EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Equidistant sampling for the maximum of a Brownian motion
with drift on a finite horizon

Citation for published version (APA):
Janssen, A. J. E. M., & Leeuwaarden, van, J. S. H. (2009). Equidistant sampling for the maximum of a Brownian
motion with drift on a finite horizon. Electronic Communications in Probability, 14, 143-150.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://research.tue.nl/en/publications/6507a340-259a-4c22-85de-c6654559a0d8

Elect. Comm. in Probab. 14 (2009), 143-150 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

EQUIDISTANT SAMPLING FOR THE MAXIMUM OF A BROWNIAN
MOTION WITH DRIFT ON A FINITE HORIZON

A.J.E.M. JANSSEN

Philips Research, Digital Signal Processing Group

High Tech Campus 36, 5656 AE Eindhoven, The Netherlands
email: a.j.e.m.janssen@philips.com

J.S.H. VAN LEEUWAARDEN !

Eindhoven University of Technology and EURANDOM
PO. Box 513 - 5600 MB Eindhoven, The Netherlands
email: j.s.h.v.leeuwaardenQtue.nl

Submitted October 3, 2008, accepted in final form January 22, 2009

AMS 2000 Subject classification: 11M06, 30B40, 60G50, 60G51, 65B15
Keywords: Gaussian random walk; maximum; Riemann zeta function; Euler-Maclaurin summa-
tion; equidistant sampling of Brownian motion; finite horizon

Abstract

A Brownian motion observed at equidistant sampling points renders a random walk with normally
distributed increments. For the difference between the expected maximum of the Brownian mo-
tion and its sampled version, an expansion is derived with coefficients in terms of the drift, the
Riemann zeta function and the normal distribution function.

1 Introduction

Let {B(t)},>o denote a Brownian motion with drift coefficient u and variance parameter o2, so
that

B(t) = ut + oW(t), (@D)

with {W(t)},>o a Wiener process (standard Brownian motion). Without loss of generality, we
set B(0) = 0, o = 1 and consider the Brownian motion on the interval [0,1]. When we sample
the Brownian motion at time points %, n = 0,1,...N, the resulting process is a random walk
with normally distributed increments (Gaussian random walk). The fact that Brownian motion
evolves in continuous space and time leads to great simplifications in determining its properties. In
contrast, the Gaussian random walk, moving only at equidistant points in time, is an object much
harder to study. Although it is obvious that, for N — oo, the behavior of the Gaussian random walk
can be characterized by the continuous time diffusion equation, there are many effects to take
into account for finite N. This paper deals with the expected maximum of the Gaussian random
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walk and, in particular, its deviation from the expected maximum of the underlying Brownian
motion. This relatively simple characteristic already turns out to have an intriguing description.
In Section[2/we derive an expansion with coefficients in terms of the Riemann zeta function and
(the derivatives of) the normal distribution function. Some historical remarks follow, and the
proof is presented in Section (3]

2 Main result and discussion

By Spitzer’s identity (see [19,/14]) we have

N
1
_ TRt
E max B(n/N)= ;:1 —EB*(n/N), 2

.....

where B1(t) = max{0,B(t)}. The monotone convergence theorem, in combination with a Rie-
mann sum approximation of the right-hand side of (2), gives (see [1])

1
1
E max B(t) = J —EB*(t)dt. 3)
0<t<1 o b
The mean sampling error, as a function of the number of sampling points is then given by
"1 Y1
EAy(u) = f —EB*(t)dt — Z —EB*(n/N). )
0 t n=1 n
Since B(t) is normally distributed with mean ut and variance t one can compute
. t 1/2 12,
BB (0) = pea(uv/)+ (5= ) e, 5)
where ®(x) = \/%7: ffoo e 2" du. Substituting (5) into (4) yields
1 N
Ay = | g(de— <> gln/N) ©
N 0 N n=1 ’
where 1
1.2
t) = pd(uvt)+ e 2Mt @)
g(t) = ud(uv'e) Jont

We are then in the position to present our main result.

Theorem 1. The difference in expected maximum between {B(t)}o<,<; and its associated Gaussian
random walk obtained by sampling {B(t)}o<.<; at N equidistant points, for |u/v/N| < 24/, is given
by

1/2)  2g(1)- 2y By g0
EAN(M):_C(/)_ g(1) M_Z(zk g ()
k=1

V21N 4N 2k)! N2k

L $eyamncy (2
V2rN = rl@2r+1)2r+2) VN

with O uniform in u, { the Riemann zeta function, p some positive integer, B, the Bernoulli numbers,
and g defined as the kth derivative of g in (7).

2r+2
) +0(1/N?P+2), (8)
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EAy(u) shows up in a range of applications. Examples are sequentially testing for the drift of
a Brownian motion [7], corrected diffusion approximations [17], simulation of Brownian motion
[1,5], option pricing [3], queueing systems in heavy traffic [12,/13, 15], and the thermodynamics
of a polymer chain [8].

The expression in (8) for EAy(u) involves terms ¢;N /% with

Lo )y p-we-w20@) /2w e
1— m’z_ 4 > V3 Zm > Y4 — 24;

$(x) = e */2/y/27 and ¢j = 0 for j = 6,10,14,.... The first term ¢; has been identified by
Asmussen, Glynn & Pitman [1], Thm. 2 on p. 884, and Calvin [5], Thm. 1 on p. 611, although
Calvin does not express c; in terms of the Riemann zeta function. The second term c, was derived
by Broadie, Glasserman & Kou [3], Lemma 3 on p. 77, using extended versions of the Euler-
Maclaurin summation formula presented in [1]. To the best of the authors’ knowledge, all higher
terms appear in the present paper for the first time.

The distribution of the maximum of Brownian motion with drift on a finite interval is known to be
(see Shreve [18], p. 297)

(C)]

_ x—uT oux o (X —UT
P(Or;ngTB(t)Sx)—é( N )—M@(T), x>0, (10)

and integration thus yields
B(max B(0) = 3 (20(u/T) = 1)+ (v T + $(u/TIVT. an

A combination of (11) and (8) leads to a full characterization of the expected maximum of the
Gaussian random walk. Note that the mean sampling error for the Brownian motion defined in
on [0, T], sampled at N equidistant points, is given by o v'T - EAy(uv/T /o).

When the drift u is negative, results can be obtained for the expected all-time maximum. That is,
for the special case u <0, 0 =1, T = N and N — o0, one finds that limy_,o, VN - EAy(uvN) is
equal to

2 2\ "
a1 e S {(-1/2-r) ( u) ’ 12
V2 4 Vearm&ri2r+1)(2r+2) | 2

for —24/m < u < 0. Note that (12) follows from Theorem [Il The result, however, was first
derived by Pollaczek [16] in 1931 (see also [11]). Apparently unaware of this fact, Chernoff
[7] obtained the first term —{(1/2)/+/27, Siegmund [17], Problem 10.2 on p. 227, obtained the
second term 1/4 and Chang & Peres [6], p. 801, obtained the third term —{(—1/2)/2+v/27. The
complete result was rediscovered by the authors in [9], and more results for the Gaussian random
walk were presented in [9) 10], including series representations for all cumulants of the all-time
maximum.

3 Proof of Theorem|1

We shall treat separately the cases u < 0, u > 0 and u = 0. The proof for u < 0 in Subsection[3.1]
largely builds upon Euler-Maclaurin summation and the result in Section 4 of [9] on the expected
value of the all-time maximum of the Gaussian random walk. The result for y > 0 in Subsection
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[3.2 then follows almost immediately due to convenient symmetry properties of ®. Finally, in
Subsection[3.3, the issue of uniformity in u is addressed and the result for u = 0 is established in
two ways: First by taking the limit 4 T 0 and subsequently by a direct derivation that uses Spitzer’s
identity (4) for u = 0 and an expression for the Hurwitz zeta function.

3.1 The negative-drift case
Set u = —y with y > 0. We have from (6)
EAy (1) = {f g(tydt — —Zg(n/N)} - { f g(tyde—— > g(n/m}. (13)
0 N n=1 1 N n=N+1

We compute by partial integration

[o¢] o0 1 [oe] Ly
(t)dt = —f d(—yVt)dt + —f t712e7artdt
J;) g . Y Y o .

-1 1 1
=— 4 —=—. (14)
2y v 2y

Furthermore, with 8 = y/+N,

[e9)

_Zg(“/N)__Z( r®(—yvn/vVN)+ 2m/Ne§r2n/N)
_5/32 M
\/—Z(e —Be(- /N‘)) 7 (15)

with EM as in (4.1) of [9]. From (14), (15) and [9], (4.25), it follows that

" 1 -2y

1 (=1/2=m)(=1/2) ( y ¥+
_1/—271;1\/; ri(2r +1)(2r +2) (ﬁ) ' (19

This handles the first term on the right-hand side of (13).

For the second term, we use Euler-Maclaurin summation (see De Bruijn [4], Sec. 3.6, pp. 40-42)
for the series %Z;";NH g(n/N). With

F)=8(/N), xZN, a7
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we have forp =1,2,...

ST = —fN) + ff(n)

n=N+1

=—f(N)+ lim U fdx + f(N)+Z(2k), (FEDn) = FEDm)

G = Lx))
J pengn e T dx}

——-f(N)+J fG)dx - Z(Zk),f@k D(N) + Ry, 18)

where B, (t) denotes the nth Bernoulli polynomial, B,, = B,(0) denotes the nth Bernoulli number,
and

oo By, (x —[x])
__ (2p) 2p il
Ryn = L fEP =gy ax 19)
Since fO(x) = g(x/N)/N'*1, we thus obtain
LS sm =t [ stox- §p P gk 4R (20)
N n:N+1g “on® 1 § 4 (2k)! NZk PN
where
1 0 B,, (Nx — |[Nx])
— (2p) ey A
Ron =~ 8 (x) ) 1)

From the definition of g in (7) it is seen that g®?) is smooth and rapidly decaying, hence R,y =
O(1/N?P). Since
Bipi2 1

_ (2p+1)
Row =~ p oy N2 8 P+ Ry, 22)

we even have R, y = O(1/N**2). Therefore, from (20),

> 1< 1
f g(0dt - > /N = 5o+ Z(Zk)wzkg@" D) +O0(1/N**). (23)
1 n=N+1

Combining (16) and (23) completes the proof, aside from the uniformity issue, for the case that

u=-y<O0.

3.2 The positive-drift case

The analysis so far was for the case with negative drift y = —y with y > 0. The results can be
transferred to the case that u > 0 as follows. Note first from ®(—x) = 1 — ®(x) that g(t) =
u— ®(—u/t) + (2mt) "2 exp(—%(—u)zt). Therefore, by (6)

EAy(u) =EAy(—w), 24
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since the term u vanishes from the right-hand side of (6). Then use the result already proved with
—u < 0 instead of u. This requires replacing g(t) from (7) by

—u@(—uﬁ)+(27‘ct)_1/ze_%(_“)2t (25)
and u by —u everywhere in (8). The term 2g(t) — u then becomes

2 (—pe(—pvt) + 2rnt) 2 exp(— 3 (-p)*0)) — (—p) =
2 (ue(uv)+ 2rt) 2 exp(—1p2t)) — u, (26)

which is in the form 2g(t) — u with g from (7). Next we compute

()= £3/2em 3Kt
g'(t) Wor

d 2,
dt[ ue(—uv/D) + (2me) 23] 27)

Finally, the infinite series with the ¢-function involves u quadratically. Thus writing down (8)
with —u < 0 instead of u turns the right-hand side into the same form with g given by (7). This
completes the proof of Theorem/[1 for u # 0.

3.3 The zero-drift case

We shall first establish the uniformity in u < 0 of the error term O in (8), for which we need that

-1 (* By, (Nx — [Nx])
_- @p)(yy_2P Y = 747
RP’N sz g P (x) (zp)' dx (28)

can be bounded uniformly in u < 0 as O(N~%P). Write v = %,uz, and observe from (27) and
Newton’s formula that for k=1,2,...

_ k-1
SOES Jl_ (i) [ ]

( 1)k k-1
e Z ( ) 3.5 (B n— I (29)
T

Hence, g®)(t) > 0 and g®~1(1) < 0 for p =1,2,.... Therefore, with C an upper bound for
(30)

|Bop (Nx — [Nx]) /(2p)!],

we have

C *© C
IRy NI < WJ ¢®(0)de = _ﬁg(zpq)(l)

=
pz:(z _2) .§ ..... (3+n—1)1/2p2" (31)
N2P2«/_

which is bounded in v > 0 when p = 1,2... is fixed. This settles the uniformity issue and thus the
case u = 0 by letting u T 0.
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A direct derivation of the result (8) for the case y = 0 is also possible. When (s, x) is the analytic
continuation to C\ {—1} of the function

{s,x)= D (n+x), Re(s)>1, x€R, (32)

n>-—x

then fors € C\ {—1} and p =1,2,... with 2p + 1 > —Re(s), there holds (see Borwein, Bradley &
Crandall [2], Section 3, for similar expressions)

x + N
(sx)= > (n+x)7° - CH Lx+N)

—x<n<N 1-
P r1—-s\ B

- Z ( o ) - 2K (x + N)=2H L (N2, (33)
k=1 S

Combination of
EAy(0) = L 2— L ﬁ:n’l/z (34)
Van N2 -~

and (33) withs =1/2, x =1 and N replaced by N — 1, leads to

_ ¢z 1 1/2 ok —ap2
EAy(0) = = «/_Z( )szN +O(N"272), (35)

Note that

1
VT \ 2k ~ 2k Vant’

and so (35) corresponds to (8) with u = 0, indeed.
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