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CHAPTER 1. INTRODUCTION

1.1 Problem description

The company Gemco Furnaces manufactures industrial furnaces for several purposes. One
type of furnace built by Gemco is the so called "conveyor belt furnace". This is a furnace
type in which the products are heated up and cooled down while they are transported
through the furnace by means of a conveyor belt. All kinds of products can be treated in
the furnace. Examples are ceramics or electronic components.

A typical production process is the so called DCB process (direct copper bonding) for the

Figure 1.1. Ceramic IC-board produced by direct
copper bonding.

Figure 1.2. Copper flake on a ceramic base mate-
rial at the beginning of the process.

production of ceramic IC-boards, as depicted in Figure 1.1. Because ceramic IC-boards can
be used in a wide temperature range, they are especially suitable for use in aviation and
aerospace technology. In the production process, first a copper top layer is attached to a
ceramic base material, which usually consists of Al2O3 (alumina). After the bonding
process a circuit is etched in the copper top layer in order to produce the IC-board. The
bonding of the copper to the ceramic occurs at a high temperature, and therefore, the
materials are heated in a conveyor belt furnace. At the beginning of the production pro-
cess, a thin copper foil lies on a ceramic base material as depicted in Figure 1.2. The sides
of the copper foil are bent upwards, so that the bonding process starts in the middle, and
then continues to the sides as the copper sags out under its own weight because of the
high temperature. In this way, air enclosures are prevented in order to guarantee a good
product quality. The copper bonds to the ceramic at 1063 [°C]. This temperature however
is only 2 [°C] lower than the melting point of copper. When the melting point is reached,
the sides of the copper foil will hang down and hit the ceramic too early, causing air
enclosures and thus a useless product. Therefore, furnaces used for this production pro-
cess must have a very high temperature accuracy and adjustability. As in a typical pro-
duction process several products are placed next to each other on the belt, it is also very
important that the temperature distribution over the width of the belt is uniform. A non-
uniform temperature distribution is the main problem of this type of furnaces, and im-
proving the temperature uniformity is the main goal of this study. As an ultimate design
requirement, for an optimized furnace a maximum temperature difference of approximate-
ly 1 [°C] over the width of the belt is aimed at.

Another production process for which temperature uniformity is of great importance is the
production of flat panel displays. The display is produced by attaching coatings to a glass
plate at a temperature of about 600 [°C]. To prevent the glass from breaking, the thermal
stresses during the heating and cooling process have to be kept as low as possible, and
therefore, also here the temperature uniformity is very important.

7



Chapter 1.

At the moment, Gemco is building their furnaces based on years of experience and with
the aid of some temperature measurements that are done on newly produced furnaces. In
order to get the required temperature history for the production process, a furnace is
equipped with electronics to control the power output of the heating elements. This
method can be used for building standard furnaces. However, for very critical production
processes or for a new type of conveyor belt furnace designed for special demands, this
method is extremely laborious. Therefore it is necessary to get a better understanding of
the heat transfer phenomena inside a furnace. The goal is to be able to calculate disturb-
ances in temperature uniformity for a furnace with given settings of the element power.

1.2 Description of a conveyor belt furnace

In Figure 1.3 a schematic presentation of a con-

Figure 1.3. Conveyor belt furnace.

veyor belt furnace is shown. The products are
placed on a belt, which is pulled through the
muffle. The muffle is a tube, made of a heat
resistant nickel-chromium alloy, in which a con-
trolled atmosphere is realized depending on the
production process. For the DCB process a nitro-
gen atmosphere is needed to avoid oxidation of
the products at high temperatures. This atmos-
phere is controlled by means of gas inlet pipes,
as depicted in Figure 1.5. The products are
heated by circumferentially positioned electrical
heating elements, placed outside the muffle. The
temperature of the heating elements varies along
the length of the furnace, so that the products
are heated not too fast and high material stresses
are avoided. This is realized by dividing the fur-
nace in a number of zones, each with its own temperature setting for the heating elements.

Figure 1.4. Global dimensions of the heating section of a real furnace (side view).

Figure 1.5. Cross sectional area and detailed side view.
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Introduction.

The total heating section of a real conveyor

Figure 1.6. Construction of the heating el-
ements.

belt furnace is usually about 3 meters long,
but the exact length is also process depend-
ent. After the heating section there is also a
cooling section, in order to let the products
cool down in a controlled way. As the main
problem occurs in the heating section, the
cooling section is not considered in this
project. Some global dimensions of the heat-
ing section of a furnace are given in
Figure 1.4 and Figure 1.5. A detailed view
of cross-sectional muffle dimensions is
given in appendix 7.

In Figure 1.4 a side view of the heating sect-
ion of a the furnace is drawn. The heating
section consists of 10 zones of 305 [mm]. On
the left in Figure 1.5 a cross sectional area

Figure 1.7. Different ways of connecting the
control units to the heating elements.

through a heating section is shown. Inside
the muffle a belt is transporting the prod-
ucts through the furnace. The belt is carried
by hearth plates, which are resting on the
bottom of the muffle. On the right in the
same figure a more detailed side view of a
part of the furnace is shown to give some
global dimensions. The muffle is carried by
support stones, and heated by electrical
heating elements placed around the muffle.
The heating elements are constructed as
depicted in Figure 1.6. Inside the heat resis-

Table 1. Temperature and relative power set-
tings for the heating elements per zone.

Zone Tset

[°C]

Relative input power of
the elements %

Side Bottom Top

1 500 100 100 100

2 600 100 100 100

3 750 100 100 100

4 850 100 100 100

5 900 100 100 100

6 900 75 100 75

7 900 75 100 75

8 900 75 100 75

9 900 75 100 75

10 850 100 100 100

tant stones surrounding the muffle, grooves
are milled containing spirals of heat resis-
tant wires (Kanthal wire). A large electrical
current is sent through the Kanthal wires,
heating both the wires and the heat resis-
tant stones. Because of the high element
temperature, heat transfer between the
elements and the muffle will mainly occur
by radiation.

As mentioned before, the products are
heated up slowly by setting the element
temperature of every zone to a different
value. In order to get a homogeneous tem-
perature distribution in each cross section
through the muffle, the input power to the
four heating elements in each zone can be
controlled separately. For furnaces with a
belt width greater than 200 [mm] and a
high required temperature accuracy (abso-
lute accuracy about 2.5 [°C] or better), there
are three control units per heating zone,
which can be connected to the heating
elements in the two different ways shown

9



Chapter 1.

in Figure 1.7. Either the two side elements or the top and bottom element are controlled
by the same unit. In Table 1 the set temperature and the power distribution for every zone
used during a test measurement are given. In the furnace under consideration the two
side elements are connected to one control unit. Except for the somewhat low maximum
temperature (900 [°C]) the values are representative for a furnace operating in a produc-
tion process.

In order to get an impression of the product
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Figure 1.8. Temperature history measured by the
thermocouples.

temperature history, temperature measure-
ments were done in a newly built conveyor
belt furnace at Gemco, using the settings
given in Table 1. During this measurement,
the belt speed was 180 [mm/min], which is
a typical value for the belt speed in a con-
veyor belt furnace. In Figure 1.8 the
measured temperature history for a thermo-
couple in the middle of the belt is depicted.
The product temperature varies between 25
[°C] and 900 [°C]. From comparisons
between thermocouples divided over the
width of the belt, the temperature differ-
ences appeared to be a few degrees, causing
the bonding problems as explained earlier.

1.3 Model simplifications

Global heat transfer phenomena

As depicted in Figure 1.9, heat transfer will

Figure 1.9. Heat fluxes inside the muffle.

be caused by radiation, conduction and
convection through the medium inside the
muffle, as well as by conduction through
the belt with the products. Because of the
relatively low value of the belt speed,
forced convection induced by the movement
of the belt is assumed to be of minor influ-
ence on the heat transfer. However, natural
convection inside the muffle may be an
important effect disturbing the temperature
uniformity over the width of the belt. As

Figure 1.10. Expected convection pattern in a
cross-section of the muffle.

the belt with the products is cooler than the
muffle, a natural convection pattern as
depicted in Figure 1.10 is expected in a
cross-section of the muffle. The relatively
hot muffle will heat the medium near its
walls, causing the medium to get a lower
density. This will induce an upward flow
towards the top of the muffle, resulting in
two opposite rotating vortices in the region
above the belt. When flowing downwards
in the middle of the muffle, the medium
will be relatively hot, as it was heated while
streaming along the muffle walls. Flowing
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towards the sides of the muffle over the

Figure 1.11. Expected 3-D convection pattern
for a given axial temperature profile in the case
of relatively strong axial vortices.

relatively cold belt surface the medium will
be cooled because of convective heat fluxes
to the belt. As this convective heat transfer
is the strongest for large temperature differ-
ences between the belt and the medium, it
is expected to decrease towards the sides,
causing a non-uniform temperature at the
top surface of the belt. In the region below
the belt, Rayleigh-Bénard convection cells
are expected to appear. This convection
pattern may influence the temperature dis-
tribution of the bottom surface of the belt.
Temperature gradients in axial direction
will cause one or more axial vortices,
divided over the length of the muffle. It is
expected that the influence of these axial
vortices on the temperature uniformity over
the width of the belt is relatively weak
compared to the influence of the cross-sec-
tional vortices. In general, the combination of the axial and the cross-sectional convective
effects is difficult to sketch. If the axial effects are strong in comparison to the cross-
sectional effects, a pattern as indicated in Figure 1.11 is to be expected.

Next to convection, also radiative heat transfer from the muffle to the belt with products
will play an important role in the furnace problem. As high muffle temperatures appear,
radiative effects are supposed to be more important than convective effects. The effect of
radiation on the temperature uniformity is not obvious at first sight. Conductive heat
transfer through the belt with the products will probably have an equalizing effect de-
creasing the non-uniformity. The importance of this effect highly depends on the belt
properties.

Model choices

For modelling an industrial furnace several heat transfer phenomena have to be taken into
account. As a conveyor belt furnace has a relatively large length compared to its cross-
sectional dimensions, heat transfer effects in a cross-section are expected to be stronger
than axial effects. Therefore, it is assumed that a 2-D model is a suitable basis for calculat-
ing heat transfer effects in the furnace. The 3-D heat transfer effects can then be incorpor-
ated in the 2-D model as source terms, which sizes can be determined from measurements
in an experimental set-up. The advantage of such a model compared to a complete 3-D
model is that it serves better as a design tool, because a complete 3-D model including
radiation, convection and conduction will require a lot of computing power and time for
calculating a furnace problem.

In the cross-section of the muffle, there are two different geometries in which the heat
transfer has to be calculated. First there is the muffle geometry, in which a medium is
situated, which transports heat from the muffle walls to the belt surface by convection,
and through which radiation passes from the muffle walls to the belt surface. Based on the
dimensions of the muffle and on the occuring temperature gradients, the flow is assumed
to be laminar. Inside the muffle geometry the second geometry is situated, which is the
belt with the products. Heat is transported through this geometry by conduction, while it
is heated up in time. The two geometries are coupled by the heat transfer fluxes at the
surfaces of the belt and the products.

11
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Because of mechanical strength considerations, the muffle roof of an industrial conveyor
belt furnace will allways have a curved shape. The curved roof and the inclined belt with
products make the muffle geometry rather complex. A finite element approach is suitable
for calculating the flow phenomena in such complex geometries, because of its ability to
use unstructured and locally refined meshes. As the finite element method can also be
used for the conduction calculation in the belt with the products, the coupling between the
belt and the muffle geometry can easily be made. For calculating the radiation from the
muffle to the belt, a radiation model must be used. Also this radiation model should fit
within the finite element formulation. Such a radiation model is the discrete ordinate
method. The radiative phenomena are described mathematically in terms of differential
equations, which then can be discretized and solved using finite elements.

1.4 Outline of the thesis

As the main problem is temperature uniformity over the belt width, the project is divided
into three main parts. In order to understand the causes of the temperature differences,
first a numerical model is built for analysing the various heat fluxes inside the muffle. As
a standard finite element package including radiation was not available, a radiation model
based on the discrete ordinate method was programmed. This radiation model is com-
bined with the commercially available finite element package SEPRAN, which is mainly
designed for solving heat and flow problems. Because of the open structure of the package
it is very suitable for use in combination with self written routines, like the radiation
model in this case. The second main task is building an experimental set-up. This set-up
will be used to check the numerical model and some devised measures of improvement.
Therefore, the set-up must contain measuring equipment, and it must simulate important
aspects of a real conveyor belt furnace. With the experimentally validated program
measures for improving the temperature uniformity can be evaluated. As the model must
serve as a design tool, an important demand is to keep the model as simple as possible.
The third main task of the project is presenting an improved furnace design, suitable for
practical use.

In chapter 2 the radiation model is described. From the standard transport equation for
radiation intensity a special ’plane’ discrete ordinate model is derived for non-absorbing
media, which enables efficient radiation calculations in a furnace. Special attention is paid
to the complex boundary conditions, involving specular and diffuse reflections. In chapter
3 attention is paid to the complete furnace model. The Navier-Stokes equations for natural
convection in the medium and the transient conduction equation for the belt are derived.
The total structure of the furnace model shows the coupling between all the heat transfer
equations. At the end of this chapter some test results are shown. In chapter 4 the design
of the experimental set-up is described, together with the measurement strategy for model
validation and determination of 3-D effects. Chapter 5 contains an analysis of the furnace,
showing the measurement results, and an estimation of the 3-D heat transfer effects. At
last, the furnace design is optimized in chapter 6.

12



CHAPTER 2. RADIATIVE HEAT TRANSFER
In general, radiative heat transfer can be described by the transport equation for radiation
intensity. In order to solve this differential equation it is discretized using the discrete
ordinate method in combination with the finite element method. In this chapter first the
transport equation for radiative heat transfer is derived, after which it is discretized using
the discrete ordinate method. Special attention is paid to the treatment of the boundary
conditions. At last some numerical tests for the radiation model are shown.

2.1 The general transport equation for radiation intensity

Consider radiation with a spectral intensity

Figure 2.1. Radiation travelling over dis-
tance dS through volume dV of a medium.

equal to iλ(S) (with λ denoting the wavelength
dependency) travelling over a distance dS
through an absorbing, emitting and scattering
medium, as depicted in Figure 2.1. The decrease
of radiation intensity due to absorption over dis-
tance dS equals

with αλ(S) the medium absorption coefficient.

(2.1)diα ,λ αλ S iλ S dS ,

When the medium is in local thermodynamical
equilibrium, and ib,λ(S) is the medium black body
intensity, then the increase of radiation intensity
over distance dS by emission equals (Siegel and
Howell, 1992):

The radiation intensity along path coordinate S

(2.2)die ,λ αλ S ib ,λ S dS .

is decreased by an amount of radiation which is scattered out of the volume dV. It is also
increased by an amount of radiation intensity which is scattered into the volume dV along
S from the surrounding environment. The netto change of radiation intensity by scattering
therefore equals

In this equation, σs is the scattering coefficient and Φ(λ,ω,ωi) is the so called phase function

(2.3)dis ,λ σs ,λ S iλ S dS
σs ,λ dS

4π ⌡
⌠
4π

ωi 0

iλ S ,ωi Φ λ ,ω ,ωi dωi .

for scattering from solid angle ωi to solid angle ω. From the equations (2.1), (2.2) and (2.3)
the total change of radiation intensity along the curve coordinate S is determined to be

Equation (2.4) is known as the transport equation for radiation intensity. It is a so called

(2.4)
diλ

dS
αλ iλ S αλ i

b ,λ S σ
s ,λ iλ S

σs ,λ

4π ⌡
⌠
4π

ωi 0

iλ S ,ω
i

Φ λ ,ω ,ω
i

dω
i

.

"integro differential equation", as iλ is a part of the integral in the right hand side scatter-
ing term.

Grey and non-scattering media

For a grey, non-scattering medium, the medium properties are not wavelength dependent
and σs = 0 [m-1] (Siegel and Howell, 1992). The transport equation for radiation intensity
(2.4) reduces to

13
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with α the Planck mean absorption coefficient, defined as

(2.5)di S
dS

α ib S i S ,

In this equation the integrated black body intensity ib over all wavelengths is defined as

(2.6)
α

⌡
⌠
∞

λ 0

αλ ib ,λ dλ

ib

.

The transport equation for radiation intensity contains two unknowns, which are the

(2.7)ib ⌡
⌠
∞

λ 0

ib ,λ dλ σT 4

π
.

directional intensity i along S and the medium black body intensity ib. In order to solve
the unknowns an additional equation is required, which determines a relation between i
and ib. This equation is the energy equation of the medium.

2.2 The energy equation including radiative fluxes

The transient energy equation without viscous dissipation and including radiative fluxes
can be written as:

with ρ the density, cp the heat capacity, T the temperature and k the conduction coefficient

(2.8)ρc
p

DT
Dt

∇ k∇T q
rad

,

of the medium. The vector qrad represents the radiative heat flux and t denotes the time.
The divergence of the radiative flux equals

Integrating the transport equation for radiative intensity (equation (2.5)) over ω, and com-

(2.9)∇ q
rad ⌡

⌠
4π

ω 0

di
dS

dω .

bining the result with equation (2.9), yields

As the integrated black body intensity over all wavelengths is not dependent on ω, this

(2.10)∇ q
rad ⌡

⌠
4π

ω 0

α ib S i S ,ω dω .

equation simplifies to

with

(2.11)∇ q
rad

4πα ib i ,

Substituting the expression for in the energy equation, (2.8) can be written as

(2.12)i
1

4π ⌡
⌠
4π

ω 0

i ω dω .

∇ q
r

which gives the required relation between i and ib. For problems involving only radiation,

(2.13)ρc
p











∂T
∂ t

u ∇T ∇ k∇T 4πα i
b

i ,

the equation reduces to
(2.14)ib i .
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Radiative Heat Transfer.

2.3 The discrete ordinate method

In the previous section, the transport equation for radiation intensity was derived. This
equation describes the change of radiation intensity along a certain path length through
the medium. As radiation travels along a path in space in any direction, the number of
directions in which the radiation intensity can be derived is infinite. In order to calculate
an intensity distribution, only a discrete number of directions is solved, and the radiation
intensity is discretised over this set of directions (ordinates). This way of discretisation is
known as the discrete ordinate method.

For a non-scattering, grey medium equation (2.5) holds

In a general coordinate system, this equation is written as

(2.5)di S
dS

α ib S i S .

with the direction vector. For a 3-D Cartesian coordinate system, this direction vector is

(2.15)ζ ∇ i α i i
b

.

ζ
derived in appendix 1. This transport equation for radiation intensity can be solved using
the discrete ordinate method. The hemispherical solid angle is discretized into M ordi-
nates, each having a typical number m and a corresponding solid angle ωm. The orienta-
tion of ordinate m is determined by the corresponding direction vector ζm. The intensity in
ordinate m, im, is supposed to be constant inside the solid angle ωm. The transport equation
for radiation intensity for ordinate m is now derived by integrating (2.15) over the solid
angle ωm. Then after rearranging the terms in the equation one finds

with equal to

m = 1 .. M (2.16)ξ
m

∇ im α im ib ,

ξ
m

Equation (2.16) forms a set of M equations with M + 1 unknowns. However, combined

m = 1 .. M (2.17)ξ
m

ω 1
m ⌡

⌠
ωm

ζdω .

with the energy equation and the Navier-Stokes equations a solvable set of equations is
formed. This can be used to solve the intensities, the velocities and the temperatures.

Plane discrete ordinate method with α = 0

The muffle of an industrial conveyor belt furnace is usually filled with nitrogen, which is a
non absorbing nor scattering medium. Therefore in a real furnace a situation with α = 0
and σs = 0 occurs. For this situation, the discrete ordinate equations (2.16) are simplified to

Remember that though no radiation is absorbed or emitted by the medium, there is still

m = 1 .. M (2.18)ξ
m

∇ im 0.

radiative transfer between the furnace walls and the different objects in the furnace.
Though equation (2.18) looks very simple, the complexity of the radiation problem is
mainly determined by the boundary conditions at the walls, which will be discussed later.

As mentioned in section 1.3, a 2-D (two-dimensional) cross-sectional model is preferred for
calculating the heat fluxes in the furnace. As radiation is in principle always 3-D, it cannot
just be solved as a 2-D phenomenon. However, by taking into account some conditions, a
semi 2-D approach can be used in solving the radiation problem, which is from now on
referred to as a plane radiation approach.
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Plane radiation problems consist of radiation in infinitely long tubes, where the radiation

Figure 2.2. Radiation in an infinitely long muffle.

intensity does not vary in axial direction. As mentioned, the muffle is a relatively long
tube compared to its cross-sectional dimensions, and a semi 2-D approach is used for the
radiation problem in the muffle. The radiation problem in an infinitely long muffle is
depicted in Figure 2.2. As in axial direction no variations in cross-sectional shape and
boundary conditions occur, the radiation intensity that is sent out from the line a-b is con-
stant.

In the case of a real furnace, the muffle

Figure 2.3. Plane ordinate inside the 2-D muffle
geometry.

contains a non absorbing medium, and
therefore, the radiation intensity remains
constant while passing through the
medium. All the radiation originating from
line a-b falling on point A is enclosed by a
circle segment as indicated in Figure 2.2.
This implies that the incident radiation in
that circle segment at point A is constant.
Therefore the ordinates in a plane radiation
approach can be shaped as depicted in
Figure 2.3. The ordinates are numbered
from m = 1 .. M. The azimuthal angle ϕ in
the cross-sectional plane must be discreti-
zed, while the polar angle ϑ is integrated
from 0 to π [rad].

In Figure 2.4 a 2-D representation of plane
ordinates in the muffle geometry is shown.
Plane ordinates can be defined by a direc-
tion vector ζm and two bounding vectors ζm

+

and ζm
-. The radius of the segments drawn
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in the figure can be used as a measure for

Figure 2.4. Two-dimensional representation of a
plane ordinate in the muffle.

the radiation intensity in that direction.

When the set of discrete ordinates used is
known, the integration in equation (2.17)
can be carried out. The results for a general
3-D ordinate and for a plane ordinate as
used in the furnace are shown in appendix
2.

2.4 Boundary conditions

Since the discrete ordinate equations are
first order linear differential equations, only
one boundary condition along a path
coordinate S in direction ζm is needed. As
boundary condition, for each ordinate m the
intensity is prescribed at the walls where
direction ζm is originating from. The intensity coming from a wall consists of emitted and
reflected intensity. The emitted radiation from a wall depends on the wall temperature.
The reflected intensity at a wall depends on the intensity field inside the medium and the
reflective properties of the wall.

General radiation behaviour at walls

Consider a certain amount of radiative

Figure 2.5. Incident radiation at a wall.

intensity iin incident to a wall. The radiation
will partly be absorbed or reflected at the
wall, and partly be transmitted through the
wall, as depicted in Figure 2.5. The part of
the radiation which is absorbed equals

with αw the absorption coefficient of the

(2.19)iaw

αw iinw

,

wall, and the intensity of the incidentiinwradiation at the wall. For a wall reflection
coefficient ρw the reflected part of the radi-
ation intensity equals

The transmitted part at last equals

(2.20)irw

ρw iinw

.

with τw the transmission coefficient of the wall. As the incident radiation to a wall will be

(2.21)itw

τw iinw

,

either absorbed, reflected or transmitted, the following relation for the coefficients always
holds

For an opaque wall there will be no transmission, hence τw = 0. All incident radiation will

(2.22)αw ρw τw 1.

be either absorbed or reflected, and equation (2.22) reduces to

The wall will also emit a certain amount of radiation, which equals

(2.23)α
w

ρ
w

1.
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If the wall is a grey body in thermodynamic equilibrium, then

(2.24)iew w ibw

.

The general equations derived in this section will be used to determine the boundary

(2.25)α
w w

.

conditions for the discrete ordinate equations. Therefore the equations need to be discre-
tized over the discrete ordinate directions. For example the emitted intensity from a wall
depends on the emission coefficient of the wall, as given in equation (2.24). Assuming
diffuse emission, the emitted intensity from wall w is equal in all outgoing directions m’,
and can be calculated directly from equation (2.24) for each incoming ordinate m:

The reflection at the walls is more complicated and is treated in the next section.

m’ = 1 .. M (2.26)iew ,m w ibw

σ w T 4
w

π
.

Reflection at the walls

Introduction

With the reflection coefficient ρw at the wall the reflected intensity for every incoming
ordinate m can be derived as in equation (2.20), giving:

In general the reflection characteristic of a wall is a mixture of partly specular and partly

m = 1 .. M (2.27)irw ,m

ρw iinw ,m

.

diffuse reflection, as depicted in Figure 2.6. Therefore, the reflected intensity into an
outgoing ordinate m’ depends on reflective properties of the wall.

Furthermore, the reflected intensity depends on the orientation of the wall with respect to

Figure 2.6. Specular, diffuse and mixed reflection against a wall.

the set of ordinates. Some ordinates will only partly fall in to the wall, as depicted in
Figure 2.7. From these ordinates a smaller amount of energy falls in to the wall than from
completely striking ordinates. As this amount of energy is not neccessarily reflected to an
equally sized outgoing ordinate, the intensities cannot be used directly in the calculations.
One has to calculate the amount of incoming energy to the wall from every ordinate, and
divide this energy over the outgoing ordinates, while taking into account the reflective
properties of the wall. For dividing the energy over the reflected ordinates, several coeffi-
cients must be defined.
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The boundary coefficients

Figure 2.7. Parts of an ordinate that are
incident to and coming from wall w.

As mentioned, in the discrete ordinate method
the hemispherical solid angle is divided into M
solid angles ωm, and the amount of incoming
intensity from a solid angle to a wall depends on
the orientation of the solid angle to that wall. In
Figure 2.7 a 2-D projection of an ordinate m
falling in to wall w is depicted (see also
Figure 2.4). The part of the solid angle that falls
in to the wall is defined as the boundary coeffi-
cient cw,m of the wall and that solid angle. There-
fore, the part of the energy in the ordinate that
falls in to the wall equals cw,m, and the part that
does not hit the wall equals 1 - cw,m. The deriva-
tion of the boundary coefficients is explained in
more detail in appendix 3.

The mirror coefficient of a wall

For characterisation whether a wall is specularly or diffusively reflecting, a mirror coeffi-
cient sw is defined. This coefficient is equal to the part of the energy that is reflected
specularly at the wall. The reflected energies from an incoming ordinate m can then be
derived as

The reflected energy from ordinate m can in turn be calculated using the wall reflection

m = 1 .. M (2.28)qr ,specm

sw qrm

,

m = 1 .. M (2.29)qr ,difm

1 sw qrm

.

coefficient. Analogous to equation (2.20) it follows that
m = 1 .. M (2.30)qrm

ρw qm .

Calculation of the reflected intensity

The reflected intensity to ordinate m’ is calculated by dividing the reflected energy by the
solid angle ωm’ corresponding to ordinate m’

The reflected energy to ordinate m’ can be calculated by summation of all specularly and

m’ = 1 .. M (2.31)irm

qrm

ωm

.

diffusively reflected energies from all incoming ordinates m

The specularly and diffusively reflected parts originating from ordinate m were already

m’ = 1 .. M (2.32)qrm

M

m 1

qr ,specm→m

qr ,difm→m

.

calculated using the equations (2.28) and (2.29). In order to determine how these parts are
divided over the reflected ordinates m’, two additional coefficients are defined, so that

The coefficients depend on the boundary coefficients. The derivation of

m , m’ = 1 .. M (2.33)q
r ,specm→m

c
spec ,wm→m

q
r ,specm

,

m , m’ = 1 .. M (2.34)qr ,difm→m

cdif ,wm→m

qr ,difm

.

cspecw ,m→m

and cdifw ,m→m

these coefficients is explained in appendix 4. Combining the equations (2.28) to (2.34), the
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reflected intensity to ordinate m’ can be derived.

For an evenly divided ordinate set, ωm’ = ωm and so it follows that

m’ = 1 .. M (2.35)
irw ,m

ρw

M

m 1

cspecm→m

sw cdifm→m

1 sw qm

ωm

.

m’ = 1 .. M (2.36)irw ,m

ρw

M

m 1

cspecm→m

sw cdifm→m

1 sw im .

2.5 Finite element model

As the discrete ordinate equations are differential equations, they can be solved using the
finite element method. The geometry is divided into a certain number of elements. In the
SEPRAN package (Segal, 1995) various standard elements are available, like linear and
quadratic, square and triangular, and upwind elements. For approximating the integrated
equations over the elements, a choice can be made between several numerical integration
rules, like Newton-Cotes or Gauss schemes. For complex geometries the use of triangular
elements is the most practical because of their high geometrical flexibility. In general it is
not neccessary to use the same element mesh for the flow and the radiation problem.
However, for simplicity in the present study all the equations are solved on the same
mesh, using the same element density. As in the Navier-Stokes equations the derivative of
the pressure is one degree less than those for the velocity, at least quadratic elements are
preferred for solving the flow. For linearization of the Navier-Stokes equations Newton
iterations are used. The solution is calculated by the penalty function method in combina-
tion with Crouzeix-Raviart elements (Cuvelier, 1986).

In the case that a combined convective/radiative problem is calculated, also for the radi-
ation problem quadratic triangles are used. When only solving a radiation problem, one
can also choose for linear elements. For the radiation problem, the choice whether or not
to use upwind elements depends on the geometry, as will be shown in section 2.6. Also in
this section the relation between the number of ordinates for discretizing the radiation and
the mesh density will be mentioned, as well as the choice for the numerical integration
scheme.

2.6 Numerical tests

Radiation between two infinite plates

As a first test case, the radiation problem

Figure 2.8. Radiation between two infinite pla-
tes.

between two infinite parallel plates is consi-
dered. The exact solution for the energy
transfer between the plates is (Siegel and
Howell, 1992)

with q the heat flux between the plates, T1

(2.37)q
σ T 4

2 T 4
1

1
1

1
2 1

,

and T2 the plate temperatures and 1 and 2

the emission coefficients of the plates. Using
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the radiation model, this problem can be calculated as a cavity with mirroring side-walls.

Table 2. Exact and calculated values for the heat flux between two infinite plates.

1 2 qexact

[W/m2]
qcalculated

[W/m2]

1.0 1.0 1.7425565 103 < 1.7425572 103 .. 1.7425546 103 >
0.75 1.0 1.3069174 103 < 1.3069180 103 .. 1.3069062 103 >
0.5 1.0 8.7127827 102 < 8.7127816 102 .. 8.7127875 102 >
0.25 1.0 4.3563913 102 < 4.3563913 102 .. 4.3564070 102 >
0.75 0.5 7.4680994 102 < 7.4689697 102 .. 7.4677029 102 >
0.5 0.5 5.8085218 102 < 5.8093657 102 .. 5.8076863 102 >
0.25 0.5 3.4851131 102 < 3.4856724 102 .. 3.4837574 102 >

By placing two mirrors ( w = 0 [-] and sw = 1 [-]) opposite to each other an infinite
geometry is created (Figure 2.8). Several calculations have been performed with T1 = 200
[°C] and T 2 = 100 [°C], using different values of the emission coefficients. In all the calcula-
tions, the geometry was divided into 236 quadratic triangular elements, resulting in a total
of 513 nodal points. The radiation was discretized using 128 ordinates. For all the calcu-
lations the energy fluxes through the plates were calculated to be constant over the plate
width, as could be expected from the symmetrical character of the problem. The calculated
and exact values for several situations are given in Table 2. For the calculated heat fluxes
two values are given, which are the values obtained at the two different walls. These
values differ because of truncation errors when the desired relative accuracy of 10-5 is
reached. The solution for 1 = 2 = 0.5 [-] is also plotted as the solid line in Figure 2.9. As
can be seen in the table, a very good agreement is reached between the numerical radi-
ation model and the exact solutions. Therefore it can be concluded that the implemen-
tation of the radiation model with the mirroring and diffusively reflecting walls can be
trusted.

Specular versus diffuse reflection

The difference between specular and diffuse

0 0.2 0.4 0.6 0.8 1
490
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570
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mirroring sides

diffuse sides

Figure 2.9. Heat flux through the plates for
diffuse (dashed) and specular reflecting side-
walls (solid).

reflection can be shown using the same
geometry as above, but with the mirroring
side-walls replaced by diffuse reflectors
( w = 0 [-] and sw = 0 [-]). For a situation
with 1 = 2 = 0.5 [-] the calculated heat
flux between the plates lies between 490
and 523 [W/m2], as shown in Figure 2.9.
The graph shows erratic values at the cor-
ner points of the cavity (x = 0 and x = 1).
This occurs since the surface normal, which
is used in the calculation of the heat flux, is
undefined in a corner point. Therefore the
values of the heat flux in the corners cannot
be trusted. The flux is not constant over the
plate width any more, which is expected
since a diffuse reflector does not give a
symmetric boundary condition like the
mirror did. Furthermore, the heat flux values are lower than the value found with mirror-
ing side-walls. This can be explained because opposite to the mirroring side-walls, the
diffusely reflecting side-walls directly reflect radiation to the originating wall. So the hot
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wall gets more radiation back, and the cold

Figure 2.10. Furnace geometry and element
mesh used in the radiation calculations.

wall will get less radiation. Therefore the
heat flux between the walls is lower with
diffusely reflecting side-walls.

Number of ordinates versus mesh
density

For solving the discrete ordinate equations,
both a discretisation in space and in solid
angle have to be made. In this section it is
investigated whether the degrees of refine-
ment of both discretisations are coupled. To
this end, a pure radiation problem in the
furnace geometry is considered. As the
furnace contains a non-absorbing medium, a
pure radiation problem is solved using the
discrete ordinate equations (2.18) in combi-

nation with the reduced energy equation

Figure 2.11. Calculated mean intensity fields for 32, 64 and 128 discrete ordinate directions.

Figure 2.12. Direction ζm hitting a corner of the
belt.

(2.14). The furnace geometry is symmetrical,
so only half of the domain is calculated. The
calculation domain is depicted in
Figure 2.10. The walls on the left hand side
(dashdotted line) are modelled as perfect
mirrors in order to prescribe symmetrical
boundary conditions. The geometry was
divided into 891 quadratic triangular
elements, which is also shown in
Figure 2.10. All the walls except the sym-
metrical boundaries are modelled as black
absorbers. The muffle walls were set to 400
[°C] and the belt was set to a uniform tem-
perature of 100 [°C].

The radiation problem was solved using 32,
64 and 128 discrete ordinate directions. In
Figure 2.11 for the three cases the mean
intensity (equation (2.12)) is plotted, which
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was simply calculated by adding up all directional intensities and dividing them by the
total number of directions. As the heat fluxes at the walls are also calculated by adding
the directional intensities, the averaged intensity field is comparable to a heat flux. As can
be seen in the figure, only the calculation with 128 directions gives a smooth solution
field, while for less directions oscillations appear.

The appearance of oscillations can be explained as follows. When calculating the intensity
field in ordinate m, boundary conditions are prescribed on the walls radiation is coming
from. For ordinate m as defined in Figure 2.12, these are the hatched walls. The intensity
originating from the cold walls of the belt is lower than the intensity that is coming from
the hot muffle walls. For directions that hit the inner facing corner of the belt, like direc-
tion ζm in Figure 2.12, in the part of the geometry at the left hand side of line A-B-C the
intensity im will be determined by a cold wall of the belt, while in the part at the right
hand side of the line the intensity is determined by the hot muffle walls. On line B-C the
intensity field contains a discontinuity. The exact solution field for ordinate m is depicted
in Figure 2.13. As the mean intensity fields

Figure 2.13. Exact solution for the intensity in
direction ζm.

shown in Figure 2.11 have been calculated
by averaging the discontinuous intensity
fields for all ordinates, the discontinuities in
the ordinate intensities will show up as
waves in the mean intensity field along all
the ordinates used in the calculation. The
more ordinates are used, the smaller the
influence of one single discontinuous sol-
ution will be, and the smoother the mean
intensity field will be.

The number of ordinates neccessary for
calculating smooth average intensity fields
depends on the mesh density. First of all,
when the oscillations are smaller than the
element width, they cannot appear in the
finite element solution. Therefore, oscilla-
tions are avoided when the number of ordi-
nates is so large that the maximum distance
between two neighbouring ordinates con-

Figure 2.14. Global dimensions for calculating
the theoretical minimum number of ordinate
directions.

taining discontinuities is less than the width
of one element in every position of the
mesh. As the distance between two ordi-
nates increases for an increasing path length
through the medium, the maximum dis-
tance between ordinates appears at the
maximum path length. For the mesh used
in the furnace calculations, the maximum
distance the rays travel is from the upper
right corner of the belt to the upper left cor-
ner of the muffle. The maximum distance
between the discontinuities occurs in the
upper left corner. When ∆ϕm equals the
angle width of one ordinate, the distance
between two neighbouring ordinates equals
∆ϕm Smax (Figure 2.14). For the distance ap-
proximately being equal to the width of an
element ∆xel, the number of ordinates is
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found from:

For the mesh used in the furnace calculations (Figure 2.10), the value for M equals 212. As

(2.38)M
2π

∆ϕm

≈
2πSmax

∆xel

.

can be seen in Figure 2.11, already 128 ordinates appeared to be enough to calculate a
smooth solution.

The fact that the number of ordinates needed in practice is smaller than the theoretical
amount of equation (2.38), can be explained as follows. When solving the discrete ordinate
equations using the finite element method, the solution fields may contain discontinuities
as shown in the exact solution. However, on a mesh with a finite number of elements a
discontinuity will be smeared out over some region. How much the discontinuity is
smeared out depends on the integration and discretization schemes used in the calcula-
tion. Various discretization schemes have been investigated in literature (Liu, Becker and
Pollard, 1996). An upwind discretization scheme will smear out the discontinuity over a
relatively large distance, while a scheme without upwind will give a better approximation
of the exact solution. Also a finer mesh or a higher order integration scheme will give a
better approximation of the discontinuous solution. The integration scheme used also
depends on the type of elements used. A Newton Cotes integration scheme in combina-
tion with quadratic elements causes a singular matrix (see appendix 5), but the more accu-
rate Gauss integration scheme gives no problems. The effect of smearing out discontinu-
ities will have a decreasing influence on the appearance of waves in the mean intensity
fields. Test calculations show that the minimum required number of ordinates is about
half the theoretical number, derived in (2.38). Therefore, for the radiation problem in the
furnace, the mesh of Figure 2.10 is chosen to be combined with 128 ordinates.

Radiation in concave geometries

In literature, several discretization schemes are used in combination with the discrete
ordinate method (Liu, Becker and Pollard, 1996). From this study it appears that for
concave geometries an upwind scheme must be used to avoid oscillations in the solution
field around inner facing corners. The furnace geometry is typically a concave geometry
because of the inner facing belt. The need for upwind elements is demonstrated by calcu-
lating a typical radiation problem in the furnace geometry. All walls are considered black
surfaces, and the muffle temperature is set to 200 [°C] while the belt is set to 100 [°C]. The
same mesh as in Figure 2.10 is used for the calculations. In Figure 2.15 and Figure 2.16 cal-
culated solutions along an ordinate are shown. The solution in Figure 2.15 was calculated
using standard (no upwind) elements, while the solution in Figure 2.16 was found using
streamline upwind/Petrov-Galerkin elements (Brooks and Hughes, 1982), which are
standard available in the SEPRAN package.

As seen, the solution field calculated without upwind elements contains a lot of oscilla-
tions, while the upwind solution is far better. The appearance of oscillations for non-up-
wind elements can be explained as follows. When calculating the intensity field in ordi-
nate m, boundary conditions are prescribed on the walls where radiation is coming from.
For an ordinate m these are the hatched walls in Figure 2.12. If ordinate m hits an inner
facing corner of the geometry, like a corner of the belt as depicted in Figure 2.12, then on
the line A-B two boundary conditions are prescribed. Since the discrete ordinate equations
are first order differential equations, only one boundary condition must be prescribed for
calculating the solution along an ordinate. The second boundary condition therefore
causes the oscillations (see also appendix 6). In an upwind scheme the downstream bou-
ndary condition will get a low weight, causing the solution to be mainly determined by
the upstream one. Still the upwind solution shows one oscillation near the discontinuity.
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This will always appear because the finite element method is not capable of representing
the exact solution, which is discontinuous as already mentioned in the previous section.

Figure 2.15. Solution calculated using standard
elements.

Figure 2.16. Solution calculated with upwind
elements.
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CHAPTER 3. THE FURNACE MODEL
Heat transfer in conveyor belt furnaces can be split into two basic phenomena. First of all,
there is the heat transfer from the muffle to the belt with the products, which consists of
radiation, conduction and convection through the medium inside the muffle. The second
phenomenon is conduction through the belt and the products. Radiative heat transfer has
already been dealt with in chapter 2. In order to describe the other phenomena appearing
in the furnace their governing equations are described in the first sections of this chapter.
In later sections, the coupling between the several phenomena and the structure of the
furnace model are explained.

3.1 Governing equations

Radiation and energy transfer

The equations for radiation and energy transfer have already been discussed in the previ-
ous chapter. For the radiative transport the discrete ordinate equations for a non-absorbing
medium will be used, which were derived to be

For non-absorbing media, the absorption coefficient α = 0 and the general energy equation

m = 1 .. M (2.18)ξ
m

∇ i
m

0.

(2.13) reduces to

(3.1)ρcp











∂T
∂ t

u ∇T ∇ k∇T .

The Navier-Stokes equations for natural convection

The flow inside the furnace can be described by the Navier-Stokes equations. For calculat-
ing natural convection, the Boussinesq approximation is a very common method used in
literature (Oberbeck, 1888). However, because temperature differences inside the muffle
are relatively large, use of the Boussinesq approximation is not allowed and a fully tem-
perature-dependent approach must be followed (Gray and Giorgini, 1976). The set of
equations consists of the conservation laws for mass and momentum, given by

The second term in the left hand side of the momentum equation (3.3) can be written as:

(3.2)∂ρ
∂ t

∇ ρu 0 ,

(3.3)∂ ρu

∂ t
∇ ρu u ∇p ∇ η∇ u ρg .

By combining equation (3.4) with the momentum equations, while also substituting the

(3.4)∇ ρu u u ∇ ρu ρu ∇ u .

continuity equation, equations (3.2) and (3.3) can be reduced to:

As all the material parameters in the equations are in principle temperature-dependent, a

(3.5)ρ










∂u

∂t
u ∇ u ∇p ∇ η∇ u ρg .

coupling exists between the Navier-Stokes equations and the energy equation. Natural
convection is therefore caused by gradients in material parameters throughout the
medium.

27



Chapter 3.

Conduction through the belt

Like for the medium, also for the belt an energy equation can be derived. As the belt is
made of steel, no convective or radiative heat transfer will occur, and a transient energy
equation involving only conductive heat transfer remains:

In this equation ρb is the density, cp,b is the heat capacity and kb is the conduction coeffi-

(3.6)ρ
b
c

p ,b

∂Tb

∂ t
∇ k

b
∇T

b
.

cient of the belt. All these parameters are assumed to be temperature independent, which
is a good assumption for a metal belt.

3.2 Heat fluxes at the walls

Because the belt is heated up by radiative and convective heat fluxes coming from the
medium, the transient conduction equation for the belt (equation (3.6)) is coupled to the
radiation and convection equations for the medium (equations (2.18), (3.1) and (3.5)).
Therefore, the radiative and convective heat fluxes at the belt surface must be calculated
from the radiation and convection solutions in the medium.

The radiative heat flux

For determining the energy flux through an

Figure 3.1. Incident solid angle dω on a
surface dA.

infinitesimally small surface dA on a wall, the
projection dAp of dA viewed from the solid angle
dω has to be determined. In Figure 3.1 the differ-
ential surfaces and the solid angle have been
depicted. The dimensions of dAp equal:

From this the area dAp equals

(3.7)dx
p

dxsin ϕ , dy
p

dysin ϑ .

The incident radiative power Qrad,in in [W] can be

(3.8)dAp sin ϕ sin ϑ dA .

found by integrating the incident radiation in-
tensity over the solid angle dω, giving:

The incident energy flux qrad,in of the wall then

(3.9)Qrad , in ⌡
⌠
ω

iinw

dAp dω .

equals:

As in the discrete ordinate method the solid angle is divided into M ordinates, each with a

(3.10)qrad , in

Q
rad , in

dA ⌡
⌠
ω

iin

dA
p

dA
dω .

constant intensity im, the integral can be written as a summation of integrals over each
solid angle ωm, giving

The solid angle dω as depicted in Figure 3.1 equals

(3.11)qrad , in

M

m 1

iinm ⌡
⌠
ωm

dAp

dA
dω .
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and for plane ordinates as depicted in Figure 3.2

Figure 3.2. Plane ordinate at a wall.

(3.12)dω sin ϑ dϕdϑ ,

then holds 0 ≤ ϑ ≤ π and (ϕm
- - ϕw) ≤ ϕ ≤

(ϕm
+ - ϕw). From the combination of equations

(3.11) and (3.8) it follows that

The net radiative heat flux is calculated by sub-
(3.13)

qrad , in

π
2

M

m 1

iinm

cos ϕm ϕw cos ϕm ϕw .

traction of the incident flux from the emitted
heat flux:

If the dimensionless energy flux is defined as

(3.14)q
rad ,net

q
rad,e

q
rad,in

σT 4 q
rad , in

.

then the dimensionless energy flux can be calculated as

(3.15)q
q

σ∆TT 3
0

,

with

(3.16)qrad ,net

T 4

∆TT 3
0

1
2

M

m 1

iinm

cos ϕm ϕw cos ϕm ϕw ,

(3.17)iinm

π iinm

σ∆TT 3
0

.

The convective heat flux

The convective energy flux near a wall can be calculated using Fourier’s law.

with dT/dn|w the temperature gradient perpendicular to the wall. Using the dimensionless

(3.18)qc , in k
∂T
∂n w

,

heat flux as given in equation (3.15), the dimensionless energy flux by convection is
derived to be

(3.19)qc , in

k

σLT 3
0

∂T

∂n
.

Total heat flux

In order to calculate the total amount of heat added to the products or the belt in a
time-step ∆t the total amount of incident energy per unit length at a wall has to be calcu-
lated according to:

(3.20)Qin ⌡
⌠
x

qrad ,net qc , in dx .
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3.3 Non-dimensionalization

The total system of equations involving radiative, conductive and convective heat transfer
inside the furnace medium is given by the set of equations (3.2), (3.3), (2.13) and (2.5). For
the belt, the transient conduction is described by equation (3.6). These equations can be
written in nondimensional form using the following variables:

The nondimensional set of equations for the medium now becomes:

(3.21)
u

u

U
, t

t
τ

, p
p ρ0 Lgy

ρ0 U 2
, g

g

g

∇ L∇ , i
π

σ∆TT 3
0

i , T
T T0

∆T
.

For the belt, the nondimensional energy equation is

(3.22)Sr
∂ ρ/ρ0

∂ t
∇











ρ
ρ0

u 0 ,

(3.23)ρ
ρ0











Sr
∂u

∂ t
u ∇ u ∇ p

1
Re

∇ η
η0

∇ u
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The nondimensional numbers used in the equations are defined as:
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with Re the Reynolds number, Pr the Prandtl number, Pe the Péclet number, Sr the Strou-
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hal number, Fr the Froude number, Fo the Fourier number and N a conduction-radiation
parameter. N depicts the relative importance of conductive to radiative energy transport
through the medium. For a non absorbing medium, this parameter approaches infinity.
Then the last term in the energy equation vanishes, and the coupling via the medium
between the radiation and the energy equation also disappears. However, the equations
are still coupled via the boundary conditions at the walls. For a non-absorbing medium
the equations (3.24) and (3.25) simplify to
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For a typical furnace problem as described in this study, the air temperatures can vary
between 20 [°C] and 400 [°C] (see also Figure 3.8). The width of the muffle is used as
reference length L, which is 344 [mm]. The value for the characteristic velocity U is set to
10-2 [m/s], which is the typical order of magnitude of the velocities occuring by natural
convection. The value for the characteristic time τ = 104 [s], which is the typical heating
time for the belt. For the temperature ranges corresponding to two time levels in
Figure 3.8 (t = 2000 [s] and t = 6000 [s]), the non-dimensional ratios appearing in the
Navier-Stokes and the energy equations for the medium are given in the following table.

The coefficient in the buoyancy term of the Navier-Stokes equation (Fr-1 (ρ-ρ0)/ρ0) can get

Table 3. Typical values for the non-dimensional numbers in the furnace for a temperature history
as in Figure 3.8.

Non-dimensional
number

t = 2000 [s] Tmuffle ≈ 80 [°C],
Tbelt ≈ 20 [°C].

t = 6000 [s] Tmuffle ≈ 380 [°C],
Tbelt ≈ 280 [°C].

Sr ρ/ρ0 4.2 10-3 4.1 10-3

Re-1 η/η0 5.4 10-3 1.6 10-2

Fr-1 (ρ - ρ0)/ρ0 7.0 103 6.2 103

Sr (ρ cp)/(ρ0 cp,0) 4.1 10-3 4.0 10-3

Pe-1 k/k0 7.4 10-3 2.2 10-2

Gr 1.8 108 2.0 107

relatively large, which points to strong buoyant effects. These occur utmost in the low
temperature range, due to the material properties of air. As the flow may be unstable, it is
expected that for low temperatures the Navier-Stokes solver will require small time steps
in order to calculate an accurate flow field. For the region above the belt, a comparison is
made to Henkes (1990) who calculated natural convection in a square cavity at different
Ra numbers, with Ra = Gr Pr. Here Ra is the Rayleigh number and Gr the Grashof num-
ber, which is also given in Table 3. It can be simply derived that the buoyancy term used
in this study for a linearly temperature-dependent density equals

From this equation Gr can be calculated, which corresponds to Gr ≈ 2 108 [-] for the low

(3.30)
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Re 2
.

temperature range and Gr ≈ 2 107 [-] for the high temperature range. Remark that these
values are independent of the chosen U-value. As Pr = O(1), also the Rayleigh number
will be O(108) for the low temperature range. As determined by Henkes (1990) the flow in
a square cavity tends to get unstable from this point. Although the situation in the furnace
is slightly different from the situation in a square cavity, it is expected that also in the
furnace the flow can get nearly unstable in the low temperature range. The Rayleigh-
Bénard cells below the belt tend to get unstable from RaD ≈ 5 104 [-], with RaD based on
the diameter D of the cells. In the furnace, D equals the space below the belt (≈ 20 [mm]).
In the low temperature range, RaD nearly gets 5 104 [-], and the flow below the belt can
get nearly unstable as well. Therefore, in the furnace model a very small timestep is taken
for the flow calculation in the low temperature range.

For τ = 104 [s] the coefficient 1/Fo in the transient conduction equation for the belt equals
2.8 [-]. As 1/Fo = Sr Pe, also for the air a Fourier number can be calculated. For the typical
furnace problem of Figure 3.8, 1/Foair varies between 0.1 [-] and 0.6 [-]. This shows that
transient temperature fluctuations are weaker in the belt than in the medium. Therefore,
for the conduction calculation in the belt a larger timestep can be used.
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3.4 Marching procedure

In a real furnace, a 3-D heat transfer problem

Figure 3.3. Dividing the furnace problem
in a finite number of timesteps (marching
procedure).

occurs. However, calculating 3-D heat transfer
involving radiation, conduction and convection
in a furnace is very complex and costs a lot of
computing time and memory storage. As the
muffle is a tube with a relatively large length
compared to its cross-sectional dimensions, and
as the axial temperature varies smoothly, heat
transfer in a zone may be assumed to be nearly
2-D. In that case a 2-D model can be used to
calculate the heat transfer in a cross-section. The
temperature history of the products can then be
calculated using a so called marching procedure.
The furnace is marched through in a finite num-
ber of time-steps as depicted schematically in
Figure 3.3. For each time-step the temperature,
velocity and intensity fields are calculated in a
2-D cross-section. Then the heating rates for the
belt and the product are calculated in order to
determine their new temperatures. These new temperatures serve as input for the 2-D
calculation at the next time-step, when the products and the belt have moved further into
the furnace. The axial temperature profile of the muffle is taken into account by updating
the boundary conditions for the muffle in each time-step. Additionally, 3-D heat transfer
effects, as will be determined in chapter 5, determine extra source terms in the governing
equations.

In Figure 3.4 the structure of the numerical model is depicted schematically. At the begin-
ning of the calculation, the muffle, the medium and the belt are in an initial state, which
determines the boundary conditions at time t0. Using these boundary conditions, the
discrete ordinate equations are solved to calculate radiative heat fluxes to the belt, while
the convective heat fluxes are calculated by solving the Navier-Stokes equations and the
energy equation. The boundary conditions for the discrete ordinate equations consist of
emitted and reflected radiation intensities at the walls. As the reflected intensities depend
directly on the incident intensities, they have to be calculated iteratively. Therefore,
solving the discrete ordinate equations for given wall temperatures requires an iteration
loop in which the reflection boundary conditions are updated. The numerical time-step
suitable for solving the transient Navier-Stokes and energy equations may not be the same
as the time-step used in the total marching procedure (∆t). Therefore, one marching
time-step contains a time-loop in which the Navier-Stokes and the energy equations are
solved. The calculated heat fluxes to the belt serve as boundary conditions for a transient
conduction calculation for the belt. Just like for the Navier-Stokes and the energy equa-
tions, the time-step for this transient calculation is smaller than the marching procedure
time-step, and an inner time-loop is used. At this point, the temperature field of the belt at
t + ∆t is calculated. Furthermore, the muffle temperature follows a certain profile in time,
and has changed over the timestep ∆t. Using the new surface temperatures of the muffle
and the belt, and the new velocity field for the medium, the boundary conditions for the
discrete ordinate equations and for the Navier-Stokes and the energy equations are
updated. Then the calculation of the next marching time-step ∆t can start.
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The time-loop runs until the total amount of time which should be calculated is reached.

Figure 3.4. Flowchart of the furnace model.

When calculating a steady situation, the boundary conditions are kept at a determined
level from a certain time-step, and the calculation will run until the difference between
subsequent solution fields has become negligible.

3.5 Numerical tests

Boussinesq versus fully temperature-dependent approach

As mentioned in section 3.1, the Boussinesq approximation is not valid for solving natural
convection in the furnace. In order to get an idea of the error in the Boussinesq solution,
the flow field in a typical cross-section of the muffle was calculated using both the Bous-
sinesq approximation and the completely temperature-dependent solver. The Boussinesq
equations can easily be derived from the temperature-dependent equations ((3.22) to
(3.24)) by setting all material properties to a constant value, except for the density in the
gravity term of the Navier-Stokes equation (3.23). In the calculations a steady situation
was considered with the muffle temperature put equal to 400 [°C] and with an assumed
uniform belt temperature of 250 [°C].

In Figure 3.5 the streamlines of the flow inside the muffle calculated with the two different
approaches are depicted. The solid lines correspond to the temperature-dependent sol-
ution, whereas the dashed lines depict the Boussinesq solution. As can be seen, differences
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occur in the two velocity fields, as could be

Figure 3.5. Comparison between Boussinesq
(dashed) and temperature-dependent (solid)
solutions.

expected because of the high temperature
differences inside the muffle.

For the furnace model it is important to
know whether the two methods also give
different results for the heat fluxes to the
belt. In Figure 3.6 the calculated heat fluxes
using the two methods are given. As can be
seen, the heat flux calculated with the Bous-
sinesq approximation is lower than the heat
flux calculated with the temperature-depen-
dent model. The relative difference between
the heat fluxes is graphed in Figure 3.7, and
appears to vary between 3% at the middle
of the belt and about 2% near the side.
These differences are not very high, but are
not always negligible for critical production
processes. As it also costs hardly any extra
computing time, the full temperature-de-
pendent approach will be used in the fur-
nace model.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
150

200

250

300

350

400

width position [m]

he
at

 f
lu

x 
[W

/m
2 ]

Boussinesq

temperature dependent

Figure 3.6. Convective heat fluxes to the belt
with products for the two different approaches.
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Example of a furnace calculation

In this section a real furnace problem is
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Figure 3.8. Muffle temperature profiles, and
measured (dashdot) and calculated (solid) plate
temperature profiles.

calculated. In order to be able to compare
the numerical results with a measurement,
the prescribed muffle temperature profile in
the calculation is equal to the measured
temperature profile in the middle of the
bottom of the muffle for measurement set 2
(see section 5.2). This temperature is rela-
tively low compared to the muffle tempera-
tures elsewhere in the muffle cross-section,
but as the differences between the muffle
temperature profiles are small, it is used as
uniform muffle temperature in the calcula-
tion. Following this temperature profile the
muffle is warmed from room temperature
to a temperature of 400 [°C] with a ramp
rate of 5 [°C/min], as show in Table 6 in
section 5.2. The properties of the muffle and the plates are given in appendix 7. By assum-
ing symmetry in the middle of the muffle, only half the furnace has to be calculated. The
half muffle geometry is divided into 3387 quadratic triangular elements, and the half belt
is divided into 700 elements. For the marching procedure 100 time-steps are used, with
each timestep divided into 3000 smaller time-steps for solving the Navier-Stokes equa-
tions. The temperature profiles of the product plates are calculated. In Figure 3.8 the
muffle temperature history is plotted, together with the calculated and measured tempera-
ture histories of the product plate in zone 2. As can be seen in the figure, the measured
and calculated temperature profiles of the plates agree quite well. In the measurement the
plate heats up slightly faster than calculated. This can be explained because the muffle
temperature in the measurement varies as a function of the cross-sectional position, while
in the calculation a uniform (and relatively low) muffle temperature is prescribed.

In Figure 3.9 and Figure 3.10 the calculated temperature fields for the medium in the
muffle are given at t = 2000 [s] and t = 6000 [s]. Both time levels are also indicated in
Figure 3.8 by solid vertical lines, to show the positions on the temperature profile.

From the contour plots for the medium temperature it follows that the largest temperature
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 Figure 3.9. Temperature contour lines for the air
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gradients occur near the side of the product plate. The shape of the contour lines below
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the product plate is caused by Rayleigh-Bénard convection, which gets less strong at
higher temperatures, as also follows from the difference between Figure 3.9 and
Figure 3.10. The contour lines near the top surface of the product plate are approximately
parallel to the plate surface, which indicates that temperature gradients in width direction
near the plate surface are relatively small.

In Figure 3.11 and Figure 3.12 the contour plots for the temperature of the product plate at
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Figure 3.11. Temperature contour lines for the belt at t = 2000 [s]
(level 1, T = 25.20 [°C] and level 21, T = 26.45 [°C]).

0.00 0.12

2 3 4 5 6 7 8 9 10 12 15 18 20

 
Figure 3.12. Temperature contour lines for the belt at t = 6000 [s]
(level 1, T = 279 [°C] and level 21, T = 292 [°C]).

t = 2000 [s] and t = 6000 [s] are depicted. The pattern of alternately occuring high and low
temperatures in the central part of the belt at t = 2000 [s] is caused by the Rayleigh-Bénard
convection. This is a very small effect, but it is visible in the contour plot because at this
time the temperature in the central part of the belt is quite uniform. At t = 6000 [s] the
influence of the heat fluxes from the side overrule the Rayleigh-Bénard effect, and the
temperature gradients in the belt are much larger.
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Figure 3.13. Calculated temperature differences
compared to the middle of the belt.
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36



The Furnace Model.

In Figure 3.13 the temperature differences over the width of the belt compared to the
temperature in the middle are plotted as a function of time. In the figure there are five
graphs. The two lowest graphs correspond to positions of thermocouples in the experi-
mental set-up (respectively 55 and 110 [mm] from the middle of the belt), and can there-
fore also be compared to measurements. The three higher graphs correspond to positions
further to the side of the belt, being 138, 156 and 166 [mm] from the middle. The last point
corresponds to the outer corner of the belt. As expected the temperature differences
increase for positions further towards the side of the belt. The maximum temperature
differences occur at t = 5900 [s]. In Figure 3.14 the calculated and measured temperature
differences over the width of the belt are compared. The calculated temperature differ-
ences are plotted as dashdotted lines, and the measured temperature differences are
plotted as solid lines. Since only half the furnace is considered (due to the assumption of
symmetry), there are only two calculated temperature difference profiles, one for the outer
and one for the inner thermocouple position. However, in the measurement the tempera-
ture distribution over the belt width was found to be non-symmetric. This is caused by a
temperature difference between the left and the right side of the muffle. Therefore, four
measured graphs are presented. The two lowest graphs correspond to the inner thermo-
couples, and the two highest graphs correspond to the outer thermocouples. As can be
seen in the figure, a good agreement is reached between the model and the measurement.

It can be concluded that a 2-D model has been developed which is capable of calculating
the temperature differences over the width of the belt with satisfactory accuracy. As it is a
2-D model, the influence of 3-D heat transfer effects will be analyzed in the next sections.
Also the model is quite complex. Because of the large amount of time-steps necessary for
calculating the flow phenomena the calculations cost a lot of computing time. Therefore, in
the next sections further simplifications of the model will also be investigated, in order to
make a design tool for fast furnace calculations.
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CHAPTER 4. THE EXPERIMENTAL SET-UP
The experimental set-up has to serve two purposes. First the heat transfer phenomena
inside the muffle must be analysed to validate the numerical model. Information is needed
whether the flow inside the muffle is quasi-steady and symmetric, so that the used Navier
Stokes solver is suitable for calculating the flow in the muffle. Besides, it has to be investi-
gated whether the numerically predicted vortex structures actually appear inside the
muffle. The second purpose of the experimental set-up is the determination of 3-D heat
transfer effects. As these effects are taken into account separately in the numerical model
by using source terms, an estimation of these effects is needed.

4.1 Design aspects

In order to validate the numerical model and to estimate 3-D effects, an experimental set-
up is designed in which air temperatures as well as surface temperatures of the muffle
and the belt with products can be measured. For investigating the flow properties, visual-
ization is a suitable and very percepting technique. Therefore, a flow visualization system
is designed. For determining 3-D effects the set-up must be capable of simulating both 2-D
and a 3-D situations.

Muffle geometry

Because of cost limitations, the muffle is

Figure 4.1. Cross-sectional dimensions of the
muffle.

made of steel 310. Compared to the nickel-
chromium alloy used in industrial conveyor
belt furnaces, steel 310 is a lot cheaper, but
also less temperature resistant. However, it
can still be used for temperatures up to 600
[°C], which is assumed to be high enough
for investigating the desired phenomena.
Furthermore, the amount of zones is also
limited due to cost aspects and the available
electrical power in the laboratory. Hence, a
length of 3 zones is chosen for the test-rig.
The zones have equal dimensions as in a
real furnace, with a length of 300 [mm] and cross-sectional dimensions as depicted in
Figure 4.1. Also the heating elements and the insulation package surrounding the muffle
are the same as in an industrial conveyor belt furnace. The muffle temperatures for each
zone are controlled using 3 PID controllers, one for the top, one for the bottom and one
for the two sides. Using these controllers the muffle can be heated up smoothly to a
certain set point temperature. They also can be configured to heat up the muffle with a
user chosen ramp-rate, being the amount of degrees centigrade per minute temperature
rise. The determination of the control parameters is discussed in section 4.3.

Because of the relatively short length of the muffle, the orifices at the ends could disturb
the flow and temperature in the muffle much more than in a real conveyor belt furnace. In
order to be able to prescribe a well defined situation in the muffle, the muffle ends will
therefore be closed using so called ’head sides’. These are two heated plates that both have
an own controller in order to prescribe their temperature. Because the muffle ends are
closed, a conveyor belt cannot be used in the set-up. Therefore, the conveyor belt will be
simulated as described in the next section.
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Simulation of the belt speed

In a real conveyor belt furnace, the axial

Figure 4.2. Short test-rig ’walking along’ a real
conveyor belt furnace.

muffle temperature profile is prescribed by
the different zone temperatures, as depicted
by the (T,x)-graph in Figure 4.2. In order to
create a certain product temperature his-
tory, the belt with the products is transpor-
ted through this temperature profile while
being pulled through the muffle. As a con-
veyor belt system is very expensive, and
also the in- and outlet orifices would dis-
turb the situation inside the muffle too
much because of its short length, in the test-
rig the conveyor belt is simulated in a
special way. Instead of pulling a belt along
a temperature profile, in the test-rig a tem-
perature profile is pulled along the belt,
while the belt is kept at a steady position.
This is realized by varying the muffle temperature of the furnace in time, so that at each
moment the axial temperature profile Tset-up(t) in the test-rig equals a part of the total
temperature profile of the real furnace at position xset-up(t) (Figure 4.2). In this way the belt
and the products get the same temperature history as they would have in a real furnace.

By simulating the conveyor belt as described above, a cheaper and better conditionable
test-rig can be built. However, the method of belt simulation causes an extra problem. In a
conveyor belt furnace used in an industrial environment, the belt speed is usually about
180 [mm/min], and the axial temperature gradient between neighbouring zones can be
about 150 [°C]. For a zone width of 300 [mm] a temperature gradient in time (ramp rate)
of 90 [°C/min] is obtained for the belt with the products. In order to create an equivalent
situation in the experimental set-up, the total test-rig must be heated with the same ramp
rate. This costs a lot of extra energy, since in the test-rig not only the belt with the prod-
ucts is heated. Also the muffle and the heating elements with the stones and the insulation
package need to be heated, which all have a large heat capacity. Therefore the maximum
possible ramp rate for the test-rig is probably much lower than the value obtained in a
real furnace. In order to deal with this difference, the influence to the heat transfer will be
analysed, and consequences with respect to the conveyor belt used in the test-rig will be
determined.

Temperature differences between the muffle and the belt with products cause heat transfer
in the furnace. As the temperature differences between the muffle and the belt or plates
must be the same for the real furnace and for the test-rig, also for both situations the heat
transfer must be the same. In a real furnace the heat transfer between the muffle and the
belt is in equilibrium with the transient heating of the belt. Assuming that heat transfer
between the muffle and the belt is pure radiative, this means that

In this equation b and Ab are the emission coefficient and the heat exchanging surface of
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the belt respectively. F is a configuration factor, Tm and Tb are the muffle and belt tempera-
tures, mb is the mass and cp,b the specific heat capacity of the belt. For the test-rig, an
equivalent equilibrium exists, and a similar relation can be derived. In order to be able to
vary properties in an easy way, the belt of the real furnace is modelled by product plates
in the test-rig. These are steel plates with similar dimensions as the original belt, but with
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a thickness which will be determined by the heat transfer phenomena. The heat transfer
equation for the test-rig becomes

with subscript p denoting the plate properties. For an equivalent situation in the test-rig
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,

compared to the real furnace, Tp and Tb should be equal all the time. From a combination
of the equations (4.1) and (4.2) it follows that

where the configuration factor F has been assumed to be equal for both situations because
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of the almost equal dimensions of the belt and the plates. As both the plates and the belt
are made of some kind of steel, the values for the specific heat capacities can be assumed
to be approximately equal. However, a conveyor belt used in practice has a larger heat
exchanging surface due to its woven structure, which will also cause radition to be
absorbed more effectively. Therefore, it can be posed that

with ζ > 1. The woven structure of a real

(4.4)A b ζ A p ,

Figure 4.3. The woven structure of the conveyor
belt.

conveyor belt is depicted in Figure 4.3. The
spacing between the wires (d) is about equal
to the wire diameter (about 3 [mm]). There-
fore, the heat exchanging surface of a con-
veyor belt equals about twice the surface of
a flat plate. Furthermore, radiation will be
absorbed better because of the open struc-
ture. As the absorption coefficient of the
belt material lies between 0.4 and 0.6 [-], an
increase in absorption with a factor 1.5
looks reasonable. Therefore, the value of ζ
is estimated to be equal to 3. With the value
of 90 [°C/min] in mind, the ramp rate for
the test-rig is estimated to be one tenth of this value. Combining this with equation (4.3), it
follows that mp ≈ 3 mb. The belt mass is about 2 [kg/zone], which would result in an equi-
valent plate mass of 6 [kg/zone]. A steel plate of approximately 8 [mm] thick would be
sufficient, but available steel plates of 9 [mm] thick were used. With a measurement it will
be tested whether approximately equal temperature differences occur in the test-rig as in
the real furnace.

A remaining difference between the product plates and a real conveyor belt is the heat
conduction inside the plate or the belt. As the plates are made of solid material, and the
belt has a woven structure, the heat conduction coefficient is probably larger for the plates
than for the belt. This will result in lower temperature differences over the width of the
plate than would occur when using a real conveyor belt. However, the plates satisfy for
testing the numerical model, because one can also model a solid plate instead of a con-
veyor belt. As an extra benefit the conduction coefficient of a solid plate is better deter-
mined than for a woven structure like the conveyor belt. Comparisons between the nume-
rical model and the set-up will therefore be made using solid product plates. Calculations
for lower conduction coefficients, as valid for a real conveyor belt, can always be done
afterwards.
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Steady experiments

In a steady experiment, the belt plates have

Figure 4.4. Construction of a düsenfeld.

to be cooled in order to prevent them from
heating up due to the higher muffle tem-
perature. Therefore, for steady experiments
the belt plates are replaced by so called
’düsenfelds’. A düsenfeld is constructed as
shown in Figure 4.4. It consists of a closed
box, containing a plate with an array of
small holes. By blowing compressed air
through a pipe that is connected to the
bottom compartment of the düsenfeld, the
bottom compartment is set to high pressure.
Because of the high pressure air is blown
through the plate with the holes, and a jet
array is created that cools the top plate of
the düsenfeld. This top plate is the substitute for the belt surface in the set-up. The com-
pressed air is drained away through two additional pipes that are connected to the top
region of the düsenfeld.

Axial temperature gradients

As the furnace model used is a 2-D model, the heat transfer effects in the muffle are
theoretically split into 2-D effects, occuring in a cross-section of the muffle, and in 3-D
axial heat transfer effects. The 2-D effects depend on cross-sectional temperature gradients,
which are local temperature differences between the muffle and the belt. These tempera-
ture differences mainly depend on the belt speed in a real furnace. So realistic 2-D heat
transfer effects can be simulated in the test-rig by using an equivalent heating ramp rate in
the experimental set-up as described in the previous section. The 3-D heat transfer effects
represent the heat transfer between the belt and neighbouring zones, and are determined
by axial muffle temperature gradients. Therefore, 3-D effects are expected to be indepen-
dent of the belt speed or the ramp rate. Equivalent 3-D heat transfer effects as in a real
furnace can be simulated in the test-rig by prescribing the same axial temperature gradient
between neighbouring zones. As the test-rig contains the same type of elements and the
same zone dimensions as a real furnace no problems are expected in realizing this axial
gradient.

Measurement methods

Temperature measurements

In the test-rig both air temperatures and surface temperatures have to be measured. When
validating the numerical model, measured surface temperatures of the muffle are used in
the model to prescribe the boundary conditions. The calculated air and surface tempera-
tures of the product plates are then compared to the values measured in the experiment.
Because of the high temperatures that can occur in the test-rig, all temperatures are
measured using thermocouples. The surface temperatures are measured using 35 type K
thermocouples, which are welded to the muffle and plate surfaces at positions as depicted
in Figure 4.5. In the middle zone (zone 2) the largest number of thermocouples is situated,
as for this zone the measurements will be compared to the numerical model. To measure a
temperature profile, each muffle wall of zone 2 contains three thermocouples. As the tem-
perature differences over the width of the product plate are of main interest, five thermo-
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couples are distributed over the width of

Figure 4.5. Positions of the type K thermocou-
ples for measuring surface temperatures.

Figure 4.6. Construction of a type S thermocou-
ple used for air temperature measurements.

the plate in zone 2. The thermocouples in
the other zones and on the head sides are
used to measure the axial temperature gra-
dient. Therefore, one thermocouple per
muffle wall is enough for zone 1 and zone
3. The temperature of each head side is
measured using three thermocouples. The
exact positions of all these termocouples are
given in appendix 8.

In zone 2 also the air temperatures are
measured. This is done using 11 type S
thermocouples, which are carried by a
frame to hold them at certain positions in
the middle cross-section of the muffle (exact
positions are given in appendix 8). The
reason for choosing type S instead of type K
thermocouples is the lower emission coeffi-
cient. During a measurement, radiation
from the hot muffle walls will give the
thermocouples a higher temperature than
the temperature of the air surrounding
them. In order to decrease this disturbing
effect, the emission coefficient of the
thermocouple material must be as low as
possible. Furthermore, using small thermo-
couples will also decrease this effect. There-
fore the type S thermocouples are produced
from 0.1 [mm] thick thermocouple wires,
which are carried by thicker wires that are
connected to a frame. The construction of
such a thermocouple is given in Figure 4.6.
More detailed information about the dimen-
sioning of these thermocouples is given in
Limpens (1997).

Flow visualization

In order to investigate the flow phenomena inside the muffle a flow visualization system
was designed. With this system the flow phenomena in the middle cross-section of the
muffle can be visualized by using smoke and a light sheet. The global construction of the
visualization system is given in Figure 4.7. The muffle was made optically accessible in the
middle of zone 2 by making a gap in the insulation package and the heating elements at
both sides of the furnace, and by installing quartz windows in the side-walls of the muffle.
Using two light sources, a light sheet is created in the middle cross-section of the muffle.
Smoke is injected through two injection pipes. To study the flow behaviour of the smoke
in the middle of the furnace, a system of lenses is installed in one head side of the muffle.
Smoke was chosen to visualize the flow, because it follows the air flow at the expected
flow velocities (a few centimeters per second) very well, and also because it is very easy to
inject into the furnace. After injecting smoke into the muffle, one has to wait a certain
amount of time until the injection disturbances have damped out. Therefore, the smoke
must stay visible long enough. Tobacco smoke appeared to be the best suitable for use in
visualization experiments because it is very well temperature resistant, and because it
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remains visible for a long time. By using a camera and a video recorder the flow behav-
iour can be recorded. More details about the design of the system of lenses and the rest of
the test-rig can be found in Verhaar (1999).

Figure 4.7. Visualization system for investigating flow patterns in the muffle.

4.2 Measurement strategy for determining 3-D effects

In order to determine the 3-D heat transfer

Figure 4.8. Time shift between two tempe-
rature profiles at one position of the muffle,
obtained in a 2-D and a 3-D experiment.

effects, a comparison is made between a transi-
ent 3-D measurement and an equivalent 2-D
measurement. In a 3-D measurement the furnace
is heated up with a specific ramp rate and with
a certain axial temperature gradient over the
zones. The equivalent 2-D measurement has the
same ramp rate, and exactly the same muffle
temperature history for the thermocouples in
zone 2 as the 3-D measurement. The only differ-
ence is that in the 2-D measurement no axial
temperature gradients occur. Because the muffle
temperature history in zone 2 for both measure-
ments is the same, differences in the plate tem-
perature histories in zone 2 can only be caused
by 3-D effects. By comparing the plate tempera-
ture histories of both measurements, the influ-
ence of 3-D heat transfer effects is determined.

As mentioned above, the muffle temperature his-
tories of zone 2 in a set of measurements (a 3-D
measurement and an equivalent 2-D measure-
ment) must be equal. The two measurements are
always done at different moments in time.
Besides, for a 3-D measurement a different start-
up strategy is being used as for a 2-D measure-
ment. Usually the two measurements are per-
formed on separate days, at about the same clock time. The time shift between the mea-
surements is defined as the clock-time difference on separate days. Two typical tempera-
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ture profiles for a 2-D and a 3-D measurement at one position in the muffle are given at
the top in Figure 4.8. As can be seen, the temperature histories are shifted about 4000 [s]
in time. Also, the time shift is equal to 4000 [s], while the time delay between the mea-
surements is several days plus 4000 [s]. In order to determine whether two temperature
histories fit, the time shift between the time histories is calculated as function of time. This
time shift is then plotted in a so called shift graph, as seen at the bottom in Figure 4.8.
When the two temperature histories fit, the time shift is constant over time. However,
when one of the temperature profiles contains a horizontal part, the time shift in this part
is undetermined. As the furnace temperature profiles always start and end with a horizon-
tal slope, the time shift can only be accurately determined in between the dashed horizon-
tal lines in Figure 4.8. As can be seen in the shift graph, in this example two temperature
profiles were used, which are shifted approximately 4000 [s].

For each measurement set the time shifts for
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Figure 4.9. Temperature history for zone 2 in
the 3-D experiment.

0 3600 7200 10800 14400 18000
20

40

60

80

100

120

140

160

180

200

220

time [s]

T
em

pe
ra

tu
re

 [°
C

] product plate
muffle

Figure 4.10. Temperature history for zone 2 in
the 2-D experiment.
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Figure 4.11. Time shift graphs for zone 2.

all muffle temperature histories in the 2-D
and in the 3-D measurement must be
checked to be constant and equal. Only
when all temperature histories of the ther-
mocouples in zone 2 have an equal and
constant time shift, the measurements can
be used to determine 3-D effects. In order to
check whether it is possible to make an
equivalent 2-D measurement for a certain
3-D measurement, a test with the experi-
mental set-up was done with a set point of
200 [°C] and a ramp rate of 3 [°C/min]. The
axial temperature gradient in the 3-D meas-
urement was created by switching on the
neighbouring zones of the furnace
subsequently, with time intervals of 20 minutes. In this way, an axial temperature gradient
of about 60 [°C/zone] is expected. The temperature histories for both measurements are
given in Figure 4.9 and Figure 4.10. As can be seen in the figures, the muffle was heated
up in about an hour and a half, and differences between the muffle temperatures during
one measurement remained low, which indicates a uniform muffle temperature at every
moment. Also the heat capacity of the product plates appeared to be large enough to
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create a significant temperature difference between the plates and the muffle. The plates
were heated up in about 4 hours.

The time shift graphs for the thermocouples

Figure 4.12. Free space between the muffle and
the heating elements.

in zone 2 are depicted in Figure 4.11. As
can be seen, between 1000 [s] and 4000 [s]
the graphs are approximately horizontal, so
the separate temperature histories for the
thermocouples in zone 2 are comparable
during this period. However, the time shift
for the top temperature histories appears to
differ from the shifts for the sides and the
bottom. This is caused by a higher top tem-
perature in the warming-up traject of the
3-D measurement, as can be seen also in
Figure 4.9. Therefore the measurements are
not completely equivalent, and cannot be
used for determination of 3-D effects. For
creating an equivalent set of measurements
a higher top temperature in the 2-D experi-
ment is necessary.

The higher top temperature occuring in the 3-D measurement can be explained from a
difference in 3-D radiative heat transfer from the heating elements to the outer muffle sur-
face. This 3-D radiative heat transfer is stronger for the top because the free space between
the top elements and the top of the muffle is larger than the free space between the sides
and the muffle, as shown in Figure 4.12. At the bottom the support stones will also block
3-D radiative transfer, giving less 3-D effects than at the top.
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Figure 4.13. Temperature differences between
the top thermocouples and the other muffle
thermocouples in zone 2.
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Figure 4.14. Time shift graphs for zone 2 with a
preheat for the 2-D measurement of 20 [°C].

As mentioned above, it is necessary to have an increased top temperature of the muffle in
the 2-D measurement in order to create a set of two comparable measurements. This is
realised by preheating the top of the muffle at the start of the 2-D measurement. The
amount op preheat is determined from the 3-D measurement, which therefore always has
to be done first. For the 3-D measurement shown above the temperature difference
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between the top control thermocouple and the other control thermocouples in zone 2 are
graphed in Figure 4.13. As can be seen in the figure, the differences are maximum at the
start of the measurement, measuring 25 [°C] for the top-bottom difference and about 18
[°C] for the top-side differences. From this result, the top preheat for the equivalent 2-D
measurement must be chosen between 18 [°C] and 25 [°C]. A value of 20 [°C] was chosen
for the preheat, and a new 2-D measurement was done. The time shifts between this
measurement and the 3-D measurement are presented in Figure 4.14. The time shifts for
zone 2 are now all within a much narrower band. Only for one bottom thermocouple a
time shift value is found which is a bit higher than the other shift values. However, the
other bottom thermocouple shifts appear to be relatively low compared to all the other
shifts (they are in the low region of the band). Therefore, it can be concluded that there is
no valid indication that the bottom temperature histories for the two measurements are
significantly different. The measurement set seems to be good enough for being used to
investigate 3-D heat transfer effects.

4.3 Determination of the control parameters

In this section the heating up of the furnace

Figure 4.15. Power output for the proportional
controller action.

is studied. This is done to predict a certain
temperature history for given values of the
control parameters. Also suitable values of
the control parameters are determined, so
that the furnace temperature reaches the set
point in a smooth way.

The electrical power a PD controller puts to
the heating elements is calculated as

with Qel the electrical power, Tset the set

(4.5)Q
el

K
p

T
set

T
m

K
p
τ

d

∂
∂t

T
set

T
m

,

point temperature, Tm the actual (measured)
temperature, Kp the proportional action, and
τd the differentiation time of the controller.
This power is constrained by zero and a
certain maximum value.

Figure 4.16. Simplified model for the heat trans-
fer in the furnace.

The proportional action is defined as

(4.6)0≤Qel ≤Qmax .

with Tp the proportional band. This is in

(4.7)Kp

Q
max

Tp

,

fact the offset from the set point tempera-
ture over which the output power is
proportionally varied from maximum to
zero, as given in Figure 4.15. The propor-
tional band and the differentiation time are
control parameters to be set by the user. In
order to determine suitable values for the
control parameters, a simplified model of
the furnace has been made.
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In the simplified model, the insulation package, the heating elements, the muffle and the
belt are all treated as isothermal bodies with a certain mass and heat capacity. The heat
fluxes between these bodies are given in Figure 4.16, where Qb-∞ equals the heat flux from
the belt to the environment of the furnace by cooling, and Qs-∞ is the heat loss from the
insulation package to the environment. The transient energy equations for the accompany-
ing bodies are now given by

In these equations el denotes the electrical

Figure 4.17. Global dimensions of the insulation
package.

(4.8)mcp el

∂Tel

∂t
Qel Qel m Qel s ,

(4.9)mc
p m

∂Tm

∂t
Q

el m
Q

m b
,

(4.10)mcp s

∂Ts

∂t
Qel s Qs ∞ ,

(4.11)mcp b

∂Tb

∂t
Qm b Qb ∞ .

heating elements, m denotes the muffle, s
denotes the stones and insulation package, b
denotes the belt and ∞ denotes the environ-
ment. The heat loss from the heating
elements to the insulation package is caused
by conduction. Taking the temperature at half of the thickness of the insulation package as
the characteristic insulation package temperature, this heat flux equals

In this equation, Tout is the outer surface temperature of the furnace, and ks, As and h are

(4.12)Qel s

ks As

1

2
h

Tel Ts .

the conduction coefficient, the inner surface area and the thickness of the insulation pack-
age respectively. As and h can be determined using the global dimensions given in
Figure 4.17, while ks is known from material properties to equal approximately 0.26
[W/m K].

The heat loss from the insulation package to the environment is caused by natural convec-
tion. It can be calculated as

with hc the heat transfer coefficient and Aout the outer surface area of the furnace. A linear

(4.13)Qs ∞ hc Aout Tout T∞ ,

temperature in the insulation package is assumed, causing the temperature difference
between Ts and the outer surface temperature Tout of the furnace to be equal to the differ-
ence between Ts and Tel. Hence, for the outer surface temperature holds

The heat fluxes between the heating elements, the muffle and the belt are assumed to be

(4.14)Tout 2Ts Tel .

purely radiative. If the elements, the muffle and the belt are treated as black bodies, then
the heat fluxes can be calculated as

(4.15)Q
el m

σA
m

T 4
el

T 4
m

.

(4.16)Qm b σAb T 4
m T 4

b .

48



The Experimental Set-up.

The equations (4.8) to (4.16) form a coupled system of differential equations, describing the
temperature history of the heating elements, the muffle and the belt as function of their
physical properties and the control parameters.

In order to determine suitable values for the control parameters an estimation of all
physical properties has been made. The necessary surface area’s are found to equal

The value of hc for the natural convection

(4.17)Am 1.0 m 2 , Ab 0.3 m 2 , As 1.53 m 2 , Aout 2 m 2 .

Figure 4.18. Construction of the heating ele-
ments.

from the furnace outer surface to the envi-
ronment is assumed to equal 10 [W/m2 K].
Furthermore, for all the components, an
estimation of the mass and heat capacity
can be made based on their global dimen-
sions. The heating elements consist of
winded Kanthal wire, which is embedded
in heat resistant stones as depicted in
Figure 4.18. The stones serve as a heat
equilibrating system, and also form a large
part of the insulation package of the fur-
nace. Therefore the stones have a very low
thermal conductivity (0.26 [W/m K]), and
only a small layer of the stones will heat up
to the temperature of the Kanthal wires. In
the model, this layer is modelled as the
heating elements, while the rest of the
stones is modelled as insulation package. As
the spacing between the grooves in the
stones equals 18 [mm], the heating element
layer of the stones is assumed to be 9 [mm] wide, as hatched in Figure 4.18.

Some global dimensions of the heating elements are given in Table 4. From these dimen-
sions mcp of the heating elements for all the zones can be calculated, which equals mcp for
the Kanthal wire plus mcp for the stones. For the Kanthal wire holds a density ρwire = 7100
[kg/m3] and a heat capacity cp,wire = 460 [J/kg K], and thus, mcp for the total wire length of
217.05 [m] equals

The stones have a density of ρstone = 721

(4.18)mcp wire
≈2227 [J/K] .

Table 4. Global heating element properties.

Element lgroove

Dcore

lwire

dwire

Top 3400 [mm]
12 [mm]

29.70 [m]
2 [mm]

Bottom 3400 [mm]
12 [mm]

29.70 [m]
2 [mm]

Sides 3740 [mm]
12 [mm]

12.95 [m]
2 [mm]

[kg/m3] and a heat capacity cp,stone = 1100
[J/kg K]. The value of mcp is then equal to

Adding the values for the wire and the

(4.19)mcp stone
≈6649 [J/K] .

stones, it is found that

The part of the stones that is not incorpor-

(4.20)mcp el
≈8876 [J/K] .

ated in the heating elements is treated as
insulation package. Using the same material
properties as above, the mcp for this insula-
tion package is calculated to equal approxi-
mately
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The muffle is made of steel, having a den-

Figure 4.19. Global dimensions of a düsenfeld.

(4.21)mcp s
≈200000 J/K .

sity of ρm = 7817 [kg/m3] and a heat capac-
ity equal to cpm = 461 [J/kg K]. The global
cross-sectional furnace dimensions are given
in Figure 4.17, and from these, the cross sec-
tional area of the muffle is calculated to
equal Acm = 3.07 10-3 [m2]. Then over the
heated length of l = 0.9 [m], (mcp)m can be
calculated as

In the experiments to be done, the belt is

(4.22)mcp m
ρcp m

Acm l≈9.9 103 J/K .

replaced by düsenfelds, which are also
made of steel, just like the muffle. With the
global dimensions given in Figure 4.19, (mcp)b for the total amount of three düsenfelds is
calculated to equal approximately

Most experiments are done with the air cooling for the düsenfelds turned off, so Q b-∞ = 0.

(4.23)mcp b
≈7.0 103 J/K .

Now all the physical parameters in the model equations are known. After some numerical
tests with the model for various values of the control parameters, it is found that a smooth
temperature history from room temperature to 200 [°C] can be realized within an hour
when Tp = 20 [K] and τd = 500 [s].

A test with the experimental set-up was
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Figure 4.20. Measured temperature history for
the middle zone.

done using these values for the control
parameters for all controllers. The furnace
appeared to heat up smoothly to the set
point of 200 [°C]. Only the head sides of the
furnace appeared to heat up slower than the
zones, and also not to reach the set point,
which must be caused by a larger heat loss
to the environment and less powerfull heat-
ing elements. A smaller value for Tp will
divide the maximum amount of output
power over a smaller temperature range
(Figure 4.15), and will therefore give better
results in reaching the set point. Also a
smaller value for τd will give a faster heat-
ing rate. Therefore, for the controllers of the
head sides values of Tp = 3 [K] and τd =250
[s] were chosen. For these settings, the measured temperature history for the middle zone
is shown in Figure 4.20. As can be seen, the sides and the bottom have a common tem-
perature history without overshoot or oscillations, which means that the estimated control
parameters are suitable for these controllers. The top has a small overshoot, which indi-
cates that a higher value for τd is required. Hence, a value of 600 [s] is chosen for the top
elements.
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4.4 Test measurements

Test measurements for the type K thermocouples

The type K thermocouples used for the measurements of the surface temperatures are all
taken from one batch of thermocouple wire. Therefore only the first and the last part of
the wires are tested to agree with the standard thermocouple relations from Burns et al.
(1993). It is assumed that all the thermocouple faults lie in between the faults of the first
and the last part. As test measurements the temperature of melting ice and boiling water
are determined.

The theoretical value of the boiling point of

Table 5. Calibration measurements for the type K
thermocouple wire.

First
part

Last
part

Theoretical
value

Ice -0.23 -0.20 0.00 [°C]

Boiling
water

100.11 100.06 99.48 [°C]

water was determined at an environmental
pressure of 748,8 [mmHg]. As can be seen
in Table 5, an absolute accuracy of about
0.5 [°C] can be achieved using the relations
from Burns et al. (1993). The relative accu-
racy is much better (< 0.1 [°C]), which is
more important for determining tempera-
ture differences. This is satisfactory accord-
ing to the demands. Therefore, these rela-
tions will be used for the type K thermo-
couples during the measurements.

Steady temperature measurements in the furnace

In the furnace two types of thermocouples are used. The type K thermocouples are used to
measure wall temperatures of the muffle and the düsenfelds. These thermocouples are
connected to an electronic ice point thermocouple reference. For measuring the air tem-
peratures type S thermocouples are used. These are positioned on a frame inside the
furnace to measure the air temperatures at 11 points in the middle cross-section of the
muffle. In order to check the consistency of the two types of thermocouples, the following
test has been carried out.

The furnace was heated to 200 [°C], and kept steady at this temperature for about 5 hours.
After this period of time, the whole muffle with the inclined air is in a steady situation
with all temperatures at about 200 [°C]. In Figure 4.21, both the measured wall and air
temperatures are shown. As can be seen

Figure 4.21. Measured surface temperatures of
the muffle and the düsenfelds.

from the figure, the muffle temperatures are
all between 198 and 200 [°C]. The type S
thermocouples for determining the air tem-
peratures were calibrated to give a maxi-
mum of 1 [°C] inaccuracy in the range of 20
to 600 [°C]. Therefore, from Figure 4.21 it
can be concluded that at a temperature level
of 200 [°C] the temperatures measured by
the type S thermocouples are about 1 or 2
[°C] lower than the temperatures measured
by the type K thermocouples.

One reason for the observed difference could be an inaccuracy of the type K thermo-
couples, which would mean that they give an overestimation of the actual temperature.
However, calibration of the type K thermocouples pointed out that they were accurate to
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about 0.2 [°C] in the range between 0 and 100 [°C] (Table 5). Also, another steady mea-
surement has been done with the furnace at room temperature. The furnace was cut of
power for a weekend, and all the furnace walls including the head sides had reached a
steady temperature of 19 [°C] (all temperatures were between 18.75 and 19.32 [°C]). In this
case also the air temperatures were measured to be around 19 [°C], so no difference in the
type K and the type S thermocouples could be found.

Another reason for the difference could be heat losses through the quartz windows in the
middle zone. Heat transfer between the type S thermocouples and the colder environment
might take place through these windows. Or the windows themselves could be colder
than the muffle walls due to the gap in the

Figure 4.22. Muffle temperatures in zone 3.

heating elements and in the insulation pack-
age. To test this hypothesis, a steady experi-
ment at 200 [°C] was done with the air ther-
mocouples placed in zone 3. The values for
the muffle temperatures in zone 3 and the
air temperatures are depicted in Figure 4.22.
As can be seen, the air temperatures are not
underestimated, so the measured difference
between the type K and the type S thermo-
couples in the middle zone must be caused
by heat losses at the quartz windows.

By insulating the window orifices it was tried to reduce the heat losses. After insulation
was installed, made of the same heat resistant stones used for the heating elements and
the major part of the insulation package of the rest of the furnace, again a steady experi-
ment at 200 [°C] was done. This time the temperature differences between the type K and
the type S thermocouples decreased, but did not vanish totally. It is therefore concluded
that due to the gap in the heating elements at the position of the light sheet a lower
temperature at the quartz windows in the muffle will occur. This effect may disappear
when the furnace is operated at higher temperatures, as then also the heat resistant stones
will start to radiate, and a more uniform heat transfer will take place. However, the
difference is only small (1 or 2 [°C]), so no large measurement errors are expected due to
this cause.

Determination of the maximum ramp rate

By heating the test-rig at maximum power,
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Figure 4.23. Temperature history in zone 2 for a
ramp rate of 10 [°C/min].

the maximum ramp rate that can be
obtained was determined. For the test meas-
urement already performed in Figure 4.20,
100% power is sent to the elements during
the largest part at the beginning of the heat-
ing process. In Figure 4.23 this first part of
the temperature history for the muffle and
the düsenfelds in the middle zone is
depicted. As can be seen in the figure, the
maximum temperature gradient in time that
occured during this measurement can be
calculated to be approximately 10 [°C/min].
As the furnace was heated at maximum
power, this is the maximum temperature
gradient that can be gained using the setup.
With this amount of power, the düsenfelds
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are fully heated in about 10000 [s] when not
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Figure 4.24. Temperature history in zone 2 for a
ramp rate of 3 [°C/min].

cooled. The figure also shows that there are
some differences between the various
muffle thermocouples in the zone. First of
all, the top is heated faster than the sides
and the bottom, and furthermore, there are
also some differences between the various
side and bottom elements. These differences
are caused by the differences in heat trans-
fer inside the muffle. Also a temperature
difference between the left and the right
hand side of the furnace of about 1 to 2 [°C]
is found, though the left and right side-
elements are controlled by the same control-
ler. This difference may be caused by a
difference in resistance between the left and
the right side elements.

By prescribing a ramp rate lower than 10 [°C/min], the observed temperature differences
may disappear, because then strength differences between the heating elements do not
count since they are not operated at maximum power. In order to check this, a measure-
ment was done with a set point of 200 [°C] and a prescribed ramprate of 3 [°C/min] for
all the zones. The measured temperature history for zone 2 is given in Figure 4.24.

As can be seen in the figure, the temperature differences between the muffle thermocoup-
les have become much lower. This proves indeed that the differences in measured muffle
temperatures were mainly caused by power differences between the heating elements,
which manifest the most when they are controlled at maximum power. For creating well
defined situations, the undefined differences between the muffle temperatures must be
prevented. Therefore, in future measurements a prescribed ramp rate for the muffle tem-
peratures will be used, which must be lower than 10 [°C/min] for preventing the elements
from being controlled at maximum power.
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CHAPTER 5. FURNACE ANALYSIS
With the experimental set-up, the numerical model can be validated and the source terms
representing the 3-D heat transfer phenomena can be determined. In this chapter, first the
2-D steady flow phenomena in the muffle are investigated, and compared to the results of
the Navier Stokes solver. Afterwards the importance of 3-D heat transfer effects in the
muffle is investigated by comparing 2-D and 3-D measurements. The 3-D radiation effects
are also investigated separately, using a simplified 3-D numerical model.

5.1 2-D Model validation

In order to validate the 2-D model used for calculating the natural convection in the
muffle, some 2-D steady measurements were performed. These measurements will show
whether the flow phenomena in the muffle remain steady and symmetric, as assumed in
the model. Besides, it will be investigated whether the expected vortex structures actually
occur in the muffle.

In a 2-D measurement, the three zones of the set-up have an equal temperature setting, so
no axial temperature gradients occur. The head ends are covered by an aluminium foil,
which has very good reflective properties. In this way 3-D radiation effects are minimized.
Furthermore, in the experiment the düsenfelds are installed on the bottom of the muffle.
The muffle temperature is kept constant at a certain temperature value. The top tempera-
tures of the düsenfelds are also kept constant, but at a lower temperature by using air
cooling. In this way, a well defined 2-D situation is created, which can be compared to a
steady calculation. Because of the use of the düsenfelds, the maximum temperature for
2-D steady measurements is about 200 [°C].

Results obtained from the 2-D steady measurements are muffle and air temperatures, and
a visualised flow pattern by using smoke injection. With the measured muffle tempera-
tures used as boundary conditions in a calculation, the air temperatures and the flow
pattern can be calculated and compared to the measurements.

2-D convection at 200 [°C]

In this experiment, the muffle wall temperatures were set to 200 [°C]. By using air cooling
the temperatures in the middle of the düsenfelds were set to 168.8 [°C]. In Figure 5.1 the
measured temperatures for the muffle walls are depicted. As can be seen in the figure, the
axial temperature gradients in the muffle are very low, as they should be for approximat-
ing a 2-D situation. In Figure 5.2a the central cross-section of the muffle is depicted. At the
sides of the düsenfelds, the temperatures appear to be higher because of the heat transfer
from the muffle. Furthermore, there is a decreasing temperature profile in the height
direction for the side-wall. The fact that the side-wall is hotter near the bottom is caused
by extra heat added from the bottom elements which react on the cooling of the düsen-
felds. In Figure 5.2c the flow field visualised by smoke injection in the furnace is shown. It
consists of a counterclockwise rotating vortex, which is mainly situated in the upper part
of the muffle.
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For the situation mentioned, a numerical calculation has been carried out. The measured

Figure 5.1. Measured muffle surface temperatures.

muffle temperatures are taken as boundary conditions for the calculation. In Figure 5.2d
streamlines for the calculated flow are given. The flow also consists of a counterclockwise
rotating vortex which appears in the upper part of the muffle, just like the one obtained
experimentally by visualisation. The calculated and the visualised flow patterns have a
similar shape, and the centres of the vortices seem to appear at approximately the same
positions. The maximum velocity is calculated to be about 4.5 [cm/s] and occurs near the
side-wall of the muffle.

In Figure 5.2b, the calculated temperature profiles at the height positions where the air
thermocouples are situated in the experiment are shown. For the lowest air thermocoup-
les, the temperature varies between 193 and 194 [°C]. The temperature in the upper part of
the muffle equals 200 to 202 [°C]. Comparing the calculated temperatures to the measured
ones, it can be concluded that the calculated temperatures are about 2 [°C] (in the bottom
region) to 4 [°C] (in the top region) higher than the measured temperatures. As mentioned
in the previous section with the steady experiments for the whole furnace at 200 [°C], a
part of this error may be systematically caused by heat losses at the quartz windows.
However, the measured mutual temperature differences between the various air thermo-
couples are similar to the calculated ones.

Several other 2-D steady measurements were carried out at a temperature of about 200
[°C], but with different temperature gradients along the muffle walls. These measurements
showed that the flow phenomena in the muffle are strongly temperature-dependent. In
Figure 5.3 and Figure 5.4 two muffle temperature settings for 2-D steady measurements
are given. In Figure 5.5 and Figure 5.6 the visualised flow paterns are shown, while in
Figure 5.7 and Figure 5.8 the calculated contour lines of the flow field are depicted. As can
be seen in the figures, the flow indeed is highly temperature-dependent. For the left case,
the top of the muffle is slightly colder than the sides. The visualization shows that the two
counterclockwise rotating vortices appear in the upper region of the muffle. In the right
case, the top temperature of the muffle is higher than the sides. Then the vortices appear
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in the lower corners, and also have a different shape. This characteristic behaviour is also

Figure 5.2. (a) Measured muffle and air temperatures, (b) comparison of measured (marker &
value) and calculated (marker & solid line) air temperatures, (c) visualised flow pattern and (d)
calculated flow pattern.

calculated numerically, showing a good agreement between the visualization experiment
and the numerical model. As the calculated and measured temperature differences follow
the same trends, it is concluded that the model is suitable for calculating flow patterns
and temperature fields within an error range of a few degrees. This is good enough for
making a design tool for furnace optimization.
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Figure 5.3. Muffle and air temperatures for
steady 2-D measurement at 200 [°C].

Figure 5.4. Muffle and air temperatures for
steady 2-D measurement at 200 [°C].

Figure 5.5. Visualized flow pattern for the tem-
perature setting shown in Figure 5.3.

Figure 5.6. Visualized flow pattern for the tem-
perature setting shown in Figure 5.4.

Figure 5.7. Calculated flow pattern for the tem-
perature setting shown in Figure 5.3.

Figure 5.8. Calculated flow pattern for the tem-
perature setting shown in Figure 5.4.
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5.2 The influence of 3-D effects

The 3-D heat transfer effects in the muffle are expected to be dependent on the axial
temperature gradient in the muffle, and also on the temperature gradient in time (the so
called ’ramp rate’). Therefore several measurement sets were carried out, with for each set
characteristic values for the axial temperature gradient and for the ramp rate. As already
mentioned in section 4.2, each measurement set consists of a 3-D and an equivalent 2-D
transient measurement. The importance of 3-D effects can be deduced by comparing the
plate temperatures in zone 2 for the 2-D and the 3-D measurement.

Experiments

Measurement sets

In order to measure the 3-D effects, measurements with different values for the ramp rate
and the axial temperature gradient were done. Because the highest temperature differences
are expected to occur at high temperatures, the variations of the ramp rate and of the axial
temperature gradient were done at 600 [°C]. As the 3-D effects may also depend on the
absolute temperatures in the muffle, measurements at different temperature levels were
carried out. With product plates installed inside the muffle instead of the düsenfelds, the
test-rig can go up to temperatures of 600 [°C]. In the following table the characteristic
properties of the measurement sets are summarized.

In the table the set point and the ramp rate for each measurement set are given. The

Table 6. Parameters in the measurement sets.

Measurement set number 1 2 3 4 5

Set point [°C] 200 400 600 600 600

Ramp rate [°C/min] 3 5 5 8 8

Axial gradient [min/zone] 20 15 15 15 25

2-D preheat [°C] 20 25 25 30 50

values for the ramp rate are chosen in such a way that the highest value is still below 10
[°C/min], see section 4.4. In a real conveyor belt furnace the ramp rate for the belt with
products is much higher, but the measurement situation is equivalent to the real furnace
situation because of the use of specially designed product plates instead of the conveyor
belt, as mentioned in section 4.4. The axial gradient for the 3-D measurement is given in
[min/zone], which is actually the time shift between ignition of the subsequent zones. The
used preheat of the top of the muffle for the 2-D measurement, as motivated in section
4.2, is given in the next line of the table.

The temperature distribution was measured using the product plate in zone 2 of the test-
rig. This product plate contains 5 thermocouples over its width, one in the middle, two at
the inner sides and two at the outer sides. The side thermocouples are placed symmetrical
with respect to the middle (thermocouples 26-30 and 35-38 in appendix 8). In each mea-
surement, the temperature differences between the thermocouples at the sides and the
thermocouple in the middle of the product plate were determined. A comparison between
the 2-D and the 3-D measurement in one set shows the influence of 3-D heat transfer
effects. By making comparisons between the several sets, the influence of various parame-
ters can be investigated. The influence of the temperature level is investigated by compar-
ing the measurement sets 1, 2 and 3. It has to be noticed that measurement set 1 besides a
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lower temperature level also has a lower ramp rate. From a comparison between set 3 and
set 4 the influence of the ramp rate is determined, and the influence of the axial gradient
is determined by comparing set 4 to set 5. In the following sections the several influences
mentioned will be investigated. A detailed description of the separate measurements can
be found in appendix 9.

Influence of the absolute temperature level

The influence of the temperature level on the temperature uniformity is investigated by
comparing the measurements from set 1, 2 and 3.

In Figure 5.9 and Figure 5.10 the temperature differences for the 2-D and the 3-D measure-
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Figure 5.9. Temperature differences compared to
the middle for the 3-D experiment in set 1.
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Figure 5.10. Temperature differences compared
to the middle for the 2-D experiment in set 1.

ment in set 1 are depicted. Each graph represents a temperature difference between a
thermocouple at the side of the plate and the thermocouple in the middle, and is labeled
using the name of the side thermocouple. So the graph labeled ’outer right’ represents the
temperature difference between the thermocouple at the outer right hand side of the plate
and the thermocouple in the middle. As there are four thermocouples at the sides (two on
the left and two on the right), there are also four temperature difference graphs. As can be
seen in the figure, the differences are never higher than about 1 [°C]. Because this is about
the thermocouple accuracy, no conclusions can be drawn from these graphs with respect
to 3-D heat transfer effects. The only conclusion to be drawn is that in this low tempera-
ture range no significant differences occur.

Also for set 2 at a temperature level of 400 [°C] the temperature differences between the
thermocouples at the sides and the thermocouple in the middle of the product plate in
zone 2 were determined. These temperature differences are graphed in Figure 5.11 and
Figure 5.12. As can be seen in the figures, the differences near the sides of the product
plates are about 5 [°C], while the differences nearer to the middle of the belt are lower
than 1 [°C]. A slight difference can be seen between the left and the right hand side of the
furnace. The temperature differences are larger than in the previous measurement set,
which shows that either an increase of temperature level or an increase of the ramp rate
causes an increase in temperature differences. However, no significant difference in tem-
perature uniformity is measurable between the 2-D and the 3-D situation, which means
that the temperature differences are mainly caused by 2-D heat transfer effects.
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For the measurements in set 3 the temperature differences compared to the middle of the
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Figure 5.11. Temperature differences compared
to the middle for the 3-D experiment in set 2.
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Figure 5.12. Temperature differences compared
to the middle for the 2-D experiment in set 2.

product plate are graphed in Figure 5.13 and Figure 5.14. As can be seen in the figure, the
differences are again about 5 [°C] for the outer thermocouples and about 1 [°C] for the
inner thermocouples. As these differences are about the same as in set 2, it shows that the
absolute temperature level is not of measurable influence to the temperature uniformity
over the plate width. The difference between set 1 and set 2 is therefore likely to be
caused by the difference in the ramp rate, which is an effect that will further be investi-
gated in the next section. Also for set 3 the temperature differences are about equal for the
2-D and for the 3-D measurement. So, also in this measurement set 3-D effects appear to
be negligible, despite the high temperatures.
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Figure 5.13. Temperature differences compared
to the middle for the 3-D experiment in set 3.
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Figure 5.14. Temperature differences compared
to the middle for the 2-D experiment in set 3.
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It can be concluded that for a ramp rate of 5 [°C/min] the maximum temperature over the
width of the plate is about 5 [°C]. The absolute temperature level has no measurable
influence to the temperature differences over the width of the plate. With respect to 3-D
effects it can be concluded that they are of negligible influence to the temperature differ-
ences for the measurements in this section. An influence of the ramp rate on the tempera-
ture differences over the width of the plate is expected. This effect is investigated in more
detail in the next section.

Influence of the ramp rate

The influence of the ramp rate is investigated by comparing set 3 to set 4. Both sets have
the same set point temperature of 600 [°C], and the same axial gradient of 15 [min/zone]
for the 3-D experiments. For set 3 with a ramp rate of 5 [°C/min], the temperature differ-
ences relative to the middle of the plate in zone 2 have already been given in Figure 5.13
and Figure 5.14. For a ramp rate of 8 [°C/min] (set 4) the temperature differences are
given in Figure 5.15 and Figure 5.16.

For the outer right hand sides of the product plates the differences compared to the

0 3600 7200 10800
−2

0

2

4

6

8

10

time [s]

∆ 
T

 [°
C

]

outer left

outer right

inner

Figure 5.15. Temperature differences compared
to the middle for the 3-D experiment in set 4.
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Figure 5.16. Temperature differences compared
to the middle for the 2-D experiment in set 4.

middle are about 9 [°C], while for the outer left hand sides this difference equals about 8
[°C]. The differences with the middle thermocouple for the inner side thermocouples are
never larger than 2 [°C]. From comparing these results to the results of set 3 (Figure 5.13
and Figure 5.14), it can be concluded that the higher ramp rate causes higher temperature
differences over the belt width. However, as can be seen in the figures, the differences
between the 2-D and the 3-D measurement are still negligible. So also for the higher ramp
rate 3-D effects appear to be of minor influence. Therefore the larger temperature differ-
ences when using a higher ramp rate must be caused by larger cross-sectional temperature
gradients (2-D effects).

The increase of the 2-D effects for higher ramp rates can be understood using equation
(4.2). For an increasing muffle temperature gradient in time, also the temperature gradient
in time for the plates will increase. Because all the material parameters in equation (4.2)
remain constant, an increasing plate temperature gradient must result in an increasing
temperature difference between the muffle and the plates. This shows that for higher ramp
rates the 2-D effects are increased. This is also confirmed by comparing measurement set 3
to set 2 and set 1. Despite a different set point temperature, the temperature differences
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are about the same for set 2 and set 3, which also have the same ramp rate. In set 1 the
ramp rate is less, and also the temperature differences are lower.

Influence of the axial temperature gradient

At last the influence of the axial temperature gradient is investigated by comparing set 4
to set 5. The axial temperature gradient in the test-rig was varied from 15 [min/zone] in
set 4 to 25 [min/zone] in set 5. The increased value in set 5 resulted in a temperature
difference of approximately 120 [°C] between neighbouring zones.

The temperature differences between the thermocouples at the sides and the thermocouple
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Figure 5.17. Temperature differences compared
to the middle for the 3-D experiment in set 5.
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Figure 5.18. Temperature differences compared
to the middle for the 2-D experiment in set 5.

in the middle of the product plate in zone 2 were determined. These temperature differ-
ences are graphed in Figure 5.17 and Figure 5.18. As can be seen, there is hardly any
difference between the temperature differences found in set 4 (Figure 5.15 and Figure 5.16)
and the results for set 5 with the higher axial gradient. Therefore, it is concluded that the
higher axial temperature gradient had no effect on the temperature uniformity over the
belt width, and that 3-D heat transfer effects in this case were negligible again.

Conclusions with respect to 3-D effects

From the measurements described above, it can be concluded that the absolute tempera-
ture level and the axial temperature gradient have only minor influence to the tempera-
ture differences over the width of the plates. Only the ramp rate appeared to have a
significant influence to these temperature differences. Apparently an increasing ramp rate
results in increasing 2-D heat transfer effects, while it does not have any consequences for
3-D effects. The influence of 3-D radiation effects is analyzed in more detail in the next
section.

5.3 Estimation of the 3-D source terms

The 3-D effects in the furnace can be split up into 3-D radiative effects and 3-D convective
effects. From the measurements in this section the total influence of 3-D heat transfer
effects on the temperature uniformity of the belt appears to be negligible. This is however
no prove that both 3-D radiation and 3-D convection are of negligible influence. Theoreti-
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cally, radiation and convection might be two cancelling effects in the situations measured,
while the effects themselves can be of major importance when treated separately. So for
concluding that both effects are negligible, it has to be shown that one separate effect itself
is of minor importance. In this section the 3-D radiative heat transfer is analysed numeri-
cally using a simplified 3-D radiation model, which is based on view factor calculations.
This simplified model cannot handle complex geometries and material properties, but it is
good enough to give an estimation of the 3-D radiation effects in the furnace. Explicit
details about this model can be found in Verhaar (1999).

In the simplified radiation model, the muffle is treated as a rectangular box with diffusely
reflecting walls. The bottom of the box is formed by the product plates, which in general
have a low temperature, while the other walls of the box correspond to the upper part of
the muffle in the test-rig. For determining the 3-D radiative heat transfer effects, a 3-D
calculation has to be compared to a 2-D one. Calculating a 2-D radiation problem in the
box can be done by modelling mirroring head ends. However, specular reflection is not
available in the simplified model, and therefore making a 2-D radiation calculation with
the simplified 3-D model is not easy. An approximation of the 2-D situation can be made
by using diffuse reflective head ends. In this case the heat flux to the belt will be under-
estimated near the head ends, but for a box with a large enough axial dimension only a
small difference with the 2-D situation is to be expected in the middle. Therefore first a 2-
D situation is simulated with diffusely reflecting head ends in the 3-D radiation model,
and the heat fluxes in the middle of the box are compared to a 2-D calculation using an
analogous model with 2-D view factors. In

Figure 5.19. Simple 2-D radiation problem.

this way the influence of the diffuse reflect-
ing head ends is estimated, and it is also a
validation of the 3-D model, since for a
large enough axial dimension the results
should approximately be the same. When
both results for the heat fluxes agree, the
influence of axial temperature gradients on
the heat flux is investigated with the 3-D
model.

The 2-D radiation problem analyzed is
depicted in Figure 5.19. It consists of a rec-
tangular geometry with a bottom wall of
150 [°C] and the other walls at 270 [°C]. In
order to calculate a geometry similar to the
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Figure 5.20. Heat flux to the bottom for the 2-D
radiation problem, calculated with the 2-D and
the 3-D model.

test-rig, the width of the rectangle equals
340 [mm], and the heigth is 180 [mm]. The
emission coefficient equals 0.4 [-] for all the
walls. In the 3-D calculation also a geometry
with the dimensions of the test-rig is used.
Therefore, the axial length of the geometry
equals 900 [mm] (3 zones), and the head
sides are modelled as diffuse reflectors. For
both the 2-D and the 3-D approach, the heat
flux to the belt in the middle cross section
was calculated. The results are depicted in
Figure 5.20.

Comparing the graphs one can conclude
that the 3-D model with diffusely reflecting
head ends gives an underestimation of the
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2-D situation, as expected. However, the difference in the absolute values of the heat flux
is only about 0.3%. Furthermore, the difference between the graphs is quite equal over the
belt width. This means that the calculated temperature differences over the width of the
belt are similar for both situations, and that the 3-D model can be used to investigate the
effect of 3-D effects on the uniformity over the belt width.

A comparison between a 2-D and a 3-D situation was made using the 3-D model. The 2-D
situation is the same as already mentioned in Figure 5.19, and the heat fluxes for the 2-D
calculation determined with the 3-D model from Figure 5.20 are used as the 2-D heat
fluxes in the comparison. In the 3-D situation a temperature gradient of 50 [°C] per zone
was prescribed, by using the global data given in Table 7. In axial direction linear tem-
perature profiles were prescribed to get a smooth profile as in a practical situation.

In Figure 5.21 the heat flux to the bottom in

Table 7. 3-D test case used for determining 3-D
radiation sources.

Furnace wall T [°C] [-]

Muffle

Front 170

0.4

Zone 1 220

Zone 2 270

Zone 3 320

Rear 370

Belt

Zone 1 100

0.4Zone 2 150

Zone 3 200

the middle of the furnace is plotted. As can
be seen, for the 3-D situation the heat flux is
larger than for the 2-D situation. The sys-
tematical difference between the two pro-
files can be explained because radiation is
proportional to the difference in fourth
powers of the surface temperatures. There-
fore, the extra heat flux that the belt in zone
2 gains from zone 3 is more than the
amount it gets less from zone 1. However, a
higher over-all heat transfer will necessarily
not cause extra temperature differences over
the width of the belt. Extra temperature
differences are caused by differences in the
shape of the heat transfer profiles. There-
fore, in Figure 5.22 the relative difference
between the two heat flux profiles is shown.
This relative difference is calculated by
dividing the difference between the 3-D and the 2-D solution by the 3-D solution. The
difference varies between 6.7% at the sides to 7.65% in the middle of the belt. It is con-
cluded that there is a systematical difference of 6.7%. Extra differences in the profiles are
at most about 1%.
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Figure 5.21. Heat flux to the bottom wall for the
2-D and the 3-D situation.
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In order to estimate the influence of the
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Figure 5.23. Temperature differences over the
width of the belt without (solid) and with (dash-
dot) 3-D radiation effects taken into account.

difference in the heat flux on the uniformity
of the temperature profile of the belt, two
nearly identical calculations with the design
tool of section 6.1 were done. In one calcu-
lation the 3-D effects are not taken into
account, while in the other calculation the 3-
D effects of Figure 5.22 are taken into
account as 3-D source terms. In Figure 5.23
the temperature differences over the width
of the belt are given for both calculations.
As can be seen, there is hardly any differ-
ence in the absolute values of the tempera-
ture differences for both situations. When 3-
D effects are taken into account, the maxi-
mum temperature differences occur a little
bit earlier in time, because in this situation
the heat flux to the belt is also systematical-
ly higher, which results in a faster heating.

Therefore, one can conclude that 3-D effects have a significant effect on the absolute value
of the heat flux to the belt, but are of negligible influence to the temperature differences
over the width of the belt. This supports the statement that not only the sum of 3-D
radiation and convection effects is negligible, but also each of the effects separately.
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CHAPTER 6. DESIGN OPTIMIZATION
As the purpose of the numerical model is to serve as a design tool, fast calculations with
an accurate prediction of the temperature differences over the belt width are aimed at. In
the previous chapter, the influence of 3-D heat transfer effects on the temperature uni-
formity over the width of the belt appeared to be negligible. However, in the model still
all the 2-D heat transfer effects are taken into account. Therefore, the model remains
complex and calculations with the model are still very time consuming. In this chapter the
order of magnitude of the various 2-D heat transfer modes will be analyzed and further
simplifications to the model are made. After that, furnace calculations are done with the
simplified model. The influence of various model parameters on the temperature uni-
formity over the width of the belt is investigated, and the influences of some design
measures are discussed. At last a design proposal for a real conveyor belt furnace is given.

6.1 The design tool

The calculation of the flow in the furnace is
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Figure 6.1. Temperature differences over the
width of the belt, calculated without convective
effects.

the most time consuming part. This is
caused by the very strong buoyant effects,
as explained in section 3.3. Although the
convective effects are strong, the influence
of the flow phenomena on the heat transfer
to the belt may be relatively small. In order
to investigate the importance of convective
effects in disturbing the temperature uni-
formity of the belt, the same furnace cal-
culation as in section 3.5 is done, with the
only difference that the gravity is set to
zero. In this way only radiative and conduc-
tive heat transfer will warm up the belt. In
Figure 6.1 the calculated temperature dif-
ferences compared to the middle of the belt
as a function of time are given. As can be
seen in the figure the maximum tempera-
ture difference is about 19 [°C]. As expected, this difference occurs between the outer
corner point and the middle of the belt. The differences decrease for positions nearer to
the middle of the belt, but for none of the positions the differences are negligible.

Comparing this to the result with convection taken into account, as shown in Figure 3.13,
it can be concluded that convection has a decreasing effect on the temperature differences
over the width of the belt. For the situation with convection, a maximum difference of 13
[°C] is calculated, so that the reducing effect of convection on the temperature differences
in this case is about 30%. For both situations, the side of the belt is hotter than the middle.
Therefore, the lower temperature differences with convection taken into account show that
convective heat transfer is stronger in the middle of the belt than at the sides. This is due
to the fact that the difference between the belt temperature and the air temperature is
higher in the middle of the furnace than at the side. This variation in the temperature
difference between the air and the belt surface is partly caused by the non-uniform plate
temperature. For a uniform plate temperature the differences in convective heat transfer
are expected to be less. Therefore, convection is assumed to be an adjusting effect instead
of a main effect that disturbs the temperature uniformity over the width of the belt.
Because calculating the convective heat transfer effects also costs a lot of computation
time, they are not taken into account in the design tool. The design tool then still covers
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the main disturbing effects, and it is suitable for optimizing the temperature uniformity
inside the furnace.
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Figure 6.2. Temperature differences over the
width of the belt when only radiative heat trans-
fer is taken into account.

For further simplification, it is investigated
whether conduction through the medium is
also negligible compared to radiative heat
transfer. This is done by taking only the
radiative fluxes into account when calculat-
ing the same furnace problem as above. The
calculated temperature differences are given
in Figure 6.2. Comparing Figure 6.2 to
Figure 6.1, it appears that the calculated
temperature differences for the two situ-
ations are significantly different. Therefore,
it is concluded that conductive heat fluxes
through the medium are not negligible.
However, still a simplification to the model
can be made with respect to the calculation
of the conductive heat fluxes. In Figure 6.3
a typical contour plot for the temperature in

Figure 6.3. Contour lines for the temperature in
a muffle cross-section.

a muffle cross-section is given. From the fig-
ure, it is clear that the temperature gradi-
ents are much larger at the side of the belt
than at the top and bottom surfaces. There-
fore, at the side of the belt conductive
effects are strong, while at the top and bot-
tom surfaces the conductive effects are
relatively small. The conduction can be
calculated in a simple way by Fourier’s law.
Instead of performing the complete finite
element calculation for solving the energy
equation, in the design tool conductive heat
transfer is calculated only at the side of the
belt as

The temperature gradient is approximated
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Figure 6.4. Temperature differences over the
width of the belt, calculated without convective
effects, and by using Fourier’s law for the con-
duction at the side of the belt.

(6.1)qk k
∂T
∂x

.

by dividing the temperature difference
between the muffle side and the side of the
belt by the distance between them. The
calculated temperature differences using
this simplified approach for the conductive
fluxes are shown in Figure 6.4. As can be
seen, the figure shows hardly any differ-
ences with Figure 6.1. This shows that cal-
culating the conductive fluxes using Fou-
rier’s law at the side of the belt is a suitable
simplification. It will be used in the design
model instead of solving the energy equa-
tion.
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Comparison of the design tool to a measurement

The time-dependent muffle temperature profile in measurement set 2 was prescribed in
the unsteady marching model in order to calculate the temperature profile of the product
plates. In section 3.5, this was already done for the complete furnace model including
convective heat transfer. For the same calculation done using the simplified design tool,
the temperature differences are presented in Figure 6.4. The result of this calculation is
compared to a measurement in Figure 6.5 and Figure 6.6. The calculated and measured
temperature profiles in time are depicted in Figure 6.5, and the temperature differences
over the belt width are shown in Figure 6.6.

Figure 6.5 shows that in the measurement the plate warms up faster than calculated. This
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Figure 6.5. Muffle temperature profile, and
measured (dashdot) and with the design tool
calculated (solid) plate temperature profiles.
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sign tool calculated temperature differences
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was also the case for the calculation with the complete model in section 3.5 (Figure 3.8),
but now the differences between the measured and the calculated temperature histories
are larger. This can be explained, because in the design tool the convective heat fluxes are
not taken into account. The measured and calculated temperature differences over the
width of the belt are shown in Figure 6.6. The calculated temperature differences using the
design tool are approximately 3 [°C] higher than measured, which could also be expected,
as in the design tool convective heat transfer is not taken into account.

6.2 Influences of the various heat transfer modes

In this section the design tool will be used to seek for an ideal furnace configuration,
having a theoretical uniform temperature distribution over the width of the belt. Using the
design tool the temperature differences over the width of the belt can be calculated as a
function of the modelled heat transfer effects. By ruling out the several heat transfer
effects one by one, insight is acquired on the maximum improvements that can be gained
by reducing a certain heat transfer effect in a real furnace. It is tried to get as close as
possible to an ideal situation with no temperature differences over the width of the belt.

As a reference the standard situation with all significant heat transfer effects involved is
taken. The muffle temperature history used for all muffle walls is the profile of the muffle
bottom in measurement set 2, being a realistic temperature profile going up to 400 [°C].
The result of this calculation was already shown in Figure 6.4.
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No conduction from the sides

In order to find out which part of the temperature differences determined in the previous
section is caused by conduction to the side of the belt, the same calculation was done with
the conduction to the side of the belt being set to zero. This calculation was already
presented in section 6.1, and the temperature difference graphs are depicted in Figure 6.2.
From a comparison between Figure 6.2 and Figure 6.4 it appears that the maximum
temperature difference obtained decreased to 14 [°C], so the conductive effect is respon-
sible for about 5 [°C] at the side of the belt. Further to the middle of the belt the influence
of the side conduction is less, as could be expected. From this result one can conclude that
conduction from the sides has indeed a non negligible influence. However, by decreasing
the conduction to the side of the belt, the temperature differences will decrease about 5
[°C] maximum. So one cannot build a uniform furnace by only decreasing the conductive
effects at the sides. The remaining radiative effects appear to be more important, and
therefore deserve more attention at this point.

No radiation and no conduction from the sides

Just like the conductive effects, also radiat-
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Figure 6.7. Temperature differences without
conduction and radiation to the sides of the belt.

ive heat transfer will appear at the side of
the belt. Because heat transfer from the side
of the belt will always disturb uniformity, a
calculation was performed by setting the
radiative fluxes to the sides of the belt to
zero. This was done by modelling the side
of the belt as a perfect mirror. The tempera-
ture differences calculated for this situation
are depicted in Figure 6.7. As can be seen
from the figure, the temperature differences
have further decreased to about 5 [°C]. This
is an improvement of about 9 [°C] max-
imum, showing that radiative heat fluxes
through the sides of the belt play a very
important role. Still disturbances in the tem-
perature uniformity exist in this case. As the
sides of the belt gain no heat fluxes any more, the remaining temperature differences must
be caused by a non-uniform heat flux to the top and the bottom of the belt.

The non-uniformity in the heat flux can be caused by the reflection of radiation from the
belt against the muffle. Because the muffle walls are reflective, radiation from the belt is
reflected against the muffle walls and will partly fall back on the belt. In this way, the belt
sees itself by reflection of radiation against the muffle walls. This effect will be stronger in
the middle of the belt than at the sides. In the middle, more radiation will be reflected
back to the belt directly via the muffle roof, while at the sides more radiation will be
reflected back in two steps, first hitting a side-wall and then the roof. In this two step
reflection less energy will be sent back to the belt, and the reflection effect is less strong. In
order to check this effect another calculation was done.
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A black muffle, no radiation and no conduction from the sides

As a black muffle is non-reflective, the non-

0 3600 7200 10800
−0.015

−0.01

−0.005

0

0.005

0.01

time [s]

∆ 
T

 [
° C

]

Figure 6.8. Temperature differences for a black
muffle without heat fluxes to the side of the belt.

uniformity caused by reflections against the
muffle will disappear when doing a calcu-
lation with a black muffle. The muffle wall
emission coefficients were all set to unity,
and the calculation was started again. It is
worth mentioning that in this case the belt
itself still has the same reflective properties
as in the previous calculations. The calcu-
lated temperature differences are now
depicted in Figure 6.8. The remaining tem-
perature differences are smaller than the
numerical cut-off accuracy used in the rou-
tines, and are also completely negligible.
Therefore, it can be concluded that in this
situation no disturbing effects are present
any more.

Analysis of the influence of the disturbing effects

As seen above, conductive and radiative fluxes through the sides of the belt and reflection
of radiation against the muffle are the main causes for temperature differences over the
width of the belt. By subsequently ruling out separate effects, an optimization path was
followed to a theoretically uniform furnace design. An estimation of the influence of each
separate disturbing effect on the temperature uniformity was determined by comparing
the subsequent steps in the optimization path. However, the disturbing effects could have
been ruled out in any other order, and any different path could have been followed to the
ideal solution. As the several disturbing effects are not necessarily independent, following
another optimization path might result into different values for the influences of the
separate disturbing effects. In order to get a better idea about the separate influences, the
temperature uniformity for each possible combination of disturbing effects has been
calculated. In the top row of Table 8 all the possible combinations of disturbing effects are
given (cond. = conductive fluxes through the sides of the belt, rad. = radiative fluxes
through the side of the belt and ref. = non-uniform reflections of radiation against the
muffle). In the second row the maximum temperature difference for each combination is
given. Now the influence of each separate effect can be calculated by comparing combina-
tions. This is done in the lower part of Table 8. For each cell, the left and right overlap-
ping combinations just differ by one separate disturbing effect, which is shown in the left
column of Table 8. The influence of this effect is determined by subtracting the tempera-
ture differences of the combinations. For each separate disturbing effect the influence is
determined in four ways. As can be seen in Table 8, for each separate disturbing effect its
influence is independent on the compared combinations within a range of about 1 [°C].
Therefore, it can be concluded that the several disturbing effects are more or less indepen-
dent. The influence to the temperature uniformity is 4 to 5 [°C] for non-uniform reflec-
tions, 9 to 10 [°C] for radiative fluxes through the sides of the belt and about 5 [°C] for
conductive fluxes through the sides of the belt.
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Table 8. Influence to the temperature uniformity for all the possible combinations of disturbing
effects and derived influences of the separate effects.

Active
disturbing
effects

Cond.
Rad.
Ref.

Cond.
Rad.

Cond.
Ref.

Cond. Rad.
Ref.

Rad. Ref. None

∆Tmax [°C] 19 15 10 5 14 11 5 0

Influence of separate effects by subtraction of combined influences.

Ref. 4 5 3 5

Rad.

9

10

9

11

Cond.

5

4

5

5

Design conclusions

As can be concluded from the analyses, a uniform furnace can be built by preventing all
heat fluxes to the sides of the belt and by using a non-reflective muffle. However, this is a
theoretical ideal situation, which cannot be realized in practice. A completely black muffle
material might not exist, and a perfect mirroring belt side which also blocks all conductive
heat transfer is not realizable in practice. However, the analyses have shown the influence
on the temperature differences of each effect. It can be concluded that radiative effects are
the most important cause for a non-uniform temperature profile over the width of the belt.
Therefore, the most attention has to be paid to radiative effects, especially radiative fluxes
to the sides of the belt. Besides, it is shown that convection has a reducing effect on the
temperature differences over the belt width. Now one can try to build a furnace which
resembles the ideal furnace as much as possible. Remaining temperature differences can
then be minimized by other measures.

6.3 Design measures for improving the furnace design

In this section, practical measures for minimizing the disturbing effects will be mentioned.
For determining the influence of a practical measure on the temperature distribution over
the width of the belt, the practical measure is implemented in the theoretical ideal furnace.
Then the practical measure is the only difference between the furnace calculated and an
ideal furnace, and the temperature differences over the width of the belt are then purely
caused by the deviation from the ideal situation caused by the practical measure. In this
way, the sensibility for deviations from the theoretically ideal situation is investigated, and
practical demands on the design are determined.

72



Design optimization.

Minimization of the heat fluxes through the sides of the belt

Radiation shields at the sides of the belt

Using radiation shields, the radiative fluxes
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Figure 6.9. Temperature differences over the
width of the belt when using radiation shields at
the sides of the belt.

to the side of the belt can be minimized.
The radiation shield is a vertical plate
placed at the side of the belt. It must have a
high reflection coefficient so that most of
the radiation from the muffle sides is
reflected instead of transported to the belt.
For temperatures up to 600 [°C], aluminium
is a suitable material because of its good
reflective properties ( < 0.1 [-] for a pol-
ished plate). The expected maximum tem-
perature differences caused by heat fluxes
through the radiation shields are calculated
with the design tool. In stead of prescribing
a heat flux equal to zero at the side of the
belt, a radiation shield is implemented as a
specular reflector with = 0.1 [-]. As can be
seen in Figure 6.9, the maximum tempera-
ture difference approximately equals 3.5 [°C].

Minimization of the conduction heat transfer to the sides

This heat transfer mode is probably the hardest to decrease using practical measures.
Because of the openings for the belt at both ends of the furnace, a vacuum environment is
not possible in a conveyor belt furnace. A suitable solution is to use a gas with a low
conduction coefficient. The best possible gas for this purpose is xenon gas. It is an inert
gas, so it will not influence most production processes, and it is a very good insulator in
comparison to other gases (Lide, 1994). It has a heat conduction coefficient that is less than
1/4 of the value for air, as depicted in Table 9.

Table 9. The conduction coefficient for air and
xenon at several temperatures (Lide, 1994).

T [K] kair

[mW m-1 K-1]
kxenon

[mW m-1 K-1]

100 9.4 2.0

200 18.4 3.6

300 26.2 5.5

400 33.3 7.3

500 39.7 8.9

600 45.7 10.4
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Figure 6.10. Temperature differences for xenon
gas as medium inside the muffle.
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With the given values for the conduction coefficient of xenon, a furnace calculation was
done. In Figure 6.10 the temperature differences compared to the middle of the belt are
plotted. The maximum temperature difference is only about 0.22 [°C], which is very low
compared to the 5 [°C] difference caused by conduction when the muffle is filled with air
(Table 8). One can conclude that using xenon gas instead of air is nearly as good as
having no conductive effects, and that it is a very good medium for reducing the conduc-
tive effects at the sides of the belt.

As there might be production processes in
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Figure 6.11. Conductive heat flux per unit of
furnace length to the side of the belt.

which no xenon gas is allowed, or that
require another conditioned atmosphere, an
alternative for minimizing the conductive
heat transfer to the sides of the belt is ne-
cessary. Another way of reducing the side
conduction is local cooling. One can con-
struct air cooled pipes along the sides of the
conveyor belt, that are controlled in such a
way that they drain away the right amount
of energy to the environment. This amount
of energy can again be calculated using the
design tool, as the heat fluxes to the sides of
the belt are calculated every time-step. In
Figure 6.11 the conductive heat flux to the
side of the belt is graphed against time for
the standard situation as used in section 6.2.
As the heat flux is a function of time, and therefore also of axial position in a real furnace,
the cooling system must be constructed to have several control units over the furnace’s
axial length. One might think of separate cooling units for each zone of the furnace.

Minimization of the reflections against the muffle

The non-uniform reflections against the
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Figure 6.12. Temperature differences over the
width of the belt for εmuffle = 0.9.

muffle can be decreased by coating the
muffle. In industry, ceramic coatings are
available that have an emission coefficient
of > 0.9 [-]. Therefore, a calculation is
done with the emission coefficient of the
muffle equal to = 0.9 [-]. In Figure 6.12
the calculated temperature differences over
the belt width are given. As can be seen, the
maximum temperature difference is less
than 0.4 [°C], so a muffle emission coeffi-
cient of 0.9 is nearly as good as a totally
black muffle.

Additional improvement measures

Controlling of the heating elements

Because of heat fluxes from the muffle sides to the sides of the belt, and also because of
non-uniform radiative fluxes caused by reflection of radiation against the muffle walls, the
belt temperature will be higher at the sides of the belt than in the middle. It might there-
fore be possible to decrease these disturbing effects by setting the side temperatures of the
muffle to a lower temperature than the top and bottom temperatures. In an industrial

74



Design optimization.

conveyor belt furnace, this can be done by using a lower setpoint temperature for the
controllers of the side elements. In the test-rig, a lower side temperature can be realized by
shifting the temperature histories for the side elements, which is easily done by switching
on the side elements later than the top and the bottom elements. The best value for the
time shift for the side elements can be determined using the design tool. The same muffle
temperature history and furnace properties as in the beginning of this chapter were used
as a standard situation in order to test the effect of shifting the side elements. The tem-
perature differences relative to the middle of the belt without using a shift have been
calculated to be about 19 [°C] (Figure 6.4).

In Figure 6.13 and Figure 6.14 the calculated temperature differences are depicted for two
different time shift values for the side elements. As can be seen in the figures, shifting the
side element temperature profiles influences the temperature differences as expected.
Because during the warming up period the side elements are colder than the top and the
bottom, first the temperature differences will have a negative value, which points at a
lower belt temperature at the side of the belt than in the middle. Later in the heating
traject the heat fluxes to the sides of the belt will get stronger, just like in the situation
without a shift, and the temperature differences become positive again. However, they
will not increase to the value of 19 [°C] obtained without a shift any more. The maximum
temperature difference relative to the middle can be minimized by using such a time shift
that the negative and positive temperature differences have about the same values. As
shown in Figure 6.14 for this situation the best shift is about 2600 [s]. This shift value is
highly situation dependent, so for other furnace configurations or muffle temperature
histories the value has to be determined again by new design tool calculations. From this,
one can conclude that shifting the side element temperature profile will not decrease the
temperature differences to zero. In fact the differences remain, but one can shift them into
positive and negative regions to minimize their maximum absolute values.

0 3600 7200 10800
−10

−8

−6

−4

−2

0

2

time [s]

∆ 
T

 [
° C

]

1 2 3 4 5 6

6−1

5−1

4−1

3−1

2−1

Figure 6.13. Temperature differences using a
time shift of 4000 [s] for the side elements.
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Figure 6.14. Temperature differences for a time
shift of 2600 [s].

Shape of the muffle

The curved shape of the roof of the muffle is a very characteristic property of industrial
conveyor belt furnaces. The roof is made curved for gaining mechanical strength, especial-
ly when high temperatures are needed and material becomes weaker. In this section the
influence of this curved shape on the radiative heat transfer is investigated.
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A cross-section of the muffle as used in the ex-

Figure 6.15. Scaled shape of the muffle.

perimental setup is given in Figure 6.15. The
radiative heat fluxes for this muffle have been
calculated using the radiation model. Also two
muffles with a flat roof have been calculated, of
which the positions are depicted in Figure 6.15
by the dashed lines. For all the calculations the
muffle temperatures were set to 600 [°C], while
the temperature of the belt equals 400 [°C]. The
emission coefficient of the muffle and the belt
was set to 0.38. To investigate the influence of
specular reflections, calculations were carried
out for pure diffuse reflection (mirror coefficient
sw = 0) and for 68% specular reflection (sw = 0.68).

In Figure 6.16 and Figure 6.17 the heat flux to the belt as function of the position is
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Figure 6.16. Heat fluxes to the belt for the three
different muffle shapes with purely diffuse reflec-
tions.
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depicted for the three different muffle shapes and for the two values of the mirror coeffi-
cient. As can be seen in Figure 6.16, for diffuse reflections the heat transfer depends
significantly on the height of the muffle. The heat flux for the curved roof is in between
the values of the heat flux for the high and low muffles with a flat roof. For specular
reflections (Figure 6.17), the curved shape of the muffle roof has a significant influence on
the heat transfer. The flux for the curved roof varies much more over the width of the
belt, and therefore, a flat roof is preferred in case of specular reflections. Also the total
amount of heat transfer with specular reflections is slightly less than in the case with
diffuse reflections. As mentioned in section 6.2, for a uniform temperature distribution of
the belt the reflection coefficient of the muffle has to be as low as possible. As the influ-
ence of the curved roof on the heat flux to the belt depends on the radiative reflections
against the muffle, for a muffle with a low reflection coefficient also the influence of the
curved roof on the temperature distribution over the width of the belt is expected to be
low. Therefore, in an optimized furnace a muffle with a curved roof is expected to give no
problems with respect to the temperature uniformity.
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6.4 Calculation of an optimized furnace

Using all the design improvements as given in the previous section, an optimized design
can be calculated. In this way an estimation is given of the temperature differences that
will remain in a real optimized furnace. The optimized furnace design contains a muffle
with an emission coefficient equal to 0.9, radiation shields at the sides of the belt (emission
coefficient equal to 0.1 and specularly reflecting) and a xenon atmosphere. The calculated
temperature differences over the width of the belt are given in Figure 6.18, both for the
optimized and for the non-optimized furnace. As can be seen in the figure, the maximum
temperature difference for the optimized furnace is approximately equal to 5 [°C]. This
difference can further be decreased by using a time shift for the side heating elements, as
explained in the previous section (Figure 6.14). When using a shift of 400 [sec], the maxi-
mum temperature difference decreases to ±1.5 [°C], as can be seen in Figure 6.19. Remind
again that due to convective effects the resulting temperature differences will be reduced
by about 30%. As a result, in the optimized furnace a maximum temperature difference of
1 [°C] is reached. This meets the design requirement for DCB processes as discussed in
chapter 1.
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Figure 6.18. Temperature differences over the
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CHAPTER 7.
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this study both a furnace model and a design tool for optimizing conveyor belt furnaces
are developed. It can be concluded that both the furnace model and the design tool are
suitable for calculating the temperature distribution over the width of the belt. With the
design tool the influences of material parameters, control behaviour and the geometry on
the temperature distribution over the width of the belt can be investigated very easily.
From measurements in the experimental set-up it appears that 3-D heat transfer effects
(both radiative and convective) are of negligible influence to the temperature distribution
over the width of the belt. The main effects causing temperature differences over the
width of the belt are radiative and conductive heat transfer through the sides of the belt,
and non-uniform radiative heat fluxes through the top and bottom surfaces of the belt
caused by reflections of radiation against the muffle. Convective heat transfer is a second-
ary effect, and causes temperature differences to reduce. This forms a justification for
omitting convective effects in the design tool. In practice, the temperature uniformity of a
conveyor belt furnace can be optimized by using radiation shields at the sides of the belt
and by equipping the muffle with an anti-reflective coating. In this way, the radiative
fluxes through the side of the belt and the non-uniform reflections against the muffle are
minimized. In the experimental set-up, further optimization of the temperature uniformity
was realized by using a time shift for the heating elements of the sides. This corresponds
to using a lower setpoint temperature for the side elements compared to the top and the
bottom in a real conveyor belt furnace. The conductive heat transfer can be reduced by
using xenon gas instead of air as medium inside the muffle, or by local cooling. For the
muffle geometry studied, using xenon gas (or local cooling) in combination with a coated
muffle, radiation shields and a time shift for the heating elements of the sides, the maxi-
mum temperature differences over the width of the belt can be reduced to about 1 [°C].
This is good enough for most critical industrial production processes.

7.2 Recommendations

The model developped in this study is suitable for furnaces with a large axial dimension,
so that a 2-D marching procedure is valid. Besides, the furnaces investigated in this study
contain opaque materials. In shorter furnaces, 3-D heat transfer effects play a more import-
ant role. Therefore, for modelling shorter furnace types the model should be extended to
3-D. Also the use of non-opaque materials, like glass, requires an extension of the model.
The plane discrete ordinate set used in the present study is valid for non-absorbing media.
For absorbing media a general 3-D ordinate set is necessary. By also discretizing the polar
angle ϑ a 3-D discrete ordinate set can be made, which can be integrated in the existing
model very easily. Also the use of standard discrete ordinate sets as known in literature is
possible. Then the orientation of the ordinates has to be considered again, as this effects
the reflection of radiation used in the boundary conditions. A second extension of the
radiation model is making it wavelength dependent, which is necessary for modelling
materials with wavelength dependent material properties, like glass. This can be done by
using a grey band model, in which the total wavelength spectrum is divided into a finite
number of grey bands. The model can calculate all the bands separately by using material
parameters that fit to the wavelength range of each specific band. At the end the heat
fluxes of all the bands can be integrated over the Planck curve to give the total heat flux.
The most completing step is a full extension of the model to 3-D, which is indispensable
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for shorter furnace types, in which 3-D heat transfer effects play a more important role
than in conveyor belt furnaces. Solving the 3-D Navier-Stokes and energy equations is
already possible with the standard SEPRAN package. To extend the radiation model to 3-
D, the 3-D discrete ordinate equations have to be solved. As the radiation model makes
use of the standard SEPRAN solvers, solving the 3-D discrete ordinate equations hardly
requires extra programming work. In the 3-D model a 3-D ordinate set has to be used.
Also the routines that calculate the boundary conditions have to be reprogrammed to deal
with 3-D reflections.

With respect to the experimental set-up, a possible extension is the use of PIV or PTV
measurement techniques for measuring quantitative velocity data. As the muffle is filled
with air, very small particles are required in order to follow the flow accurately, especially
at the low velocities occuring in the muffle. The smaller the particles used in PIV or PTV
measurements, the stronger the light sheet has to be in order to make the particles visible.
Furthermore, the set-up can be used to test improvement measures as given in this study.
By constructing air cooled pipes between the side walls of the muffle and the sides of the
plates, the effect of local cooling can be studied. Also the influence of an anti-reflective
coating on the muffle and of radiation shields near the sides of the plates can be
measured. Finally, the heat transfer in plates of different materials (like glass plates) can
be studied.
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APPENDIX 1.
THE RADIATIVE TRANSPORT EQUATION IN
CARTESIAN COORDINATES
For a grey, non-scattering medium the transport

Figure A1.1. Distance dS along a curvili-
near coordinate S in a 3-D coordinate
system.

equation for radiation intensity can be written as

Using a 3-D Cartesian coordinate system, the

(2.5)di S
dS

α ib S i S .

radiation intensity depends on three coordinates
(x, y, z). The derivative from equationdi (S )/dS
(2.5) can be expanded giving

When the curvilinear coordinate S intersects the

(A1.1)di
dS

∂i
∂x

dx
dS

∂i
∂y

dy
dS

∂i
∂z

dz
dS

.

xz-plane with angle ϕ and the z-axis with angle
ϑ (Figure A1.1), then a distance dS along S can
be written as

(A1.2)

dS
dx

cos ϕ sin ϑ
dy

sin ϕ sin ϑ
dz

cos ϑ
.

In combination with equation (A1.1) it follows for the derivative of i to S:

Combining this result with equation (2.5) the intensity in a 3-D domain is found to be:

(A1.3)di
dS

cos ϕ sin ϑ ∂ i
∂x

sin ϕ sin ϑ ∂ i
∂y

cos ϑ ∂ i
∂z

.

with

(2.15)ζ ∇ i α i x ,y ,z ib x ,y ,z ,

(A1.5)ζ

















cos ϕ sin ϑ

sin ϕ sin ϑ

cos ϑ

.
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Appendix 1. The radiative transport equation in cartesian coordinates.

82



APPENDIX 2.
THE DISCRETE ORDINATE EQUATIONS FOR
PLANE AND 3-D ORDINATES
The general form of the discrete ordinate equa-

Figure A2.1. 3-D solid angle with the
bounding planar angles.

tions for radiative transfer is

with equal to
m = 1 .. M (2.16)

ξ
m

∇ im α im ib ,

ξ
m

and equal to

m = 1 .. M (2.17)ξ
m

ω 1
m ⌡

⌠
ωm

ζdω ,

ζ

The direction vector is calculated by integrat-

(A1.5)ζ

















cos ϕ sin ϑ

sin ϕ sin ϑ

cos ϑ

.

ξ
m

ing over the solid angle ωm corresponding toζ
ordinate m. A general 3-D ordinate can be
defined as depicted in Figure A2.1. For this ordinate the integration in (2.17) is derived as

Carrying out the integration gives:

m = 1 .. M (A2.1)
ξ

m













⌡
⌠
ϕ

ϕ ϕ
⌡
⌠
ϑ

ϑ ϑ

sin ϑ dϑdϕ

1

⌡
⌠
ϕ

ϕ ϕ
⌡
⌠
ϑ

ϑ ϑ

ζsin ϑ dϑdϕ .

For a given discretization of the total hemisphere around some point into solid angles ωm

m = 1 .. M (A2.2)

ξ
m







































sin ϕ
m

sin ϕ
m

sin ϑ
m

cos ϑ
m

sin ϑ
m

cos ϑ
m

ϑ
m

ϑ
m

2 ϕm ϕm cos ϑm cos ϑm

cos ϕm cos ϕm sin ϑm cos ϑm sin ϑm cos ϑm ϑm ϑm

2 ϕm ϕm cos ϑm cos ϑm

sin2 ϑm sin2 ϑm

2 cos ϑm cos ϑm

.

the planar angles are known, and the vector can be calculated.ϕm ,ϕm ,ϑm en ϑm ξ
m
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Appendix 2. The discrete ordinate equations for plane and 3-D ordinates.

For a semi 2-D (plane) ordinate as depicted in

Figure A2.2. Plane ordinate with ϑ inte-
grated from 0 to π [rad].

Figure A2.2, the bounds of the polar angle are
allways ϑ- = 0 and ϑ+ = π [rad] for all M ordi-
nates. Substitution in (A2.2) gives for theξ

m
plane ordinates:

As these plane ordinates are used in 2-D

m = 1 .. M (A2.3)

ξ
m



























π sin ϕ sin ϕ
4 ϕ ϕ

π cos ϕ cos ϕ
4 ϕ ϕ

0

.

geometries, the third component of the equations
is never used. As can be seen in (A2.3), the third
component of appears to be 0.ξ

m
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APPENDIX 3.
THE BOUNDARY COEFFICIENTS
The boundary coefficients determine which part of the radiation from a certain ordinate
falls in to a wall. So for every wall/ordinate combination there is a boundary coefficient.
In this appendix the derivation of the boundary coefficient for a general wall/ordinate
combination is explained.

In order to determine the boundary coefficients, we first should look at the incident
behaviour of rays to a wall. For some wall/direction combination the radiation will hit the
wall, and for other combinations not. There are in fact two possible wall/direction combi-
nations, which are both depicted in Figure A3.1. The geometry is drawn counterclockwise,
so that the wall vectors of the geometry are always determined.

In the first possibility the ray is directed to the

Figure A3.1. Two possible orientations of
the incident radiation direction and a wall.

right (∆xray > 0). Such a ray hits walls for which:
Hw > Hray and ∆xw > 0 or
Hw < Hray and ∆xw < 0,

with Hw the slope of the wall,
Hray the slope of the ray,
xw the x component of the wall vector and
xray the x component of the ray vector.

A second possibility is that the ray points to the
left (∆xray < 0). In this case the ray hits walls for
which:

Hw < Hray and ∆xw > 0 or
Hw > Hray and ∆xw < 0.

Using these rules it is always possible to deter-
mine if a ray falls in to a certain wall or not.

Each ordinate corresponds to a solid angle in
space. In order to determine the boundary coeffi-
cients one has to determine which part of the
solid angle falls in to a certain wall. The solid
angle belonging to ordinate m is bounded by
two bounding vectors, ζm

+ and ζm
-. There are

now four possible orientations of a solid angle
(an ordinate) and a wall. These possibilities are
depicted in Figure A3.2.

The first situation occurs when both ζm
+ and ζm

-

point to the wall. In this case, all radiation from
the solid angle bounded by ζm

+ and ζm
- will fall in to the wall, and the boundary coeffi-

cient equals 1. So when both ζm
+ and ζm

- point to the wall, then the boundary coeffcient for
this wall/ordinate combination equals:

In the second case ζm
+ points to the wall, while ζm

- points from the wall. In this case only a

(A3.1)cw ,m 1

part of the radiation in the ordinate will fall in to the wall. This part equals:

with ϕ the sharp angle between the wall and ζm
+, and ϑ the angle between ζm

+ and ζm
-.

(A3.2)cw ,m

ϕ
ϑ
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Appendix 3. The boundary coefficients.

The angle ϑ equals 2 π over the total number of

Figure A3.2. The four possibilities of inci-
dent radiation from an ordinate to a wall.

ordinates.

The angle ϕ can be calculated using the vectors

(A3.3)ϑ 2π
M

ζm
+ and w (the wall vector).

Combining equations (A3.2), (A3.3) and (A3.4)

(A3.4)ϕ arccos












w ζ
m

w ζ
m

gives for the boundary coefficient in the second
case:

The third situation occurs when ζm
- points to the

(A3.5)cw ,m

M
2π

arccos












w ζ
m

w ζ
m

wall and ζm
+ not. In fact now an analogous deri-

vation as in the second case holds. The result
can easily be obtained by changing ζm

+ and ζm
-.

Then the boundary coefficient equals:

The fourth situation at last occurs when neither

(A3.6)cw ,m

M
2π

arccos












w ζ
m

w ζ
m

ζm
+ nor ζm

- hits the wall. In that case no radiation
from the ordinate will fall in to the wall, and the
boundary coefficient equals:

In a geometry a certain number of ordinates is

(A3.7)cw ,m 0

chosen, and the corresponding bounding vectors
( ) are calculated. Also for every wallζ

m
and ζ

m
point the corresponding wall vector w and its
slope are calculated. For the bounding vectors
the rules of Figure A3.1 are applied in order to
determine which vectors fall in to a wall. Then it
is also determined which situation from
Figure A3.2 is dealt with, and the boundary
coefficients for every wall/ordinate combination
can be calculated.
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APPENDIX 4.
THE REFLECTION COEFFICIENTS
Reflections at walls can be diffuse, specular or

Figure A4.1. Diffuse, specular and mixed
reflection.

something in between (Figure A4.1). At a wall,
the incident energy from ordinate m will be
reflected to various ordinates pointing from the
wall. The part of radiation that is sent from an
incident ordinate m to a reflected ordinate m’ is
determined by the specular and the diffuse re-
flection coefficients. In this appendix the deriva-
tion of these coefficients is explained.

The diffuse reflection coefficient

The diffuse reflection coefficient cw,m→m’ determin-
es the part of the diffusely reflected energy
against a wall w coming from ordinate m that is
sent to ordinate m’.

For diffuse reflection the incoming radiation to a wall is reflected into all ordinates the

(A4.1)ir ,difw ,m→m

cdifw ,m→m

ir ,difw ,m

.

wall is radiating to. The wall is radiating to Mout ordinates, so the reflected energy has to
be divided over Mout ordinates. As explained in paragraph 2.2, the part of an ordinate m’
radiation can be reflected to from wall w equals (1 - cw,m’). Therefore, the diffuse reflection
coefficient from ordinate m to ordinate m’ equals:

(A4.2)cdifw ,m→m

1 cw ,m

M
out

.

The specular reflection coefficient

For specular reflection, the reflected intensity

Figure A4.2. Specular reflection; reflected
solid angle overlaps with two ordinates
ωm1’ and ωm2’.

from ordinate m to ordinate m’ can be derived in
an analogous way as for diffuse reflection. The
reflected intensity can be calculated using a
specular reflection coefficient from ordinate m to
ordinate m’:

For specular reflection the incoming angle of

(A4.3)ir ,specw ,m→m

cspecw ,m→m

ir ,specw ,m

.

ordinate m equals the angle of reflection. As the
incoming and the reflected solid angle are of
equal size, the reflected solid angle can coincide
with two ordinates (Figure A4.2).

For an ordinate m falling in to a wall w the angle
of reflection ϕm’ in Figure A4.3 can be calculated.
With this angle, the specular reflection coeffi-
cient from ordinate m to the ordinates m’1 and
m’2 can be derived (Figure A4.3).
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Appendix 4. The reflection coefficients.

Since all the energy that is not reflected into m’1

Figure A4.3. Angles for determining the
specular reflection coefficient.

(A4.4)c
spec

w ,m→m1

ϕm1

π
M











ϕm

π
M

π
M

.

will be reflected to m’2, the reflection coefficient
from m to m’2 can be calculated as:

(A4.5)cspec
w ,m→m2

1 cspec
w ,m→m1

.
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APPENDIX 5.
QUADRATURE SCHEMES
Various quadrature schemes like Newton Cotes or Gauss schemes can be used in solving
the discrete ordinate equations. For 2-D quadratic elements, which have to be used in
solving the Navier-Stokes equations, some quadrature schemes are not applicable in
solving the equations as will be shown in this appendix.

The general form of a discrete ordinate equation is

This equation is transformed into a weak formulation, giving

(A5.1)ξ ∇i x i x ib x .

When the solution i(x) is approximated by a combination of basis functions (Galerkin) say

j = 1 .. N. (A5.2)⌡
⌠
Ω

ξ ∇i x i x ϕj x dΩ ⌡
⌠
Ω

ib x ϕj x dΩ .

one finds

(A5.3)i x
N

k 1

ik ϕk x ,

This equation can be written in matrix notation, which gives

j = 1 .. N. (A5.4)
N

k 1

ik ⌡
⌠
Ω

ξ ∇ϕk x ϕj x ϕk x ϕj x dΩ ⌡
⌠
Ω

ib x ϕj x dΩ .

with

(A5.5)A i f ,

For one element an element matrix can be derived. If Ni is the number of integration

j , k = 1 .. N. (A5.6)

Aj ,k ⌡
⌠
Ω

ξ ∇ϕk x ϕj x ϕk x ϕj x dΩ , fj ⌡
⌠
Ω

ib x ϕj x dΩ .

points per element, for a single element the integrals can be approximated using numerical
integration in the following way:

with wm the weights for numerical integration, belonging to the integration points xm.

(A5.7)
⌡
⌠
e

g x dΩ
Ni

m 1

g x
m

wm ,

Using numerical integration for a matrix element in equation (A5.6) gives:

Since for the basis- and the weight functions ϕj(xm) = δjm, equation (A5.8) reduces to:

j , k = 1 .. Ni. (A5.8)

A e
j ,k ⌡

⌠
e

ξ ∇ϕk x ϕj x ϕk x ϕj x dΩ
Ni

m 1









ξ ∇ϕk x
x

m

ϕj x
m

ϕj x
m

ϕk x
m

wm .

From this it follows that if the weight for numerical integration wj = 0, then a whole row

j , k = 1 .. Ni. (A5.9)A e
j ,k









ξ ∇ϕk x
x

j

δj k wj .

of the element matrix will be zero. In that case the element matrix is singular, and the
system cannot be solved. So in order to get a regular element matrix all the weights wj

must be unequal to zero.
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Appendix 5. Quadrature schemes.

Different quadrature schemes use different values for the weights wj. When using a
Newton-Cotes quadrature scheme in combination with quadratic triangular elements, the
weights in the corner points of the element appear to be equal to zero too. This
quadrature scheme therefore gives a singular element matrix. Another quadrature scheme
is required, like a Newton-Cotes scheme with all weights unequal to zero. Also the Gauss
quadrature scheme gives a regular matrix, and the system can be solved. Therefore, the
Gauss integration scheme is used in the furnace calculations.
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APPENDIX 6.
UPWIND TO AVOID OSCILLATIONS
In section 2.6 oscillation problems in 2-D geometries have been found. The oscillations
seemed to be caused by the appearance of two boundary conditions for a first order
differential equation. Using upwind elements the oscillations disappeared. In this appen-
dix the appearance of the oscillations and the upwind solution will be analyzed.

As a benchmark problem the following 1-D first order differential equation will be solved,

for 0 ≤ x ≤ 1. The left boundary condition is set to i(0) = 3, which in combination with

(A6.1)∂i x
∂x

i x 1 ,

equation (A6.1) gives an exact solution equal to:

At the right hand side of the domain the boundary condition i(1) = 2 will be prescribed,

(A6.2)i x 2e x 1.

which does not coincide with the exact solution of (A6.2). This boundary condition com-
bined with (A6.1) gives an exact solution of:

If the problem with both boundary conditions is solved using the finite element method

(A6.3)i x e 1 x 1.

Figure A6.1. Solutions found without upwinding for meshes with 20, 40 and 80 linear 1-D
elements.

with standard linear 1-D elements (no upwinding) then an oscillating solution is found. In
Figure A6.1 solutions found with different mesh sizes are depicted. As can be seen, the
oscillations do not disappear with an increasing mesh density.
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Appendix 6. Upwind to avoid oscillations.

The solution found using 20 linear upwind

Figure A6.2. Solution found with 20 linear
upwind elements (solid) and the exact
solution (dotted).

elements is shown as the solid line in
Figure A6.2. The exact solution of equation
(A6.2) is drawn as a dotted line in the figure. As
can be seen, the oscillations have disappeared
and the upwind solution fits very well to the
exact solution. For complex geometries, as in
section 3.2, for several directions also two boun-
dary conditions are prescribed for the discrete
ordinate equations. In these geometries upwind
elements will be used.
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APPENDIX 7.
MUFFLE PROPERTIES

Muffle

Material Steel 310.
Emission coefficient w = 0.38 [-],

sw = 0.68 [-].
Product plates

Material Steel.
Density ρ = 7.9 103 [kg m-3].
Conduction coefficient λ = 1.6 101 [W m-1 K-1].
Heat capacity cp = 5.0 102 [J kg-1 K-1].
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Appendix 7. Muffle properties.
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APPENDIX 8.
POSITIONING OF THE THERMOCOUPLES IN
THE SET-UP

The figure shows the numbering of the type K thermocouples for measuring metal surface
temperatures. The thermocouples measure the following temperatures respectively:

1, 8, 9, 16 and 20 Bottom of the muffle.
2, 10, 11, 17 and 21 Right side wall of the muffle.
3, 12, 13, 18 and 22 Roof of the muffle.
4, 14, 15, 19 and 23 Left side wall of the muffle.
24, 31 and 32 Front head side of the muffle.
25, 33 and 34 Rear head side of the muffle.
35 and 36 Product plate in zone 1.
26, 27, 28, 29 and 30 Product plate in zone 2.
37 and 38 Product plate in zone 3.
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Appendix 8. Positioning of the thermocouples in the set-up.

In the figure, the frame with the type S thermocouples for measuring air temperatures is
shown.
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APPENDIX 9.
RESULTS FOR THE MEASUREMENT SETS
In this appendix the measurement results for the various measurement sets done in order
to determine the 3-D source terms in chapter 5 are summarized.

A9.1 Measurement set 1
Set point 200 [°C], ramp rate 3 [°C/min]

For a set point of 200 [°C] and a ramp rate of 3 [°C/min] a measurement set was created.
For the 2-D measurement the preheating was 20 [°C], and the 3-D measurement was done
with an axial temperature gradient of about 20 [min/zone]. This measurement set was
also used in section 4.2, where temperature histories and shift graphs were already shown.

For the product plate in zone 2 the temperature differences between the thermocouples at
the sides and the thermocouple in the middle are depicted in Figure A9.1 and Figure A9.2.
The product plate contains 5 thermocouples over its width, which are one middle
thermocouple, two inner side thermocouples and two outer side thermocouples. The side
thermocouples are placed symmetrical with respect to the middle. As can be seen in the
figures, the differences are never higher than about 1 [°C]. As this is about the same order
of magnitude of the thermocouple accuracy, no conclusions can be drawn from these
graphs with respect to 3-D heat transfer effects. The only conclusion to draw is that in this
low temperature range no significant differences will occur. Higher differences are
expected in the experiments at higher temperatures.
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Figure A9.1. Temperature differences compared
to the middle for the 2-D experiment in set 1.
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Figure A9.2. Temperature differences compared
to the middle for the 3-D experiment in set 1.
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Appendix 9. Results for the measurement sets.

A9.2 Measurement set 2
Set point 400 [°C], ramp rate 5 [°C/min]

A set of experiments also has been done with a temperature gradient of 5 [°C/min], and a
set point of 400 [°C] for all the zones.

In Figure A9.3 the temperature histories in
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Figure A9.3. Temperature history for zone 2 for
the 3-D experiment in set 2.
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Figure A9.4. Temperature history for zone 2 for
the 2-D experiment in set 2.
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Figure A9.5. Temperature differences between
the top thermocouples and the other muffle
thermocouples in zone 2.

zone 2 for the 3-D experiment are depicted.
The axial temperature gradient was created
by turning on the power for the subsequent
zones with 15 minutes delay. In this way, a
temperature difference of about 60 [°C]
arised between neighbouring zones.

The top temperatures appeared to be higher
than the other muffle temperatures. The
temperature differences of the top control
thermocouple compared to the other control
thermocouples in zone 2 are graphed
against time in Figure A9.5. The maximum
temperature differences occured at about
4800 [s], and are equal to about 31 [°C] for
the top-bottom difference, and about 24 [°C]
for the top-sides differences. The top-sides
differences are also expected to be lower
than the top-bottom difference because of
conductive heat transfer through the muffle.

According to this result, a 2-D measurement was done with the top elements preheated 25
[°C]. The measured temperature history for zone 2 in this measurement is depicted in
Figure A9.4.

The time shift graphs for the thermocouples in zone 2 are depicted in Figure A9.6. As can
be seen, between 4000 [s] and 10000 [s] the graphs are approximately horizontal, so the
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Appendix 9. Results for the measurement sets.

measurements are comparable during this

4000 6000 8000 10000
−4000

−3500

−3300

−3000

−2500

−2000
Shift graphs in zone 2

time [s]

tim
e 

sh
if

t [
s]

Figure A9.6. Time shift graphs for the measure-
ment set at 400 [°C].

period. It also appears from this graph that
the time shift is approximately equal for all
the muffle thermocouples, and is about 3300
[s] in the given time range. Therefore it can
be concluded that the two measurements
agree quite well, and that the initial
preheating of the top elements of 25 [°C]
was a good choice.

Just like for the previous set of measure-
ments, the temperature differences between
the thermocouples at the sides and the
thermocouple in the middle of the product
plate in zone 2 were determined. These
temperature differences are graphed in
Figure A9.7 and Figure A9.8. As can be
seen in the figures, the differences near the
sides of the product plates are about 5 [°C], while the differences nearer to the middle of
the belt are lower than 1 [°C]. A slight difference can be seen between the left and the
right hand side of the furnace. No significant difference in temperature uniformity is
measurable between the 2-D and the 3-D situation.
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Figure A9.7. Temperature differences compared
to the middle for the 3-D experiment in set 2.
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Figure A9.8. Temperature differences compared
to the middle for the 2-D experiment in set 2.
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Appendix 9. Results for the measurement sets.

A9.3 Measurement set 3
Set point 600 [°C], ramp rate 5 [°C/min]

The next set of measurements was done for a set point of 600 [°C], with still a ramp rate
of 5 [°C/min]. This set point temperature is the highest temperature the test rig was
designed for. For the 3-D measurement, an axial gradient was created using a delay of 15
minutes between neighbouring zones, resulting in a typical temperature difference of
approximately 60 [°C/zone].

In Figure A9.9 the temperature histories in
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Figure A9.9. Temperature history for zone 2 for
the 3-D experiment in set 3.
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Figure A9.10. Temperature history for zone 2
for the 2-D experiment in set 3.
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Figure A9.11. Temperature differences between
the top thermocouples and the other muffle
thermocouples in zone 2.

zone 2 for the 3-D experiment are depicted.
For this measurement the differences
between the top muffle temperature and the
other control temperatures of zone 2 are
depicted in Figure A9.11. From these
graphs, a top preheating of 25 [°C] was
estimated to be suitable for the correspon-
ding 2-D measurement. The measured tem-
perature history for zone 2 in this 2-D mea-
surement is depicted in Figure A9.10.
The time shift graphs for the thermocouples
in zone 2 are depicted in Figure A9.12. As
can be seen, between 2000 [s] and 8000 [s] a
time shift of approximately 1580 [s] is deter-
mined. Only the muffle thermocouple in the
middle of the bottom has a slightly different
time shift. However, because all the other
thermocouple profiles, including the two
other muffle bottom thermocouples, give
equal time shifts in the graph, the initial
preheating of the top elements is expected to be good enough to create a set of meas-
urements that is equivalent enough to be used for comparison. Therefore, this set of
measurements will also be used to determine 3-D heat transfer effects.

100



Appendix 9. Results for the measurement sets.

The temperature differences between the thermocouples at the sides and the thermocouple
in the middle of the product plate in zone 2 were determined. These temperature differ-
ences for both measurements are graphed in Figure A9.13. As can be seen in the figures,
the differences are about equal for the 2-D and for the 3-D measurement, so still in this
measurement set 3-D effects appear to be negligible, despite the high temperatures. For
the outer right hand sides of the product plates the differences compared to the middle is
about 5 [°C], while for the outer left hand sides this difference is slightly lower (equal to
3.5 [°C]). The differences with the middle thermocouple for the inner side thermocouples
are never larger than 1 [°C].
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Figure A9.12. Time shift graphs for measure-
ment set 3.
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Figure A9.13. Temperature differences compared
to the middle for the 2-D (dashed) and the 3-D
(solid) experiment in set 3.

A9.4 Measurement set 4
Set point 600 [°C], ramp rate 8 [°C/min]

3-D effects have appeared to be negligible
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Figure A9.14. Temperature differences compared
to the middle for the 2-D experiment (dashed)
and the 3-D experiment (solid) in set 4.

in the previous measurements. The only
tests possible using the test-rig for increas-
ing these effects is using a higher ramp rate,
in order to create higher belt-muffle tem-
perature differences, and using a higher
axial temperature gradient. In this measure-
ment set, the influence of the higher ramp
rate is investigated. As the ramp rate used
must be lower than 10 [°C/min] in order to
avoid too high temperature differences
between the several heating elements, a
ramp rate of 8 [°C/min] seems a good value
for the higher ramp rate. In the 3-D meas-
urement, a time delay between the neigh-
bouring zones of 15 minutes was used.
Because of the higher ramp rate this also
resulted in a higher temperature difference
between neighbouring zones (approximately
100 [°C]). Also, a temperature difference between the top and the other control tempera-
tures of 30 [°C] was determined for use as a preheat temperature for the 2-D measure-
ment.
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The temperature differences between the thermocouples at the sides and the thermocouple
in the middle of the product plate in zone 2 were determined. These temperature differ-
ences for both measurements are graphed in Figure A9.14. As can be seen in the figures,
the differences are still about equal for the 2-D and for the 3-D measurement, so also for
the higher ramp rate 3-D effects appear to be negligible. For the outer right hand sides of
the product plates the differences compared to the middle are about 9 [°C], while for the
outer left hand sides this difference equals about 8 [°C]. The differences with the middle
thermocouple for the inner side thermocouples are never larger than 2 [°C]. From compar-
ing this result to Figure A9.13, it can be concluded that the higher ramp rate causes higher
temperature differences over the belt width. Because there are no significant differences
between the 2-D and the 3-D measurement results, these larger differences must be caused
by larger cross-sectional temperature gradients, which makes them analysable as 2-D
effects.

A9.5 Measurement set 5
Set point 600 [°C], ramp rate 8 [°C/min], increased axial
gradient

In order to determine from which point the
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Figure A9.15. Temperature differences compared
to the middle for the 2-D experiment (dashed)
and the 3-D experiment (solid) in set 5.

3-D effects start to play a role of importance
for the temperature uniformity, the axial
temperature gradient in the test-rig will be
varied in order to increase the 3-D effects.
The set of measurements in this section is
equal to the previous set, with as only dif-
ference a higher axial temperature gradient
of 25 minutes per zone, resulting in an axial
temperature gradient of approximately 120
[°C] between neighbouring zones. After
performing the 3-D measurement, a top
temperature offset of 50 [°C] comparing to
the other control temperatures in zone 2
was determined, which was used as
preheating in the 2-D measurement afterwa-
rds.

The temperature differences between the
thermocouples at the sides and the thermocouple in the middle of the product plate in
zone 2 were determined. These temperature differences for both measurements are
graphed in Figure A9.15. As can be seen, there is hardly any difference between
Figure A9.15 and Figure A9.14. The higher axial temperature gradient had no effect on the
temperature uniformity over the belt width. Again it can be concluded that 3-D heat
transfer effects were negligible.
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NOMENCLATURE
Symbol Description Standard units

A surface area [m2]
c boundary coefficient [-]
cp heat capacity [J kg-1 K-1]
F configuration factor [-]
g acceleration of gravity [m s-2]
H slope [-]
h thickness [m]
hc conduction coefficient [W m-2 K-1]
i radiation intensity [W m-2 sr-1]
ib black body intensity [W m-2 sr-1]
Kp proportional control action [W K-1]
k conduction coefficient [W m-1 K-1]
O order of magnitude
p pressure [N m-2]
Q power [W]
Q’ power per unit length [W m-1]
q heat flux [W m-2]
L reference length [m]
l length [m]
M number of ordinates [-]
m mass [kg]
n perpendicular coordinate [m]
S path coordinate [m]
T temperature [K]
Tp proportional band [K]
∆T temperature difference [K]
t time [s]
∆t timestep [s]
U reference velocity [m s-1]
u velocity [m s-1]
w weight [-]
x,y,z Cartesian coordinates [m]
α medium absorption coefficient [m-1]
αw wall absorption coefficient [-]
δ Kronecker delta
εw wall emission coefficient [-]
ζ arbitrary factor [-]
ζ direction vector [-]
η dynamic viscosity [kg m-1 s-1]
ϑ polar angle [rad]
λ wavelength [m]
ξ ordinate vector [-]
ρ density [kg m-3]
Υd differentiation time [s]
ρw wall reflection coefficient [-]
σ Stefan-Boltzmann constant [W m-2 K-4]
σs scattering coefficient [m-1]
Υw wall transmission coefficient [-]
Φ phase function for scattering [-]
ϕ azimuthal angle [rad]
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Nomenclature.

Symbol Description Standard units

ω solid angle [sr]
∇ gradient operator [m-1]
2-D two-dimensional
3-D three-dimensional

Dimensionless ratios

Fo Fourier number
Fr Froude number
Gr Grashof number
N conduction/radiation parameter
Pe Péclet number
Re Reynolds number
Sr Strouhal number

Subscripts

a absorbed
b black body

belt
dif diffuse
e emitted
el elements
in incident
k conductive
m muffle

ordinate number
max maximum
out outer
p projected
r reflected
rad radiant
s scattered

stones
set setpoint
spec specular
t transmitted
w wall
λ wavelength dependent
0 reference
∞ environment

Superscripts

+,- bounds
* dimensionless
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SUMMARY
In this study the improvement of the temperature uniformity in an industrial conveyor
belt furnace is the main topic. In a conveyor belt furnace, the products follow a certain
temperature history as they are transported through the furnace by means of a conveyor
belt. For setting the temperature history of the products the furnace is divided into several
electrically heated zones, each with an own temperature setting. For some production
processes, a very high temperature accuracy is required (±2 [°C] at an absolute tempera-
ture level of 1000 [°C]). When several product rows are placed next to each other on the
conveyor belt, then automatically a uniform temperature distribution over the width of the
belt is required.

To get an understanding of the heat transfer phenomena in a conveyor belt furnace, a
numerical model is made for calculating the heat fluxes. Because of the relatively large
length of the muffle compared to its cross-sectional dimensions, a 2-D model is chosen for.
Three dimensional (axial) effects are supposed to be of less importance, but can be taken
into account in the model by means of source terms. The transport equation for radiative
intensity is discretized with the Discrete Ordinate Method, after which all heat transfer
equations are solved using the finite element package SEPRAN. From comparing the
several heat fluxes to each other it appears that radiation and local conductive effects are
the most important phenomena in disturbing the temperature uniformity over the width
of the belt. Therefore, the model is simplified to a design tool, in which only these effects
are taken into account, and which has the ability of making fast calculations on a new
furnace configuration.

For comparing the model to reality, and also for checking if the assumptions on which the
model is based are valid, an experimental set-up is built. This set-up consists of three
zones of a real conveyor belt furnace, in which the belt has been replaced by steady
(possible cooled) plates. With the set-up temperatures can be measured of the muffle walls
and the plate surfaces, and also of the air at several positions. Also the flow pattern inside
the muffle can be visualized by means of a system of lenses and smoke injection. In this
way the furnace is used for simulating a real furnace, and for investigating the flow
phenomena inside the muffle. From simulations it appears that the flow pattern inside the
muffle is very strongly dependent on the wall temperatures of the muffle, and is also
predicted accurately by the numerical model. Three dimensional effects appear to be of
minor influence on the temperature distrubution over the width of the belt. In this way it
is demonstrated that the design tool is capable of calculating the temperature distribution
over the width of the belt with a satisfactory accuracy.

Using the design tool, an optimization study is done for a conveyor belt furnace. The
influence of the several heat transfer phenomena on the temperature distribution over the
width of the belt is analyzed. Also the influence of the geometry, material properties and
the control strategy of the heating elements is investigated. From this, design rules for a
new conveyor belt furnace have been formulated. In theory, the temperature distribution
is completely uniform for a non-reflecting muffle and when no heat transfer through the
sides of the belt takes place. In practice, a temperature distribution with a maximum
deviation of 1 [°C] can be realized. This is satisfactory for critical production processes.
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SAMENVATTING
In deze studie staat het verbeteren van de temperatuur-uniformiteit in industriële band-
doorloopovens centraal. In een banddoorloopoven ondergaan producten een bepaald
temperatuurtraject door ze op een lopende band door de oven heen te trekken. Om het
temperatuurtraject van de producten in te stellen is de oven verdeeld in een aantal elek-
trisch verwarmde zones, elk met een eigen temperatuurinstelling. Voor sommige produc-
tieprocessen is een zeer hoge temperatuurnauwkeurigheid vereist (±2 [°C] bij een absolute
temperatuur van ongeveer 1000 [°C]). Indien meerdere productrijen naast elkaar op de
band liggen wordt dan automatisch een hoge temperatuuruniformiteit over de breedte van
de band vereist.

Om begrip te krijgen van de warmteoverdrachtsfenomenen in een banddoorloopoven is
een numeriek model opgesteld ter berekening van de warmtestromen. Vanwege de relatief
grote lengte van de muffel t.o.v. de afmetingen in een dwarsdoorsnede is gekozen voor
een tweedimensionaal model. Driedimensionale (axiale) effecten worden geacht van
minder invloed te zijn, maar kunnen wel worden toegevoegd aan het model door middel
van brontermen. In het model worden warmteoverdracht door straling, convectie en
geleiding meegenomen. De stralingsvergelijkingen worden gediscretiseerd volgens de
Discrete Ordinaten Methode, waarna alle warmteoverdrachtsvergelijkingen opgelost wor-
den met het eindige elementen pakket SEPRAN. Uit een vergelijking van de warmtestro-
men ten opzichte van elkaar blijkt dat vooral straling en lokale geleidingseffecten een noe-
menswaardige invloed hebben op de temperatuuruniformiteit. Het model is daarom
vereenvoudigd tot een ontwerpgereedschap, waarin alleen de laatste effecten gemodel-
leerd zijn, en waarmee het mogelijk is om snel een nieuwe ovenconfiguratie door te
rekenen.

Om het model te toetsen aan de werkelijkheid, en ook om te controleren of de gedane
aannamen kloppen, is er een experimentele opstelling gebouwd. Deze opstelling bestaat
uit drie zones van een echte banddoorloopoven, waarbij de band vervangen is door
stilliggende (eventueel gekoelde) platen. Met de opstelling kunnen wandtemperaturen van
de muffel en de platen, en ook luchttemperaturen op verschillende posities worden
gemeten. Ook kan het stromingsveld gevisualiseerd worden m.b.v. een lenzensysteem en
rookinjectie. Zodoende wordt de opstelling gebruikt voor simulatie van een echte oven, en
ook voor het onderzoeken van stromingsverschijnselen in de muffel. Uit de simulaties
blijkt dat het stromingspatroon in de muffel sterk afhankelijk is van de opgedrukte rand-
temperaturen, en ook goed wordt voorspeld door de numerieke code. Ook blijkt dat
driedimensionale effecten geen noemenswaardige invloed hebben op de temperatuuruni-
formiteit over de breedte van de band. Op deze manier is aangetoond dat het ontwerpge-
reedschap nauwkeurig genoeg is om de temperatuuruniformiteit over de breedte van de
band te voorspellen.

Met het ontwerpgereedschap is een optimalisatiestudie uitgevoerd voor een banddoor-
loopoven. De invloed van de verschillende warmteoverdrachtsfenomenen op de tempera-
tuurverdeling over de breedte van de band is geanalyseerd. Ook de invloeden van de
geometrie, materiaaleigenschappen en van de regeling van de verwarmingselementen zijn
onderzocht. Hieruit zijn ontwerpregels opgesteld voor een nieuwe banddoorloopoven.
Theoretisch is de temperatuurverdeling over de breedte van de band uniform voor een
niet reflecterende muffel, en wanneer er geen warmtestromen zijn door de zijkanten van
de band. Praktisch haalbaar is een temperatuurverdeling met maximaal 1 [°C] afwijking.
Dit is voldoende voor kritische productieprocessen.
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