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ABSTRACT

We have established a novel control system for combining

the parallel execution of deterministic and non-deterministic

medical imaging applications on a single platform, sharing

the same constrained resources. The control system aims at

avoiding resource overload and ensuring throughput and la-

tency of critical applications, by means of accurate resource-

usage prediction. Our approach is based on modeling the

required computation tasks, by employing a combination

of weighted moving-average filtering and scenario-based

Markov chains to predict the execution. Experimental valida-

tion on medical image processing shows an accuracy of 97%.

As a result, the latency variation within non-deterministic

analysis applications is reduced by 70% by adaptively split-

ting/merging of tasks. Furthermore, the parallel execution

of a deterministic live-viewing application features constant

throughput and latency by dynamically switching between

quality modes. Interestingly, our solution can successfully

be reused for alternative applications with several parallel

streams, like in surveillance.

Index Terms— Medical image processing, Object recognition,

Software performance, Stochastic approximation, Multiprocessing.

1. INTRODUCTION & MOTIVATION

In advanced systems, multiple video applications are exe-

cuted in parallel and share the constrained system resources.

To optimize quality and fluent execution of tasks, manage-

ment and quality control are required to avoid resource over-

load and guarantee throughput of critical applications. With

dynamic video-processing applications, such as in image

analysis, the computational complexity has become data

dependent and memory usage is more irregular. Detailed

know-how of specific application aspects, such as data-driven

complexity and the corresponding memory requirements is

relevant for optimal mapping of tasks on a computing plat-

form and optimizing the performance during runtime. In

this paper, we use modeling for runtime estimation of the

resource usage with the aim to execute more functions in

parallel on the same platform. With accurate model descrip-

tions, at runtime, a resource-usage prediction can be made

for resource planning, parallelization and possibly the corre-

sponding Quality-of-Service (QoS) control [1][2].

The above problem statement has been addressed in sev-

eral fields of applications, such as high-performance comput-

ing and multimedia. For multimedia computing, application

analysis has revealed that algorithms have variable compu-

tational rates and memory sizes, which involves application

tuning based on this variable nature [3][4]. In our case, the

application field is professional medical imaging and process-

ing. Since this involves a rather broad scope, we study a mix-

ture of the previous features and new aspects. Furthermore,

the application involves image analysis, which has a more dy-

namic nature and will be discussed below.

This paper is organized as follows. In Section 2, the archi-

tectural requirements are given. Section 3 presents the appli-

cation under study. The method for resource-usage prediction

is described in Section 4. For management of the resources

and quality, in Section 5, we introduce scalability and runtime

control of the application. Section 6 presents experimental re-

sults executing two applications in parallel on a multiproces-

sor system. Section 7 concludes the paper.

2. ARCHITECTURAL REQUIREMENTS

Let us start with a survey of the system architectural require-

ments that are important for professional medical imaging.

• Low latency. We explore a double-pipeline imaging appli-

cation with the aim to (1) detect and enhance objects of inter-

est under X-ray fluoroscopy and (2) denoise and increase the

global image quality during a live interventional angiography

procedure. Because physicians must see their actions directly

on the screen (eye-hand coordination), a constant low latency

is a key requirement for the real-time imaging application.

• Variable image analysis. A trend in medical imaging is the

introduction of analysis and feature extraction techniques in

the real-time video pipeline. As a consequence, the computa-

tional complexity has become data dependent. As an answer

to the variable processing rates, performance prediction may

be applied in the form of modeling to guide the mapping and

to obtain efficient implementations.
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Fig. 1. Flow graph with deterministic and non-deterministic tasks.

As dedicated hardware lacks flexibility, using of-the-shelf

multi-core processors as a platform for image processing

seems to be a valid choice. With multiple cores to provide

the required processing power, runtime programmability and

flexibility is maintained. Co-processors can be added in the

future for cost-efficiency reasons. It is important to note that

the approach we employ in this paper is essentially different

from considering only the worst-case state of the system. Un-

like the worst-case approach, our approach is dynamic, i.e. it

makes use of runtime characteristics of the input data and the

environment of the application.

3. MEDICAL IMAGING APPLICATION

This section presents the key application used in this pa-

per. Coronary angioplasty is a catheter-based procedure

performed by an interventional cardiologist in order to open

up a blocked coronary artery and restore blood flow to the

heart muscle. Image analysis and motion-compensation tech-

niques can improve the visualization and measurement of

objects of interest (such as stents) in X-ray angiography,

thereby making it easier to realize optimum and complete

stent placement with an X-ray intervention. Additionally, we

explore a medical-imaging application to detect and enhance

moving features, combined with several tasks for increasing

the image quality during a live interventional angioplasty

procedure. We assume a double-pipeline processing ap-

proach, see Fig. 1. Spatial filtering uses directional filter

kernels that preserve the local edges while removing noise

(anisotropic filtering). For temporal filtering, a recursive filter

is employed and the contrast enhancement function is based

on look-up tables. In a second processing branch, image

analysis and motion-compensation tasks detect and enhance

specific objects of interest. Whereas the first branch contains

stream-oriented tasks having a deterministic nature in terms

of computations and memory, the second branch contains

data-dependent non-deterministic processing tasks.

The dynamics in the application come from three major

aspects: (1) At the start, a Region-Of-Interest (ROI) of vari-

able data-dependent size is chosen for further analysis, and

(2) at every stage, switch functions internally select a specific

flow graph, depending on the previous stage(s). Moreover

(3), some of the internal flow graphs require intrinsically a

variable processing time. Tasks in the image analysis can-

not be easily switched off, since that would lead to an in-

complete or unacceptable result. The presented flow graph is

Fig. 2. Splitting the computational statistics in structural (a) and

short-term (b) behavior.

based on a cascade of stages which are individually described

in [5, 6, 7, 8]. Summarizing, our application contains two par-

allel branches of different nature and the complete infrastruc-

ture should operate in real time. In the next section, we dis-

cuss the prediction model for the computation time, including

the estimation technique coping with the dynamic behavior.

4. RESOURCE-USAGE PREDICTION

To handle the variable processing rates of the application,

performance prediction is applied in the form of modeling to

guide the mapping and obtain an efficient implementation.

Modeling of non-deterministic resource usage is complicated

because depending on the image content and intermediate

analysis result, the analysis algorithm may switch to a differ-

ent group of processing tasks. We have considered several

options for modeling of the computation time. As a first solu-

tion, we investigated literature on video traffic modeling [9].

Most of the papers deal with Markov-chain approaches, since

the estimation of the model parameters is straightforward and

there is a large number of analysis techniques available.

An alternative for modeling of the system behavior is to

classify the timing statistics of the video frames in two cate-

gories, as a result from mapping the algorithms on a platform.

Hence, we then investigate short-term and structural fluctua-

tions in processing time on the platform. Short-term fluctua-

tions can be caused by cache misses or the overhead imposed

by task switching and control. Structural fluctuations in pro-

cessing time are caused by the dependency on the video con-

tent itself over a sequence of images of several seconds.

As a consequence of the previous discussions, we have

adopted a concept where the long-term statistics are decou-

pled from the short-term stochastic behavior, by employing

different models for those statistics (Fig. 2). We consider

the prediction model to consist of long-term low-frequency

fluctuations, around which short-term high-frequency fluctu-

ations can take place. Discriminating between the low and

high-frequency part can be implemented with Finite Impulse
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Response (FIR) or Infinite Impulse Response (IIR) filters. We

apply the Exponentially Weighted Moving Average (EWMA)

filter, as this IIR filter adapts more quickly to the input signal

compared to FIR filters. The EWMA filter is defined by the

well-known IIR filter equation:

y(tk) = (1 − α) × y(tk−1) + α × x(tk). (1)

The prediction model for the short-term data-dependent tasks

is described by a probabilistic process that can be covered

with a finite-state Markov chain. A first-order Markov chain

is by definition memoryless, where in the model it is implic-

itly assumed that the processing times of successive frames

are independent. Based on the exponentially decaying au-

tocorrelation function, we have concluded that the short-term

fluctuations can be successfully modeled with Markov chains.

The Markov state-space description can be generated by ana-

lyzing the computation time C over a long time period. The

number of states M is Cmax/σC , where Cmax denotes the

largest measured value and σC the standard deviation. We

have experimentally evolved to a model with approximately

2M states to obtain sufficient accuracy. The quantization in-

tervals are adaptively chosen such that each interval contains

on the average the same amount of samples. The entries of

the transition probability matrix {Pij} are estimated by

Pij = nij/(
M∑

k=1

nik), (2)

where nij denotes the number of transitions from interval i to

interval j. These entries are inserted into an N ×N transition

matrix, Q = [P11, P12, ..., PNN ].

5. MANAGING RESOURCES AND QUALITY

Since our aim is to execute more functions on the same plat-

form with a guaranteed throughput, we use the model de-

scriptions as a prediction for parallelization and quality con-

trol. For quality control, several options exist. Within our

application, data-dependent switch statements occur (Fig. 1),

which can cause the total processing time to change rather

abruptly. However, during a live interventional X-ray proce-

dure, large latency differences between succeeding frames are

not allowed for clinical reasons (eye-hand coordination of the

physician). A straightforward solution is to employ an appli-

cation task partitioning on the platform, based on worst-case

resource usage with a delay function at the end of the pipeline.

The main drawback is that for most of the time, the reserved

resource budget is set too conservative. Moreover, it is im-

possible to exploit the difference between average-case and

worst-case requirements without affecting the reliability.

Another approach for varying latency is to use the predic-

tion models from Section 4 to dynamically switching on/off

non-essential tasks at runtime, thereby preserving a fluent out-

put rate of both pipelines at the expense of a variable quality.
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Fig. 3. Resource and quality control architecture for live viewing

and feature analysis.

Using the models, we are able to accurately predict how many

resources are required. This information can be used by a

runtime manager for on-the-fly switching between groups of

tasks. This approach is dynamic, i.e., it makes use of runtime

characteristics of the input data and the environment of the

application. The approach consists of several steps.

• Initialization. By processing the first frame of the sequence,

we initialize the partitioning of the flow graph based on the

image characteristics. The output latency is set to an initial

value (close to the average case), which will be our latency

budget during runtime.

• Runtime adaptation. Based on the outcome from the re-

source predictions for subsequent frames, the resource man-

ager determines if for the next frame, more resources are re-

quired than available on the system. If so, the live-viewing

graph is degraded to a lower quality and resource-demanding

mode, by switching off (some of) the non-essential filtering

tasks. This releases system resources that will be allocated to

the image analysis tasks in order to maintain the latency target

by splitting tasks and executing them in parallel.

• Profiling. The application can be profiled to gather statis-

tical information of the differences between the actually con-

sumed resources and the predicted values. The information

can be used for on-line model training, or to give insight in-

formation about the prediction quality of the model.

Summarizing, the resource manager controls the firing of

non-essential tasks and guarantees the essential tasks of both

applications. The quality manager ensures that a combination

of pipelines is chosen such that the application throughput is

guaranteed with a certain quality.

6. EXPERIMENTAL RESULTS

For training the prediction models, we have used a data set of

37 video sequences of in total 1,921 video frames with differ-

ent scenarios to create the dynamics in algorithmic adaptation

and switching. For the test sequences, an average prediction

accuracy of 97% is reached with sporadic excursions of the

prediction error up to 20-30%. For the experiments, we have

used a chip-multiprocessor system containing two quad-core

processors [10]. In total, the system consists of eight proces-

sor cores of 2.33 GCycles/s, eight L1 caches (32 KB), four

L2 caches (4 MB) and 4 GB of external memory.
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Fig. 4. Effective latency for worst-case vs. runtime adaptive control.

The resource manager can choose between three instances

of live viewing, (a) low-quality, (b) medium-quality, or (c)

high-quality viewing. For image analysis, a similar selection

between different parallelization strategies can be made (See

Fig. 3). The selection and reconfiguration of quality levels

for both pipelines is done at an image level granularity. The

mapping is fixed during the processing time of an image. Cur-

rently, the selection process is relatively coarse, and one pro-

cessor core is dedicated for the operating system. The con-

trol can be easily made more scalable by adding intermediate

quality levels. The actual selection is based on the resource

demand for the analysis tasks, as estimated by the prediction

model. As a case study, we process images (1024×1024 pix-

els, 30 Hz), where live viewing operates at the full frame rate,

and image analysis at half the frame rate.

In Fig. 4, both the results of a worst-case mapping and

a parallelized quality-controlled execution are shown. For

the non-deterministic image analysis application, a worst-

case execution (dark red curve, top) shows heavy excursions

(85%) on the effective latency. The computation latency can

vary between 60 and 120 ms, as the partitioning of tasks

across processing cores is fixed. In Fig. 4(blue curve, mid-

dle), the results of our proposed runtime adaptive execution

are shown as well. The variation on the latency is reduced

significantly to only 20%. For the deterministic live-viewing

application running in parallel, only the quality-controlled

mapping is shown (green curve, bottom) where latency varies

around 30 ms. This variation results from the switching

of the resource manager in the parallelization degree of the

non-deterministic analysis processing and at the same time

switching live viewing between quality modes.

7. CONCLUSIONS

We have established a control system (according to Fig. 5) for

combining the execution of deterministic and non-deterministic

image-processing applications on a single platform.
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Fig. 5. Control system for parallel execution of heterogeneous

imaging tasks.

The system is based on a modeling of the required com-

putations of the processing tasks, by employing a combina-

tion of weighted moving-average filtering and scenario-based

Markov chains to predict the execution. This research has

been validated with a medical imaging case, executing two

applications in parallel. We have shown that scenario-based

Markov modeling is suited to describe the runtime resource

usage of non-deterministic image analysis applications (97%

accuracy), even if the flow graph dynamically switches be-

tween groups of tasks.

We have realized a runtime adaptive mapping of data and

computations, such that the latency variation within image

analysis is reduced by 70%. Furthermore, a live-viewing ap-

plication is executed in parallel, where the runtime manager

maintains constant throughput and latency by dynamically

switching between quality modes. The techniques described

in this paper can successfully be reused for alternative video

applications using image analysis and stream-oriented tasks

in parallel, like in surveillance systems.

8. REFERENCES
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