which is based on the traditional
scheme of a transition between the a and ¢ levels of the hydrogen ground state a surface
maser is realizable for realistic experimental parameters, for instance: T = 70 mK,
n, +n, = 10° cm™3, A,/V, = 300cm™!, Q. = 3 - 10°. This result was obtained both
by a simulation of the full set of Egs. (3.5) and on the basis of the effective surface
equations. The prospects for an a-b maser are even more favorable, ‘

Apart from the intrinsic interest in the operation of the SCHM, such as the interesting
role of recombination and the possibility to observe pulsed oscillation, two important
motives for studying the influence of the surface on the maser operation and in partic-
ular the SCHM are the possibility to create a primary time standard and the precision
measurement of properties connected with a two-dimensional gas of atomic hydrogen.

In this connection one could think of an extension of the measurement of the surface
adsorption energy in Ref. [10] to a situation with lower surface densities, made possible
by the greater sensitivity, with the associated advantage of a more reliable temperature
determination. Another possibility worth considering would be to measure +j and ]
as a function of surface density and field orientation. In principle, this would enable an
independent determination of the dipolar 73 [10]. This could stimulate the development
of a satisfactory theory of line-broadening including the coherent contribution of all

dipolar fields. The main parts of j and i, due to recombination, would also be
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a welcome addition to the knowledge desired for developing a satisfactory theory of
surface recornbination.

In order to obtain a primary time standard it is essential that the effective atomic
frequency w, is independent of specific device parameters, such as those which determine
the wall (volume) shift, but also spin-exchange and dipolar shifts, the influence of the
substrate and the thickness of the helium film. From our analysis it follows that the volume
shift can be suppressed in the SCHM. It is very unlikely, however, that the influence of
the other processes can also be sufficiently reduced. For example, Morrow and Berlinsky
[9] have calculated the spin-exchange frequency shift for hydrogen atoms adsorbed on
a surface. Although in this calculation the motion of the atoms perpendicular to the
surface is neglected it gives a good indication whether this effect seriously influences the
operation of the SCHM. For our reference temperature-density combination this leads to
a frequency shift Awy =~ 101ads™), given the fact that (p.. — p,,) is approximately 0.1 in
our simulations. It is clear that already this effect is much too large to open possibilities
for the SCHM as a primary time standard.

Under the conditions studied the resonance linewidth 7y (& 50 s~?) is still much
smaller than the typical cavity loss rate & (2~ 1500s™!). Although the ratio between these
two is less than in the CHM, fluctuations in the cavity frequency are still sufficiently

suppressed to measure with great accuracy the above-mentioned surface processes.
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Chapter 4

Stability limit of the cryogenic hydrogen maser

Published in Physical Review Letters 64, 2630 (1990)

Abstract

It is pointed out that the usual oscillation condition of the H maser is only a necessary
condition for steady operation. Reducing the coupled field-matier dynamics to the complex
Lorenz equations we derive a second requirement which together with the first forms a set
of necessary and sufficient conditions for the steady operation to be stable. The instability
of the steady state predicied by the equations should be easily accessible experimentally for
the cryogenic H maser. It will be characterized by a pulsed output power which, depending
on the detuning, is either periodic or chaotic.

Since its first realization by Goldenberg, Kleppner, and Ramsey [1] the hydrogen maser
has been the most stable of all atomic frequency standards for short and intermediate
measuring times. The relative stability of the hydrogen maser is observed to be better than
one part in 10'%, which makes it a very useful instrument for long-baseline interferometry,
tests of general relativity, precision interplanetary navigation (Voyager 2 mission), and
various other applications both inside and outside physics.

A hydrogen maser operating at liquid-helium temperatures should have an even
better frequency stability {2},{3]. Although early estimations predicted an improvement
of more than 2 orders of magnitude [4], present indications show that it has an increased
frequency stability of close to 1 order of magnitude [5}-[8].
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Figure 4.1: Power of H maser vs surplus flux of upper level.

The operation of the hydrogen maser has been described in Refs. [1] and {9]. A

central result (see Fig. 4.1) is the so-called oscillation condition,

-1% = —2¢ [7{:]2—}-(1-0:;)-]%—1 > 0, (4.1)
in which P is the total power radiated by the atoms, I is the surplus flux of atoms
entering the storage bulb in the upper level of the maser transition relative to the lower
level, Iy is the threshold flux if we neglect density-dependent relaxation, F. is the critical
power, g is the maser quality factor, and C = (T9/T})V2 + 2(TY/ T with T (TF)
the density-independent Jongitudinal (transverse) relaxation time [9].

It has not been recognized until now that the condition (4.1) is only necessary but
by no means sufficient. More precisely, condition (4.1) expresses the existence of the
steady-state solution for the number of photons in the cavity and therefore for the output
microwave power. It remains to determine the domain in which this is also a stable
solution.

The purpose of this Letter is to show that within the flux limits determined by condition
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Mo L X v g
Maser 1 1 10° 10~
Laser 108 10®% 10-10Y 10¢

Table 4.1: Time constants (in sec™!) for cryogenic H maser compared to typical laser.

(4.1) two regimes can exist, one in which the steady-state solution is stable and another
in which spontaneous modulation of the amplitude and phase of the electromagnetic field
takes place. This spontaneous modulation can be either periodic or chaotic, depending
on the values adopted for the various parameters, and will affect in a similar way the
output microwave power. We show that this time-dependent regime can be rather easily
reached for the subkelvin hydrogen maser.

‘The maser dynamics can be described by essentially the same Maxwell-Bloch equa-
tions as a single-mode laser with homogeneous broadening. However, interesting differ-
ences exist between these two systems. A first aspect is that the two classes of systems
display periodic and chaotic behavior in a very different range of parameters, because
the maser decay rates are very different from the usual values found in the visible or ir
domains (see Table 4.1). As a consequence, the analysis of the dynamical equations has
to be specialized for this new domain of parameters. A second aspect which is worth
stressing is that the derivation of the Maxwell-Bloch equations [see Egs. (4.2})] for the H
maser requires far less simplifying assumptions than in the case of the laser. For instance,
the H maser is naturally homogeneously broadened. Furthermore, the cavity dimension
is of the order of the maser wavelength so that effects related to the space dependence of
the coupling constant are negligible.

Apart from the intrinsic interest associated with the availability of a system displaying
deterministic chaos with a very low noise level, the observation of instability may have
important applications for obtaining information on the maser which would be very
difficult to obtain otherwise. It is a priori to be expected that the nonsteady regime
will offer much more information than the frequency and the amplitude, obtainable from
stationary operation. This is especially welcome in view of the overwhelming number

of experimental parameters, such as hyperfine populations, which determine the maser
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operation and are notoriously difficult to diagnose.
Reformulating the dynamics of the maser [9], the operation of the cryogenic H maser
can conveniently be described by the Maxwell-Bloch equations

B = —iwB-xB+gM,
M = —iw.M—-v.M+gBA, (4.2)
A = ~ (A = Do) —29(BM" + B*M),

for the complex magnetic field B, the complex magnetization M, and the inversion
A. Explicitly B is defined as the expectation value of the photon annihilation operator.
In terms of the one-atom spin-density matrix we have, furthermore, M = Np.,, & =
N{pe:— paa), where N is the number of atoms. The cavity resonance frequency is denoted
by w,, the atomic frequency by wy, the cavity damping rate by & = w,/2Q. = 1/T, and
the damping rates for M and A by v, = 1/7> and 9 = 1/T}. The equilibrium value of
A in the absence of atom-field interaction is denoted by Ag. Finally g, the one-photon
Rabi frequency, is given by

& = polpe + pp)nwe/ AV, , (4.3)

with V, being the cavity volume, g, (u,) the electron (proton) magnetic moment, and 7
the filling factor.

In this Letter we will only discuss the stability properties of the steady state, following
the analysis made by Mandel and Zeghlache [10] for a detuned laser. We transform Egs.
(4.2) by introducing the new parameters

o = &/7, b = v, R = Afs1, (4.4

and new variables

B = (y./2¢)(z) +iz;)exp(—iwmi),
M = (Bo/2R)(y1 + iy2)exp(—iwmt), 4.5
A = Ay1-2z/R),

where w, is the yet unknown operating frequency of the maser. After rescaling the time
according to ¢ = Ty7, Eqgs. (4.2) take the form
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zy = —o(z1+8z2~w1),
7y = —o(z2~8z1-12),
y1 = N+ Rait&yp -z, (4.6)
¥y = —¥2+ Rzy— by — 222,
Z = —bz4+ziy+ oy,

in which the prime stands for d/dr and

Wat — W W — W,

b = T ) b = *

In the case of perfect tuning (wa = wm = wy), Eqs. (4.6) have a class of solutions for

4.7

which z, = y2 = 0 for all times. The remaining variables z = z, ¥ = y;, and z obey
the usual Lorenz equations [11}.

To study the steady-state solutions of Egs. (4.6), we set the derivatives in these
equations equal to zero. Since wy, is the operating frequency in the steady state, z; can
be chosen to be zero. This leads to the dispersion equation or cavity-pulling relation
S = & = 8 and to three fixed points: z1 =y =p=2=0and z; =y, = +(bz)1/2,
v2 = F6(b2)"/%, z = R — 1 — & respectively. The last two solutions are physically
identical, since they differ in phase only. For B < 1 + 62 only the trivial zero-field
solution exists and is stable. A necessary condition for the finite-field solution to exist is
R > 1+ &, which generalizes Eq. (4.1) for a detuned cavity.

The inequality R > 1 + §% gives a lower bound for the domain of existence and
stability of the finite-amplitude solution. However, the linear stability analysis of this
solution indicates that a second threshold may occur at higher photon numbers, when R
reaches a critical value Ry which depends in a rather complicated way on the parameters
of the problem. Using the relative magnitudes of the parameter values given in Table
4.1 and retaining the dominant contributions in € = 1/¢ with b and § being functions
of the order of 1, we find that there is always an upper bound for the stability of the
steady state. It is reached when the photon number equals the critical value |By|* =
(Ry —1—&)/4T\Tr4% Restricting ourselves to the case of small detuning (} — 62 3> ¢),
the second requirement for stable steady oscillation is

TyP— Py 1 1—352] I 77

T A - (Htmarer)nE <0 @9
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Figure 4.2: Power P vs surplus flux, compared to threshold power Py for onset of
nonsteady oscillation. Solid lines: actual parameter values for the University of British

Columbia maser. Dashed lines: increased (). value.

in which T; = (TPT9)V2.

In Fig. 4.2 we display graphically the two conditions of stability (4.1) and (4.8) for the
steady state. We present the radiated power P as well as the quantity Py. For definiteness
we take § = 0, and for T{ = T and the product ¢@Q. we take the University of British
Columbia cryogenic-maser [7] values 0.6 sec and 27, respectively. Clearly, from Fig. 4.2
we see that the actual Q. value of order 1700 does not admit nonsteady oscillation. It has
been kept low deliberately to reduce fluctuations of the maser frequency due to cavity
pulling, but may easily be increased to reach the unstable domain Q. > w./2gv/Aq,
which is equivalent to the condition B > Ry when é = 0. For instance, Fig. 4.2 shows
that the new oscillation regime can be reached by increasing Q. to values of order 5 x 1¢°.

Calculations for the Harvard-Smithsonian maser [12] with ¢@. = 17 show that in
this case an increase of @, from the present magnitude 7 x 10* by a factor of order 20
would be sufficient. From a similar analysis it follows that unstable oscillation is very
difficult to achieve for room-temperature H masers, This is mainly due to the much lower

maximum densities allowed by the oscillation condition (4.1) due to the faster collisional
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- Figure 4.3: Field amplitude as a function of time for zero detuning, both scaled as

described in text.

relaxation.

Hence, the cryogenic H maser promises to be an experimental realization of the
Lorenz equations in the domain R, o > 1 and b &~ 1. This domain, partly investigated
by Fowler and McGuinness [13), is characterized by pulses for = and y, i.e., for the
field and magnetization amplitudes. An example of this behavior is displayed in Fig.
4.3. A detailed analysis of Egs. (4.2) in the relevant domain of parameter space will be
published in a separate paper.
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Chapter 5

Dynamics of the eryogenic hydrogen maser

Published in Physical Review A 44, 608 (1991)
Abstract

We examine the dynamical behavior of the cryogenic hydrogen maser. Studying the
coupled field-matter equations, which have been reduced to the complex Lorenz equations,
we obtain two operating domains, one in which steady-state oscillation takes place and a
time-dependent domain that is characterized by a pulsed output power. For the latter we
obtain bifurcation diagrams, both with and without detuning, that display both periodicand
chaotic attractors. Finally, we study the influence of thermal noise on this time-dependent
domain and show that for reasonable experimental conditions the pulse triggering will be
stochastic, but the pulse buildup and decay can be deterministic.

5.1 Introduction

From the moment it was first proposed and constructed 30 years ago [1] interest in the
hydrogen maser has been concentrated almost without exception on its steady oscillation
mode. This is understandable in view of its practical use as the most stable existing
frequency standard for averaging times of seconds to days: Achievable relative frequency
instabilities are 10™'* for the room-temperature H maser and 10~*¢ for its sub-Kelvin
version [2],[3], in both cases for 1-h averaging time. A recent review of the history,

principles, and applications of the H maser can be found in Ref. [4]. Although the
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condition for the steady oscillation to be stable had been derived for masers in general
[5]-{8], it was recognized very early already that the circumstances prevailing in the
conventional room-temperature H maser are far removed from an unstable regime. In
“fact, it was pointed out that the relative magnitudes of the relaxation rates allow for
an adiabatic elimination of the magnetization, leading to the conclusion that the field
amplitude would tend either to zero or to steady oscillation,

Only recently [9] it was noticed by the present authors that the unstable regime is
much closer for sub-Kelvin H masers. [t can be reached, starting from the usual operating
conditions, by a readily achievable increase of the cavity quality factor Q.. In addition,
we dealt briefly with the kind of time-dependent behavior to be expected in the new
regime and pointed to the interest that would be associated with its observation. First,
the time-dependent regime will offer much more information than the frequency and
amplitude parameters which are given by the stationary operation. Given the number
of experimental parameters which determine the maser dynamics and which are often
difficult to diagnose, this extra information is especially welcome. A second point
of interest is that the sub-Kelvin hydrogen maser is a realization of the {complex)
Lorenz equations in a parameter regime [R,¢ > 1, b = O(1)] which has hardly been
investigated. Although Fowler and McGuinness [10] have partially investigated the real
Lorenz equations in this parameter regime, the behavior of the complex Lorenz equations
is largely unknown in that domain of parameters.

In this paper we treat these aspects in a more detailed way. In Sec. 5.2 we recapitulate
the derivation of the dynamical equations — on the one hand, to make our discussion
self-contained and, on the other hand, to give an unambiguous definition of variables and
constants. The latter is desirable since more than one convention is in use. Moreover,
we have to deal with a magnetic transition, contrary to the more usual situation, in which
an electrical transition is involved. In Sec. 5.3 we study the linear stability of the steady
solution and determine numerically typical bifurcation diagrams. In particular, we show
that, even on resonance, periodic solutions are the rule and chaotic solutions have only
a set of restricted domains. Finally, in Sec. 5.4 we analyze numerically the influence of
noise on the deterministic evolution studied so far. We determine the spread in pulse
frequency and peak intensity due to noise. We also determine the conditions in which

the time evolution of a pulse will be deterministic, given the fact that its triggering will
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always be stochastic in the domain of parameters considered.

5.2 The Maxwell-Bloch equations

We start the derivation of the Maxwell-Bloch equations for the cryogenic H maser by
expanding [11] the electromagnetic (EM) field in the cavity in modes n, with frequency

Wyt

B(r,t) = ;z\—;_e—apnbﬂ(r), E(r,t) = ;%qnen(r), 5.1

with {b,(r)} and {e.(r)} being orthonormal vector fields in the cavity of the hydrogen
maser and ¢ the velocity of light. Using Maxwell’s equations, it is easily seen that
the expansion coefficients p, and ¢, can be interpreted as the canonical variables of a
harmonic oscillator. Quantizing the EM field in analogy to the harmonic oscillator and

introducing creation and annihilation operators af and a,, Egs. (5.1) can be rewritten as

. /2

-;% [’%] (an — ! )ba(r) (52)
X 172

Bt = X (2] (ot abdents)-

n

B(r,t)

il

From now on, we will confine ourselves to a monomode EM field corresponding to the
TEo1; mode of the cavity and will leave out the subscript n.
The Hamiltonian of the total system of atoms and field is

H = Hyem + Hpetd + Higtersaa » (5.3)
with
Huom = Hiwy E 73
Hfea

hw.ata, (5.4)
hg Y (a'o] —acf).

[l

H interact

In Egs. (5.4), o3 and 0% are the familiar Pauli spin matrices for the atomic two-level
system, wy {w;) is the atomic transition (cavity) frequency, and g is the Rabi frequency
divided by the square root of the number of photons in the cavity

[ so{pte + pp)wen ] e

(5.5)
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where 7 is the filling factor and V;, is the volume of the cavity. The summation over i is
a summation over the atoms in the storage bulb.

The Hamiltonian H can now be used to obtain the Heisenberg equations of motion

da H . -
5 = g[H,a] = “iwa+gl,
dJj~ i .
- = ;_l[H’J_} = —twyJ” +gas, (5.6)
il h[H,Js] = —2g(aJ* +4'J7),
where we have introduced the notation
J:k = 20?9 J3 o= Zg?n" . (5'7)

Taking the expectation value on both sides of Egs. (5.6) and neglecting quantum fluctu-
ations in the EM field then leads us to

dB

- = ~ww B+ gM,

aM . ‘

Py = —jwaM +gBA, (5.8)
9 = oM+ B'M),

with the field, magnetization, and population inversion defined by
B = (a), M = (J), A = (J). (59

Note that the field B is normalized so as to equal the square root of the number of

photons, whereas M and A are normalized so as to be equal to Np., and N{pec — paa)s

respectively, in terms of the number of atoms N and the one-atom density matrix p.
Equations (5.8) are the field-matter equations for the hydrogen maser in the absence

of relaxation. Including the phenomenological relaxation terms, we find

B .
%t— = —(iw.+x)B+gM,
dM :
—‘F - —(3(.03( + ']‘L)M + Q‘BA s (5.10)
dA
= = ~M(A=A0)-29(BM+B"M).

The cavity loss rate is denoted by & = 1/T, and the relaxation rates for the magnetization

and population inversion by 7, = 1/T; and 4 = 1/T), the so-called transverse and
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longitudinal relaxation rates. The latter are primarily determined by the finite residency
time of the atoms in the storage bulb and by collisional relaxation. The value towards
which A relaxes in the absence of field-matter interaction is denoted by Ag.

Egs. (5.10) are the Maxwell-Bloch equations. They describe the time-dependent
behavior of both the room-temperature and sub-Kelvin hydrogen masers. In the following
sections we will discuss the correspondence between these equations and the Lorenz

equations and investigate the time-dependent behavior of the solutions.

5.3 Dynamics of the cryogenic H maser

To analyze the Maxwell-Bloch equations, we first introduce the following scaling:

B = (v1/29)Xexp(~iwnt),

M = (A¢/2R)Yexp(—iwnt),

A = Ao(1-Z/R), (5.11)
T = v.it, |

R = ¢*Ao/(x7L),
= k/v, b =y,

where wy, is chosen to be the maser operating frequency in steady state. In terms of this

scaling, the Maxwell-Bloch equations (5.10) are transformed into the complex Lorenz
equations [12]

dX .
o = o|-(1-1i6.)X +Y],
dY
- = -(14i6)Y + RX - X2Z, (5.12)
dz . .
7 = -bZ + (XY + X°Y),
where the detunings are defined by
6‘3 = (wm - “)c)/"c 3 6at = (wal - wm)f’Y.L . (5.13)

Let us consider the time scales involved in our problem. Typical values (in sec™?) for

the time constants of the cryogenic H maser are

NN =1, =10, g = 1072, (5.14)
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Note the unusual orders of magnitude, in comparison with typical laser values. The value
of g follows directly from Eq. (5.5). The maser v values are of the order of the inverse
residency time in the storage bulb. Spontaneous emission contributions are completely
negligible. One of the advantages of the sub-Kelvin H maser relative to its room-
temperature version is the fact that atomic densities and thus Ag can be much higher for
the same collisional relaxation rates. This makes it possible to achieve steady oscillation
with modest cavity quality factors, which is of importance in reducing the frequency
instability due to cavity pulling. The higher atomic density and lower temperature also
provide for a reduced influence of thermal noise on steady oscillation by increasing the
signal-to-noise ratio,

Given the large difference between the field and atomic decay rates of the cryogenic
maser, it would seem natural to adiabatically eliminate the field variable which may be
thought to relax five orders of magnitude faster than the atomic variables. However, the
consideration of the unperturbed time scales is not sufficient to justify the asymptotic
expansion known as adiabatic elimination of the fast variables. This point was discussed
by Lugiato et al. [13], who stressed that the classification in slow and fast variables must
be based on the relaxation times of the full problem including the effect of field-matter
interaction (see also Oppo and Politi [14] for an alternative point of view). An analysis
of these effective time scales will be presented after we have discussed the stability
properties of the steady solutions of Egs. (5.12). For simplicity, we restrict ourselves
throughout this paper to the special case b = 1, in which we can use the explicit analytic
results obtained previously [15] for the complex equations (5.12). The case b # 1 has
been btreated recently by Ning and Haken [16] and the results are considerably more
complicated. With b = 1, Egs. (5.12) have a trivial steady state,

X =Y =2 =0, (5.15)

corresponding to the absence of stimulated photons, and a finite steady state,

]

Re(X) = Re(Y) = #VZ, Z = R-1-§, (5.16)
Im(X) = 0, Im(Y) = F6VZ, 6. = 6 = 6.

The trivial solution (5.15) is stable below the first threshold of oscillation defined by
Ry = 1+ 8. At this threshold the nontrivial steady solution emerges as a stable solution.
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In the bad cavity situation (¢ > 2) which is prevalent in the cryogenic maser, the steady
solution (5.16) loses its stability at the “maser second threshold” Ry. The critical control
parameter Ry or the corresponding critical photon number | Xg|? = Ry — 1 — 82 (in

units of the saturation photon number N,) for the second threshold is the real positive
solution of

@l Xul' + | Xul +a0 = 0,

a = (1+3c)ec—2), (5.17)
(o +1)(o +2)(2¢* — 50 — 5) — 6o — 1)2(60° + To + 4),

=2(0 + 1)[(o + 1) + 6% (0 = 1¥][(c + 2)* + 8*(o — 1)7] .

ay

ag

In the limit ¢ — o0, whose consideration is suggested by the parameters (5.14), two
domains have to be distinguished: a small detuning region, where

§%)?
1-36 > 0and [Xg| = (1+35)2 +0(1), (5.18)
and a large detuning region, where
1-368 < 0and Xy = 26%(36°-1)+0(0). (5.19)

~ As proved in Ref. [15], the Hopf bifurcation which takes place at R = Ry is subcritical
in the small detuning domain, the only domain we shall analyze for the cryogenic maser
parameters. In this case a linear stability analysis does not give information on the nature
of the long-time solution which is reached beyond the second threshold.

With these results, we are now in a position to explain why the adiabatic elimination
of the field variable is not possible. As shown by Fowler and McGuinness [10], the
solutions of Egs. (5.12) for R > Ry with ¢ 3> 1 and on resonance (i.e., &y = 6, = 0)
are pulse trains which can be either periodic or chaotic. This remains true for 6, and &,

sufficiently small. For the sake of this discussion, we introduce the scaling
X =o0z,Y = o0y, Z = 0z,1 = or = st, R = or, (520)
e = 1o € 1, 6 = 0OQ), 4 = O(1), r = O(1). (5.21)
In these variables, Eqgs. (5.12) becéme
= —(1-is)z+y,
y = —e(l+41b6y)y+rz—zz, (5.22)

Y
I

—ez+ 3(zy* +2*y),
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Figure 5.1: Bifurcation diagram of the complex Lorenz equations on resonance: plot of
the maximum maser magnetic-field amplitude | X| (divided by o) vs the reduced pump
parameter R/o. Crosses indicate periodic solutions while circles correspond to chaotic

solutions. The fixed point loses its stability at Ry /o.

where the prime stands for the derivation with respect to 7. These equations have two
types of solutions. Between pulses, z and y become exp[—O(1/¢)} and z = O(1). This
solution depends on the slow-time variable 7 = €l given by (5.11) and the variable z can
be adiabatically eliminated. The pulses themselves, however, are described by solutions
for which all three variables z, y, and z are O(1) functions that depend on the fast time
{. Hence, during the pulses no variable can be adiabatically eliminated. As a result, the
adiabatic elimination of the field X in Egs. (5.12} is not valid to describe the nonsteady
solutions. ‘

The number and the nature of the attractors which Egs. (5.12) can display besides
the fixed points have been investigated by direct numerical integration of the differential
equations. Although we know from the work of Fowler and McGuinness that chaotic

and periodic solutions are expected to exist and to coexist, no general picture of the
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Figure 5.2: Example of a periodic solution above the maser second threshold: the real
part of the maser magnetic field (in units of o) vs ot = kt = t/T..

bifurcation diagram has been provided in the special limit
¢ >» 1, R = 0Q1). (5.23)

A bifurcation diagram is displayed in Fig. 5.1 for & = 200 and on resonance {§ = 0).
For each value of R, Egs. (5.22) are integrated and the maximum of the field amplitude
is recorded. When the solution is found to be periodic, the maxima are represented in the
diagram by crosses. For legibility, only large maxima, such that max(|X|)/e = O(1),
are drawn. Five branches of solutions are visible in Fig. 5.1. The topological difference
between these branches is the number of smaller maxima in each period. In the Jowest
branch, there is one smaller maximum per period. Each of the next branches has one
more small maximum than the previous branch. If we classify the maxima in each
period of a periodic solution by order of increasing size, each maximum is larger than
the previous one by about two orders of magnitude. It is therefore difficult to show
more than two of them in a figure. A typical periodic solution is shown in Fig. 5.2. To
increase the resolution, we have plotted the real part of X rather than the modulus of X.

The abcissa coordinate is o7 = «t. This solution has five extrema per period but only
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Figure 5.3: Time evolution of z(f) and |z({)| showing the coupling between the variations
of the two variables. This figure is obtained by solving Egs. (5.22) on resonance (§ = 0)
with the parametersr = 1.5 and e = 0.01.

the first two are resolved graphically. Some solutions are chaotic in time. Their O(1)
maxima, which are recorded over the same time duration for the entire figure (Fig. 5.1)
are represented by circles. An example of a chaotic solution is given in our previous
report on this subject [9].

‘When the maser is in the pulsing regime (periodic or chaotic), a complex interplay
between the atoms and the field takes place. Between pulses, the atomic population
inversion A builds up (hence, z decreases) due to the fact that atoms enter the storage
bulb in the upper state while the number of photons in the cavity is negligible. When a
critical population inversion is reached, a burst of photens is emitted, which corresponds
to a sudden atomic deexcitation and the consequent release of stimulated photons in the
maser cavity leading to the pulse. This is shown in Fig. 5.3.

Quite surprisingly, the domain of periodic solutions is much larger than the domain of
chaotic solutions. Furthermore, the first three branches overlap with the domain of stable
steady state. The coexistence of periodic, chaotic, and steady solutions was recently
reporied by Ning and Haken [17] for o = 2 and b = 0.01 in a study of anomalous
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switching. The left-hand sides of the four upper branches show a similar structure. As R
is decreased, a period-doubling sequence is observed and a chaotic solution is reached.
In many instances, higher-period solutions were observed but not reported in the figure,
to retain some clarity. For example, many instances of period-8 solutions were recorded
over very narrow domains.

The bifurcation diagram of Fig. 5.1 is very sensitive to detuning. Figures 5.4 and 5.5
display how the bifurcation diagram is affected by increasing é. Already for § == 0.01, the
chaotic domains have disappeared (or they are so small that they escaped our numerical
capabilities) but the branches of periodic solutions are still very distinct. However, as §
is increased to 0.1, only two branches of periodic solutions remain. They still differ by
the number of extrema. The simplification of the bifurcation diagram with increasing
detuning has already been reported [18] in the case of finite o.

Returning to the resonant case, we have analyzed the influence of ¢. Using the
procedure described earlier, we have also obtained the bifurcation diagrams for ¢ equal
to 100 and to 50. They are shown in Figs. 5.6 and 5.7, respectively. As o decreases,
the number of branches of solutions decreases as well. Furthermore, a comparison of
the three diagrams obtained under resonant condition suggests that the pulse peak scales
like o

max(X) x o. (5.24)

One aspect which is not apparent in these bifurcation diagrams is the extension of
each solution’s basin of attraction. For instance, in the case ¢ = 100 depicted in Fig.
5.6, if we start on the steady state and increase R by sufficiently small steps, the solution
will jump onto the chaotic part of the second branch rather than onto the periodic part of
the first branch. Hence, the bifurcation diagrams do not yet tell the complete story.

Another useful piece of information is the variation of the frequency of the periodic
solutions versus R, i.e., the inverse of the time duration between two consecutive O(1)
pulses. For our reference bifurcation diagram given in Fig. 5.1, the frequencies are
displayed in Fig. 5.8. Domains of period doubling and chaos are not reported in this
figure. The frequency varies significantly versus ¢. This is clearly realized by comparing
Fig. 5.8 with Fig. 5.9 where the frequency of the periodic solutions is displayed on
resonance for ¢ = 50. Let us consider the period measured on time traces such as that
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shown in Fig. 5.2. On resonance and for A = 1.2¢, for instance, we have
X@) = X(E+p) = X[s(t+p)
and the following numerical values are obtained:
g = 50, «xp = 48.22,
o = 100, kp = 93.63, (5.25)
o = 200, xp = 170.91.
Hence, xp is an O(c’) function and the physical frequency is of the order of the atomic
polarization decay rate «, . This is indeed coherent with the fact that we are dealing with

a bad cavity. Despite this result, we have drawn our frequency plots in units of T}
because they were obtained by solving Eqgs. (5.22) for which 7! is the natural unit.

5.4 Influence of thermal noise

In the previous sections, we have studied the deterministic evolution of the maser equa-
tions. However, two physical mechanisms may induce a stochastic contribution to the
time evolution of the magnetic field: spontaneous emission and thermal noise. As
mentioned previously, spontaneous emission is negligible for the cryogenic maser, but
thermal noise contributes to the average photon number the amount
{nyw = 1/[exp(hv/kT) —1].

For the cryogenic maser at v = 1.42 GHz (corresponding to a wavelength of 21.1 em),
the thermal photon number {n)4 equals 14.2 at 1K, 6.85 at 0.5 K, and 1.02 at 0.1 K.
Although these photon numbers are fairly small, they are in fact large compared with
the photon numbers obtained between pulses in the deterministic periodic and chaotic
domains. Therefore, we have to investigate to what extent they may affect our analysis.

A convenient way to model the influence of thermal noise is to add a stochastic

source term £(t) to the equation for the magnetic field B in (5.10). The corresponding
modification to Egs. (5.22) on resonance is

¢ = —z+y+10760) +i&D)],
y = —ey+rz-—zz, (5:26)
= —ez 4 (zy" +2"y),
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Figure 5.10: Distribution of the maxima vs the noise amplitude in the pulsed regime in
the presence of noise forr = 1.5, o = 50, and on resonance, The vertical lines give the
spread of the distribution and the horizontal bars are the mean values for a sample taken
during 2000 time units. A

where 107 = (2¢/ n)m. We have solved these stochastic equations numerically
using for ¢;(f) and £;(f) a pseudo-random-number Gaussian distribution, with zero mean
and unit variance. Although no detuning was included, we kept the complex form of the
equations and a complex noise source to account for phase and amplitude fluctuations of
the magnetic field. In Fig. 5.10 we plot the distribution of peaks of the periodic solution
forr = 1.5 and ¢ = 50 versus the parameter <. The horizontal bars are the average
values. For the same sample, we plot in Fig. 5.11 the frequency distributions. We
observe that in these two figures, the averages practically do not vary with +y. For small 4
(i.e., large noise amplitudes) there is a significant spread around the mean. For v > 4.5,
this spread becomes constant. We have verified that this spread is also present when the

noise is turned off; it corresponds therefore to the numerical precision of our calculation.
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values.

When o is increased, these results are significantly altered. For o = 100, we see in Fig.
5.12 that as v increases, two domains occur. For 4 < 5, the mean value increases with ¢
but the spread of the distributions does not vary in the same ratio as the added noise. In
the second domain, 4 2 5, the mean values remain practically constant and the variance
decreases. For ¢ = 200, only the first domain (increasing mean value with ) is observed
in the whole range studied, up to ¥ = 6.5. To interpret these results, it should be borne in
mind that the domain ¢ > 1 which we investigate is characterized by pulsed rather than
harmonic solutions in the nonsteady regime. In particular, in the time domain comprised
between two consecutive pulses, it was shown [10] that z and y are exponentially small,
being typically exp[—O(1/e¢)] functions. This is much smaller than either added noise or
numerical roundoff errors. Therefore, one expects that the triggering of the pulse, which
takes place when z and y are larger than exp[—O(1/¢)] but still smaller than O(1), will

not be deterministic in numerical simulations. However, in the absence of added noise,
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the variance of the distributions is so small that it does not appear in the Figs. 5.1 and
5.4-59. As the value of z and y between pulses becomes progressively smaller with
increasing o, thermal noise will have a larger influence for higher values of ¢. This is
apparent in Figs. 5.10-5.12, where convergence of the maxima versus -y takes place at
progressively higher v values. When these results are extrapolated to the o values and
the noise levels found in a realistic cryogenic hydrogen maser, it is expected that the
pulsed behavior will be triggered by the stochastic noise, i.e., the hydrogen maser is in
the first domain of Fig. 512 where the maxima have not yet converged as a function of
v.

The influence of thermal noise will be largest between two pulses. The remaining
question is whether the pulse shape itself is determined by stochastic processes or that the
time development of a pulse is a deterministic evolution. If the latter is the case, study
of the pulse would still yield useful information on both the parameters determining the
behavior of the hydrogen maser and the complex Lorenz equations. If, however, the

evolution of a pulse would be a stochastic process as the evolution between the pulses,
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observation of the time-dependent domain would yield information on the influence of
the noise on the system but not on the Lorenz equations themselves. To analyze whether
the pulse is deterministic or not, we have plotted in Figs. 5.13-5.15 the maximum of |z|*
versus r — z at the beginning of the pulse for ¢ = 50, 100, and 200, and for various
values of 4. The choice of r — z instead of z is a matter of convenience only. The value
of z at the beginning of the pulse [10] is called z,, and is determined by the condition
|z|2 + |y|*> = €. The reason for this is that the pulse itself can be described by the
Lorenz equations neglecting all terms of order € with z, y, and z being O(1). As a
result, € can be chosen as the zero level for the pulse. It can be seen in Figs. 5.13-5.15
that for each o there are two domains separated by a critical value +,. Below +., there
is no correlation between z at the beginning of the pulse and max(|z[*): We observe a
cloud of points indicating a stochastic process. Above 7., there is a clear correlation

between the two variables and all points fall nicely on a single curve when the pulse
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triggering is stochastic or are concentrated in a very small domain (whose width is due
to the numerical noise) when the triggering is deterministic. The surprising result is
that in all three cases displayed in Figs. 5.13-5.15, we have found that 4, ~ 4. More
precisely, for ¢ = 50, we have 4 < 4, < 4.5, while for ¢ = 100 and 200, we have
3.5 < 4, < 4. Hence, this critical parameter is only weakly dependent on o, at least in
the range considered here. Extrapolating the constant value of 4. to the high-o regime
of a realistic hydrogen maser, we expect the corresponding value of v, i.e., about 6, to
be larger than 4., so that the pulse evolution will be deterministic.

For the discussion which we have given, the actual value of the thermal noise is of
crucial importance. This, however, depends on a couple of control parameters: &, T', and
v. Whereas changing x would merely change the influence of any noise on the maser

operation, changing the latter two parameters would also change the ratio of thermal to
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quantum noise. Although quantum fluctuations are negligible with respect to the thermal
noise for T = 0.5 K and B = 0, they become progressively more important for smaller
T and larger B (i.e., larger v). Experimental realization of this new regime would thus
be very interesting from the point of view of the study of the Lorenz equations with both
thermal and quantum noise.

A source of noise which is unavoidable in the computer calculations is the numerical
noise due to roundoff errors and the inherent limited precision in the integration code.
With the code used to solve Eqgs. (5.26), we have verified explicitly that in the absence of
noise (y = o0), the solutions are periodic (with a precision of three significant digits) after
a sufficiently long time. However, when the numerical precision was changed, max(|z|?)
appeared as a sensitive function of the numerical noise, while the period was remarkably
independent of that noise. Although numerical noise has probably introduced a bias in
our calculations, a strictly noise-free experiment is also impossible. Hence, the possible

bias introduced in our numerical results should also be found in the experimental results.

5.5 Conclusions

The cryogenic hydrogen maser is a device which is known for its extreme frequency
stability. We have shown that apart from this stable steady oscillation, a second operation
mode exists that is readily achievable in the cryogenic hydrogen maser by increasing
the quality factor of the maser cavity. By analyzing the dynamical maser equations,
the Maxwell-Bloch equations, we have identified this operation mode with a pulsed
output consisting of very sharp pulses separated by relatively long periods of almost zero
output power. By systematically scanning through parameter space, bifurcation diagrams
have been obtained that have enabled us to make statements about the complex Lorenz
equations in a domain of parameter space [R, ¢ 3> 1, b = O(1)] which had hardly been
investigated.

Furthermore, we have analyzed the influence of thermal noise on the operation of the
cryogenic maser. Whereas the number of stimulated photons is large compared to the
number of thermal photons in the steady mode of operation allowing for a deterministic
semiclassical description of the maser operation, it is small in between the pulses in the

time-dependent domain. We have modeled the thermal noise by including a stochastic
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Gaussian noise term in the Maxwell-Bloch equations and have concluded that the time-
dependent regime of the cryogenic hydrogen maser will still be characterized by pulsed
behavior. The sequence of pulses, however, will not be deterministic but stochastic,
both in the maxima of the pulses and the periods in between them, as the pulses will be
triggered by the thermal noise. The evolution of a single pulse, on the other hand, can
still be deterministic.

In terms of the Lorenz equations, our numerical work gives a good picture of the
behavior to be expected in this part of the parameter space. The occurrence of only a
few small domains of chaotic behavior compared to relatively large domains of periodic
behavior is especially remarkable. Furthermore, the coexistence of a stable steady state,
a periodic solution, and a chaotic solution is apparent. As a last point, the stabilizing
effect of the detuning should be noted. The question remains, however, whether the
cryogenic hydrogen maser is useful to study the Lorenz equations as such, due to the
influence of thermal noise. If, on the other hand, one is interested just in this influence,
the hydrogen maser will be an excellent tool, thereby giving the possibility to observe a
gradual transition from thermal to quantum noise in a single experimental setup.

The second context in which our work is of interest is from the viewpoint of the
hydrogen maser. As mentioned before, the operation of the hydrogen maser is determined
by the interplay of a large number of parameters which are often difficuit to diagnose. In
this case the influence of thermal noise means that the sequence of pulses will not give
the information which can be expected from the operation without noise. As, however,
the evolution of a single pulse can remain deterministic, the time-dependent domain may

still prove to be an interesting domain from this point of view as well.
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Chapter 6

A new method to calculate three-body scattering

below the break-up threshold

Abstract

‘We propose a new method to solve the Faddeev equations for three-nucleon scattering below
the threshold for break-up. Instead of a discretization of both relative positions or momenta
we expand the Faddeev component in a set of two-nucleon basis states. These basis states
meorporate already the effect of the two-nucleon forces. This method is applied to neutron-
deuteron scattering using local s-wave Malfliet-Tjon potentials. The calcolations show
rapid convergence and good agreement with previous calculations for quartet scattering.
Convergence is less for doublet scattering due to a node occurring in the configuration space
Faddeev component at short distances in the two-nucleon subsystem.

6.1 Introduction

Three-nucleon scattering is an important test laboratory for nuclear dynamics. Dynamical
models for nuclear interactions can be probed in a highly nontrivial manner by comparing
their predictions to a rich bulk of experimental data. With the advent of supercomputers
it became possible to solve the three-nucleon Faddeev equations directly for any type

of nucleon-nucleon (NN) interaction [1]. This went parallel with an increased precision
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and sophistication of experiments [2]. So far agreement between theory and experiment
is in general rather good [3], using realistic NN forces with all their complexities, but
there are also a few exceptions. One of them is the low energy analyzing power A,
where a striking discrepancy sticks out [4] and still poses a puzzle. This discrepancy
is even present below the nucleon-deuteron break-up threshold [5]. New experiments
are planned measuring more complicated spin observables below break-up [6]. 1t is
therefore of great practical interest to supplement the very few existing techniques which
solve the Faddeev equations precisely [1],[7]-[9] for any type of realistic NN forces
by new and possibly more efficient methods. It is the aim of this paper to propose a
simple but nevertheless precise approach which has already been successfully used for
three-nucleon bound state calculations in the nonrelativistic [10] and relativistic context
[11].

With the exception of Ref. [9] the existing precise techniques in momentum or
configuration space treat both types of relative coordinates explicitly. In contrast, here we
express the dependence on the two-nucleon subsystem coordinate through a judiciously
chosen set of basis states. These basis states incorporate already the effect of two-nucleon
forces in the two-nucleon subsystem and therefore it is expected that only few are needed
to provide a well converged description. This reduces the dimension of the total problem
dramatically and allows to perform such a calculation even on small workstations. Since
* the basis states are square integrable the method is first of all only suited for scattering
below the threshold for real break-up. Since it is an exact method it describes of course
fully the virtual break-up.

The proposed method is not only of interest for three-nucleon scattering but is also
relevant in an atomic physics context, i.e., three-body recombination of atomic hydrogen
which has been the limiting process ina class of experiments trying to reach Bose-Einstein
condensation [12]. The calculation of the recombination rate involves the evaluation of
a matrix element of the interatomic magnetic dipole interaction between an initial state
and a final state [13]-[19]. The initial state has been calculated rigorously by solving
the Faddeev equations [14],[16]. The final state can, in principle, be calculated in the
same way. However, due to the large number of channels which have to be included in
the calculation this is not possible with present supercomputers. The method which we
develop in this paper can be used to solve the Faddeev equations also for the final state.
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This paper is organized as follows, The formalism is described in Sec. 6.2. An
application to neutron-deuteron (n-d) scattering using local s-wave NN forces is given

in Sec. 6.3. In Sec. 6.4 we present some conclusions.

6.2 Theory

A system of three particles, e.g., three nucleons or three hydrogen atoms, can be described

by state vectors | I*) which are eigenstates of the Hamiltonian
H = H+V, 6.1)

where V represents all two-body interactions. We neglect a possible thfee-body force.
Using the spectator-index notation {20] V can be written as

V = ZV}; = V,+Ve*, 6.2)
. B
and a channel Hamiltonian can be defined as
Hy = Ho+V,. (6.3)

From now on we take o = 1. The kinetic energy in the center of mass system together
with the internal energies are represented by Ho.

We consider a state vector | ¥ *} describing the scattering process initiated by a particle
incident on a bound two-particle target system. In the application to atomic hydrogen
we have to find a state of the type |¥~), since we want to describe the final state after
the operation of the dipole interaction. Such a solution can, however, be obtained from
a |¥+) state by time-reversal. The latter can be written as

&%) = (1+P)), (6.4)

where P = P3Py + P3Py is the sum of two cyclic permutation operators and |¢) is
a Faddeev component. This Faddeev component satisfies the Faddeev equation

) = |é1) + G{tiPi) , (6.5)

or equivalently

(Hy = E*)lgn) = —WPl), (6-6)
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where |¢;) describes the initial state of the scattering process, i.e., |¢)) is an eigenstate
of the channel Hamiltonian H,. The resolvent operator 1/{E* — Hp) is denoted by
G¢, t, is the two-body transition operator for pair 1 and E* = E + ie. Equation
(6.6) is often solved in the momentum basis consisting of the relative momentum p of
the two particles in pair 1 and the momentum ¢ of the third particle relative to pair 1,
discretizing these momenta and performing a matrix inversion. As already indicated
in the introduction it would be of interest to dispose of an additional technique which
in the case of three-nucleon scattering would be more efficient, allowing it to run also
on smaller computers, and in the case of hydrogen would make it possible to solve the
final state exactly including virtual break-up which has been neglected up to now in the
calculations but has turned out to give a large contribution to the recombination process
[181,[19]. In the following we will restrict ourselves to three~-nucleon scattering.

In the present approach the dependence of the Faddeev component on the two-
nucleon subsystem coordinate is described by basis states. These basis states first of all
comprise the complete set of bound states of the two-nucleon system. The remaining
basis states describe the continuum, i.e., the virtual break-up. Including scattering states
of pair 1 seems to be difficult, however, since it involves a non-denumerable set of non-
localized wave functions. A possible way out was already suggested in Refs. [18],[19].
Since the three-nucleon break-up channel is closed, the two-nucleon continuum has to
build up only configurations in a restricted part of three-nucleon configuration space.
Therefore, the possibility arises to add a (expectedly small) set of judiciously chosen
states. This discrete representation of the continuum, previously successfully applied in
a somewhat different way to three-nucleon bound state calculations [10],[11], is treated
in the following.

We have to deal with two different kinds of two-nucleon subsystems: those which
contain bound states and those which do not contain bound states. In both cases the
continuum is generated by including the lower states of a potential consisting of a har-

- monic oscillator potential added to the two-nucleon interaction potential. If bound states
exist the projections on the bound subspace are eliminated by Schmidt orthogonalization
and in both cases the rigorous two-nucleon Hamiltonian is diagonalized in the added
subspace. This procedure ensures that all the characteristics of the two-nucleon force are
already present in the basis states.
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Denoting the set of momentum wave functions thus obtained by ¢!*(p), with [
the relative orbital angular momentumn quantum number of the two nucleons, ¢ their
combined isospin, s their combined spin and n the radial quantum number, it is now
possible to give an explicit expression for the Faddeev component [1f,). It is given by

¥ = > / dpp’ / daq*d* (p)bi*X(g) -

nltsd

|pg(IN) LMy (t3)T M (s})SMs)1 (6.7)

where b*(q) represents the yet unknown motion of the third nucleon with respect to
the nucleons in pair 1, with relative orbital angular momentum quantum number A. The
summation over n contains both the bound states and the continuum states. Furthermore,
Iand ) are coupled to form L and My, whereas ¢ (s) and  couple to T (S) and Mr (Ms).
The fermionic character of the nucleons requires [+ ¢ + s to be odd. If the summation in
Eq. (6.7) would be carried out over an infinite number of basis states the expansion would
be exact. The calculation of the scattering process has now been reduced to calculating
X (g)-

- Byoperating on the Faddeev equation (6.6) from the left with 1(pq(I\) LML (¢3)T M|

1{(83)SMs]| and after some manipulations the following equation for 5/#*(q) is obtained

\ 8(g— 1
bif A(?) = 5n,.°5;:°5tg95,,05,\,\0 (qqche) + E+ - e;ta —3¢%/4m ’

> / dg'qe*Vorarmewa(ag)bht *¥(¢) (6.8)

LS DY

with

Vaemven(qg) = ] dpp* 61 (p) f dp'p? e (v) -
1{pg(INLML(t3)T Mr(s5)SMs|V; -
Plp'q (') LML (¢ 1)T Mr(s'})SMs), . (6.9)

The subscript 0 in Eq. (6.8) denotes the initial state consisting of a bound state and a
free nucleon. This term represents the inhomogeneous solution. The nucleon mass is
denoted by m and elf* is the energy value for the wave function ¢/*(p) in the subspace
of the bound states and added continuum states. For the evaluation of the matrix element
in Eq. (6.9) we refer to Ref. [20]. Equation (6.8) is formally identical to a two-body



104 Ch. 6. A new method to calculate three-body scattering below ..

Lippmann-Schwinger equation and can be solved in the usual way by the introduction
of the half-shell T-matrix:
T@) = ¥ [ Vammrenlad)t (@) (6.10)
TS
We thus, finally, obtain

T'l‘taA(q) =V MtaA.nolotosnAo(QQG) + z / dqiquVnmAmmec.,w(Qq‘) .
nilt s N

1 e S ]
Ev = o7 — 37 am " (4)- (6.11)

This equation is solved numerically by matrix inversion.

6.3 Numerical method and results

The theory of the previous section has been applied to n-d scattering using s-wave
Malfliet-Tjon potentials. The initial isospin state is given |(¢1)TMr); = |(0)1Mr)1.
Two different scattering processes are possible, i.e., doublet and quartet scattering. In
the latter we start from a totally symmetric spin state |(s1)SMs) = |(1})3Ms).
Furthermore, confinement to s-wave scattering means { = Oand A = 0. The requirement
of [ 4t + s to be odd implies that the above channel is the only channel involved in the
calculations. The two-nucleon interaction potential for ¢ = 0 is taken to be {21],{22]
e~HAR" grBAT

V() = Vaie— -V —, (6.12)

r r

with the numerical values given in Table 6.1 as the MT III (spin-triplet) potential.
This potential has one bound state with an energy of —2.23 MeV, corresponding to the
deuteron. In the case of doublet scattering we start from the spin state |(s3)SMs); =
|(13)3Ms);. Since the two-nucleon subsystem has ¢ = 0, the two-nucleon interaction
in this channel is again given by the MT III potential. However, a coupling exists with
the channel having |(s3)SMs); = [(03)1Ms)y and |(¢3)TMr), = |(13)§Mr)1. The
analytical form of the interaction in the two-nucleon subsystem in this channel is given
by Eq. (6.12) but with different numerical values for the constants, corresponding to
t = 1. This potential is the MT I (spin-singlet) potential for which the parameters are
given in Table 6.1.
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MTI  MTHI

Vi (MeV fm) 513.968 626.885
pa (fm™) 1550 1550
Ve (MeV fm) 1438720 1438.720
pr (fm=1) 3110  3.110

Table 6.1: Potential parameters for the Malfiiet-Tjon models [22].

In order to obtain the wave functions ¢/*(p) in momentum space the Schradinger
equation has been solved in configuration space using a modified Numerov integration
method. The continuum functions have been generated by adding a harmonic oscillator
potential to the "real" NN potentials, as described in the previous section. With the
functions thus obtained the Schmidt orthogonalization has been performed, also in con-
figuration space. Care should be taken that the lowest state of the potential generating
the continuum is sufficiently different from the bound state of the real potential. If this
is not the case the Schmidt orthogonalization will result in an amplification of numerical
noise. The two-nucleon Hamiltonians have, subsequently, been diagonalized. The sec-
ond derivative with respect to the distance between the nucleons in the kinetic energy
part of the Hamiltonians has been discretized by using a five-points discretization.

This total set of basis wave functions has been transformed to momentum space.
The advantage of calculating the basis wave functions in configuration space and a
subsequent transformation to momentum space as compared to a calculation done directly
in momentum space is that the latter requires a matrix inversion since the two-nucleon
interaction potentials adopted are not diagonal in momentum space. This makes the
calculations very time consuming if a sufficiently good accuracy is to be achieved.
The expression [ dpp?¢!t*(p)V"(pp’), with V**(pp') the two-nucleon interaction in
momentum space, which naturally arises in the evaluation of Eq. (6.9), is obtained in
a similar way by transforming the product ¢*(r)V(r) to momentum space. It is then
possible to evaluate the matrix element in Eq. (6.9) and to perform the matrix inversion
which will solve Eq. (6.11). We discretized the ¢ variable in Eq. (6.11) and then solved

Eq. (6.11) for progressively more n values, i.e., we increased the number of continuum
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functions until convergence took place.
In comparing the results with previous calculations the following should be noted.
The value of T¥#**(q) on the energy shell corresponds to the transition matrix element

for n-d scattering. This transition matrix is connected to the scattering matrix via

i
SENQ) = bunobbecbumbrig + 5 VAWTANa) (6.13)

which is a unitary matrix. Since both the doublet and the quartet scattering processes are

elastic the single S-matrix element involved can be written as
Sporodo(gg) = €2, (6.14)

The phase shift § is the quantity which we compare with previous calculations together
with the scattering length a which is related to the phase shift via § ~ —gga for gg — 0.

First of all we have calculated the quartet scattering. The continuum has in this case
been created by choosing the spring constant k of the harmonic oscillator potential }kr?
equal to 0.5 MeV fm~2 and including 20 continuum states. In Table 6.2 the value of
the phase shift for quartet scattering 8, is given as a function of the number of basis
states used in the calculations for a laboratory energy of 2.45 MeV. In Table 6.3 §, is
given for a laboratory energy of 3.27 MeV. Both these energies are below the deuteron
break-up threshold. In Table 6.4 the scattering length a4 is given, obtained at an energy
of 10~% MeV. These values should be compared with §,(2.45 MeV) = 113.3°, §4(3.27
MeV) = 106.4° and a4 = 6.442 fm given by Payne et al. {22},[23]. The agreement
between these values and our calculations is excellent. Furthermore, convergence takes
place after only a few added continuum functions, which is a very satisfactory result and
shows that the present method is indeed very efficient.

The situation is completely different in the case of doublet scattering. In this case the
doublet scattering length az has been calculated and compared with the value a; = 0.70
fm by Payne et al. [22]. Although the calculations show results which are close to
this value (4 10 %) convergence does not take place for a satisfying number of added
continuum states,

The marked difference between quartet and doublet scattering can be understood by
studying the configuration space calculations of Ref. [22]. Due to the Pauli principle

only two of the three nucleons can come close together in the quartet case. This means
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n 6 n b4 n 4
(deg) (deg) (deg)
1266 8 1132 15 1132
1249 9 1132 16 1132
1175 10 1132 17 1132
1141 11 1132 18 1132
1135 12 1132 19 1132
1133 13 1132 20 1132
1133 14 1132 21 1132

~N O B W N e

Table 6.2: The quartet phase shift 6 as a function of the number of basis states n included
in the calculation for a laboratory energy of 2.45 MeV.

n b n ba n b4

(deg) (deg) (deg)
1232 8 1066 15 106.6
1229 9 1066 16 106.6
1151 10 106.6 17 106.6
1082 11 1066 18 1066
107.0 12 1066 19 106.6
106.7 13 106.6 20 106.6
106.6 14 1066 21 106.6

~N Syt B W N e

Table 6.3: The quartet phase shift §; as a function of the number of basis states n included
in the calculation for a laboratory energy of 3.27 MeV.
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n o a4 n aq n a4
(fm)  (fm) (fm)
5831 8 6.421 15 6.419
6297 9 6418 16 6.419
6351 10 6.420 17 6.419
6421 11 6419 18 6.419
6408 12 6419 19 6.419
6424 13 6419 20 6.419
6416 14 6419 21 6.419

-~ O B W N e

Table 6.4: The quartet scattering length a4 as a function of the number of basis states n
included in the calculation.

that the deuteron structure in the two-nucleon subsystem is hardly disturbed and only
a few smooth continuum functions are needed to describe the Faddeev component. In
the doublet case, however, the perturbation of the deuteron structure is much more
pronounced, even leading to a node in the Faddeev component at very short distances in
the two-nucleon subsystem.

The continuum for doublet scattering has been obtained in the same way as for
quartet scattering, i.e., the lower states of a harmonic oscillator potential added to the
two-nucleon interaction potential have been calculated. Whereas in the latter case only
a few states are necessary to get a converged description, for doublet scattering not only
continuum functions are needed that describe the long wavelength deviations from the
deuteron structure, but also short wavelength functions that describe the node in the
Faddeev component. If both these types of functions are created by one single harmonic
oscillator potential many continuum states have to be included in order to describe the
system which makes the method less efficient as is evident from the above calculations.
It should be noted, however, that this problem is not inherent to the present approach.
The only requirements for the continuum states are that they are square integrable and
orthogonal to each other and the bound state. There are no limitations, however, to

the way in which the continuum states are obtained. In particular, it is possible to
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create a combination of two sets of functions, one with a harmonic oscillator potential
having a small spring constant for the long-wavelength behavior and one with a harmonic
oscillator potential having a large spring constant to describe the node in the Faddeev
component. The remainder of the calculations would be the same as described in Sec.
6.2. 1t is expected that by this method also the calculations for doublet scattering will
converge after only a few added extra basis states. At the moment, however, these
calculations have not yet been performed.

6.4 Conclusions

We have proposed a new method to calculate three-body scattering below the break-up
threshold. This method calculates the state vector by solving the Faddeev equations.
Instead of the conventional method which solves the Faddeev equations by using two
different relative position or momentum variables this method replaces the role of the
eigenstates of one of the two variables by an expectedly smaller set of basis states, which
are better adapted to the actual problem and in particular more suitable for describing
virtual break-up. Essential in this approach is the way in which the continuum is treated.
Due to this new approach the problem should be solvable with smaller computers.

The new method has been tested by means of n-d scattering with s-wave Malfliet-
Tjon potentials. We find very good agreement between our calculations of the phase
shift and the scattering length for this process and the values given in the literature in the
case of quartet scattering. Furthermore, our calculations show a rapid convergence as a
function of the number of channels which have to be included in the calculations in this
case. The results for doublet scattering are less positive, not showing convergence after
many added continuum states.

We have identified the problems in the case of doublet scattering with a node occur-
ing in the configuration space Faddeev component at short distances which cannot be
calculated with a few basis states which are lying just above the break-up threshold. In~
stead, short wavelength functions have to be incorporated in the approach, automatically
resulting in the inclusion of many more basis wave functions if the continuum is created
by adding a harmonic oscillator potential to the NN interaction potential. A possible

solution would be to create a combination of two sets of functions, one for the long- and
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one for the short wavelength behavior. Expectations are that in this way also the results
for doublet scattering will show a rapid convergence as a function of the number of basis

states which are used in the calculations.
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Summary

The room temperature hydrogen maser is the most stable time and frequency standard
currently available for measurement intervals between 1 and 10* seconds. The relative
frequency stability of state-of-the-art room temperature hydrogen masers is typically
better than one part in 10" for averaging times of 10¢ seconds. Some years ago a sub-
Kelvin version has been developed. This cryogenic hydrogen maser was expected to have
an increased frequency stabilit}? by three orders of magnitude. These expectations were
supporied by both quantum mechanical and semiclassical calculations on the influence
of collisions on the atomic lineshift and -broadening. Calculations done in our group
at Eindhoven University of Technology, however, in which the hyperfine structure was
included in a proper way, showed that the maximum increase of the frequency stability
" is restricted to one order of magnitude, ‘

The availability of an extremely stable frequency standard is desirable for various
fields of research, such as very-long baseline interferometry, tests of general relativity
and interplanetary navigation. For this reason it is of interest to search for possibilities
to increase the stability of the hydrogen maser despite the above-mentioned influence
of collisions. In Chapter 2 such a possibility is considered. In particular, the effect
of a permanent magnetic field on the collisions between two hydrogen atoms and the
subsequent influence on the stability of the cryogenic hydrogen maser are treated. It is
shown that the introduction of a magnetic field does not produce the hoped for increase
in frequency stability.

The hydrogen maser is not only used for very precise time keeping, but due to the
very narrow linewidth of the maser output it is also suited to obtain information on the
hydrogen gas. In Chapter 3 a variation on the cryogenic hydrogen maser is proposed,
i.e., the surface cryogenic hydrogen maser. This proposed maser operates at lower
temperatures and has an increased area to volume ratio of the storage bulb compared to
the cryogenic hydrogen maser. The operating conditions for such a maser are evaluated
and it is pointed out that the output characteristics are determined by the two-dimensional
gas of hydrogen atoms at the surface of the storage bulb. This maser could be used to
obtain new and more accurate information on the properties of hydrogen gas adsorbed at
a superfluid “He surface.
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The two subjects mentioned above, i.e., the use as a frequency standard and the
description of the properties of a gas of atomic hydrogen, have for a long time been the
only applications of the hydrogen maser. In recent years, however, interest has also been
devoted to the use of the hydrogen maser outside these areas. In Chapters 4 and S the
operation of the cryogenic hydrogen maser is described in a regime of operation which
is characterized by a pulsed output power. By studying the hydrogen maser it is possible
to obtain information on the behavior of solutions of the Lorenz equations, of which the
hydrogen maser is a faithful realization and which are a basic set of equations in the field
of nonlinear dynamics, in a parameter regime which has hardly been investigated.

During the last decade various experiments with atomic hydrogen have been per-
formed other than the hydrogen maser. Many experiments have been set up in order to
achieve Bose-Einstein condensation. Up to now, however, these attempts have failed
due to the large decay rates of the hydrogen gas. It has turned out that three-body recom-
bination of the hydrogen atoms plays the most important role in this decay. In Chapter
6 a new method is proposed to calculate the recombination rate. As an example this
method is applied to a basic scattering problem in nuclear physics, i.e., the scattering of

a neutron from a deuteron.

Samenvatting

De kamertemperatuur waterstof maser is de meest stabiele tijd en frequentie standaard
voor meettijden tussen 1 en 10% seconden. De relatieve frequentie stabiliteit van de
huidige kamertemperatuur waterstof masers is in zijn algemeenheid beter dan één op
10" voor middelingstijden van 10° seconden. Enkele jaren geleden is een sub-Kelvin
versie ontwikkeld. Van deze cryogene waterstof maser werd verwacht dat hij een fre-
quentie stabiliteit zou hebben die drie orden van grootte beter was. Deze verwachtingen
werden ondersteund door zowel quantummechanische als semi-klassieke berekeningen
aan de invloed van botsingen op de atomaire lijaverschuiving en -verbreding, Berekenin-
gen gedaan in onze groep aan de Technische Universiteit Eindhoven echter, waarin de
hyperfijn struktuur op een correcte wijze was meegenomen, toonden aan dat de maximale
verbetering van de frequentie stabiliteit beperkt blijft tot één orde van grootte.

Het voorhanden zijn van een extreem stabiele frequentie standaard is wenselijk voor
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verschillende vakgebieden, zoals very-long baseline interferometry, het testen van de
algemene relativiteitstheorie en interplanetaire navigatie. Daarom is het van belang om
te zoeken naar mogelijkheden om de stabiliteit van de waterstof maser te verbeteren
ondanks de bovengenoemde invloed van botsingen. In Hoofdstuk 2 wordt een dergelijke
mogelijkheid onderzocht. In het bijzonder wordt het effect van een permanent statisch
magneetveld op de botsingen tussen twee waterstof atomen behandeld en de daaruit
volgende invloed op de stabiliteit van de cryogene waterstof maser. Er wordt aangetoond
dat de invoering van een magneetveld geen aanleiding geeft tot de intuitief verwachte
toename in de frequentie stabiliteit.

De waterstof maser wordt niet alleen gebruikt als erg stabiele klok, maar vanwege
de kleine bandbreedte van het nitgangssignaal van de maser is hij ook geschikt om
informatie te verkrijgen over het waterstof gas. In Hoofdstuk 3 wordt een variatie op
de cryogene waterstof maser voorgesteld, namelijk de oppervlakie cryogene waterstof
maser. De maser in dit voorstel werkt bij lagere temperaturen en heeft een grotere op-
pervlak/volume verhouding dan de cryogene waterstof maser. Het werkingsgebied voor
een dergelijke maser wordt onderzocht en er wordt op gewezen dat het uitgangssignaal
bepaald wordt door het twee-dimensionale gas van waterstof atomen aan het oppervlak
van de opslagbol. Deze maser kan gebruikt worden om nieuwe en meer nauwkeurige
informatie te verkrijgen over de eigenschappen van waterstof gas dat geadsorbeerd is
aan een met superfluide “He bedekt oppervlak.

De twee bovengenoemde onderwerpen, namelijk het gebruik als frequentie stan-
daard en het beschrijven van de eigenschappen van een gas van atomair waterstof, zijn
gedurende lange tijd de enige toepassingen van de waterstof maser geweest. Recentelijk
hebben wij echter ook aandacht besteed aan het gebruik van de waterstof maser buiten
deze gebieden. In de Hoofdstukken 4 en 5 wordt de werking van de waterstof maser
beschreven in een regime dat gekenmerkt wordt door een pulserend uitgangsvermogen.
Door het bestuderen van de waterstof maser is het mogelijk informatie te verkrijgen
over het gedrag van oplossingen van de Lorenz vergelijkingen, waarvan de waterstof
maser een getrouwe weergave is en die een elementair stelsel vergelijkingen zijn in de
nietlineaire dynamica, in een parameter regime dat nog nauwelijks onderzocht is.

Gedurende de laatste tien jaar zijn er naast de waterstof maser nog verscheidene

andere experimenten gedaan met atomair waterstof. Een groot aantal experimenten is
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uitgevoerd om Bose-Einstein condensatie te bereiken. Tot nu toe zijn deze pogingen
echter mislukt vanwege het snelle verval van het waterstof gas. Het is gebleken dat drie-
deeltjes recombinatie van de waterstof atomen de belangrijkste rol speelt in dit verval.
In Hoofdstuk 6 wordt een nieuwe methode voorgesteld om de recombinatie constante te
berekenen. Als voorbeeld wordt de methode toegepast op een elementair probleem in de

kernfysika, namelijk de verstrooiing van een neutron aan een deuteron.
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Door de wijze waarop het triplet-continuim wordt behandeld in de berekening van
drie-deeltjes recombinatie in atomair waterstof m.b.v. “resonating-group theory” wordt
het sterk repulsieve karakter van de triplet-potentiaal voor een belangrijk deel buiten
beschouwing gelaten.

H. T. C. Stoof, B. J. Verhaar, L. P. H. de Goey en W. Glockle, Phys. Rev. B 40, 9176
(1989).
H. T. C. Stoof (privé mededeling).

In de afleiding van de triplet-potentiaal tussen twee waterstof atomen door Jamieson et al,
op basis van resultaten van Frye et al. wordt geen rekening gehouden met de beperkingen
die Frye et al. zelf reeds aan hun berekeningen toekennen.

M. J. Jamieson, A. Dalgarno en J. N. Yukich, Phys. Rev. A 46, 6956 (1992).
D. Frye, G. C. Lie en E. Clementi, J. Chem. Phys. 91, 2366 (1989).
E. Tiesinga (privé mededeling).

In het experimenteel relevante regime van lage intensiteiten is een één-manifold quan-
tummechanische berekening van een optische botsing waarschijnlijk voldoende om het
deeltjesverlies uit een (magneto-optische) trap te beschrijven.

H. M. J. M. Boesten, B. I. Verhaar en E. Tiesinga, Phys. Rev. A (ingezonden ter publi-
catie).

4

Door een incorrecte behandeling van het regime van grote impulsoverdrachten is de
werkzame doorsnede voor het omklappen van een spin onder absorptie of emissie van
een magnon vele malen kieiner dan door Bashkin voorspeld.

E. P. Bashkin, Pis’ma Zh. Eksp. Teor. Fiz. 49, 320 (1989) [JETP Lett. 49, 363 (1989)].



Voor een laser gebaseerd op een overgang tussen het bovenniveau en een lineaire su-
perpositie van de twee onderniveaus in een drie-niveau systeem, waarbij de atomen in
de onderniveaus ingevangen zijn in een andere, niet-wisselwerkende superpasitie, is het
gebruik van de term “laserwerking zonder toestandsinversie” misleidend.

O. Kocharovskaya en P. Mandel, Phys. Rev. A 42, 523 (1990).

6

Bij het evalueren van supercomputers is vanuit gebruikersoogpunt niet de werkelijke
rekentijd van belang maar de totale tijd die verstreken is vanaf het versturen van de job
tot het verkrijgen van de output.

De matige kwaliteit van veel voordrachten tijdens conferenties maakt het belang van vol-
doende aandacht voor het presenteren van resultaten tijdens de stage- en afstudeerperiode
duidelijk.

Het verdient aanbeveling faxapparatuur zodanig te construeren dat het nummer ingetoetst
kan worden voordat het papier moet worden ingevoerd.



