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Cardiovascular diseases, including coronary heart diseases, hypertension, and
heart failure, are the leading causes of death and disability in Western coun-
tries. In 2005, 44.119 persons in the Netherlands died due to the effects of a
cardiovascular disease, amounting to 32% of the total number of deaths.1 Car-
diac surgery has become an important medical intervention in end-stage cardiac
diseases. The intervention involves advanced technology and is carried out by a
team of highly specialized clinical staff.

Due to phenomena as the ageing population and growing treatment possibili-
ties, contemporary health care is under pressure: more and more patients are
expected to be treated with high-quality care within limited time and cost spans.
This has induced an increasing urge for the management of medical departments
and centers, and governments to evaluate the efficiency and quality of delivered
care. The recent case at the St Radboud University Medical Center in Nijmegen,
the Netherlands, clearly shows that these developments have not passed the do-
main of cardiac surgery. The hospital was ordered to halt cardiac surgery in
adult patients for a period of months, because the observed number of deaths
was judged as unexpectedly high due to quality and safety problems [1].

Research on predictive factors of clinical outcomes (e.g., death, mobility) and
the amount and duration of treatment is indispensable for evaluation and im-
provement of the efficiency and quality of care. A common strategy to identify
predictive factors is the development of prognostic models from data. The
resulting models can be used for risk assessment and case load planning. Fur-
thermore, these models form instruments that can assist comparative audit in
evaluation of care, and the selection of uniform groups of patients for clinical
trials [2, 3].

The topic of this thesis is the development of new prognostic methods in cardiac
surgery and postoperative intensive care. This chapter provides an introduction
to the domain of cardiac surgery in Section 1.1. Section 1.2 subsequently ad-
dresses the current collection of large amounts of patient data as a new source
for prognostic modeling. A brief overview of prognostic models that have been
developed earlier for cardiac surgical patients is given in Section 1.3. Section 1.4
introduces the field of machine learning for induction of prognostic models from
data. The chapter concludes with the objectives of the thesis in Section 1.5,
and a further outline in Section 1.6.

1.1 The domain of cardiac surgery

The patient population of interest in this thesis are adult patients under-
going cardiac surgery. In the Netherlands, approximately 15,000 adults per
year undergo a cardiac surgical intervention.2 Most interventions involve coro-
nary artery bypass grafting (CABG) to improve the blood supply to the my-
ocardium in case of severe stenosis in the coronary arteries, repair or replace-
ment of stenotic or leaking heart valves, aorta surgery in case of a (threatening)

1 Source: Statistics Netherlands (CBS)
2 Source: the committee of heart interventions in the Netherlands (BHN)
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aneurysm, or a combination of these interventions.

The health care process of cardiac surgery is roughly composed of three stages:
preassessment, intervention, and recovery. In the stage of preassessment, the pa-
tients are discussed in an interdisciplinary team of cardiologists, anaesthetists,
and cardiac surgeons. Demographic data of the patients and characteristics
of their disease histories as delivered by the referring cardiologist are used for
preoperative risk assessment to identify high-risk patients for operative and
postoperative death and complications. The surgical procedure is performed by
the cardiac surgeon in close cooperation with an anaesthetist. After the inter-
vention, patients are sent to the intensive care unit (ICU) to keep a close watch
on the postoperative physiological condition of the patients. Both during the
intervention and at the ICU, physicians are highly supported by several bedside
devices, such as monitors, electrocardiograms, and mechanical ventilators. In a
normal (uncomplicated) recovery process, a stable condition is reached within
24 hours, after which the recovery process is completed at the nursing ward.
However, several complications may occur during this postoperative stay at the
ICU, such as arrhythmias, neurological complications, and infections. These
complications delay the recovery process and may lead to death.

In addition to the prognosis in terms of the risk of perioperative death (i.e.,
death during the operation or postoperative hospital stay), estimates of the du-
ration of the intervention and postoperative stay at the ICU are outcomes of
interest in the care process of cardiac surgery. First, these outcomes can be seen
as a proxy for the degree of complication of the intervention and the recovery
process, and therefore as a measure of the quality of the delivered care. Further-
more, estimates hereof support the management of the departments concerned
in resource allocation and case load planning.

An important characteristic of the prognosis of patients during care processes is
that the prognosis is not static but may change considerably, as factors related
to the (surgical) intervention may have important implications on the prognosis
[11]. Preoperatively estimated risks for cardiac surgical patients therefore need
to be reassessed during the process based on data of the course of treatment to
provide clinicians that are involved in future stages (e.g., ICU physicians) and
the patients’ relatives with up-to-date prognostic information.

1.2 Data recording during patient care

Data recording of the medical history and care of patients has undergone large
changes in the last decades [21]. Traditionally, the data were recorded in paper-
based medical records. Systematic and extensive collection of patient data was
limited to special settings of care, such as clinical trials. With the introduction
of modern clinical information systems such as electronic patient records and pa-
tient data management systems, systematic and digital recording of patient data
increasingly becomes the standard. The data include demographic data (e.g.,
age, gender), data of a patient’s comorbidities (e.g., diabetes, hypertension)
and concurrent therapy (e.g., medication), as well as data of major clinical out-
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Figure 1.1 The subsequent stages in the health care process of cardiac surgery,
and corresponding data collections as used in this thesis.

comes (e.g., duration of therapy or hospitalization, occurrence of complications,
and death). Furthermore, during complex care, physiological data measured
with high frequencies by monitoring systems, such as blood pressures and heart
rate, are automatically recorded in these systems, resulting in large amounts of
patient data (up to 3-5 megabyte per patient per day).
The data describe the health care status of patients over time and the course of
treatment in the subsequent phases of a care process. An important difference
with data recorded in controlled settings of care (i.e., randomized clinical trails)
is that observational data represent patient care such as actually delivered in
routine clinical practice. Modeling observational data, however, involves limita-
tions due to confounding factors (e.g., confounding by indication). It therefore
only allows examination of associations between patient and process factors and
outcomes in order to generate hypotheses on important risk factors. Additional
(controlled) studies are necessary to verify these hypotheses.
Prognostic models induced from routinely recorded patient data are for that
reason not suitable for actual foundation of clinical decisions during patient
care, for instance, for treatment selection. The models can be used for risk
assessment to inform patients and their relatives, to support decisions that are
not directly related to patient care, such as case-mix adjustment, case load
planning, and resource allocation, and to identify high-risk groups.
The health care process of cardiac surgery is a typical care process in which large
amounts of data are recorded. Figure 1.1 shows the data sources as used in this
thesis. The preoperative patient characteristics are mainly demographic data,
and data of the (cardiac) disease history of patients and previously conducted
therapy. An example of an operative detail recorded during the intervention is
the extracorporeal circulation time, which is the time during which the cardiac
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and respiratory functioning is taken over by the heart lung machine. Physiolog-
ical data recorded by monitoring systems during postoperative ICU stay form a
large data collection. Clinical outcomes recorded at the end of the process are
duration of ICU and hospital stay, as well as postoperative complications and
death.

1.3 Existing prognostic models within cardiac surgery

The importance of objective prognostic information has been recognized in the
field of cardiac surgery for several decades. Since the mid-1980s, a large num-
ber of prognostic models have been developed [4–7]. Most of them aim at
preoperative risk assessment of perioperative death, with the EuroSCORE as
predominant model [8]. These models show that, for instance, age, left ven-
tricular dysfunction, and pulmonary hypertension are important risk factors
for this outcome. In addition to their use for risk assessment, these models
are used for case-mix adjustment in evaluation of delivered care and to make
inter-institutional outcome comparisons [9, 10].

Furthermore, a number of prognostic models have been developed by taking
also operative (and postoperative) data into account for identification of process
risk factors, and risk assessment at ICU admission and later time points in the
process [11, 12]. In these models, factors such as the extracorporeal circulation
time and the occurrence of ventricular dysrhythmia have appeared as predictive
features for perioperative death. The number of postoperative predictive models
in the cardiac surgical literature is limited, and none of them have become
predominant. This is even more surprising when realizing that postoperative
models could be used as instruments for case-mix adjustment in evaluation of
the postoperative intensive care in cardiac surgery, like the APACHE model is
used for the non-cardiac surgical ICU population [13].

Mainly in the last decade, additional outcomes have become of interest for
prognostic modeling in cardiac surgery. Several models have been developed for
the prediction of postoperative complication risks [14, 15] and related outcomes,
such as the duration of mechanical ventilation [16–18] and length of stay at
the ICU [19, 20]; these models use preoperative patient characteristics or also
perioperative data for risk assessment. The majority of models within cardiac
surgery has been developed using the statistical method of logistic regression
analysis and support prognostic assessment at a single, predefined time.

1.4 Modeling using machine learning methodology

A wide range of methods and model representations for modeling of data is
offered in the field of machine learning (ML) [22]. As a broad subfield of artifi-
cial intelligence, ML is concerned with the development of methods that allow
computers to ‘learn’ from sets of data. These methods have been used for prog-
nostic problems to a limited extent in comparison to methods from the field of
medical statistics. The challenge of employing and investigating a number of
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ML methods that are potentially suitable for development of prognostic tools is
taken up in this thesis.

Characteristic for the ML field is a preference for graphical representations of
models; typical examples are tree models and Bayesian networks [2, 23]. This
makes a difference with statistical models, which generally form a numerical de-
scription of the data by representing the relation between predictive factors and
an outcome variable in terms of a mathematical equation. The main advantage
of using ML methods for prognostic modeling is that it allows the clinical user to
consider the relationship between predictor and outcome variables from a new
perspective; the graphical representation may contribute to the interpretation
of the models.

The model induction process in ML involves searching in a hypothesis space
of possible models to determine the model that best fits the available data. A
fundamental property of inductive learning is that some form of inductive bias
is required; otherwise, the resulting model is not able to make predictions for
new observations [22]. The choice for a model representation is a major source
of inductive bias, as well as the selection of features included in the model; they
mainly define the space of possible models. Domain knowledge can be utilized
to guide these choices and the modeling process.

1.5 Objective of the thesis

Instruments that are currently in the prognostic toolbox of clinicians and man-
agers involved in cardiac surgery are models developed using standard statistical
methods (e.g., the EuroSCORE [8]); the models generally allow only preoper-
ative risk assessment of a single outcome. The general objective of this thesis
is to investigate new prognostic methods for modeling data that are recorded
during routine patient care to extend this toolbox. Within this scope, we do
not solely intend to develop models with high predictive performance, but also
to induce interpretable models, i.e., models with an apparent structure provid-
ing insight into relationships between predictor and outcome variables. This
is known as a prerequisite for clinical credibility of prognostic models [3]. We
therefore employ the tree induction methodology for model development, and
also investigate how the Bayesian network methodology can be employed for
this purpose. We perform this study as a ‘proof of concept’, and not necessarily
to deliver end products.

In particular, we aim to develop a method for modeling the temporal structure of
a health care process to yield models that are more flexible in their prognostic
use than standard models. Furthermore, we focus on more flexible methods
for prognostic modeling with respect to the definition of the outcome to be
predicted, and to the use of monitoring data for outcome prediction. The use
of automatically recorded monitoring data is complicated due to data artifacts
that often exist in these data. Therefore, we finally study methods for effective
filtering of artifacts from monitoring data.

The thesis is part of the research on development of prognostic models at the
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department of Medical Informatics in the Academic Medical Center in Ams-
terdam, the Netherlands. At this department, the use of ML methods and
temporal data for prognostic modeling are two research themes that are mainly
studied in the clinical domain of intensive care medicine [24–27]. Furthermore,
the thesis has been part of the Medicast project. The Eindhoven Technical Uni-
versity in Eindhoven, the Netherlands, was the main academic partner in the
project. Medicast was supported by the Dutch ministry of Economic Affairs,
and aimed at realizing a generic platform for development and implementation
of advanced expert systems that support the medical professional in making
clinical decisions. A topic of interest within the project was to employ the large
amounts of data that are currently available in health care for this purpose using
data mining technology. In this subproject that has been performed within the
environment of a university hospital, we additionally attempted to utilize the
available domain knowledge for modeling of data from complex care processes.

1.6 Outline of the thesis

In this final section, we present the further outline of the thesis including the
particular research questions that are addressed in the subsequent chapters. In
the first part of the thesis, the health care process of cardiac surgery is regarded
in its entirety for the development of a prognostic model that represents the
care process as composed of a sequence of different care stages (i.e., preassess-
ment, intervention, recovery). No standard strategy is currently available for
prognostic modeling of health care processes. Chapter 2 addresses the following
research question:

How to employ the Bayesian network methodology for prognostic purposes in
a health care process?

We present the prognostic Bayesian network as a new prognostic method, and
we propose a dedicated procedure for inducing the networks from data. Fur-
thermore, we describe how these networks can be applied to solve a number of
information problems that are related to medical prognosis. An application of
the content this chapter in the domain of cardiac surgery is presented in Chap-
ter 3. Research performed in this first part of the thesis was based on data of
patients who underwent cardiac surgery in the Amphia Hospital in Breda, the
Netherlands.

In the second part of the thesis, we face prediction problems in the postop-
erative stage of intensive care based on data of cardiac surgical patients of the
Academic Medical Center in Amsterdam, the Netherlands. Prediction of the
risk of a prolonged ICU length of stay is frequently used to identify patients
with a high risk of a complicated recovery process. The threshold that defines
this dichotomized outcome is generally selected in an arbitrary or unstructured
manner, though. In Chapter 4, we address the following research question:
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How to induce prognostic models from data for outcomes that are required to
be dichotomized?

We introduce a method that extends existing procedures for predictive modeling
with the optimization of the dichotomization threshold for prognostic purposes,
and use this method for model development to predict the outcome prolonged
ICU length of stay at 24 hours ICU stay.
Monitoring data as recorded in ICU information systems form a new data source
for outcome prediction. Derived (or meta) features of temporal data (e.g., the
trend) may contain valuable information with respect to a patient’s progno-
sis. The induction of relevant meta features from temporal data involves the
dilemma to what extent knowledge on relevant meta features should guide the
extraction, and to what extent the extraction should be guided by the data.
The research question addressed in Chapter 5 is:

How should the roles of data and knowledge be traded off in feature extraction
for prediction from monitoring data?

We perform a comparative case study of two temporal abstraction procedures
for feature extraction that differ in this respect. We apply the procedures to
monitoring data measured during the first 12 hours of ICU stay for prediction
of the outcome prolonged mechanical ventilation, and systematically compare
the predictive value of the resulting features.
Automated recorded monitoring data often contain erroneous measurements.
These data artifacts hamper clinical interpretation and statistical analysis of
the data. In studies on automated filtering of artifacts from monitoring data,
clinical judgments of the data are used as reference standards to develop and
validate artifact filters; the standards are generally provided by a single domain
expert. Chapter 6 addresses the following question:

What is the impact of using single-expert reference standards on the general-
izability of artifact filters for monitoring data?

We examine the generalizability of artifact filters using individual and joint
judgments of clinical experts as reference standards; the filters are developed
using three existing methods for automated filtering of monitoring data. In
Chapter 7, we introduce a filtering method that is a new combination of the
three filtering approaches, and address the following question:

Which artifact detection method yields filters with high performance for moni-
toring data?

We compare the performance of artifact filters developed using the four meth-
ods for filtering artifacts from blood pressure and heart rate measurements. The
thesis ends with a general discussion of the work in Chapter 8.
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Abstract

Prognostic models are tools to predict the future outcome of disease and disease
treatment, one of the fundamental tasks in clinical medicine. This chapter
presents the prognostic Bayesian network (PBN) as a new type of prognostic
model that builds on the Bayesian network methodology, and implements a
dynamic, process-oriented view on prognosis. A PBN describes the mutual
relationships between variables that come into play during subsequent stages
of a care process and a clinical outcome. A dedicated procedure for inducing
these networks from clinical data is presented. In this procedure, the network is
composed of a collection of local supervised learning models that are recursively
learned from the data. The procedure optimizes performance of the network’s
primary task, outcome prediction, and handles the fact that patients may drop
out of the process in earlier stages. Furthermore, the article describes how PBNs
can be applied to solve a number of information problems that are related to
medical prognosis.

2.1 Introduction

Prognostic models have become important instruments in medicine. Given a set
of patient specific parameters, they predict the future occurrence of a medical
event or outcome. Example events are the occurrence of specific diseases (e.g.,
cardiovascular diseases and cancer) and death. The models are used for predic-
tion purposes at levels that range from individual patients (where their predic-
tions help doctors and patients to make treatment choices) to patient groups
(where they support health-care managers in planning and allocating resources)
and patient populations (where they provide for case-mix adjustment) [1, 2].

Prognostic models are usually induced from historical data by applying super-
vised data analysis methods such as multivariate logistic regression analysis or
tree induction. This approach has three limitations. First, supervised data
analysis methods apply attribute selection before inducing a model, often re-
moving many attributes that are deemed relevant for prognosis by users of the
model (e.g., clinicians). Second, the resulting models regard prognosis to be a
one-time activity at a predefined time. In reality, however, expectations with
respect to a patient’s future may regularly change as new information becomes
available during a disease or treatment process. And third, the models impose
fixed roles of predictor (independent variable, input) and outcome variable (de-
pendent variable, output) to the attributes involved. This approach ignores the
dynamic nature of care processes, where today’s outcome helps to predict what
will happen tomorrow.

This chapter introduces a new type of prognostic model based on the Bayesian
network methodology [3], that overcome these limitations. Since the introduc-
tion of Bayesian networks in the 1980s, a large number of applications have been
developed in different medical domains. Most of the applications aim to support
diagnosis, e.g., [4–7] and therapy selection, e.g., [8–10]. Prognostic applications
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of Bayesian networks form a rather new development [11], and are relatively rare
[12–15]. The prognostic Bayesian network (PBN) provides a structured repre-
sentation of a health care process by modeling the mutual relationships among
variables that come into play in the subsequent stages of the care process and
the outcome. As a result, the PBN allows for making predictions at various
times during a health care process, each time using all the available information
of the patient concerned. Furthermore, prognostic statements are not limited
to outcome variables, but can be obtained for all variables that occur beyond
the time of prediction.

This chapter presents the rationale of PBNs and a dedicated procedure to learn
a PBN from local supervised learning models, and describes the functionality of
PBNs in clinical practice. In Chapter 3, an application of the learning procedure
in the domain of cardiac surgery is described [16].

The chapter is organized as follows. In Section 2.2, the PBN is placed in the field
of prognostic models. Section 2.3 presents the procedure for PBN learning from
data. In Section 2.4, we describe prognostic uses of PBNs in clinical practice.
We conclude the chapter with a discussion and conclusions in Section 2.5.

2.2 Representation and functionality of prognostic models

Prognostic models describe the relationship between predictor and outcome vari-
ables. The standard methodology to obtain an objective description of this re-
lationship is building predictive models from a set of observed patient data and
outcomes [17, 18]. Generally, the first step in the process is to choose a time
of prediction, such as hospital admission. All patient data that are available
at this time are then taken into account for model development. Subsequently,
variables that are found to have predictive value for the outcome are selected
for inclusion of the model (feature selection). The relation between the pre-
dictors and the outcome variable is described by the function Y = f(X) using
supervised learning methods (e.g., logistic regression), where Y is the outcome
variable and X are the predictors. We refer to the resulting prognostic models
as traditional models [19–21].

The methodology described above is illustrated in Figure 2.1(a). The figure
shows a prediction problem in a health care process that can be regarded as
a template of a care process in which a medical intervention is performed; the
intervention is preceded by a stage of diagnosis and treatment selection, and fol-
lowed by a stage of recovery. The problem is prediction of the outcome hospital
mortality with five variables as available predictors. The variables are observed
at different times in the care process, and are interrelated. The prediction time
is predefined as ‘prior to the intervention’. Therefore, the predictors that are
observed before the intervention are taken into account and later predictors
are excluded from the modeling process. Using a standard supervised learning
method, the variables that describe a patient’s condition before the interven-
tion and the intervention type are then selected and their relation with hospital
death is described in a predictive model. Although a patient’s diagnosis has
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Figure 2.1 Modeling a prediction problem of hospital mortality with five vari-
ables as available predictors in (a) a traditional model and (b) a prognostic
Bayesian network as structured model; the solid arcs represent relationships
that are described in the models, and the dotted arcs represent relationships
that remain obscured in the traditional model.

predictive value for the outcome, this variable is ignore and not included in
the model; it is shielded from the outcome by the intervention type due to the
strong relationship between these variables. Furthermore, the model does not
reveal that the relationship between the intervention type and the outcome ac-
tually passes through the the variables that describe the course of intervention
and a patient’s condition afterwards. The dotted arcs in Figure 2.1(a) represent
relationships that remain obscured, while the solid arcs represent relationships
that are described in the model.

This approach of predictive modeling has in our view some shortcomings, as a
result of which the traditional model has limited functionality. First, prediction
is assumed as a one-time activity at a predefined time; the model can not be
used to update the prognostic expectations based on data that become available
as the process progresses. Second, the model does not reflect that the predictors
are related to the outcome variable through a process of intermediate variables
by excluding all variables beyond the prediction time from the modeling process.
Third, the feature selection step can be misleading and not intuitive for clini-
cians, because not all variables that have predictive value are generally included
in the model. In case of collinearity among two predictive variables usually only
one of them is included, while the other variable is left out; which variable is
included may depend on chance [18].

To overcome the shortcomings of traditional predictive modeling, researchers
have examined new approaches, such as spline regression analysis, artificial
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neural networks, and genetic algorithms [22]. These methods, however, are
mainly aimed to overcome shortcomings with respect to assumptions of linear-
ity and additivity that may not hold for a modeling problem.

In this chapter, we propose to model the mutual relationships among variables
that come into play in a health care process and the outcome as a Bayesian
network to solve the above-mentioned shortcomings of the traditional modeling
approach. Figure 2.1(b) shows the PBN structure for the above prediction
problem. The direction of arcs in the network structure represents the flow of
time. The PBN has no predefined prediction time, and imposes no fixed roles
of predictor and outcome variable to the variables involved. As such, the PBN
implements a process-oriented view on prognosis which can be examined at any
time during the health care process. The methodology that underlies the PBN
also allows the analysis of scenarios that lead to disease outcomes.

The health care processes modeled in PBNs are composed of a sequence of sub-
stantially different phases, and have no recurring character such as a Markov
process [23]. The observed variables are mainly phase-specific and not repeat-
edly measured during the process. So, although time is an important factor, the
data are not suitable to be modeled as a dynamic or temporal Bayesian network
[24], as used for prognostic modeling of repeated measurements in [25].

2.3 Learning a prognostic Bayesian network from local models

In the past decade, several algorithms for learning Bayesian networks from data
have been developed, e.g., [26–30], and implemented in different software tools.1

Applying these algorithms Bayesian network learning is considered an unsuper-
vised learning task. No variable is considered to be more important than any
other variables, and the network structure is built up by recursively adding arcs
between pairs of variables that appear most strongly correlated in the data. Fur-
thermore, dedicated learning algorithms have been developed for Bayesian net-
work classifiers [31]. These algorithms optimize the networks for their intended
use, classification of a predefined variable [32, 33]. Similar, a final outcome vari-
able exists in PBNs, whose accurate prediction is of principal importance, and
preference must be given to the prediction task during the construction of the
model.

The algorithms for learning Bayesian network (classifiers) assume that all vari-
ables are meaningful for each case in the data set (i.e., the network is learned
from a ‘flat table’). This assumption fails for PBN learning due to the fact that
not all patients who enter the care process being modeled actually pass through
all stages of the entire process, as patients may die during early stages of care or
end therapy. Variables that are observed in the later stages of the care process
are irrelevant for these patients. We refer to this phenomenon as patient dropout.
This section presents a dedicated procedure to induce a PBN from local super-
vised learning models. The procedure exploits the temporal structure of the

1 For an overview of available software tools for Bayesian networks see:
http://www.cs.ubc.ca/∼murphyk/Software/BNT/bnsoft.html.
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health care process being modeled, optimizes the performance of the network’s
primary task, outcome prediction, and adequately handles patient dropout.

2.3.1 The learning procedure

First, we introduce some notation. Let X = {X1, . . . ,Xm} denote a set of
random variables. Let Xm denote the outcome variable of the process described
by X; Xm is therefore also denoted by Y . We use G = (X, A) to denote the
graphical part of the Bayesian network, where A ⊆ X × X is set of ordered
pairs that represent arcs. The procedure assumes all continuous variables to be
discretized prior to network learning. To ensure that the flow of time is captured
in the network structure, the procedure requires a temporal sequence depending
on the time and order that the variables are observed. Let s(Xi) = t denote
the temporal stratum of variable Xi, where t is the index of the stratum of this
variable (1 ≤ t ≤ T ); the outcome variable is in the highest stratum, s(Y ) = T .

The learning procedure is based on the following correspondence. Building the
graphical part of a Bayesian network boils down to selecting, for each variable
Xi, a set SXi

of ‘nearby’ variables that separate Xi from all other variables. The
set SXi

is called the Markov blanket of variable Xi; given this set, Xi should be
conditionally independent of all other variables (in the probability distribution
that generated the data). Finding the Markov blanket SXi

corresponds to se-
lecting the best predictive feature subset for variable Xi in the data, a typical
supervised machine learning problem. So, we can build a Bayesian network by
selecting the best predictive feature subset in our data for each variable that is
to be included in the network, and transform these feature subsets into Markov
blankets by drawing the corresponding arcs in the graph.

The transformation of a collection of feature subsets into a graphical represen-
tation is not trivial, though. In PBNs, we require the direction of arcs to be
consistent with the flow of time in the medical process. We therefore exploit the
temporal structure on the variables as defined in terms of the temporal strata
during the learning process. We start network learning with an empty graph
(no arcs), consisting only of nodes that represent the predictor variables and one
node to represent the outcome variable, and perform feature subset selection in
a top-down approach, starting with the outcome variable of the process. For
this variable, a feature subset is selected and a predictive model is built from the
data using a supervised learning algorithm, such as generalized linear regression
analysis and tree induction. As the outcome variable is known to be a sink node
in the graph, all selected features for this variable can be represented as parent
nodes. Subsequently, for each variable that occurs in this subset of selected fea-
tures, the unknown part of the feature subset (i.e., the parent nodes) is selected
and a predictive model is built. This feature subset selection and local model
building is recursively applied until a feature subset has been assessed for each
variable in the network. The set of selected features is used as the set of parents
of the variable, and represented as such with incoming arcs in a graph, while
the local predictive model is used to represent the conditional probability dis-
tribution of the variable given its parents in the network. Using this procedure,
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we arrive at a directed acyclic graph as graphical part of the Bayesian network,
and a collection of local predictive models as the numerical part. They jointly
constitute the PBN.
We now describe the learning procedure in more detail. The learning procedure
includes five steps. Step III and Step V are related to network learning in case
of patient dropout; these steps are therefore described in Section 2.3.3. Initially,
we assume that the phenomenon of patient dropout does not occur, so that all
patients pass through the entire care process.

Step I

The learning procedure starts with the empty graph G = (X, ∅). In the first
iteration of the procedure, a predictive model for outcome Y with predictive
features from the set {Xi ∈ X|Xi 6= Xm} is induced from the data to assess the
set of parents and a local model for Y in the Bayesian network. Let SY denote
the set of features that have been included in the model. Arcs are added to
graph G from the selected features in set SY to the outcome Y ; these features
thus become parent nodes of Y . The predictive model is used as the local
conditional probability model for Y in the network.

Step II

The learning procedure proceeds by recursively applying this step to all variables
in the network, starting with the selected features in the set SY . For that
purpose, the selected features in set SY are enqueued in a priority queue, denoted
by Q. The 10-fold cross validated information gain ∆I for the outcome Y is
used as priority value. The estimated information gain ∆I is defined as

∆I = H(P (Y = T)) −
1

n

n
∑

j=1

H(P (Y = T |Xi = xi,j)) (2.1)

where H(p) = −plog2p, n is the number of observations in the learning set,
and P (Y = T |Xi = xi,j) is the conditional probability that Y = T given the
observed value of variable Xi for observation j in this set [34].
In the second iteration of the learning procedure, variable Xi with the highest
(univariate) predictive value for outcome Y is dequeued from priority queue
Q. A set of parents is assessed for variable Xi by selecting a feature subset
from its potential predictors, and their relation is modeled using the supervised
learning algorithm. A potential predictive feature for variable Xi is each other
variable Xj , Xi 6= Xj , that is not in a higher temporal stratum than Xi, σ(Xj) ≤
σ(Xi) , and is no descendant of Xi in the current graph. Let the set of all
descendants of variable Xi in the current graph G, including Xi itself, be denoted
by σ∗

G(Xi). The set of potential features for variable Xi is then RXi
= {Xj ∈

X|(σ(Xj) ≤ σ(Xi),Xj 6∈ σ∗

G(Xi))}. Let SXi
⊆ RXi

denote the set of features
that are selected for variable Xi. Arcs are added in the graph from the selected
features in set SXi

to the variable Xi to designate these features as parent nodes
of variable Xi. Subsequently, the selected features in the set SXi

are enqueued
in priority queue Q, if they had not been enqueued before. This procedure is
repeated until the queue is empty.
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Figure 2.2 Conditional independency relationship of outcome Y and variable
X2 given variable X1, where X1 is in stratum t and X2 and Y in stratum t + 1.

Step IV

At this point in the learning procedure, there may exist some variables that were
never selected in any feature subset and therefore remain as free nodes in the
graph. There are two explanations for this. First, the variables are independent
of any feature in the network, or second, they are conditional independent of
later process and outcome variables given other variables in the network. The
second explanation can be illustrated with the following example. Suppose
there is a variable X1 in stratum t and the variables X2 and Y in stratum
t +1. If Y ⊥⊥X2 | X1, variable X2 will not be included in the network using the
above procedure, despite the fact that X2 6⊥⊥Y . The reason for this is that after
selection of variable X1 for outcome Y , the learning procedure will proceed with
feature subset selection for X1; variable X2, however is no potential predictor for
X1, as it is in a higher stratum and will be excluded from the learning process.
This example is depicted in Figure 2.2.
We aim to model these relations in the network; the variables that are indepen-
dent of any other variable are excluded from the network, though. To solve this
problem, the procedure is concluded with inducing the local network structure
for these variables using the following strategy. All unselected variables are en-
queued in the priority queue Q with the information gain ∆I for the outcome
Y as priority value, and again the above procedure is repeated until the queue
is empty. All nodes that remain as free nodes in the graph after these iterations
are excluded from the network.

2.3.2 Representing patient dropout in the network

To correctly capture the phenomenon of patient dropout in a PBN, patient
dropout in the different strata must be separated in our representation. We
therefore add the variables Y1, . . . , YT to the network. For each t = 1, . . . , T ,
Yt represents the event that the patient drops out of the process in stratum t.
Furthermore, we define the global outcome variable Y in terms of them:

Y =

{

T, if Y1 = T or . . . orYT = T,
F, otherwise.

We will refer to the variables Y1, . . . , YT as subsidiary outcomes, or sub-outcomes
for short. They become the parent nodes of the global outcome Y in the network.
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In this representation, simple deterministic relationships exist between the sub-
outcome Yt and each variable in higher temporal strata including the subsequent
sub-outcomes. When category ‘I’ denotes irrelevancy of the variable in question,
it formally holds that

P (Xi = I |Yt = T) = 1, (2.2)

for each variable Xi with s(Xi) > t including the sub-outcomes Yt+1, . . . , YT

independent of any other variable.
We propose to include these deterministic relationships in the representation as
follows. For each t = 1, . . . , T − 1, an arc is added from Yt to each variable Xi

in stratum t+1 including the subsidiary outcome Yt+1. This arc represents the
deterministic relationship

P (Xi = I |Yt = T orYt = I) = 1. (2.3)

The deterministic relationships between Yt and the variables in higher strata
is recursively passed through the deterministic relationship between the sub-
outcome Yt and Yt+1.
We propose to learn all predictive relationships from the data using the modified
learning procedure that we describe below, and subsequently, to model the
above-mentioned deterministic relationships in the resulting network.

2.3.3 Network learning with handling patient dropout

We modified the network learning procedure to learn the probabilistic rela-
tionships among variables from data while accounting for patient dropout, and
included two additional steps in the procedure. The modified learning proce-
dure assumes a temporally ordered set of strata on the predictor and subsidiary
outcome variables.
The modified learning procedure starts with the final sub-outcome YT in the
initial iteration. Data from patients who drop out prior to stratum T cannot
play a role in data analyses for variables in stratum T ; the variables are irrel-
evant for these patients. Therefore, feature subset selection and local model
building for the sub-outcome YT and all variables in the corresponding stratum
are based on a subgroup of patients that survived prior phases of care. This
strategy holds for each Yt, and the variables that are observed in the correspond-
ing stratum. It follows that the data of all patients are used for the analyses
of the first sub-outcome Y1 and all variables that are in the corresponding stra-
tum. In the iteration for each predictor variable, the subsidiary outcome in the
corresponding stratum is excluded from the set of potential predictive features.

Step III

After selecting all feature subsets for the variables that appear in the priority
queue for the sub-outcome YT and its predictive features as described in Step
I and II, the procedure of feature subset selection and local model building is
subsequently applied to the subsidiary outcomes Y1, . . . , YT−1, and their pre-
dictive features that have not been enqueued in prior iterations, starting with
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Figure 2.3 Representation of patient dropout in the network structure of the pre-
diction problem as modeled in Figure 2.1b; the dotted arcs represent the deter-
ministic relationships between each subsidiary outcome and the (sub-outcome)
variables in the subsequent temporal stratum.

sub-outcome YT−1 and concluding with the sub-outcome Y1. This third step
precedes the earlier presented Step IV of the procedure.

Step V

To complete the network, the deterministic relations as described in Equa-
tion 2.3 are modeled in the network by adding, for each 1 ≤ t ≤ T , arcs from the
subsidiary outcome Yt to each variable in the temporal stratum t + 1 including
the subsidiary outcome Yt+1, and extending the corresponding local conditional
probability models. Figure 2.3 shows a PBN structure of the prediction prob-
lem from Figure 2.1b representing patient dropout due to death in the different
stages of a medical care process.

Modeling care processes in Bayesian networks involves the problem of patient
dropout. In our description of representing patient dropout in a PBN through
subsidiary outcomes and the modified learning procedure, we assumed a sub-
sidiary outcome to be defined for each temporal stratum. In practice, it may
not be always possible or meaningful to define a subsidiary outcome for each
separate stratum. In that case, a subsidiary outcome is defined for a number of
consecutive strata.

2.4 Clinical use of PBNs

PBNs can be applied in practice to solve a number of information problems that
are related to medical prognosis.

Prognosis

The primary application of PBNs is prognosis, i.e., estimating the distribution of
variables that represent future events. These events may pertain to conditions
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that occur during the process in question (process variables), or to endpoints
of that process (outcome variables). The predictions can be used for decision
making and resource allocation in individual cases. Furthermore, they can be
used for case-mix adjustment and benchmarking in groups or populations [2]. In
this case, only patient data should be included in the network, that are observed
prior to the medical procedure to be evaluated. In the application of prognosis,
the proposed model is thus closely related to the traditional prognostic model,
although most traditional models provide limited prognostic information, as
they predict a single outcome variable at a predefined prediction time.

Quick prognostic assessment

Sometimes it is not possible to collect all the information of a case at hand,
while a prediction would still be useful. In an emergency setting, for instance,
one may not know whether a patient is diabetic or not. Bayesian networks
can perform probabilistic inference with any number of observed variables; this
property allows us to make predictions with PBNs with incomplete information.
As more information becomes available, the prognosis can be updated. In case
of few patient data, the estimated probabilities tend to the global average of the
patient population, while the estimations become more patient specific as more
information is included in the model.

Prognosis updating

A patient’s prognosis may change as the health care process evolves and more
information becomes available. The Bayesian methodology that underlies PBNs
allows us to implement a dynamic notion of prognosis, by employing probability
updating based on this new information. The PBN thus provides clinicians who
are involved in later phases of the process with predictions that are adjusted
for the course of the preceding phases, for instance a complicated surgical inter-
vention. In addition to the adjusted risk estimations, the change in estimated
probabilities with earlier prediction times, for instance quantified in terms of
risk ratios, contains important information about risk progress.

Prognostic scenario analysis

Instead of considering the prognoses for future events (e.g., complications and
outcome) separately, it is often more natural to take their connection into ac-
count and consider prognostic scenarios of related events that are about to take
place. For instance, a patient may face the prospect of severe complications
and prolonged hospitalization when difficulties arise during surgery, or mild
complications and a short hospital stay otherwise. Because of the statistical
dependencies between prognostic variables, such scenarios cannot be assessed
by determining the most likely values for each of the prognostic variables sepa-
rately. Instead, the k most probable configurations from the Cartesian product
of all possible values of these variables must be determined. Several algorithms
have been developed for performing this type of probabilistic inference with
Bayesian networks [35, 36]. This inference with PBNs can be used to assess the
k most likely clinical scenarios for a given patient or patient group.
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What-if scenario analysis

The occurrence of clinical events during a health care process (e.g., a particular
complication) generally changes the expectations for future parts of the process.
Combining the types of probabilistic inference of Bayesian networks that we
employed in the previous use cases allows us to analyze clinical what-if scenarios
for a given patient or patient group, and to identify critical events to account
for in decision making and treatment. In a what-if scenario analysis, the user
is asked to specify a future event (i.e., variable-value pair) to focus on in the
simulation. The PBN subsequently supplies the risk profile and the most likely
scenarios that are related to the occurrence of this event. This use case illustrates
the operation of the PBN as a simulation tool.

Risk factor analysis

The occurrence of unfavorable events (e.g., (post-)operative complications) and
negative outcomes induces clinical questions concerning the variables that are
important predictors of these events, in which stage the predictors are observed,
and whether they can be influenced by the clinical staff. Risk factor analysis
takes the event of interest as starting point, simulates the preceding variables
for the occurrence and non-occurrence of the event, and quantifies the predictive
value of the variables for the event in terms of risk ratios. The ratio has the
following form in this analysis:

RR(X ′) =
P (X ′ = x′|X = x, ξ)

P (X ′ = x′|X 6= x, ξ)
, (2.4)

where X ′ is a process variable that precedes the event under consideration X
(e.g., mortality) and ξ is given background knowledge of the patient (group)
under consideration; a high value for this risk ratio indicates X ′ as an important
risk factor for the event X in the patient group that is considered.

The six use cases illustrate various prognostic tasks for which PBNs can be
applied. These tasks can be accomplished by performing ‘conventional’ proba-
bilistic queries on the PBN, but they generally require that multiple queries be
performed and the results be aggregated. To support the use of PBNs in med-
ical practice, we propose the PBN to be embedded in a three-tiered architecture
in which the PBN as domain layer is supplemented with a task layer, that holds
a number of procedures to perform the prognostic tasks of PBNs, and a user
interface as presentation layer.

2.5 Discussion and conclusions

This chapter presents the PBN as a new type of prognostic model that builds
on the Bayesian network methodology and introduces a dedicated procedure for
PBN learning from local supervised learning models. The health care processes
that are modeled in PBNs are composed of a sequence of substantially differ-
ent stages, during which patients may drop out of the process. The learning
procedure explicitly accounts for the PBN’s primary task, prediction, and of
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characteristics of the medical process being modeled in the network, including
the phenomenon of patient dropout.
One way to consider the task of learning a Bayesian network structure is that
we must assess an appropriate Markov blanket for each variable. The proposed
learning procedure is based on the notion that assessing such a Markov blanket
of a variable corresponds to selecting the best predictive feature subset for this
variable in the data. For the tasks of feature subset selection and model build-
ing, any supervised learning algorithm that meets the following requirements
can be plugged in. First, assuming that all network variables are discrete, the
algorithm should be able to handle class variables with more than two outcome
categories. Furthermore, the algorithm should provide estimated conditional
class probability distributions. In addition, effective feature selection should be
performed to avoid dense networks. The methodology for building classification
and regression trees [37], for instance, meets these requirements; moreover, it
has been shown empirically that tree methods are well able to identify Markov
blankets from data [38].
The local models are used to represent the conditional probability distribution
of each variable given its parents in the network. When using local models, the
number of parameters that are required to encode the conditional probability
distribution is lower than in a tabular representation, which results in more ro-
bust estimations of the distributions. In the work of N. Friedman et al. [39] and
D.W. Chickering et al. [40], tree models and a generalization thereof, decision
graphs, were earlier proposed for compact representation of the local conditional
probability distributions, and it was shown how such representations can be ex-
ploited by K2-type methods [27] for learning Bayesian networks from data. In
contrast to our learning procedure, the local models are employed to reduce the
variance in the scoring function as used in the K2-type methods.
In the above-mentioned studies [39, 40], the method of global search to maximize
the likelihood remains intact. In our learning procedure, however, the network
is induced from data by a local search strategy. As the main task of PBNs is
outcome prediction, this local search strategy starts with the outcome variable of
the process being modeled, and assigns a special role to this variable throughout
network learning. The search as performed in our procedure is therefore biased,
and does not necessarily maximize the global likelihood. In this search strategy,
we deployed a supervised learning method to build a predictive model for each
network variable; the models are subsequently combined to obtain the global
network. The use of the supervised learning method is therefore two-fold in
our procedure: a) for compact representation of the conditional probability
distributions, and b) for inducing local predictive models from data.
The learning procedure assumes a temporally ordered set of attribute strata
defined by the time and order that they are observed, with the outcome variable
in the highest stratum. The outcome variable is used in the initial step of the
procedure, and the temporal strata are used to achieve that the direction of
arcs in the resulting network represents the flow of time. Nevertheless, the
procedure can be applied if just an outcome variable is available, but no ordering
on the predictor variables exists. Absence of such an ordering, however, entails
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increasing the variance in the structure of the resulting networks, as the strata
impose limitations on the possible topologies of the network and is therefore
a benefit when learning from data. If no outcome variable is available, there
is a variant of the learning procedure conceivable in which a feature subset is
selected for each network variable, whereupon the collection of feature subsets
is transformed into a graphical representation. Which strategy is suitable to be
used for this latter step is still an open question and an interesting subject for
further investigation.
The phenomenon of patient dropout is represented by subsidiary outcome vari-
ables in the network. Patient dropout due to the occurrence of the outcome
event of the PBN including the occurrence of more serious variants of this event
can be modeled in this representation. Examples of these events are the oc-
currence of complications and death. Patients may also drop out of a care
process due to reasons that are independent of the outcome event, e.g., they
may change hospitals. The current representation of patient dropout is not suf-
ficient to represent this type of patient dropout in the network, and extension
of the representation of patient dropout is an important topic for future work.
With employing Bayesian networks for prognostic purposes in this chapter, we
did not intend to exploit the entire potential of this methodology. This includes
for instance our assumption of all continuous variables to be discretized prior to
network learning. In the literature on Bayesian networks, strategies have been
presented for variable discretization during network learning [41], as well as for
inclusion of continuous variables by estimating a parametric distribution [42].
Another interesting subject that could be exploit for PBNs is network learning
with hidden variables [43].
This chapter also provides an explicit description of prognostic tasks that can
be supported with PBNs. The six use cases were defined within the domain
of cardiac surgery together with three clinical experts (PR, EdJ, BdM). In our
view, these use cases are relevant in many medical procedures. The set of use
cases may be incomplete, though, as some additional functionality could be
defined when the proposed type of model is applied to other clinical domains.
One may argue that the tasks that we defined for PBNs could be fulfilled by
a collection of traditional models that have been developed for different future
(outcome) variables and different prediction times and sets of covariates. Such
a collection could then be used for (quick) prognostic assessment and prognostic
updating. However, the number of traditional models that is needed to equal the
flexibility of a Bayesian network in performing these tasks is exponential in the
number of covariates. For a single outcome variable, there exist 2n − 1 different
nonempty sets of n covariates. This means that an equal number of different
models would be needed to predict and update one outcome variable with equal
flexibility as a PBN. Moreover, the tasks of prognostic scenario analysis and
what-if scenario analysis (use cases 4 and 5) can not be performed by a collection
of traditional models.
We presented the simulation of what-if scenarios as a functionality of PBNs. It
is worth to note that in this analysis, the simulation of the causal effect of an
event or its underlying clinical decision on the further course of the process is
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biased when observational data are used for network learning, instead of data
from randomized controlled studies. In general, the analysis of causal effects
is complicated due to the problem of counterfactuals [44]. That is, for each
patient in which an event occurred, the outcome is unknown that would have
been observed if the event did not occur, as well as the outcome that would
have followed the occurrence of an event in patients in which the event did not
occur. Randomized controlled studies enable researchers to compute unbiased
estimates of causal effects, as these studies ensure exchangeability of patient
groups [45]. In observational studies, however, the analysis is biased due to
the lack of this exchangeability. Simulation of what-if scenarios using networks
based on observational data can therefore only be used for an exploratory com-
parison of the differences between two clinical courses, and not for simulation
of the effect of an event or its underlying clinical decision. Modeling of counter-
factuals in graphical models has been described in [46].
In conclusion, this chapter introduces PBNs as a new type of prognostic model
that builds on the Bayesian network methodology. It presents a dedicated pro-
cedure for PBN learning from local tree models. The procedure accounts for the
prognostic task of PBNs, and for characteristics of the medical process being
modeled in the network, including the phenomenon of patient dropout. Fur-
thermore, a number of clinical uses of PBNs are explicitly described. As such,
we adapted the Bayesian network for prognostic application to support the clin-
ical use of it. The PBN extends the functionality of the traditional prognostic
model.
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Abstract

A prognostic Bayesian network (PBN) is a new type of prognostic model that
implements a dynamic, process-oriented view on prognosis. In a companion
chapter, the rationale of the PBN is described, and a dedicated learning proce-
dure is presented. This chapter presents an application hereof in the domain of
cardiac surgery. A PBN is induced from clinical data of cardiac surgical patients
using the proposed learning procedure; hospital mortality is used as outcome
variable. The predictive performance of the PBN is evaluated on an indepen-
dent test set, and results were compared to the performance of a network that
was induced using a standard algorithm where candidate networks are selected
using the minimal description length principle. The PBN is embedded in the
prognostic system ProCarSur; a prototype of this system is presented. This
application shows PBNs as a useful prognostic tool in medical processes. In
addition, the chapter shows the added value of the PBN learning procedure.

3.1 Introduction

In Chapter 2, we have introduced the prognostic Bayesian network (PBN) as
new type of prognostic model; we presented a dedicated learning procedure to
induce these networks from clinical data and described prognostic uses of PBN
in clinical practice [1]. This chapter presents an application hereof in the clinical
domain of cardiac surgery.

Cardiac surgery is a complex medical procedure that is applied to patients with
severe insufficiency of the cardiac functioning. Most of cardiac surgical inter-
ventions involve coronary artery bypass grafting (CABG), repair or replace-
ment of heart valves, aorta surgery, or a combination of these procedures. The
procedures are embedded in a health care process that includes the stages of
pre-assessment, operation, and recovery, and involves highly specialized clinical
personnel, such as a cardiologist, cardiac surgeon, anaesthetist, and intensive
care unit (ICU) physicians.

During the operation and the postoperative stay at the ICU and nursing ward,
several complications may occur that extend the operation time, delay the re-
covery process, and may lead to permanent disabilities or death. Death is an
important clinical endpoint in the care process of cardiac surgery. The patient’s
prognosis for this outcome is used in decision making prior to and during the
medical procedure. In addition, the outcome is used to evaluate whether the
procedures have been applied successfully. Since the mid-1980s, a large number
of prognostic models have been developed for the mortality outcome, with the
EuroSCORE as predominant model [2]. Most models applied logistic regression
to assess preoperative risk.

We developed a PBN for this clinical domain using the PBN learning procedure.
In Section 3.2, the patient data that are used are introduced and the data
preprocessing is described. Section 3.3 subsequently describes the results of
applying the PBN learning procedure to the data. Furthermore, we validated



36

the resulting PBN and compared its performance to a network that we learned
using the standard search and score algorithm where candidate networks are
scored using the minimal description length principle [3] as implemented in the
software package BayesiaLab (Section 3.4). To facilitate clinicians’ interaction
with the network, we embedded the PBN in a prototypical prognostic system
(ProCarSur); the system is presented in Section 3.5. We conclude the chapter
with a discussion and conclusions in Section 3.6.

3.2 Data and data preprocessing

The study population includes 10,147 patients who underwent cardiac surgery
in the Amphia Hospital, a teaching hospital in Breda, the Netherlands, between
January 1998 and November 2004. The data set contains preoperative patient
characteristics, details of the operative procedure, and physiological and labo-
ratory variables measured during the first 24 hours of postoperative ICU stay;
all variables included in the EuroSCORE [4], SAPS II score [5], and APACHE
II score [6] are in the data set. Furthermore, the data set includes length of ICU
stay, and binary variables that describe postoperative complications that fre-
quently occur in cardiac surgery, and death during hospitalization; for patients
who expired, the data set includes time of death.

Hospital mortality (hospmort) was used as the outcome variable of the PBN
with operative mortality (ORmort) and postoperative mortality (postORmort)
being subsidiary outcome variables. Among the 10,147 patients, 277 (2.74%)
patients died during hospitalization: 66 patients died in the operation room
and 211 patients died in the postoperative phase of the process. The data
set contained missing values for the variables that describe death and time
of death for 33 patients (0.33%); these patients were excluded from the data
set. Furthermore, the data set contained variables that were not recorded from
January 1998 but from later times, and variables with large amounts of missing
values. We excluded all variables from the data set that were still not recorded in
January 1999, in addition to the variables that contain more than 10% missing
values in the years of recording.

Subsequently, the data set was randomly divided into a training set (n=6778)
and a test set (n=3336); the training set was used for data preprocessing, vari-
able selection, and PBN learning, the test set for network validation. In the
training set, 189 patients expired during hospitalization: 42 patients died in the
operation room and 147 patients died in the postoperative phase of care. In
the test set, 88 patients expired during hospitalization: 24 patients died in the
operation room and 64 patients died in the postoperative phase of care.

The following steps were performed to preprocess the training data. First,
we discretized all continuous variables in five equally-sized categories using the
quintile values of their distribution to prevent for overfitting in PBN learning.
Second, we imputed all missing values with the majority class value for the
included discrete/binary variables, and the middle category (i.e., .4 and .6 per-
centiles of the empirical distribution) for discretized continuous variables. No
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values were imputed for the year 1998 for variables that were recorded since
1999. We excluded all 997 patients who underwent surgery in 1998 from the
training set in all analyses in which these variables were involved. Furthermore,
imputation was only performed for patients that were at risk during the phase
in which the variables were measured. So, no values were imputed for the post-
operative variables of the 42 patients in the training set who died during the
intervention. These patients were excluded from the training set in all analyses
for the postoperative variables.
In this case study of the PBN learning procedure, we used the training set to
select a limited set of variables that represent the different stages of care from the
available data. From each stage, variables were selected with a high predictive
value with respect the final outcome variable (hospmort); the predictive value
was quantified in terms of the 10-fold cross validation information gain (∆I)
on the training set. Variables that represent a prognostic score, such as the
EuroSCORE, were excluded, because our objective was to model the mutual
relationships of the underlying variables with process and outcome variables.
The resulting set of variables was subsequently inspected by the clinical experts
involved (PR, EdJ, and BdM). They recommended inclusion of the preoperative
variables bmi and diabetes. Physiological and laboratory data of the first
24 hours ICU stay were available in the form of summary values as used in
the SAPS II score, i.e., maximal and minimal values. The creatinine value is
generally measured for a low number of times during ICU stay. The maximal
and minimal creatinine value for a 24 hour period are therefore strongly related
or even similar. For this reason, we only included the variable creatmax in the
network. Table 3.1 shows the final set of 22 selected preoperative and process
variables, the percentage of missing values and the information gain with respect
to hospital mortality in the training set; the five complication variables have
been recorded since January 1999.
The test set was preprocessed by discretizing all included continuous variables
using the same thresholds as were used on the training set. We performed no
imputation in the test set, as Bayesian networks allow making predictions on
incomplete data. Patients with missing values in the postoperative complication
variables were excluded from the test set during network validation for the com-
plication variables, because the predicted probability for the variables could not
be evaluated for these patients; 28 patients had missing values for the variable
ICUlos24h, and respectively, 27, 31, 45, 32, and 31 patients for the variables
neurcomp, pulmcomp, cardcomp, mof, infect, in addition to all patients of the
year 1998 (488 patients).
The PBN learning procedure assumes the predictor variables and the subsidiary
outcome variables to be ordered in a number of temporal ‘strata’ defined by the
time and order in which the variables are observed; this was done to ensure that
the directions of arcs in the network are consistent with the flow of time. The
stages of preassessment, intervention, and recovery roughly define an ordering of
the selected variables, but when considering the time and order of observation,
a larger set of strata can be defined. The strata are shown in Table 3.2. The five
complication variables are in the highest stratum in addition to the subsidiary
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Table 3.1 Selected variables, their abbreviation and variable type, and the per-
centage of missing values and 10-fold cross validated information gain in the
training set.

Variable Abbrev Typea %NAb ∆Ic

preoperative data
age age c 0 0.00782
body mass index bmi c 0.5 0.00052
diabetes diabetes b 0.3 0.00002
creatinine precreat c 0.8 0.00742
pulmonary hypertension pulmhyp b 0.7 0.00712
ejection fraction ejfrac b 4.0 0.00425
surgery type surtype d 0 0.00984
emergency emerg b 0.2 0.01065
operative details
duration extracorporeal circulation ecctime c 0.8 0.01544
ecctime without aortic cross-
clamping

eccacctime c 0.8 0.01641

minimal body temperature temp c 2.6 0.00586
data of first 24 hours ICU stay
maximal mean blood pressure meanbpmax c 2.7 0.00789
minimal mean blood pressure meanbpmin c 2.6 0.01134
maximal creatinine creatmax c 6.6 0.01140
minimal bicarbonate bicmin c 2.2 0.00720
fraction inhaled O2

d fiO2 c 3.7 0.01145
ICU length of stay longer than 24h ICUlos24h b 0.2 0.01033
data of whole postoperative staye

neurological complication neurcomp b 0.3 0.01484
pulmonary complication pulmcomp b 0.6 0.00928
cardiac complication cardcomp b 0.9 0.00851
multiple organ failure mof b 0.6 0.04664
infection infect b 0.6 0.01044

a c: continuous; d: discrete; b: binary
b %NA: percentage of missing values
c ∆I: 10-fold cross validated information gain
d fraction inhaled O2 at minimal arterial O2 tension
e available since January 1999
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Table 3.2 Strata of the predictor and subsidiary outcome variables defined on
the time and order that they are observed.

Stratum Variable(s)

1 age

2 bmi, diabetes, precreat, pulmhyp, ejfrac, surtype
3 emerg

4 ecctime

5 eccacctime

6 temp, ORmort
7 meanbpmax, meanbpmin, creatmax, bicmin, fiO2
8 ICUlos24h

9 neurcomp, pulmcomp, cardcomp, mof, infect, postORmort

outcome variable postORmort (postoperative mortality), and the variable age is
in the lowest stratum. Variables are in the same temporal stratum when their
values are determined within a relatively short period and not always in the
same order. We used the nine strata in PBN learning.

3.3 PBN learning from local models

We induced a PBN using the dedicated learning procedure that is presented
in Chapter 2. In the procedure, the network is composed of a collection of
local supervised learning models that are recursively learned from the data.
The procedure optimizes performance of the network’s primary task, outcome
prediction, and handles the fact that patients may die during earlier parts of
the process, and ‘drop out’ of the process.

3.3.1 Class probability trees

In the application of the learning procedure to the cardiac surgical data, we
used the method of class probability trees from the tree building methodology
Classification and Regression Trees (CART) of L. Breiman et al. [7] for local
model building. Compared to classification trees, class probability trees estimate
the (conditional) probability distribution on the outcome classes for a given case,
instead of predicting the most probable outcome class. So, the terminal nodes
of a class probability tree contain probability distributions. When building class
probability trees, the data set is recursively partitioned into subsets by selecting
features that contribute most to identifying homogeneous subsets (in terms of
the Gini index [8]) with respect to the outcome. The feature subset selection is
thus incorporated in the tree building algorithm.

All class probability tree models were developed using the S-PLUS library Rpart
[9], which is an implementation of CART [7]. The optimal tree size was deter-
mined by minimizing the 10-fold cross validation error.
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Figure 3.1 The class probability tree model for the subsidiary outcome post-
operative mortality with the variables multiple organ failure, duration of the
extracorporeal circulation, and infection as predictive features. Each leaf node
is labeled with the estimated probability of the outcome and, between brackets,
the number of corresponding observations in the training set. The threshold of
112 minutes represents the threshold between the third and fourth quintile of
the discretized variable ecctime.

3.3.2 PBN learning

Step I

We started network learning with a graph, consisting 22 nodes that represent the
predictor variables and three nodes to represent the (subsidiary) outcome vari-
ables. The graph contains two arcs to represent the sub-outcomes ORmort and
postORmort as parent nodes of the global outcome hospmort. In the first itera-
tion of the procedure, a class probability tree was developed for the sub-outcome
variable postoperative mortality (postORmort); the 22 predictor variables were
used as potential predictive features. The variables mof (multiple organ failure),
ecctime (duration of the extracorporeal circulation), and infect (infection)
were selected as predictors in the tree model. Therefore, three arcs were drawn
in the graph from the selected variables to the outcome variable. It is valuable
to note that all 22 variables were earlier found to have predictive value for death
during hospital stay as shown by their information gain ∆I for this outcome in
Table 3.1. However, when combining them in a multivariate tree analysis, only
multiple organ failure, duration of the extracorporeal circulation, and infection
appear as predictors in the tree model.

The class probability tree for postoperative mortality is shown in Figure 3.1.
This tree model shows that the risk of postoperative mortality is high for patients
with occurrence of multiple organ failure, especially for patients with a relatively
short duration of the extracorporeal circulation (probability of 0.807). The
occurrence of multiple organ failure and the related high risk of mortality in
this latter patient group are not explained by a complicated operative course
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(long duration of the extracorporeal circulation), but is probably caused during
the recovery process itself. For the patient with multiple organ failure and a
complicated operative course, a lower risk of mortality is found for those with an
infection compared to those without an infection (probability of 0.296 and 0.681,
respectively). This finding suggests that complications that are less favorable for
patient survival than an infection occurred in this latter patient group. The left
part of the tree model shows that patients without multiple organ failure (97.9%
of the patient population) have a low risk of postoperative death (probability
of 0.010).

Step II

The selected features for the sub-outcome postoperative mortality were subse-
quently enqueued in a priority queue with the information gain ∆I for hospital
mortality as priority value (Table 3.1). So, after the first iteration, the queue had
the following content: Q = {(mof, 0.0466), (ecctime, 0.0154), (infect, 0.0104)}.
Therefore, in the second iteration of the learning procedure, the variable mof

was dequeued from the priority queue. For this variable, all other variables, with
exception of the outcome hospital mortality, were used as potential predictive
features during tree induction. The variables neurcomp (neurological complica-
tion), infect (infection), pulmcomp (pulmonary complication), fiO2 (fraction
inspired oxygen), meanbpmax (maximal mean blood pressure), meanbpmin (min-
imal mean blood pressure), ecctime (extracorporeal circulation time), temp

(temperature), and pulmhyp (pulmonary hypertension) were selected as predic-
tors in the tree model for this variable. From each of them an arc was added
to the graph to the variable mof. The graph structure that was created thus
far is shown in Figure 3.2. The selected variables for mof were subsequently
enqueued in the priority queue except for the variables infect and ecctime,
as these variables were already enqueued in the initial step. Subsequently, a
class probability tree was developed for the variable ecctime (extracorporeal
circulation time) with all variables from preceding strata as potential predictive
features.

In the following iterations, a feature subset was selected for each predictor vari-
able that appeared in the priority queue. The data of all patients who survived
the operation were used in the iterations for the sub-outcome postORmort and
all postoperative variables (n=6736); in the iterations for the operative and
preoperative variables, we used the data of all patients (n=6778).

Step III

The next step in the procedure was to assess the set of parent nodes of the sub-
sidiary outcome ORmort, and to build the associated local model. This outcome
variable represents death during surgery which is the reason for dropout from
the care process. Only 42 (0.62%) patients from 6778 in the training set expired
during surgery. This extreme unbalance in classes rendered it impossible to
build a tree model (other than the trivial ‘single node’ tree).

Various methods to cope with class imbalance have been described in the lit-
erature [10]. Here, we applied a simple, ad hoc solution that is based on the
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Figure 3.2 The graph structure after feature selection and model building for
the subsidiary outcome postoperative mortality and the variable multiple organ
failure.

problem at hand. In our training set, another 147 patients (2.17%) died after
surgery, at the ICU or at the nursing ward. It occurs frequently that these
patients have a troublesome operation and die during the next day. For this
reason, we decided to “borrow strength” from the sub-outcome postORmort in
the analysis. So, we used data from all deaths in the training set to induce a
tree for the sub-outcome ORmort, including those who died postoperatively. The
estimated probabilities in the resulting tree model were subsequently rescaled
and then checked for their validity to predict operative death.

Figure 3.3 displays the model that resulted from the analyses. In this model, the
original estimates have been rescaled by multiplying them with 42

189 , the fraction
of operative deaths among all deaths in our training set. When comparing the
rescaled estimates with raw frequencies (shown in brackets underneath), the
model turns out to be well-calibrated. Statistical comparison of observed versus
predicted numbers of deaths yielded a χ2 value of 0.533 (df=1, p=0.465).

Step IV

The variable cardcomp (cardiac complication) was not selected in any feature
subset and therefore did not have any incoming or outcoming arcs after all
previous steps were carried out. A possible explanation is that the variable
is statistically independent of all other variables in the network. From the
univariate analysis, however, correlation with the outcome variable was known
(∆I 0.009, Table 3.1). Another explanation is that the variable is conditionally
independent of the other complication variables and postoperative mortality
variables given variables that are in lower strata. Using the procedure, the
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Figure 3.3 The class probability tree model for the subsidiary outcome ‘opera-
tive mortality’. Each leaf node is labeled with the rescaled estimated probability
and, between brackets, the observed frequency and the number of observations
in the corresponding subgroup of the training set. The threshold of 50 minutes
represents the threshold between the fourth and fifth quintile of the discretized
variable eccacctime.

latter variables are then selected for the complication and mortality variables,
and their feature subset is subsequently selected from lower strata; the variable
cardcomp thus remains unselected.

To discover the dependencies, we concluded the procedure with developing a
class probability tree for this variable; all variables were used as potential pre-
dictive features with exception of postORmort (postoperative mortality). The
variables ICUlos24h (ICU length of stay longer than 24h), ecctime (duration
of the extracorporeal circulation), emerg (emergency), and surtype (surgery
type) were selected. We subsequently added arcs to the graph to represent that
these variables form the parent nodes of the variable cardcomp; this variable
has no child nodes.

Step V

In the resulting graph, the deterministic relationships between operative mor-
tality ORmort and the postoperative (sub-outcome) variables that describe the
irrelevancy of the postoperative variables in case of operative death were still
lacking. To complete the network, we added these relationships in this final step
by drawing arcs and extending the corresponding local conditional probability
models of the variables. Figure 3.3.2 shows the structure of the resulting PBN.

3.4 Network Validation

We validated the predictive performance of the PBN on the test set, and we
subsequently compared it to the predictive performance of a second network.
The predictive performance of the PBN was validated in terms of its ability
to make unbiased estimates of outcome probabilities (calibration) and to sepa-
rate positive and negative outcomes (discrimination). The validation procedure
included the performance assessment of the networks for the (sub-)outcomes
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that describe mortality during the process, the variable ICUlos24h (ICU length
of stay longer than 24h), and the five variables that represent postoperative
complications; the postoperative (sub-outcome) variables were evaluated only
on data of the 3312 patients who survived the operation. Validation was per-
formed at two prediction times: (i) during the preoperative stage, and (ii) at
ICU admission. For the outcome variables operative and hospital mortality
(ORmort and hospmort), performance was only validated at the first prediction
time. Prediction of the first outcome at ICU admission is not meaningful, while
prediction of the latter outcome at ICU admission is, by definition, equal to
prediction of postoperative mortality (postORmort).

We validated the calibration of network distributions by comparing the ex-
pected and observed probabilities of the variables in five equal-sized groups,
obtained by ordering the observations in the test set by the expected proba-
bility. The differences in these probabilities were statistically tested using the
χ2 distribution with four degrees of freedom. Furthermore, we quantified the
discriminative ability of the PBN in terms of the area under the ROC curve
(AUC) [11]. The predicted probabilities of the PBN were obtained using the
Netica software (Norsys Software Corp.1); all further analyses were performed
in S-PLUS (Insightful Corp. Version 6.2 for Windows, Seattle, WA). Table 3.3
lists the validation results of the PBN for each selected variable and both pre-
diction times, in the third and fourth column, respectively. The table shows a
good calibration for the variables ICUlos24h and cardcomp. The network was
found to be poorly calibrated for the mortality variables; the expected prob-
abilities for these variables are only in a small range, close to their marginal
probabilities. Among the examined variables, the mortality variables and the
variable mof had best discrimination.

An important objective of the validation was to verify the effectiveness of our
dedicated PBN learning procedure. For this purpose, we induced a network from
the training set using a standard algorithm for Bayesian network learning with
the software package BayesiaLab2, and compared the predictive performance of
the networks.

BayesiaLab implements a search and score algorithm where candidate networks
are selected using the minimal description length (MDL) principle [3], and the
candidate space is traversed with tabu search [12]. As in our own learning
procedure, we used the temporal ordering on network variables from Table 3.2
to constrain the network topology. BayesiaLab assumes the variables in the
training set to be relevant for all patients and cannot deal with values that are
missing due to patient dropout. Therefore, we imputed the category label ‘I’
in the postoperative variables for patients who died during surgery, denoting
irrelevancy of these variables for these patients.

The resulting MDL network is shown in Figure 3.5. The network is sparsely
connected with 30 arcs compared to 103 arcs in the PBN that was learned
from local tree models. The arcs between the postoperative variables partly

1 http://www.norsys.com
2 http://www.bayesia.com
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Figure 3.5 The MDL network for cardiac surgery.

represent the deterministic relations that exist between operative mortality and
the postoperative variables, i.e., their category label ‘I’. Furthermore, only four
arcs represent probabilistic relationships between preoperative and operative
variables and postoperative variables.

We quantified the calibration and discrimination of this network on the test
set using the same statistics as were used for PBN validation. The estimated
probabilities of the MDL network were obtained in BayesiaLab; again, all further
analyses were performed in S-PLUS. Table 3.3 lists the results for each selected
variable and the two prediction times for the MDL network, in column 5 and
6, respectively. These results show a good calibration for the mortality variable
ORmort and the variable cardcomp, and best discrimination for the mortality
variables and the variable mof. For the variables ICUlos24h and cardcomp, the
same results were found for both prediction times. Because no relationships
among these variables and the operative variables were modeled in the MDL,
the estimated probabilities did not change when operative data was used for
prediction.

When comparing the discrimination statistics of the PBN and the MDL network,
higher AUC values were found for the PBN for all variable at both prediction
times. We statistically tested the differences in AUC values between the net-
works using the method of E.R. Delong et al. [13]. With performing sixteen
statistical tests to examine the calibration of the PBN, sixteen tests to examine
the calibration of the MDL network, and sixteen tests to compare the discrimi-
nation of both networks, the validation and comparison of the network involve
a problem of multiple testing. We therefore used the Bonferroni adjustment for
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multiple testing, and considered test results to be statistically significant when
a p-value of less than 0.001 was observed.
The results of testing the differences in AUC values are listed in the rightmost
column of Table 3.3. The superiority of the PBN in discriminative ability is
found to be statistically significant for the variables cardcomp and mof at ICU
admission, and for ICUlos24h at both prediction times. When inspecting the
calibration statistics of the PBN and the MDL network, both networks turned
out to be poorly calibrated for the majority of variables (low p-values). Although
the calibration statistic of the PBN for the mortality variable ORmort does not
prove poor calibration for this variable (p-value 0.008), the corresponding χ2

value is relatively high compared to the χ2 value of the MDL network for this
variable. This suggests that the PBN was overfitted by additionally including
the variable eccacctime as parent variable of ORmort. Figure 3.6 visualizes
the calibration results of both networks as listed in Table 3.3 for preoperative
prediction of two variables and prediction at ICU admission of two variables.
Note that the axes of the graphs cover different and limited parts of the interval
[0, 1].
The calibration results show that the predicted probabilities of the PBN are un-
derdispersed, especially for the mortality outcomes: the variation in predicted
probabilities is smaller than it should be. There are different explanations for
this finding. First, it could be caused by the PBN learning procedure. This
appears not to be the case as similar results were found for the MDL network.
A second possible explanation is that underdispersion is related to sparseness
of the available observations. Postoperative predictions can use, by definition,
observations on a larger set of variables than preoperative observations, and per-
haps therefore the predictions are more dispersed. However, when we only use
observations on the three parent variables of the variable postORmort without
instantiating any other variable in the network, then the predictions are equally
dispersed as when all predictors (preoperative, surgical, and postoperative) are
instantiated. This follows from the graphical representation of conditional in-
dependence. So, sparseness of observations is also not the explanation per se.
A third possibility is that the validation on an independent set shows that
the model is ‘underfit’. In this case, underdispersion of predicted probabilities
should not occur on the training set. This possibility requires further scrutiny.
And fourth, the underdispersion may be a result of statistical inference through
chained probability estimates. It is then directly related to the Bayesian network
methodology. When this is true, preoperative predictions of mortality must be
less dispersed than postoperative predictions, as they are computed through
longer chains of unobserved variables in the network.
To investigate the third and fourth explanations, we performed a closer evalu-
ation of the calibration of PBN and MDL networks for the mortality outcome
postORmort. We applied both networks on the training set at four prediction
times in the care process: 1) during the preoperative stage, 2) at ICU admission,
3) after 24h ICU stay, and 4) when all predictor data are known.
The left-hand graph in Figure 3.7 shows the calibration performance of the
PBN on the training set for postORmort at the different prediction times. By
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Figure 3.6 Calibration of the variables postORmort, ICUlos24h, cardcomp, and
mof for the PBN and the MDL network on the test set, with preoperative
and postoperative predictions, respectively. Solid lines depict calibration of the
PBN, dotted lines of the corresponding MDL network, and the diagonal lines
represent perfect calibration.

definition, the PBN is perfectly calibrated on the training set when data of the
parents variables of this sub-outcome are available for prediction. In that case,
it is actually just the local tree model shown in Figure 3.1 that is applied to
the data; the expected probability in each leaf node of this tree is calculated
as the observed probability in the corresponding patient group in the training
set. The figure clearly illustrates a regression of the estimated probabilities to
the marginal probability of the outcome as the prediction time is earlier in the
process and thus inference is performed through a longer chain of unobserved
variables, and does not support the explanation that the network is underfit.
The right-hand graph shows similar results for the MDL network, suggesting
that the underdispersion of predicted probabilities is directly related to the
Bayesian network methodology.
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Figure 3.7 Calibration of postORmort for the PBN and the MDL network on
the training set, using four separate prediction times: 1) during the preoperative
stage, 2) at ICU admission, 3) after 24h ICU stay, and 4) when all predictor
data are known. In all graphs, the diagonal line represents perfect calibration.

3.5 The ProCarSur system

In Chapter 2, we described six prognostic use cases of PBNs. To support the
use of PBNs in clinical practice, we proposed these networks to be embedded
in a three-tiered architecture. In the architecture, a PBN is supplemented with
a task layer that holds a number of procedures to perform the prognostic use
cases of PBNs, and a presentation layer. The task layer translates the user’s
clinical information needs to probabilistic inference queries for the network, and
the presentation layer presents the aggregated results of the inferences to the
user.

We developed a prototype implementation of a task layer and user interface;
together with the cardiac surgical PBN, they make up the ProCarSur system.
The task layer was written in Java, and the Netica Java-API was used to access
the PBN; the user interface was developed in HTML. Figure 3.8 shows a screen
shot of the output screen of the system. The screen consists of three panes. The
left pane shows the system’s menu. The right upper pane shows the patient
profiles as entered by the user, and the right lower pane shows the results of
probabilistic inference.

The figure shows the system’s output for a patient case of a 62-year-old non-
diabetic patient who has undergone an elective (i.e., non-emergency) coronary
artery bypass grafting (CABG) operation; this patient had pulmonary hyper-
tension and a preoperative serum creatinine value of 80 µmol/l. These data were
available for prognostic assessment in the preoperative stage of the process; the
results hereof for the variable ‘ICU length of stay longer than 24h’ (ICUlos24h)
are visible in the right-hand diagram of the lower right pane. The operation
of this patient took relatively long, resulting in a duration of the extracorpo-
real circulation (ecctime) of 197 minutes and a duration of the extracorporeal
circulation while not aortic cross-clamping (eccacctime) of 99 minutes. This
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Figure 3.8 The output screen of the ProCarSur system with results of prognostic
updating for the variable ‘ICU length of stay longer than 24h’. The left pane
of the screen shows the menu of the system, the patient profile as entered by
the user is shown in the right upper pane, and the right lower pane shows the
results of probabilistic inference.

information was used to update the prognosis after the operation. The results
are shown in the left-hand diagram in the right lower pane. The prolonged op-
eration time indicates surgical complications and therefore the risk of an ICU
stay longer than 24h has increased from 26% to 55%, an increase with a factor
of 2.1. The actual ICU stay of the patient was four days. Finally, the patient
was discharged from hospital after five days of recovery at the nursing ward.

3.6 Discussion and conclusions

In Chapter 2, we proposed PBNs as prognostic tools that implement a dynamic,
process oriented view on prognosis: they explicate the scenarios that lead to
different clinical outcomes, and can be used to update predictions when new
information becomes available. This chapter presents an application of PBNs
to the domain of cardiac surgery. In this application, PBNs are shown as a
useful methodology for prognostic modeling of medical care processes. During
demonstrations of ProCarSur to a large number of intended users, such as car-
diac surgeons, intensive care physicians, and management staff from different
medical centers, the system was received as a valuable tool to support their task
of prognosis during patient care and to obtain insight into critical factors in the
care process, as well as a useful instrument in the evaluation of care. This case
study also shows the added value of the dedicated learning procedure to induce
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PBNs from clinical data.

From the literature on prognostic modeling in cardiac surgery, the prognostic
problems in this domain have been proved to be difficult; this is also the main
reason for the demand for prognostic systems to support this task in clinical
practice. For instance, an online version of the European system for Cardiac
Operative Risk Evaluation (EuroSCORE) [4] is available as the EuroSCORE
Interactive Calculator.3 This system however only allows for prediction of the
risk of death prior to the intervention.

E. Simchen et al. [14] have developed a more general model to predict mortality
following cardiac surgery, consisting of three logistic regression submodels for
preoperative, operative, and postoperative factors. In the second and third
submodel, the predicted risk of the previous submodel is used as a covariate.
So, the model allows for updating the predicted preoperative risk of death twice
during the process, using operative and postoperative data, respectively. The
main difference with the PBN is that these submodels are based on separate
regression analyses for the three prediction times. If one would wish to extend
the model to additional prediction times or additional outcome variables, the
number of separate analyses and submodels would quickly increase. The PBN
in contrast is a single, integrated model with the same functionality.

In the application of the PBN learning procedure in the case study, we were
confronted with the problem of sparse data for the subsidiary outcome ORmort

(operative mortality): no local predictive model could be built for this variable.
To overcome this problem, we temporarily borrowed strength from the sub-
outcome postORmort in the analysis, and subsequently rescaled the estimated
probabilities. This strategy turned out to be valid for this outcome variable. The
inclusion of subsidiary outcomes to represent the phenomenon of patient dropout
in the network involves this problem of sparse data for the sub-outcomes: by
definition, the number of events for each sub-outcome is less than for the final
outcome. The extension of the PBN learning procedure with a general strategy
to handle this problem is part of future work.

We used the tree induction method in the PBN learning procedure for the trans-
parency of resulting models: the local tree models that composed the PBN were
suitable to be discussed with clinical experts. A disadvantage of tree induction
methods, however, is their instability: small changes in the data may result in
very different tree models [15]. The use of this method in the network learn-
ing procedure therefore increases the variance in the structure of the resulting
networks. An important cause of the instability is that in tree induction meth-
ods, the selection of features is incorporated in the modeling procedure. In the
learning procedure, however, also separate methods for feature subset selection
and local model building can be used. In addition, more powerful supervised
learning methods than tree induction can be used for local model development,
such as ensemble learners [15] and artificial neural networks [16].

The PBN for cardiac surgery was developed as a case study of the PBN learning
algorithm as proposed in Chapter 2. To be clinically relevant and trustworthy,

3 http://www.euroscore.org/calc.html
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several adjustments of the PBN are probably needed. For practical reasons, we
included a limited set of discrete variables in the network learning process and
used data from a single medical center. We hope to conduct a more rigorous
analysis of this prediction problem using a more extensive set of variables and a
multi-center data set in the future. In addition, the missing values in the data set
were imputed with the majority class value, instead of applying a more advanced
method for imputation. Furthermore, no special attention was given to the
relatively high amount of missing values that were present in the preoperative
variables of emergent patients. This may have biased the PBN learning process
resulting in an underestimation of the relatively worse prognosis of emergency
patients. Taking account of this type of non-randomly missingness in the data
is an important issue for future work.
The capability of the PBN to discriminate between survivors and non-survivors
is comparable to existing models in cardiac surgery that have been developed
using logistic regression analysis. The developers of the EuroSCORE reported
an AUC value of 0.759 on an independent test set [4]. Simchen et al. reported
an AUC value of 0.788 for preoperative prediction of the risk of death, and
this value increased to 0.853 when operative variables were included in the
model [14]. An increase in performance when using operative data for prediction
such as reported by Simchen was not observed for the PBN. In their study,
however, a more extensive set of operative variables was used, including an
important predictive feature that describes the use of an intra-aortic balloon
pump. Moreover, the AUC values in that study were obtained on the training
set, and are therefore optimistically biased. With respect to calibration, Nashef
et al. reported good calibration results for the EuroSCORE on a test set (χ2:
7.5, 10 df, p-value: 0.68) [4]; Simchen et al. did not report on the calibration of
their models.
We found that the predicted mortality distributions of the PBN are underdis-
persed when predictions are made in early stages of the peri-operative process;
the same problem was observed for most other outcome variables, but not for
ICU length of stay and cardiac complications. We conjecture that this is a
general problem of Bayesian networks, related to statistical inference through
chains of stochastic variables. Because each of these variables adds to the uncer-
tainty in the prediction, we observe a regression to the mean when predictions
are made through longer chains. A similar phenomenon occurs in forecasting
with autoregressive models and Markov models, where long-term predictions
tend to move towards the grand mean of the predicted variable [17]. This is a
topic that needs further attention before PBNs can be deployed in practice. A
potential solution may be found in estimating the dispersion factor using logistic
regression [18].
The calibration problem will affect the PBN’s reliability in various tasks, es-
pecially those where precise probability estimates are important. An example
is the use of probabilistic predictions for risk adjustment [19]. When, however,
predictions are merely used to stratify risk (e.g., into low, intermediate, and
high risk), calibration is less important than discrimination. Similarly, for the
risk factor analysis, one of the use cases that is described in Chapter 2, precise
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probabilities may be less important as this analysis is aimed at a qualitative
result (i.e., identifying relevant variables). Similar considerations hold for the
prognostic scenario analysis and what-if scenario analysis: the main, qualitative
results will not be affected by poorly calibrated outcome distributions, but the
associated numbers should be regarded with caution.
The ProCarSur system currently has a prototype status and has not been eval-
uated in routine medical care. We have therefore no evidence that the system
is suitable for use by clinical staff and that all defined use cases of PBNs are
useful during patient care. Clinical evaluation of the usability of the ProCarSur
system is therefore an issue for future research, in addition to development and
evaluation of such prognostic systems in other clinical domains.
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Abstract

Objectives To develop a predictive model for the outcome length of stay at the
Intensive Care Unit (ICU LOS), including the choice of an optimal dichotomiza-
tion threshold for this outcome. Reduction of prediction problems of this type
of outcome to a two-class problem is a common strategy to identify high-risk
patients.

Methods Threshold selection and model development are performed simultane-
ously. From the range of possible threshold values, the value is chosen for which
the corresponding predictive model has maximal precision based on the data. To
compare the precision of models for different dichotomizations of the outcome,
the MALOR performance statistic is introduced. This statistic is insensitive to
the prevalence of positive cases in a two-class prediction problem.

Results The procedure is applied to data from cardiac surgery patients to di-
chotomize the outcome ICU LOS. The class probability tree method is used to
develop predictive models. Within our data, the best model precision is found
at the threshold of seven days.

Conclusions The presented method extends existing procedures for predictive
modeling with optimization of the outcome definition for predictive purposes.
The method can be applied to all prediction problems where the outcome vari-
able needs to be dichotomized, and is insensitive to changes in the prevalence
of positive cases with different dichotomization thresholds.

4.1 Introduction

Outcomes that describe the duration of therapy are important in medicine.
Examples of these outcomes are length of hospitalization, length of stay at the
Intensive Care Unit (ICU), and duration of mechanical ventilation. They reflect
the seriousness of illness and the speed of recovery. Prediction of these outcomes
fulfils an important role in identification of patients with a high risk for a slow
and laborious recovery process. Furthermore, it provides useful information
for resource allocation and case load planning (e.g., number of occupied beds).
In this paper, we focus on the duration of stay at the ICU. As the costs of
Intensive Care treatments are high, and the ICU beds are scarce, this outcome
is of importance in the domain of Intensive Care medicine.

In the literature, a large number of models that are aimed to predict the risk
of extended stay at the ICU is described, e.g., [1–6]. Prior to building these
models, a definition of ‘extended stay at the ICU’ was obtained by dichotomiz-
ing the length-of-stay outcome variable. However, no consensus exists on this
definition and the proper dichotomization threshold. When a clear clinical ques-
tion underlies model development (e.g., Which patients have high risk to stay
longer than 24 hours?), the threshold for dichotomization is given, and thresh-
old selection is no question. However, in practice, clinical questions are often
less specific (e.g., Which patients have high risk of prolonged stay?). Selection
of a dichotomization threshold value is then required to obtain a definition of
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extended ICU stay.

Generally, two approaches can be distinguished for threshold selection. First, a
dichotomous variable can be defined based on knowledge of practitioners. The
threshold value that is used in this case is for instance a breakpoint that is
generally agreed upon in the field of application, or inferred from a common
decision-making policy. As these methods rely on consensus among practition-
ers and the existence of clean decision-making policy, they may fail to work in
practice when these are lacking. Second, a threshold can be selected based on
data analysis. In the literature on prognostic models in medicine, dichotomiza-
tion is often based on percentiles of the sample distribution of the outcome
variable, e.g., [1, 3, 7]. The choice of the percentiles is generally arbitrary, be-
cause no relation needs to exist with the natural separation (if existent) of the
outcome classes.

In this chapter, we propose to incorporate the selection of the dichotomization
threshold into the modeling process, by optimizing the threshold value for pre-
dictive purposes. In essence, this means that the threshold value is viewed as
one of the model parameters that needs to be optimized on the data, similar
to, e.g., model complexity. However, changing the dichotomization threshold
will change the prevalence of positive outcomes in the derived, binary outcome
variable. For this reason, standard predictive performance statistics, such as
the mean squared error and the Brier score [8], cannot be used to optimize
the threshold: these performance statistics are sensitive to class unbalance, and
will always favor extremely unbalanced distributions (i.e., very high or very
low thresholds). We therefore introduce the MALOR performance statistic,
which is insensitive to class unbalance, and use this statistic in our method.
The method was applied to select the optimal dichotomization threshold for the
outcome length of stay at the ICU (ICU LOS).

The chapter is organized as follows. First, the prediction problem of ICU LOS
is described in Section 4.2. Subsequently, we describe the method for threshold
selection and model development in Section 4.3. This method is applied to ICU
data that are described in Section 4.4; Section 4.5 describes the results. We
conclude the chapter with a discussion and conclusions.

4.2 Prediction of ICU length of stay

Cardiac surgery patients can be seen as a relatively homogeneous subgroup
of ICU patients with a high morbidity risk. During the first hours after the
operation, that involves coronary artery bypass grafting (CABG), and repair
or replacement of heart valves, many physiological disturbances are commonly
found in patients. For this reason, each patient is monitored and mechanically
ventilated at the ICU. In a normal (uncomplicated) recovery process though, a
stable condition is reached within 24 hours; then the recovery process is com-
pleted at the nursing ward.

However, several postoperative complications may occur in different organs or
organ systems, which make longer intensive care inevitable. For that reason,
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the ICU LOS can be seen as proximity for the degree of complication and
therefore, as a measure of the quality of delivered care. So, the identification of
patient groups that are likely to have a complicated recovery process is useful for
determining policy of care and benchmark purposes. Furthermore, if the cardiac
surgical patients form a relatively large part of the ICU population, the staff of
ICUs is often interested in the prediction of this outcome for case load planning.
In this chapter, predictive modeling of ICU LOS is aimed at predicting the risk
of long LOS as proximity of the risk to have a complicated recovery process.

The development of models to predict ICU LOS is complicated, though. The
outcome ICU LOS is primarily determined by the patient’s condition at ICU
admission and the complications that occur during ICU stay. But, beside these
patient-related factors, a number of interfering factors exist that influence the
ICU LOS. These factors include discharge policy, workload and available facili-
ties at the medium care unit and nursing ward. Furthermore, a short ICU LOS
can be related to a fast recovery process, but also to a quick death. For these
latter patients, the ICU LOS is censored. Therefore, it is difficult to predict the
ICU LOS.

When developing predictive models for this outcome, dichotomization is fre-
quently applied to estimate a patient’s risk on long ICU LOS. The threshold
value is often chosen “arbitrarily” (three days [9]), without motivation (thresh-
old of two days [4], three days [6], and ten days [10]), or based on simple statis-
tics such as median (threshold of seven days [7]) or 90% percentile (threshold
of three days [5] and six days [3]). The differences in selected threshold values
are largely caused by differences in the distribution of ICU LOS which depends
on patient population and types of cardiac surgery. However, in these studies,
no systematic investigation is done to select the threshold value. This is unfor-
tunate as suboptimal threshold selection can lead to an inaccurate model that
is developed for the dichotomized outcome and to restricted insight into the
structure of the prediction problem.

4.3 Threshold selection in the predictive modeling process

In this section, we describe the procedure to select the dichotomization threshold
in the modeling process by optimizing the prediction problem of ICU LOS on
the data. We optimized the predictive performance in terms of the precision
of the risk estimations, because predictive modeling in this chapter is aimed at
estimating the risk of long LOS. In the next section, we introduce the MALOR
performance statistic to quantify the precision of the estimated class-conditional
probabilities. Unlike other precision measures, this statistic is insensitive to
class unbalance, and therefore a suitable performance statistic to optimize the
outcome definition in the modeling process.

4.3.1 MALOR statistic

Let Yt denote the outcome ICU LOS dichotomized using threshold t, that takes
values from a finite set of values. Without loss of generalization, we suppose
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that t ∈ {1, 2, · · · , T}. Furthermore, let x denote the vector of covariates that
is used to predict the value of Yt. The concept of model precision concentrates
on the difference between true class-conditional probabilities P (Yt = 1|x) and
probabilities M(Yt = 1|x) estimated by model M [11]. A predictive model is
perfectly precise if these probabilities are equal for each element x of the feature
space F . The larger the average difference between these probabilities is, the
worse the precision of the predictive model is.

We developed the MALOR statistic to quantify the difference between the es-
timated probabilities by model M and the true probabilities. For notational
brevity, we assume that the dichotomization threshold t is given, and write Px

for the probability value P (Yt = 1|x), and Mx for its estimate M(Yt = 1|x).
The MALOR statistic is a distance measure and is defined as follows:

DMALOR(M,P ) =

∫

x∈F

| ln

(

OM (x)

OP (x)

)

|p(x) dx, (4.1)

where OM (x) = Mx

1−Mx

and OP (x) = Px

1−Px

, and 0 < Mx < 1 and 0 < Px < 1.

This statistic is called MALOR as it is the Mean value of the Absolute Log-
Odds Ratio for all elements x ∈ F . We refer to the Appendix for an extensive
explanation of the MALOR statistic and its properties. The important property
of the MALOR statistic for our purpose is that it takes relative differences
between probabilities into account. This property, which is called approximate
proportional equivalence, is best explained by temporarily assuming that the
feature space F contains only a single element. The models are than determined
by a single probability value, and the MALOR statistic reduces to the following
distance measure on probabilities, which we call the ALOR distance:

dALOR(Mx, Px) = | ln

( Mx

1−Mx

Px

1−Px

)

|. (4.2)

For instance, when Px = 0.50 and Mx = 0.55, the ALOR distance is 0.20. The
distance between Px = 0.50 and Mx = 0.75 is valued as 1.10. When Px = Mx,
the ALOR distance equals zero.

In the Appendix, we explain that it satisfies the general characteristics of a dis-
tance measure, as well as the property of approximate proportional equivalence.
This property essentially means that the distance between two small proba-
bilities stays approximately constant if both probabilities are reduced by the
same factor. Table 4.1 shows this property for three pairs of Mx and Px (first
and second column). The three pairs have equal relative differences, while the
absolute differences become progressively smaller. The ALOR distance (third
column) is approximately equal when reducing both probabilities using the same
factor, and this ‘equivalence’ increases as the probabilities become smaller. The
fourth and fifth column show that this property does not hold for well-known
distance measures such as the squared error (and related measures such as the
absolute error and the Euclidean distance), and the Kullback-Leibler distance
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Table 4.1 Comparison of the ALOR distance to the squared error (se) and
Kullback-Leibler distance (KL)

Mx Px dALOR(Mx, Px) dse(Mx, Px) dKL(Mx, Px)

0.1 0.15 0.4626 0.0025 0.0122
0.01 0.015 0.4105 0.000025 0.00109
0.001 0.0015 0.4060 0.00000025 0.000108

(also known as relative entropy). The squared error and Kullback-Leibler dis-
tance become steadily smaller as the probabilities get smaller, so these two
distance measures will always value the model for the most unbalanced problem
to be most precise.
In a feature space with more than one element, the MALOR statistic is com-
puted as the expected ALOR distance (Equation 4.1). For a given dataset, we
therefore compute the MALOR statistic by calculating the mean value of the
ALOR distances of its elements.
Because of the property of approximate proportional equivalence, the MALOR
statistic is insensitive to class unbalance; its values are therefore comparable
for different prediction problems. So, when selecting the optimal threshold
for dichotomization based on model precision, the MALOR statistic is suitable
to quantify the precision of predictive models that have been developed for
outcomes dichotomized using increasing thresholds.

4.3.2 Procedure for threshold selection and model development

In this section, an overview of the procedure that incorporates threshold selec-
tion into the modeling process, and application of the procedure to the ICU
LOS prediction problem is described. The procedure consists of the following
parts:

1. define a set of possible threshold values T

2. for all threshold values t ∈ T do

(a) define the dichotomized outcome Yt using threshold t

(b) build a predictive model Mt for outcome Yt

(c) compute DMALOR(Mt, Pt)

3. select the threshold value for which the model has minimal value for the
MALOR statistic.

In the application of this procedure to select the threshold value for dichotomiza-
tion of ICU LOS, we developed predictive models for outcomes that are di-
chotomized using increasing threshold values (2 up to and including 10 days),
and used the tree-building methodology Classification and Regression Trees
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(CART) that is described by L. Breiman et al. [12]. We developed class proba-
bility tree models for the dichotomized outcomes; these tree models are classifi-
cation trees where the terminal nodes contain probabilities instead of outcome
classes. Based on the tree structure, it is easy to determine which subgroup
patients belong to and what the related outcome estimations are. Furthermore,
the tree structure supports the identification of high risk groups. Therefore,
these models are useful in clinical practice.

The precision is determined for all class probability tree models, in order to
select the threshold that defines the dichotomized outcome for which the model
has maximal precision. As described in the previous section, the precision of a
predictive model is determined by the difference between the estimated class-
conditional probabilities M(Yt = 1|x) and the true class-conditional probabil-
ities P (Yt = 1|x), and the MALOR statistic is a suitable measure to quantify
this difference. However, model precision can only be assessed when the true
probabilities are known, which is not the case in practice. For the purpose of
assessment of the precision the class probability tree models, we approximated
the true class-conditional probabilities by ensemble learning, using bootstrap
aggregation or bagging [13].

An ensemble learner is an aggregated predictor existing of a collection of pre-
dictive models. These models are developed based on bootstrap samples [14]
that are sampled from the data set with replacement. The prediction of the
ensemble is an average of the prediction that is delivered by the individual pre-
dictive models, thereby reducing its variance. We developed tree ensembles that
exist of a collection of class probability tree models. The tree method is known
to be an unstable method that tends to benefit substantially from this bagging
procedure; it leads to improvements in the model accuracy [13, 15]. Tree en-
sembles consist of an aggregation of models; the relation between predictors and
outcome is therefore complex and not transparent. Therefore, tree ensembles
are not very useful in clinical practice. The improvement of predictions that is
realized by the bagging procedure makes this method suitable to approximate
the true probabilities for assessing the precision of the class probability tree
models.

4.4 Data and application

We have selected the threshold for dichotomization of ICU LOS using a data
set from cardiac operations conducted at the Academic Medical Center, Ams-
terdam, in the years 1997–2002. The data set contains 144 data items including
patient characteristics such as age and gender, details of the surgical procedure,
such as surgery type, and indicators of the patient’s state during the first 24
hours at the ICU such as blood and urine values for 4453 patients. The time
point of prediction was defined at 24 hours ICU stay. Therefore, we excluded
all patients who left the ICU within one day. Furthermore, 27 patients were ex-
cluded because of the large amount of missing ICU data; the median ICU LOS
of these patients is 2.0 days (range 1.0-8.7), no patient died. We developed tree
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models for dichotomized outcomes of ICU LOS based on data of the remaining
2327 patients; the median ICU LOS of these patients is 2.2 days (1.0-153.8),
122 of these patients died at the ICU (5.2%).

We dichotomized ICU LOS using thresholds of two days up to and including
ten days; as mentioned in Section 4.2, threshold values within this range have
been used in the literature to predict the two-class problem of this outcome. We
allocated all 122 patients who died to the group of patients with an ICU LOS
above the threshold value, because the model was aimed at the prediction of
the risk of long LOS as proximity of the risk of complication. The patients who
die soon are probably more similar to patients who stay long at the ICU than
to quickly recovered patients. So, two outcome categories have been created:
short LOS, and long LOS or death. This would not be useful when prediction of
ICU LOS was intended to be used for case load planning en resource allocation.

For each LOS threshold value, we developed a class probability tree and a tree
ensemble, using the S-plus library Rpart [16], which is an implementation of
CART [12]. The optimal tree size was determined by minimizing the 10-fold
cross validation error; a quadratic loss function was used. To increase the sta-
bility of the class probability tree models, we performed feature selection be-
forehand based on the cross validated information gain with respect to the
dichotomized outcome in univariate tree models. For each threshold value, all
features with an information gain of more than 0.01 were selected for develop-
ment of the class probability tree. The tree ensembles were composed of 25 class
probability tree models. The feature selection procedure was not performed for
tree ensemble development.

We quantified the performance of the class probability trees and the tree en-
sembles by calculating the Brier score; we used 10-fold cross validation to avoid
an optimistic bias. In addition, we calculated the precision of the class proba-
bility trees using the MALOR statistic. The MALOR statistic was calculated
without cross validation, because it quantifies the difference between the esti-
mated class-conditional probabilities provided by the class probability tree and
the tree ensemble, without relating this to the observed outcome class. Finally,
the threshold value for which the computed MALOR statistic was minimal, was
selected to dichotomize the outcome variable ICU LOS, with the corresponding
class probability tree as predictive model to be used in clinical practice. We
used the paired t-test to investigate whether the minimal MALOR value differs
significantly from the MALOR values of the other threshold values.

4.5 Results

The results are summarized in Table 4.2. Each table row first lists the threshold
that is used for dichotomization. The second column shows the proportion of
cases with an ICU LOS higher than the threshold value, or death, within the
data set. The Brier scores of the tree ensemble and class probability tree are
shown in the third and fourth column, respectively. The final column shows the
MALOR statistic that quantifies the distance between the predictions of both
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Table 4.2 Evaluation of the tree ensembles (TE) and the class probability trees
(CPT) in terms of the Brier score, and the MALOR statistic for dichotomized
outcomes of ICU LOS.

threshold proportion
eventsa

Brier scoreb MALOR

TE CPT

2 days 0.541 0.420 0.448 0.504
3 days 0.386 0.365 0.404 0.495
4 days 0.294 0.316 0.342 0.369
5 days 0.249 0.285 0.306 0.409
6 days 0.209 0.254 0.295 0.401
7 days 0.185 0.236 0.260 0.364
8 days 0.165 0.213 0.244 0.508
9 days 0.155 0.203 0.235 0.476
10 days 0.142 0.194 0.221 0.451

a events: patients with ICU LOS higher than the threshold value, or death
b determined using 10-fold cross validation

model types.

The tree ensembles provide more accurate predictions than the class probability
trees at all threshold values, as appears from the Brier scores in the third and
fourth column. We note that the Brier scores cannot be compared for the differ-
ent prediction problems, as these scores become steadily lower as the prediction
problem becomes more unbalanced.

The minimum value of the MALOR statistic is found at a threshold of seven
days (seventh column). This value is not significantly different from the value of
the MALOR statistic at the threshold of four days (p-value of 0.556), in contrast
to the MALOR values of the other thresholds (all p-values < 0.0001).

Figure 4.4 shows the class probability tree for the outcome ICU LOS longer than
seven days or death. Each node is labeled with the number of corresponding
observations in the data set. Furthermore, each leaf node is additionally labeled
with the estimated probability of the outcome of the tree model and, between
brackets, the probability estimated by the tree ensemble. This latter probability
is the mean value of the tree ensemble estimations for all observations that be-
long to the leaf node. Nine variables have been selected as important predictors
for this outcome: type of cardiac surgery, perfusion time during the operation,
and seven variables measured during the first 24 hours ICU stay (maximal cre-
atinine value, fraction inspired oxygen, minimal bicarbonate value, maximal
sodium value, minimal potassium value, minimal albumine value, and minimal
systolic blood pressure). The tree model for the threshold of four days shows
similarities in selected predictors, but has a different tree structure.

The MALOR statistic for the entire class probability tree for the outcome ICU
LOS longer than seven days or death is 0.364 (as shown in Table 4.2). For the
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individual leaf nodes, the MALOR statistic ranges from 0.235 (for the leftmost
leaf) to 0.817 (for the leaf node defined by maximal creatinine > 114, minimal
potassium > 3.5, and minimal albumin ≤ 16). This difference in MALOR
values can be explained by the distributions of the tree ensemble estimates in
the leaf nodes. In the leftmost leaf node, the probabilities estimated by the
tree ensemble range 0.062 to 0.282 with a mean value of 0.086, while the class
probability tree estimate is 0.074, and thus small ALOR distances are measured
for many observations in this leaf node. In the leaf node with maximal MALOR
value, the estimated probability values of the tree ensemble range from 0.242
to 0.757 with a mean value of 0.502, while the class probability estimate is
0.688, and large ALOR distances are measured for relatively more observations.
Moreover, it should be noted that this leaf node consists of only 32 observations.

4.6 Discussion and conclusions

Prior to dichotomization, a duration of treatment or hospitalization variable
can be regarded as a time to event or survival variable. In the last decades,
several methods have been developed to build predictive models for this type
of outcome variable directly, by conducting a survival/failure time analysis [17].
The predominant model type in this area is the Cox proportional hazards model
[18], but also methods have been developed to perform tree-structured survival
analysis [19]. Furthermore, neural networks have increasingly been used to de-
velop predictive models for this type of outcome [20]. When the objective is to
predict the expected length of stay for individual patients, then these methods
are clearly preferred over dichotomization. When the objective is however to
find the optimal dichotomization threshold, as in our study, this is not neces-
sarily the case. As an alternative to our method, one could apply one of these
model-building procedures (e.g., Cox proportional hazards), and dichotomize
the predicted values afterwards. Whether this leads to similar, and equally
valuable, dichotomization thresholds is an interesting question for further re-
search.

In [21], a procedure is proposed to handle censored data when building predic-
tive models for dichotomized survival outcomes using standard machine learning
methods (e.g., tree models). Using Kaplan-Meier estimates, the probabilities of
both outcome classes are computed for all censored cases. These probabili-
ties are subsequently used to weigh the associated cases in model development.
Furthermore, in [22], an extension of the basic k-nearest neighbor technique is
proposed to handle censored data. Both approaches assume that these data are
censored noninformatively. In our study, the outcome ICU LOS was known for
all patients, but informatively censored for the patients who died at the ICU.
Generally, high severity of illness is related to a long ICU LOS, but this relation
does not exist for these patients. In fact, they are more similar to patients with
a complicated recovery process, than to quickly recovered patients. For that
reason, we allocated these patients to the outcome category long LOS, when
dichotomizing the outcome ICU LOS.
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We have optimized the predictive performance in terms of the precision of the
risk estimations, because predictive modeling of ICU LOS in this chapter is
aimed at estimating the risk of long LOS rather than classifying patients to one
of the outcome classes. Therefore, we did not use performance statistics that
quantify the classification error or discrimination of the model in the proposed
procedure, e.g., the area under the ROC curve (AUC) [23].
Moreover, as we have shown, several well-known measures to quantify model
performance are sensitive to differences in the outcome distribution (e.g., the
Brier score). These performance measures are often used in the literature on
evaluation of predictive models. For the purpose of model selection for a sin-
gle prediction problem, these performance measures are perfectly suitable. As a
result of their sensitivity to class unbalance, however, general performance stan-
dards cannot be based on these measures (‘a good Brier score’). This fact even
holds for the standardized mean squared error R2 and the AUC (or C statis-
tic), as described in [24]. In contrast to these measures, the underlying distance
measure of the MALOR statistic is insensitive to class unbalance. Its values are
thus comparable for different prediction problems. Therefore, this statistic is a
suitable performance measure for optimization of the outcome definition in the
process of predictive modeling.
A disadvantage of the MALOR statistic as performance measure is, however,
that in practice, the true class-conditional probability values are unknown. Oth-
erwise, there would be no need to build a model to estimate them. Good
performance is generally obtained for predictive models that are developed by
flexible and robust methods, such as ensemble learning [13, 25]. We developed
tree ensembles to approximate the true probability values in order to assess the
MALOR statistic of the class probability trees. Thereby, precision measurement
is changed into assessment of the distance between the estimated probabilities
of the class probability tree and the corresponding tree ensemble. Other power-
ful methods that could be used for this task are e.g., neural networks, support
vector machines, and spline regression.
This approach of performance assessment has the important limitation that
the MALOR statistic can only be used, when a more powerful model can be
developed than the model to be evaluated. We used the class probability tree
method for development of models to be used in clinical practice. Due to the tree
structure of a class probability tree, the modeled relationship between predictors
and outcome is comprehensible for clinicians. This factor is of importance for
the clinical reliability of predictive models [26]. For this purpose, we were willing
to give up some performance. Tree ensembles and powerful methods in general
have a black box nature, though. They are suitable when only the predictions
are important, and can therefore be used to approximate the true probability
values in order to assess the MALOR statistic for a simpler model.
An alternative approach to estimate model precision is grouping of the obser-
vations to make nonparametric estimations of the true probabilities, as e.g.,
implemented in the Hosmer Lemeshow goodness-of-fit statistic [27]. This statis-
tic is used in the modeling process of logistic regression to evaluate whether the
model has a correct functional form given the data, and not as a general mea-
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sure to quantify the precision of a predictive model. Furthermore, the method
of grouping is not trivial [28].
To conclude, the main contribution of this chapter is the introduction of a pro-
cedure that incorporates the selection of the dichotomization threshold into the
modeling process, by optimizing the outcome definition for predictive purposes.
The threshold value is viewed as one of the model parameters, and from the
range of possible threshold values, the threshold is chosen for which the cor-
responding model has maximal precision. Model precision is quantified by the
introduced MALOR statistic which is insensitive to class unbalance. The di-
rect result of applying this procedure is a predictive model that can be used in
clinical practice for the outcome defined using the optimal threshold.
Application of the proposed procedure for threshold selection to the predic-
tion problem of ICU LOS, the threshold value of seven days was selected to
dichotomize this outcome. This threshold value was chosen from a range of
thresholds that are used in the literature for this prediction problem and have
equal value from clinical point of view. As we found that the value of the
MALOR statistic for this threshold is not significantly different than for the
threshold of four days, the latter threshold value is also a good candidate to
dichotomize ICU LOS.

Appendix: MALOR statistic

The MALOR statistic quantifies the precision of a predictive model M . In this
appendix, the MALOR statistic and its properties are described in more detail.
Before considering the difference between the true class-conditional probabilities
and their model estimates over the entire feature space F , we first focus on the
difference between these probability values for a given feature vector x ∈ F .
Six requirements (r1-r6) for a measure are introduced to quantify this difference.
As in Section 4.3, we write Px for the probability value P (Yt = 1|x), and Mx

for its estimate M(Yt = 1|x). For all x ∈ F , both Mx and Px are assumed to
be unequal to 0 and 1. To quantify the difference between Px and Mx, we need
a distance measure d. General characteristics of distance measures are:

r1. positiveness d(Mx, Px) ≥ 0, and d(Mx, Px) = 0 iff Mx = Px.

r2. symmetry d(Mx, Px) = d(Px,Mx).

r3. triangle inequality d(Mx,M ′

x) + d(M ′

x, Px) ≥ d(Mx, Px)

Note that, although we focus on distances between two probability values (Mx

and Px), these characteristics are general for measures that quantify distances
between objects.
The above three properties hold for many functions, including the absolute dif-
ference (in this context usually called absolute error), defined by dae(Mx, Px) =
|Mx − Px)|, the squared difference (squared error), defined by dse(Mx, Px) =
(Mx − Px)2, and the closely related Euclidean distance. The Kullback-Leibler
distance, also known as relative entropy, is not symmetric and therefore not a
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distance measure, though. The zero-one distance measure, that quantifies a dif-
ference as 0 if and only if Mx = Px, and 1 otherwise, also satisfies the properties
of a distance measure. To disqualify such trivial distance measures, we require
the following additional property:

r4. strict monotonicity if Mx < M ′

x ≤ Px or Mx > M ′

x ≥ Px, then
d(Mx, Px) > d(M ′

x, Px).

That is, if we have a second estimate M ′

x that is undisputedly better than the
original estimate Mx because it is strictly closer to the true probability value,
then this must be reflected by the distance measure.
A further requirement is that the distance between the true class-conditional
probability P (Yt = 1|x) and the estimated probability M(Yt = 1|x) should be
the same as the distance between P (Yt = 0|x) and M(Yt = 0|x). In other
words, in a binary prediction problem we can choose an arbitrary outcome class
to make predictions for. This translates into the following property:

r5. complement equivalence d(Mx, Px) = d(1 − Mx, 1 − Px).

The absolute and squared errors both satisfy strict monotonicity and comple-
ment equivalence. However, there is an important drawback to these measures
when they are used in the context of the precision of estimated probabilities:
the absolute and squared errors do not take into account where the difference
between probabilities is located on the [0,1]-interval. That is, they solely con-
sider the absolute difference between Px and Mx, without taking their relative
difference into account. However, few people would judge the distances be-
tween, for instance, Px = 0.50 and Mx = 0.55 and Px′ = 0.01 and Mx′ = 0.06
to be the same. In the first case, the estimate and the true probability seem to
be close, as they are within the same order of magnitude, while in the second
case the estimate is six times too high. So, it seems reasonable to take not just
absolute differences, but also relative differences between probabilities and their
estimates into account, at least near the extremities of the [0,1]-interval.
One option would be to require the distance measure to satisfy proportional
equivalence, defined as

d(Mx, Px) = d(Mx/k, Px/k), for k > 1. (4.3)

This property implies that the prediction of two problems is equally valued if
the difference between both true class-conditional functions and both estimated
class-conditional functions is equal to factor k.
However, the property of proportional equivalence, is not consistent with the
other requirements on the measure. (Proof: d( 1

4 , 1
2 ) = d( 3

4 , 1
2 ) = d( 1

2 , 3
4 ) =

d( 1
3 , 1

2 ), using complement equivalence, symmetry and proportional equiva-
lence (k = 1.5), respectively. But, according to strict monotonicity, d( 1

4 , 1
2 ) >

d( 1
3 , 1

2 ).)
This inconsistency is not surprising, since intuitively the property of propor-
tional equivalence is only reasonable for small probabilities. For example, it
is reasonable to say that the difference between the probabilities 0.15 and 0.1
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is about the same as the difference between probabilities 0.015 and 0.01, but
intuitively the difference between 0.75 and 0.5 is much larger than the difference
between 0.15 and 0.1.
For that reason, a weaker property is used, called approximate proportional
equivalence:

r6. approximate proportional equivalence Assume that Mx 6= Px. For all Mx

and Px there exists a constant ε > 0 such that for all k > 1, it holds that
d(Mx,Px)

d(Mx/k,Px/k) < 1+ε, and for (very) small Mx and Px this ε can be chosen

to be (very) small.

This property implies that for (very) small probabilities Mx and Px, the distance
d(Mx, Px) is (very) close to d(Mx/k, Px/k), for k > 1. Since for many distance
measures, including absolute error and related measures, both distances tend to
get close to 0 for small probabilities, it is no surprise that the absolute difference
of the distances is small. However, the property requires their proportion to be
close to 1.
We therefore propose the following measure to quantify the distance between
the true probability Px and estimated probability Mx.

Definition 1: Let 0 < Mx < 1 and 0 < Px < 1. Define dALOR(Mx, Px) =

| ln
(OM (x)

OP (x)

)

|, where OM (x) = Mx

1−Mx

and OP (x) = Px

1−Px

.

Distance measure dALOR is the Absolute value of the Log-Odds Ratio of two
probabilities. It can be viewed as taking the absolute difference of prob-
abilities after they are transformed to a log-odds scale: dALOR(Mx, Px) =
| ln(OM (x)) − ln(OP (x))|. This distance measure satisfies the properties pos-
itiveness and symmetry, and obeys the triangle inequality. Furthermore, it
can be shown that dALOR additionally satisfies strict monotonicity, complement
equivalence, and approximate proportional equivalence.
So far, we have established a measure for quantifying the precision of individual
probabilities that satisfies requirements r1-r6. Now, we return to the problem
of quantifying the precision of a predictive model M over the entire feature
space F . Let D(M,P ) denote such a measure. (We use a capital D instead of
d to emphasize that we are no longer considering distances between individual
probabilities, but between functions M and P assigning probabilities Mx and
Px to every element x of the feature space F .)
To compare the probabilities associated with a given feature vector x ∈ F , the
measure D should somehow aggregate the individual distances dALOR(Mx, Px).
We propose the following aggregation to quantify the difference between the
estimated model M and the true model P .

Definition 2:

DMALOR(M,P ) =

∫

x∈F

dALOR(Mx, Px)p(x) dx
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This statistic is called MALOR as it is the Mean value of the Absolute Log-
Odds Ratio for all elements x ∈ F . It can be shown that the MALOR statistic
satisfies the generalizations of requirements r1-r6.
The generalized requirements do not uniquely characterize the MALOR statis-
tic, as trivial alternatives (e.g., linear or logarithmic transformations) thereof
do also satisfy these requirements. The fact that the MALOR statistic has an
intuitively appealing interpretation as the mean of the absolute difference of
probabilities after they are transformed to a log-odds scale made us decide to
use the MALOR statistic to quantify the precision of predictive models.
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Abstract

Objectives To compare two temporal abstraction procedures for the extraction
of meta features from monitoring data. Feature extraction prior to predictive
modeling is a common strategy in prediction from temporal data. A funda-
mental dilemma in this strategy, however, is the extent to which the extraction
should be guided by domain knowledge, and to which extent it should be guided
by the available data. The two temporal abstraction procedures compared in
this case study differ in this respect.
Methods and Material The first temporal abstraction procedure derives symbolic
descriptions from the data that are predefined using existing concepts from the
medical language. In the second procedure, a large space of numerical meta
features is searched through to discover relevant features from the data. These
procedures were applied to a prediction problem from intensive care monitoring
data. The predictive value of the resulting meta features were compared, and
based on each type of features, a class probability tree model was developed.
Results The numerical meta features extracted by the second procedure were
found to be more informative than the symbolic meta features of the first pro-
cedure in the case study, and a superior predictive performance was observed
for the associated tree model.
Conclusion The findings indicate that for prediction from monitoring data, in-
duction of numerical meta features from data is preferable to extraction of
symbolic meta features using existing clinical concepts.

5.1 Introduction

The reliable prediction of outcomes from disease and disease treatment is becom-
ing increasingly important in the delivery and organization of health care. The
standard methodology for obtaining objective outcome predictions is to build
a predictive model from a given set of observed patient data and outcomes,
and apply that model to data from new patients [1]. In modern patient care,
however, more and more temporal observations on a patient’s status are being
recorded. These temporal data form a new challenge for outcome prediction.

In the literature, prediction from temporal data is known as temporal classifi-
cation. A common strategy in temporal classification is extraction of high-level
features (often called meta features) to build a predictive model using super-
vised machine learning methods [2]. The extraction of high-level features from
temporal data is also known as temporal abstraction [3]. Temporal abstraction
is an important step in the intelligent analysis of clinical data [4].

In this study, we perform temporal abstraction of time series data prior to
prognostic modeling, and aim at deriving meta features that are easy to interpret
and meaningful in clinical practice. In practice, it is generally not known which
meta features are relevant for prognostic purposes, and the data form a valuable
source to induce them from. This induction of meta features, however, involves
the fundamental question to what extent the extraction of relevant meta features
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Figure 5.1 The central venous pressure (upper curve) and the level of positive
end-expiratory pressure (lower curve) of a cardiac surgical patient during the
first 24 hours ICU stay. The level of positive end-expiratory pressure was set
by the clinician, initially at the value of 10, and lowered after six and eleven
hours. Dotted vertical lines indicate the prediction time (12h), the time of
detubation (13h 39min) and outcome assessment time (24h). Because the time
of detubation was smaller than outcome assessment time, this case is a non-event
in the study.

should be guided by existing knowledge on relevant meta features, and to what
extend the data should guide this process.

The purpose of this study is to compare two temporal abstraction procedures
that differ in this respect. The first procedure derives meta features that are
predefined using existing concepts from the clinician’s language and form sym-
bolic descriptions of the data. The second procedure derives a large set of
numeric meta features from the data, and searches among these features for
meta features with high predictive value. We apply these procedures for feature
extraction in a case study, and we systematically compare the results.

The procedures are applied to monitoring data from the intensive care unit
(ICU) for a problem of estimating the risk of prolonged mechanical ventilation
(PMV) after cardiac surgery. The outcome PMV is here defined as ‘mechanical
ventilation longer than 24 hours’, and series of high-frequent measurements of
physiological and laboratory variables during the first 12 hours of ICU stay are
used for prediction. The prognostic problem of this case study is illustrated in
Figure 5.1.

The chapter is organized as follows. Section 5.2 briefly reviews the areas of
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temporal classification and temporal abstraction, and further motivates this
comparative study. Section 5.3 subsequently describes the ICU data that are
used. The temporal abstraction procedures for feature extraction and their
application to the monitoring data are described in Section 5.4. Section 5.5
describes the results of building class probability trees from the resulting meta
features. We conclude the chapter with a discussion and conclusions.

5.2 Background and motivation

With the large amounts of temporal data that are currently recorded in many
domains, the analysis of these data has become of particular interest to the field
of machine learning. Temporal classification and temporal abstraction are two
areas that are concerned with temporal data mining. In this section, we briefly
describe these areas, and further motivate this comparative study on temporal
abstraction procedures for outcome prediction.

Temporal data mining is a broad field in which temporal data are analyzed for
different purposes [5, 6]. First, it includes modeling of time series in order to
predict their future behavior; weather forecasting is one of the most frequently
studied applications of this type of temporal data analysis. Furthermore, tem-
poral data analysis includes clustering of temporal patterns based on their simi-
larity to identify frequent patterns in the data [7]. This analysis is, for instance,
frequently applied to DNA microarray data. Temporal classification is a third
type of temporal data mining; this is also termed as time series classification or
temporal pattern classification in the literature. In temporal classification, time
series belong to one of a number of predefined classes, and the task is to predict
this class or the conditional probability distribution over the classes given the
time series; classification of electrocardiograms (ECGs) is a medical example
hereof.

In this study, we focus on temporal classification. Because temporal classifica-
tion is a supervised learning problem, one may be tempted to apply standard
supervised learning methods (e.g., logistic regression analysis or tree induction),
considering subsequent measurement within a time series simply as different fea-
tures of the problem. This approach, however, is problematic for both practical
and theoretical reasons. The practical impediment is the fact that time series
of different cases may consist of measurements at different time points, with a
different measurement frequency, and over different time spans. The data are
therefore not suitable to be placed in the tabular format that is required by
standard supervised learning methods.

On the theoretical side, there are three concerns that hinder the effectiveness
of standard methods in temporal classification. The first reason is the high di-
mensionality of the problem space which, especially in the case of multivariate
time series, yields a risk of overfitting the data. The second reason relates to
the fact that subsequent measurements within a time series are often highly
correlated. Standard supervised learning methods however do not perform well
when features are correlated, and require transformation or selection of features
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beforehand in that case [8, 9]. Moreover, correlations in time series data mirror
their temporal structure and thus contain important information on the prob-
lem [10]. Neglecting these correlations therefore leads to suboptimal solutions.
Finally, many supervised learning methods are based on Euclidean distance met-
rics in feature space. These metrics, however, may consider two similar time
series to be very dissimilar, if one time series is slightly shifted along the the
horizontal (time) or vertical (value) axis [11].
For these reasons, dedicated strategies have been developed for temporal clas-
sification tasks. One example is classification of temporal patterns based on
their similarity using nearest neighbor classification [12] combined with dynamic
time warping to assess similarity between the time series [13]. Artificial neural
networks have also been used for this purpose [14]. Another strategy is to sum-
marize the temporal data by extracting meta features of the time series to build
a predictive model using a supervised machine learning method [2, 15]. The
underlying idea of this strategy is that features that describe the behavior of
a time series over time (e.g., increasing blood pressure) are more informative
than individual measurements. In feature extraction, the raw time series are
translated into a standard format; the meta features form suitable input for
supervised learning methods. This strategy of temporal classification is subject
of investigation in this study.
A possible approach to obtain meta features from time series data is calculation
of a set of simple summary statistics (e.g., mean value and variance), possibly
for particular intervals of the series [16, 17]. Also methods from signal process-
ing such as wavelet analysis have been used for this purpose [15]. The number of
possible meta features that can be derived from given time series data is theoret-
ically extremely large. In practice, it is not exactly known which meta features
are relevant for the prediction problem, and the data can be used to induce
these features from. A fundamental property of inductive learning is that some
form of inductive bias is required [18]. Induction of relevant meta features from
data therefore involves the dilemma to what extent feature extraction should
be guided by knowledge and conceptions of relevant meta features, and to what
extent the data should be used to guide the process of extracting them. This
highly determines the size of the hypothesis space of meta features. Predefini-
tion of the meta features restricts the hypothesis space, and induces a bias. The
hypothesis space is larger when a more important role in feature extraction is
reserved to the data; this approach involves a higher variance, though. There
exists a wide range of possibilities between both extremes, and the optimum for
temporal classification is unknown.
Within the scope of clinically interpretable features, the feature extraction ap-
proach of calculating a set of simple summary statistics and selecting the relevant
(i.e., predictive) statistics from the data involves a search through a relatively
large space of features. This chapter presents a comparison of this feature ex-
traction procedure to a procedure in which predefined symbolic descriptions are
extracted from the temporal data. This type of extraction is known as temporal
abstraction in the field of (medical) artificial intelligence [3].
Temporal abstraction (TA) is the process of transforming low-level numeric
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data to high-level descriptions. It has become an integral component within
the intelligent analysis of clinical data to support the tasks of diagnosis, patient
monitoring, and therapy planning [4]. Methods for temporal abstraction focus
on the extraction of qualitative aspects of time series based on rules that are
defined by clinical experts [19–23]. Abstractions of the state (e.g., low, normal,
high) and the trend (e.g., increasing, steady, decreasing) of the time series are
examples hereof. In clinical practice, temporal abstraction is a common way to
define the occurrence of diseases. Examples hereof are hyper- and hypoglycemia,
which are state abstractions of glucose measurements (respectively, high and low
glucose values).

We apply a qualitative TA procedure in this case study in which the concepts
of ‘state’ and ‘trend’ are used for abstraction of the temporal data, and we
compare the resulting meta features to those that were derived from the data
by searching in a large space of numerical meta features. This latter procedure
is further termed as the ‘quantitative’ TA procedure.

5.3 Data and data preprocessing

In this study, temporal data were used from patients who underwent car-
diac surgery at the Academic Medical Center in Amsterdam, the Netherlands.
These data are repeatedly measured physiological and laboratory variables from
the ICU. The following variables are high frequency variables (measured each
minute): mean arterial blood pressure (ABPm), central venous pressure (CVP),
heart rate (HR), body temperature (TMP), fraction inspired oxygen (FiO2) and
level of positive end-expiratory pressure (PEEP). The latter two variables are
parameters of the ventilator. They are set and regularly adjusted by the clini-
cian at the lowest possible value, and as such they reflect the lung functioning
of the patient. The variables base excess (BE), creatinine kinase MB (CKMB),
glucose value (GLUC), and cardiac output (CO) are low frequency variables
(measured several times a day). Finally, the data set contains the duration of
mechanical ventilation. The dichotomous outcome PMV was defined as 1 when
the duration of ventilation was longer than 24h, otherwise as 0.

The data set contains data of 924 patients that were operated in the period
of April 2002-May 2004. As we used data of the first 12 hours for estimation
of PMV, we excluded all 260 patients that were extubated within this period.
29.5% of the remaining 664 patients were mechanically ventilated longer than
24 hours (median duration of ventilation: 17h 31min); no patients died within
24 hours.

Because the temporal data was automatically registered by the ICU information
system, part of it may be unreliable. Therefore, we excluded all theoretically
impossible values for the temporal variables, based on domains defined by a
senior ICU physician (EdJ). Table 5.1 shows these domains. Furthermore, we
smoothed the high frequency variables using a moving average technique with
a window size of five measurements to reduce the effect of additional artifacts
in the time series.
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Table 5.1 Domains of the temporal variables, as defined by the clinical expert.

Variable (unit) Domains Variable (unit) Domains

ABPm (mmHg) 25–200 TMP (oC) 31–42
CVP (mmHg) 0–45 CO (l/min) 0.5–25
FiO2 (%) 21–100 BE (mmol/l) -25–15
HR (beats/min) 0–300 CKMB (µg/l) 0–500
PEEP (cmH2O) 0–20 GLUC (mmol/l) 0–50

We transformed the variable cardiac output to the variable cardiac index (CI)
based on each patient’s body length and weight. The cardiac index is defined
as the cardiac output per minute per squared meter body surface.

5.4 Feature extraction

This section describes both TA procedures, their application to the ICU mon-
itoring data, and an evaluation of the predictive value of each meta feature in
the set of features resulting from each procedure. We quantified the predictive
value of each meta feature in terms of the information gain with respect to the
PMV outcome; to obtain an unbiased estimate of the predictive value, the fea-
tures were evaluated in a 10-fold cross validation procedure. Both sets of meta
features were subsequently used for model development for this outcome, which
is described in Section 5.5.

5.4.1 Qualitative TA procedure

In the qualitative TA procedure, a high-level description in terms of state cat-
egories and trend categories was derived for each time series over various time
intervals. The state and trend categories were subsequently combined in a sin-
gle category label. This section describes the procedures for state and trend
abstraction, and concludes with presenting the derived meta features.

State abstractions

In the procedure for state abstraction, the six high frequency variables were
divided in four three-hour periods (0-3h, 3-6h, 6-9h, 9-12h after admission),
while the four low frequency variables were divided in two six-hour periods. For
each period, a period state label of the pattern was obtained using the following
steps.

In the first step of the procedure, each measurement in the period was replaced
by one of the state labels ‘low’, ‘normal’, or ‘high’. These state categories were
defined by two threshold values. So, for example, the sequence of the glucose
variable containing the values 2, 2, 8, 9, 9, 11, 12 was replaced by the sequence
low, low, normal, normal, normal, high, high, when using the threshold values
of 3 and 10. Subsequently, the proportion of different state labels in the period
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was analyzed to find the dominant label. This label was then assigned to the
pattern as period state label. If no dominant label was found, the period state
label ‘varying’ was assigned to the pattern. According to this strategy, the
period state label normal was assigned to the example glucose pattern. The
majority period state label in the period, over all patients, was imputed when
no values were recorded for a patient.

Selection of the dominant label based on the proportion of different category
label can be misleading when two or more categories are represented in almost
the same frequencies. For this reason, we tested whether one category label
was significantly more present in the pattern than the other category labels; we
used Pearson’s χ2-test for this purpose with p-value<0.05. This test was only
performed for the high frequency variables, because only few measurements were
available for the low frequency variables in the six-hour periods.

In this procedure for state abstraction, two threshold values are needed that
define the state categories low, normal, and high, and clinical knowledge of these
thresholds with respect to prediction of the outcome is often hardly available.
Therefore, instead of asking the clinical experts to define the state categories for
the variables involved, we induced the threshold values from the data in a 10-
fold cross validation procedure. For each period, we applied the above procedure
for four different pairs of percentile values of the distribution of median values
among the patients (i.e., the 0.10 and 0.90, the 0.15 and 0.85, the 0.20 and
0.80, and the 0.25 and 0.75 percentile values). We used these predefined sets of
threshold values to avoid overfitting; we assumed that the reasonable thresholds
were covered by these threshold values. Subsequently, we calculated the cross
validated information gain (∆I) with respect to the outcome PMV in univariate
tree models for the four resulting state abstraction features, and selected the
pair of percentile values for which a maximal information gain was found.

Using the above procedure, we derived for each patient four period state labels
for each of the six high frequency variables (one label for each three-hour period),
and two period state labels for each of the four low frequency variable (one label
for each six-hour period), resulting in 32 state abstractions.

Trend abstractions

In the trend abstraction procedure, the high frequency variables ABPm, CVP,
HR, and TMP were divided into four three-hour periods (0-3h, 3-6h, 6-9h, 9-
12h). Furthermore, these time series were further smoothed using a moving
average technique with a window size of 200 measurements in order to make the
procedure less sensitive to trend variations induced by noise. The low frequency
variables and the high frequency variables FiO2 and PEEP were regarded over
the twelve-hour period. The reason for handling these latter variables differently
from the other high frequency variables is that they are periodically fixed by the
treating clinician, and then stable for hours. For each time period, the following
steps were used to obtain a trend category label.

In the first step of the procedure, trend detection was performed on separate
periods relying on a piecewise linear segmentation of the time series which was
carried out through a sliding window algorithm [24]. In this algorithm, a trend
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label reflecting the information on the slope is used to label each segment of
the approximating curve. In particular, if the slope of the segment is positive
and greater than a given threshold, the label ‘increasing’ is assigned to each
measurement in the segment; the measurements are labeled as ‘decreasing’ if
the slope of the segment is negative and its absolute value is greater than the
threshold, and ‘steady’ otherwise.

Pearson’s χ2 test was again used to find the dominant trend label (p-value
<0.05) over each period. If no dominant label was found, the period trend label
‘varying’ was assigned to the pattern. For the low frequency variables and the
variables FiO2 and PEEP, the window size was fixed on twelve hours, whereby
trend detection reduced to performing a single linear regression over the entire
twelve-hour period, and a single period trend label was assigned to the time
series. When no measurements were recorded, the majority period trend label
in the period, over all patients, was imputed.

Using this procedure, we obtained for each patient four period trend labels
for the variables ABPm, CVP, HR, and TMP (one label for each three-hour
period), and one period trend label for the entire twelve-hour period for the
four low frequency variables and the variables FiO2 and PEEP, resulting in 22
trend abstractions.

Combining state and trend abstractions

Using the above procedures, we obtained 32 features with state abstractions and
22 features with trend abstractions for all patients. As such, a large reduction
of the raw ICU monitoring data was achieved. Furthermore, the data of each
patient were expressed in the same format. At this point, we could have consid-
ered these 54 features as separate, potentially useful features for our prediction
problem, and proceed with a model building phase. However, we performed
a final step of exploiting the temporal properties of these features to derive a
smaller set of more powerful features.

From one point of view, not all temporality has been removed from the result-
ing data, as most features concern a specific three-hour part of the twelve-hour
patterns. A possible approach to exploit this fact is by combining the state or
trend features of subsequent intervals. The resulting features would then have
categories that consist of sequences of four labels from the current representa-
tion. This approach was not pursued here. From another point of view, the set
of features consists of pairs of features that describe two different aspects (state
and trend) of the same time series. We exploited this property of the features
in this study.

When simply combining the state and trend abstractions of a corresponding
interval, the number of possible combinations is the Cartesian product of the
sets of category labels of both procedures, resulting in sixteen possible period
state-trend labels. This high number of labels may easily lead to overfitting the
data, besides that not all of them are observed in the data. In order to obtain a
limited number of labels, we combined the period state labels and period trend
labels as far as it appeared from the data that it is informative with respect to
the outcome. That is, we built a bivariate tree model for the outcome PMV
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Figure 5.2 The bivariate tree of the period state and trend features of ABPm
(9-12h) for the outcome PMV. Each leaf node is labeled with the estimated
probability of the outcome, and between brackets the number of corresponding
observations in the data set.

based on both features, and derived the period state-trend category labels from
the resulting tree structure.

This final step of this TA procedure is illustrated in Figure 5.2, which shows
a bivariate tree model for the variable ABPm (9-12h). This tree model distin-
guishes five risk groups, defined by the branches of the tree, and indicates that
combining the trend and state label is only informative if the state category la-
bel is high or normal (left side of the tree). The following category labels for the
period state-trend feature can be derived from this model: 1) state high/normal
and trend steady/varying, 2) state high/normal and trend decreasing, 3) state
high/normal and trend increasing, 4) state varying, and 5) state low.

So, the period state label and period trend label for each three-hour period of
the variables ABPm, CVP, HR, and TMP were combined in bivariate models
to obtain the period state-trend features, as well as the period state label of
each three-hour period of the variables FiO2 and PEEP with the period trend
label of the twelve-hour period of these variables. Similarly, we combined the
period state label of each six-hour period of the variables BE, CI, CKMB, GLUC
with the period trend label of the twelve-hour period of these variables. This
resulted in 32 period state-trend meta features. These features were used for
model development, which is described in Section 5.5.

Table 5.2 lists for each period state-trend meta feature the threshold values
that define the state categories low-normal-high, and the information gain (∆I)
with respect to the outcome PMV. The information gains were calculated for
the bivariate tree models in a 10-fold cross validation procedure. In addition
to symbolic descriptions of the temporal data, this TA procedure provides de-
finitions of high and low values of the variables from the data that apply to
prediction of the outcome. The threshold values show that for some variables
these definitions change during the twelve-hour period (e.g., PEEP and TMP),
while for other variables (e.g., ABPm and HR), the threshold values remain the
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Table 5.2 The period state-trend meta features derived in the qualitative TA
procedure: the threshold values that define the state categories, and the cross
validated information gain (∆I) with respect to the PMV outcome in the bi-
variate tree models.

Var Period State

threshold

values

∆I Var Period State

threshold

values

∆I

ABPm 0-3h 68.60, 84.82 0.010 PEEP 0-3h 10, 11 0.044

3-6h 67.00, 86.15 0.009 3-6h 6, 10 0.054

6-9h 69.60, 82.60 0.019 6-9h 5, 9 0.052

9-12h 69.00, 85.30 0.019 9-12h 5, 8 0.048

CVP 0-3h 10.00, 18.00 0.018 TMP 0-3h 35.41, 36.66 0.006

3-6h 10.80, 17.60 0.019 3-6h 36.20, 37.26 0.012

6-9h 10.40, 16.80 0.038 6-9h 36.56, 37.50 0.004

9-12h 10.60, 15.80 0.037 9-12h 36.70, 37.55 0.014

FiO2 0-3h 40, 51 0.041 BE 0-6h -4.72, -0.03 0.009

3-6h 40, 47.15 0.055 6-12h -5.59, 0.60 0.012

6-9h 40, 47.32 0.054 CI 0-6h 1.98, 3.24 0.015

9-12h 40, 45 0.088 6-12h 2.02, 3.31 0.015

HR 0-3h 70.80, 88.20 0.013 CKMB 0-6h 12.40, 68.30 0.006

3-6h 69.80, 90.96 0.011 6-12h 16.45, 45.90 0.002

6-9h 67.80, 89.40 0.002 GLUC 0-6h 6.10, 11.12 0.012

9-12h 69.20, 86.00 0.001 6-12h 6.40, 11.20 0.015

same over the entire period. So, by optimizing the thresholds for prognostic
purposes, we have obtained definitions of ‘normality’ and ‘abnormality’ for each
of the variables involved. Some of these definitions appear to be independent of
time, whereas other change as time since ICU admission progresses.

5.4.2 Quantitative TA procedure

In the qualitative TA procedure, a small set of symbolic descriptions of the
time series is derived. The second procedure that was used in this study is a
quantitative TA procedure. In brief, this procedure computes a large number of
simple numeric abstractions (mostly statistical summaries) of each time series
over various time intervals. From the huge number of meta features that are
thus obtained, we selected those that predicted well. The procedure is described
in this section.

For the six high frequency variables, ten distinct summaries were calculated
for the twelve-hour period (0-12h) and for three-hour intervals (0-3h, 3-6h, 6-
9h, 9-12h) after admission. We calculated the mean value, median value, soft
minimum (0.05 percentile value), soft maximum (0.95 percentile value), soft
empirical range (difference between soft minimum and maximum), first value,
last value, change (difference between first and last value), the variance around
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Table 5.3 Selected meta features in the quantitative temporal abstraction pro-
cedure. The selection was based on the cross validated information gain (∆I)
with respect to the PMV outcome in univariate tree models

Var Summary ∆I Var Summary ∆I

ABPm soft min. value 0-12h 0.027 HR variance 6-9h 0.008

soft min. value 3-6h 0.029 PEEP mean value 0-12h 0.065

soft min. value 6-9h 0.027 soft min. value 3-6h 0.075

CVP mean value 0-12h 0.057 median value 9-12h 0.040

mean value 3-6h 0.052 TMP last value 0-12h 0.020

median value 9-12h 0.030 mean value 3-6h 0.012

FiO2 mean value 0-12h 0.062 median value 9-12h 0.018

mean value 3-6h 0.054 BE soft em. range 0-12h 0.023

first value 9-12h 0.038 CI soft min. value 0-12h 0.027

HR variance 0-12h 0.021 CKMB soft em. range 0-12h 0.008

median value 0-3h 0.015 GLUC soft max. value 0-12h 0.016

the mean, and the slope coefficient of a linear model fitted to the data. These
summaries, except the variance around the mean, were calculated for the twelve-
hour period (0-12h) of the four low frequency variables, as these time series
consisted of a low number of measurements.

This quantitative TA procedure provided 306 different meta features for each
patient: ten summaries for one twelve hour period and four three hour periods
for the six high frequency variables (50 minus 5 duplicates (e.g., first value 0-
3h is equal to first value 0-12h) times 6 is 270 features) and nine summary
measures for the twelve hour period for the four low frequency variables (36
features). This number of features complicates normal application of model
development techniques, because it is high compared to the number of patients
in the data set (n=664); it may lead to overfitting the data and an instable
model fitting process. Therefore, first, we discretized all summary variables in
five categories using the quintile values of the distribution over patients; missing
values in calculated summaries were imputed with the median value of that
summary. And second, we performed feature subset selection. The selection
was based on the 10-fold cross validated information gain (∆I) with respect to
the PMV outcome in univariate class probability tree models. For each variable,
we selected the best meta feature for the twelve-hour period (0-12h) based on
this criterion; for the high frequency variables, we also selected the best meta
feature for the first two three-hour periods (0-3h, 3-6h), and the best meta
feature for the last two three-hour periods (6-9h, 9-12h). The results are shown
in Table 5.3. These 22 meta features were used for model development, which
is described in the next section.
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5.5 Model development

In this study, the method of class probability trees from the tree building method-
ology classification and regression trees (CART) of L. Breiman et al. [25] was
used as supervised learning algorithm for model development. Compared to
classification trees, class probability trees estimate the (conditional) probability
distribution on the outcome classes for a given case, instead of predicting the
most probable outcome class. So, the terminal nodes of a class probability tree
contain probability distributions. We used the S-plus library Rpart [26] for tree
development, which is an implementation of CART. The Gini index was used
as splitting criterion; the optimal tree size was determined by minimizing the
10-fold cross validation error; a quadratic loss function was used.
We developed two different multivariate tree models: a model that is based on
the qualitative meta features of the temporal ICU data, and a model that is
based on selected quantitative meta features of these data. Figure 5.4.2 shows
both models. The level of PEEP in the period of 9-12h appeared as most
important predictor in both tree models. The importance of this ventilator
variable for PMV prediction is not surprising: PEEP is generally set at a level
of 10 at the start of mechanical ventilation, and a decrease to a level of 5 is
necessary for extubation. As such, a slow decrease in PEEP level in the first
12h resulting in a relatively high PEEP level in the 9-12h period involves a risk
of PMV. However, the tree models show that more than 30% of patients with a
high PEEP level in the 9-12h interval were extubated within 24h and that 20%
of the patients with a low PEEP level in this interval were ventilated for more
than 24h. This finding clearly indicates that knowledge on the PEEP level at
12h is not sufficient for accurate classification of patients with respect to the
PMV outcome.
This misclassification can also be due to the definition of PMV that we used
in this study (‘mechanical ventilation longer than 24 hours’). We found that
the majority of the 42 non-PMV patients with a high PEEP value according to
both models were extubated relatively short before 24h; their median ventilation
time was 18h 43min (interquartile range: 17h 4min - 19h 45min) compared to
a median ventilation time of 15h 41min for the 426 non-PMV patients who
were not assigned to the highest risk group by both models (interquartile 13h
45min - 18h 12min). These statistics shows the non-PMV patients with a high
PEEP value at prediction time actually have a longer ventilation time than
those patients with a low PEEP value.
In the quantitative tree model, meta features of CVP and TMP data for the
entire 12h period are additionally used to distinguish different risk groups. In the
qualitative tree model, meta features of FiO2 and CVP data of the 9-12h period
and CI data of the first six hours of ICU admission are used for this purpose.
We note that in the latter tree model the risk groups were distinguished by
using only information on the state of the temporal data; the information on
the trend turned out to have no additional predictive value in the multivariate
tree model.
When analyzing the threshold values used for the meta features in the tree
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Table 5.4 Confusion matrix of the tree models built from the qualitative and
quantitative meta features, where the Roman numerals refer to the leaf nodes
of the tree models (Figure 5.4.2). For each pair of leaf nodes, the number of
corresponding patients in the data set, and between brackets the proportion of
patients with PMV within this group are shown.

Quantitative tree
Qualitative tree I II III IV

I 291 (0.08) 39 (0.13) 44 (0.34) 3 (0.33)
II 8 (0.38) 15 (0) 32 (0.47) 1 (0)
III 22 (0.27) 8 (0.25) 18 (0.56) 2 (1)
IV 24 (0.38) 8 (0.75) 13 (0.62) 8 (0.88)
V 1 (1) 1 (0) 3 (0.33) 123 (0.66)

models, we found that the CVP threshold of 14.7 in the quantitative tree model
was a local threshold (i.e., within context of low PEEP patients); in the entire
patient population, a CVP threshold of 13.0 would be chosen. In the qualitative
tree model, however, only global thresholds were used. With using a local
threshold for CVP, a low risk group of PMV was defined by only two meta
features in the quantitative tree model (leaf node I), while four meta features
were used to define a similar low risk group in the qualitative tree model. This
finding illustrates the higher flexibility of the quantitative meta features for
outcome prediction.

Table 5.4 shows a confusion matrix of both tree models for the patients in
the data set. It appears from this matrix that although risk group I in both
tree models seem quite similar in terms of predicted probability of PMV (0.12),
these risk groups were partly composed of different patients. Of the 346 patients
that were assigned to risk group I by the quantitative tree model, more than
45 patients were assigned to higher risk groups by the qualitative tree model;
the probability of PMV among these patients actually seems higher than 0.12.
From the opposite, more than 80 patients who were in the low risk group of the
qualitative tree model were assigned to higher risk groups by the quantitative
tree model. However, the observed probability of PMV among the 39 patients
(0.13) assigned to risk group II (predicted probability of 0.18) is more similar
to the predicted probability of 0.12 assigned to these patients by the qualitative
tree model.

To obtain an unbiased estimate of the performance of the developed tree models,
a 3-fold cross validation procedure was employed. In each fold, the entire process
of temporal abstraction and model fitting was repeated on the training set (2/3),
and the resulting model was evaluated on the test set (1/3). We calculated
the classification accuracy, the sensitivity and specificity (using for each the
threshold value of 0.5), the area under the ROC curve (AUC) [27], and the
Brier score [28] to assess the model performance. Table 5.5 shows the results,
with the performance of the null model as reference.
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Table 5.5 The mean performance of the tree models calculated in a 3-fold cross
validation procedure, with the null model as reference.

TA Classification
accuracy (sd)

Sensitivity
(sd)

Specificity
(sd)

Area under
the ROC
curve (sd)

Brier score
(sd)

Null 0.705 (0.009) - 1 0.5 0.416 (0.008)
Ql 0.728 (0.051) 0.423 (0.138) 0.857 (0.043) 0.678 (0.062) 0.373 (0.040)
Qnt 0.768 (0.028) 0.453 (0.121) 0.902 (0.019) 0.703 (0.069) 0.353 (0.027)

5.6 Discussion and conclusions

This chapter presents an empirical comparison of two abstraction procedures
that differ with respect to the extent in which the meta features are predefined
prior to and the role of the data in the feature extraction process. In the
case study, better (i.e., more informative) meta features were induced by the
quantitative TA procedure, when we compare Table 5.2 to Table 5.3. Also
a superior predictive performance is observed for the associated tree model
(Figure 5.4.2b, Table 5.5). From statistical point of view, the differences in
model performance are small, though.

Compared to the null model, the performance of both tree models is weak.
These findings indicate that the prognostic information that is contained in the
monitoring data for this particular prediction problem is poor. This can be
explained by the fact that, especially in the ICU, the actual health status (and
prognosis) of a patient is only partly described by the observed monitoring data.
In this ICU, several assist devices, such as the ventilator and renal replacement
therapy, and medication are used to support a patient’s organ functioning, re-
sulting in ‘artificial’ monitoring and laboratory data. In the sequential organ
failure assessment (SOFA) scoring system [29] for describing a patient’s organ
failure in the ICU, organ failure is therefore defined on monitoring data and
the use of assist devices and medication. In this study, we used only ventilator
data (PEEP en FiO2), and data of further devices and medication data were
not included in the analysis. Furthermore, as this study was primarily aimed
at a comparison of TA procedures, rather than the development of a predic-
tive model for PMV, we included no static data (i.e., details of the surgical
procedure) in the analysis. So, information on different subgroups of patients
that exist within cardiac surgery with respect to type of intervention, having
different a priori risks of PMV, was not used for model development.

The weak performance may also be due to the fact that the threshold for defining
PMV (‘mechanical ventilation longer than 24 hours’) is not an optimal choice,
although it was chosen on clinical grounds. The majority of cardiac surgical
patients are extubated within 24 hours ICU stay, and the number of patients
who are extubated just before or just after 24 hours is high (i.e., 15% of the
patients who received mechanical ventilation for at least 12 hours in our data
set). This complicates the prediction task of PMV in this study; this remark
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is supported by the statistics of ventilation times for non-PMV patients in the
developed tree models. A more systematic investigation is necessary to select
the optimal threshold value for dichotomizing this type of outcome variable [30].
The post-surgical duration of mechanical ventilation is an important outcome
in the domain of cardiac surgery and intensive care medicine, because it reflects
the degree of complication and the speed of recovery after the operation. In
the literature, several prognostic models have been described for this outcome,
e.g., [31–35], but no temporal data were used for prediction in most studies. An
exception is the work of H. Kern et al. [36]. In this study, meta features were
used for prognostic modeling that were initially extracted for other prognostic
purposes. They quantified the patient’s health status at the ICU in terms of
the simplified acute physiology score (SAPS) [37], and included this score in a
logistic regression model. This score is mainly based on minimum and maximum
values of monitoring variables in the first 24 hours of ICU stay. A high AUC
value was found for this model (0.938), which may be overestimated, though, as
the model was evaluated on training data. Furthermore, the model was aimed
at predicting the risk of PMV (defined by ‘mechanical ventilation longer than
48 hours’) after 24 hours of ICU stay. So, this prediction problem concerns a
different part of the recovery process than in our study.
The qualitative TA procedure applied in this study has a relatively high bias by
using existing concepts of relevant meta features for abstraction. Within this
procedure, only state and trend information was abstracted from the temporal
data. We did not derive more complex abstractions, such as rate and accel-
eration [3]. In our experiments, the state abstractions were found to be much
more informative than the trend abstractions. Therefore, we do not expect that
better predictive features would have obtained when more complex abstractions
were derived in this procedure.
Instead of inducing definitions of qualitative abstractions from data, clinical
experts can be asked to define them. In that case, the procedure would have
a more extreme bias. In experiments within our study, in which a senior ICU
physician (EdJ) was asked to provide threshold values that define the state
categories of the variables in the qualitative TA procedure, the state abstractions
turned out to result in poor predictive meta features for the prediction of PMV.
With induction of the definitions of the state categories from data, information
on definitions of ‘normality’ and ‘abnormality’ is provided by the qualitative TA
procedure for the variables involved, and the dynamics of these definitions over
time.
In the quantitative TA procedure, much more, and different, aspects of the
time series were regarded by calculating a large number of summary statistics.
The search space of relevant meta features in this procedure is relatively large
compared to the qualitative TA procedure. Due to this larger search space, this
procedure has a lower bias, but a higher variance. Given the small size of our
data set (n=664), we took two additional steps to reduce the variance (and the
risk of overfitting): we discretized all summary variables and performed feature
subset selection prior to model induction. This procedure is expected to perform
better when more data are available, as in that case, additional steps to reduce
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the variance are less necessary, and a larger space of models is searched through.
The calculation of a large number of summary statistics, that may be highly
correlated (e.g., mean value and median value), induces the problem of collinear-
ity in the quantitative TA procedure. This collinearity causes meta features to
compete and makes the selection of a feature subset instable. This explains that
only six of the meta features that are shown in Table 5.3 were consistently se-
lected in the three-fold cross validation procedure performed in our study. This
instability reduces the interpretability of the results of this TA procedure.
In both procedures, part of the twelve-hour patterns was divided up into three-
hour or six-hour intervals taking account of the dynamics of the variables and
their measurement frequency. These intervals were fixed during the study, and
no sensitivity analysis of these intervals was performed; this is a limitation of
this study. In addition to discovery of relevant meta features, the data can be
used to induce the relevant intervals from. However, as similar intervals have
been used in both TA procedures and there is no reason to suppose that the use
of fixed intervals influences the extraction of meta features in the procedures
differently, the findings in this comparative study are assumed to be not affected
by this limitation.
To conclude, this case study shows that relevant meta features for prognosis
can be reasonably well induced from data. The meta features discovered by the
quantitative TA procedure turned out to be more informative than the meta
features of the qualitative TA procedure, and the associated tree model has a su-
perior predictive performance. These findings indicate that for prediction from
monitoring data, induction of numerical meta features from data is preferable
to extraction of symbolic meta features using existing clinical concepts.
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Abstract

Objectives To investigate the agreement among clinical experts in their judg-
ments of monitoring data with respect to artifacts, and to examine the impact
of reference standards existing of individual and joint expert judgments on the
performance of artifact filters.
Design Individual judgments of four physicians, a majority vote judgment, and
a consensus judgment were obtained for 30 time series of three monitoring vari-
ables: mean arterial blood pressure (ABPm), central venous pressure (CVP),
and heart rate (HR). The individual and joint judgments were used to tune
three existing automated filtering methods and to evaluate the performance of
the resulting filters.
Measurements The interrater agreement was calculated in terms of positive spe-
cific agreement (PSA). The performance of the artifact filters was quantified in
terms of sensitivity and positive predictive value (PPV).
Results PSA values between 0.33 and 0.85 were observed among clinical ex-
perts in their selection of artifacts, with relatively high values for CVP data.
Artifact filters developed using judgments of individual experts were found to
moderately generalize to new time series and other experts; sensitivity values
ranged from 0.40 to 0.60 for ABPm and HR filters (PPV: 0.57-0.84), and from
0.63 to 0.80 for CVP filters (PPV: 0.71-0.86). An improved performance for the
filters was found for the three variable types when joint judgments were used
for tuning the filtering methods.
Conclusion Reference standards obtained from individual experts are less suit-
able for development and evaluation of artifact filters for monitoring data than
joint judgments, as filters resulting from joint judgments were found to better
generalize to unseen time series.

6.1 Introduction

Evaluation studies of medical informatics systems that are designed to carry
out clinical tasks automatically are often complicated due to the lack of an
objective gold standard [1]. In medical informatics, clinical domain experts play
an important role in the evaluation of these systems. They may be employed
to generate a reference standard, to judge the output of the system, or they
may serve as comparison subject to value the system’s performance [2]. The
quality of the reference standard, however, may have an important impact on the
generalizability of the findings in evaluation studies, especially when subjective
expert judgments are used.

This chapter presents a study on reference standards obtained from clinical ex-
perts for automated artifact detection from monitoring data. In the intensive
care unit (ICU), automated monitoring systems measure many physiological
variables with high frequency to continuously check the patient’s condition. In
modernly equipped ICUs, these measurements are automatically recorded in
ICU information systems. Monitoring data, however, often contain inaccurate
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and erroneous measurements, also called artifacts [3]. Data artifacts hamper
interpretation and analysis of the data, as they do not reflect the true state of
the patient. In practice, experienced clinicians ignore particular measurements
that they consider as unreliable when inspecting and using monitoring data.
Computerized medical assistants, such as decision support systems, that are
increasingly implemented in ICU information systems [4–6] may provide inac-
curate support based on monitoring data, when they do not discern artifacts
in these measurements. This has induced research on methods for automated
artifact detection in order to exclude the artifacts (data filtering), or to repair
them given the available data [7–9].
Except for measurements that take theoretically impossible values (e.g., neg-
ative blood pressures), defining which measurements have to be considered as
artifacts is difficult. This is primarily due to the fact that the concept of ‘ar-
tifact’ is vague and hard to define. Thus, individual clinicians may differ in
their interpretation of monitoring data with respect to identifying artifacts [3].
Nevertheless, judgments obtained from a single clinical expert have been used
in several studies on automated artifact detection in monitoring data, e.g., [8–
10]. The individual judgments generally serve as reference standards to tune
methods for automated artifact detection on a training sample, and to validate
the resulting filters on a test sample, or in a cross validation design.
The objective of this study is threefold. Our first aim is to investigate the
agreement among experts in their judgments of monitoring data with respect to
artifacts. Second, we examine the impact of the quality of reference standards
existing of individual judgments on the performance of artifact filters that have
been developed using these standards. Reference standards that join judgments
of individual experts are considered to be more reliable [2]. Our final aim is
to investigate the performance of artifact filters that have been developed with
joint judgments.
To be able to answer the research questions, we obtained individual judgments
on a sample of three monitoring variables (mean arterial blood pressure, central
venous pressure, and heart rate) from four clinical experts, as well as two joint
judgments (a majority vote judgment and a consensus judgment). We used the
judgments to tune three artifact detection methods that have been proposed in
the literature, and to validate the resulting filters.

6.2 Data and methods

6.2.1 Monitoring data

In this study, monitoring data were used of the department of Intensive Care
Medicine of the Academic Medical Center (AMC) in Amsterdam, The Nether-
lands. At this department, critically ill patients are monitored by IntelliVue
Monitor MP90 systems (Philips Medical Systems, Eindhoven, The Netherlands).
The monitoring data are recorded with a frequency of one measurement per
minute, and recorded in the Metavision ICU information system (iMDsoft, Tel
Aviv, Israel).
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Table 6.1 Descriptive statistics of the selected ABPm, CVP, and HR time series.

Variable Number Mean Total Mean Min Max SD
(unit) of time dura- number of

series tion measurements

ABPm 10 271.0 2701 80.5 -5 328 18.48
(mmHg)
CVP 13 247.1 3193 13.8 -22 183 9.28
(mmHg)
HR 7 286.7 2005 85.1 0 142 15.28
(beats/min)

Our study is restricted to three physiological variables that concern the cardio-
vascular system: mean arterial blood pressure (ABPm), central venous pressure
(CVP), and heart rate (HR). The latter variable is obtained by electrocardio-
gram; the HR values as presented by the monitor are derived from six heart-
beats. The blood pressures are measured by separate probes; these indepen-
dently measured variables do therefore not contain correlated artifacts due to
probe malfunction. The three variables are recorded in the ICU information
system with equal frequency, but they differ greatly in their variability. For
instance, arterial pressure and heart rate are much more amenable to sudden
changes than venous pressure, where in the heart rate patterns, these sudden
changes may persist for certain episodes.

For our experiment, 30 time series of the three cardiovascular variables were
selected from a research database of monitoring data of 367 patients who under-
went cardiac surgery at the AMC in the period of April 2002 to June 2003. The
time series were selected for their relatively rough course using visual inspection
of the data. Each of these subseries included several hundreds of measurements
(a duration of two to five hours); they originated from 18 different patients.
Some descriptive statistics of the selected ABPm, CVP, and HR data are listed
in Table 6.1.

6.2.2 Generating reference standards

For each time series, three types of reference standards were developed: four in-
dividual judgments, a majority vote judgment, and a consensus judgment. Four
experienced ICU physicians from the AMC (where the data were recorded) were
asked to inspect the series and point out individual data points that they con-
sidered as artifact. All physicians were internist-intensivists; their postgraduate
experience as internist ranged from 8 to 16 years, and as intensivist from 5 to
13 years.

We prepared the time series to be judged by visualizing the rough measurements
on paper. In order to improve the visualization on paper, all measurements
were excluded from the series that took values that are theoretically impossible
independent of the clinical context (e.g., negative blood pressures). For that
purpose, the four physicians defined a domain of theoretically possible values
for each variable type. The excluded measurements were considered to be judged
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as artifacts by each physician. We will refer to these measurements as ‘range
errors’ in the further part of this chapter. Range errors were only excluded
during scoring of the time series by the physicians; they were part of the series
during development and evaluation of the artifact filters.

In addition, we provided the physicians with relevant context information of
the time series to be judged by visualizing other physiological variables that
were recorded simultaneously on the same patient. These variables included
the ABPm, CVP, and HR time series (depending on the series to be judged),
as well as the patients’ body temperature, fraction inspired oxygen, and respi-
ration pressure. Moreover, we provided the physicians with data of concurrent
therapy (medication and fluid administration) by presenting the time point, du-
ration, and amount of therapy that was given. All context information was also
provided on paper.

First, the four physicians were asked individually, for each of the time series,
to mark data points they judged to be artifacts. The formal rule was to mark
data points that they suspected to not reflect the actual health status of the
patient at the time of measurement, and that they would therefore neglect in
clinical practice. Removal of these points would therefore not result in a loss
of information with respect to the patient’s health status, but rather clean the
data from disturbances that would be ignored by clinicians anyway.

Subsequently, we combined the initial judgments of the four physicians in two
different ways. First, we automatically derived a majority vote judgment of
each time series by regarding each measurement as artifact that was judged as
such by at least three out of four physicians. Second, a consensus meeting was
organized in which the four physicians involved were asked to harmonize their
individual judgments to a consensus judgment. The same context information
was provided, as well as the initial judgments of all four physicians. In this
meeting, the physicians re-inspected the time series, one series at a time: they
compared and discussed the individual judgments of the time series to come to a
consensus judgment of each time series. During this meeting, they increasingly
specified for each monitoring variable which types of measurement have to be
judged as artifacts and which measurements can be regarded as reliable and
informative data. Simultaneously, they considered whether they should revise
the consensus judgments of time series that were previously discussed during
the meeting. Two additional researchers (MV, NP) were present during this
meeting to guard consistency in the judgments.

This resulted in six judged versions of each of the 30 time series (four individual
judgments, one majority vote judgment, and one consensus judgment) in which
each measurement is marked with true (artifact) or false (non-artifact).

6.2.3 Measurement of agreement among physicians

We investigated the agreement among physicians in their judgment of monitor-
ing data with respect to artifacts. For that purpose, we quantified the interrater
agreement for the individual judgments of each pair of physicians by calculating
positive specific agreement [11]. Specific agreement is recommended in case of
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class unbalance [12, 13], which is clearly the case in our study, as non-artifacts
highly dominate the data (> 95%). Specific agreement quantifies the degree
of agreement for the positive and negative classes separately. Positive specific
agreement (PSA) between two raters is defined as

ppos =
a

( b+c
2 )

=
2a

b + c
, (6.1)

where a in this study denotes the number of measurements judged as artifacts by
both raters, and b and c denote the total number of measurements considered as
artifacts by the two raters individually. It takes the values 0 in case of complete
disagreement on artifacts and 1 in case of complete agreement on artifacts.
Negative specific agreement is defined in a similar way for non-artifacts. We did
not calculate this latter measure as it will only take values around 0.99 due to
the extreme class unbalance. Comparing to the interpreting levels as suggested
for Kappa [14], we used the following levels to interpret the PSA values: almost
perfect > 0.8, good 0.6-0.8, moderate 0.4-0.6, slight 0.2-0.4, and poor 0.0-0.2.

6.2.4 Automated filtering methods

In this study on reference standards in automated artifact detection, we vali-
dated artifact filters that were developed using three methods that have been
proposed in the literature for filtering monitoring data. The first method is
the well-known and often applied moving median filtering [15–17]. Second, we
applied the method ArtiDetect as proposed in the work of C. Cao et al. [9], and
third, we applied the method of multiple signal integration by tree induction
as proposed in the work of C.L. Tsien et al. [10]. We refer to Chapter 7 for a
brief description of the filtering methods and their application in this study for
development of filters for each type of monitoring variable.

6.2.5 Validating filters developed using standards of individual experts

We examined the internal and external validity of artifact filters developed using
individual judgments as reference standards. Internal validity of a filter is its
ability to detect artifacts where judgments of the same expert are used for
developing and testing the filter. In the literature, this is known as validation
of the reproducibility of a filter [18]. External validity is the ability of a filter to
detect artifacts where judgments of the different experts are used for developing
and testing the filter. This can be seen as a validation of the transportability of
a filter [18].
For each variable type and filtering method, we performed the following exper-
iments to assess the internal validity of the resulting artifact filters. First, we
tuned the filtering method on a training sample using the individual judgments
of each physician as reference standards, resulting in four filters, one for each
physician. We subsequently applied the filters on a test sample and evaluated
their performance using the judgments of the corresponding physician as refer-
ence standards. Figure 6.1 shows a diagram of the design of these experiments,
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expert A

generates

filter

generates

reference standard

automated 

judgment
reference standard

expert B

generates

tune filtering method

filter

compare

set of time series 

to be filtered

split sampletraining sample

test sample

performance

of filter

Figure 6.1 The internal and external validation study design of a filter developed
using a particular filtering method, where expert A and B are the same expert
when quantifying the internal validity of the filter (four experiments), and expert
A and B are different experts when quantifying the external validity of the
filter (twelve experiments). Similar to [2], rounded rectangles indicate tasks,
observations, or measurements, ovals indicate actions of performed by an expert
or a filter, and diamonds indicate actions that require no domain expertise.
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where expert A and B represent the same expert. This resulted in four experi-
ments in our study. The overall performance was calculated as the mean value
of the performance of the filters in the four experiments.

The external validity of the four filters was subsequently assessed by evaluating
their performance on the test sample using the judgments of each of the three
other physicians as reference standards. Figure 6.1 also shows the design of these
experiments; expert A and B now represent different experts. This resulted in
twelve experiments in our study. We calculated the overall performance as the
mean value of the performance of the filters in these experiments.

To make optimal use of the available data, we evaluated the performance of
the filters in a 10-fold cross validation design. We used this design in the ex-
periments to assess the internal as well as the external validity of the filters,
although for the external validation the standards used for tuning and testing
were obtained from different physicians. The reason for this is that these stan-
dards are correlated and not independent, as the experts used the same data to
judge the time series.

We quantified the performance of a filter in each experiment by calculating the
sensitivity (i.e., the proportion of artifacts that have been classified as such by
the filter) and the positive predictive value (i.e., the proportion of measurements
that have been classified as artifacts by the filter that are artifacts according
to clinical judgment); these measures are analogous, respectively, to recall and
precision in the evaluation literature [2]. As non-artifacts dominate the time
series, we do not report the specificity and negative predictive value.

6.2.6 Validating filters developed using joint standards

We investigated whether artifact filters better generalize when they are devel-
oped using joint judgments instead of individual judgments of experts. For
that purpose, we performed two additional experiments for each variable type
and each filtering method using the majority vote judgments and the consensus
judgments of the set of time series as reference standards. The experiments were
only performed in the internal validation study design using the same type of
standard for developing and testing the artifact filter, because joint judgments
of other raters were not available in the study. Again, we validated the filters
using 10-fold cross validation, and quantified the performance in terms of the
sensitivity and the positive predictive value.

6.3 Results

6.3.1 Generating reference standards

The four physicians defined range errors as measurements outside the following
domains: ABPm 25-200 mmHg, CVP 0-45 mmHg, and HR 0-300 beats/min.
Table 6.2 lists the number of range errors for the three types of time series, in
addition to the total number of measurements judged as artifacts in the indi-
vidual judgments, the majority vote judgments, and the consensus judgments.
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Table 6.2 The number of measurements considered as range errors and the
total number of measurements considered as artifacts in the individual (I), ma-
jority vote (MV), and consensus (C) judgments; this latter number includes the
number of range errors.

Variable Total number Number of Total number of artifacts
of measurements range errors I MV C

1 2 3 4

ABPm 2701 8 20 65 54 57 46 30
CVP 3193 48 66 66 99 121 68 70
HR 2005 0 46 58 44 16 26 46

Figure 6.2 illustrates these results for a mean arterial blood pressure series.
Four measurements in this series were judged as artifacts by more than two
physicians, while four additional points were considered as artifacts in the con-
sensus judgment. The measurements representing a drop at approximately 650
minutes were not considered as artifacts by the physicians, as they represented
a decreasing trend over multiple minutes.

6.3.2 Measurement of agreement among physicians

The interrater agreement for each pair of physicians quantified in terms of pos-
itive specific agreement is listed in Table 6.3. The table shows good, and for
some pairs, almost perfect agreement among the physicians for the CVP data;
for the ABPm and HR data, we found large variation in the interrater agree-
ment. Furthermore, the table shows that good or almost perfect agreement was
observed for no pair of physicians for all three variables.
Figure 6.3 visualizes the intersection of the individual and joint judgments of
the ABPm, CVP, and HR time series using scaled rectangle diagrams [19]. The
CVP diagram shows that the data points that were judged as artifact by expert
3 and 4 included almost all points judged as artifact by expert 1 and 2.

Table 6.3 Positive specific agreement among the physicians, and within brackets
the number of artifacts they agreed upon.

Variable Expert 2 3 4

ABPm 1 0.33 (14) 0.38 (14) 0.42 (16)
2 - 0.76 (45) 0.80 (49)
3 - - 0.83 (46)

CVP 1 0.83 (55) 0.74 (61) 0.65 (61)
2 - 0.76 (63) 0.70 (65)
3 - - 0.80 (88)

HR 1 0.85 (44) 0.56 (25) 0.42 (13)
2 - 0.49 (25) 0.41 (15)
3 - - 0.33 (10)
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Figure 6.2 The individual judgments of a series of 500 mean arterial blood
pressure measurements. Small shaded circles represent data points that one or
more ICU physicians considered as artifacts. The associated numbers corre-
spond to the number of physicians having that judgment; each data point that
was regarded as artifact by at least three physicians, was judged as artifacts
in the majority vote judgment. Large unshaded circles represent data points
considered as artifacts in the consensus judgment.

It appears from the HR diagram that the majority of data points that were
considered as artifacts by expert 4, a conservative rater for the HR data, were
also judged as artifacts by the other experts. Furthermore, this diagram shows
that a number of HR data points that were initially considered as reliable by all
experts were marked as artifacts in the consensus judgment (left upper part of
the consensus rectangle); this was a result of the discussion during this meeting
how to characterize HR artifacts. This shows that developing a consensus judg-
ment does not necessarily involve a restriction in the judgment of data points
as artifacts. This phenomenon did not occur for the ABPm and CVP data.

6.3.3 Validating filters developed using standards of individual experts

Table 6.4 summarizes the results of the experiments to investigate the generaliz-
ability of the artifact filters developed using standards obtained from individual
experts. Each table row first shows the variable type and the filtering method
that was applied to develop the filters. The results of the internal validity of
the filter are presented in column 3-4. These columns list respectively the mean
value of the sensitivity and positive predictive value (PPV) over four experi-
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ABPm CVP HR

expert 1 expert 2 expert 3 expert 4 majority voteconsensus

Figure 6.3 The intersection of individual and joint judgments of the ABPm,
CVP, and HR time series visualized in scaled rectangle diagrams.

ments (one for each expert), respectively. The mean value of these statistics
over twelve experiments as obtained in the external validity of the filters (three
for each expert) are shown in column 5-6, respectively.

The table shows moderate results for the internal validity of the filters for the
ABPm and HR time series for each filtering method, and a relatively high
performance for the CVP data. Furthermore, the results show a decrease in the
mean performance of all nine filters when they were validated for other experts.

6.3.4 Validating filters developed using joint standards

The results of the experiments in which we examined the internal validity of
artifact filters developed using joint standards are listed in Table 6.5. It appears
from the results that higher sensitivity for unseen time series was found for the
majority vote judgment in six out of nine filters compared to the individual
standards (Table 6.4, internal validity), and for the consensus judgment in seven
out of nine filters; the superiority holds for all CVP filters. The PPV was higher
for eight and five, out of nine filters, respectively. Table 6.5 shows varying results
when comparing the performance statistics for the majority vote judgment and
the consensus judgment. All ABPm filters developed with a majority vote
judgment as reference standard had equal or higher PPV, two out of three CVP
filters were more sensitive, and for both statistics, two out of three HR filters
were superior. For the consensus judgment, two out of three ABPm filters had
higher sensitivity values, and two out of three CVP filters showed higher PPV
compared to the filters developed using a majority vote judgment.

6.4 Discussion and conclusions

This study shows that clinical experts disagree in their judgments of ABPm and
HR data with respect to artifacts. Furthermore, we have shown that artifact
filters of these variables poorly generalize to other experts when judgments from
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single experts were used for tuning the filtering methods. The internal validity
of these filters was also found to be relatively low, though. Good agreement
among experts was found for CVP data, and filters for these data resulting
from individual judgments were found to generalize well. Artifact filters showed
improved performance for three monitoring variables when joint judgments of
groups of experts were used. These findings indicate that joint judgments are
more consistent and therefore more suitable reference standards than individual
judgments of experts.
Few studies have compared the judgments of monitoring data by different clin-
ical experts. Most studies on automated artifact detection methods [8–10] use
judgments obtained from individual experts. In the study of S. Cunningham
et al., judgments were obtained from three experts to assess the effect of artifact
removal on the mean and median values of time series [3]. Similar to our study,
large differences were found in the number of measurements that were consid-
ered as artifacts by the individual experts; the differences were traced back to
different perceptions of what constitutes artifacts. Compared to the study by
Cunningham, we investigated the agreement among the judgments of experts
in more detail, and considered the use of these judgments in the development
of artifact filters.
According to C.P. Friedman and J.C. Wyatt, training of raters is an important
requirement to obtain reliable reference standards [1]. Training is even more
important for the ambiguous rating tasks, such as artifact detection. Authors
of studies on automated artifact detection are generally vague about the instruc-
tions that were given to experts for rating monitoring data (e.g., a definition of
artifacts). We provided the four physicians with the simple instruction to mark
all data points that they suspected not to reflect the actual health status of
the patient at the time of measurement and that they would therefore neglect
in clinical practice. Effective training of raters for artifact detection is compli-
cated due to the fact that the concept of ‘artifact’ is vague. It appeared from the
consensus meeting that it may be impossible to develop a general definition of
‘artifact’. Context-specific definitions, e.g., pertaining to a specific variable, can
probably be formulated. We recommend letting individual ratings of time series
be preceded by a meeting to discuss a number of series and artifact definitions;
this may contribute to a higher quality reference standard.
An interesting topic given the different levels of agreement that we observed
among experts is the number of experts that is necessary for obtaining a reli-
able joint standard. The assessment of a reliability coefficient of ratings using,
for instance, Cronbach’s alpha is an important subject in measurement studies
[1]. The Spearman-Brown prophecy formula can be used to estimate the effect
of increasing the number of judges on the reliability coefficient. In this study,
four physicians rated the time series of the three monitoring variables. As good
agreement was observed for CVP data, fewer experts may be needed for judg-
ing CVP time series compared to ABPm and HR series in order to obtain a
reliable joint standard. How much reliability, and corresponding required ef-
fort of experts, is necessary for reference standards depends on the use of the
standards; lower reliability might be sufficient in pilot studies, while better refer-
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ence standards and more thorough evaluation methodologies are required when
developing systems (i.e., artifact filters in this study) as clinical end products.
A limitation of the study is that no formal method was used for development of
the consensus judgments, such as the Delphi method [20] or the nominal group
technique [21]. The use of these methods would probably improve the consis-
tency of consensus judgments and may reveal the superiority of the use of this
type of joint judgment to majority vote judgments. The consensus judgments
in this study were developed in a meeting during which the experts discussed
and compared their individual judgments. Since consistency in the consensus
judgments was guarded by the presence of two additional researchers, we believe
the joint judgment of this study approach the more formal methods.
A second limitation of the study is that the transportability of the filters was
not validated for the majority vote judgment and the consensus judgment. Ex-
ternally validating these judgments would have required obtaining individual
judgments of a new group of experienced ICU physicians, and organizing an
additional consensus meeting to harmonize their judgments. From the results
of the internal validation of the filters, which indicated improved consistency
of joint judgments, we expect superior transportability of the filters for joint
judgments.
We investigated the generalizability of the artifact filters developed using in-
dividual judgments and joint judgments by comparing the (mean) sensitivity
and positive predictive value as calculated in the different type of experiments.
We did not statistically test the differences in the statistics. The results were
found to be consistent over the three monitoring variables and filtering meth-
ods, though. Furthermore, we equally valued both performance statistics in this
study. In practice, the importance of the sensitivity and the positive predictive
value of an artifact filter depends on the specific use of the filtered data by
computerized medical assistants, physicians, and data analysts.
An alternative explanation for the superior performance when using joint judg-
ments is that individual and joint judgments are equally consistent, but that
the classification rules employed by individuals are too complex to be captured
by automated filtering methods. This would indicate a failure by the filtering
methods in question, and not by the experts that provided the judgments. To
exclude this possibility, we have used three filtering methods that operate in
highly different manners and allow for a varying degree of complexity in the re-
sulting filters; they are jointly representative for the field of automated artifact
detection in monitoring data. Because the findings are consistent over these
three methods, we believe that the complexity of the underlying rules did not
influence our results.
The study was limited to three monitoring variables that each concerns the
cardiovascular system, and provides as such no information on the agreement
among experts for other monitoring variables and the performance of artifact
filters developed using expert judgments. Moreover, our findings were obtained
in a single center study. We can not exclude the possibility that the agreement
among experts from a single hospital is larger than the agreement among experts
from different hospitals, due to similar education and joint discussions of the
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condition of patients based on monitoring data. The agreement among clinical
experts in their judgments of artifacts may therefore be overestimated in this
study, as well as the transportability of artifact filters to individuals in other
hospitals.

The selection of series for their relatively rough course is a potential source of
bias in this study, as stable time series were underrepresented. Due to this selec-
tion bias, the agreement among physicians as measured in this study supposedly
underestimates the agreement in their judgment of monitoring data with respect
to artifacts in general; high agreement can be assumed for clinical judgment of
stable time series. However, the comparison of the performance of artifact filters
developed using individual and joint standards was performed on the same set
of time series. We therefore suppose that the selection bias has not affected our
conclusions on reference standards in automated artifact detection. A similar
argument holds for the number of selected time series per variable type and
the length of the series that both varied in this study for no apparent reason.
Furthermore, the 30 time series were not obtained from 30 different patients.
We also suppose that this has not affected the results of the study, as ABPm,
CVP, and HR data were included in the context information that was provided
to the experts for each time series to be judged. Moreover, development and
evaluation of the artifact filters was performed separately for each variable type.

In conclusion, the main implication of this study is that reference standards ob-
tained from individual experts are less suitable for development of artifact filters
than reference standard composed of joint judgment, as the transportability of
the resulting filters to other experts is poor. This also implies that one should
be cautious with deploying filters from the literature that were trained by in-
dividuals. Filters developed using joint judgments were found to have better
performance for artifact detection in new time series. A majority vote judgment
seems to be equally effective in this respect as a consensus judgment, which is
more difficult and time consuming to obtain.
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Abstract

A well-known problem in critical care is the occurrence of erroneous measure-
ments (‘artifacts’) in monitoring data. Experienced clinicians ignore these mea-
surements when they interpret the data. For inexperienced clinicians, as well as
for computerized medical assistants, however, artifacts must be removed. This
chapter compares the performance of four artifact filtering methods on moni-
toring data from a Dutch adult ICU. Three methods (moving median filtering,
ArtiDetect, and tree-based filtering) were earlier described in the literature; the
fourth method is a new combination of existing approaches. The evaluation
was carried out on blood pressure and heart rate measurements from cardiac
surgery patients during their postoperative recovery. None of the four methods
was superior on all types of variables. It is advised to employ a well-chosen
inductive bias when choosing an artifact detection method for a given variable.

7.1 Introduction

Clinical treatment in anaesthesia and critical care requires a close and continu-
ous watch on the patient’s vital functions. For this reason, operating theaters
and intensive care units (ICUs) are equipped with monitoring systems for auto-
matically measuring and recording many clinical variables with high frequency.
Monitoring data, however, often contain inaccurate and erroneous measure-
ments (‘artifacts’) [1]. Main sources of artifacts that typically affect monitoring
data include misplaced or dislodged probes, pressure line occlusions or zeroing,
and movements of patients [2].

Artifact measurements hamper interpretation and analysis of the data, as they
do not reflect the true state of the patient. In practice, experienced clinicians
ignore artifacts when they inspect monitoring data. For inexperienced clinicians
and residents, however, artifacts may pose serious problems and induce incorrect
beliefs on the patient’s condition. Similarly, computerized medical assistants
that operate on monitoring data may be led astray by artifacts, resulting in
incorrect warnings and recommendations.

During the last decade, several methods for automated artifact detection have
been proposed in the literature in order to exclude artifacts from monitoring
data (data filtering), or to repair them given the available data [3–5]. A most
basic, and frequently applied, method is moving median filtering [6–8]. It re-
moves data points with a relatively high or low value as compared to a moving
median smoother. More sophisticated is the method described by C. Cao et al.
[5], called ArtiDetect, which considers both absolute and relative peaks in the
data. C.L. Tsien et al. [9] compute various moving statistics (e.g., mean, me-
dian, slope, standard deviation) and select those that predict artifacts well by
supervised learning. The methods of Cao et al. and Tsien et al. have been
evaluated by their developers, but not by others.

This chapter compares the performance of these three artifact detection methods
on a set of monitoring data from cardiac surgery patients during their postop-
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erative recovery at the ICU. In addition, a fourth method, which was designed
by the authors and combines the three methods described above, is evaluated.
For each method, the task of artifact detection is taken as data filtering; repair
of artifact data is outside the scope of this study.
In studies on automated artifact detection, one has to rely on judgments of
monitoring data with respect to artifacts obtained from clinical experts, since
no gold standard is available. In our study on standards in automated arti-
fact detection as presented in Chapter 6, we showed that joint judgments are
more reliable standards than judgments from single experts. We therefore use a
consensus judgment of the data obtained from four clinical experts as reference
standard for tuning and evaluation of the methods in this study.

7.2 Data and methods

7.2.1 Monitoring data

In this study, monitoring data were used of the department of Intensive Care
Medicine of the Academic Medical Center in Amsterdam, The Netherlands.
At this department, critically ill patients are monitored by Philips IntelliVue
Monitor MP90 systems (Philips Medical Systems, Eindhoven, the Netherlands).
The monitoring data are recorded with a frequency of one measurement per
minute in the Metavision ICU information system (iMDsoft, Tel Aviv, Israel).
Our study is restricted to three physiological variables that concern the cardio-
vascular system: mean arterial blood pressure (ABPm), central venous pressure
(CVP), and heart rate (HR). The unit of the blood pressure values is mmHg; the
heart frequency is recorded in number of beats per minute. These monitoring
variables are each measured by a separate probe. These variables are recorded
in the ICU information system with equal frequency, but they differ greatly in
their variability. For instance, arterial pressure and heart frequency are much
more amenable to sudden changes than venous pressure.
The study population consisted of 367 patients who underwent cardiac surgery
at the AMC in the period of April 2002 to June 2003. All available values for the
three cardiovascular variables were retrieved from the ICU information system,
yielding time series of several thousands of measurements for each patient. Using
visual inspection of these data, 30 subseries with a relatively rough course were
selected for our experiment. Each of these subseries included several hundreds of
measurements (durations of two to five hours); they originated from 18 different
patients. Overall, 10 ABPm, 13 CVP, and 7 HR subseries were selected, with a
total length of 2701, 3193, and 2005 minutes, respectively.
The 30 time series were inspected by four senior ICU physicians from the Aca-
demic Medical Center (where the data were recorded). Their individual judg-
ments of the time series with respect to artifacts were subsequently harmonized
in a consensus meeting. Thirty measurements (1.1%) in the ABPm time series
were judged as artifacts, 70 measurements (2.2%) in the CVP time series, and
46 measurements (2.3%) in the HR time series. For a detailed description of
the procedure that was applied to obtain the consensus judgements of the time
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series, we refer to Chapter 6.

7.2.2 Artifact detection methods

Methods for automated artifact detection assume that each measurement x(t)
in a series is composed of the actual physiological state f(t) of the patient at
time at time t, and a random term ε(t) representing the measurement error at
time t. So, we have that

x(t) = f(t) + ε(t) (7.1)

for all time points t where measurements are made. The error term ε(t) is
itself probably composed of multiple terms or factors with varying distributions.
When |ε(t)| is large, we say that x(t) is an artifact. It is then better to replace
x(t) by a reconstruction of f(t), or to remove x(t) from the series. In this study,
we confine ourselves to removing x(t), which is called filtering.

The main problem for artifact detection methods is that we neither know f(t)
nor ε(t). Roughly speaking, there are three directions to solve this problem:

A. One can focus on f(t) + ε(t), and decide that when this quantity is large
(in the absolute sense), then ε(t) must have been large, and therefore x(t)
is an artifact.

B. One can try to reconstruct f(t), and then estimate ε(t) as the difference

of x(t) and the reconstruction f̂(x).

C. One can try to reconstruct ε(t) directly by considering the variance of x.

Below, we describe the four artifact detection methods that were applied and
evaluated in this study. Each method employs one direction, or a combination
of the above directions, and they jointly cover the spectrum of possibilities.

Moving median filtering

A well-known approach to artifact filtering is based on direction B, and uses
a statistical measure of central tendency to estimate f(t). A popular choice is
the median, which is very flexible due to its lack of distributional assumptions.
The approach classifies measurement x(t) as artifact when the absolute residual

|x(t) − f̂(x)| is larger than a given threshold δx.

Because f may vary over time, f̂(t) is obtained by computing the so-called mov-
ing median on a small set x(t − k), x(t − k + 1), . . ., x(t + k) of measurements
in the vicinity of x(t). Here, ws = 2k + 1 is called the window size.

In our study, we obtained moving medians of the time series for varying window
sizes (i.e., 5, 11, 21, 31, 41, 51, 61, 71, 81, 91, and 101 minutes), and calculated
the corresponding absolute residuals. For each of the three variables, window
size ws and classification threshold δx were subsequently optimized with cross
validation on the data using the artifact reference standard that was defined by
the four clinicians.
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ArtiDetect

ArtiDetect [5] is a method that combines two detectors, based on directions
A and C, respectively. The limit-based detector classifies measurement x(t)
as artifact when it is outside an interval Ix of admissible values. For each
remaining data point x(t), the deviation-based detector subsequently estimates
ε(t) as x(t)’s contribution to the moving standard deviation of x, and classifies
x(t) as artifact when ε̂(x) is larger than a given threshold νx.

For each of the three variables, we determined the interval Ix of admissible val-
ues of the limit-based detector on the data using the clinical judgments of the
time series as reference standard. After exclusion of all measurements that were
classified as artifacts by the limit-based detector, we quantified a measurement’s
contribution to the time-dependent standard deviation for the same eleven win-
dow sizes as used for moving median filtering, and optimized the window size
ws and classification threshold νx of the deviation-based detector with cross
validation on the data using the consensus-based reference standard.

Tree induction method

Both moving median filtering and ArtiDetect employ moving statistics for arti-
fact detection, and use the data to optimize the associated parameters (thresh-
olds, window sizes). However, both methods are biased by the choice of statis-
tic and the term that they attempt to reconstruct. C.L. Tsien et al. [9] have
proposed an approach where the data is used to select both the appropriate sta-
tistic(s) and the associated parameters. To this end, a large number of moving
statistics are computed for varying window sizes, and a multivariate tree model
is induced from them. The available artifact reference standard is employed as
class variable during tree induction. The method also takes context information
into account, by computing the moving statistics not just for variable x but also
for variables that were simultaneously measured.

In our study, we induced a tree model for each of the three variables as follows.
First, we obtained eight moving summary statistics (i.e., mean, median, slope
coefficient of a linear model, absolute value of that slope coefficient, standard
deviation, maximum value, minimal value, and range) of the time series for
three window sizes (3, 5, and 10 minutes); these are the same window sizes
that were employed by Tsien et al. in their study [9]. These moving summary
statistics were also obtained for the simultaneously measured time series of the
two other variables in our study. The resulting 72 features (8 summary statistics
× 3 window sizes × 3 variables) were subsequently used as predictive features
for inducing a tree model.

Combined method

As the three procedures described above may complement each other we in-
tegrated these procedures into a combined method, which operates as follows.
First, interval and window size parameters for ArtiDetect’s limit-based detector
are derived from the data. After exclusion of all measurements that are classi-
fied as artifacts by this detector, for each x(t) the absolute residual |x(t)− f̂(x)|

with respect to the moving median f̂(x) is determined, and ε(t) is estimated
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Table 7.1 Number of data points classified as artifacts, sensitivity, and positive
predictive value (PPV) of each of the four filtering methods, listed per variable
type (ABPm, CVP, and HR). All results obtained with 10-fold cross validation.

Variable Method Classified Sens PPV
as artifact

ABPm Median filtering 22 0.667 0.909
ArtiDetect 36 0.767 0.639
Tree induction 26 0.600 0.692
Combined method 32 0.667 0.625

CVP Median filtering 86 0.871 0.710
ArtiDetect 61 0.843 0.967
Tree induction 61 0.729 0.836
Combined method 65 0.857 0.923

HR Median filtering 29 0.543 0.862
ArtiDetect 24 0.326 0.625
Tree induction 40 0.565 0.650
Combined method 42 0.761 0.833

as x(t)’s contribution to the moving standard deviation of x (as in ArtiDetect’s
deviation-based detector). This is performed for the eleven window sizes that we
used in these methods. A multivariate tree model is subsequently built from the
resulting 22 features. Note that we do not consider simultaneous measurements
in the combined method.

7.2.3 Evaluation

We tuned the methods for automated artifact detection to the 10 ABPm, 13
CVP, and 7 HR time series with the aim to compare performance of the resulting
filters for each of variable type. To make optimal use of the available data, we
evaluated the performance of the methods using 10-fold cross validation. We
used the consensus judgement of the measurements as reference standard, and
we quantified the performance in terms of the sensitivity (i.e., the proportion of
artifacts that have been classified as such by the automated filtering method)
and the positive predictive value (i.e., the proportion of measurements that have
been classified as artifacts by the automated method that are artifacts according
to clinical judgement). As the non-artifacts were overrepresented in the time
series (> 97%), we do not report the specificity and negative predictive value.

7.3 Results

Table 7.1 lists the number of data points that were classified as artifacts, and
the performance of the four filtering methods. For ABPm, ArtiDetect has the
best sensitivity (23 out of 30 artifacts detected) while moving median filtering
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Figure 7.1 Results of automated filtering on a series of 500 ABPm measure-
ments. The 8 data points in the series that were judged as artifacts by the
physicians are represented by shaded circles. Left-hand graph (a): results of
moving median filtering (crosses) and ArtiDetect (circles). Right-hand graph
(b): tree induction method by Tsien et al. (crosses) and combined method (cir-
cles). All results were obtained by training and testing on separate sets (10-fold
cross validation).

has superior PPV (only 2 false positives). Overall, the performance of both
methods is reasonable on this variable, whereas the other two methods perform
poorly. For CVP, all methods obtain satisfactory results. ArtiDetect and the
combined method are notable for very good results, in terms of both sensitivity
and PPV. For HR, the combined method is better than the others, with a rea-
sonable to good performance (35 out of 46 artifacts detected, 7 false positives).
ArtiDetect performs remarkably poor on this variable (15 artifacts detected, 9
false positives).
Figure 7.1 visualizes the results of the four filtering methods on a series of
ABPm measurements. The left-hand graph shows that moving median filtering
(crosses) only classified large outliers in the ABPm time series as artifact, while
neglecting smaller artifact peaks. ArtiDetect (circles) also correctly identified
a number of such less extreme artifacts, at the expensive of two false positives.
These two data points were not considered as artifacts in the consensus judgment
as they were part of an increasing trend; ArtiDetect turned out to be not able
to discern these data points. The right-hand graph shows that the combined
method (circles) behaved almost similarly as ArtiDetect on this series with
two exceptions: it correctly classified one of ArtiDetect’s false positives as a
non-artifact, but it did not identify the artifact that is halfway the sudden
increase to 160 mmHg. The tree induction method of Tsien et al. (crosses)
failed to classify a large outlier in the series as artifact that has another outlier
as neighbor measurement; one of the small outliers in the series was correctly
identified as artifact by this method.
The results of the four filtering methods for a HR time series are visualized in
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Figure 7.2 Results of automated filtering on a series of 400 HR measurements.
The 26 data points in the series that were judged as artifacts by the physicians
are represented by shaded circles. Left-hand graph (a): results of moving median
filtering (crosses) and ArtiDetect (circles). Right-hand graph (b): tree induction
method by Tsien et al. (crosses) and combined method (circles). All results were
obtained by training and testing on separate sets (10-fold cross validation).

Figure 7.2. In addition to an isolated artifact, the series contains an episode of
25 data points that present bradycardia; these measurements were also judged as
artifacts by the physicians. The left-hand graph shows that ArtiDetect (circles)
only classified the most extreme outliers in the artifact episode as artifacts,
while moving median filtering (crosses) also classified smaller artifact peaks.
The less extreme artifacts in the episode were neglected by both methods. The
tree induction method of Tsien et al. (crosses) correctly classified sixteen mea-
surements in the episode as artifact (right-hand graph); the additional seven
marked points were incorrectly classified as artifacts, though. Finally, the com-
bined method correctly identified virtually all artifacts (21 data points) at the
expensive of one false positive outside the artifact episode. The isolated artifact
was identified by none of the methods.
Table 7.2 list, for each of the monitoring variables, the parameters that were
estimated from the data in moving median filtering and in ArtiDetect’s limit-
based detector and deviation-based detector. The parameters of the moving
median filter reflect that the variable CVP is least amenable to sudden changes:
the filter uses a relatively large window size and small classification threshold
to detect artifacts. The variable also has a relatively small range of admissible
values, as appears from the right side of the table. For the HR variable, no
upper bound on valid measurements could be established.
In the method of Tsien et al. and the combined method, a class probability
tree is induced from the data. Due to space restrictions, we only show two of
the resulting trees, and restrict ourselves to summarizing the others. Figure 7.3
shows the two tree models that were induced for filtering CVP data. The
left-hand tree, resulting from Tsien et al.’s method, uses a variety of different
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Table 7.2 Estimated window sizes (ws) and classification thresholds (δx) for the
moving median filter, and the estimated parameters for ArtiDetect: ranges of
admissible values (Ix, limit-based detector), and window sizes (ws) and classi-
fication thresholds (νx, deviation-based detector).

Median filtering ArtiDetect
Variable ws δx Ix ws νx

ABPm 11 51 [1,154] 11 2.96
CVP 91 16 [0,41] 31 0.72
HR 101 39 [39,∞) 91 0.35

moving statistics to detect artifacts, including range, median, absolute value of
the slope coefficient, and minimum value. The tree almost exclusively refers to
CVP values, and uses only one of the other variables, ABPm, for a small set
of cases. Closer scrutiny reveals that the tree imitates the limit-based detector
of ArtiDetect at various places, using the moving median statistic with window
size 3. For instance, the right-hand subgroup of the upper left branch judges
data points with a moving median smaller than 0 to be artifacts with 82%
certainty. The right-hand side of the tree similarly contains a branch where
data points with a moving median greater than 41 are classified as artifacts
with 100% certainty. Note that these boundaries exactly correspond to those of
ArtiDetect’s limit-based detector (Table 7.2).

Another interesting phenomenon occurs at the rightmost leaf of the tree. This
leaf represents data points in unstable parts of a CVP time series (range ≥
16) without a clear trend (absolute slope coefficient < 5). They are estimated
to have a high estimated probability (88%) of being an artifact. A similar
probability is found for relatively high CVP values that have been measured in
the context of low mean arterial blood pressure measurements (rightmost of the
two lower leafs).

Table 7.3 Moving statistics and corresponding window sizes (between brackets)
included in the tree models resulting from the method of Tsien et al., and size
of trees (number of leaf nodes).

Variable Included statistics Size

ABPm ABPm: standard deviation (3), median (3), absolute
value of slope coefficient (3), mean (3)

8

CVP CVP: range (3), absolute value of slope coefficient (3),
median (3)

7

ABPm: min. value (5)
HR HR: median (3), min. value (10) 6

ABPm: mean (5)
CVP: min. value (3)
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Table 7.4 Results for the tree models induced in combined method, after appli-
cation of ArtiDetect’s limit-based detector. The statistics (absolute error and
contribution to the standard deviation) with corresponding window sizes (be-
tween brackets) as included in the tree models, and size of trees (number of leaf
nodes).

Variable Included statistics Size

ABPm contr to sd (11, 101) 3
CVP contr to sd (31, 51, 21, 61, 5) 7
HR abs residual (91, 51)

contr to sd (21, 41, 61, 101) 10

The right-hand tree, resulting from the combined method after filtering extreme
values using the limit-based detector of ArtiDetect, uses statistics that quantify
the measurements’ contribution to the time-dependent standard deviation for
a variety of window sizes. Statistics that describe their absolute error of the
reconstructed time series (direction B of Section 7.2.2) were not included. Note
that the primary split of the tree exactly corresponds to ArtiDetect’s deviation-
based detector for this variable (Table 7.2). When compared to ArtiDetect’s
deviation based detector, the combined procedure employs four extra features
describing a measurement’s contribution to the standard deviation. However,
it turns from the figure that when classifying all data points as artifacts that
are judged in the tree model to be artifacts with more than 50% certainty, CVP
time series are equally judged by the combined method and ArtiDetect.

Table 7.3 summarizes the moving statistics and number of leaf nodes of the
tree models induced from the ABPm, CVP, and HR data in the tree induction
method of Tsien et al. It appears from this table that moving statistics of the
simultaneously measured blood pressure(s) was used as context information for
filtering the CVP and HR data. No context information was used for filtering of
ABPm time series. The included statistics and number of leaf nodes in the tree
models that are induced in the combined method after filtering extreme values
using the limit-based detector are summarized in Table 7.4. The primary split
in the tree model for HR time series, an absolute error statistic, turned out to
be an important filtering feature; this finding explains the poor performance of
ArtiDetect for these data.

7.4 Discussion and conclusions

We have applied and evaluated three existing methods and one new method for
filtering artifacts from ICU monitoring data. None of the methods was superior
in detecting artifacts for all three clinical variables: median filtering outper-
formed the others on mean arterial blood pressure, ArtiDetect and the com-
bined method were best on central venous pressure, and the combined method
had again the better performance on heart rate. The tree induction method of
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Tsien et al. was never superior to all other methods. ArtiDetect had the largest
variation in performance among the three variables.
In a preliminary study on the same data, we compared three different smooth-
ing techniques (kernel smoothing, local regression, and smoothing splines) in a
filtering method that resembled the moving median filter [10]. In that study,
theoretically impossible (e.g., negative) blood pressures were removed before
the filters were applied, and for these variables the results can therefore not be
compared directly to the current results. For heart rate, however, both sensitiv-
ity and positive predictive value were inferior to the moving median filter that
was applied here.
The current study is the first one to externally validate and compare the filtering
methods by Cao et al. and Tsien et al. External validation, i.e., validation at
sites other than the one that was used for development, is important because
methods may be implicitly geared towards the local situation in which they
were developed [11]. A similar implicit source of bias may exist when developers
evaluate their own method [12]. Both types of bias may explain the relatively
modest performance that was found in this study, compared to the performance
reported in the original studies.
A third source of bias in our study is the fact that the time series were selected
for their relatively rough course, and stable time series were therefore underrep-
resented. The results therefore do not represent the performance of the methods
on monitoring data in general. We expect that the two relatively inflexible meth-
ods (moving median filtering and ArtiDetect) will have more trouble on such
data.
In contrast to many other studies in the field of artifact detection, our reference
standard was not defined by a single expert but based on consensus among four
senior ICU clinicians. As described in Chapter 6 of this thesis, the use of a
consensus-based standard is preferable to single-expert standards for develop-
ment of artifact filters. The definition of a consensus-based standard is however
laborious, and for this reason our data set was smaller than in most other studies
on artifact detection.
Our data is additionally characterized by absence of combined probing, the simul-
taneous measurement of multiple variables by a single probe. Combined probing
is rare in adult ICUs, but customary in neonatal ICUs. It leads to correlations
in the occurrence of artifacts in the variables in question. Because C. Cao
et al. developed their ArtiDetect method on neonatal data, they also proposed
a correlation-based detector in addition to the limit-based and deviation-based
detectors. As all variables in our study were measured with separate probes, we
have not implemented the correlation-based detector. Our version of ArtiDetect
therefore differs from the original one, but we do not expect this has influenced
the results.
Also the tree induction method of C.L. Tsien et al. was slightly modified in
our application. In the original study [9], the binary variable indicating the
occurrence of artifacts was smoothed in a preprocessing step: measurements
were marked with true if the majority of measurements in a surrounding win-
dow of five measurements were originally labeled as artifacts. In the smoothed
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outcome therefore only artifact episodes remain, and the method is geared to-
wards detecting such episodes. Because artifact episodes were scarce in our data
set, we decided to not apply the preprocessing step. Perhaps that the method,
which performed relatively poor in our study, was set at a disadvantage by this
decision.
To summarize, a reasonable performance was obtained on our data, but no
single method outperformed the others on all variables. Because of the large
differences between variables, we conclude that is wise to employ a well-chosen
inductive bias when choosing an artifact detection method for a given variable,
i.e., a bias that fits the variable’s characteristics and the corresponding types of
artifact. Furthermore, the performance of ArtiDetect and Tsien et al.’s method
was substantially lower in our study than in the original investigations, stressing
the need for external validation studies in this field. Finally, we believe there is
room for improvement in the methods that are based on machine learning. A
possible direction for future research is rule induction.
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The use of prognostic models for risk assessment in clinical practice and evalua-
tion of care is preceded by a comprehensive process of model development. It in-
cludes collection of patient and outcome data, model induction from these data,
and validation of the models. In addition, development of modeling method-
ology and evaluation of the use for prognostic purposes are important issues
of investigation. This thesis has taken up part of this process by developing
new prognostic methods for modeling routinely recorded patient data in cardiac
surgery.

In the introductory chapter, we formulated five research questions. Section 8.1
reiterates these questions and summarizes our principal findings. Subsequently,
we reflect upon the thesis as an initiative of bridging the gap between the theory
and practice of predictive modeling in health care (Section 8.2). In Section 8.3,
we discuss general issues of our work with respect to the methods we used for
model induction and validation. An outlook on future work is presented in
Section 8.4. The chapter ends with concluding remarks in Section 8.5.

8.1 Summary of principal findings

How to employ the Bayesian network methodology for prognostic purposes in a
health care process?

Prognostic applications of Bayesian networks form a relatively new develop-
ment within biomedical informatics and artificial intelligence [1]. In Chapter 2,
we introduced the concept of prognostic Bayesian network (PBN) for modeling
of a care process, and described how PBNs can be applied for different prognos-
tic tasks during patient care. The primary task of PBNs is prediction, at any
moment during patient care, of future variables from the available data. Fur-
thermore, PBNs support examination of prognostic scenarios and identification
of important risk factors. PBN learning from patient data is complicated by
the fact that patients may die during early stages of care and ‘drop out’ of the
process; these patients do not pass through the entire care process being mod-
eled. We presented a dedicated learning procedure for development of PBNs
from local predictive models. The procedure adequately handles the phenom-
enon of patient dropout and explicitly takes account of the prognostic tasks of
PBNs.

Chapter 3 presented an application of PBNs in the domain of cardiac surgery
and provided empirical evidence for the added value of the PBN learning pro-
cedure over a standard algorithm for Bayesian network learning in which the
task of outcome prediction is not accounted for. The graphical representation of
Bayesian networks exposes the mutual relationships among the variables. With
respect to the interpretability of Bayesian networks, some remarks can be made
in this thesis. First, when the clinical experts involved in the project were
requested, in an informal set-up, to inspect the relationships in the PBN for
cardiac surgery, the high density of the relatively small network (23 variables)
appeared to hinder the inspection and interpretation of the relationships. Sec-
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ond, the interpretation was experienced to be difficult, because the graphical
representation of the network did not provide information on the strength of
the relationships. The use of the PBN by the clinicians to perform inference for
a number of patient profiles turned out to be much more informative for their
understanding of the model. Finally, as a general remark, the interpretability of
Bayesian networks is closely connected to the extent to which the relationships
may be regarded as causal relations. The use of observational data for network
learning does not permit a causal interpretation of the induced relationships,
and therefore diminishes the interpretability the network model.
The cardiac surgical application showed us that PBNs as clinical instruments
are more useful when attention is given to the prognostic tasks for which the
networks are consulted in practice. The desired information in these tasks is
generally not directly provided by PBNs, but only after the results of inference
have been post-processed. We therefore proposed to embed the network in a
prognostic system, in which the PBN is supplemented with a task layer that
holds a number of task specific procedures for prognostic use of the network.
We presented a prototype of the ProCarSur system for cardiac surgery.

How to induce prognostic models from data for outcomes that are required to
be dichotomized?

In the literature, the prediction problem of the outcome length of stay at the in-
tensive care unit (ICU) is often reduced to a two-class problem. A dichotomiza-
tion threshold for this outcome is then chosen prior to model development in
an unsystematic manner [2, 3]. In Chapter 4, we showed that selection of a
dichotomization threshold can be performed in a systematic approach that is
incorporated in the model development process. We presented a method that
extends existing modeling procedures by selecting the dichotomization threshold
for which the corresponding predictive model has maximal precision on the data.
Quantifying the precision of predictive models for different dichotomizations of
the outcome turned out to be complicated. Standard predictive performance
statistics such as the mean squared error and the Brier score cannot be used for
this purpose: these statistics are sensitive to differences in the outcome distrib-
ution, and are only suitable for model selection for a single prediction problem.
For a fair comparison of the precision of models for different dichotomizations of
the outcome, we introduced the MALOR statistic. This statistic is insensitive to
class unbalance, and therefore a suitable performance statistic for optimization
of the outcome definition in the process of predictive modeling.

How should the roles of data and knowledge be traded off in feature extraction
for prediction from monitoring data?

The large amounts of monitoring data that are currently recorded during the
cardiac surgical process form a new data source for prognostic modeling. A
common strategy in prediction from temporal data is the extraction of relevant
meta features prior to the use of standard supervised learning methods. This
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strategy involves the fundamental dilemma to what extent feature extraction
should be guided by domain knowledge, and to what extent it should be guided
by the available data. In a preliminary case study on prediction of the outcome
prolonged mechanical ventilation using monitoring data of postoperative inten-
sive care, we found that the use of existing concepts from the medical language,
such as the symbolic state (e.g., high, normal, low) and trend (e.g., increasing,
steady, decreasing) abstractions, yields meta features with poor predictive value
when using definitions obtained by a clinical expert. Moreover, as presented in
Chapter 5, the induction of numerical meta features from a large set of sim-
ple summary statistics from the available data outperformed the induction of
definitions for symbolic meta features from the data. The findings in this case
study showed that in prediction from monitoring data, it is preferable to reserve
a more important role for the available data in feature extraction than using
existing concepts from the medical language for this purpose.

What is the impact of using single-expert reference standards on the general-
izability of artifact filters for monitoring data?

In many studies on automated filtering of monitoring data, clinical judgments
of time series provided by a single expert have been used as reference standard
to develop artifact filters [4–6]. In Chapter 6, four ICU clinicians were shown
to disagree in their judgments of monitoring data with respect to artifacts. An
underlying reason is the fact that the concept of ‘artifact’ is rather ambiguous
and hard to define. We showed that filters that were developed using judg-
ments of individual experts poorly fit to judgments of other domain experts
and poorly predict the occurrence of artifacts in other, unseen time series. We
therefore concluded that individual judgments are less suitable reference stan-
dards for development and validation of artifact filters. Filters developed using
joint judgments tended to have better performance for artifact detection in new
time series.

Which artifact detection method yields filters with high performance for moni-
toring data?

Moving median filtering is a basic, and frequently applied, method for auto-
mated filtering of monitoring data. In the literature, several more sophisticated
artifact detection methods have been proposed [4, 5, 7]. Chapter 7 presented a
comparison of the performance of artifact filters developed using three existing
methods, and a new combined method. The filters were applied to blood pres-
sure and heart rate measurements from cardiac surgery patients during their
postoperative recovery. We showed that none of the filtering methods was supe-
rior on all three variables that were used in this study. This finding can be traced
back to differences in the characteristics of the variables (e.g., their variability)
and the types of artifact that are commonly observed in recorded data (e.g., the
occurrence of artifact episodes). We therefore advised to employ a well-chosen
inductive bias when choosing an artifact detection method for a given variable,
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i.e., a bias that fits the variable’s characteristics and the corresponding types of
artifact.

8.2 Bridging the gap between theory and practice

Research on modeling methodologies as performed in the machine learning (ML)
community is of importance to contemporary medicine, as ML scientists pro-
vide the medical field with new methods for inducing predictive models from
the increasing amount of patient data [8]. This thesis showed that application
of these methods to real prediction problems is not a straightforward activity,
though. We have run into a number of modeling difficulties for which no suit-
able methods were available. An example hereof is the phenomenon of patient
dropout when modeling care processes using the Bayesian network methodol-
ogy, and learning these networks from data. It also held for predictive modeling
of the length of stay outcome as a two-class problem when no dichotomization
threshold was given.

In ML research, most researchers have little experience with the practice of
predictive modeling in health care, due to which particular issues are being ne-
glected. They often use data sets as publicly available in the UCI Machine
Learning Repository [9] containing arbitrary (medical) prediction problems.
These problems are not representative for the wide range of prediction prob-
lems that exist in the medical field. Moreover, domain knowledge on the data
is limitedly available for these sets, e.g., underlying reasons for missing values.
Furthermore, ML scientists are generally not aware of the specific information
needs that clinicians have when consulting a predictive model. For these reasons,
the use of existing ML methods generally does not (completely) solve medical
prediction problems, and further adaptation of the methods for the induction
of clinically useful models from the available data is required.

This has induced a gap between the theory of predictive modeling in ML and
the practice of predictive modeling in health care. It is an assignment of the
field of medical informatics (MI) to bridge this gap. We have taken up this
challenge for prognostic problems. The project was performed within the envi-
ronment of a university hospital, and in close cooperation with clinicians who
are involved in the care process of cardiac surgery and in collecting the data.
The research questions were based on prognostic problems in contemporary car-
diac surgery and postoperative intensive care. We employed ML methodologies
for development of dedicated methods to solve these problems, and provided a
‘proof of concept’ of the suitability of the methods. This type of MI research
of applying and adapting predictive modeling methods as supplied by the ML
field, in turn, also provides a demand for further ML research. This includes
the generalization of the proposed methods and improvement of their efficiency
for model induction from data.
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8.3 Model induction and validation

In this section, we discuss our choice for tree models as supervised learning
method, the role of domain knowledge in model induction, and issues related to
method and model validation. These themes are taken from a recent review on
issues and guidelines in data mining for predictive modeling [10].

8.3.1 Application of class probability trees

The method of class probability trees from the tree building methodology of
L. Breiman et al. [11] has been used as supervised machine learning method
in this thesis. We employed tree induction for development of local models
in the application of the PBN learning procedure (Chapter 3), and to develop
prognostic instruments for a patient’s stay at the ICU (Chapter 4 and 5). Fur-
thermore, the tree induction method was applied for development of artifact
filters for monitoring data (Chapter 6 and 7). Tree models are generated by
recursively partitioning of the data set into homogeneous subgroups with re-
spect to the outcome variable. The selection of features is incorporated in this
procedure. In each recursive iteration, a variable along with its splitting value
is selected from the set of potential predictors using an information criterion.
The resulting partitions are represented in a tree structure; the paths in the
tree describe the risk groups discovered in the data. The terminal nodes of class
probability trees contain probability distributions of the outcome variable that
are estimated from the corresponding subsets of the data set.

As stated in the introductory chapter, we did not solely intend to develop mod-
els with high predictive performance, but also to induce interpretable models.
In the literature, tree models are praised for their transparency: the graphical
representation lends itself to easy interpretation by humans [12]. The tree struc-
ture provides a description of different risk groups that can be distinguished in
the patient population, and as such the models closely resemble the way of
thinking of clinicians. These were important reasons for using the tree building
methodology in this thesis.

Tree models can be somewhat misleading from an epidemiological perspective,
though. Their suitability to discover risk factors for clinical outcomes and risk
groups in patient populations can be questioned for at least two reasons. First,
as a consequence of the way trees are constructed, the subgroups in tree models
may be described by redundant variables, as pointed out by R.J. Marshall [13].
Redundant variables overspecify the description of risk groups. An example
hereof is the absence of a certain risk factor, e.g., diabetes; the tree model may
suggest that subsequent splits and the estimated outcome distributions only hold
for non-diabetic patients, while actually they hold for both non-diabetic and
diabetic patients. Second, in case of competitive features, the feature selection
process in tree modeling may highly depend on the particular data set used
for learning the model; we experienced this in our project. Features that are
actually equally informative as the feature that is selected in a certain iteration
may remain unused in the further part of the tree building process. Tree models
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may therefore not reveal all factors in the data that are important for the
prediction problem at hand.

This phenomenon mainly occurs when features contain the same information,
i.e., when they are strongly collinear. We observed real examples hereof when
inducing tree models from sets of features that were extracted from monitoring
data for outcome prediction (Chapter 5) and for development of artifact filters
as described in Chapter 7. Summary statistics of time series, such as mean and
median value, have high correlation, as well as features that describe a mea-
surement’s characteristics in relation to its time series for neighboring window
sizes. The resulting tree models therefore provide an indication of the relevant
feature types for the particular prediction problem, and the models should be
interpreted as such. In the study on monitoring data, we performed feature
subset selection prior to predictive modeling, as the use of a large set of highly
correlated summary statistics in the tree building procedure was found to result
in extremely poor predictive tree models.

For competitive features that distinguish (partly) different but equally homo-
geneous risk groups, we found that the unselected features were selected in
subsequent iterations, and still appeared in the tree model. An example of this
phenomenon is the induction of the tree model that is presented in Chapter
4 for predicting the ICU length of stay outcome. At the first iteration, the
variables ‘maximal creatinine value’, ‘surgery type’, and ‘fraction inspired oxy-
gen’ appeared as competitive features; the creatinine variable was selected as
primary split in the tree model, and the two other variables were subsequently
used for further distinguishing risk groups within the initial low risk group. The
resulting tree models in this situation of competitive features suggest that some
variables only hold for a subgroup of patients, while they actually hold for the
entire population.

From our experience in this thesis, we advise to perform efficient feature sub-
set selection prior to applying the tree building procedure when a large set of
features is available, especially if they are strongly collinear. Furthermore, we
recommend to examine the set of competitive features for all splits in the tree
model to verify whether important predictive features did not show up in the
model. In addition, inspection of the structure of the resulting tree model is
necessary to investigate whether variables are only predictive in a subgroup of
patients, indicating interaction between variables, or whether the risk groups
are described by redundant variables. The results of these analyses form impor-
tant information to be presented together with the tree model, and can partly
be integrated by presenting the tree model as a set of predictive rules.

8.3.2 The role of domain knowledge

An important issue in predictive modeling of medical data is the role of domain
knowledge [10]. In general, medical data analyses strive to discover useful knowl-
edge that refines or supplements existing knowledge on patient populations and
prediction problems, while existing domain knowledge is used to guide the mod-
eling process [14]. The use of domain knowledge prevents the modeling process
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from overfitting, especially when small amounts of observations are available
for model induction. Moreover, utilizing knowledge of domain experts in model
development, for instance to ensure that all well-known predictive factors are in-
cluded in the model, is known to increase the clinical credibility of the resulting
model [15].
The Bayesian network methodology is known as an appropriate method for
exploiting domain knowledge in model development. Knowledge can be used
to define parts of the network structure, such as the direction of the arcs; this
restricts the search space when inducing the network from data and therefore re-
duces the risk of overfitting the data. Manual construction of Bayesian networks
forms an extreme strategy in this respect [1]. In this case, both the graphical
part (i.e., the network structure) and the numerical part (i.e., the (conditional)
probability distributions) of the network are obtained from domain knowledge
and with help of clinical experts [16, 17]. The subjectively estimated parameters
can subsequently be updated on the basis of (a small) data set [18].
The use of domain knowledge in model development assumes suitable knowl-
edge to be available in the clinical domain, and modeling methodology to be
appropriate to incorporate the knowledge. During the research described in this
thesis it became apparent that in the area of cardiac surgery domain knowledge
is not readily available. In this respect, predictive modeling of prognostic prob-
lems is opposed to, for instance, modeling of diagnostic problems. In diagnostic
reasoning, knowledge on clinical definitions of diseases plays an important role;
this knowledge is often made explicit in medical publications and communica-
tion between health care providers. This is generally not the case in prognostic
reasoning. Moreover, we found that formats in which knowledge is represented
in existing methods are not always appropriate for prognosis.
These findings are clearly illustrated in our study on feature extraction for
outcome prediction from ICU monitoring data as presented in Chapter 5. As
mentioned in Section 8.1, the use of definitions of state and trend abstractions
obtained by a clinical expert resulted in poor predictive features in a preliminary
analysis. This finding suggests that no obvious definitions of these concepts are
available for prognosis. However, the subsequent finding that the induction of
these definitions from data was outperformed by calculating a set of summary
statistics indicate that the concepts of state and trend are not suitable for the
extraction of prognostic features from monitoring data. The fact that many
diseases are commonly defined in terms of state and trend abstractions of a pa-
tient’s measurements over time explains why these concepts and their definition
from domain knowledge were found to be suitable for supporting diagnostic
problems [19]. In contrast, knowledge on relevant abstractions for prognosis
appeared to be not directly available in common clinical knowledge.
Moreover, we found that knowledge on appropriate outcome definitions is lack-
ing (Chapter 4). This is reflected by the large number of different dichotomiza-
tion thresholds that have been used in the literature to define the outcome
‘prolonged ICU length of stay’ for similar patient populations [3, 20, 21]. It
also appeared to be difficult for the clinical experts involved in this project to
define this outcome. We therefore extended the existing predictive modeling
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methodology to learn the threshold from data. Finally, Chapter 6 showed that
generally agreed knowledge on artifact measurements in monitoring data is lim-
itedly available, and that employing opinions of individual experts in modeling
highly affects the generalizability of the resulting models.

This section is an additional illustration of the aforementioned gap between
the theory and practice of predictive modeling. We argue that the problem
of domain knowledge should be addressed from multiple directions. There is
certainly a role for ML methods to discover and refine prognostic knowledge
from data. However, further research is also needed to examine the knowledge
on prognosis that is present in clinical domains, which is generally referred to
as ‘the clinical eye of the doctor’. This also includes research on the format in
which the knowledge can be described, and on suitable methods to extract the
knowledge from data and to utilize it in data analyses.

8.3.3 Method and model validation

Method and model validation are closely related. Validation of modeling meth-
ods is aimed at assessing the method’s ability to induce models from data that
are suitable for the intended task, which was outcome prediction in this thesis.
The aim of model validation is to establish whether a given model is satisfactory
for patients other than those from whose data the model was derived [22]. Model
performance is an important aspect in both method and model validation. Ad-
ditional aspects in method validation are the transparency of the models and
the computational costs for model induction and inference. Transparency is also
an item of interest in model validation, in addition to aspects of the benefit of
the model in clinical practice.

The basic strategy for assessing model performance is the use of random split
sample or a cross-validation procedure (internal validation). Wider issues of
generalizability of prognostic models are addressed when validating on data of
subsequent patients within the center that provided the training data (temporal
validation) and on data of patients from other centers (external validation) [22].
Evidence of the generalizability of prognostic models is known to be an impor-
tant factor for their acceptance by clinicians [15]. Moreover, several statistics
are available for quantifying model performance in terms of model calibration,
prediction accuracy, and discriminative ability. The intended task of prognos-
tic models in practice determines which performance criteria are appropriate in
model validation [23].

In this thesis, we examined whether the proposed methods were feasible for
development of prognostic instruments by assessing the predictive performance
of the resulting models; moreover, we quantified model performance to value
methods in comparative studies. When choosing the right performance criteria,
validation of model performance provides useful information on the validity of
the modeling methodology. This is, for instance, illustrated in the PBN study
(Chapter 3). In addition to the PBN’s discriminative ability, we validated the
calibration of the network, because precise probability estimates were known
to be necessary for a number of tasks of the PBN. The PBN showed good
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discrimination results, but severe underdispersion of the probability estimates
was observed for the mortality outcomes. The latter results indicate that further
research on PBNs is necessary. Method validation in this thesis was limited to
model performance, though; we did not evaluate other aspects of the methods.

Another limitation of our study is that we only performed internal validation.
Moreover, we used data from single institutions for model induction and val-
idation. The PBN was induced from data of patients who underwent cardiac
surgery in the Amphia Hospital in Breda, the Netherlands (Chapter 3), while
for the modeling problems in the postoperative stage of intensive care (Chapter
4-7), data from the Academic Medical Center in Amsterdam, the Netherlands,
were used. As such, we evaluated the generalizability of the models to unseen
patients from the institute that provided the data. Given differences in case-
mix and treatment policies over time and among cardiac surgical institutes, it is
relevant that prognostic models in this domain generalize well to future patients
and patients from other centers. In a thesis on prognostic methods, temporal
and external model validation would have provided useful information whether
the methods deliver models that are robust for differences in patient popula-
tions. We hypothesize that the important role of data in the proposed methods
may be at the expense of the robustness of the resulting models.

8.4 Future work

We now provide a preview of necessary steps to come from a ‘proof of concept’
of the methods that were presented here to reliable prognostic instruments that
can be used in clinical practice. For this purpose, we use the ‘tower of achieve-
ment’ as presented by C.P. Friedman, distinguishing four levels of necessary
activities in the MI field to provide the medical field with information systems
[24]. The basic level of the tower is model formulation, followed by the levels
of system development, system installation, and study of effects. Development
of information systems involves a climb in the tower of achievement. Within
the context of prognostic models, we refer to the levels of Friedman’s tower as
method development, model development, model implementation, and study of
effects. This thesis is clearly located at the basic level of method development.
Two directions of future work are conceivable: 1) at the same basic level, and 2)
upwards to the top of the tower. We briefly describe issues of further research
in both directions.

As the proposed methods were investigated in single case studies in the domain
of cardiac surgery, further evaluation of their application to other prediction
problems and other clinical domains is necessary at the level of method devel-
opment. The health care process of cardiac surgery is relatively straightforward
as compared to care processes as, for instance, in the domain of oncology which
are often composed of a surgical intervention and stages of radiotherapy and
chemotherapy. Even though the concept of PBNs is applicable to these do-
mains, the recurring character of the process should be accounted for in the
methodology; an interesting option is its integration with the methodology of
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dynamic Bayesian networks [25]. In addition, as mentioned in Section 8.3.2,
research is needed on the extraction and use of prognostic knowledge that is
present in clinical domains.
When climbing the tower to deliver the cardiac surgical domain with prognostic
instruments, selection of appropriate data sets for model induction and valida-
tion is of primary importance at the level of model development. The choice
of the data sets should be guided by the intended use of the models. Single
center data are suitable for development of dedicated models for the institute
that provided the data, while multicenter data are necessary when developing
more general prognostic tools. Moreover, validation of the dedicated models re-
quires a prospective data set for temporal validation, while external validation
is needed to assess the generalizability of models that are intended to be used
in different patient populations.
The inclusion of patient and process variables as potential prognostic features
for model building is another issue to be considered at the level of model devel-
opment. Domain experts may provide useful knowledge to guide this step. The
inclusion of variables depends on the available data in the information systems
of the participating institutions. An important criterion is that the variables are
well defined and that the data are recorded according to these definitions. In
multicenter studies, similar variable definitions should be used in the different
centers.
Many initiatives for development of prognostic models end with reporting the
predictive performance of the resulting model whether or not assessed using
temporal and external validation strategies. Evaluation of the potential benefit
of employing the model in practice is a valuable additional activity at the level
of model development. A recent study in the surgical domain of esophagectomy
is an inspiring example of this type of model evaluation [26]. In the study,
prognostic models developed for estimating the length of stay of individual pa-
tients were prospectively evaluated with respect to their intended clinical use,
the efficient planning of beds in the ICU.
A necessary subsequent step in the development of prognostic models is their
implementation in clinical practice. Model implementation is a separate level in
the tower of achievement, indicating that it involves much more than presenting
the model and the corresponding results of model validation to the intended
users. A current challenge at this level is to maximally support the use of the
prognostic models by embedding them in the information system that contains
the data for model application. This certainly holds for implementation of
models that use features that are extracted from monitoring data for outcome
prediction (Chapter 5) and the prognostic system ProCarSur (Chapter 3).
The process of model development should be concluded at the final level of
study of effects. This includes investigations of the actual benefit of the model
in supporting clinical staff and management when using the instruments in their
decision making [10]. For the ProCarSur system, for instance, we currently have
no evidence that the prognostic functionalities are useful for clinicians during
patient care. Reliable assessment of the benefit of prognostic models involves
empirical evaluation studies [27].
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8.5 Concluding remarks

The pressure in contemporary health care to evaluate and improve the efficiency
and quality of care will persist or even increase in the near future. In these de-
velopments, there is a key role for prognostic models to provide clinical staff and
managements with useful prognostic information to assess a patient’s risks prior
to and during patient care, and for efficient case load planning. Furthermore,
they form indispensable tools for case-mix adjustment and outcome comparison
among care providers.

In this thesis, we have initiated the development of new prognostic methods
for the clinical domain of cardiac surgery that are suitable for this purpose.
We have regarded the health care process in its entirety, and accounted for
the physicians’ needs for up to date and useful prognostic information at any
time during patient care. As a basis for model development we used data as
routinely recorded in the care process, including large amounts of monitoring
data from postoperative intensive care. We investigated methods for extraction
of prognostic information from monitoring data, and we faced the problem of
reliable detection of data artifacts in these data. ML methods can be used
for prognostic modeling, but adaptation of these methods is needed for the
induction of models that provide clinicians with useful prognostic information.
Domain knowledge that can be utilized in the process of model development is
limitedly available.

We did not deliver prognostic models as end products; further steps of research
are necessary to determine the ultimate benefit of the prognostic models for
clinical staff and management. This thesis primarily contributes to adapting
ML modeling methods to the induction of models for prognosis from routinely
recorded data. We hope that this will enable the development of useful instru-
ments in cardiac surgery and other clinical domains for further improvement of
the efficiency and quality of patient care.
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Summary

Cardiac surgery has become an important medical intervention in the treatment
of end-stage cardiac diseases. Similar to many clinical domains, however, today
the field of cardiac surgery is under pressure: more and more patients are ex-
pected to be treated with high-quality care within limited time and cost spans.
This has induced an increasing urge to evaluate and improve the efficiency and
quality of the delivered care. Research on predictive factors of clinical outcomes
(e.g., death) and the amount and duration of treatment is indispensable in this
respect. A common strategy to identify predictive factors is the development
of prognostic models from data. The resulting models can be used for risk as-
sessment and case load planning. Furthermore, the models form instruments
that can assist in the evaluation of care quality by adjusting raw outcomes for
case mix. The development of new prognostic methods using machine learning
methodology for cardiac surgery and postoperative intensive care is the topic of
this thesis.

Chapter 1 introduces the multidisciplinary care process of cardiac surgery and
presents the objectives of the thesis. The care process is roughly composed of
a preoperative stage of preassessment, a stage of the surgical intervention in
the operation room, and a postoperative stage of recovery at the intensive care
unit (ICU) and the nursing ward. With the introduction of modern clinical in-
formation systems, large amounts of patient data are routinely recorded during
patient care, including data of the (cardiac) disease history of the patients, op-
erative details, and monitoring data. Moreover, clinical outcomes such as length
of stay and death are recorded in these systems. The information systems form
a new data source for development of prognostic models. Instruments that are
currently in the prognostic toolbox of clinicians and managers involved in car-
diac surgery are models that generally allow only preoperative risk assessment of
a single outcome variable; standard statistical methods (e.g., logistic regression
analysis) have been used for model development. The field of machine learning
offers methods for data modeling that are potentially suitable for development
of prognostic models for their graphical model representation. Tree models and
Bayesian networks are typical examples hereof; their graphical representation
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may contribute to the interpretation of the models. The general objective of this
thesis is to employ and investigate these machine learning methods for model-
ing data that are recorded during routine patient care, in order to extend the
practitioner’s prognostic toolbox. The project aims to provide a ‘proof of con-
cept’ of the prognostic methods rather than delivering prognostic instruments
as clinical end products.

Chapter 2 presents the prognostic Bayesian network (PBN) as a new type of
prognostic model that builds on the Bayesian network methodology, and imple-
ments a dynamic, process-oriented view on prognosis. In this model, the mutual
relationships between variables that come into play during subsequent stages of
the care process, including clinical outcomes, are modeled as a Bayesian net-
work. A procedure for learning PBNs from data is introduced that optimizes
performance of the network’s primary task, outcome prediction, and exploits
the temporal structure of the health care process being modeled. Furthermore,
it adequately handles the fact that patients may die during the intervention
and ‘drop out’ of the process; this phenomenon is represented in the network by
subsidiary outcome variables. In the procedure, the structure of the Bayesian
network is induced from the data by selecting, for each network variable, the best
predictive feature subset of the other variables. For that purpose, local super-
vised learning models are recursively learned in a top-down approach, starting
at the outcome variable of the health care process. Each set of selected features
is used as the set of parent nodes of the corresponding variable, and represented
as such with incoming arcs in a graph. Application of the procedure yields a
directed acyclic graph as graphical part of the network, and a collection of lo-
cal predictive models as the numerical part; they jointly constitute the PBN.
In contrast to traditional prognostic models, PBNs explicate the scenarios that
lead to disease outcomes, and can be used to update predictions when new in-
formation becomes available. Moreover, they can be used for what-if scenario
analysis to identify critical events to account for during patient care, and risk
factor analysis to examine which variables are important predictors of these
events. In order to support their use in clinical practice, PBNs are proposed
to be embedded in a prognostic system with a three-tiered architecture. In the
architecture, a PBN is supplemented with a task layer that translates the user’s
prognostic information needs to probabilistic inference queries for the network,
and a presentation layer that presents the aggregated results of the inference to
the user.

An application of the proposed PBN, the learning procedure, and the three-
tiered prognostic system in cardiac surgery is presented in Chapter 3. The
learning procedures was applied to a data set of 6778 patients for development
of a PBN that includes 22 preoperative, operative, and postoperative variables.
Hospital mortality was used as outcome variable in the network, and operative
mortality and postoperative mortality as subsidiary outcome variables to repre-
sent patient dropout. The method of class probability trees served as supervised
learning method for feature subset selection and induction of local predictive
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models. The predictive performance of the resulting PBN was evaluated for a
number of complication and mortality variables on an independent set of 3336
patients for two prediction times: during the preoperative stage, and at ICU
admission. The results showed a good calibration for the variables that describe
ICU length of stay longer than 24h and the occurrence of cardiac complications,
but a poor calibration for the mortality variables; especially for these variables,
the predicted probabilities of the PBN were found to be underdispersed. The
mortality variables had best discrimination, though. In order to verify the ef-
fectiveness of the dedicated PBN learning procedure, the performance results of
the PBN were compared to the predictive performance of a network that was in-
duced from the learning set using a standard network learning algorithm where
candidate networks are selected using the minimal description length (MDL)
principle. The PBN outperformed the MDL network for all variables at both
prediction times with respect to its discriminative ability. Similar calibration
results were observed for the MDL network, suggesting that the underdispersion
of predicted probabilities is directly related to the Bayesian network method-
ology. The chapter concludes with presenting a prototype implementation of a
prognostic system that embeds the PBN, ProCarSur.

Prediction of the postoperative ICU length of stay (LOS) fulfils an important
role in identification of patients with a high risk for a slow and laborious recov-
ery process. Furthermore, it provides useful information for resource allocation
and case load planning. When developing predictive models for this outcome,
the prediction problem is frequently reduced to a two-class problem to estimate
a patient’s risk of a prolonged ICU LOS. The dichotomization threshold is often
chosen in an unsystematic manner prior to model development. In Chapter 4,
methodology is presented that extends existing procedures for predictive mod-
eling with optimization of the outcome definition for prognostic purposes. From
the range of possible threshold values, the value is chosen for which the cor-
responding predictive model has maximal precision based on the data. The
MALOR performance statistic is proposed to compare the precision of models
for different dichotomizations of the outcome. Unlike other precision measures,
this statistic is insensitive to the prevalence of positive cases in a two-class pre-
diction problem, and therefore a suitable performance statistic to optimize the
outcome definition in the modeling process. We applied this procedure to data
from 2327 cardiac surgery patients who stayed at the ICU for at least one day
to build a model for prediction of the outcome ICU LOS after one day of stay.
The method of class probability trees was used for model development, and
model precision was assessed in comparison to predictions from tree ensembles.
Within the data set, the best model precision was found at a dichotomization
threshold of seven days. The value of the MALOR statistic for this threshold
was not statistically different than for the threshold of four days, which was
therefore also considered as a good candidate to dichotomize ICU LOS within
this patient group.

During a patient’s postoperative ICU stay, many physiological variables are
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measured with high frequencies by monitoring systems and the resulting mea-
surements automatically recorded in information systems. The temporal struc-
ture of these data requires application of dedicated machine learning methods.
A common strategy in prediction from temporal data is the extraction of rel-
evant meta features prior to the use of standard supervised learning methods.
This strategy involves the fundamental dilemma to what extent feature extrac-
tion should be guided by domain knowledge, and to what extent it should be
guided by the available data. Chapter 5 presents an empirical comparison of
two temporal abstraction procedures that differ in this respect. The first proce-
dure derives meta features that are predefined using existing concepts from the
clinician’s language and form symbolic descriptions of the data. The second pro-
cedure searches among a large set of numerical meta features number (summary
statistics) to discover those that have predictive value. The procedures were ap-
plied to ICU monitoring data of 664 patients who underwent cardiac surgery to
estimate the risk of prolonged mechanical ventilation. The predictive value of
the features resulting from both procedures were systematically compared, and
based on each type of abstraction, a class probability tree model was developed.
The numerical meta features extracted by the second procedure were found to
be more informative than the symbolic meta features of the first procedure, and
a superior predictive performance was observed for the associated tree model.
The findings in this case study indicate that in prediction from monitoring data,
it is preferable to reserve a more important role for the available data in feature
extraction than using existing concepts from the medical language for this pur-
pose.

Automatically recorded monitoring data often contain inaccurate and erroneous
measurements, or ‘artifacts’. Data artifacts hamper interpretation and analysis
of the data, as they do not reflect the true state of the patient. In the literature,
several methods have been described for filtering artifacts from ICU monitoring
data. These methods require however that a reference standard be available in
the form of a data sample where artifacts are marked by an experienced clini-
cian. Chapter 6 presents a study on the reliability of such reference standards
obtained from clinical experts and on its effect on the generalizability of the
resulting artifact filters. Individual judgments of four physicians, a majority
vote judgment, and a consensus judgment were obtained for 30 time series of
three monitoring variables: mean arterial blood pressure (ABPm), central ve-
nous pressure (CVP), and heart rate (HR). The individual and joint judgments
were used to tune three existing automated filtering methods and to evaluate
the performance of the resulting filters. The results showed good agreement
among the physicians for the CVP data; low interrater agreement was observed
for the ABPm and HR data. Artifact filters for these two variables developed
using judgments of individual experts were found to moderately generalize to
new time series and other experts. An improved performance of the filters was
found for the three variable types when joint judgments were used for tuning
the filtering methods. These results indicate that reference standards obtained
from individual experts are less suitable for development and evaluation of ar-
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tifact filters for monitoring data than joint judgments.

A basic, and frequently applied, method for automated artifact detection is
moving median filtering. Furthermore, alternative methods such as ArtiDetect
described by C. Cao et al. and a tree induction method described by C.L. Tsien
et al. have been proposed in the literature for artifacts detection in ICU moni-
toring data. Chapter 7 presents an empirical comparison of the performance of
filters developed using these three methods and a new method that combines
these three methods. The 30 ABPm, CVP, and HR time series were used for
filter development and evaluation; the consensus judgment of the time series ob-
tained from the four physicians was used as reference standard in this study. No
single method outperformed the others on all variables. For the ABPm series,
the highest sensitivity value was observed for ArtiDetect, while moving median
filtering had superior positive predictive value. All methods obtained satisfac-
tory results for the CVP data; high performance was observed for ArtiDetect
and the combined method both in terms of sensitivity and positive predictive
value. The combined method performed better than the other methods for the
HR data. Because of the large differences between variables, it is advised to em-
ploy a well-chosen inductive bias when choosing an artifact detection method
for a given variable, i.e., a bias that fits the variable’s characteristics and the
corresponding types of artifact.

The principal findings of this thesis are summarized and discussed in Chap-
ter 8. The thesis primarily contributes to adapting machine learning methods
to the induction of prognostic models from routinely recorded data in contem-
porary cardiac surgery and postoperative intensive care. Notwithstanding the
graphical representation of Bayesian networks, the interpretation of the cardiac
surgical PBN was experienced to be difficult (Chapter 3). In addition, tree mod-
els were observed to be somewhat misleading: they may not reveal all factors in
the data that are important for the prediction problem at hand. A persistent
problem turned out to be the incorporation of domain knowledge into machine
learning methods: knowledge appeared to be not readily available for prognos-
tic problems in cardiac surgery. Moreover, the formats in which knowledge is
represented in existing methods were found to be not always appropriate for
prognosis. These findings are clearly illustrated in the study on feature extrac-
tion from ICU monitoring data (Chapter 5). Furthermore, generally agreed
knowledge on artifact measurements in monitoring data appeared to be limit-
edly available, and employing opinions of individual experts in modeling was
found to highly affect the generalizability of the resulting models (Chapter 6).
Future steps to come from a ‘proof of concept’ of the presented methods to
reliable prognostic instruments for clinical practice involve model development
from multicenter data sets that include the relevant patient and process vari-
ables, and their implementation in clinical practice. Finally, evaluation studies
will be necessary to assess the actual benefit of the instruments in supporting
clinical staff and management for evaluation and improvement of the efficiency
and quality of patient care.
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