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Notation

General variables

F Actual concentrated load, can be in combination with bending moment [N].
k Stiffness between concentrated load and web crippling deformation [N/mm].
M Actual bending moment, can be in combination with concentrated load [Nmm].
Mu Ultimate bending moment if there is no concentrated load [Nmm].
∆hw Web crippling deformation. The reduction of height hw [mm].
∆ ... Difference of ...
δ ... Incremental ...

Sheeting variables (see also thesis [Hofm00a], chapter 2, figure 2-3)

bbf Bottom flange width [mm].
bbffl Flat bottom flange width [mm].
bm Total width between top flange middles [mm].
btf Top flange width [mm].
btffl Flat top flange width [mm].
bw Web width [mm].
bwfl Flat web width [mm].
E Modulus of elasticity [N/mm2].
fy Steel yield strength [N/mm2].
hm Sheeting height as shown in figure 2-3, chapter 2, thesis [Hofm00a] [mm].
hw Sheeting height as shown in figure 2-3, chapter 2, thesis [Hofm00a] [mm].
Llb Load-bearing plate width [mm].
Lspan Span length [mm].
rbf Radius of bottom corner [mm].
ribf Interior radius of bottom corner [mm].
ritf Interior radius of top corner [mm].
rtf Radius of top corner [mm].
t Steel plate thickness [mm].
θw Angle between web and flange [deg.].

Yield line distances

Lbf;left;edge
Lbf;right;edge

Distance between left / right two yield lines in bottom flange at the bottom corner
[mm].

Lbf;left;in
Lbf;right;in

Distance between load-bearing plate and inner left / right yield line in bottom
flange [mm].

Lbf;left;out
Lbf;right;out

Distance between load-bearing plate and outer left / right yield line in bottom
flange [mm].

Ltf Distance between support and yield line in top flange [mm].
Lw Distance between bottom corner and yield line in web [mm].
Lyb Distance between yield lines in bottom flange (Bakker's model) [mm].
Lyt Distance between yield lines in top flange (Bakker's model) [mm].
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Appendix 1 (ultimate failure mechanical model)

b Substitute variable for beam on elastic foundation model.
b, L Width and length of plate for Marguerre's equations [mm].
dQ, dP Distances of point Q and P to line of intersection top flange and web [mm].
dx Infinite small piece of sheeting in length direction.
E Modulus of elasticity [N/mm2].
F Actual concentrated load [N].
f1 Function.
Fmin, Fmax Minimum and maximum values for the estimation of load F [N].
Ftest Ultimate load Fu measured during an experiment.
I Moment of inertia for sheeting longitudinal section for sheeting part above the

load-bearing plate [mm4].
Is Moment of inertia for total sheeting cross-section [mm4].
k Stiffness between concentrated load and web crippling deformation [N/mm].
K1, K2 Factors in Marguerre's equations.
M Actual bending moment, can be in combination with concentrated load [Nmm].
Ma Bending moment in sheeting part above the load-bearing plate [Nmm].
P, Q, R, S, T Points on the bottom flange.
q Equally distributed load [N/mm2].
Rh Reaction force for sheeting part above the load-bearing plate [N].
u, w, v Displacements along the x, y, and z-axis (should not be u, v, w, which seems to be

more logical, see figure 1-3).
w0 Out-of-plane displacement of modelled part bottom flange [mm].
wa Deflection of point a [mm], used in the beam on elastic foundation model.
wmin, wmax Minimum and maximum values for the estimation of displacement w0 [mm].
wP, wR, wS Out-of-plane displacements of point P, R, and S [mm].
x, y, z Variables defining coordinate system.
y0 Initial imperfection of midpoint in modelled part of bottom flange [mm].
zp Distance between centre of gravity and bottom flange [mm].
∆hw Web crippling deformation. The reduction of height hw [mm].
α Part of the web, used in the beam on elastic foundation model.
α, β Substitution variables for Marguerre's equations [mm].
λ, C1, C2, C3,
D, p

Substitution variables.

ν Poisson constant (0.3).
σVM Von Mises stress [N/mm2].
σx max ,z max Normal stresses in the outer fibres caused by bending moment in direction of x/z-

axis [N/mm2].
σx,z Normal stress in direction of x / z axis [N/mm2].
σz Compressive stress in bottom flange [N/mm2].
τxz Shear stress in plane perpendicular to the x-axis, in z-direction [N/mm2].

Appendix 2 and 3 (post-failure mechanical models)

e Main value for experimental values for the ultimate load.
m Main value for model predictions of the ultimate load.
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{A, B, C, D, E,
F, G, H, I, J,
K}

Set of factors to simplify formulae.

a Length of yield eye / flip disc [mm].
A, B, C Constants.
A, B, C, D, E Parameters to illustrate mathematical techniques.
a, b, c, d, e, f Constants to illustrate mathematical techniques.
Aw ,Af , At Web / flange / total area for U-section [mm2].
b Substitute variable for calculation Fe.
b Width of yield eye / flip disc [mm].
b1, b2, b3 Distances in figure 3-5 to determine relationship ∆hw and ϕc.
c1 Substitution variable.
d1, d2, d3 Differences between predicted loads [N].
ei Experiment i.
f, g, h, i Functions to illustrate mathematical techniques.
F2p Load to deform two parts adjacent to the load-bearing plate [N].
Fbf Normal force in the bottom flange [N].
Fcs Load to deform cross-section [N].
Fcsu Ultimate load of cross-section [N].
Fe Load to deform cross-section elastically [N].
Fl Extra force due to the indentation of the cross-section [N].
fl1,2 Length factor 1, 2.
Fp Load to deform cross-section plastically [N].
Fylbf Load to form yield lines in the bottom flange [N].
h U-section height [mm].
h Sheeting height to illustrate web crippling stiffness in figure 2-13 [mm].
Is Moment of inertia for complete sheeting cross-section [mm4].
Lbf Abbreviation for Lbf;left;out.
Li Length yield line i.
Lyw Specific yield line length in figure 3-2.
Mi,e Internal / external bending moment [Nmm].
n Number of experiments.
Pi Point i.
s Distance of bottom flange to centre of gravity sheet section [mm].
se,m Standard deviation for experiments / model predictions.
u Deformation of U-section [mm].
u1, F1 A specific deformation / force value of the U-section [mm].
u4;fl,w Horizontal / vertical displacement of point P4 [mm].
ua, ub Movements of yield lines in the cross-section [mm].
wtf Distance between yield lines as shown in figure 3-2 [mm].
x, y, z Variables to illustrate mathematical techniques.
x, α, β Substituting variables.
∆ Out-of-plane deflection yield eye / flip disc [mm].
∆bwfl Reduction of distance bwfl [mm].
δEe Incremental external energy.
δEe1 Incremental external energy cross-section only.
δEe2 Incremental external energy cross-section and sheet section deflection.
δEi Incremental internal dissipated energy.
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φ Substitution variable
ϕ Support rotation [rad.].
ϕi Rotation of yield line i [rad.]
ϕit, ϕ∆ Specific yield line angles (no rotations) used in figure 3-1.
ϕw Rotation around point P1 for line P1-P4 [rad.].
ρ Standard deviation for experiments.

Appendix 4 (cross-section behaviour)

d, w, h Distances [mm] in cross-section figure 4-10.
d1,  d2 Distances as defined in figure 4-11 [mm].
dx Infinite small piece of sheeting in length direction.
dy Movement of yield line in web [mm].
h1, h2 Variables to illustrate the web crippling deformation ∆hw [mm].
Hs Horizontal load [N].
Ly Distance from top web to yield line in web [mm].
Mi,s Bending moment i, s [N].
Mpl Plastic bending moment [Nmm].
P Axial load in the web [N].
Pcr The buckling load of the web [N].
rotx, roty, rotz Rotations around the x-, y-, and z-axes.
u1, u2 Movement of upper and lower part cross-section as shown in figure 4-11 [mm].
ux, uy, uz Displacements along the x-, y-, and z-axes.
Vs Vertical load [N].
α, β Variables for local coordinate system in cross-section (figure 4-10).
φ, ψ Functions by Timoshenko.
η Substitution variable.
ϕI Rotation at location I.
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Introduction

In this report, six appendices are presented. These appendices are meant to be used with the
thesis [Hofm00a].

The first appendix presents the model of thesis chapter 5 a little more extendedly. Appendix 2
shows a detailed description of the post-failure models, as presented in chapter 6 of the thesis.
The third appendix is used to present all derivations too tedious to present in appendix 2.
Finally, appendix 4 shows pure cross-section behaviour for sheeting, using finite element
simulations and mechanical models.

Appendix 5 and 6 present several listings of Turbo Pascal programs and input files for the
finite element program Ansys 5.4.
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1  Appendix ultimate failure mechanical model

1.1  Beam on elastic foundation model

In 1995, Vaessen developed a model for the prediction of the web crippling stiffness, based
on the beam on elastic foundation theory [Vaes95a], [Bakk99a]. The web crippling stiffness
equals the force F (figure 1-1) divided by the web crippling deformation (figure 1-1) ∆hw.
During the development of the model, it was thought that all sections behave like situation II
in figure 5-4 of the thesis [Hofm00a]. For the model, global beam deflection is not taken into
account.

The model uses cross-section slices (width dx) as springs in the beam on elastic foundation
theory. The bottom flange and a part of the web are used as the beam. This is shown in figure
1-1.

Elastic foundation
Spring stiffness:

Beam, EI beam
equals EI part

F/2F/2 Llb

Lspan

bbf

0.5btf0.5btf

θw
wa 0.5qdxq

dx

bbf

αbw ribf sinθw

Deflection line
bottom flange
(above force)

∆hw(x,y)

x

y

aw
qdxk =

Figure 1-1. Principles of beam on elastic foundation model.

The elastic foundation spring stiffness k is derived for a certain load qdx. Here, q is an equally
distributed load along the length dx:

b
wbbfb

wibfrwbfbibfrwbbfbwwb

Et
w

Et
wwb

k

+







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+

−+

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3
2
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θθθ
θθ (1.1)
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






+



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 −+
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 −

=
wbbfbEt

wibfrbfbwibfrwibfrbfbwb
wibfrb

23

sin
2
3sinsin

3
4

2sin2
θθθ

θ (1.2)

The beam's bending stiffness EI equals that for the small part at the left corner in figure 1-1.
The part contains a part αbw of the web.
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α
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(1.3)

If the elastic foundation stiffness k and the beam bending stiffness EI are known, the beam on
elastic foundation theory can be used to determine ∆hw. Note that ∆hw is the decrease in
section height above the load F. Although ∆hw depends on x and y (in figure 1-1), Vaessen
only derived ∆hw for x = Llb/2 and y = ribf*sinθw, being the point of load application, which
equals:

( ) ( )( ) ( )
4 31024

2
1

12
1

11
sin,

2 EIk

lbLspanL
elbLspanLflbLf

FwibfrlbL
wh

−−
+−−+

=




∆

β
ββ

θ (1.4)

4
4EI

k=β
    

89.0118.0 ibfr=α (1.5)

( ) ( )xxxexf ββββ sincos1 +−= (1.6)

For the ultimate failure mechanical model in section 5.1 of the thesis [Hofm00a], it is
necessary to predict the local flange deformation at y=bbf/2. To obtain this, the cross-section
behaviour is shown again in figure 1-2.

F/2Rh

θw
ribf sinθw

0.5bbf
bw

F/2

MaRh

y

y+ribf sinθw

∆hw(Llb/2,ribf sinθw)
∆hw(Llb/2,bbf /2)

MaRh

Figure 1-2. Simplification of cross-section behaviour.

In figure 1-2, the bottom flange of the cross-section is modelled as a beam as shown on the
right in the figure. It is assumed that Rh does not influence the deflection of the beam (second
order effects ignored). Then, the following can be derived:

( ) ( )whwwbhRwibfrwwbwhk
aM ∆−−+

∆
= θθθ sinsincos

2
(1.7)



4

EI

wibfrbfb
aM
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whbfblbL

wh
2

2
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2
sin,

22
,

2











−

+

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
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∆
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







+

−++∆
=
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wwb
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hR

3
1

2
1

2sin2cossincos2
3
2

sin4

θθθθ

θ (1.9)

The latter formula was derived by Vaessen. This appendix can be summarised as follows. For
a sheet section, loaded by a load-bearing plate, the displacement of the bottom corner relative
to the upper corner can be calculated (web crippling deformation ∆hw(Llb/2,ribf*sinθw) and
dQ in section 5.1.2 of the thesis [Hofm00a]). If this deformation is known, the displacement
of the bottom flange middle relative to the bottom corner can be predicted  (∆hw(Llb/2,bbf/2)
and dP in section 5.1.2 of the thesis [Hofm00a]).
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1.2  Marguerre's equations

Marguerre's equations are partial differential equations that describe the relationship between
stresses and deformations at arbitrary locations in a plate with arbitrary geometry [Marg38a].
For a specific geometry and specific boundary conditions, approximate analytical solutions
for the differential equations are included in a book by Murray  [Murr85a].

x,u y,w

z,v

t

L

b

−σz −σz

y0, w0

displacement functions (sin)

Boundary conditions case a, b, or c

Case a

Case b

Case c

x = free,
but
coupled

x = free

x = fixed

Case b

Case b

For all cases:
y = fixed
z = free
rot. x = fixed
rot. y = fixed
rot. z = free

Figure 1-3. Plate under compression. Three cases for boundary conditions.

Figure 1-3 presents a rectangular plate with an initial deflection y0. Plate edges that are loaded
by stress are supported as case b. The two other edges are supported as case a, b, or c. For
case a, each individual point along the edge is fully fixed in x-direction, thus the edge cannot
move and cannot deform. For case b, all points on the edge are coupled in x-direction, thus the
edge can move but cannot deform. For case c, each point is free in x-direction, thus the edge
can move and deform. For the model in chapter 5 of the thesis [Hofm00a], only case c will be
used, because case c yielded the best results.

An initial displacement field is variable for x and z and is described by:

zxyy λβ coscos0= (1.10 )

The displacement field itself is also variable for x and z and is described by:

zxww λβ coscos0= (1.11 )

b
πβ = (1.12 )

L
πλ = (1.13 )
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Variables in the formulae above are defined in figure 1-3. For this plate it was derived:
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1201c Case
0201b Case
0211a Case

=∧=→
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KK
KK
KK

(1.18 )

E
bzp σ= (1.19 )

Using the formulae presented above, the central deflection w0 can be determined for a given
value of σz (figure 1-3) by means of an iterative procedure.
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If the central deflection w0 is known, stresses at each location can be calculated using the
following formulae:

( )

zxxxCxCK

p
xyww

E
zxz

λλλλλλλ

βλσ

2cos2cosh42sinh2422cosh2
142

8
2cos2

0200),(




 


 ++

++
+

=
(1.20 )

( ) ( )( )

( ) pKzxxCzCK

zKyww
E

zxx

νλλλλ

λβσ

12cos2cosh22cosh12
24

8
2cos10200

2,

++−

++
=

(1.21 )

( )[ ] zxxxCxCK
E

zxxz λλλλλλλ
τ

2sin2sinh2cosh222sinh1222
),(

++= (1.22 )

xz
tEw

zxz βλ
ν

νβλ
σ coscos

212

22
0

),(max



 −




 +
±= (1.23 )

xz
tEw

zxx βλ
ν

νλβ
σ coscos

212

22
0

),(max



 −




 +
±= (1.24 )

The stresses σx and σz are the membrane stresses at a location in x and z direction
respectively. τxz is the shear stress in the x-z plane. The stresses σxmax and σzmax are
bending stresses at the outer fibres caused by a bending moment in the plate around z and x
axes respectively. It can be concluded that, for an applied average stress σz, if all plate
variables are known, the end-deformation w0 and stresses at each location on the plate can be
calculated.
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1.3  Model equations

The ultimate failure model as presented in section 5.1.2 of the thesis [Hofm00a] can be
described in 6 steps as follows. A flow diagram of the solving processes in the model is
shown in figure 1-4. Equations are also presented by their corresponding number.

Step 1
Use figure 5-2 of the thesis [Hofm00a]. A certain load F is assumed to work on the load-
bearing plate. The beam on elastic foundation method presented in appendix 1, section 1.1,
can be used to predict the reduction of distance dQ. This by using equations 1.1 to 1.6 to solve
∆hw(Llb/2,ribf*sinθw). Although the beam on elastic foundation method is developed by
assuming bottom flange deflection according type II (figure 5-4 of the thesis [Hofm00a]),
here it is assumed that the reduction of distance dQ can be predicted for type I and III using
the same method as well. Note that the displacement predicted here is caused by the local
indentation of the section due to the load action.

Step 2
The reduction of distance dP is calculated by equation 1.7 to 1.9 as ∆hw(Llb/2,bbf/2). If dP is
known, out-of-plane displacement wP of point P can be calculated as dP-dQ. The out-of-plane
displacement wR of point R can be predicted because P and R are on the (sine) displacement
line of the modelled part for Marguerre's equations. Thus (using equation 1.10):

PwRwbfb
bfbRwPw 2

4
1cos =⇔
















= π (1.25 )

Step 3
The out-of-plane displacement wR of point R due to the local indentation of the section is
regarded as an initial imperfection of the modelled part of the bottom flange in figure 5-2 of
the thesis [Hofm00a]. More precisely, out-of-plane displacement wR is set equal to initial
imperfection y0 in Marguerre's equations 1.10 to 1.24.

Step 4
Because load F is acting on the section, a bending moment is working in the section, which
results in compressive stress acting on the modelled part of the bottom flange in figure 5-2 of
the thesis [Hofm00a]. This compressive stress is set equal to the stress σz in Marguerre's
equations. This stress is calculated by considering the full cross-section for the determination
of the moment of inertia. The bending moment in the section equals:

( )
4

lbLspanLF
M

−
= (1.26 )

The stress σz in the bottom flange can now be calculated by using the moment of inertia Is of
the sheet section and the distance zp between the centre of gravity and the bottom flange:
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sI
pMz

z =σ (1.27 )

Fmin=0
Fmax=100000

Reduction dist. dQ
equations 1.1 to 1.6
Reduction dist. dP
equations 1.7 to 1.9

F=(Fmin+Fmax)/2

wP equal to y0,

Calculate Von Mises
stress σVM point Q
equations 1.20 to 1.24
and 1.28 to 1.32

σVM < yield stress
Fmin=F

σVM > yield stress
Fmax=F

σVM = yield stress

F = ultimate load

wmin=0
wmax=10

w0=(wmin+wmax) Predict p in
equation 1.10 to 1.19

σz < p*E/b
wmax=w

σz > p*E/b
wmin=w

σz= p*E/b

out-of-plane disp.
wR = dP-dQ
out-of-plane disp.
wP equation 1.25

stress flange σz 
by equations
1.26 and 1.27

Figure 1-4. Flow diagram of solving process.

Step 5
Marguerre's equations can be used to calculate the stress at point Q (or T) in figure 5-5 of the
thesis [Hofm00a]. First equations 1.10 to 1.19 are used to estimate w0 iterative using a
bisection method. Then, equations 1.20 to 1.24 can be used to calculate the various stresses.
The Von Misses stress is calculated as:
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( ) ( )
( )( ) xzyyzz

yyzzVM
τσσσσ

σσσσσ

3maxmax2

2
max

2
max

2
1

+++

−+++=
(1.28 )

( ) ( )
( )( ) xzyyzz

yyzzVM
τσσσσ

σσσσσ

3maxmax2

2
max

2
max

2
2

+−−

−−+−=
(1.29 )

( )2,1max VMVMVM σσσ = (1.30 )

bbflbx
2
1= (1.31 )

bfflbz
4
1=  for point Q and 0=z  for point T (1.32 )

Step 6
If this stress σVM is lower than the yield stress, a higher load F should be tried and vice versa.
This iterative process is carried out using a bisection method. If the stress at Q (or T) equals
the yield stress, the load F is regarded as the ultimate load.
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1.4  Tomà and Stark experiments

Exper-
iment

btf bw bbf rtf
(= rbf)

θw Lspan Llb t fy Ftest Model
Fu

Euro-
code3
Fu

A20 119.0 42.1 40.0 4.6 72.0 1080 100 0.71 372.0 2101 1530 2143
A21 77.0 70.9 70.0 6.6 81.0 1080 100 0.82 372.0 4074 2943 4256
A22 77.0 70.9 70.0 6.6 81.0 1080 100 0.82 363.0 4116 2899 4177
A23 77.0 70.9 70.0 6.6 81.0 1080 100 0.71 312.0 2852 2020 3039
A24 77.0 70.9 70.0 6.6 81.0 1080 100 0.71 333.0 2830 2107 3194
A56 90.0 67.2 76.0 4.6 79.0 1080 100 0.69 341.0 3082 2010 3044

C1 119.0 42.1 40.0 4.6 72.0 1080 55 0.72 317.0 1688 1342 1773
C2 119.0 42.1 40.0 4.6 72.0 1080 100 0.72 328.0 1983 1471 1993
C3 119.0 42.1 40.0 4.6 72.0 1080 150 0.72 325.0 2171 1585 2139
C4 40.0 42.1 119.0 4.6 72.0 1080 110 0.72 332.0 2160 1027 1144
C5 40.0 42.1 119.0 4.6 72.0 1080 160 0.71 354.0 2310 1504 1763
C6 40.0 42.1 119.0 4.6 72.0 1080 110 0.71 358.0 2125 1428 1690
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1.5  Wing experiments

Experiment btf rtf
(= rbf)

bbf bw θw Lspan Llb t fy Ftest Model
Fu

Euro-
code3
Fu

1W-CBC 94.0 3.15 47.7 94.7 89.0 457 25.4 1.52 231.0 8852 9669 7701
2W-CBC 95.0 2.87 49.3 94.2 89.5 465 25.4 0.97 274.4 4226 4610 4676
4W-CBC 93.5 3.15 98.8 95.0 88.5 467 25.4 1.52 231.0 11957 18624 11014
10W-CBC 94.5 3.15 48.9 95.0 70.0 508 25.4 1.52 231.0 8452 8601 6862
11W-CBC 96.5 2.87 48.5 96.5 70.0 508 25.4 0.97 274.4 4066 3985 4113
12W-CBC 96.5 2.69 50.0 100.8 70.0 508 25.4 0.61 265.4 1726 2012 1993
13W-CBC 94.5 3.15 98.9 94.7 70.0 508 25.4 1.52 231.0 11903 16541 9794
19W-CBC 96.5 3.15 48.8 95.3 50.5 508 25.4 1.52 231.0 7233 7290 5891
20W-CBC 97.0 2.87 48.5 99.6 50.5 508 25.4 0.97 274.4 3559 3352 3541
21W-CBC 97.5 2.69 50.1 96.5 50.5 508 25.4 0.61 265.4 1557 1628 1719
22W-CBC 94.0 3.15 100.7 95.0 50.0 508 25.4 1.52 231.0 9786 14139 8492
28W-CBC 95.5 2.71 99.8 95.5 90.0 775 25.4 0.64 265.4 2117 3188 2719
29W-CBC 95.5 2.71 99.8 95.5 90.0 775 76.2 0.64 265.4 2616 3423 3504
30W-CBC 95.5 2.69 100.1 95.8 90.0 782 50.8 0.61 265.4 2562 3085 2905
31W-CBC 95.5 2.69 100.4 95.8 90.0 940 50.8 0.61 265.4 2447 2596 2666
32W-CBC 95.5 2.71 100.3 95.8 90.0 940 25.4 0.64 265.4 2002 2690 2519
33W-CBC 95.5 2.69 100.4 97.0 90.0 940 76.2 0.61 265.4 3007 2690 2920
37W-CBC 96.5 2.69 99.8 96.8 70.0 940 25.4 0.61 265.4 1673 2367 2084
38W-CBC 96.0 2.69 99.5 97.0 70.0 940 50.8 0.61 265.4 2117 2428 2406
39W-CBC 96.5 2.69 99.5 97.0 70.0 940 76.2 0.61 265.4 2562 2507 2639
40W-CBC 95.5 2.87 50.7 96.0 70.0 508 25.4 0.97 274.4 3452 4152 4189
41W-CBC 96.5 2.71 54.0 91.2 70.0 508 25.4 0.64 265.4 2002 2217 2262
42W-CBC 94.5 3.15 50.7 94.2 70.0 508 25.4 1.52 231.0 10347 8897 7005
43W-CBC 95.5 3.15 64.0 96.8 50.0 508 25.4 1.52 231.0 10231 9232 6814
44W-CBC 96.5 2.87 63.8 98.6 50.0 508 25.4 0.97 274.4 3229 4328 4014
45W-CBC 96.0 2.87 63.1 123.7 50.0 508 25.4 0.97 274.4 3452 4527 3996
46W-CBC 96.0 2.87 63.8 72.1 50.0 508 25.4 0.97 274.4 3336 4328 3994
47W-CBC 95.0 2.71 100.0 96.0 70.0 508 25.4 0.64 265.4 2847 4462 2810
48W-CBC 95.5 2.71 100.0 96.3 70.0 508 50.8 0.64 265.4 3825 4710 3373
49W-CBC 95.5 2.71 100.0 96.3 70.0 508 76.2 0.64 265.4 4119 4984 3802
50W-CBC 94.0 3.15 104.4 94.5 70.0 508 25.4 1.52 231.0 13647 17439 10008
53W-CBC 93.0 3.15 129.7 98.0 50.0 508 25.4 1.52 231.0 12535 17970 9432
58W-CBC 94.0 3.15 99.1 94.5 90.0 318 50.8 1.52 231.0 16574 26836 6192
59W-CBC 94.0 3.15 99.4 97.5 90.0 318 76.2 1.52 231.0 18238 29352 6192
63W-CBC 94.5 3.15 99.4 97.0 90.0 775 25.4 1.52 231.0 9902 12755 9125
64W-CBC 94.5 2.87 99.7 97.3 90.0 775 25.4 0.97 274.4 4733 6124 5326
65W-CBC 94.0 3.15 99.1 97.8 90.0 927 25.4 1.52 231.0 9341 11056 8351
66W-CBC 94.5 2.87 100.2 97.3 90.0 927 25.4 0.97 274.4 4341 5299 4976
67W-CBC 94.5 3.15 99.1 97.3 90.0 1689 25.4 1.52 231.0 6228 6882 6149
68W-CBC 94.5 2.87 100.5 97.3 90.0 1684 25.4 0.97 274.4 2891 3200 3844
71W-CBC 95.5 2.69 54.1 96.8 70.0 1008 25.4 0.61 265.4 1112 1134 1477
72W-CBC 95.0 2.87 52.8 98.0 70.0 1008 25.4 0.97 274.4 2891 2391 3110
73W-CBC 95.5 3.15 52.4 98.0 70.0 1001 25.4 1.52 231.0 5676 5260 4993
74W-CBC 95.0 2.87 106.1 97.5 70.0 1003 25.4 0.97 274.4 4448 4969 4521
75W-CBC 95.0 3.15 106.5 98.8 70.0 1003 25.4 1.52 231.0 9012 10552 7712
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Experiment btf rtf
(= rbf)

bbf bw θw Lspan Llb t fy Ftest Model
Fu

Euro-
code3
Fu

76W-CBC 96.5 2.69 66.7 99.8 50.0 991 25.4 0.61 265.4 1228 1189 1422
77W-CBC 95.5 2.87 64.8 99.6 50.0 988 25.4 0.97 274.4 3007 2468 3006
78W-CBC 95.5 3.15 66.6 101.1 50.0 998 25.4 1.52 231.0 6121 5493 4939
80W-CBC 96.0 2.87 131.1 99.6 50.0 978 25.4 0.97 274.4 4341 5231 4411
81W-CBC 96.0 3.15 131.7 99.6 50.0 975 25.4 1.52 231.0 9564 11142 7476
82W-CBC 95.5 2.69 53.6 97.0 70.0 1753 25.4 0.61 265.4 890 671 1014
83W-CBC 95.5 2.69 53.6 97.0 70.0 508 25.4 0.61 265.4 2117 2119 2091
84W-CBC 95.0 2.87 53.7 97.5 70.0 1753 25.4 0.97 274.4 1895 1476 2150
85W-CBC 95.0 2.87 53.7 97.5 70.0 508 25.4 0.97 274.4 4119 4397 4299
86W-CBC 94.5 3.15 54.3 98.8 70.0 1753 25.4 1.52 231.0 3781 3364 3613
87W-CBC 94.5 3.15 54.3 98.8 70.0 516 25.4 1.52 231.0 8790 9279 7238
88W-CBC 96.5 2.69 106.8 96.5 70.0 1753 25.4 0.61 265.4 1334 1449 1595
90W-CBC 94.5 2.87 107.7 97.0 70.0 1753 25.4 0.97 274.4 3336 3141 3592
92W-CBC 95.0 3.15 107.3 97.8 70.0 1753 25.4 1.52 231.0 6672 6841 5856
93W-CBC 95.0 3.15 107.3 97.8 70.0 533 25.4 1.52 231.0 11121 17176 9993
94W-CBC 96.0 2.69 64.7 98.8 50.0 1753 25.4 0.61 265.4 890 672 969
95W-CBC 96.0 2.69 64.7 98.8 50.0 521 25.4 0.61 265.4 1895 2078 1920
96W-CBC 96.5 2.87 66.8 99.3 50.0 1740 25.4 0.97 274.4 2002 1525 2280
97W-CBC 96.5 2.87 66.8 99.3 50.0 521 25.4 0.97 274.4 4226 4434 4060
98W-CBC 95.0 3.15 66.6 100.3 50.0 1727 25.4 1.52 231.0 4119 3430 3556
99W-CBC 95.0 3.15 66.6 100.3 50.0 521 25.4 1.52 231.0 8452 9327 6880
102W-CBC 97.0 2.87 132.1 99.3 50.0 1753 25.4 0.97 274.4 3114 3202 3587
104W-CBC 97.0 3.15 134.9 100.1 50.0 1715 25.4 1.52 231.0 7117 7270 5844
105W-CBC 97.0 3.15 134.9 100.1 50.0 533 25.4 1.52 231.0 11121 18017 9525
106W-CBC 96.5 2.69 102.2 96.8 90.0 1758 25.4 0.61 265.4 1557 1461 1703
107W-CBC 96.5 2.69 102.2 96.8 90.0 566 25.4 0.61 265.4 2669 4176 2802
108W-CBC 96.5 2.69 102.2 96.8 90.0 566 50.8 0.61 265.4 3114 4376 3342
109W-CBC 97.5 3.15 51.5 97.8 90.0 1735 25.4 1.52 231.0 4003 3432 3818
110W-CBC 97.5 3.15 51.5 97.8 90.0 559 25.4 1.52 231.0 8896 8818 7441
111W-CBC 97.5 3.15 51.5 97.8 90.0 572 50.8 1.52 231.0 9786 9265 8155
115W-CBC 97.0 2.69 50.6 97.0 90.0 1727 25.4 0.61 265.4 890 678 1067
118W-CBC 98.0 3.15 51.1 98.3 90.0 1024 25.4 1.52 231.0 6005 5339 5297
119W-CBC 96.0 2.87 50.7 97.0 90.0 1011 25.4 0.97 274.4 2669 2427 3306
120W-CBC 96.0 2.69 50.4 97.5 90.0 1003 25.4 0.61 265.4 1334 1123 1530
121W-CBC 96.0 2.87 67.1 95.0 50.0 533 50.8 0.97 274.4 3559 4616 4624
122W-CBC 97.0 3.15 101.7 97.5 90.0 566 101.6 1.52 231.0 19572 19582 14201
123W-CBC 97.0 3.15 102.1 97.8 90.0 559 127.0 1.52 231.0 22241 21198 15326
126W-CBC 95.0 2.69 108.7 92.5 70.0 495 101.6 0.61 265.4 3559 5564 3987
127W-CBC 95.5 2.69 108.4 92.2 70.0 495 127.0 0.61 265.4 4003 5918 4323
130W-CBC 97.0 3.15 100.6 98.0 90.0 318 101.6 1.52 231.0 19261 32898 6192
131W-CBC 97.5 3.15 100.3 97.8 90.0 318 127.0 1.52 231.0 23753 36789 6192
132W-CBC 95.0 2.69 107.4 95.5 70.0 508 101.6 0.61 265.4 4146 5409 3933
133W-CBC 96.5 2.69 108.4 94.7 70.0 508 127.0 0.61 265.4 4083 5813 4278
138W-CBC 94.5 2.87 63.5 95.5 50.0 533 50.8 0.97 274.4 4502 4377 4477
141W-CBC 94.0 3.15 99.1 94.0 90.0 521 25.4 1.52 231.0 14483 17269 10685
142W-CBC 96.0 2.69 100.1 95.8 90.0 775 25.4 0.61 265.4 1833 3009 2496
143W-CBC 95.5 2.87 99.4 95.3 90.0 775 25.4 0.97 274.4 4030 6104 5334
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Experiment btf rtf
(= rbf)

bbf bw θw Lspan Llb t fy Ftest Model
Fu

Euro-
code3
Fu

144W-CBC 94.0 3.15 98.8 94.0 90.0 775 25.4 1.52 231.0 11414 12768 9072
145W-CBC 94.5 2.69 101.5 96.0 90.0 2337 76.2 0.62 269.6 1397 1183 1695
146W-CBC 95.5 2.69 100.4 95.8 90.0 2337 76.2 0.61 269.6 1370 1142 1633
147W-CBC 95.0 2.69 100.3 95.5 90.0 2337 76.2 0.62 269.6 1388 1166 1680
148W-CBC 95.0 2.69 100.6 95.8 90.0 2337 127.0 0.61 269.6 1548 1179 1751
149W-CBC 95.5 2.69 102.4 95.8 90.0 2337 127.0 0.62 269.6 1512 1234 1829
150W-CBC 95.0 2.68 100.7 96.0 90.0 2337 127.0 0.60 269.6 1450 1153 1700
151W-CBC 95.5 2.69 74.7 96.3 90.0 2337 76.2 0.61 269.6 1130 814 1297
152W-CBC 95.0 2.69 75.2 96.0 90.0 2337 76.2 0.61 269.6 1157 819 1304
153W-CBC 95.5 2.68 75.0 95.8 90.0 2337 50.8 0.61 269.6 996 805 1246
154W-CBC 95.5 2.68 75.2 95.8 90.0 2337 50.8 0.61 269.6 979 807 1249
155W-CBC 95.5 2.69 75.1 95.8 90.0 2337 101.6 0.61 269.6 1165 831 1345
156W-CBC 95.5 2.68 75.0 96.3 90.0 2337 101.6 0.61 269.6 1076 831 1344
157W-CBC 94.5 2.69 101.5 96.0 90.0 1016 50.8 0.62 269.6 2242 2531 2677
158W-CBC 95.5 2.69 100.4 95.8 90.0 1016 50.8 0.61 269.6 2144 2446 2586
159W-CBC 95.5 2.69 100.4 95.8 90.0 1016 76.2 0.61 269.6 2651 2516 2821
160W-CBC 95.0 2.69 100.6 95.8 90.0 1016 76.2 0.61 269.6 2642 2521 2824
161W-CBC 95.0 2.69 100.3 95.5 90.0 1016 101.6 0.62 269.6 3123 2644 3101
162W-CBC 95.0 2.69 100.6 95.8 90.0 1016 101.6 0.61 269.6 2785 2597 3017
163W-CBC 95.5 2.69 102.4 95.8 90.0 1016 101.6 0.62 269.6 2740 2712 3138
164W-CBC 95.5 2.69 102.4 95.8 90.0 1016 127.0 0.62 269.6 3060 2800 3316
165W-CBC 95.0 2.68 100.7 96.0 90.0 1016 127.0 0.60 269.6 2882 2627 3097
166W-CBC 95.0 2.68 100.7 96.0 90.0 1016 127.0 0.60 269.6 2971 2627 3097
167W-CBC 95.5 2.69 74.7 96.3 90.0 1016 50.8 0.61 269.6 2019 1757 2207
168W-CBC 95.5 2.69 74.7 96.3 90.0 1016 50.8 0.61 269.6 2019 1757 2207
169W-CBC 95.0 2.69 75.2 96.0 90.0 1016 76.2 0.61 269.6 2215 1822 2395
170W-CBC 95.0 2.69 75.2 96.0 90.0 1016 76.2 0.61 269.6 2126 1823 2395
171W-CBC 95.5 2.68 75.0 95.8 90.0 1016 101.6 0.61 269.6 2402 1878 2539
172W-CBC 95.5 2.68 75.0 95.8 90.0 1016 101.6 0.61 269.6 2251 1878 2539
173W-CBC 95.5 2.68 75.2 95.8 90.0 1016 101.6 0.61 269.6 2384 1883 2544
174W-CBC 95.5 2.69 75.1 95.8 90.0 711 50.8 0.61 269.6 2393 2477 2694
175W-CBC 95.5 2.69 75.1 95.8 90.0 711 50.8 0.61 269.6 2331 2478 2694
176W-CBC 95.5 2.68 75.2 95.8 90.0 711 76.2 0.61 269.6 2260 2589 2967
177W-CBC 95.5 2.68 75.0 96.3 90.0 711 76.2 0.61 269.6 2402 2587 2964
178W-CBC 95.5 2.68 75.0 96.3 90.0 711 101.6 0.61 269.6 3078 2705 3195
179W-CBC 95.5 2.68 75.2 95.8 90.0 406 50.8 0.61 269.6 2740 4362 3411
180W-CBC 95.5 2.69 75.1 95.8 90.0 406 50.8 0.61 269.6 2847 4354 3408
181W-CBC 95.5 2.69 75.1 95.8 90.0 406 76.2 0.61 269.6 3559 4685 3858
182W-CBC 95.5 2.68 75.0 96.3 90.0 406 76.2 0.61 269.6 3185 4694 3856
183W-CBC 95.5 2.68 75.0 96.3 90.0 406 76.2 0.61 269.6 3354 4694 3856
184W-CBC 96.0 2.69 74.4 196.6 90.0 457 76.2 0.62 337.8 3514 8617 4295
185W-CBC 95.5 2.83 73.2 196.6 90.0 457 76.2 0.89 288.9 6628 10583 6684
186W-CBC 96.0 2.69 74.4 196.9 90.0 457 76.2 0.61 337.8 3648 8486 4170
187W-CBC 95.0 2.83 73.6 196.1 90.0 457 76.2 0.89 288.9 6663 10619 6691
188W-CBC 96.0 2.68 74.4 196.6 90.0 584 152.4 0.60 337.8 3825 7374 4509
189W-CBC 95.5 2.83 73.4 196.3 90.0 584 152.4 0.89 288.9 8274 9518 7444
190W-CBC 96.0 2.69 74.3 196.6 90.0 584 152.4 0.61 337.8 3986 7489 4641
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Experiment btf rtf
(= rbf)

bbf bw θw Lspan Llb t fy Ftest Model
Fu

Euro-
code3
Fu

191W-CBC 95.0 2.83 73.4 196.3 90.0 584 152.4 0.89 288.9 8274 9510 7432
192W-CBC 95.0 2.84 74.6 196.1 90.0 584 152.4 0.92 273.7 7918 9550 7553
193W-CBC 95.0 2.84 74.3 195.6 90.0 584 152.4 0.92 273.7 7473 9495 7537
194W-CBC 96.0 2.71 75.5 197.1 90.0 584 152.4 0.66 317.8 4537 7794 5222
195W-CBC 95.5 2.89 73.9 196.6 90.0 584 152.4 1.03 299.2 9786 11783 9422
196W-CBC 96.0 2.71 75.2 197.4 90.0 584 152.4 0.66 317.8 5026 7770 5212
197W-CBC 95.0 2.89 74.3 196.3 90.0 584 152.4 1.03 299.2 10453 11831 9433
198W-CBC 96.0 2.71 74.9 197.1 90.0 432 76.2 0.66 317.8 4048 9329 4765
199W-CBC 95.0 2.89 74.2 196.3 90.0 432 76.2 1.03 299.2 8896 13926 8737
200W-CBC 96.0 2.71 75.3 196.9 90.0 457 76.2 0.66 317.8 4003 8764 4704
201W-CBC 95.5 2.89 74.2 196.6 90.0 457 76.2 1.03 299.2 8452 13074 8547
1WR-CBC 95.5 5.09 85.1 90.4 90.0 2951 50.8 0.63 317.8 1023 843 1327
2WR-CBC 95.5 5.09 85.1 90.4 90.0 1321 50.8 0.63 317.8 1637 1776 2294
4WR-CBC 93.0 5.28 82.4 91.9 90.0 2946 50.8 1.00 299.2 2277 1733 2755
5WR-CBC 93.0 5.28 82.4 91.9 90.0 1321 50.8 1.00 299.2 3932 3525 4630
6WR-CBC 93.0 5.28 82.4 91.9 90.0 508 50.8 1.00 299.2 6219 7950 7052
7WR-CBC 88.4 6.33 83.7 89.4 90.0 2946 50.8 1.54 302.0 4591 4293 4590
8WR-CBC 88.4 6.33 83.7 89.4 90.0 1321 50.8 1.54 302.0 8229 8450 8280
9WR-CBC 88.4 6.33 83.7 89.4 90.0 508 50.8 1.54 302.0 13781 18027 13385
13WR-CBC 93.0 6.78 84.2 87.1 90.0 2946 50.8 0.85 284.1 1646 1267 2161
14WR-CBC 93.0 6.78 84.2 87.1 90.0 1321 50.8 0.85 284.1 2776 2566 3535
16WR-CBC 88.4 6.71 83.0 88.9 90.0 2946 50.8 1.54 302.0 4786 4253 4558
17WR-CBC 88.4 6.71 83.0 88.9 90.0 1321 50.8 1.54 302.0 8469 8372 8221
18WR-CBC 88.4 6.71 83.0 88.9 90.0 508 50.8 1.54 302.0 13505 17824 13288
25WR-CBC 81.3 9.88 84.5 80.0 90.0 2946 50.8 1.54 302.0 4350 4148 4356
26WR-CBC 81.3 9.88 84.5 80.0 90.0 1321 50.8 1.54 302.0 7687 8411 7896
27WR-CBC 81.3 9.88 84.5 80.0 90.0 508 50.8 1.54 302.0 12206 18023 12741
28WR-CBC 98.6 5.09 104.9 94.7 70.0 2946 50.8 0.63 317.8 1219 1040 1422
29WR-CBC 98.6 5.09 104.9 94.7 70.0 1321 50.8 0.63 317.8 2037 2189 2331
31WR-CBC 100.1 5.20 102.8 94.2 70.0 2946 50.8 0.85 284.1 2002 1516 2302
32WR-CBC 100.1 5.20 102.8 94.2 70.0 1321 50.8 0.85 284.1 3265 3098 3779
34WR-CBC 97.5 5.55 105.0 90.2 70.0 2946 50.8 1.55 288.2 5898 5190 5373
35WR-CBC 97.5 5.55 105.0 90.2 70.0 1321 50.8 1.55 288.2 10542 10115 8948
36WR-CBC 97.5 5.55 105.0 90.2 70.0 508 50.8 1.55 288.2 14679 21201 13570
40WR-CBC 97.5 6.85 104.1 96.5 70.0 2946 50.8 1.00 299.2 2642 2105 3102
41WR-CBC 97.5 6.85 104.1 96.5 70.0 1321 50.8 1.00 299.2 4502 4251 4864
43WR-CBC 94.5 7.13 105.4 91.4 70.0 2946 50.8 1.54 302.0 5729 5207 5454
44WR-CBC 94.5 7.13 105.4 91.4 70.0 1321 50.8 1.54 302.0 9795 10144 9050
45WR-CBC 94.5 7.13 105.4 91.4 70.0 508 50.8 1.54 302.0 14875 21158 13598
49WR-CBC 91.4 9.24 105.9 90.4 70.0 2946 50.8 1.00 299.2 2509 2153 3002
50WR-CBC 91.4 9.24 105.9 90.4 70.0 1321 50.8 1.00 299.2 3959 4297 4706
52WR-CBC 92.5 11.90 103.3 87.9 70.0 2946 50.8 1.54 302.0 5213 5129 5289
53WR-CBC 92.5 11.90 103.3 87.9 70.0 1321 50.8 1.54 302.0 8532 10036 8699
54WR-CBC 92.5 11.90 103.3 87.9 70.0 508 50.8 1.54 302.0 13078 21226 12891
58WR-CBC 100.6 7.56 124.8 99.3 50.0 2946 50.8 0.85 284.1 1993 1501 2161
59WR-CBC 100.6 7.56 124.8 99.3 50.0 1321 50.8 0.85 284.1 3381 3082 3429
61WR-CBC 97.5 7.92 125.2 98.0 50.0 2946 50.8 1.55 288.2 6112 4885 5104
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Experiment btf rtf
(= rbf)

bbf bw θw Lspan Llb t fy Ftest Model
Fu

Euro-
code3
Fu

62WR-CBC 97.5 7.92 125.2 98.0 50.0 1321 50.8 1.55 288.2 10987 9592 8325
63WR-CBC 97.5 7.92 125.2 98.0 50.0 508 50.8 1.55 288.2 13478 20085 12299
67WR-CBC 101.1 6.85 126.0 99.1 50.0 2946 50.8 1.00 299.2 2696 2098 3032
68WR-CBC 101.1 6.85 126.0 99.1 50.0 1321 50.8 1.00 299.2 4653 4271 4777
70WR-CBC 99.1 8.73 130.2 96.5 50.0 2946 50.8 1.54 302.0 5925 5189 5459
71WR-CBC 99.1 8.73 130.2 96.5 50.0 1321 50.8 1.54 302.0 10578 10160 8745
72WR-CBC 99.1 8.73 130.2 96.5 50.0 508 50.8 1.54 302.0 14377 21236 12676
76WR-CBC 95.5 10.02 133.3 90.2 50.0 2946 50.8 1.00 299.2 2491 2249 3083
77WR-CBC 95.5 10.02 133.3 90.2 50.0 1321 50.8 1.00 299.2 4226 4494 4659
79WR-CBC 96.5 10.30 130.2 91.9 50.0 2946 50.8 1.54 302.0 5925 5274 5360
80WR-CBC 96.5 10.30 130.2 91.9 50.0 1321 50.8 1.54 302.0 9724 10277 8594
82WR-CBC 82.3 6.85 101.4 98.6 65.0 2946 101.6 1.00 299.2 2535 1961 2874
83WR-CBC 82.3 6.85 101.4 98.6 65.0 1321 152.4 1.00 299.2 5738 4270 5417
88WR-CBC 96.0 7.13 104.5 90.4 65.0 2946 101.6 1.54 302.0 6628 5110 5638
89WR-CBC 96.0 7.13 104.5 90.4 65.0 1321 152.4 1.54 302.0 13718 10724 10598
94WR-CBC 95.5 8.45 129.7 98.8 50.0 2946 101.6 1.00 299.2 3114 2186 3354
95WR-CBC 95.5 8.45 129.7 98.8 50.0 1321 152.4 1.00 299.2 6405 4713 5911
99WR-CBC 90.4 10.30 131.9 97.8 50.0 1321 152.4 1.54 302.0 14902 10995 10392
100WR-CB 90.4 10.30 131.9 97.8 50.0 2946 101.6 1.54 302.0 7322 5282 5608
101WR-CB 95.5 5.09 85.1 90.4 90.0 1321 101.6 0.63 317.8 1842 1852 2612
102WR-CB 93.0 5.28 82.4 91.9 90.0 1321 101.6 1.00 299.2 4777 3694 5195
103WR-CB 88.4 6.33 83.7 89.4 90.0 1321 101.6 1.54 302.0 10249 8878 9130
105WR-CB 93.0 6.78 84.2 87.1 90.0 1321 101.6 0.85 284.1 3514 2674 4007
106WR-CB 88.4 6.71 83.0 88.9 90.0 1321 101.6 1.54 302.0 10587 8785 9065
109WR-CB 81.3 9.88 84.5 80.0 90.0 1321 101.6 1.54 302.0 9519 8766 8717
110WR-CB 98.6 5.09 104.9 94.7 70.0 1321 101.6 0.63 317.8 2331 2281 2692
111WR-CB 100.1 5.20 102.8 94.2 70.0 1321 101.6 0.85 284.1 4288 3235 4342
112WR-CB 97.5 5.55 105.0 90.2 70.0 1321 101.6 1.55 288.2 10871 10624 9991
114WR-CB 97.5 6.85 104.1 96.5 70.0 1321 101.6 1.00 299.2 5542 4427 5561
115WR-CB 94.5 7.13 105.4 91.4 70.0 1321 101.6 1.54 302.0 11859 10597 10131
117WR-CB 91.4 9.24 105.9 90.4 70.0 1321 101.6 1.00 299.2 5320 4461 5395
118WR-CB 92.5 11.90 103.3 87.9 70.0 1321 101.6 1.54 302.0 10871 10415 9773
120WR-CB 100.6 7.56 124.8 99.3 50.0 1321 101.6 0.85 284.1 4920 3205 3973
121WR-CB 97.5 7.92 125.2 98.0 50.0 1321 101.6 1.55 288.2 12482 10008 9352
123WR-CB 101.1 6.85 126.0 99.1 50.0 1321 101.6 1.00 299.2 5534 4449 5509
124WR-CB 99.1 8.73 130.2 96.5 50.0 1321 101.6 1.54 302.0 12651 10579 9868
126WR-CB 95.5 10.02 133.3 90.2 50.0 1321 101.6 1.00 299.2 5489 4664 5406
127WR-CB 96.5 10.30 130.2 91.9 50.0 1321 101.6 1.54 302.0 12882 10680 9706
128WR-CB 95.5 5.09 85.1 90.4 90.0 508 101.6 0.63 317.8 3381 4920 4444
129WR-CB 93.0 5.28 82.4 91.9 90.0 508 101.6 1.00 299.2 7784 8856 8534
130WR-CB 88.4 6.33 83.7 89.4 90.0 508 101.6 1.54 302.0 16681 20029 15929
132WR-CB 93.0 6.78 84.2 87.1 90.0 508 101.6 0.85 284.1 5560 6412 6357
133WR-CB 88.4 6.71 83.0 88.9 90.0 508 101.6 1.54 302.0 17126 19777 15814
136WR-CB 81.3 9.88 84.5 80.0 90.0 508 101.6 1.54 302.0 14902 19828 15180
138WR-CB 100.1 5.20 102.8 94.2 70.0 508 101.6 0.85 284.1 6005 7981 6465
139WR-CB 97.5 5.55 105.0 90.2 70.0 508 101.6 1.55 288.2 19350 23526 16280
141WR-CB 97.5 6.85 104.1 96.5 70.0 508 101.6 1.00 299.2 8896 10577 8397
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code3
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142WR-CB 94.5 7.13 105.4 91.4 70.0 508 101.6 1.54 302.0 19795 23333 16342
145WR-CB 92.5 11.90 103.3 87.9 70.0 508 101.6 1.54 302.0 16681 23221 15527
1E-CBC 43.7 4.76 75.9 76.5 85.0 1321 50.8 1.57 293.0 7945 7567 5244
2E-CBC 43.7 4.76 75.9 76.5 85.0 2921 50.8 1.57 293.0 4048 3755 2322
3E-CBC 43.7 4.76 75.9 76.5 85.0 1334 76.2 1.57 293.0 8505 7720 5298
4E-CBC 43.7 4.76 75.9 76.5 85.0 1321 101.6 1.57 293.0 9519 8027 5465
5E-CBC 43.7 4.76 75.9 76.5 85.0 541 50.8 1.57 293.0 13282 15759 9705
6E-CBC 43.7 4.76 75.9 76.5 85.0 521 76.2 1.57 293.0 15515 17220 10770
7E-CBC 43.7 4.76 75.9 76.5 85.0 516 101.6 1.57 293.0 16974 18516 11657
1C-CBC 35.1 3.63 77.3 128.3 81.5 3493 50.8 0.91 286.1 1557 1027 888
2C-CBC 35.1 3.63 77.3 128.3 81.5 3454 76.2 0.91 286.1 1601 1048 905
3C-CBC 35.1 3.63 77.3 128.3 81.5 3462 101.6 0.91 286.1 1699 1056 910
4C-CBC 35.1 3.63 77.3 128.3 81.5 3556 38.1 0.91 286.1 1406 1004 869
5C-CBC 35.1 3.56 77.6 128.5 81.5 3556 38.1 0.76 282.0 1210 763 699
6C-CBC 35.1 3.56 77.6 128.5 81.5 3556 50.8 0.76 282.0 1139 767 702
7C-CBC 35.1 3.56 77.6 128.5 81.5 3556 76.2 0.76 282.0 1281 774 707
8C-CBC 35.1 3.56 77.6 128.5 81.5 3556 101.6 0.76 282.0 1254 781 712
9C-CBC 35.1 3.63 77.3 128.3 81.5 1600 38.1 0.91 286.1 2722 2144 1920
10C-CBC 35.1 3.63 77.3 128.3 81.5 1613 50.8 0.91 286.1 2874 2148 1957
11C-CBC 35.1 3.63 77.3 128.3 81.5 1613 76.2 0.91 286.1 3051 2191 1989
12C-CBC 35.1 3.63 77.3 128.3 81.5 1613 101.6 0.91 286.1 3336 2237 2023
13C-CBC 35.1 3.56 77.6 128.5 81.5 1638 38.1 0.76 282.0 2028 1603 1478
14C-CBC 35.1 3.56 77.6 128.5 81.5 1588 50.8 0.76 282.0 2224 1666 1559
15C-CBC 35.1 3.56 77.6 128.5 81.5 1588 76.2 0.76 282.0 2358 1698 1627
16C-CBC 35.1 3.56 77.6 128.5 81.5 1588 101.6 0.76 282.0 2616 1733 1654
17C-CBC 35.1 3.63 77.3 128.3 81.5 648 38.1 0.91 286.1 5053 4952 3613
18C-CBC 35.1 3.63 77.3 128.3 81.5 635 50.8 0.91 286.1 5365 5158 3846
19C-CBC 35.1 3.63 77.3 128.3 81.5 648 76.2 0.91 286.1 6183 5292 4119
20C-CBC 35.1 3.63 77.3 128.3 81.5 635 101.6 0.91 286.1 6939 5672 4466
21C-CBC 35.1 3.56 77.6 128.5 81.5 635 38.1 0.76 282.0 3737 3938 2803
22C-CBC 35.1 3.56 77.6 128.5 81.5 635 50.8 0.76 282.0 4092 4024 2959
23C-CBC 35.1 3.56 77.6 128.5 81.5 648 76.2 0.76 282.0 4849 4120 3183
24C-CBC 35.1 3.56 77.6 128.5 81.5 648 101.6 0.76 282.0 5320 4317 3412
1U-CBC 32.0 4.35 38.9 75.4 70.0 1651 50.8 0.79 291.6 952 722 724
2U-CBC 32.0 4.35 38.9 75.4 70.0 1702 38.1 0.79 291.6 1032 694 696
3U-CBC 32.0 4.35 38.9 75.4 70.0 1638 50.8 0.79 291.6 1085 727 729
4U-CBC 32.0 4.35 38.9 75.4 70.0 1651 38.1 0.79 291.6 1014 714 718
5U-CBC 32.0 4.35 38.9 75.4 70.0 699 50.8 0.79 291.6 1886 1602 1675
6U-CBC 32.0 4.35 38.9 75.4 70.0 762 38.1 0.79 291.6 1886 1449 1514
7U-CBC 32.0 4.35 38.9 75.4 70.0 737 50.8 0.79 291.6 2171 1526 1610
8U-CBC 32.0 4.35 38.9 75.4 70.0 775 38.1 0.79 291.6 1957 1427 1496
9U-CBC 32.0 4.35 38.9 75.4 70.0 1638 50.8 0.79 291.6 1041 727 729
10U-CBC 32.0 4.35 38.9 75.4 70.0 1664 38.1 0.79 291.6 1165 708 712
11U-CBC 32.0 4.35 38.9 75.4 70.0 1651 50.8 0.79 291.6 996 722 724
12U-CBC 32.0 4.35 38.9 75.4 70.0 1651 38.1 0.79 291.6 1165 714 718
13U-CBC 32.0 4.35 38.9 75.4 70.0 1626 50.8 0.79 291.6 1094 732 735
14U-CBC 32.0 4.35 38.9 75.4 70.0 1638 38.1 0.79 291.6 1050 719 724
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15U-CBC 32.0 4.35 38.9 75.4 70.0 1626 50.8 0.79 291.6 1130 732 735
16U-CBC 32.0 4.35 38.9 75.4 70.0 1638 38.1 0.79 291.6 979 719 724
17U-CBC 32.0 4.35 38.9 75.4 70.0 381 50.8 0.79 291.6 3737 2779 2522
18U-CBC 32.0 4.35 38.9 75.4 70.0 394 38.1 0.79 291.6 3398 2592 2331
19U-CBC 32.0 4.35 38.9 75.4 70.0 406 50.8 0.79 291.6 3594 2622 2426
20U-CBC 32.0 4.35 38.9 75.4 70.0 394 38.1 0.79 291.6 3701 2592 2331
21U-CBC 32.0 4.35 38.9 75.4 70.0 470 50.8 0.79 291.6 3016 2296 2210
22U-CBC 32.0 4.35 38.9 75.4 70.0 368 38.1 0.79 291.6 3318 2754 2422
23U-CBC 32.0 4.35 38.9 75.4 70.0 432 50.8 0.79 291.6 2838 2478 2333
24U-CBC 32.0 4.35 38.9 75.4 70.0 381 38.1 0.79 291.6 3167 2671 2375
25U-CBC 32.0 4.35 38.9 75.4 70.0 686 76.2 0.79 291.6 2393 1717 1813
26U-CBC 32.0 4.35 38.9 75.4 70.0 724 76.2 0.79 291.6 2384 1631 1737
55R-CBC 21.8 2.20 59.5 24.1 45.0 1626 38.1 1.20 284.8 2091 1259 818
56R-CBC 21.8 2.20 59.5 24.1 45.0 1626 50.8 1.20 284.8 2144 1270 824
57R-CBC 21.8 2.20 59.5 24.1 45.0 1626 76.2 1.20 284.8 2197 1291 838
58R-CBC 21.8 2.20 59.5 24.1 45.0 660 38.1 1.20 284.8 4644 3211 2088
59R-CBC 21.8 2.20 59.5 24.1 45.0 660 50.8 1.20 284.8 4946 3280 2132
60R-CBC 21.8 2.20 59.5 24.1 45.0 660 76.2 1.20 284.8 5338 3422 2225
64R-CBC 21.8 1.92 61.0 24.1 45.0 1626 38.1 0.65 336.5 916 822 528
65R-CBC 21.8 1.92 61.0 24.1 45.0 1626 50.8 0.65 336.5 988 831 532
66R-CBC 21.8 1.92 61.0 24.1 45.0 1626 76.2 0.65 336.5 996 850 541
67R-CBC 21.8 1.92 61.0 24.1 45.0 660 38.1 0.65 336.5 1717 1922 1242
68R-CBC 21.8 1.92 61.0 24.1 45.0 660 50.8 0.65 336.5 1939 1984 1294
69R-CBC 21.8 1.92 61.0 24.1 45.0 660 76.2 0.65 336.5 2197 2112 1385
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1.6  Tsai experiments

Exper-
iment

btf rtf
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191 35.2 6.4 56.4 100.6 78.7 560 100 0.83 294.0 4363 3496 3681
192 35.2 6.4 56.4 100.6 78.7 720 100 0.83 294.0 3948 2917 2860
193 35.2 6.4 56.4 100.6 78.7 1040 100 0.83 294.0 2915 2170 1996
194 35.2 6.4 56.4 100.6 78.7 1200 100 0.83 294.0 2480 1898 1736
195 35.2 6.4 56.4 100.6 78.7 1520 100 0.83 294.0 2053 1471 1381
196 35.2 6.4 56.4 100.6 78.7 2000 100 0.83 294.0 1615 1099 1057
291 62.5 8.4 55.4 61.6 75.4 560 100 0.85 306.0 4608 4340 3848
292 62.5 8.4 55.4 61.6 75.4 720 100 0.85 306.0 3930 3750 3080
293 62.5 8.4 55.4 61.6 75.4 1040 100 0.85 306.0 2920 2977 2224
294 62.5 8.4 55.4 61.6 75.4 1200 100 0.85 306.0 2690 2698 1960
295 62.5 8.4 55.4 61.6 75.4 1520 100 0.85 306.0 2255 2272 1587
296 62.5 8.4 55.4 61.6 75.4 2000 100 0.85 306.0 1660 1766 1239
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2 Appendix post-failure mechanical models

2.1 Methodology

Introduction
This section 2.1 presents a methodology to develop post-failure mechanical models. In this
report, it is tried to treat the development systematically. For instance, there are different
methods to find the ultimate load using a load deformation curve, this is presented in sections
2.1.1 and 2.1.2. Sheet section behaviour can be split up in several "components", which will
be explained in section 2.1.3 and 2.1.4. In the final section (2.1.5), some mathematical
techniques will be presented to simplify the post-failure mechanical models developed.

2.1.1 Prediction ultimate load

Definition of the ultimate load
Figure 2-1 presents the three possible load deformation curves for sheet sections in a three-
point bending test: one for each post-failure mode. The y-axis indicates the load. The x-axis
indicates the web crippling deformation. See appendix 1, figure 1-1, for an explanation of
web crippling deformation.

For all three post-failure modes, the ultimate load is defined by the highest load that can be
found in the curve.

Three types of behaviour
If a sheet section is loaded in a three point bending test (like the experiments in chapter 3 of
the thesis [Hofm00a]), the entire sheet section will first behave elastically. This means that
when the sheet section is unloaded, it will return to its original shape. If the sheet section is
deformed further, a local part of the sheet section will behave plastically. This means that if
the section is unloaded, this local part will remain deformed. The behaviour from the start of
loading until first local plastic behaviour is defined as elastic behaviour. During further
increase of deformation, increasingly local parts will become plastic until no other parts will
become plastic. The behaviour from first local plastic behaviour until no other parts will
become plastic is defined as elasto-plastic behaviour. Further increase of the deformation
leads to more plastic deformation in all local plastic parts. However, no new local plastic parts
will occur. At that moment, further sheet section behaviour is defined as plastic behaviour.
For elasto-plastic and plastic behaviour, elastic deformations still can increase in elastic areas
of the section. For plastic behaviour however, these elastic deformations are negligible
compared to plastic deformations.

Determination of the ultimate load
Figure 2-2 shows the load deformation curve for a sheet section again. In these diagrams
elastic, elasto-plastic, and plastic behaviour are shown. The curve for the yield eye post-
failure mode is left out, because the curve is the same as the yield arc post-failure mode, only
the plastic part of the curve moves back after the ultimate load.
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Figure 2-1. Rolling (test 8), yield arc (test 41), and yield eye (test 65) post-failure modes.
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Figure 2-2. Elastic, elasto-plastic, and plastic behaviour of a sheet section.
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It is possible to predict the ultimate load by describing the elastic, elasto-plastic, and plastic
behaviour of the sheet section, in other words, to describe the entire curve figure 2-2 shows.
Then the maximum value of the curve is regarded as the ultimate load. However, to describe
all three types of behaviour, and specially the elasto-plastic behaviour, is a complex task.
Some simplifications have been developed to overcome this problem. In section 2.1.2, two
methods will be presented that neglect elasto-plastic or neglect both elasto-plastic and plastic
behaviour to predict the ultimate load. Section 2.1.3 will present a method to simplify the
description of elastic and plastic behaviour using the principle of components.

In the next sections, elastic behaviour can be linear or non-linear, regardless the example
curves that show often linear behaviour. Plastic behaviour is always non-linear.

2.1.2 Neglecting types of behaviour

Method A: neglecting elasto-plastic behaviour
It is possible to intersect theoretical curves representing elastic and plastic behaviour to
predict the ultimate load. Figure 2-3 shows the ultimate load prediction for three possibilities:
a negative slope of the plastic curve, a zero slope, and a positive slope of the plastic curve.

Predicted
ultimate load

Real behaviour

Ultimate load

Predicted
ultimate load

Real behaviour

Ultimate load

Predicted
ultimate load

Real behaviour

Load Load

Load

Deformation Deformation

Deformation

Figure 2-3. Prediction of the ultimate load for three different plastic curves. Line definitions are
listed in figure 2-2.
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If the plastic curve has a negative slope, the prediction of the ultimate load is an
overestimation of the (real) ultimate load. If the plastic curve has a positive slope, the ultimate
load is not known, but at least the predicted ultimate load is an underestimation of the
ultimate load. If the plastic curve has a zero slope, the predicted ultimate load equals the
ultimate load. This method A has similarities with the method of Merchant-Rankine
[Merc56a].

Method A for sheet sections
In the case of a sheet section, only plastic curves as shown in figure 2-4 occur. This figure 2-4
presents the consequences for sheet sections for predicting the ultimate load by intersecting a
theoretical elastic and plastic curve.
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Figure 2-4. Prediction of the ultimate load for a sheet section. Line definitions in figure 2-2.

If the plastic curve has a negative slope, the prediction of the ultimate load is an
overestimation of the (real) ultimate load. If the plastic curve increases first but decreases
thereafter, the predicted ultimate load is an underestimation of the (real) ultimate load.

Method B: neglect both elasto-plastic and plastic behaviour
To predict the ultimate load, it is also possible to assume that the ultimate load is reached at
the moment elasto-plastic behaviour starts. This means a very small local part of the sheet
section yields but in fact the sheet section acts still largely elastic. This method was used for
the development of the ultimate failure mechanical model in chapter 5 of the thesis
[Hofm00a]. Figure 2-5 presents this assumption for the ultimate load for a sheet section.

For method B, the predicted ultimate load is always an underestimation of the ultimate load.
This method B has similarities with the method of Perry-Robertson [Robe28a].

2.1.3 The principle of elastic and plastic components

This section explains the principle of components. The components will be introduced using
the example of a U-section under axial load. Method A of section 2.1.2 is used. However, the
principle of splitting up the behaviour into components is (of course) also applicable to
method B of section 2.1.2. Then, only elastic components are used.
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Figure 2-5. Assumption that ultimate load is reached if elasto-plastic behaviour starts. Line
definitions are listed in figure 2-2.

As mentioned in section 2.1.1, sheet section behaviour can be split up into elastic, elasto-
plastic, and plastic behaviour. In this section, only elastic and plastic behaviour will be
studied. This because elasto-plastic behaviour will not be used in either method A or B (in
section 2.1.2).

Figure 2-6 shows a U-section under compression. Only elastic and plastic behaviour is
presented. Elastic buckling is not taken into account to keep the example as simple as
possible, thus the elastic behaviour is linear. The intersection of the elastic and plastic curve
predicts the ultimate load.

Figure 2-6 shows the elastic curve of the U-section. This curve can be derived by using
Hooke's law. The total area At equals the area of the web Aw and the two flanges 2Af. Formula
2.1 describes the elastic curve.

h
tAE

uF
*

= (2.1)

Figure 2-7 presents this curve again, now labelled with At. It can be assumed that only the
web of the U-section has certain stiffness and the flanges have no stiffness. This means the
elastic curve should be derived making only use of the web area Aw (see also formula 2.1).
Figure 2-7 shows this curve on the left labelled with 'Aw'. Alternatively, it can be assumed
that only the two flanges have certain stiffness. This elastic curve, based on the area of the
two flanges 2Af is also shown in figure 2-7 on the left indicated with '2Af'.

If the elastic curves '2Af' or 'Aw' are used to predict the ultimate load instead of curve 'At', the
prediction will differ from the originally derived prediction of the ultimate load. These
differences d1 and d2 are shown in figure 2-7 on the right. It is possible that difference d1 is
small enough to justify the simplification of only bringing the stiffness of the two flanges into
account. If difference d2 is large, this indicates the stiffness of the two flanges can not be
neglected to predict the ultimate load.

The elastic behaviour of the web (and thus the curve Aw) is defined as a component. In the
same way, the elastic behaviour of the two webs (curve 2Af) is defined as a component.
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u F

Elastic behaviour Plastic behaviour

Fu

Yield lines

u

F
Predicted
ultimate load

h

Web (area Aw) Flanges (area 2Af)

Figure 2-6. U-section under compression. Intersection of elastic and plastic curves predicts the
ultimate load.

u

F At Aw2Af

u

F At Aw2Af
Predicted
ultimate load

Alternative predicted
ultimate load using
curve

Alternative predicted
ultimate load using
curve 

d1

d2

Aw

2Af

Figure 2-7. On the left different elastic curves for the U-section. On the right predictions of the
ultimate load are made for different elastic curves.

Plastic components U-section
Plastic behaviour can be split up into components using the same method as for elastic
components. Figure 2-6 on the right shows the U-section plastically deformed. Yield lines are
located in the web and in the two flanges. Now, it is assumed that only in the web yield lines
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occur and that the flanges have no stiffness. The plastic behaviour for the web is described by
the curve shown in figure 2-8 on the left.

If it is assumed that yield lines only occur in the two flanges and the web has no stiffness,
than another curve presents the plastic behaviour, also shown in figure 2-8 on the left. If the
plastic curve for the web only is used to predict the ultimate load, there is a difference d1
between the predicted ultimate load and the alternatively predicted one. If this difference is
small, it is acceptable to use the plastic curve for the web only, in other words to neglect the
plastic behaviour of the flanges. Difference d2 occurs if the alternative predicted load is
determined using the plastic curve of the flanges only. This difference is large, with means
that taking only into account the plastic behaviour of the flanges is not sufficient: the plastic
web behaviour should also be taken into account.

u

F

u

F At
Predicted
ultimate load

Alternative predicted
ultimate load
(flanges active only)

Alternative predicted
ultimate load
(web active only)

d1

d2

Plastic curve

Plastic curve
for web only

Plastic curve
for two flanges

Figure 2-8. Different descriptions of the plastic curve lead to different predictions of the ultimate
load.

General framework for components
The idea of splitting elastic or plastic behaviour into components can now be presented in a
more general framework. Figure 2-9 presents this framework. The elastic and plastic
behaviour can be presented as an elastic and plastic curve. The elastic and plastic curve can
only be described by many complex formulae. If the behaviour (elastic or plastic) is split up
into components, as explained, each component is described by a much more simple formula.
For each component, the influence on the prediction of the ultimate load can be investigated
as described in figure 2-7 and figure 2-8. If this influence on the prediction is not large, the
component can be left out. Thus, the prediction of the ultimate load will be simplified.

Summary
The ultimate load of a sheet section was defined. It is very difficult to predict this load by
describing elastic, elasto-plastic, and plastic behaviour. Two methods are introduced to
predict the ultimate load: the intersection of the elastic and plastic curves (A) or to predict the
ultimate load by the start of elasto-plastic behaviour (B). Components make it possible to
simplify the description of elastic and plastic curves.
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2.1.4 Corrections for method A

The previous section introduced components and their ability to reduce the complexity of
describing the elastic and plastic curve. If components are used, another possibility shows up
to simplify the prediction of the ultimate load. It can be seen as an correction of method A.

In section 2.1.2, the ultimate load was predicted by calculating the intersection of the elastic
and the plastic curve. In the case of the U-section of section 2.1.3, figure 2-6 shows this
prediction. At the moment of presenting figure 2-6 for the first time, components were not
defined. Thus, elastic and plastic curves describe all components of the U-section's behaviour.
In other words: both flange and web behaviour (elastic and plastic) are taken into account.

Elastic behaviour Many complex formulae

Split up behaviour into
small components 

Each component is described
by one formula

Some components are left out
because they have no significant 
influence on the prediction of ultimate load

Elastic curve

Plastic behaviour Many complex formulae Plastic curve

Intersection
predicts
ultimate load

Elastic curve
Intersection
predicts
ultimate load

Plastic curve

Thus prediction of
ultimate load will be
simplified:

Figure 2-9. Elastic and plastic behaviour are split up into components. Some components can be
neglected, thus making the prediction of the ultimate load less complex.

The calculation of the intersection in figure 2-6 is complex because the elastic curve is
described by the flanges and web elasticity and the plastic curve is described by the plastic
behaviour of both flanges and web. If the elastic and plastic loads are set equal, the
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displacement should be solved out of the large formulae describing elastic and plastic
behaviour. If the elastic and plastic formulae would be simple, the displacement could be
solved more easily.

In section 2.1.3, it was clear (qualitative) that for elastic behaviour of the U-section, the
flanges' elasticity was an important factor, whereas the web elasticity was less important (see
also figure 2-7). For plastic behaviour, web behaviour was far more important than flange
behaviour. So, the intersection of elastic and plastic behaviour could be determined by the
intersection of the elastic curve for only flange behaviour and the plastic curve for only web
behaviour. Figure 2-10 shows this on the right (on the left a normal prediction taking all
components into account). It seems that this is exactly the same as presented as method A.
However, for method A it was important that the difference between the predicted ultimate
load and the real ultimate load was small. For this method, the difference between the
ultimate and the predicted ultimate load needs not to be small, because it can be corrected
afterwards as shown in the next paragraph.

u

F
Predicted
ultimate load

Normal prediction
u

F
2Af

Plastic curve
for web only

Reduced prediction

Reduced predicted
ultimate load

d3

u1

u

F Plastic curve

Plastic curve
for web only

Plastic curve
for two flanges only

u1

F1

2At

u

F
2Af

Plastic curve
for web only

Reduced predicted
ultimate load

u1

F1

Corrected
ultimate load

u0

d3

Figure 2-10. Ultimate load is predicted by using only a few components for elastic and plastic
behaviour. Thereafter the reduced predicted ultimate load is corrected for plastic
components that were left out.
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The ultimate load was predicted by the intersection of an elastic and plastic curve using only
the most contributing components. This predicted load will be defined as "Reduced predicted
ultimate load". Figure 2-10 shows that the plastic curves for the web or the two flanges are
known (figure 2-8 present these). It is possible to find out for u1 (the deformation at reduced
predicted ultimate load) which plastic load is needed to deform the two flanges F1. The
plastic behaviour of the flanges was not taken into account during the prediction of the
ultimate load. Load F1 can be added to the reduced predicted ultimate load to correct for the
plastic behaviour of the flanges.

Note that the correction does not restore accuracy completely. If the intersection between the
elastic curve and the plastic curve was calculated for the complete plastic curve (all
components), u1 would equal u0, and thus load F1.would equal d3.

2.1.5 Mathematical techniques

In section 2.1.3, components were presented. Each component was described by a formula.
These formulae can be simplified by mathematical techniques like sensitivity analysis,
rewriting of formulae, etc. In the next few paragraphs, these mathematical techniques will be
introduced. The mathematical techniques are coded by the character 'M' and a sequential
number.

M1: removing small terms in defined variable space
This technique makes it possible to remove certain terms in a formula because for all possible
values of variables, these terms do not have significant influence on the formula output. A
possible formula for a component is:

),(),(),(),,( zxizyhyxgzyxf ++= (2.2)

Because the variables x, y, and z have a practical meaning, (for instance x could be the plate
thickness), their values will be restricted to practical values as follows:

bxa << (2.3)

dyc << (2.4)

fze << (2.5)

This set of constrains (formula 2.3 to 2.5) is defined as a defined variable space. Changing x,
y, and z between their minimal and maximal values, the value for the functions g, h, and i can
be calculated. Figure 2-11 presents these values.

Function f should be simplified within the defined variable space and function g, h, or i should
be removed. Figure 2-11 shows clearly that function i can be removed more easily than
functions g or h. Thus the simplified function will be:

),(),(),,( zyhyxgzyxf += (2.6)
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M2: Assuming small angles
A function describing a component can contain variables that describe angles. It is possible
that these angles are so small, that it is allowed to simplify sine- and cosine-functions as
follows:

( ) αα =sin (2.7)

( ) 1cos =α (2.8)

M3: Making complex functions linear
This technique makes complex functions linear. Functions can be made linear to make them
more simple. It can also be necessary to make functions linear to write a variable in this
function explicitly. An example will explain this.

g(x,y)

h(y,z)

i(x,z)

a bx

g(x,y)

h(y,z)

i(x,z)

c dy

g(x,y)

h(y,z)

i(x,z)

e fz

Figure 2-11. For x, y, and z, function i values can be neglected.

A component is described by the following function:

),,( zyxf (2.9)
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Assume it is necessary to rewrite this formula in such a way that the variable x is explicitly
written:

( )zygxzyxf ,),,( =⇔ (2.10)

Assume it is very difficult to rewrite formula 2.10 in this way. Therefore, formula 2.9 will be
made linear as follows. First, the behaviour of formula 2.9 will be observed in a defined
variable space. This space is:

bxa << (2.11)

dyc << (2.12)

fze << (2.13)

In figure 2-12 on the left, x is varied whereas y and z remain constant. There is a linear
relation between function f and x. On the right and bottom in figure 2-12, the relations
between f and variable y and z are shown.

Regarding figure 2-12, a possible linear form of formula 2.9 could be:

EDzCyByAxzyxf ++++= 2),,( (2.14)

Parameters A, B, C, D, and E can be found by the well-known technique of regression
analysis. It is not difficult to see that rewriting formula 2.14 leads to:

A
EDzCyByx +++−=

2
(2.15)

M4: Selecting terms to minimise a variable
It is possible that a value for a variable should be found by minimising the function of a
component. As an example, it is possible that the ultimate load of a sheet section is minimal
for a certain distance between two yield lines. This technique M4 makes it more easy to find a
reasonable approximation for this distance. An example: the load of a component equals:

( )zyxuF ,,= (2.16)

To find for which value of x function 2.16 is minimal, the function should be differentiated
with respect to x and the root of this function equal to zero should be found. Consequently, a
very complex formula occurs.

It is worth trying to differentiate only a part of the function with respect to x and find the root,
because a less complex formula occurs.
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Thus:

( ) ( )yxgx
x

yx
x
uF

,0, =⇔=
∂

∂=
∂

∂
(2.17)

f(x,y,z)

y=(c+d)/2
z=(e+f)/2

a bx

f(x,y,z)

x=(a+b)/2
z=(e+f)/2

c dy

f(x,y,z)

x=(a+b)/2
y=(c+d)/2

e fz

Figure 2-12. Behaviour of function f for variable x, y, and z.

Function 2.16 uses variables x, y, and z. The simplification of formula 2.16 should be tested in
the defined variable-space (formula 2.11 to 2.13). If for all combinations of possible values
for x, y, and z, x = g(x,y) is a reasonable approximation, the simplification of 2.17 is allowed.

Introduction to the development of the post-failure mechanical models
The information provided in section 2.1.1 to 2.1.5 gives a framework for the development of
post-failure mechanical models to predict the ultimate load of sheet sections. In the next
sections, the development of the post-failure mechanical models will be described. Where
useful, reference will be made to section 2.1.1 to 2.1.5. It should be noted that in the
following sections the framework will not be followed rigidly. The framework in sections
2.1.1 to 2.1.5 merely makes it easier to understand the next sections.
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2.2 Models for the yield arc post-failure mode

This section 2.2 presents models for the yield arc post-failure mode. First, some general
information about sheet section behaviour is presented. Thereafter, sections present the
components for the yield arc post-failure mode. Finally, the components are combined and the
post-failure mechanical models are presented in the last section.

Plastically, a sheet section can fail (as is presented in thesis [Hofm00a], chapter 3) by three
different post-failure modes: the rolling, the yield arc, and the yield eye post-failure modes.
Elastically, a sheet section behaves equal for all post-failure modes. Therefore, elastic
components will be only presented in this section 2.2 for the yield arc post-failure mode.
Plastic components will be presented in all sections for all post-failure modes.

2.2.1 Components: elastic behaviour

A sheet section, in a three point bending test, behaves elastically as shown in figure 2-13.  The
load-bearing plate indents the sheet section. For the middle line of the bottom flange, at the
edges of the load-bearing plate indentation is stronger than in the middle of the load-bearing
plate. Where the sheet section is indented, webs and bottom flange bend to make the cross-
section indentation possible. The top flanges only rotate, due to the bending of the webs.
Flange or web buckling is not taken into account.

Component E1
For component E1, only the sheet section part above the load-bearing plate is observed, as
figure 2-14 shows. It is assumed that this sheet section part deforms uniformly along the
length, although this is not true (see figure 2-13).

Model Vaessen
In 1995, Vaessen developed mechanical models for predicting the elastic relationship between
load and web crippling deformation for sheet sections [Vaes95a]. A part of one of his models
can be used to predict the elastic load Fe on the load-bearing plate for a certain web crippling
deformation ∆hw as follows:

( ) ( ) ( ) ( ) ( )
b

wbbfb

wibfrwbfbibfrbfbwbwwb
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tlbLI = (2.20)
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tlbLA = (2.21)

Fe = load for elastic behaviour [N].
∆hw = web crippling deformation [mm].
bw = web width [mm].
θw = angle between web and flange [rad.].
bbf = bottom flange width [mm].
ribf = interior corner radius between web and bottom flange [mm].
E = modulus of elasticity [N/mm2].
Llb = load-bearing plate / support width [mm].
t = steel plate thickness [mm].

F

F

Situation

Elastic deformation (deformations are exaggerated)

F F

F

Load-bearing plate

Sheet section

Supports

Cross-section

Bottom view

Side-view

Bottom flange deformation

Top flange deformation

Web deformation

h

h - web crippling deformation (∆hw)

Load-bearing plate width

Deformation in the
middle of bottom
flange

Figure 2-13. Elastic deformation of a sheet section.

This is valid for first-order elastic behaviour. Figure 3-2 in the thesis [Hofm00a] can be used
as reference for all variables used in formulae 2.18 to 2.21. A more detailed discussion of the
origin of formulae of component E1 can be found in appendix 3, section 3.1.
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F

Load-bearing plate width

Figure 2-14. Sheet section above the load-bearing plate.

2.2.2 Components: plastic behaviour for the yield arc post-failure mode

In this section, components that describe plastic behaviour of the yield arc post-failure mode
will be described. Each component is coded by "A" followed by a (sequential) number.
Component A1 describes the plastic behaviour of the sheet section above the load-bearing
plate. Component A2 does the same for parts adjacent to the part above the load-bearing
plate. Component A3 describes plastic behaviour for the bottom flange near the load-bearing
plate. Component A4 and A5 finally, describe the influence of the span length to the ultimate
load.

A1: Cross-section behaviour
For the yield arc post-failure mode, the plastic behaviour of the cross-section is modelled as
shown in figure 2-15. Making use of the principle of virtual displacements, the plastic load Fp
related to the web crippling deformation ∆hw equals:
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( ) wwbwhwhx θ2cos22 and +∆−= (2.24)

Fp = load for plastic behaviour [N].
fy = steel yield strength [N/mm2].
Lw = distance between yield lines [mm].
ϕi = rotation yield line i [rad.].
x = substitute variable.
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The factors δϕb/δ∆hw and δϕc/δ∆hw are likewise complex as factor δϕa/δ∆hw and can be
found in appendix 3.2, formula 3.15 and 3.16. Distance Lw is predicted by a model presented
in appendix 4, section 4.3.

A2: Load to deform webs parts adjacent to load-bearing plate
Figure 2-16 shows that not only the modelled cross-section indents during loading, but also
two parts adjacent to the modelled cross-section, over a length Lbf. The load to indent the
cross-section per mm equals Fp /Llb. Therefore, the load to indent a piece with width Lbf
equals Fp*Lbf / Llb. Because the indentation equals ∆hw at one end and zero at the other, it is
estimated that only half the load is needed. Because there are two parts, the load to deform the
two parts adjacent to the load-bearing plate, load F2p, simply equals:

lbL
bfL

pFpF =2 (2.25)

Load bearing plate

Yield line

Fp

∆hw

ϕaϕb
ϕcLw

Figure 2-15. Plastic behaviour for modelled cross-section.

A3: Load to deform flanges adjacent to load-bearing plate
Figure 2-16 shows that in the bottom flange of the sheet section yield lines occur. These yield
lines dissipate energy, like the yield lines in the modelled cross-section. The extra load Fylbf
needed to generate the extra energy dissipated by these yield lines equals:
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The factor δϕ/δ∆hw in formula 2.29 is complex and can be predicted only with complicated
formulae. The factor is presented in appendix 3.3, formula 3.33. A more detailed derivation of
the formulae of component A3 and the meaning of variables like ϕ, ϕd, and ϕe can also be
found in appendix 3.3.

Length-effect
The ultimate load of the modelled cross-section Fcsu can be predicted by intersection of Fe
and Fp (formula 2.18 and 2.22). In practice, the load acting on the load-bearing plate F
(figure 2-16) does not equal the load at the modelled cross-section Fcs. This means that the
ultimate sheet section load Fu does not equal the ultimate cross-section load Fcsu. Instead,
the load at the modelled cross-section Fcs equals the load acting on the load-bearing plate F
plus an extra force (flx-1)F due to indentation of the cross-section. Figure 2-16 illustrates this.
Then, in total a force F*flx is working on the sheet section.

Load-bearing
plate

Rotation ϕ

Bottom flange

Compression in bottom flange

F

F

Lspan

(flx-1)F
Fbf

Lbf ∆hw

Lbf
Fbf

∆hw
Fbf

Fcs
Llb

Modelled cross-section

Figure 2-16. Load at modelled cross-section Fcs equals load acting on load-bearing plate F plus an
extra force Fl  due to indentation of the cross-section.

If the modelled cross-section deforms, yield lines develop in the bottom flange, which behave
like hinges. Besides these yield lines, compressive forces develop in the bottom flange, due to
the bending moment in the sheet section. These compressive forces, through the hinges, will
increase the force on the modelled cross-section. This increase of force depends strongly on
the section length. Therefore, this effect will be defined as ‘length-effect’.

Two components to describe this 'length-effect' have been developed. The first component is
correct in a mechanical way, but produces complex formulae. The second component equals
the first component but uses some simplifications.

A4: Length factor 1
The first component uses virtual displacements to predict the internal and external
incremental energy. During an incremental change of the modelled cross-section indentation
∆hw, the load F acting on the sheet section moves. Not only the distance ∆hw (which is the
case for only the indented cross-section) but also for an extra displacement caused by the
deflection of the sheet section. The incremental energy can be written as follows (use figure
2-16):

 whcsFeE ∆= δδ 1 (2.30)
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δEe1 = incremental external energy cross-section only.
δEe2 = incremental external energy cross-section and sheet section deflection.
δ∆hw = incremental modelled cross-section indentation.
δϕ = incremental sheet section rotation.

Influences of stress on yield line energy dissipation are neglected and it is assumed that the
yield line pattern does not change geometrically during deformation. Then, because both
mentioned external energy terms should equal the incremental internal energy and internal
energy is equal for both cases, it can be derived that:
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fl1 = length factor 1

The factor δϕ/δ∆hw is complex and can be predicted only with complicated formulae. This is
shown in appendix 3.3, formula 3.33.

A5: Length factor 2
A part of length factor 1 can be simplified, avoiding the complex calculating of factor
δϕ/δ∆hw. Formula 3.33 is here presented:

( )whwhtfwbfL
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wh ∆−−
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∆ 22δ
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(3.33)

If it is assumed that wtf equals approximately ∆hw (see figure 3-2), this formula 3.33 can be
simplified into:
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Then, length factor 2 is described by the formula:
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Summary of loads
The modelled cross-section is loaded during elastic behaviour by Fe (formulae 2.18 to 2.21)
and during plastic behaviour by Fp (formulae 2.22 to 2.24). The two curves of Fe and Fp
form an envelope for the behaviour of the modelled cross-section for load Fcs. The ultimate
load of the cross-section equals Fcsu.

Besides the load Fcsu to indent the modelled cross-section, other loads are needed for the
whole sheet section. The load F2p (formula 2.25) to deform the two web parts adjacent to the
modelled cross-section and the load Fylbf (formulae 2.26 to 2.29) to deform the bottom
flange.

Due to the interaction between bending moment and concentrated load, Fcs will become
smaller, resulting in a force Fcs *fl1 or Fcs *fl2 (formulae 2.32 and 2.34).

Determination of yield line distances
All the forces of the previous paragraph result in the load at which the section fails Fu. The
only problem is the unknown values of Lbf and Lw (figure 2-16 and 2-15). Distance Lbf can
be found by minimisation of the load Fu. Regarding formulae 2.18 to 2.32, which are all
needed to predict Fu, it will be clear that this minimisation leads to many complex formulae.
Therefore, simplified formulae will be derived of formulae 2.18 to 2.32 in the next section,
where after it is possible to determine Lbf. Distance Lw can be found by a mechanical model
in appendix 4, section 4.3.

2.2.3 Prediction of the ultimate load using components

Introduction
Section 2.1 presented the methodology used in this appendix to develop post-failure
mechanical models to predict the ultimate load for sheet sections. For the yield arc post-
failure mode, section 2.2.1 and 2.2.2 presented components that can be used to describe
elastic and plastic curves. Now, these components and mathematical techniques (presented in
paragraph 2.1.5) will be used to develop the post-failure mechanical models that predict the
ultimate load for the yield arc post-failure mode. The mechanical models will have a code that
makes them easily recognisable. The character "M" stands for model, "A" for the yield arc
post-failure mode and, later, "R" for the rolling post-failure mode and "E" for the yield eye
post-failure mode.

In this appendix 2, many derivations made for developing the post-failure models will only be
briefly discussed. Appendix 3 will present derivations with full details.
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Model MA1: Used components and mathematical techniques
For this mechanical model, the following components are used. For elastic behaviour
component E1. For plastic behaviour component A1, A2, A3, and A4. All mathematical
techniques M1, M2, M3, M4, and M5 are used.

Development
As already discussed in section 2.1.2 the ultimate load of a sheet section can be predicted by
an intersection of the elastic and plastic curve. Although there are other methods available (for
example method B in section 2.1.2) method A will be used. Furthermore, the reduction
method presented in section 2.1.4 is used. For model MA1, the reduction method is used in
such a way that, for calculating the intersection,  elastic and plastic curves only pay attention
to the behaviour above the load-bearing plate. Thus, all other components will be neglected.
For the part above the load-bearing plate the ultimate load is calculated. Thereafter
corrections can be made by including other components. This is all conform section 2.1.4 and
thus needs no further explanation here.

Definition modelled cross-section
Figure 2-17 shows again the modelled cross-section. Although the behaviour of the sheet
section part above the load-bearing plate is not constant along the length (which is clearly
shown in figure 2-17), the modelled cross-section is assumed to do so.

Sheet section (fails by the
yield arc post-failure mode)

Load-bearing
plate

Yield lines

Modelled cross-section
Load-bearing plate

Load-bearing plate width Llb

Modelled cross-section
length equals load-bearing
plate width 

Fcs

F

Llb

Figure 2-17. Modelled cross-section.

The length of the modelled cross-section equals the load-bearing plate width that is defined by
Llb.



41

Intersection of E1 and A1
If the modelled cross-section as shown in figure 2-17 behaves elastically, formulae 2.18 to
2.21 yield. Using mathematical technique M1, (paragraph 2.1.5) formulae 2.18 to 2.21 are
reduced to:

( )
( ) ( )





 −

∆+
=

wibfrbfbwbwibfr

whwbbfbEI
eF

θθ sin
3
42sin2

23
(2.35)

Details are presented in appendix 3, section 3.5, formulae 3.69 to 3.77. Mathematical
technique M1 uses a defined variable space. In this case, the variable space is defined as
variable space A as follows:

15050 << wb  [mm]. (2.36)

9050 << wθ  [degrees]. (2.37)

15050 << lbL  [mm]. (2.38)

5.15.0 << t  [mm]. (2.39)

15040 << bfb  [mm]. (2.40)

121 << bfr  [mm]. (2.41)

101.0 <∆< wh  [mm]. (2.42)

Using techniques M3 and M1 for variable space A, formula 2.22, 2.23, and 2.24 can be
reduced. Setting equal the reduced formulae to formula 2.35 yields to the predicted ultimate
load of the modelled cross-section. This load is defined as Fcsu. Details are presented in
appendix 3.6, formulae 3.78 to 3.93.

( ) ( )
( ) wLwLwbA

kwLwLwbwhA
csuF

−
++−+−−

=
2

24 αβαβα (2.43)
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




 −

+
=

wbfrbfbwbwibfr

wbbfbEI
k

θθ (2.44)

2tlbLyf=α (2.45)

( )( ) wLwbwBLCwkL −+=β (2.46)
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06240.A = (2.47)

01010.B −= (2.48)

56330.C = (2.49)

Summarised, formulae 2.43 to 2.49 predict the ultimate load by intersection of an elastic
curve using component E1 and a plastic curve using component A1.

Correction of intersection E1 and A1 with A2
The prediction in the previous paragraph can be improved by adding component A2 to
formulae 2.43 to 2.49. As already described in paragraph 2.2.2 component A2 can be
described using formula 2.25. For the ultimate load Fcsu, the elastic load Fe and the plastic
load Fp are equal to Fcsu.

Therefore, formula 2.25 changes into:

lbL
bfL

csuFpF =2 (2.50)

The ultimate load of the modelled cross-section Fcsu can be corrected by adding the load F2p.

Correction of intersection E1 and A1 with A3
In section 2.2.2, component A3 was presented. Formulae 2.26 to 2.29, describing this
component, are quite complex. Therefore, technique M5 is used: component A3 is simplified.

The yield lines in the bottom flange are as shown in figure 2-18. For this moment, it is
assumed that the bottom flange part 1 and 3 do not rotate relatively to each other.

Lbf

∆hwϕd
ϕe

bottom flange, part 1

bottom flange, part 3

Figure 2-18. New simple model to predict the force Fylbf  to deform the bottom flange.

Using formula 2.26 and figure 2-18, the force Fylbf can be predicted as follows:

bfL
wh

ed
∆

== arcsinϕϕ (2.51)
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The ultimate load of the modelled cross-section Fcsu can be corrected by adding the load
Fylbf.

Correction intersection E1 and A1 with A4
In section 2.2.2 component A4 was presented. If mathematical technique M2 (section 2.1.5) is
used with variable angle ϕ in formula 2.28 component A4 can be rewritten as:

( )
( )( )whwhwhbfL

whbfLbfLlbLspanL
lf

∆−−

−−








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ϕ 22

2
1

1
1

(2.53)

Web crippling deformation ∆hw was calculated by formulae 3.88 and 3.89 for finding Fcsu in
formula 2.34. Rotation ϕ can be calculated by formula 3.97, appendix 3.7.

Further details are presented in appendix 3.7, formulae 3.94 to 3.99. Using this length factor
fl1 (component A4), the ultimate load of the sheet section can be calculated as follows:

( ) 12 lfylbfFpFcsuFuF ++= (2.54)

Finding yield line distance Lbf
The distance between yield lines Lbf is shown in figure 2-16. The distance Lbf can be
determined by varying Lbf and finding the minimum value for the ultimate load Fu (formula
2.54). To differentiate formula 2.54 to Lbf and find the root is difficult. Therefore,
mathematical technique M4 is used. If only Fcsu, F2p and Fylbf of formula 2.54 are used, the
following equation should be solved. Details are presented in appendix 3.8, formulae 3.100 to
3.110.
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(2.55)

Note that the correct equation should be:
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(2.56)
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Equation 2.55 can be solved easily. The result equals:

csuF
bfblbLtyf

bfL
4

601.222
= (2.57)

2.2.4 Overview of formulae

In this section, an overview of formulae needed to use model MA1 is given. If all formulae
are used in sequence, a prediction of the ultimate load of a sheet section results.

First, calculate the ultimate load of the modelled cross-section:

( ) ( )
( ) wLwLwbA

kwLwLwbwhA
csuF

−
++−+−−

2

24 αβαβα (2.43)
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42sin2
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




 −

+
=

wbfrbfbwbwbfr

wbbfbEI
k

θθ
(2.44)

2tlbLyf=α (2.45)

( )( ) wLwbwBLCwkL −+=β (2.46)

06240.A = (2.47)

01010.B −= (2.48)

56330.C = (2.49)

Distance Lw is predicted by a method presented in appendix 4, section 4.3. Now, yield line
distance Lbf can be calculated.

csuF
bfblbLtyf

bfL
4

601.222
= (2.57)

Then F2p, Fylbf, and fl1 can be calculated:

lbL
bfL

csuFpF =2 (2.50)
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The prediction of the ultimate load equals:

( ) 12 lfylbfFpFcsuFuF ++= (2.54)

With:
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(2.53)

Web crippling deformation ∆hw was calculated by formulae 3.88 and 3.89 for finding Fcsu in
formula 2.34. Rotation ϕ can be calculated by formula 3.97, appendix 3.7.

2.2.5 Other models

Model MA2
Model MA2 equals model MA1 with exception of component A2. This component is not
taken into account. This means that force F2p is removed from formula 2.54:

( ) 1lfylbfFcsuFuF += (2.58)

Model MA3
Model MA3 equals model MA1 with exception of component A3. This component is not
taken into account. This means that force Fylbf is removed from formula 2.54:

( ) 12 lfpFcsuFuF += (2.59)

Model MA4
Model MA4 equals model MA1 with exception of the components A2 and A3. These
components are not taken into account. This means that forces F2p and Fylbf are removed
from formula 2.54:

1* lfcsuFuF = (2.60)
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Model MA5
Model MA5 equals model MA1 with exception of component A4. Instead of this component,
component A5 is used. Component A5 is described by formula 2.34. Formula 2.54 changes
into:

( ) 22 lfylbfFpFcsuFuF ++= (2.61)

Model MA6
Model MA6 equals model MA5 with exception of component A2. This component is not
taken into account. This means that force F2p is removed from formula 2.61:

( ) 2lfylbfFcsuFuF += (2.62)

Model MA7
Model MA7 equals model MA5 with exception of component A3. This component is not
taken into account. This means that force Fylbf is removed from formula 2.61:

( ) 22 lfpFcsuFuF += (2.63)

Model MA8
Model MA8 equals model MA5 with exception of the components A2 and A4. These
components are not taken into account. This means that forces F2p and Fylbf are removed
from formula 2.61:

2* lfcsuFuF = (2.64)

Model MA9
Model MA9 equals model MA1 with exception of component A5. This component is
removed and is not replaced by an other component. This means that the length factor fl1 is
removed from formula 2.54:

ylbfFpFcsuFuF ++= 2 (2.65)

Model MA10
Model MA10 equals model MA9 with exception of component A2. This component is not
taken into account. This means that force F2p is removed from formula 2.65:

ylbfFcsuFuF += (2.66)

Model MA11
Model MA11 equals model MA9 with exception of component A3. This component is not
taken into account. This means that force Fylbf is removed from formula 2.65:

pFcsuFuF 2+= (2.67)
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Model MA12
Model MA12 equals model MA9 with exception of the components A2 and A3. These
components are not taken into account. This means that forces F2p and Fylbf are removed
from formula 2.65:

csuFuF = (2.68)
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2.3 Models for the rolling post-failure mode

This section 2.3 will have the same structure as the previous section 2.2. First, a component
will be presented, this time for the rolling post-failure mode. However, this component is a
plastic component. The elastic component for the rolling post-failure mode is equal to the
elastic component of the yield arc post-failure mode.

In the second part of this section, the components are used to predict the mode initiation load
for the rolling post-failure mode. Note that the mode initiation load does not equal the
ultimate load. The differences between mode initiation load and ultimate load are covered in
the thesis [Hofm00a], chapter 3, section 3.3.2. The mode initiation load is not suitable for
predicting the ultimate load, but it is especially suitable for predicting when the rolling post-
failure mode occurs. The post-failure mechanical models as presented in this appendix are
used in the thesis [Hofm00a] to predict when a post-failure mode occurs.

2.3.1 Components: plastic behaviour for the rolling post-failure mode

The only difference between the rolling post-failure mode and the yield arc post-failure mode
is the plastic behaviour of the cross-section. Therefore, only one component is described in
this section. The component for the rolling post-failure mode is coded by "R" followed by a
(sequential) number.

Component R1: Cross-section behaviour
This model is based on the model of Bakker [Bakk92a], however, only cross-section
behaviour is modelled. To make a simple model for the rolling post-failure mode, the sheet
section behaviour is modelled like for the yield arc post-failure mode. It is assumed that the
modelled cross-section above the load-bearing plate fails if the sheet section fails. The
modelled cross-section width is equal to the load-bearing plate width. This is shown in figure
2-17.

The plastic behaviour of the cross-section is modelled as shown in figure 2-19. Making use of
principle of virtual displacements [Bakk92a], the plastic load Fp related to the cross-section
indentation ∆hw equals:
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Calculating ϕc as:
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ui = movement of yield line i.
δui = incremental movement of yield line i.
rbf = corner radius bottom flange.
∆bw = change of web width bw..

Load-bearing
plate

Plastic behaviour

 Moving
yield line

∆hw
Fp

ua

ub θw

ϕc

Figure 2-19. Rolling post-failure mode, plastic behaviour.

The derivation of formulae 2.69 to 2.73 is presented in appendix 3.4, formulae 3.41 to 3.68.

Other components
For both length effect 1 and length effect 2, the parts adjacent to the support, the yield lines in
the bottom flange, and the determination of yield line distances, the same considerations and
formulae are valid as for the yield arc post-failure mode. However, as figure 2-19 shows,
distance Lw needs not to be determined (compare with figure 2-15).

2.3.2 Prediction of the ultimate load using components

Model MR1
For this post-failure mechanical model, the following components are used. For elastic
behaviour component E1. For plastic behaviour component R1, A2, A3, and A4. Method A
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mentioned in section 2.1.2 is used to predict the ultimate load. All mathematical techniques
M1, M2, M3, M4, and M5 will be used.

Equal to model MA1, this model MR1, predicting the ultimate load for the rolling post-failure
mode, will be based on the reduction method presented in section 2.1.4. The ultimate load is
predicted by intersection of an elastic and plastic curve. These curves pay only attention to the
modelled cross-section section (the part above the load-bearing plate, defined in section 2.2.3,
figure 2-17).

For the elastic curve, component E1 describes the behaviour of the modelled cross-section.
The plastic curve for the modelled cross-section is described by component R1.

After the prediction of the ultimate load of the modelled cross-section, the predicted ultimate
load is corrected. This correction is carried out using components that describe the behaviour
of parts adjacent to the load-bearing plate or components describing a length effect. For the
yield arc and rolling post-failure modes, these components are equal. This means the ultimate
load prediction for the rolling post-failure mode is corrected with the same components as for
the model MA1: the components A2, A3, and A4.

Intersection of E1 and R1
If the modelled cross-section as shown in figure 2-17 behaves elastically formulae 2.18 to
2.21 yield. Using mathematical technique M1, (paragraph 2.1.5) formulae 2.18 to 2.21 are
reduced to:

( )
( ) ( )
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θθ sin
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(2.35)

Details are presented in appendix 3.5, formulae 3.69 to 3.77. Mathematical technique M1 uses
a defined variable space. In this case, the variable space is defined as variable space A (see
formulae 2.36 to 2.42).

Using mathematical technique M1 for defined variable space A (formulae 2.36 to 2.42), the
formulae describing the plastic behaviour for the rolling mechanism (2.69 to 2.73) can be
simplified into:
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Details are presented in appendix 3.9, formulae 3.111 to 3.121. Now, the elastic (formula
2.35) and plastic load (formula 2.74) of the modelled cross-section can be set equal.
Consequently, the predicted ultimate load Fcsu of the modelled cross-section can be solved
(appendix 3.9, formulae 3.111 to 3.121):
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Correction of intersection E1 and R1 with A2
This correction equals the correction with component A2 for the yield arc post-failure mode.
To the ultimate load Fcsu (formula 2.75), load F2p should be added (formula 2.50).

Correction of intersection E1 and R1 with A3
This correction equals the correction with component A3 for the yield arc post-failure mode.
The ultimate load Fcsu (formula 2.75) should be added with load Fylbf (formula 2.52 and
2.26).

Correction intersection E1 and R1 with A4
This correction equals the correction with component A4 for the yield arc post-failure mode.
The ultimate load of the cross-section should be multiplied with the length factor fl1 (formula
2.53).

Finding yield line distance Lbf
Finding yield line distance Lbf is equal for the rolling post-failure mode and the yield arc
post-failure mode. Thus, formula 2.57 can be used.

2.3.3 Overview of formulae

In this section, an overview of formulae needed to use model MR1 is given. If all formulae
are used in sequence, a prediction of the mode initiation load of a sheet section results. First,
calculate the mode initiation load of the modelled cross-section:
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With:
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Now, yield line distance Lbf can be calculated:

csuF
bfblbLtyf
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4

601.222
= (2.57)

Then F2p, Fylbf, and fl1 can be calculated:
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The prediction of the mode initiation load equals:

( ) 12 lfylbfFpFcsuFuF ++= (2.54)

2.3.4 Other models

Model MR2
Model MR2 equals model MR1 with exception of component A2. This component is not
taken into account. This means that force F2p is removed from formula 2.54:

( ) 1lfylbfFcsuFuF += (2.76)

Model MR3
Model MR3 equals model MR1 with exception of component A3. This component is not
taken into account. This means that force Fylbf is removed from formula 2.54:

( ) 12 lfpFcsuFuF += (2.77)
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Model MR4
Model MR4 equals model MR1 with exception of the components A2 and A3. These
components are not taken into account. This means that forces F2p and Fylbf are removed
from formula 2.54.

1* lfcsuFuF = (2.78)

Model MR5
Model MR5 equals model MR1 with exception of component A4. Instead of this component,
component A5 is used. Component A5 is described by formula 2.34. Thus, formula 2.54
changes into:

( ) 22 lfylbfFpFcsuFuF ++= (2.79)

Model MR6
Model MR6 equals model MR5 with exception of component A2. This component is not
taken into account. This means that force F2p is removed from formula 2.79:

( ) 2lfylbfFcsuFuF += (2.80)

Model MR7
Model MR7 equals model MR5 with exception of component A3. This component is not
taken into account. This means that force Fylbf is removed from formula 2.79:

( ) 22 lfpFcsuFuF += (2.81)

Model MR8
Model MR8 equals model MR5 with exception of the components A2 and A3. These
components are not taken into account. This means that forces F2p and Fylbf are removed
from formula 2.79:

2* lfcsuFuF = (2.82)

Model MR9
Model MR9 equals model MR1 with exception of component A4. This component is
removed and is not replaced by an other component. This means that the length factor fl1 is
removed from formula 2.54:

ylbfFpFcsuFuF ++= 2 (2.83)

Model MR10
Model MR10 equals model MR9 with exception of component A2. This component is not
taken into account. This means that force F2p is removed from formula 2.83:

ylbfFcsuFuF += (2.84)
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Model MR11
Model MR11 equals model MR9 with exception of component A3. This component is not
taken into account. This means that force Fylbf is removed from formula 2.83:

pFcsuFuF 2+= (2.85)

Model MR12
Model MR12 equals model MR9 with exception of the components A2 and A3. These
components are not taken into account. This means that forces F2p and Fylbf are removed
from formula 2.83:

csuFuF = (2.86)
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2.4 Model for the yield eye post-failure mode

Introduction
In this section, a model for the yield eye post-failure mode will be presented. The post-failure
model is based on method A (paragraph 2.1.2) and uses elastic component E1 (section 2.2.1)
and a new plastic component introduced in this section.

2.4.1 Plastic component

Component Y1: flip-disc action
The yield eye post-failure mode has an eye like yield line pattern located on the bottom flange
(see also chapter 3, thesis [Hofm00a]). In 1981, Murray and Khoo presented a paper that
discussed some models to describe the behaviour of simple yield line patterns [Murr81a]. One
of these patterns was called a flip-disc pattern and has a strong geometrical similarity to the
eye like yield line pattern of the yield eye post-failure mode. Figure 2-20 shows a thin-walled
plate compressed by a force Fbf.

Fbf

aa

End panels twist and 
bend freely

Positive plastic hinge
Negative plastic hinge

∆

Cross-section

bFbf

Figure 2-20. Thin-walled plate. Flip-disc pattern.

According to Murray and Khoo, the force Fbf can be predicted using the following formula:
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With:

a =0.2b
P = compressive force [N].
∆ = flip-disc out-of-plane deflection [mm].
b = plate width [mm].
a = flip-disc half width [mm].
t = steel plate thickness [mm].
fy = steel yield strength [N/mm2].
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2.4.2 Prediction of the ultimate load using components

Elastic component E1 describes the relationship between the concentrated load F acting on
the sheet section and the sheet section web crippling deformation ∆hw. Plastic component Y1
defines the load Fbf acting on the bottom flange needed to form a plastic mechanism for a
certain flip-disc out-of-plane deflection ∆ (previous section).

For model ME1, elastic and plastic curves have different load and deformation variables.
Figure 2-21 illustrates this problem.

A relationship between the load at the sheet section F and the load at the bottom flange Fbf
should be developed. Furthermore a relationship between the elastic cross-section
deformation variable ∆hw and the plastic flip-disc deformation variable ∆ should be
developed.

Cross-section deformation versus flip-disc deformation
Figure 2-22 shows a possible relationship for this. It shows that for elastic behaviour, it is
assumed that a certain width adjacent to the modelled cross-section will deform like the
modelled cross-section. This certain width is set equal to the distance 2a between yield lines
in the bottom flange during plastic deformation. Thus, it can be derived:

wh
a
wh

a
∆=∆⇔

∆
=∆ 5.0

22
2 (2.88)

∆ = flip-disc out-of-plane deflection [mm].
∆hw = web crippling deformation [mm].

Load at section versus load at bottom flange
Looking at figure 2-22 shows that the external bending moment in the section equals:

4
spanFL

eM = (2.89)

Me = external bending moment [Nmm].
F = concentrated load of support on section [N].
Lspan = span length [mm].

Making the following assumptions:

•  One concentrated load F models the load of the load-bearing plate.

•  The flip-disc occurs at the position of this concentrated load, the location of highest
bending moment.
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Figure 2-21. Intersection of different defined elastic and plastic curves is not possible.
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∆hw=h1-h2

Bottom flange
F

Lspan

Llb

Elastic indentation of modelled
cross-section, relation             is known,
elastic deformations are scaled

2∆

Bottom flange
F

2a

Elastic behaviour,
side view

Start plastic behaviour,
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h1

h2approx. ∆hw

Llb
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Load-bearing
plate

Load-bearing
plate

 F-∆hw

Figure 2-22. Relationship between elastic cross-section deformation and plastic flip-disc deflection.

The internal bending moment in the section equals:

tsbfb
sIbfF

iMs
sI
iM

tbfb
bfF

*
=⇔= (2.90)

Mi = internal bending moment [Nmm].
bbf = bottom flange width [mm].
Is = moment of inertia [mm4].
s = distance of bottom flange to centre of gravity sheet section [mm].

Because the internal and external bending moment should be equal, it can be derived that:

tsbfbspanL
sIbfF

F
tsbfb

sIbfFspanFL
*

4

*4
=⇔= (2.91)

Calculation of intersection of E1 and Y1
Formula 2.88 can be substituted into the simplified formula describing component E1
(formula 2.35).
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This results in:
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Formula 2.87 describing component Y1 can be substituted into formula 2.91. This results in:
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If the elastic load Fe and the plastic load Fp are set equal, the flip-disc out-of-plane
displacement can be solved. Then the ultimate sheet section load Fu can be calculated by
using the value for ∆  into formulae 2.92 or 2.93.



60

2.5 Post-failure model results

2.5.1 Verification methods

Correlation coefficient
One method to find out how well a model like MA1 predicts the ultimate load for experiments
is a measurement of correlation between model predictions and experiments. The correlation
checks whether there is a linear relationship between two variables, in this case the
experimental values of the ultimate load and the model predictions. If there is a linear
relationship, the correlation coefficient equals 1. If there is no relationship, the coefficient
equals 0. The correlation coefficient can be calculated as follows:

Determine the mean values and standard deviations of e and m:
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(2.94)

e = main value for experimental values for the ultimate load.
n = number of experiments.
ie = experiment i.

∑
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=
n

i
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n
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(2.95)

m = main value for model predictions of the ultimate load.
im = model prediction i.
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es = standard deviation for experiments.
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ms = standard deviation for model predictions.

Now the correlation coefficient ρ can be calculated as:
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(2.98)
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Average and coefficient of variation
The correlation coefficient indicates whether there is a qualitative relationship between the
experimental values and the model predictions. Nevertheless, it is not known whether the
model predicts the experimental values well quantitatively. Therefore, for every experiment
the ratio between model value and experimental value is calculated. Then the average,
standard deviation, and coefficient of variation are calculated for the ratios of all experiments.
The coefficient of variation equals the standard deviation divided by the average. An average
close to 1 indicates that the model predicts the experimental values well (on average). A low
(close to zero) coefficient of variation indicates this is not only the case on average, but for
the most individual experiments also.

Experiments
For checking post-failure mechanical models, only experiments can be used for which the
post-failure mode is specified for each experiment. For instance, it would not be useful to
check whether the yield arc post-failure model predicts experiments well, if rolling post-
failure mode experiments are used. For this reason, only the experiments in chapter 3 of the
thesis [Hofm00a] are used. Other experiments (see chapter 2 of the thesis) do not specify the
post-failure modes. An exception has been made for experiments failing by the rolling post-
failure mode. Only 7 experiments in chapter 3 of the thesis fail by this post-failure mode and
these experiments all have the same nominal variable values. Therefore, for checking the
rolling post-failure models, experiments of Bakker [Bakk92a] are used.

2.5.2 Verification of yield arc post-failure models

Experiments of chapter 3 of the thesis [Hofm00a] are used failing by the yield arc post-failure
mode. These experiments are listed in thesis [Hofm00a] table A-4, appendix A, and coded by
post-failure mode A. Table 2-1 shows the correlation, average, etc. for the experiments and
Eurocode3 predictions. Table 2-2 shows the experiments and several (not all) yield arc post-
failure models as presented in section 2.2.

Table 2-1. Eurocode3 predictions for experiments failing by the yield arc post-failure mode.

Experiments
A (33)

Correlation Average Standard
deviation

Coefficient of
variation

Eurocode3 0.95 0.93 0.09 0.09

Table 2-2. Post-failure model predictions for experiments failing by the yield arc post-failure mode.

Experiments
A (33)

Components
E1,A1 + ....

Correlation Average Standard
deviation

Coefficient of
variation

Model MA1 A2+A3+A4 0.70 1.32 0.36 0.27
Model MA3 A2+A4 0.68 1.16 0.33 0.28
Model MA2 A3+A4 0.63 0.90 0.29 0.32
Model MA4 A4 0.59 0.74 0.27 0.36
Model MA12 - 0.43 0.90 0.32 0.36
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Eurocode3 predictions are much better than the post-failure models' predictions. However,
table 2-2 shows clearly that the more (or better) components, the better the results of the
mechanical models. Chapter 6 of the thesis [Hofm00a] will suggest some differences between
Eurocode3 and the models as a possible cause for the differences in performance.

2.5.3 Verification of rolling post-failure models

Experiments of Bakker's thesis [Bakk92a] are used that are failing by the rolling post-failure
mode, see thesis [Hofm00a] table A-5, appendix A. Furthermore, the 7 experiments of thesis
chapter 3 (failing by the rolling post-failure mode) are used.

Table 2-3 shows the correlation, average, etc. for the experiments and Eurocode3 predictions.
The ultimate load of the experiments Ftest is used for the comparison, not the mode initiation
load Fimec, because the Eurocode3 predicts the ultimate load for sheet sections. In fact,
almost no Bakker experiments satisfy the conditions for using the Eurocode3 (see thesis
[Hofm00a] chapter 2 for more details). However, to have some possibilities to compare the
Eurocode3 and the post-failure models, the experiments are still used.

Table 2-4 shows the experiments and several (not all) rolling post-failure models as presented
in section 2.3. Now, the mode initiation load Fimec is used for the comparison, because the
post-failure models predict the mode initiation load.

Table 2-3. Eurocode3 predictions for  experiments failing by the rolling post-failure mode.

Bakker
experiments
(28) and
experiments
chapter 3 (7)

Correlation Average Standard
deviation

Coefficient of
variation

Eurocode3 0.67 0.95 0.19 0.20

Table 2-4. Post-failure model predictions for experiments failing by the rolling post-failure mode.

Bakker
experiments
(28) and
experiments
chapter 3 (7)

Components
E1,R1 + ....

Correlation Average Standard
deviation

Coefficient of
variation

Model MR1 A2+A3+A4 0.85 0.83 0.18 0.21
Model MR3 A2+A4 0.85 0.69 0.15 0.22
Model MR2 A3+A4 0.81 0.46 0.12 0.26
Model MR4 A4 0.73 0.31 0.12 0.37
Model MR12 - 0.70 0.43 0.15 0.34

Model predictions are much better than the Eurocode3 predictions. However, Eurocode3
predicts the ultimate load, the post-failure models predict the mode initiation load. Table 2-4
shows clearly that the more (or better) components, the better the results.
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2.5.4 Verification of yield eye post-failure model

Experiments of chapter 3 of the thesis [Hofm00a] are used that failed by the yield eye post-
failure mode, see thesis table A-4, appendix A, and coded by post-failure mode E.

Table 2-5 shows the correlation, average, etc. for the experiments and Eurocode3 predictions.

Table 2-6 shows the experiments and the yield eye post-failure model predictions as presented
in section 2.4.

Table 2-5. Eurocode3 predictions for  experiments failing by the yield eye post-failure mode.

Experiments
E (7)

Correlation Average Standard
deviation

Coefficient of
variation

Eurocode3 0.87 0.91 0.10 0.11

Table 2-6. Post-failure model predictions for experiments failing by the yield eye post-failure mode.

Experiments
E (7)

Correlation Average Standard
deviation

Coefficient of
variation

Model ME1 0.91 1.03 0.37 0.36

Both the Eurocode3 and the yield eye post-failure model predict the experimental values well.
The standard deviation of the post-failure model is significantly higher than for Eurocode3.
These conclusions are based on 7 experiments only.
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2.6 Conclusions

A methodology to develop post-failure mechanical models has been presented. This
methodology separates sheet section behaviour into components.

For the yield arc and rolling post-failure modes, mechanical models have been developed
which first predict the ultimate load for a piece of the sheet section above the load-bearing
plate. Hereafter, this prediction is corrected for pieces of the sheet section adjacent to the
load-bearing plate and the length effect. Mathematical techniques have been used to simplify
the model equations.

For the yield eye post-failure model the model transforms elastic cross-section behaviour in
an elastic flip-disc out-of-plane displacement. For plastic flip-disc behaviour, an existing
model is used. By setting equal elastic and plastic loads of the section, the ultimate load can
be predicted.

The developed models are compared with experiments. For the yield arc and yield eye post-
failure modes the experiments presented in chapter 3 of thesis [Hofm00a] are used. For the
rolling post-failure mode, experiments carried out by Bakker are used. The more detailed the
models are, the higher is the correlation with the experiments. This indicates that the
methodology works well. The components used in this report are exemplary. Better
components may result in a better correlation.
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3 Appendix detailed derivations post-failure models

3.1 Derivation of formulae 2.18 to 2.21

These formulae were derived by Maarten Vaessen in 1995 [Vaes95a]. Some remarks should
be made to fully understand his master thesis in the context of this thesis.

Page 125 [Vaes95a]: ‘… of the establishment of the portal frame model both…'
The ‘portal frame model’ as mentioned by Vaessen was intended to describe the elastic web
crippling stiffness of hat sections, sheet sections, and trapezoidal sheeting. The first step in
order to create this ‘portal frame model’ was to predict the relation between the applied forces
and the indentation of a small prismatic cross-section part of a sheet section. This small
prismatic part can be seen as the same as the ‘modelled cross-section’ in this thesis. However,
Vaessen assumes a cross-section dx small. In this thesis, the modelled cross-section has a
width equal to Llb.

Page 125: ‘… the assumptions as stated in section 3.2, the cross section…'
Two of the assumptions as stated in section 3.2 are related to the ‘portal frame model’ and are
not important for the modelled cross-section in this thesis. Important assumptions are: The
rounding of the corners of the modelled cross-section is ignored (1). However, the
eccentricity of the two concentrated loads due to the rounding is taken into account. Although
the support creates an equally distributed load at the top flange first, curling of the top flange
makes it acceptable to replace the distributed load by two concentrated loads (2). Shear
deformations in the modelled cross-section are ignored (3). Only axial forces and bending
moments are taken into account.

Page 125: Figure A.1
Vaessen rotates the modelled cross-section 180 degrees in all his figures. Vaessen defines the
bottom flange in this report as top flange and vice versa.

Page 130: ‘… the reciprocal two-dimensional web crippling…'
This reciprocal two-dimensional web crippling stiffness equals the web crippling deformation
divided by the support load. Therefore, the support load equals the web crippling stiffness
divided by this reciprocal web crippling stiffness. Rewriting the formulae in the master thesis
and defining variables as used in this report, formula 2.18 to 2.21 can be derived.

Page 125-130: defining variables
The following variables are used in Vaessen's thesis:

btf = top flange width.
ri;tf = interior corner radius between web and top flange.
θw = angle between web and flange.
F = distributed load of support, modelled as concentrated load.
Rh = horizontal reaction.
A,B,C,D = points.
ui = horizontal displacement point i.
wi = vertical displacement point i.



66

ϕi = rotation point i.
x = direction of cross-section width (perpend. to plane cross-section).
Ei = accumulated elastic energy.
∆hw;2D = web crippling deformation (vertical displacement point A).
k∆hw;2D = web crippling stiffness (load divided by web crippling deformation).

3.2 Derivation of formulae 2.22, 2.23, and 2.24

A yield line, a line like concentrated zone in thin-walled steel where yielding occurs,
dissipates energy when the two accompanying plate parts rotate in relation to each other.
Bakker [Bakk92a] stated that, for a yield line only subject to bending stresses along the
length, and no strains in length direction, the energy dissipated by the yield line could be
calculated as follows:

iiL
tyf

iE ϕ**
4

2

3
2= (3.1)

Ei = dissipated energy yield line i.
fy = steel plate yield stress.
t = steel plate thickness.
Li = length yield line i.
ϕi = rotation yield line i.

Figure 3-1 shows the plastic behaviour for the modelled cross-section for the yield arc post-
failure mode. The figure shows a cross-section having the same width as the support (width is
perpendicular to the paper plane). Yield lines are indicated by black dots. The variable Lw
defines the distance between two yield lines.

By setting equal external energy and internal dissipated energy, the load needed to deform the
cross-section for a certain cross-section indentation ∆hw can be predicted. However, yield line
rotation is not correlated linearly to the indentation. By setting equal incremental external
energy and incremental internal dissipated energy, this problem is solved. The incremental
external energy equals the load multiplied by a virtual, very small deviation δ∆hw of the
indentation ∆hw, thus:

whpFeE ∆= δδ * (3.2)

δEe = incremental external energy.
Fp = load at cross-section for plastic cross-section behaviour.
δ∆hw = virtual, very small deviation of cross-section indentation.

The incremental internal dissipated energy equals the sum of the incremental energy
dissipated for each yield line, thus:
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δEi = incremental internal dissipated energy.

Setting equal incremental internal and external energy, the load Fp can be predicted:
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Figure 3-1. Definition of variables for determination yield line rotations.

In case of the modelled cross-section, three yield lines occur: yield lines a, b, and c (see figure
3-1 on the left). Because these yield lines occur at both sides of the cross-section, their
derivatives to δ∆hw need only be calculated once. Thereafter, Fp can be doubled to give a
correct prediction. The length of the yield lines equals the width of the modelled cross-section
Llb (figure 2-14). Thus:
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Now, the incremental change of the yield line rotations related to an incremental change of
the web crippling deformation ∆hw should be determined. Figure 3-1 shows this:
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( ) wwbwhwhx θ2cos22 +∆−= (3.7)

Using the cosines rule, a relation between the angles ϕat, ϕbt,  and ϕct and the sides of the
triangle abc can be derived.
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Figure 3-1 shows that the real rotations of the yield lines a, b, and c can be derived making
use of formula 3.6.
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Formulae 3.7, 3.11, 3.12, and 3.13 can be derived to the web crippling deformation. This
results in the following derivatives:
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Formulae 3.5, 3.14, and 3.7 equal formulae 2.22, 2.23, and 2.24 in chapter 2.

3.3 Derivation of formulae 2.26, 2.27, 2.28, and 2.29

Figure 3-2 shows the yield lines in the bottom flange. These yield lines behave the same as
the yield lines in the modelled cross-section. Therefore, formula 3.5 can be rewritten for the
load Fylbf as follows.







∆

+
∆

=
wh
e

wh
d

bfb
tyf

ylbfF
δ
δϕ

δ
δϕ

4

2

3
22 (3.18)

The length of the yield lines d and e equals the bottom flange width bbf. Now, the derivatives
of yield line rotations ϕd and ϕe should be derived. This derivation is based on the work of
Bakker [Bakk92a]. However, some simplifications have been carried out, making it worth to
rewrite her derivations in this appendix. The simplifications will be mentioned in the text.
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Using figure 3-2, it can be derived that:

22
4,1 bfLwhPPywL +== (3.19)

ywL
wh

w =ϕsin (3.20)

ywL
bfL

w =ϕcos (3.21)

22 tfwbfL −

0.5Lspan

0.5(Lspan-Llb) 0.5Llb

P2 P1

hw
ϕw

P3P4

0.5(Lspan-Llb)-Lbf Lbf 0.5Llb

P2

P1

P4

P3

ϕ

ϕe ϕd

Lyw

wtf

hw- ∆hw

hw
∆hw

Figure 3-2. Not deformed and deformed longitudinal section of sheet section.

Furthermore, figure 3-2 shows:

( ) ( ) ( )ϕϕϕϕϕϕ sin coscossinsin wwywLwywLwhwhtfw +=+=∆−+ (3.22)

Inserting 3.20 and 3.21 in 3.22 makes it possible to predict the cross-section indentation as a
function of wtf and ϕ:

( ) whtfwbfLwhwh +++−=∆ ϕϕ sincos (3.23)
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Now, wtf should be determined. Therefore, the horizontal movement of point P4 will be
considered in figure 3-3.

P4 P3 P1

P4P4

P3

Lbf

u4;fl

wtf

u4;w

Lyw Lyw

ϕ

ϕw

Figure 3-3. Two different ways to observe the horizontal displacement of point P4.

The horizontal displacement u4;fl  of point P4 due to wtf  equals:

22
;4 tfwbfLbfLflu −−= (3.24)

The horizontal displacement u4;w of point P4 due to the rotation ϕ equals:

( )( )ϕϕϕ +−= wwywLwu coscos;4 (3.25)

Using 3.20 and 3.21 into equation 3.25:

( )( ) ( )⇔−=+−= ϕϕϕϕϕϕϕϕ sinsincoscoscoscoscos;4 wwyw-LwywLwwywLwu

ϕϕϕϕ sincossincos-;4 whbf-LbfL
ywL
wh

ywL
bfL

ywL
ywL
bfL

ywLwu +=









−= (3.26)

Compatibility requires that u4;tf  should be equal to u4;w. Setting equal equation 3.24 and 3.26
yields wtf:

⇔+=−− ϕϕ sincos22
whbf-LbfLtfwbfLbfL

⇔−=− ϕϕ sincos22
whbfLtfwbfL

( )2sincos2 ϕϕ whbfLbfLtfw −−= (3.27)
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Inserting equation 3.27 into equation 3.23 describes the relationship between the web
crippling deformation ∆hw and the rotation ϕ :

( ) ( ) whwhbfLbfLbfLwhwh +−−++−=∆ 2sincos2sincos ϕϕϕϕ (3.28)

This equation can be differentiated with respect to ϕ as follows:

( ) ( )( )
( )2sincos2

cossinsincos
cossin

ϕϕ

ϕϕϕϕ
ϕϕ

δϕ
δ

whbfLbfL

whbfLwhbfL
bfLwhwh

−−

+−
+−=∆

(3.29)

Rewriting equations 3.23 and 3.27, it can be concluded that:

( ) ( ) whtfwwhbfLwhwhtfwbfLwhwh ∆−+=+⇔+++−=∆ ϕϕϕϕ sincossincos (3.30)

( ) ( ) 22sincos2sincos2
tfwbfLwhbfLwhbfLbfLtfw −=−⇔−−= ϕϕϕϕ (3.31)

Substituting 3.30 and 3.31 into 3.29 yields:

( ) ( )
tfw

whwhtfwbfL

tfw
whtfwwhtfwbfL

tfwbfLwh ∆−−
=

∆−+−
+−−=

∆
22

 
22

22
δϕ

δ (3.32)

Now, the incremental change of ϕ for an incremental change of ∆hw can be determined as
follows:

( )whwhtfwbfL

tfw

wh ∆−−
=

∆ 22δ
δϕ

(3.33)

The variable wtf can be predicted using 3.27. The variable ϕ in 3.27 can be determined by
iterative solving 3.28. Figure 3-2 shows:

bfL
tfw

e arcsin=ϕ (3.34)

This equation 3.34 can be differentiated with respect to ∆hw, yielding:

 
cos
1

wh
tfw

ebfLwh
e

∆
=

∆ δ
δ

ϕδ
δϕ

(3.35)

Figure 3-2 shows:



73

 
22

cos
bfL

tfwbfL
e

−
=ϕ (3.36)

Furthermore:

( )( )
( )whwhtfwbfL

tfw

tfw
whbfLwhbfL

wh
tfw

wh
tfw

∆−−

+−
=

∆
=

∆ 22

cossinsincos ϕϕϕϕ
δ
δϕ

δϕ
δ

δ
δ

(3.37)

Using 3.30 and 3.31, equation 3.37 can be rewritten as:

( )
( )

⇔
∆−−

∆−+−
=

∆
=

∆
whwhtfwbfL

tfw

tfw
whtfwwhtfwbfL

wh
tfw

wh
tfw

22

22

δ
δϕ

δϕ
δ

δ
δ

( )
( )whwh

whtfwwh

wh
tfw

∆−

∆−+
=

∆δ
δ

(3.38)

Now, using equation 3.36 and 3.37, formula 3.35 yields:

( )
( )

 
22

tfwbfLwhwh

whtfwwh

wh
e

−∆−

∆−+
=

∆δ
δϕ

(3.39)

From figure 3-2 it can also be seen that:

 -
whwh

e
wh
ded ∆∆

=
∆

⇔−=
δ

δϕ
δ
δϕ

δ
δϕϕϕϕ (3.40)

In this appendix, formulae 2.26, 2.27, 2.28, and 2.29 have been derived as equation 3.18,
3.39, 3.27 and 3.40.

3.4 Derivation of formulae 2.69, 2.70, 2.71, 2.72, and 2.73

These formulae predict the plastic behaviour of the rolling post-failure mode, for the modelled
cross-section (figure 2-17). Figure 2-19 in appendix 2 shows the rolling post-failure mode,
however, in this appendix 3 more detailed drawings will be used. Figure 3-4 shows the rolling
post-failure mode for the modelled cross-section.

Although the derivations of these formulae can be red in the Bakker's thesis [Bakk92a], they
will be copied here for convenience.



74

 

ab

c

ab

c

Undeformed situation Deformed situation

rtf

bwfl
hw

θw

rbf

bwflsinθw

bwfl-∆bwfl

bwflcosθw
rbfsinθw

0.5bbffl

rbf(1-cosθw)

(bwfl-∆bwfl)cos(θw+ϕc)
rbfsin(θw+ϕc)

0.5(bbffl+∆bbffl)

∆hw

rbf(1-cos(θw+ϕc))

(bwfl-∆bwfl)sin(θw+ϕc)

θw+ϕc

Figure 3-4. Geometry of rolling post-failure mode for modelled cross-section.

Bakker stated [Bakk92a] that the incremental amount of energy dissipated by a moving yield
line (no strains in length direction) could be predicted using the following formula:

iL
tyf

bfr
iuE

4

2

3
2

i
δ

δ = (3.41)

δEi = incremental internal dissipated energy.
δui = incremental movement of yield line i.
fy = yield stress.
Li = length of yield line i.
rbf = radius of circle along which yield line moves.
t = steel plate thickness.

The external energy due to an incremental change of the web crippling deformation ∆hw
equals:

whFE ∆= δδ e (3.42)

δEe = incremental external energy.
F = force of support.
δ∆hw = incremental change of web crippling deformation.

Because incremental energy should be equal internal and external, formula 3.41 and 3.42 can
be used to predict the plastic load needed to deform the modelled cross-section. For yield line
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"c" in figure 3-4, which is a normal fixed yield line (this yield line rotates only), formula 3.3
is used.

⇔=∆ iL
tyf

bfr
iu

whF
4

2

3
2δ

δ

lbL
tyf

wh
c

lbL
tyf

bfrwh
bu

lbL
tyf

bfrwh
au

F
4

2

3
22

4

2

3
212

4

2

3
212

∆
+

∆
+

∆
=

δ
δϕ

δ
δ

δ
δ (3.43)

Formula 3.43 equals formula 2.69. Now, the incremental movements of yield lines "a" and
"b" should be determined as a result of an incremental change of the web crippling
deformation ∆hw. First, the flat widths of several cross-section variables are determined, see
figure 3-4 for their definition. The variables bbf and bw are the widths of the bottom flange
and the web measured between the points of intersection of the web and flange midlines.






−=

2
tan2 wbfrbfbbfflb θ

(3.44)

( ) 





+−=

2
tan wbfrtfrwbwflb θ

(3.45)

Due to the rolling post-failure mode, the flat width of the bottom flange increases from bbffl to
(bbffl+∆bbffl), the flat width of the web decreases from bwfl to (bwfl-∆bwfl). The yield line
displacements u1 and u2 can then be determined as:

bfflΔbau
2
1= (3.46)

wflbbu ∆= (3.47)

The formulae describing the incremental yield line deformations due to an incremental web
crippling deformation δ∆hw can best be derived as follows. First by determining the
incremental yield line deformations due to the incremental rotation δϕc in yield line "c" at the
top of the web. Therefore the changes in the flat widths of the elements must be expressed as
a function of the rotation ϕc. Since the total length of flange and web elements does not
change, it can be derived from figure 3-4 that:

( ) ( )⇔∆−+++∆−=++ bfflbbfflbcwbfrwflbwflbbfflbwθbfrwflb
2
1

2
1 ϕθ

( )cbfrwflbbfflb ϕ−∆=∆ 2 (3.48)
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The distance between the tops of the webs does not change either, and therefore:

( ) ( )

( ) ( )bfflbbfflbwbfr

cwwflbwflbbfflbwbfrwwflb

∆+++

++∆−=++

2
1

3sin

cos
2
1sincos

ϕθ

ϕθθθ
(3.49)

Combining formulae 3.48 and 3.49 results in:

( )( ) ( )( )
( )cw

cwcwbfrcwwwflb
wflb

ϕθ
ϕθϕθϕθθ

+−
+−+++−

=∆
cos1

sinsincoscos
(3.50)

The incremental changes in the flat widths of the bottom flange and the web due to the
incremental rotation δϕc can be determined by deriving these widths with respect to ϕc:











−

∂

∆∂
=

∂

∆∂
=

∆
bfr

c

wflb

c

bfflb

c

bfflb
ϕϕδϕ

δ
(3.51)

( ) ( )
( ) bfr

cw
cwwflbwflb

c
wflb

c
wflb

+
+−

+∆−
=

∂
∆∂

=
∆

ϕθ
ϕθ

ϕδϕ
δ

cos1
sin

(3.52)

To determine the incremental yield line displacements δua and δub due to an incremental web
crippling deformation δ∆hw, this deformation must be determined as a function of the
incremental rotation δϕc. Therefore the web crippling deformation ∆hw must be expressed as
a function of the rotation ϕc.

From figure 3-4 it can be seen that:

( ) ( ) ( )( )wcwbfrcwwflbwflbwwflbwh θϕθϕθθ coscossinsin −+++∆−−=∆ (3.53)

Hence:

( ) ( ) ( ) ( )cwbfrcwwflbwflbcw
c
wflb

c
wh ϕθϕθϕθ

δϕ
δ

δϕ
δ +−+∆−−+

∆
=∆ sincossin (3.54)

Inserting formula 3.52 into 3.54 results in:

wflbwflb
c
wh ∆−=

∆
δϕ

δ
(3.55)
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From formulae 3.46, 3.47, 3.51, 3.52, and 3.55 it can then be derived that:

( )
( )cw

cw
wh
c

c

tfflb

wh
c

c
au

wh
au

ϕθ
ϕθ

δ
δϕ

δϕ
δ

δ
δϕ

δϕ
δ

δ
δ

+−
+

=
∆

∆
=

∆
=

∆ cos1
sin

2
1 (3.56)

( )
( ) wflb-wflb

bfr

cw
cw

wh
c

c
wflb

wh
c

c
bu

wh
bu

∆
+

+−
+=

∆

∆
=

∆
=

∆ ϕθ
ϕθ

δ
δϕ

δϕ
δ

δ
δϕ

δϕ
δ

δ
δ

cos1
sin

2
1

(3.57)

where ∆bwfl is given by formula 3.50. Note that (figure 3-4):

cbfraubu ϕ+= (3.58)

and hence:

cbfraubu δϕδδ += (3.59)

The incremental yield line displacements depend on the yield line rotation ϕc. For finding the
relationship between the web crippling deformation ∆hw and the rotation ϕc some
simplifications in the geometry of the sheet section cross-section have been made. This is
shown in figure 3-5. The corners are flattened and three new distances are defined: distance
b1, b2, and b3. The dotted line shows the deformed cross-section. It should be noted that the
webs reduce in length and the (bottom) flange increases in length. This is not due to axial
deformations of the webs or flange, but due to the movement of the two yield lines in the
corner. Normally, these yield lines are located at different positions (see figure 3-4).
Nevertheless, here, for finding the relationship between ∆hw and ϕc it is assumed that both
yield lines are at the same location. In figure 3-5, the yield lines are not exactly at the same
location. They are drawn in this way to show them both.

bbf

b1

bw

b2

θw

ϕc

hw

∆hw

b3=bbf+2bwsin(π/2-θw)

Figure 3-5.  Simple cross-section geometry.



78

Using figure 3-5 it can be shown that:






 −−−=∆ cwbwhwh ϕθπ

2
cos2 (3.60)

The distance between the tops of the webs b3 is assumed to remain equal. For sheet sections
and sheeting, this is true. If the distance remains equal then:

( )
2

135.0
2

sin
b

bb
cw

−
=






 −− ϕθπ

(3.61)

The total length of the two webs and bottom flange cannot change:

2212 bbwbbfb +=+ (3.62)

Formula 3.62 can be solved for b1 that can be substituted in formula 3.61. Note that c1 is a
new substitution variable used.

2
11

2
21

2

25.035.0

2
sin

b
c

b
bc

b
bwbbfbb

cw +=
+

=
+−−

=





 −− ϕθπ (3.63)

Formula 3.63 can be used to solve b2 that can be inserted into formula 3.60:

1
2

sin

2
cos1

−




 −−






 −−

−=∆
cw

cwc
whwh

ϕθπ

ϕθπ

(3.64)

With c1 and b3 defined in formula 3.63 and figure 3-5 respectively. If it is assumed that angle
ϕc is small, the following parts of formula 3.64 can be rewritten as follows:

cwcw

cw

ϕθπϕθπ

ϕθπ

sin
2

sincos
2

cos

2
cos







 −+






 −

=





 −−

(3.65)







 −−






 −=






 −−






 −

=





 −−

wcwcwcw

cw

θπϕθπϕθπϕθπ

ϕθπ

2
cos

2
sinsin

2
coscos

2
sin

2
sin

(3.66)
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Using formulae 3.65 and 3.66 for formula 3.64:

1
2

cos
2

sin

2
sin12

cos1

−




 −−





 −






 −+





 −

−=∆
wcw

wccwc
whwh

θπϕθπ

θπϕθπ

(3.67)

Solving formula 3.67 for angle ϕc results in:






−





∆






∆

−=

2
sin

2
cos

2
sin

w
wbw

wh

w
wh

c θθ

θ

ϕ (3.68)

Formulae 3.56, 3.57, 3.50, and 3.68 equal formulae 2.70, 2.71, 2.72, and 2.73 in the thesis
[Hofm00a].

3.5 Derivation of formula 2.35

This formula has been derived using mathematical technique M1 (paragraph 2.1.5 in the
thesis [Hofm00a]) for formulae 2.18, 2.19, and 2.21.

Formulae 2.18 and 2.19 have been rewritten as follows:

 
CBA

wh
eF

++
∆

= (3.69)

( )
 

2sin
EA

wwb
A

θ
= (3.70)

( ) ( ) ( ) ( )

wbbfb

wibfrwbfbibfrbfbwbwwb

EA
wB

3
2

2sin2sin
3
2cos

cos

+

−+




 +

=
θθθ

θ (3.71)

( )
( ) ( ) ( )

( )wbbfbEI

wibfrbfbwibfrwibfrbfbwb

wibfrC
23

sin
2
3sinsin

3
4

2sin2
+






 −+





 −

=
θθθ

θ (3.72)

Formulae 2.18 and 2.19 have been written as ∆hw divided by a summation of three terms A,
B, and C. Because the formulae 3.69 to 3.72 describe sheet sections in practice, all variables
in the formulae will have practical values. For all variables in formulae 3.69 to 3.72, these
practical values are:
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15050 << wb  [mm] (2.36)

9050 << wθ  [degrees] (2.37)

15050 << lbL  [mm] (2.38)

5.15.0 << t   [mm] (2.39)

15040 << bfb  [mm] (2.40)

121 << bfr  [mm] (2.41)

101.0 <∆< wh  [mm] (2.42)

These values are part of defined variable space A (paragraph 2.2.3). Now, every variable
except the web width bw is kept on its average value. The parameter bw is varied between 50
and 150 mm. For these values, term A, B, and C are calculated. Figure 3-6 on the left shows
the results. It can be seen that only factor C plays an important role. Factor A and B can be
neglected compared to factor C.

The angle between web and flange θw has been varied, keeping all other variables on their
average value. The factor values are shown in figure 3-6 on the right. Only factor C plays an
important role.
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/N
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Factor A
Factor B
Factor C

Figure 3-6. Factor A, B, and C values for web width bw and for angle between web and flange θw.

Likewise, for the next four variables, the same strategy is followed. The results are shown in
figure 3-7 and 3-8. For all variables, only factor C plays an important role. Without exception,
factors A and B can be neglected. The last variable, ∆hw, needs not to be varied, because this
variable is not a part of the factors A, B, and C.
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Figure 3-7. Factor A, B, and C values for load-bearing plate width Llb and steel plate thickness t.
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Figure 3-8. Factor A, B, and C values for bottom flange width bbf  and for corner radius rbf.

Neglecting the factors A and B in formula 3.69 and using formula 3.72, the following formula
remains:

( )
( ) ( ) ( )

( )

 

23

sin
2
3sinsin

3
4

2sin2
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wbbfbEI

wibfrbfbwibfrwibfrbfbwb
wibfr
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eF



















+







 −+






 −

∆
=

θθθ
θ

(3.73)

This formula can be split up again and yields in rewritten form to:

ED
wh

eF
+

∆
= (3.74)
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( ) ( )

( )wbbfbEI

wibfrbfbwbwibfr
D

23

sin
3
4*2sin2

+






 −

=
θθ

(3.75)

( ) ( ) ( )

( )wbbfbEI

wibfrbfbwibfrwibfr
E

23

sin
2
3sin*2sin2

+






 −

=
θθθ

(3.76)

As the method followed for factors A, B, and C, now the factors D and E are evaluated for
one variable each time. All other variables keep their average value. Figure 3-9 to 3-11
present the results.

40 80 120 160
Web width [mm]

0.0E+0

4.0E-4

8.0E-4

1.2E-3

Fa
ct

or
 v

al
ue

 [m
m

/N
]

Factor D
Factor E

0.80 1.00 1.20 1.40 1.60
Angle between web and flange [rad.]

0

2E-4

4E-4

6E-4

8E-4

1E-3
Fa

ct
or

 v
al

ue
 [m

m
/N

]

Factor D
Factor E

 Figure 3-9. Factor D and E values for web width bw and angle between web and flange θw.
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Figure 3-10. Factor D and E values for load-bearing plate width Llb and steel plate thickness t.

For all variables, only factor D is an important factor. The value of factor E can be neglected
for all variables.
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Figure 3-11. Factor D and E values for bottom flange width bbf and corner radius rbf.

Therefore, formulae 3.74 and 3.75 yield to:

( )
( ) ( )





 −

∆+
=

wibfrbfbwbwibfr

whwbbfbEI
eF

θθ sin
3
4*2sin2

23
(3.77)

This is equal to formula 2.35 in chapter 2.

3.6 Derivation of formulae 2.43 to 2.49

Formula 3.5 together with formulae 3.14 to 3.17 predict the plastic load needed to deform the
modelled cross-section for a certain web crippling deformation ∆hw. First, mathematical
technique M1 (section 2.1.5) will be used. For this reason formula 3.5 is rewritten as:

( )HGFlbL
tyf

pF ++=
4

2

3
22 (3.78)
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∆
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δ
δϕ

(3.79)
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bG

∆
=

δ
δϕ

(3.80)
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cH

∆
=

δ
δϕ

(3.81)
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The following variables are part of formula 3.78 to 3.81. Together, they form variable space
B:

15050 << wb  [mm] (2.36)

9050 << wθ  [deg.] (2.37)

101.0 <∆< wh  [mm] (2.42)

355 << wL  [mm] (3.82)

Now, every variable except the yield line distance Lw is kept on its average value. The
variable Lw is varied between 5 and 35 mm. For these factors F, G, and H are calculated.
Figure 3-12 on the left shows the results.
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Figure 3-12. Factor F, G, and H values for yield line distance Lw and angle between web and flange
θw.

The angle between web and flange θw  has been varied, keeping all other variables on their
average value. The factor values are shown in figure 3-12 on the right.

Likewise, for the next two variables, the same strategy is followed. The results are shown in
figure 3-13.

Figure 3-12 and 3-13 show that the behaviour of factor G and H can be compared very well.
Factor H values are a bit lower than factor G values. Compared to the values of factors G and
H, factor F values can be neglected.

Therefore, formula 3.78 is simplified to:
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b
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3
24 (3.83)
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Figure 3-13. Factor F, G, and H values for web width bw and web crippling deformation ∆hw.

Using formula 3.7, 3.15, and 3.17, this formula can be written as:

( )

( )
( ) ( )

( ) 224

22cos2222
1

*2
3

2

wLwLwb

wwbwhwhwLwbwL
wLwLwb

whwh

lbLtyfpF

−




 +∆−+−−−
−−

∆−

=

θ
(3.84)

If the ultimate load of the modelled cross-section should be predicted, the elastic and the
plastic load of the cross-section should be set equal. Therefore, formulae 3.77 and 3.84 should
be set equal. Hereafter, ∆hw should be solved. However, due to the complexity of formulae
3.84, this is an almost impossible job. Therefore, formula 3.84 should be simplified, more
specific the part below the square root sign. For this, mathematical technique M3 will be used
(section 2.1.5).

First, the sensitivity of the part below the square root sign will be tested for every variable.
The variables in this part and their practical values are equal to variable space B:

15050 << wb  [mm] (2.36)

9050 << wθ  [degrees] (2.37)

101.0 <∆< wh  [mm] (2.42)

355 << wL  [mm] (3.82)

Note that the variable hw need not to be investigated because the web width bw and the angle
between web and flange θw determine the section height hw. Each variable has been varied,
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keeping the other variables constant on their average value. Figure 3-14 shows the factor
values compared with the varying variables.

In this figure 3-14, the horizontal axis scale is different for every variable. For example, the
scale for the angle between web and flange θw equals the range of 50 to 90 degrees.
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Figure 3-14. Behaviour of term for several variables. The x-axis scale is different for every variable.

Figure 3-14 shows clearly the factor below the square root sign is sensitive for the web
crippling deformation ∆hw and the yield line distance Lw. For the other two variables, the
factor is less sensitive. It is assumed that the factor can be simplified by writing it as a linear
function of ∆hw and Lw as follows:

( ) ( )

( )
CwBLwhA

wLwLwb

wwbwhwhwLwbwL
++∆≈

−




 +∆−+−−−
−

224

22cos2222
1
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(3.85)

Linear regression can solve the parameters A, B, and C as follows. The web crippling
deformation ∆hw is varied in discrete steps of 0.1 mm (100 steps). For every possible value of
the web crippling deformation, distance Lw is varied in discrete steps of 1 mm (30 steps). The
two other variables are kept on their average value. In total, 30000 combinations of ∆hw and
Lw occur, for which the value of the square root is determined. Using these data, the factors
A, B, and C can be determined by linear regression. In this case, the regression was carried
out by means of the computer program SPSS. This results in:
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( )
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wLwLwb

wwbwhwhwLwbwL θ
(3.86)
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Formula 3.86 can be substituted into formula 3.84 that results in:

( )
( ) ( ) ( ) ( )( )5633.00101.00624.0

2
+−+∆−
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wLwhwLwLwb
whwh

lbLtyfpF (3.87)

Setting equal formulae 3.77 and 3.87 (and thus equal elastic and plastic behaviour of the
cross-section) makes it possible to solve ∆hw. For this purpose, some parts of the formulae are
renamed.
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224 φφ (3.88)

2322 tlbLyfwBkLwCkLwkLwBbwCkLwb +−−+=φ (3.89)

In the last derivation, k is defined as the elastic web crippling stiffness. Therefore, formula
2.44 has been derived. Now, the ultimate load of the modelled cross-section Fcsu can easily
be determined by calculating Fp or Fe for solved ∆hw. Furthermore, the factor φ can be
rewritten as follows:

=+−−+= 2322 tlbLyfwBkLwCkLwkLwBbwCkLwbφ

=+


 −−+= 22 tlbLyfwBLwCLwLwBbCwbwkL

( ) ( )( ) =+−+−= 2tlbLyfwLwbwBLwLwbCwkL

( )( ) =+−+= 2tlbLyfwLwbwBLCwkL

αβ += (3.90)
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2tlbLyf=α (3.91)

( )( )wLwbwBLCwkL −+=β (3.92)

Thus, load Fcsu can be described as follows:

( ) ( )
( ) wLwLwbA

kwLwLwbwhA
whkcsuF

−
++−+−−

=∆=
2

24 αβαβα (3.93)

Formulae 3.91, 3.92, and 3.93 are equal to formulae 2.45, 2.46, and 2.43 in appendix 2.
Formulae 2.47, 2.48, and 2.49 can be derived from formulae 3.85 and 3.86.

3.7 Derivation of formula 2.53

Formula 3.28 describes the web crippling deformation ∆hw as a function of the rotation ϕ. If
it assumed that the rotation ϕ is small (out of the experimental data it can be shown that ϕ will
not exceed 5 degrees at failure), the following can be stated.

ϕϕ ≈sin (3.94)

1cos ≈ϕ (3.95)

Using the two formulae presented above, formula 3.28 can be rewritten.

( ) ( ) ( ) ϕϕϕϕ bfLwhbfLbfLwhwhbfLbfLbfLwhwh -22 22 −−=+−−++−=∆ (3.96)

Now, the rotation ϕ can be solved straightforward:
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This simple prediction of rotation ϕ can be derived to ∆hw, however, this leads to a
complicated formula. Instead, formula 3.27 and 3.33 are used, assuming a small rotation ϕ:
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
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Using formula 2.32 the first length factor fl1 can now be written as:
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( )( )whwhwhbfL
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2
1

1
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This formula equals formula 2.53 in appendix 2.

3.8 Derivation of formula 2.57

Appendix 2 shows that the sheet section ultimate load Fu can be calculated using more or less
refinement (model MA1 to MA12, MR1 to MR12, and ME1). The distance between yield
lines Lbf can be found by minimising Fu to Lbf, in other words to find a distance Lbf for
which Fu will be as small as possible. Although the ultimate load Fu can be predicted by
formula 2.54, a very complex one, it is nearly impossible to minimise Lbf using this formula.
Deriving the length factor fl1 to Lbf is an almost impossible job. Therefore, the following
strategy is followed. Why not chose a simple formula predicting Fu to determine Lbf, even if
a complex formula is used to predicting Fu itself? The only thing that should be considered is
to choose such a simple formula predicting Fu that it makes sense to minimise Lbf. This
situation can be found for formula 2.65. Common sense dictates that F2p and Fylbf should be
considered during a Lbf determination. These loads predict the extra forces that are needed to
deform the sections adjacent to the modelled cross-section. The length factor is not included
for formula 2.65. Although this is theoretically not correct, it’s derivation will result into
lengthy formulae. Besides this aspect, common sense again dictates that the length factor will
be less influenced by Lbf than the parts that directly relate their widths to Lbf. If Lbf
determination will be successful using formula 2.65, the length factor relationship to Lbf will
indeed be considered unimportant. If not, reconsideration of the above mentioned strategy
surely will be needed. Looking at formula 2.65, the derivative to Lbf equals:

bfL
ylbfF

bfL
pF

bfL
csuF

bfL
uF

δ
δ

δ
δ

δ
δ

δ
δ

++= 2
(3.100)
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This derivative should be zero to find the minimal Fu. Furthermore, formula 3.93 shows Fcsu
is not a function of Lbf. Therefore:

bfL
ylbfF

bfL
pF

δ
δ

δ
δ

+= 20 (3.101)

For convenience, the function predicting F2p and Fylbf will be presented here again. For
Fylbf, formula 2.26 is used.

lbL
bfL

csuFpF =2 (2.50)
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4
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22 (2.26)

The derivative of formula 2.50 can be presented straightforward:

lbL
csuF

bfL
pF

=
δ
δ 2

(3.102)

Although the derivative of formula 2.26 can be derived, this leads to complex formulae.
Therefore, a linear approximation of Fylbf will be used. Formula 2.26 will first be simplified
using mathematical technique M3: make complex functions linear. Lbf and ∆hw will differ as
follows:

[mm]  9510 << bfL (3.103)

 [mm]  81.0 <∆< wh (3.104)

Now, Fylbf is written as:



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
+∆+≈  2

4
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3
22 CwhB

bfL
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bfb
tyf

ylbfF (3.105)

Linear regression can solve the parameters A, B, and C as follows. The web crippling
deformation ∆hw is varied in discrete steps of 0.8 mm (10 steps). For every possible value of
the web crippling deformation, distance Lbf is varied in discrete steps of 8.5 mm (10 steps). In
total, 100 combinations of ∆hw and Lbf occur, for which the value of Fylbf is determined.
Using these data, the factors A, B, and C can be determined by linear regression.
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This results in:

 019.02000393.0601.2
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22 
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ylbfF (3.106)

The above-presented formula has a correlation of 0.951 to the standard formula for the data
used. To try the suggestion that Fylbf is not seriously influenced by ∆hw, a new simplified
formula is proposed:
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Using the computer program and the data, factors A and B are:

 001.0601.2
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bfLbfb
tyf
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The above-presented formula has a correlation of 0.944 to the standard formula. The
derivative of this formula to Lbf  equals:

2
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δ

δ
(3.109)

Substituting formula 3.102 and 3.109 into 3.101 leads to:

( ) ⇔−=
2

601.2
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3
220

bfL
bfb

tyf

lbL
csuF

csuF
bfblbLtyf

bfL
4

601.222
= (3.110)

The last formula equals formula 2.57 in appendix 2.

3.9 Derivation of formulae 2.74 and 2.75

Formula 3.43 showed how the plastic load for the rolling post-failure mode can be calculated.
Now this formula will be rewritten as built up out of components:

KJIpF ++= (3.111)
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With:
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Component K can be calculated using formula 3.50, 3.55, and 3.68. For the derivation of
formula 3.68, it was assumed that angle ϕc is small and corner radius rbf equals zero. This
also applies for formula 3.50:
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≈∆ (3.115)

Component I and J can be calculated using formulae 3.56 and 3.57. These formulae can be
rewritten in the same way as for formula 3.50:
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For all variables, defined variable space A is used (section 2.2.3):

15050 << wb  [mm]. (2.36)

9050 << wθ  [degrees]. (2.37)

15050 << lbL  [mm]. (2.38)

5.15.0 << t  [mm]. (2.39)

15040 << bfb  [mm]. (2.40)

121 << bfr  [mm]. (2.41)
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101.0 <∆< wh  [mm]. (2.42)

Now, every variable except the web width bw is kept on its average value. The variable bw is
varied between 50 and 150 mm. For these values, terms I and K are calculated (term J equals
term I). Figure 3-15 on the left shows the results. It can be seen that only factor I plays an
important role. Factor K can be neglected compared to factor I.

The angle between web and flange θw  has been varied, keeping all other variables on their
average value. The factor values are shown in 3-15 on the right. Only factor I plays an
important role.
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Figure 3-15. Factor I and K values for web width bw and angle between web and flange θw.
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Figure 3-16. Factor I and K values for corner radius rbf and web crippling deformation ∆hw.
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Figure 3-17. Factor I and K values for plate thickness t and load-bearing plate width Llb.

Likewise, for the next four variables, the same strategy is followed. The results are shown in
figure 3-16 and 3-17. For all variables, only factor I plays an important role. Without
exception, factor K can be neglected. Factor J equals factor I. Therefore, formula 3.111 can be
written as:
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The plastic load for the modelled cross-section can be set equal to the elastic load, like for the
yield-arc post-failure mode:
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Substituting 3.68 into the last presented formula and solving for ∆hw leads to:

( )
 

cos
3

22

2
sin

2
cos

3

22
2

wkwb
bfr

tyflbL
kwb

ww
bfr

tyflbL
wb

wh

θ

θθ

+













−−




























−=∆ (3.120)

Then the load at which the cross-section fails Fcsu can be calculated as:

 * whkcsuF ∆= (3.121)

Formulae 3.120 and 3.121 together form formula 2.75 in appendix 2. Formula 3.118 equals
formula 2.74.
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4 Appendix cross-section behaviour

Introduction
The experiments in chapter 3 of thesis [Hofm00a] indicated that for a large concentrated load
and a small bending moment (short span lengths), two post-failure modes could occur: the
rolling and the yield arc post-failure modes, see also table 3-7, thesis [Hofm00a]. Research in
the past indicated that the corner radius has a strong influence on which of these two post-
failure modes occurs [Bakk92a], [Hofm96a].

In this appendix, it has been investigated whether small strips of the sheet section's cross-
section can be used to gather insight into the differences of the two post-failure modes. For
small corner radii, it will be shown that strip behaviour and section behaviour is comparable.
For large corner radii, this is not the case.

Finite element models have been used to describe the cross-sectional behaviour of sheet
sections for varying corner radii. Relatively simple mechanical models have been derived that
determine the location of first yield in the cross-section's web and the cross-section's plastic
behaviour. Except for the largest corner radius, mechanical models and finite element models
give comparable results.
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4.1 Introduction

Chapter 3 of the thesis [Hofm00a] presented three-point bending tests on sheet sections.
Figure 4-1 shows these experiments schematically.

dx

FSheet section Load-bearing plate

bbf rbf
bw

F

θw

btf

Cross-section

Figure 4-1. Three point bending test and cross-section variables.

These three-point bending tests indicate that sheet sections subjected to a large concentrated
load and a small bending moment (short span lengths) can fail by two post-failure modes: the
rolling and the yield arc post-failure modes, figure 4-3. Bakker [Bakk92a] studied the rolling
and yield arc post-failure modes (called "mechanisms" in her thesis) and some of her
observations of this research are presented in the next paragraphs.

Rolling and yield-arc post-failure modes
Bakker [Bakk92a] found that one very important sheet section variable that determines
whether the yield arc or rolling post-failure mode occurs is the corner radius (rbf in figure 4-
1).

Although web crippling deformation was already defined in the previous appendices (1, 2 and
3), it is shown in figure 4-2 on the left again. The rolling and yield arc post-failure modes
each have a characteristic load versus web crippling deformation curve as shown in figure 4-2
on the right.

F

Deformed cross-section

Web crippling
deformation 

F rolling post-failure mode

yield arc
post-failure
mode

Mode initiation

∆hw

∆hw= h1-h2
h1

h2 rbf = 1 mm

rbf = 10 mm

Figure 4-2. Qualitative load versus web crippling deformation curves for rolling and yield arc post-
failure modes.

Before both post-failure modes initiate, the sheet sections first behave elastically: the straight
lines in the load versus web crippling deformation curves. Thereafter, the post-failure mode
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initiates and plasticity occurs. The initiation of the post-failure mode is marked with a bold
dot for both modes (the mode initiation points). After mode initiation, the rolling post-failure
mode increases in strength. After some deformation, the ultimate load is reached and the load
decreases again. For the yield arc post-failure mode, the load decreases immediately after
mode initiation. Mode initiation occurs at ultimate load.

Figure 4-3 shows the yield line patterns of the two post-failure modes. A rolling post-failure
mode (figure 4-3 at the bottom) starts with the moving yield lines 7 and 8 near the bottom
corner. For an increase of the load, yield line 8 in the web moves upward in the web. Yield
line 7 in the bottom flange moves through the corner. After further increase of the load, other
yield lines (1 to 6) occur in the flange and web for reasons of compatibility. A yield arc post-
failure mode (figure 4-3 at the top) starts with the curved yield line 8 in the web. For an
increase of the load, the movement of this yield line is negligible small. As for the rolling
post-failure mode, other yield lines (1 to 7) will occur for reasons of compatibility after some
loading.

moving yield lines
fixed yield lines

rolling post-failure
mode,

yield arc post-failure
mode,

Top flange

Web

Bottom flange 1
2 3 4

5 6

1 2 3 4

5 6

7
8

7

8

Load-bearing plate

rbf = 1 mm

rbf = 10 mm

Figure 4-3. Rolling and yield arc post-failure modes.

Cross-sectional behaviour
Bakker introduced the rolling and yield arc post-failure modes by simple mechanical models
as shown in figure 4-4. Yield line numbers are according to figure 4-3.

For the longitudinal section, the rolling and yield arc post-failure modes are quite similar:
yield lines 1 to 6 are all fixed and have more or less the same positions for the rolling and
yield-arc post-failure modes in figure 4-3. Thus, only one simple mechanical model for the
longitudinal section is used in figure 4-4. For the cross-section, the rolling and yield-arc post-
failure modes are different: yield lines 7 and 8 are moving for the rolling post-failure mode,



99

but fixed for the yield arc post-failure mode. Thus, two simple mechanical models are used
for the cross-sectional behaviour in figure 4-4.

The simple mechanical models in figure 4-4 suggest that the differences between the two
post-failure modes may be explained by investigating the differences of the modes for the
cross-section only.

For this reason, only the cross-sectional behaviour of sheet sections is investigated in this
appendix. With a finite element method, a small strip dx of the sheet section as shown in
figure 4-1 is modelled. The simulations are presented in section 4.2. For the same strip dx, a
mechanical model has been derived. This model makes it possible to predict the behaviour of
the two post-failure modes for the strip dx. The mechanical model is presented in section 4.3.
Section 4.4 presents a comparison between finite element models for a strip dx and whole
sheet sections.

F

Yield arc
post-failure
mode

Rolling
post-failure
mode

Longitudinal section for both
rolling and yield arc post-failure
modesCross-section A-A'
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Zone of
cross-section
deformations

Yield lines
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2 3
4

5 6

7

8

8

7 F

F
F

F

F
F

Figure 4-4. Rolling and yield-arc post-failure modes presented by mechanical models, [Bakk92a].
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4.2 Finite element models

Support conditions
In the previous section, it was explained that the cross-sectional behaviour of sheet sections is
studied by the behaviour of a strip dx of the sheet section. Normally, this strip dx is kept in
place by the flanges and web adjacent to the strip. Without these adjacent parts, the strip dx
has to be fixed to make loading possible. It can only be fixed at the top because otherwise,
cross-sectional deformations will not be possible. Figure 4-4 shows that for the cross-section,
the top flange and top corner do not play a significant role in the cross-sectional behaviour.
Therefore, the top flange and top corners are not modelled in the finite element model.
Regarding the possible rotation of the top of the web, two extreme situations are modelled:
hinged and clamped, figure 4-5.

Cross-section 
strip dx

Strip should be 
fixed here

F F

1 2bw

rtf

bw-rtf

F

Figure 4-5. Two possibilities to fix the strip dx: hinged (1) and clamped (2).

Finite element model
Figure 4-6 presents a finite element model for the strip dx. At the bottom of the figure, the
load-bearing plate is shown. This plate is modelled as a solid piece of steel. Load is applied
by a forced displacement of the load-bearing plate along the negative y-axis. Contact elements
are modelled between the load-bearing plate and the bottom flange to prevent penetration of
the load-bearing plate into the strip. Contact elements were presented in the thesis
[Hofm00aa] chapter 4, section 4.1.3. A geometrically non-linear analysis has been carried out,
accounting for large displacements, large rotations, and small strains.

Elements sizes are 3*3 mm for web and bottom flange. The corner is modelled by 10
elements. Shell elements are used, having four nodes with six degrees of freedom each and
five integration points in thickness direction. The material behaviour is given by points of the
stress-strain curve of the steel used (see thesis [Hofm00a], chapter 4, section 4.1.2). Plasticity
and hardening is thus taken into account. Some variables of the steel used are: yield strength
335 [N/mm2], modulus of elasticity 210.000 [N/mm2], strain at yielding 0.003.

Boundary conditions are shown in figure 4-6. The two sides of the strip (for which z = 0 and z
= 3 mm) are part of a symmetry surface. This is also true for the nodes at the bottom flange
edge.
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Because of these symmetry conditions, the strip width is not of importance. The strip width of
the model is chosen arbitrarily to be dx = 3 mm. Nodes at the top of the web are fixed for
movement along the x- and y-axis. The rotation around the z-axis is free or fixed for a hinged
or clamped condition.

100 mm-corner radius

100 mm

Corner radius =
 1, 3, 5, 10, 15 mm

Load-bearing plate

Bottom flange

Web

Bottom corner

Nodes along this line:
Clamped:
ux = 0
uy = 0
rotz = 0
Hinged:
ux=0
uy=0

Nodes along
these lines:
uz = 0
rotx = 0
roty = 0

dx=3 mm

Nodes along this line:
ux = 0
roty = 0
rotz = 0

xz
y

(bw-rtf)

Ly

Yield line
in web

Movement
of yield line
during
deformation dy

Figure 4-6. Finite element model for strip dx.

Results of the simulations are interesting for two aspects. Load-deformation behaviour, and
location and movement of the first yield line. Both aspects are presented in a separate
paragraph.

Load-deformation behaviour
Figure 4-2 presented qualitatively load versus web-crippling deformation curves for the
rolling and yield arc post-failure modes for sheet sections.

Figure 4-7 presents the load versus deformation curves for the strips of the finite element
models.  From rbf = 1 mm to rbf = 10 mm, the qualitative behaviour of the strip dx is the same
for the hinged and clamped situation. However, the ultimate loads are greater for the clamped
situation. For rbf = 15 mm, the clamped situation leads to an ascending curve after elastic
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behaviour. In the next paragraph, it is shown that an additional yield line occurs for rbf = 15
mm. This difference is a possible cause for the ascending curve for rbf = 15 mm.

If the curves on the right in figure 4-2 and figure 4-7 are compared, it can be seen that for rbf
= 1 mm the load versus deformation curves are qualitatively similar for both figures. For rbf =
10 mm, the curves are qualitatively different. Figure 4-2 shows an ascending curve after mode
initiation and hereafter a descending curve. Figure 4-7, however, shows a descending curve
directly after elastic behaviour. This means that for rbf = 10 mm, the cross-sectional
behaviour according the finite element model, cannot be used to explain the ascending curve
in the three-point bending tests.
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Figure 4-7. Load versus deformation curves for finite element models for different corner radii,
hinged top of webs on the left, clamped top of webs on the right.

Looking at all curves for all corner radii in figure 4-7, it seems that there is not really a typical
curve for small corner radii (rbf = 1 mm) or large corner radii (rbf = 10 mm), but a smooth
transition between the curves. In the next paragraph, it will be shown that for the location and
movement of yield lines, an equivalent transitional behaviour occurs.

Location and movement of the first yield line
In the finite element model, the location of a yield line is determined as follows. A plot is
made of plastic Von Mises strains at the top and bottom surface of the shell elements. If
plastic strains occur, for certain deformation, it is assumed a yield line has formed. The
location of the yield line is determined by taking the location of highest plastic strains plotted.

A yield line will occur in the web as shown in figure 4-8 with a continuous bold line. During
further loading this yield line will move upward in the web. Figure 4-8 defines the initial
position (Ly), the movement direction (arrow), and distance moved (dy) of the yield line.
After the forming of a yield line in the web, yield lines will occur in the bottom flange (dotted
in figure 4-8) and at the top of the web for clamped tops of the web. For rbf = 15 mm, for
clamped tops of the web, an additional yield line occurred in the bottom, also dotted in figure
4-8. This yield line in the bottom corner may cause the different load-deformation behaviour
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for rbf = 15 mm. All yield lines contain significantly smaller plastic strains than the first yield
line in the web and therefore they will not be subject to further investigation in this appendix.

Table 4-1 presents the distance Ly for rbf = 1 mm to rbf = 15 mm for hinged and clamped tops
of the web. For clamped tops of the web, for rbf = 10 mm, the yield line in the web is located
almost at the bottom corner. For rbf = 1 mm, the yield line is located beneath the middle in the
web. This is also true for three-point bending tests (see figure 4-3). For hinged tops of the
web, the yield line in the web is located approximately in the middle for all corner radii rbf.
From now on, only the model with clamped tops of the web will be used, because this model
has more similarities with full three-point bending tests.

Ly

(1) Yield line
in web

Movement
of yield line
during
deformation

(2) Yield line
occurring
after (1)

(4) Yield line
occurring

(3) Yield line
occurring
after (2)

(1) Yield line
in webdy

Hinged top of web Clamped top of web

x
y

z

for rbf = 15 mm
after (3)

Figure 4-8. Location of yield lines.

Figure 4-9 presents yield line position Ly and yield line movement dy for rbf = 1 mm to rbf =
15 mm for clamped tops of the web.
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Table 4-1. Distance Ly for all simulations at mode initiation.

rbf [mm] Ly [mm],
hinged bottoms of the web

Ly [mm],
clamped bottoms of the web

1 46.0 64.3
3 47.0 66.2
5 49.4 69.8

10 56.5 80.0
15 61.3 72.5

As figure 4-9 shows in the left graph, the yield line is located higher if the corner radius is
smaller. Because the graph presents the yield line position as function of the web crippling
deformation, it can be seen that for increasing deformation, the yield lines move. This is true
for all corner radii. The graph on the right presents the movement of the yield lines dy. In
general, yield line movement increases for larger corner radii. As an exception, for a corner
radius equal to 15 mm, the yield lines move comparable to rbf = 1 mm and rbf = 3 mm. This
may be an indication that for rbf = 15 mm another failure mode occurs. This indication is
strengthened by the occurrence of an extra yield line in the bottom corner for rbf = 15 mm
(see also figure 4-8 on the right).

In section 4.1, it was mentioned that for whole sheet sections, there are moving yield lines  for
the rolling post-failure mode (rbf = 10 mm) and there are fixed yield lines for the yield arc
post-failure mode (rbf = 1 mm). Figure 4-9 points out that for rbf = 1 mm the yield line in the
web indeed is almost fixed in position and that for rbf = 10 mm the yield line is moving
strongly.
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Figure 4-9. Location and movement of yield lines. On the left yield line position Ly and on the right
yield line movement dy.
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4.3 Mechanical models

For describing the behaviour of a small strip dx of the sheet section, a mechanical model has
been developed. First, the location of the first yield line in the web is determined by
calculating the maximum bending moment in the web. Then, a mechanical model is
presented, which predicts the plastic behaviour of the strip. Both models are based on a
geometrically non-linear analysis, accounting for large displacements, small rotations, and
small strains.

4.3.1 Location of first yield line

The geometry for the calculation of the maximum bending moment in the web is shown in
figure 4-10. Positive direction of forces and bending moments is as drawn in the figure. On
the left of figure 4-10, the cross-section of the strip dx is shown. The load-bearing plate and
the load F acting on this plate have been replaced by two forces F/2 at the intersection of the
bottom corners and the bottom flange. This is acceptable because if the cross-section is
loaded, it will deform as shown in figure 4-2 on the left. Then, the load-bearing plate only
makes contact at the intersections of bottom corners and bottom flange. The cross-section on
the left is simplified on the right side of the figure. The top flange has been removed, as for
the finite element models in section 4.2. The corner radius has been flattened. Instead of the
force F/2 having a distance e to the web in horizontal direction, the load is applied directly on
the web plus an additional bending moment (F/2)*e. Because the strip dx is symmetrical, the
right web needs not to be modelled.
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btf

bbf

rbf

F/2 F/2

Ms
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F*e/2
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ϕC
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Figure 4-10. Cross-section and simplified cross-section of strip dx.

Now, the second-order bending moment in the web as a function of the distance β will be
derived. The rotation at location C can be calculated by:

EI
bfbiM

C 2
−=ϕ (4.1)
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Horizontal forces in the bottom flange are neglected because they will make the calculation
very complex and the finite element models showed these forces to be very small compared to
the Euler load of the bottom flange.

The second-order rotation at location B can be calculated by using equations for bending of
prismatic bars presented by Timoshenko [Timo36a]:

( ) ( ) ( )ηφηψϕ
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With P the axial load in the web:
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And Pcr the buckling load of the web:
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The rotation at location A can be calculated by using the same equations for bars by
Timoshenko [Timo36a]:

( ) ( ) ( )ηψηφϕ
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The rotation at location B and C should be equal. Furthermore, the rotation at location A
should be zero. Using formulae 4.1, 4.2, and 4.8 with these constrains, the internal bending
moment Mi and the reaction bending moment Ms can be calculated as:
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If the two above presented moments are known, the displacement α(β) of the web can be
calculated, using equations presented by Timoshenko [Timo36a]:
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The horizontal reaction Hs can be calculated by moment equilibrium at the rigid support:

h

iMeFdF
sM

sH
+++

= 2
*

2 (4.12)

The bending moment in the web as a function of β can now be written as:

( ) ( ) ( )




 +





 −−






 −+−= wsHw

F
w

F
wsHsMM θθπβαθπβθββ cos

2
cos

22
sin

2
sin)( (4.13)

Using the yield strength fy and steel plate thickness t, the plastic moment of the strip dx can be
calculated by:

dxyftplM **2*
4
1*

3
2= (4.14)

Formula 4.14 has been derived by Hill [Hill50a] for a yield line for which the strains in
longitudinal direction equal zero. This is the case because there is symmetry for the model
(see figure 4-6). Formula 4.13 is used to find the location of the yield line in the web.
Therefore, the next sequential steps will be followed:

1. A load (F/2) is assumed. Formula 4.3 to 4.7 and 4.9 to 4.13 can be used to calculate the
bending moment M(β) for a set of positions β. The maximum bending moment is the
maximum value found for the set of positions.

2. Because the horizontal reaction Hs is predicted first in equation 4.12 but is already needed
in formula 4.6 a prediction for this load is made now. Then equation 4.6, 4.7, and 4.9 to
4.12 are used to estimate a new load Hs. This is repeated as long as useful (successive
substitution).

3. The calculated maximum bending moment M(β) is compared to the plastic bending
moment of the strip Mpl (formula 4.14). If M(β) is lower than Mpl, the assumed load (F/2)
should be greater. If M(β) is greater than Mpl, the assumed load (F/2) should be lower.
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4. If the calculated value of the bending moment M(β ) equals the yielding moment Mpl, the
load (F/2) to initiate a yield line in the web has been found.

The above-presented sequence is carried out for a strip dx for five different corner radii: 1, 3,
5, 10, and 15 mm. All other variable values are equal to those used in the finite element
model. Thus, a comparison is possible between the mechanical model and the finite element
models. Table 4-2 presents the results.

Table 4-2. Initial position of the yield line in the web for strips dx, width 3 mm, having different
corner radii.

Location Ly [mm] for
plastic bending moment
M(β)=Mpl

(F/2) [N] for plastic
bending moment
M(β)=Mpl

M(β)=Mpl [Nmm]

rbf [mm] Mechanical
model

Finite
element
models

Mechanical
Model

Finite
element
models

Both

1 64 64 67 37 138
3 70 66 50 32 138
5 76 70 38 26 138
10 80 80 22 16 138
15 70 73 16 11 138

There are some differences between the results obtained with the mechanical model and the
finite element model, but table 4-2 shows the mechanical model gives a fairly good indication
of the location of the first yield line and a rough indication of the load (F/2) at which the first
yield line occurs. Differences can be caused by:

1. The modelling of the corner radius in the mechanical model is different (more simple)
than for the finite element model.

2. The mechanical model predicts the location of the yield line by using the full plastic
moment that occurs in the web, whereas the finite element model indicates first yield by
(some) plastic strains on the outer fibres of the web.

3. In the mechanical model, first order rotations are calculated for the bottom flange because
the influence of the horizontal load in the bottom flange is not taken into account.

4. The mechanical model is based on a large displacement, small rotation, and small strain
analysis while the finite element model is based on a large displacement, large rotation,
and small strain analysis.

Table 4-3 presents mechanical model results for the same five strips as in table 4-2, but now
all are loaded by the same load (F/2) equal to 70 N. Distance Ly and the value of the bending
moment M(β) are listed.
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Table 4-3. Results for constant load.

rbf [mm] Ly for maximum M(β)
[mm]

M(β) [Nmm] F/2 [N]

1 64 53 70
3 64 149 70
5 63 235 70

10 62 417 70
15 61 578 70

Table 4-3 shows that distance Ly is almost constant for an increasing corner radius rbf and
fixed load F/2 (conclusion 1). The maximum bending moment value increases for an
increasing corner radius (conclusion 2).

Table 4-4 presents mechanical model results for a strip having a corner radius rbf equal to 1
mm. The load is varied between 10 and 30 N. Table 4-4 shows that for increasing load,
distance Ly decreases (conclusion 3) and the maximum bending moment value increases
(conclusion 4). Conclusion 3 can be explained as follows. If the force F/2 increases, the
normal force in the web increases, making second-order effects larger. If second-order effects
are larger, the highest bending moment will be more in the middle of the web, thus distance
Ly will decrease.

Using the four conclusions presented above, it can be explained why the yield line is located
near the bottom corner for large corner radii and in the middle of the web for small corner
radii.

Table 4-4. Results for constant corner radius.

rbf [mm] Ly for maximum M(β)
[mm]

M(β) [Nmm] F/2 [N]

1 98 4.2 10
1 98 6.1 15
1 97 7.8 20
1 90 9.6 25
1 84 11.6 30

If the corner radius rbf is small, a load results in a small moment M(β) (conclusion 2).
Therefore, the load F/2 has to be high to reach the yielding bending moment (conclusion 4). If
the load is high, distance Ly is lower (conclusion 3). If distance Ly is low, the yield line is
more near the middle of the web. For a large corner radius, the same reasoning can be used to
show that the yield line occurs near the bottom corner.

A second-order calculation is needed to predict the position of the first yield line, as shown in
figure 4-10. If only a first-order approach is used, the components of Hs and Vs in web
direction are not used. Then the maximum bending moment is always located at the bottom or
at the top of the web depending on the magnitude of Vs and Hs compared to Ms. If a second-
order approach is used an additional bending moment in the web occurs equal to the
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components of Vs and Hs in α-direction times β. For this case, the position of the maximum
bending moment depends on the reactions and the deflection of the web.

4.3.2 Plastic behaviour

In the previous section, a mechanical model was presented to find the first yield line of a sheet
section strip dx, for different corner radii. If this location is known, a mechanical model can
be developed which makes it possible to predict plastic strip behaviour. Figure 4-11 presents
the geometry of the model.

On the left of figure 4-11, the normal geometry is shown. Yield lines are shown by a bold dot.
The yield line in the web has a distance Ly from the top of the web. This distance Ly depends
on the corner radius and was predicted in the previous section. Yield lines are modelled at the
top of the web and at the right in the bottom flange. The locations of these yield lines are
according to the observations of the finite element models in section 4.2.
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Web crippling
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Figure 4-11. Detailed geometry to determine plastic behaviour.

The displacement of the web u1 and the lower part u2 should be equal, therefore:
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The web crippling deformation ∆hw equals to the reduction of height of the two parts of the
web and the bottom corner:

cbfrcyLbfrwbayLwh ϕϕϕ sin)cos1)(2()cos1( −−−−+−=∆ (4.16)

The vertical reaction Vs at the top of the web equals the load F/2. At the yield line in the web,
there is moment equilibrium for the upper part of the web:

0sin*
2

cos* =++−− ayLF
ayLsHplMplM ϕϕ (4.17)

At the yield line in the web, there is moment equilibrium for the lower part of the web, the
bottom corner and bottom flange:
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And:
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The load F/2 can be solved from equations 4.17 and 4.18:
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A plastic curve of a strip dx can be calculated as follows. A rotation ϕc is taken. Then rotation
ϕa can be calculated by formula 4.15 and the web crippling deformation ∆hw by formula
4.16. A fixed value for the distance Ly can be taken from the mechanical model of the
previous section. Nevertheless, it is also possible, for the web crippling deformation ∆hw, to
find the distance Ly in the curves of figure 4-9. Note however that the model does not
describe the energy dissipated by the movement of the yield line. Both results are presented in
figure 4-12. Because formulae 4.15 and 4.16 are dependent on the value of distance Ly, these
formulae should be solved iterative using the curves of figure 4-9. Formula 4.21 calculates the
load (F/2). Figure 4-12 presents plastic curves (bold lines) including the results of the finite
element models (normal lines) for rbf = 1, 10, and 15 mm. The results for rbf  = 3 mm and rbf
= 5 mm are almost equal to the results for rbf  = 1 mm and not presented here. The dotted



112

lines represent the same calculation as the normal plastic line, only the distance Ly has been
fixed on its initial value.
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Figure 4-12. Several curves for strips for different corner radii.

Existing model for rolling post-failure mode
Bakker developed a mechanical model for the rolling post-failure mode in 1992 [Bakk92a]. A
part of this model is shown in figure 4-13. This part of the model predicts the ultimate load
for a small strip having three yield lines: two moving yield lines near the corner and one fixed
yield line at the top of the web. The energy dissipated by the movement of the yield lines is
taken into account.
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Figure 4-13. A part of Bakker's mechanical model for the rolling post-failure mode.
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4.4 Discussion

4.4.1 Difference for small and large corner radii

Looking at figure 4-12, especially the strips with small corner radii show an extremely close
correlation between the mechanical model and the finite element model. For large corner
radii, rbf  = 15 mm, the plastic curve only joins the finite element model around the mode
initiation load. This means the plastic behaviour of the strip dx for a corner radius rbf  = 15
mm is not correctly described by the mechanical model, despite the fact that the mechanical
model has no geometrical simplifications. This can be due to:

1. Possible strong deformations of the relatively weak corner radius lead to a different
geometry, which seriously influences the load deformation behaviour. Indeed, the finite
element models show that the corner radius deforms during the load deformation path.

2. It was already shown that an extra yield occurs in the bottom flange for rbf  = 15 mm.
This means a different post-failure mode can occur, which makes it logical that the curves
of the developed model and the finite element model do not agree.

3. The movement of the yield line in the web dissipates energy, which is not taken into
account in the mechanical model. This should lead to an increasing underestimation of the
plastic load for larger deformations, if yield line movement is strong (this is the case for
large corner radii).

However, for rbf  = 15 mm, Bakker's already existing mechanical model for the rolling post-
failure mode was tried. Note that this model considers the dissipated energy due to yield line
movement. Figure 4-13 shows that for a strip with rbf = 15 mm, the existing model only
predicts a part of the curve of the finite element model well. This means that the lack of
modelling the energy dissipation for moving yield lines of the new model is not likely the
cause for differences between the new model and the finite element simulations.

4.4.2 Comparison of strips and whole sheet sections using finite element models

A finite element model for a real sheet section with rbf = 3 mm (thesis [Hofm00a],
experiment 30, table 4-6, chapter 4) was studied. This is shown in figure 4-14. Concerning the
yield lines, only the yielding at and near the symmetry line has been studied (the bold part of
the yield lines), in order to study as much as possible cross-sectional behaviour only. Away
from the symmetry line, yield lines are affected by the end of the load-bearing plate, as is
clearly visible. After elastic behaviour, yield lines occur in the bottom flange (C) near the
corner and in the web between the middle of the web and the bottom corner (B). After some
web crippling deformation, the yield line in the bottom flange (C) stops rotating and the yield
line in the web (B) rotates further and moves slowly up in the web. Finally, a yield line occurs
at the top of the web (A).

A strip with rbf = 3 mm behaves almost in the same manner as the real sheet section. After
elastic behaviour, it shows a yield line in the web (B), but not in the bottom flange. The line in
the web is located a little bit higher than for the real sheet section. After some web crippling
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deformation, the yield line in the web moves slowly up in the web. Finally, yield lines occur
at the top of the web (A) and in the middle of the bottom flange (C).

Also a finite element model for a real sheet section with rbf = 10 mm (Bakker's experiment
54, thesis [Hofm00a], table 4-8, chapter 4) was studied. This is shown in figure 4-14 on the
right. Concerning the yield lines, only the yielding at and near the symmetry line has been
studied (the bold part of the yield lines), in order to study as much as possible cross-sectional
behaviour only. Away from the symmetry line, yield lines are affected by the end of the load-
bearing plate, as is clearly visible. After elastic behaviour, two yield lines occur near the
bottom corner: one in the web (B) and one in the bottom flange (D). For more web crippling
deformation, the yield line in the web (B) moves strongly up through the web and the yield
line in the bottom flange (D) moves through the corner. Finally, a yield line occurs at the top
of the web (A) and in the middle of the bottom flange (C).

A strip with rbf  = 10 mm behaves equal to a strip with rbf  = 3 mm (see previous paragraph).

rbf =3 mm rbf =10 mm

Whole sheet section,
mesh continues to the
right

Strip Whole sheet section,
mesh continues to the
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Web crippling deformation [mm]

Load [N]

Figure 4-14. Behaviour of whole sheet sections and strips for rbf = 3 mm and rbf = 10 mm.
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4.5 Conclusions

For three-point bending tests of sheet sections, the location of the first yield line in the web
depends on the post-failure mode. For a rolling post-failure mode, the first yield line occurs in
the web near the bottom corner and for a yield arc post-failure mode, the first yield line occurs
in the lower middle of the web. The mechanical model for a strip dx of the sheet section,
explains these different yield line locations. Only one mechanical model was used to show
this for both post-failure modes. A second-order calculation is necessary to predict the
location of the first yield line in the web. The mechanical model can be used to predict the
position of the yield line in the web, for both strips and whole sheet sections.

For the finite element models of the strips dx, for intermediate corner radii, behaviour occurs
that is a transition between the behaviour for large corner radii and small corner radii. This is
not only seen for the load deformation behaviour, but also for the location and movement of
the first yield line. As a conclusion, the strips dx do not fail by two completely different post-
failure modes. This was also observed for three-point bending tests [Bakk92a], where
sometimes a failure occurred which was a mixture of the yield arc and rolling post-failure
modes.

A mechanical model has been developed to find the plastic curves for comparison with the
finite element models of the strips dx. Only one model was used. The model predicts the
plastic curve of the strips well for rbf =1, 3, 5, and 10 mm. For the large corner radius rbf  =
15 mm only a small part of the curve is covered.

For small corner radii, the behaviour of a strip of a sheet section's cross-section is
qualitatively similar to the behaviour of a real sheet section in a three-point bending test. For
rbf  = 10 mm, this is not the case (comparisons made based on finite element analysis). Thus,
strip behaviour cannot be used to explain whole sheet section behaviour.

For a large corner radius, rbf  = 15 mm, an already existing mechanical model for the rolling
post-failure mode predicts the first part of the plastic curve well. The finite element model
shows that for a strip with rbf = 15 mm, two yield lines occur near the bottom corner. This
makes it possible that for a strip with rbf = 15 mm, indeed a rolling post-failure mode occurs.
This needs further investigation.

Further research can be focussed on two items. First, boundary conditions of the  strips can be
studied for large corner radii. In this way, an explanation can be found for the different
behaviour between strips and three-point bending tests. Secondly, for small corner radii, it can
be investigated how the strip behaviour can be translated into behaviour of three-point
bending tests.



117

5 Appendix Turbo Pascal programs

5.1 Program for Eurocode3 predictions

VAR

{Input/output}
bbffl,b1,b2:Real;
htest,out:Text;
counter:Integer;
testno:Real;
btf2:Real;

{UFF Format}
typee,ref,btf,rtf,bw,bbf,rbf,tw,Lspan,Llb,t,fy,Ftest,Fimec:Real;

{Section}
E:Real;

{Sheeting/three point bending tests}
sh,ctp:Real;

{5.4.3 Effects of shear lag}
sla,slb,slc,sld,beta2,delta,neta:Real;

{5.4.1 Calculating Mu, top flange yields first}
error2:Real;

{5.4.1 Calculation Mu, bottom flange yields first}
Cy,sc,la1,la2:Real;

{5.9.3 Web crippling strength}
error1,lafu,alfa,Rw:Real;

{5.11 Combined bending and web crippling}
fac1,fac2,eta,F:Real;

rholx,bfyields,ftf,fbf,yc,Mu,Mn,Cy2:Real;

FUNCTION tan(x:Real):Real;
BEGIN
tan:=sin(x)/cos(x);
END;

FUNCTION power(x,y:Real):Real;
{calculates x to the power y}
BEGIN
Power:=EXP(y*LN(x));
END;
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PROCEDURE EFFECTIVE_WIDTH;

    {Calculates ultimate bending moment Mn if only outer fibre}
    {tension or compression flange yields}

    VAR

    sest,s,ebf,etf,bbfp,ksig,lap,be3,rho:Real;
    e1,e2,f1,f2,psi,bwp,be1,be2,sest2,s22,sub1,sub2,sub3,sub4:Real;
    a1,s1,a2,s2,a34,s34,a6,s6,a7,s7,a8,s8,I,w:Real;

    BEGIN

    sest:=0.5*bw*sin(tw);
    s:=10000;

    WHILE abs(s-sest)>0.001 DO

         BEGIN

         s:=sest;

         IF (bfyields=1) THEN
         BEGIN
         ebf:=fy/E;
         etf:=ebf*(bw*sin(tw)-(s-0.5*t))/(s-0.5*t);
         END;

         IF (bfyields=0) THEN
         BEGIN
         etf:=fy/E;
         ebf:=etf*(s-0.5*t)/(bw*sin(tw)-(s-0.5*t));
         END;

         fbf:=ebf*E;
         ftf:=etf*E;

         {4.2 Plane elements without stiffeners}

         bbfp:=bbf-2*rbf*(tan(tw/2)-sin(tw/2));
         ksig:=4;
         lap:=1.052*(bbfp/t)*sqrt(fy/(E*ksig));
         lap:=lap*sqrt(fbf/fy);
         IF (lap<=0.673) THEN BEGIN rho:=rholx*1; END;
         IF (lap>0.673) THEN BEGIN rho:=rholx*(1-0.22/lap)/lap; END;
         be3:=0.5*rho*bbfp;

         e1:=ebf*(s-0.5*t-rbf*tan(0.5*tw)*sin(tw))/(s-0.5*t);
         e2:=etf*((bw*sin(tw)-(s-0.5*t))-rtf*tan(0.5*tw)*sin(tw));
         e2:=e2/(bw*sin(tw)-(s-0.5*t));
         f1:=e1*E;
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         f2:=-e2*E;
         psi:=f2/f1;
         bwp:=bw-(rbf+rtf)*(tan(tw/2)-sin(tw/2));
         ksig:=7.81-6.29*psi+9.78*sqr(psi);
         IF (psi<-1) AND (psi>-3) THEN BEGIN ksig:=5.98*sqr(1-psi); END;
         lap:=1.052*(bwp/t)*sqrt(fy/(E*ksig));
         lap:=lap*sqrt(f1/fy);
         IF (lap<=0.673) THEN BEGIN rho:=1; END;
         IF (lap>0.673) THEN BEGIN rho:=(1-0.22/lap)/lap; END;
         be1:=0.4*rho*bwp;
         be2:=0.6*rho*bwp;

         sest2:=s;
         s22:=10000;

         WHILE abs(sest2-s22)>0.001 DO

              BEGIN

              s22:=sest2;

              sub1:=rtf*tan(0.5*tw);
              sub2:=rtf*tan(0.5*tw)*sin(tw);
              sub3:=rbf*tan(0.5*tw);
              sub4:=rbf*tan(0.5*tw)*sin(tw);

              a1:=0.5*btf-sub1;
              a1:=a1*t;
              s1:=bw*sin(tw)+0.5*t;

              a2:=t*rtf*tw;
              s2:=bw*sin(tw)+0.5*t-rtf+(rtf*sin(tw)/tw);

              a34:=bw-(s22-0.5*t)/sin(tw)-sub1+be2;
              a34:=a34*t;
              s34:=bw*sin(tw)+0.5*t-(sub1+(a34/t)*0.5)*sin(tw);

              a6:=be1-rbf*(sin(tw/2));
              a6:=a6*t;
              s6:=(0.5*be1+rbf*(tan(tw/2)-sin(tw/2)))*sin(tw)+0.5*t;

              a7:=t*rbf*tw;
              s7:=rbf+0.5*t-(rbf*sin(tw)/tw);

              a8:=be3-rbf*(sin(tw/2));
              a8:=a8*t;
              s8:=0.5*t;

              sest2:=(a1*s1+a2*s2+a34*s34+a6*s6+a7*s7+a8*s8);
              sest2:=sest2/(a1+a2+a34+a6+a7+a8);
              END;
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         sest:=s22;

         {----------------------------------------------------------------}

         END;

    {MOMENT OF INERTIA----------------------------------------------------}

    I:=a1*sqr(s1)+a2*sqr(s2)+a34*sqr(s34)+a6*sqr(s6)+a7*sqr(s7)+a8*sqr(s8);
    I:=I-(a1+a2+a34+a6+a7+a8)*sqr(s);
    I:=I*2;

    {---------------------------------------------------------------------}

    W:=I/s;
    IF bfyields=0 THEN BEGIN W:=I/(bw*sin(tw)-s); END;
    Mn:=W*fy;
    END;

PROCEDURE INELASTIC_CAP;

    {Calculates ultimate bending moment for plastic compression and, if}
    {applicable, tension zone}

    {Reck, Pekoz, and Winter do not take into account corner geometry}
    {and only use fully effective webs}
    {Fully effective webs can be used because: }

    {Situation 1, bottom flange (tension) yields}
    {bwp/t<2.22*sqrt(E/fy) (is requested by code), than psi=-1, ksig=23.9}
    {lap=0.48, rho=1, be1=0.4bwp, be2=0.6bwp, be1 and be2 together}
    {more than 0.5bwp, thus web fully effective}

    {Situation 2, bottom flange (tension) does not yield}
    {most extreme situation: no tension at all in web: psi=0, k=7.81}
    {bwp/t<1.11*sqrt(E/fy), lap=0.42, rho=1, be1=(2/5)bwp, be2=bwp-be1}
    {be1 and be2 equal to bwp thus web fully effective}

    VAR
    {Procedure inelastic_cap}
    bbfp,ksig,lap,rho,be3,bc,bt,d,la1,la2,ycest,sc,Cy:Real;
    yp,yt,ycp,ytp,eqa,eqb,eqc,yc1,yc2,ft:Real;

    BEGIN

    bbfp:=bbf-2*rbf*(tan(tw/2)-sin(tw/2));
    ksig:=4;
    lap:=1.052*(bbfp/t)*sqrt(fy/(E*ksig));
    IF (lap<=0.673) THEN BEGIN rho:=rholx*1; END;
    IF (lap>0.673) THEN BEGIN rho:=rholx*(1-0.22/lap)/lap; END;
    be3:=0.5*rho*bbfp;
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    bc:=2*be3+2*rbf*(tan(tw/2)-sin(tw/2));
    bt:=btf;
    d:=bw*sin(tw);

    {5.4.2 Partially plastic resistance}

    la1:=1.11*sqrt(E/fy);
    la2:=1.29*sqrt(E/fy);

         Cy:=3-((bc/t)*sqrt(fy/E)-1.11)/0.09;
         IF (bc/t) <= la1 THEN BEGIN Cy:=3; END;
         IF (bc/t) >= la2 THEN BEGIN Cy:=1; END;

         {Paper Reck, Pekoz, Winter. J. of the Struc. Div. Nov, 1975}
         {with an self-made extension for inclined webs}

         yc:=0.25*(bt*sin(tw)-bc*sin(tw)+2*d);
         yp:=yc/Cy;
         yt:=d-yc;
         ycp:=yc-yp;
         ytp:=yt-yp;

         Mu:=fy*t*bc*yc;
         Mu:=Mu+2*fy*t*(ycp/sin(tw))*(yc-0.5*ycp);
         Mu:=Mu+2*0.5*fy*t*(yp/sin(tw))*((2/3)*yp);

         Mu:=Mu+2*0.5*fy*t*(yp/sin(tw))*((2/3)*yp);
         Mu:=Mu+2*fy*t*(ytp/sin(tw))*(yt-0.5*ytp);
         Mu:=Mu+fy*t*bt*yt;

         IF (yp>yt) AND (Cy>1) THEN

              BEGIN
              eqa:=(2/sin(tw))-(1/(Cy*sin(tw)))-(Cy/sin(tw));
              eqb:=bc+(2*Cy*d/sin(tw))+Cy*bt;
              eqc:=-Cy*sqr(d)/sin(tw)-Cy*bt*d;
              yc1:=(-eqb+sqrt(sqr(eqb)-4*eqa*eqc))/(2*eqa);
              yc2:=(-eqb-sqrt(sqr(eqb)-4*eqa*eqc))/(2*eqa);

              {yc1 gives normal values, yc2 > 100 * h}

              yc:=yc1;
              yp:=yc/Cy;
              yt:=d-yc;
              ycp:=yc-yp;
              ft:=fy*Cy*yt/yc;

              Mu:=fy*t*bc*yc;
              Mu:=Mu+2*fy*t*(ycp/sin(tw))*(yc-0.5*ycp);
              Mu:=Mu+2*0.5*fy*t*(yp/sin(tw))*((2/3)*yp);
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              Mu:=Mu+2*0.5*ft*t*(yt/sin(tw))*((2/3)*yt);
              Mu:=Mu+ft*t*bt*yt;
              END;

     END;

BEGIN {Program}

ASSIGN(htest,'tswt3.prn');
ASSIGN(out,'tswteta.dat');
REWRITE(out);

FOR counter:=1 to 196 DO

    BEGIN

    writeln('Counter: ',counter);

    {Input----------------------------------------------------------------}

    RESET(htest);
    READ(htest,testno);

    WHILE testno<>counter DO
         BEGIN
         READLN(htest);
         READ(htest,testno);
         END;

    READ(htest,ref,typee,btf,rtf,bw,bbf,rbf,tw,Lspan,Llb,t,fy,Ftest,Fimec);

    sh:=1;  {1:sheeting, 2:hat sections}
    ctp:=2; {1:continuous, 2:three point bending test}

    tw:=tw/57.29577951;
    E:=210000;
    CLOSE(htest);

    {3.1.2 Average yield strength (strength increase cold work)-----------}

    {Not used: 3.1.2(5):no fully effective flanges------------------------}

    {---------------------------------------------------------------------}

    {Flange curling-------------------------------------------------------}

    {No clauses in Eurocode about flange curling--------------------------}

    {---------------------------------------------------------------------}
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    {5.4.3 Effects of shear lag-------------------------------------------}

    IF ctp=1 THEN
    BEGIN
    sla:=6;
    slb:=1.6;
    slc:=1.155;
    sld:=7.76;
    END;

    IF ctp=2 THEN
    BEGIN
    sla:=4;
    slb:=3.2;
    slc:=1.115;
    sld:=5.74;
    END;

    {top flange under tension}

    IF ((0.5*btf)/Lspan) > (1/20) THEN
    BEGIN
    beta2:=1+sla*(0.5*btf/Lspan)+slb*sqr(0.5*btf/Lspan);
    beta2:=1/beta2;
    END;

    IF ((0.5*btf)/Lspan) < (1/50) THEN
    BEGIN
    beta2:=1.0;
    END;

    IF (((0.5*btf)/Lspan) <= (1/20)) AND (((0.5*btf)/Lspan) >= (1/50)) THEN
    BEGIN
    beta2:=slc-sld*(0.5*btf/Lspan);
    END;

    btf:=beta2*btf;

    {bottom flange under compression}

    IF ((0.5*bbf)/Lspan) > (1/20) THEN
    BEGIN
    beta2:=1+sla*(0.5*bbf/Lspan)+slb*sqr(0.5*bbf/Lspan);
    beta2:=1/beta2;
    END;

    IF ((0.5*bbf)/Lspan < (1/50)) THEN
    BEGIN
    beta2:=1.0;
    END;
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    IF (((0.5*bbf)/Lspan) <= (1/20)) AND (((0.5*bbf)/Lspan) >= (1/50)) THEN
    BEGIN
    beta2:=slc-sld*(0.5*bbf/Lspan);
    END;

    delta:=(bbf/t)*sqrt(fy/E);
    IF delta <= 1 THEN
    BEGIN
    delta:=1;
    END;
    neta:=(0.5*bbf/Lspan)/delta;
    rholx:=power(beta2,neta);

    {---------------------------------------------------------------------}

    {5.4.1 Calculating Mu-------------------------------------------------}

    bfyields:=1;
    EFFECTIVE_WIDTH;

    IF ftf >= fy THEN
    BEGIN
    bfyields:=0;
    EFFECTIVE_WIDTH;
    END;

    INELASTIC_CAP;

         error2:=0;
         IF (tw<(60/57.29577951)) THEN BEGIN error2:=1; END;
         IF ((((yc/sin(tw))-rtf*tan(0.5*tw))/t)>(1.11*sqrt(E/fy))) THEN
         BEGIN
         error2:=1;
         END;

         IF error2=0 THEN

              BEGIN
              Mn:=Mu;
              END;

    {5.9.3 Web crippling strength-----------------------------------------}

    error1:=0;
    IF ((rbf-0.5*t)/t) > 10 THEN BEGIN error1:=1; END;
    IF (bw*sin(tw)/t) > 200*sin(tw) THEN BEGIN error1:=1; END;
    IF tw < (45/57.29577951) THEN BEGIN error1:=1; END;
    IF tw > (90/57.29577951) THEN BEGIN error1:=1; END;
    IF error1=1 THEN
         BEGIN
         writeln('WARNING:');
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         writeln('SECTION PROPERTIES ARE NOT IN VALID RANGE');
         writeln('AS SPECIFIED BY THE EUROCODE FOR Rw CALCULATION');
         END;

    IF (Lspan-Llb)/2 <= 1.5*bw*sin(tw) THEN
    BEGIN
    lafu:=10;
    IF sh=1 THEN BEGIN alfa:=0.075; END;
    IF sh=2 THEN BEGIN alfa:=0.057; END;
    END;

    IF (Lspan-Llb)/2 > 1.5*bw*sin(tw) THEN
    BEGIN
    lafu:=Llb;
    IF sh=1 THEN BEGIN alfa:=0.15; END;
    IF sh=2 THEN BEGIN alfa:=0.115; END;
    END;

    Rw:=alfa*sqr(t)*sqrt(fy*E)*(1-0.1*sqrt((rbf-0.5*t)/t));
    Rw:=2*Rw*(0.5+sqrt(0.02*lafu/t))*(2.4+sqr(tw*57.29577951/90));

    {---------------------------------------------------------------------}

    {5.11 Combined bending and web crippling strength---------------------}

    fac1:=-1;
    fac2:=+1.25;
    eta:=0.25*(Rw/Mn)*(Lspan-Llb);

    F:=(fac2*Rw/(eta-fac1));
    IF (eta<((fac1+fac2)/1)) THEN BEGIN F:=Rw; END;
    IF (eta>(fac1/(1-fac2))) THEN BEGIN F:=Rw/eta; END;

    {---------------------------------------------------------------------}

         IF error1=0 THEN
         BEGIN
         writeln(out,counter,chr(9),eta,chr(9),F);
         END;
         IF error1=1 THEN
         BEGIN
         writeln(out,counter,chr(9),'0',chr(9),'0');
         END;

END;

CLOSE(out);

END.
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5.2 Program for ultimate failure mechanical model

var

out:Text;
teller:Integer;
testno:Real;

{UFF-format}
ref,typee,btf,rtf,bw,bbf,rbf,tw,Lspan,Llb,t,fy,Ftest,Fimec:Real;

F,Fmin,Fmax:Real;
KK1,KK2,alfa,I,I2,k,k2,e,beta,dhw,dhw2:Real;
{2}
Rh,dhcs,dhcs2:Real;
{3}
Fbf:Real;
{4}
w0max,w0min,pa:Real;
marker:Real;

M,ee,mu,pi,b,L,w0,y0,x,z:Real;
be,la,w,y,D,c1,c2:Real;
p,p2,sx,sz,txz,sxm,sx2,szm,svm,svm2:Real;

harpje,Fcr:Real;

hn,zpnov,Inov,Wnov,Snov:Real;

function power(x,y:Real):Real;
{calculates x to the power y}
begin
  power:=exp(y*ln(x));
end;

function cosh(x:Real):Real;
{calculates the hyperbolic cosine for x}
begin
  cosh:=0.5*(exp(x)+exp(-x));
end;

function sinh(x:Real):Real;
{calculates the hyperbolic sine for x}
begin
  sinh:=0.5*(-exp(-x)+exp(x));
end;

function TAN(x:Real):Real;
begin
  TAN:=SIN(x)/COS(x);
end;
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function coth(x:Real):Real;
{calculates the hyperbolic cot for x}
begin
  coth:=cosh(x)/sinh(x);
end;

begin

assign(out,'tswt3a.dat');
REWRITE(out);

ASSIGN(input,'tswt3.prn');

FOR teller:= 1 TO 196 DO
  BEGIN {FOR for all tested sections}
  RESET(input);
  READ(input,testno);
  while teller<>testno DO
  begin
  READLN(input);
  READ(input,testno);
  end;
  READ(input,ref,typee,btf,rtf,bw,bbf,rbf,tw,Lspan,Llb,t,fy,Ftest,Fimec);
  CLOSE(input);
  tw:=tw/57.29577951;

{initialisation}
writeln(teller);
writeln('rbf ',rbf);
writeln('bw ',bw);
writeln('btf ',btf);
writeln('tw ',tw*57.29577951);
writeln('Lspan ',Lspan);
writeln('Llb ',Llb);
writeln('fy ',fy);

e:=210000;

{0) assuming load}

Fmin:=0;
Fmax:=4*Ftest;
svm:=0;

WHILE abs(svm-fy) > 0.1 DO

begin

      F:=(Fmin+Fmax)/2;

     {1) calculating dhw}
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{using beam on elastic foundation model}

alfa:=0.118*power(rbf,0.89);

I:=((t*alfa*bw)/2)*sqr((bbf*alfa*bw*sin(tw)+t*bbf)/(bbf+2*alfa*bw));
I:=I+bbf*t*sqr((alfa*alfa*bw*bw*sin(tw)+alfa*bw*t)/(bbf+2*alfa*bw));
I2:=(alfa*alfa+bw*bw+t*t)/12;
I2:=I2-(cos(2*tw)*(alfa*alfa*bw*bw-t*t))/12;
I2:=I2+(t*alfa*bw*sin(2*tw))/2;
I2:=I2*t*alfa*bw;
I:=((bbf*t*t*t)/12)+I2+I;

k:=bw*(bbf-(4/3)*rbf*sin(tw))+rbf*sin(tw)*(bbf-(3/2)*rbf*sin(tw));
k:=(k/(e*(3*bbf+2*bw)))*rbf*rbf*sin(tw)*sin(tw)*(12/(t*t*t));
k2:=bw*cos(tw)*((2/3)*bw+bbf)+rbf*bbf*sin(tw)-rbf*rbf*sin(tw)*sin(tw);
k2:=(k2/(bbf+(2/3)*bw))*((cos(tw))/(e*t));
k:=k+k2+((bw*sin(tw)*sin(tw))/(e*t));
k:=1/k;

beta:=k/(4*e*I);
beta:=power(beta,0.25);

dhw:=exp(-beta*0.5*(Lspan-Llb))*(cos(beta*0.5*(Lspan-Llb))-sin(beta*0.5*(Lspan-Llb)));
dhw:=dhw+exp(-beta*0.5*(Lspan+Llb))*(cos(beta*0.5*(Lspan+Llb))-
sin(beta*0.5*(Lspan+Llb)));
dhw2:=exp(-beta*(Lspan-Llb))*sin(beta*(Lspan-Llb));
dhw2:=dhw2+exp(-beta*(Lspan+Llb))*sin(beta*(Lspan+Llb));
dhw:=dhw*dhw2;
dhw:=1+exp(-beta*Llb)*(cos(beta*Llb)+sin(beta*Llb))-dhw;
dhw:=dhw*((F*beta)/(4*k));

{2) calculating cross-section deformation dhcs}

rh:=(2/3)*bw*bw*cos(tw)+rbf*sin(tw)*bbf+bbf*bw*cos(tw)-rbf*rbf+sin(tw)*sin(tw);
rh:=rh/((1/2)*bbf+(1/3)*bw);
rh:=(rh*k*dhw)/(4*bw*sin(tw));

dhcs:=((k*dhw)/(2))*(bw*cos(tw)+rbf*sin(tw));
dhcs:=dhcs-rh*(bw*sin(tw)-dhw);
dhcs:=dhcs/(2*((1/12)*1*t*t*t)*e);
dhcs:=dhw+abs(dhcs*sqr((bbf/2)-rbf*sin(tw)));

        hn:=bw*sin(tw);
        zpnov:=(2*hn*t*0.5*hn)+(bbf*t*hn);
        zpnov:=zpnov/(t*(btf+hn+hn+bbf));
        Inov:=(1/12)*power(t,3)*btf+zpnov*zpnov*t*btf;
        Inov:=Inov+2*(power(hn,3)*t*(1/12)+sqr((hn/2)-zpnov)*hn*t);
        Inov:=Inov+power(t,3)*bbf*(1/12)+sqr(hn-zpnov)*bbf*t;
        Wnov:=Inov/(hn-zpnov);
        Snov:=(F*(Lspan-Llb)/4)/Wnov;
        Fbf:=Snov*bbf*t;
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        {4) find wo for this situation}

y0:=sqrt(2)*(dhcs-dhw);
        w0min:=0;
        w0max:=bbf/10;

{Marquerre equations .........................................................}

e:=210000;                  {N/mm2, Youngs modulus}
mu:=0.3;                    {1, Poissons ratio}
pi:=3.14159265;             {1}

b:=bbf-2*rbf*tan(0.5*tw);     {mm, steel plate width}
L:=b;                       {mm, steel plate length}

x:=b/2;                     {mm, position in x-direction}
z:=0*b;                  {mm, position in z-direction}

{calculating  w, y, be, la, and D, some variables needed}

be:=pi/b;
la:=pi/L;
pa:=1;

WHILE abs(Fbf-pa*e*t*b)>0.01 DO

begin

        w0:=(w0min+w0max)/2;
        w:=w0*cos(be*x)*cos(la*z);

y:=y0*cos(be*x)*cos(la*z);
D:=(e*t*t*t)/(12*(1-mu*mu));

                KK1:=0;
                KK2:=1;

{calculating c1 and c2, constants needed to predict stresses}

c1:=b*sinh(la*b);
c1:=c1-b*cosh(la*b)*coth(la*b);
c1:=c1-(1/la)*cosh(la*b);
c1:=c1*32*la*la;
c1:=(-be*be*(b*coth(la*b)+(1/la)))/c1;
c1:=c1*w0*(w0+2*y0);

c2:=b*sinh(la*b);
c2:=c2-b*cosh(la*b)*coth(la*b);
c2:=c2-(1/la)*cosh(la*b);
c2:=c2*16*la*la;
c2:=(be*be)/c2;
c2:=c2*w0*(w0+2*y0);



130

{Finding p, average axial compressive stress in z direction}

p:=(1/2)*(((sqr(la)-sqr(be))/(sqr(sqr(la)+sqr(be))))-(1/(sqr(la))))*sinh(la*b);
p:=p+((la*b)/2)*((1/(sqr(la)))-((1)/(sqr(la)+sqr(be))))*cosh(la*b);
p:=p*(1/8)*L*sqr(la)*c2*KK2*(w0+y0)*(sqr(be)-sqr(la));
p:=p+(1/8)*L*sqr(be)*c1*KK2*la*(w0+y0)*sinh(la*b);

p2:=((be*b)/2)*cosh(la*b);
p2:=p2-((be*la)/(sqr(la)+sqr(be)))*sinh(la*b);
p2:=p2*(w0+y0);
p2:=p2*((L*c2*KK2*la*la*la*be)/(4*(sqr(la)+sqr(be))));

p:=p+p2;
p:=p/((b*L)/(32));
p:=p-(1/8)*w0*(w0+y0)*(w0+2*y0)*(la*la*la*la+be*be*be*be*(2*KK1+1));
p:=p-2*((d*w0)/(e*t))*sqr(sqr(la)+sqr(be));
p:=p/(2*(w0+y0)*(sqr(la)+mu*be*be*KK1));

        pa:=abs(p);

        if (pa*e*t*b)<Fbf then w0min:=w0;
        if (pa*e*t*b)>Fbf then w0max:=w0;
        if (pa*e*t*b)=Fbf then w0:=w0;

end;

{Calculating the membrane stresses sz, sx, and txz}

sz:=4*sqr(la)*x*sinh(2*la*x)+4*la*cosh(2*la*x);
sz:=sz*c2;
sz:=sz+4*c1*sqr(la)*cosh(2*la*x);
sz:=sz*cos(2*la*z)*KK2;
sz:=sz+w0*(w0+2*y0)*((sqr(la))/(8))*cos(2*be*x);
sz:=sz+p;
sz:=sz*e;

        sx:=c1*cosh(2*la*x);
sx:=sx2+c2*x*sinh(2*la*x);
sx:=sx2*-4*sqr(la)*cos(2*la*z)*KK2;

        sx:=sx2+w0*(w0+2*y0)*((sqr(be))/(8))*(KK1+cos(2*la*z));
        sx:=sx2+mu*KK1*p;

sx:=sx2*e;

        txz:=2*la*x*cosh(2*la*x)+sinh(2*la*x);
txz:=txz*c2;
txz:=txz+2*la*c1*sinh(2*la*x);
txz:=txz*2*la*sin(2*la*z)*KK2;
txz:=txz*e;

{Calculating the bending moment stresses szm and sxm}

szm:=E*w0*t*(la*la+mu*be*be);
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szm:=szm/(2*(1-mu*mu));
szm:=szm*cos(la*z)*cos(be*x);

sxm:=E*w0*t*(be*be+mu*la*la);
sxm:=sxm/(2*(1-mu*mu));
sxm:=sxm*cos(la*z)*cos(be*x);

{Calculating the Von Mises stress at (x,z)}

svm:=sqrt((sx+sxm)*(sx+sxm)+(sz+szm)*(sz+szm)-(sx+sxm)*(sz+szm)+3*txz*txz);
svm2:=sqrt((sx-sxm)*(sx-sxm)+(sz-szm)*(sz-szm)-(sx-sxm)*(sz-szm)+3*txz*txz);

if svm >= svm2 then
begin
svm:=svm;
end;

if svm < svm2 then
begin
svm:=svm2;
end;

{Marquerre equations..........................................................}

        if svm >= fy then
        begin
        Fmax:=F;
        end;

        if svm < fy then
        begin
        Fmin:=F;
        end;

        end;

Fcr:=12*(1-sqr(0.3))*sqr(b);
Fcr:=b*t*4*210000*sqr(pi)*sqr(t)/Fcr;
IF Fcr<Fbf THEN
BEGIN
harpje:=1;
END;
writeln(out,teller,chr(9),F);

end;

close(out);

end.
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5.3 Program for post-failure mechanical model MA1

var

{Input and output variables}
out:Text;
teller:Integer;
yax6tab:Text;
testno,destestno:String[4];
woord1,woord2:String;

{Section variables}
hw,btf,bw,bbf,th,rbf,rtf:Real;
k,E,Llb,L,Lw,Lbf,t,fy:Real;
typee,Ltf,A,I,ref,Ftest,Fimec:Real;

{Calculation variables}
dhw,Fp,AA,BB,CC,s,c,pi,alfa,beta:Real;
Lwtry,aaaa,bbbb,cccc,fi2,wtf,ddhw_dfi,dfi_ddhw,lfb:Real;

{Finding Lw}
mpl,d,w,h,sigma1,sigma2,sigma,upsilon,xmax,Mmax,M,F,Mi,Mr,Hr:Real;
Fmin,Fmax,Pcr,P,u,kk,fi,psi,Hrest:Real;
tau:Integer;

function Sec(x:Real):Real;
begin
  Sec:=1/Cos(x);
end;

function Tan(x:Real):Real;
begin
  Tan:=Sin(x)/Cos(x);
end;

function Cot(x:Real):Real;
begin
  Cot:=Cos(x)/Sin(x);
end;

function ArcSin(x:Real):Real;
{-90<ArcSin(x)<90}
var sinx,cosx:Real;
begin
  sinx:=x;
  cosx:=SQRT(1-SQR(sinx));
  ArcSin:=ArcTan(sinx/cosx);
end;

function ArcCos(x:Real):Real;
{0<ArcCos(x)<180}
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var sinx,cosx:Real;
begin
  cosx:=x;
  sinx:=SQRT(1-SQR(cosx));
  if x=0 then ArcCos:=pi/2;
  if x>0 then ArcCos:=ArcTan(sinx/cosx);
  if x<0 then ArcCos:=ArcTan(sinx/cosx)+pi;
end;

function Power(x,y:Real):Real;
{calculates x to the power y}
begin
  Power:=EXP(y*LN(x));
end;
BEGIN

ASSIGN(out,'uff234b.dat');
REWRITE(out);

FOR teller:= 1 TO 58 DO
BEGIN {FOR for all tested sections}
str(teller,woord1);
woord2:='   ';
destestno:=woord1+woord2;
ASSIGN(yax6tab,'uff234.uff');
RESET(yax6tab);
READ(yax6tab,testno);
while testno<>destestno do
begin
READLN(yax6tab);
READ(yax6tab,testno);
end;
READ(yax6tab,ref,typee,btf,rtf,bw,bbf,rbf,th,L,Llb,t,fy,Ftest,Fimec);
th:=th/57.29577951;
CLOSE(yax6tab);
pi:=3.141592654;
E:=210000;
s:=Sin(th);
c:=Cos(th);
hw:=bw*s;

{FINDING LW -------------------------------------------------------------------}

I:=(1/12)*3*power(t,3);
w:=bw-rbf*tan(th/2);

Pcr:=sqr(pi)*E*I/sqr(0.7*w);
mpl:=(2/sqrt(3))*3*0.25*1.155*fy*sqr(t);
Mmax:=0;
Fmin:=0.1;
Fmax:=2.2*Pcr;
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IF (ref=1) OR (ref=22) OR (ref=26) THEN
BEGIN
Fmax:=3*Pcr;
END;

IF (ref=27) OR (ref=28) OR (ref=29) THEN
BEGIN
Fmax:=2.5*Pcr;
END;

WHILE abs(abs(Mmax)-mpl) > 1 DO

BEGIN

F:=(Fmin+Fmax)/2;
Mmax:=0;

    FOR tau:= 1 TO round(w-rbf*tan(th/2)) DO

    BEGIN

    d:=w*cos(th);
    h:=w*sin(th);

    Hr:=1;
    Hrest:=0;

        WHILE abs(Hrest-Hr)>0.1 DO

        BEGIN

        Hrest:=Hr;

        Pcr:=sqr(pi)*E*I/sqr(0.7*w);
        P:=F*cos((pi/2)-th)+Hrest*cos(th);
        u:=(pi/2)*sqrt(P/Pcr);
        fi:=(3/u)*(1/sin(2*u)-1/(2*u));
        psi:=(3/(2*u))*(1/(2*u)-1/tan(2*u));
        kk:=u*2/w;

        Mi:=w*F*rbf*tan(th/2)*(sqr(fi)-4*sqr(psi))/(-sqr(fi)*w+6*bbf*psi+4*w*sqr(psi));
        Mr:=3*bbf*F*rbf*tan(th/2)*fi/(-sqr(fi)*w+6*bbf*psi+4*w*sqr(psi));
        Hr:=(Mr+F*d+F*rbf*tan(th/2)+Mi)/h;

        END;

    upsilon:=w-tau;
    sigma1:=(Mr/P)*((sin(kk*upsilon)/sin(kk*w))-(upsilon/w));
    sigma2:=((F*rbf*tan(th/2)+Mi)/P)*((sin(kk*tau)/sin(kk*w))-(tau/w));
    sigma:=-sigma1+sigma2;
    M:=Mr-tau*Hr*sin(th)+tau*F*sin((pi/2)-th)-sigma*(F*cos((pi/2)-th)+Hr*cos(th));
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        IF abs(M)>abs(Mmax) THEN
        BEGIN
        Mmax:=M;
        xmax:=tau;
        END;

   END;

IF abs(Mmax)>=mpl THEN
BEGIN
Fmax:=F;
END;

IF abs(Mmax)<mpl THEN
BEGIN
Fmin:=F;
END;

END;

Lw:=w-xmax;
writeln(round(teller),chr(9),round(Lw));

{END FINDING LW ---------------------------------------------------------------}

alfa:=1.155*fy*SQR(t)*Llb;
AA:=0.0624;
BB:=-0.0101;
CC:=0.5633;
I:=(1/12)*Llb*power(t,3);
rbf:=rbf-0.5*t;
k:=(E*I*(3*bbf+2*bw))/(SQR(rbf)*SQR(sin(th))*bw*(bbf-(4/3)*rbf*sin(th)));
beta:=k*(CC+BB*Lw)*(bw-Lw)*Lw;

Fp:=(-alfa-beta+SQRT(4*AA*alfa*hw*(bw-Lw)*Lw*k+SQR(alfa+beta)))/(2*AA*(bw-Lw)*Lw);
dhw:=Fp/k;
rbf:=rbf+0.5*t;
Lbf:=Sqrt((2.601*0.5*bbf*Llb*1.155*fy*sqr(t))/(Fp));

{Parts adjacent to load bearing plate}

{Fp:=Fp*(1+2*(Lbf/Llb));}

{Fp:=Fp+1.155*fy*Sqr(t)*bbf/(Sqrt(Sqr(Lbf)-Sqr(dhw)));}

{Complex length factor}

aaaa:=Sqr(hw)+Sqr(Lbf);
bbbb:=2*Lbf*(dhw-hw);
cccc:=Sqr(dhw);
fi2:=(-bbbb-Sqrt(Sqr(bbbb)-4*aaaa*cccc))/(2*aaaa);
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wtf:=Sqrt(Sqr(Lbf)-Sqr(Lbf-hw*fi2));
ddhw_dfi:=Sqrt(Sqr(Lbf)-Sqr(wtf))*(hw-dhw)/wtf;
dfi_ddhw:=1/ddhw_dfi;
lfb:=1+((L-Llb)/2)*dfi_ddhw;
lfb:=1/lfb;
{Fp:=Fp*lfb;
}
{Simple length factor}

lfb:=1/(1+(L*dhw)/(4*hw*Sqrt(Sqr(Lbf)-Sqr(dhw))));

{Fp:=Fp*lfb;
}
IF (typee=3) THEN
BEGIN
writeln(out,ref,chr(9),Fp,chr(9),Ftest,chr(9),Fp/Ftest);
END;
END;

CLOSE(out);

END.
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5.4 Program for post-failure mechanical model MR1

var

{Input and output variables}

out:Text;
teller:Integer;
testno,destestno:String[4];
woord1,woord2:String;
typee:Real;

{Section variables}

th,bw,btf,bbf,rbf,rtf,t,L,Llb,fy,Ftest,Lbf:Real;
Fimec,ref,A,I,k,hw:Real;

{Calculation variables}

E,dhw,Fp,fi2,lfb:Real;
aaaa,bbbb,cccc,wtf,ddhw_dfi,dfi_ddhw:Real;

function ArcSin(x:Real):Real;
{-90<ArcSin(x)<90}
var sinx,cosx:Real;
begin
  sinx:=x;
  cosx:=SQRT(1-SQR(sinx));
  ArcSin:=ArcTan(sinx/cosx);
end;

function ArcCos(x:Real):Real;
{0<ArcCos(x)<180}
var sinx,cosx:Real;
begin
  cosx:=x;
  sinx:=SQRT(1-SQR(cosx));
  if x=0 then ArcCos:=pi/2;
  if x>0 then ArcCos:=ArcTan(sinx/cosx);
  if x<0 then ArcCos:=ArcTan(sinx/cosx)+pi;
end;

function Power(x,y:Real):Real;
{calculates x to the power y}
begin
  Power:=EXP(y*LN(x));
end;

{FUNCTION DECLARATION}

BEGIN {PROGRAM}
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ASSIGN(out,'uff16e.dat');
REWRITE(out);

FOR teller:= 1 TO 34 DO

BEGIN {FOR for all tested sections}
writeln(teller);
str(teller,woord1);
woord2:='   ';
destestno:=woord1+woord2;
ASSIGN(input,'uff16.prn');
RESET(input);
READ(input,testno);
while testno<>destestno do
begin
READLN(input);
READ(input,testno);
end;
READ(input,ref,typee,btf,rtf,bw,bbf,rbf,th,L,Llb,t,fy,Ftest,Fimec);
CLOSE(input);

th:=th/57.29577951;
E:=210000;
hw:=bw*sin(th);

I:=(1/12)*(Llb)*t*t*t;
k:=(E*I*(3*bbf+2*bw))/(SQR(rbf)*SQR(sin(th))*bw*(bbf-(4/3)*rbf*sin(th)));
dhw:=2*bw*((1.155*fy*sqr(t)*Llb)/rbf)*Cos(th/2)*Sin(th/2);
dhw:=-dhw/(-bw*k-((1.155*fy*sqr(t)*Llb)/rbf)+bw*k*Cos(th));
Fp:=k*dhw;

{EXTRA FORCES FOR ADJACENT PARTS}

Lbf:=Sqrt((2.601*0.5*bbf*Llb*1.155*fy*sqr(t))/(Fp));
{Fp:=Fp*(1+2*(Lbf/Llb));}
{Fp:=Fp+1.155*fy*sqr(t)*bbf/(sqrt(sqr(Lbf)-Sqr(dhw)));}

{SIMPLE LENGTH FACTOR}

{Fp:=Fp/(1+(L*dhw)/(4*hw*Sqrt(Sqr(Lbf)-Sqr(dhw))));}

{COMPLEX LENGTH FACTOR}

aaaa:=Sqr(hw)+Sqr(Lbf);
bbbb:=2*Lbf*(dhw-hw);
cccc:=Sqr(dhw);
fi2:=(-bbbb-Sqrt(Sqr(bbbb)-4*aaaa*cccc))/(2*aaaa);
wtf:=Sqrt(Sqr(Lbf)-Sqr(Lbf-hw*fi2));
ddhw_dfi:=Sqrt(Sqr(Lbf)-Sqr(wtf))*(hw-dhw)/wtf;
dfi_ddhw:=1/ddhw_dfi;
lfb:=1+((L-Llb)/2)*dfi_ddhw;
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lfb:=1/lfb;

{Fp:=Fp*lfb;}

writeln(out,Fp,chr(9),Fimec,chr(9),Fp/Fimec);

END; {Cycle for all tested sections}

CLOSE(out);

END. {PROGRAM}
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5.5 Program for post-failure mechanical model ME1

var

{input/output}
out:Text;
teller:Integer;
testno:Real;

{section}
ref,typee,btf,rtf,bw,bbf,rbf,theta,L,Llb,t,fy,Ftest,Fimec:Real;
E,I,k,d,a,b,dhw:Real;

{finding d}
dmin,dmax,Fp,Fe:Real;

{finding point of inertia}
hn,zpnov,Inov:Real;

function power(x,y:Real):Real;
{calculates x to the power y}
begin
  power:=exp(y*ln(x));
end;

function TAN(x:Real):Real;
begin
  TAN:=SIN(x)/COS(x);
end;

BEGIN {PROGRAM}

ASSIGN(out,'uff5.dat');
REWRITE(out);

FOR teller:= 1 TO 7 DO
  BEGIN {FOR for all tested sections}
  writeln(teller);
  {str(teller,woord1);
  woord2:='   ';
  destestno:=woord1+woord2;}
  ASSIGN(input,'uff5.prn');
  RESET(input);
  READ(input,testno);
  while testno<>teller do
  begin
  READLN(input);
  READ(input,testno);
  end;
  READ(input,ref,typee,btf,rtf,bw,bbf,rbf,theta,L,Llb,t,fy,Ftest,Fimec);
  writeln(btf,rtf,bw,bbf,rbf,theta,L,Llb,t,fy,Ftest);
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  theta:=theta/57.29577951;
  CLOSE(input);

  E:=210000;
  I:=(1/12)*Llb*t*t*t;
  k:=(E*I*(3*bbf+2*bw));
  k:=k/(SQR(rbf)*SQR(sin(theta))*bw*(bbf-(4/3)*(rbf)*sin(theta)));

  dmin:=0;
  dmax:=10;
  Fp:=0;
  Fe:=2;

  WHILE abs(Fp-Fe) > 1 DO {Minimalisatie ...}
  BEGIN
  d:=(dmin+dmax)/2;

  a:=bbf/5;
  b:=bbf;
  dhw:=2*d;

  Fe:=k*dhw;

  Fp:=1-(2*d)/t+Sqrt(Sqr(2*d/t)+1)-6*d/(t*(1+4*Sqr(a)/Sqr(b)));
  Fp:=Fp+4*Sqrt(Sqr(3*d/(2*t*(1+4*Sqr(a)/Sqr(b))))+1);
  Fp:=Fp*fy*t*bbf/6;

        hn:=bw*sin(theta);
        zpnov:=(2*hn*t*0.5*hn)+(bbf*t*hn);
        zpnov:=zpnov/(t*(btf+hn+hn+btf));
        Inov:=(1/12)*power(t,3)*btf+zpnov*zpnov*t*btf;
        Inov:=Inov+2*(power(hn,3)*t*(1/12)+sqr((hn/2)-zpnov)*hn*t);
        Inov:=Inov+power(t,3)*bbf*(1/12)+sqr(hn-zpnov)*bbf*t;
        Fp:=Fp*4*Inov/((L-Llb)*(hn-zpnov)*bbf*t);

  IF Fp>=Fe THEN
  BEGIN
  dmin:=d;
  END;

  IF Fp < Fe THEN
  BEGIN
  dmax:=d;
  END;

  END; {WHILE}

  writeln(out,Fp,chr(9),Ftest);
END; {FOR-loop}
CLOSE(out);
END. {PROGRAM}
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6 Input files for Ansys 5.4

6.1 Input file for yield arc finite element model (experiment 36)

/FILENAM,h36

/PREP7

! 75 MM FINE MESH AT THE LEFT OF LOAD BEARING PLATE (700-75-75=550)
! 20 MM TRANSISTION ZONE IN THIS FINE MESH

L1=550
L2=570
L3=700

! MODELLING SECTION AROUND LOAD BEARING PLATE

! KEYNODES SECTION

! THIS DATA HAS BEEN GENERATED BY TURBO-PASCAL PROGRAM ANSYS2.PAS

K,11, 0.0000000000E+00, 0.0000000000E+00,L1
K,12, 5.3832450986E+01, 0.0000000000E+00,L1
K,13, 6.3832450986E+01, 0.0000000000E+00,L1
K,14, 7.0363070639E+01, 2.0559640973E+00,L1
K,15, 7.4538125460E+01, 7.4822794824E+00,L1
K,16, 7.7974722406E+01, 1.6873222004E+01,L1
K,17, 1.0188137537E+02, 8.2201221595E+01,L1
K,18, 1.0531797231E+02, 9.1592164116E+01,L1
K,19, 1.0949302713E+02, 9.7018479501E+01,L1
K,110, 1.1602364679E+02, 9.9074443598E+01,L1
K,111, 1.2602364679E+02, 9.9074443598E+01,L1
K,112, 1.6060609777E+02, 9.9074443598E+01,L1

K,21, 0.0000000000E+00, 0.0000000000E+00,L2
K,22, 5.3832450986E+01, 0.0000000000E+00,L2
K,23, 6.3832450986E+01, 0.0000000000E+00,L2
K,24, 7.0363070639E+01, 2.0559640973E+00,L2
K,25, 7.4538125460E+01, 7.4822794824E+00,L2
K,26, 7.7974722406E+01, 1.6873222004E+01,L2
K,27, 1.0188137537E+02, 8.2201221595E+01,L2
K,28, 1.0531797231E+02, 9.1592164116E+01,L2
K,29, 1.0949302713E+02, 9.7018479501E+01,L2
K,210, 1.1602364679E+02, 9.9074443598E+01,L2
K,211, 1.2602364679E+02, 9.9074443598E+01,L2
K,212, 1.6060609777E+02, 9.9074443598E+01,L2

K,31, 0.0000000000E+00, 0.0000000000E+00,L3
K,32, 5.3832450986E+01, 0.0000000000E+00,L3
K,33, 6.3832450986E+01, 0.0000000000E+00,L3
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K,34, 7.0363070639E+01, 2.0559640973E+00,L3
K,35, 7.4538125460E+01, 7.4822794824E+00,L3
K,36, 7.7974722406E+01, 1.6873222004E+01,L3
K,37, 1.0188137537E+02, 8.2201221595E+01,L3
K,38, 1.0531797231E+02, 9.1592164116E+01,L3
K,39, 1.0949302713E+02, 9.7018479501E+01,L3
K,310, 1.1602364679E+02, 9.9074443598E+01,L3
K,311, 1.2602364679E+02, 9.9074443598E+01,L3
K,312, 1.6060609777E+02, 9.9074443598E+01,L3

! LINES

LSTR,11,12           ! 1
LSTR,12,13           ! 2
LARC,13,15,14        ! 3
LSTR,15,16           ! 4
LSTR,16,17           ! 5
LSTR,17,18           ! 6
LARC,18,110,19       ! 7
LSTR,110,111         ! 8
LSTR,111,112         ! 9

LSTR,21,22 ! 10
LSTR,22,23 ! 11
LARC,23,25,24 ! 12
LSTR,25,26 ! 13
LSTR,26,27 ! 14
LSTR,27,28 ! 15
LARC,28,210,29 ! 16
LSTR,210,211 ! 17
LSTR,211,212 ! 18

LSTR,31,32 ! 19
LSTR,32,33 ! 20
LARC,33,35,34 ! 21
LSTR,35,36 ! 22
LSTR,36,37 ! 23
LSTR,37,38 ! 24
LARC,38,310,39 ! 25
LSTR,310,311 ! 26
LSTR,311,312 ! 27

LSTR,11,21 ! 28
LSTR,12,22 ! 29
LSTR,13,23 ! 30
LSTR,15,25 ! 31
LSTR,16,26 ! 32
LSTR,17,27 ! 33
LSTR,18,28 ! 34
LSTR,110,210 ! 35
LSTR,111,211 ! 36
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LSTR,112,212 ! 37

LSTR,21,31 ! 38
LSTR,22,32 ! 39
LSTR,23,33 ! 40
LSTR,25,35 ! 41
LSTR,26,36 ! 42
LSTR,27,37 ! 43
LSTR,28,38 ! 44
LSTR,210,310 ! 45
LSTR,211,311 ! 46
LSTR,212,312 ! 47

! AREAS

AL,1,29,10,28 ! 1
AL,2,30,11,29 ! 2
AL,3,31,12,30 ! 3
AL,4,32,13,31 ! 4
AL,5,33,14,32 ! 5
AL,6,34,15,33 ! 6
AL,7,35,16,34 ! 7
AL,8,36,17,35 ! 8
AL,9,37,18,36 ! 9

AL,10,39,19,38 ! 10
AL,11,40,20,39 ! 11
AL,12,41,21,40 ! 12
AL,13,42,22,41 ! 13
AL,14,43,23,42 ! 14
AL,15,44,24,43 ! 15
AL,16,45,25,44 ! 16
AL,17,46,26,45 ! 17
AL,18,47,27,46 ! 18

! ELEMENT DISTRIBUTION ALONG LINES

! LENGTH CORNER RADIUS = 69.9/360 * 2 * PI * 11.4 = 13.9

! CROSS-SECTION LINES

! ROUGH MESHED PART
! CORNER RADIUS IS MODELLED BY 1 ELEMENT, LENGTH 13.9
! THUS WIDTH 13.9*4 = 55.6 (MAX 24)

! LINE 1 TO 9
LESIZE,1,24  ! MAIN MESH
LESIZE,2,19  ! AVERAGE
LESIZE,3,,,1 ! ONE ELEMENT FOR RADIUS
LESIZE,4,19  ! AVERAGAE
LESIZE,5,24  ! MAIN MESH
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LESIZE,6,19  ! AVERAGE
LESIZE,7,,,1 ! ONE ELEMENT FOR RADIUS
LESIZE,8,19 ! MAIN MESH
LESIZE,9,24 ! AVERAGE

! FINE MESHED PART

! LINE 10 TO 18
LESIZE,10,24 ! MAIN MESH
LESIZE,11,19 ! AVERAGE
LESIZE,12,,,1 ! ONE ELEMENT FOR RADIUS
LESIZE,13,6 ! AVERAGE
LESIZE,14,4 ! MAIN MESH
LESIZE,15,1.4 ! EXTRA SMALL TO DESCRIBE ROLLING CORRECTLY
LESIZE,16,,,10 ! TEN (DANGER FOR ROLLING) ELEMENTS FOR RADIUS
LESIZE,17,4 ! AVERAGE
LESIZE,18,6 ! MAIN MESH

! LINE 19 TO 27
LESIZE,19,24 ! ALL THE SAME AS ABOVE PRESENTED
LESIZE,20,19
LESIZE,21,,,1
LESIZE,22,6
LESIZE,23,4
LESIZE,24,1.4
LESIZE,25,,,10
LESIZE,26,4
LESIZE,27,6

! LONGITUDINAL LINES

! LINE 28 TO 37
LESIZE,28,22 ! ALL VALUES ARE AVERAGE OF FINE AND ROUGH MESHED PART
LESIZE,29,22
LESIZE,30,22
LESIZE,31,22
LESIZE,32,15
LESIZE,33,15
LESIZE,34,15
LESIZE,35,15
LESIZE,36,15
LESIZE,37,15

! FINE MESHED PART

! LINE 38 TO 47
LESIZE,38,20 ! REDUCED TO AVOID BAD ELEMENTS
LESIZE,39,20 ! REDUCED TO AVOID BAD ELEMENTS
LESIZE,40,20 ! 4 TIMES ELEMENT LENGTH = 4 * 13.9 = MAX 24
LESIZE,41,20
LESIZE,42,5 ! SAME AS MAIN MESH
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LESIZE,43,5
LESIZE,44,5 ! 4 TIME ELEMENT LENGTH = 4 * 1.39 = 5
LESIZE,45,5 ! MAKE 6 TO MESH AREA 15 EQUALLY NORMAL = 9
LESIZE,46,6 ! SAME AS MAIN MESH
LESIZE,47,6

! ELEMENT DATA

ET,1,SHELL43
KEYOPT,1,3,0 !(INCLUDE IN-PLANE EXTRA DISPLACEMENT SHAPES)
KEYOPT,1,4,0 !(NO USER SUBROUTINE TO DEFINE ELEMENT COORDINATE SYSTEM)
KEYOPT,1,5,1
KEYOPT,1,6,0 !(BASIC ELEMENT SOLUTION)

ET,2,CONTAC49
KEYOPT,2,1,0 !(NORMAL DOF)
KEYOPT,2,2,1 !(PENALTY FUNCTION + LAGRANGE MULTIPLIER)
KEYOPT,2,3,0 !(NO FRICTION)
KEYOPT,2,7,1 !(RECOMMENDED TIME STEP PREDICTION METHOD)

ET,3,SOLID45

! REAL CONSTANT SETS

! STEEL PLATE THICKNESS = 0.67

R,1,0.67
R,2,3000,,0.01

! MATERIALS, TEST PIECE 2-DW-B/C

MP,EX,1,210000
TB,MISO,1, ,8
TBPT,DEFI,0.001685,353.8947
TBPT,DEFI,0.031064,362.3426
TBPT,DEFI,0.050218,404.1098
TBPT,DEFI,0.075107,441.8740
TBPT,DEFI,0.101202,467.9757
TBPT,DEFI,0.150143,504.1821
TBPT,DEFI,0.200080,532.8928
TBPT,DEFI,0.250370,554.6708

UIMP,2,EX, , ,210000,
UIMP,2,NUXY, , ,0.3,

! MESHING COMPRESSED ELEMENT

TYPE,1
MAT,1
REAL,1
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ESYS,0

! MAPPED MESHING

ESHAPE,2

ASEL,S,AREA,,10
ASEL,A,AREA,,12
ASEL,A,AREA,,14
ASEL,A,AREA,,16
ASEL,A,AREA,,18
ASEL,A,AREA,,15

AMESH,ALL
ASEL,ALL

! FREE MESHING

ESHAPE,0

ASEL,S,AREA,,11
ASEL,A,AREA,,13
!ASEL,A,AREA,,15
ASEL,A,AREA,,17

ASEL,A,AREA,,1,9

AMESH,ALL
ASEL,ALL

! ONE SECTION PART TO MULTIPLY

L7=0
L8=50

! THIS DATA HAS BEEN PRODUCED BY TURBO-PASCAL PROGRAM ANSYS2.PAS

K,71, 0.0000000000E+00, 0.0000000000E+00,L7
K,72, 5.3832450986E+01, 0.0000000000E+00,L7
K,73, 6.3832450986E+01, 0.0000000000E+00,L7
K,74, 7.0363070639E+01, 2.0559640973E+00,L7
K,75, 7.4538125460E+01, 7.4822794824E+00,L7
K,76, 7.7974722406E+01, 1.6873222004E+01,L7
K,77, 1.0188137537E+02, 8.2201221595E+01,L7
K,78, 1.0531797231E+02, 9.1592164116E+01,L7
K,79, 1.0949302713E+02, 9.7018479501E+01,L7
K,710, 1.1602364679E+02, 9.9074443598E+01,L7
K,711, 1.2602364679E+02, 9.9074443598E+01,L7
K,712, 1.6060609777E+02, 9.9074443598E+01,L7

K,81, 0.0000000000E+00, 0.0000000000E+00,L8
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K,82, 5.3832450986E+01, 0.0000000000E+00,L8
K,83, 6.3832450986E+01, 0.0000000000E+00,L8
K,84, 7.0363070639E+01, 2.0559640973E+00,L8
K,85, 7.4538125460E+01, 7.4822794824E+00,L8
K,86, 7.7974722406E+01, 1.6873222004E+01,L8
K,87, 1.0188137537E+02, 8.2201221595E+01,L8
K,88, 1.0531797231E+02, 9.1592164116E+01,L8
K,89, 1.0949302713E+02, 9.7018479501E+01,L8
K,810, 1.1602364679E+02, 9.9074443598E+01,L8
K,811, 1.2602364679E+02, 9.9074443598E+01,L8
K,812, 1.6060609777E+02, 9.9074443598E+01,L8

! LINE 48 TO 56
LSTR,71,72 ! 48
LSTR,72,73 ! 49
LARC,73,75,74 ! 50
LSTR,75,76 ! 51
LSTR,76,77 ! 52
LSTR,77,78 ! 53
LARC,78,710,79 ! 54
LSTR,710,711 ! 55
LSTR,711,712 ! 56

! LINE 57 TO 65
LSTR,81,82 ! 57
LSTR,82,83 ! 58
LARC,83,85,84 ! 59
LSTR,85,86 ! 60
LSTR,86,87 ! 61
LSTR,87,88 ! 62
LARC,88,810,89 ! 63
LSTR,810,811 ! 64
LSTR,811,812 ! 65

! LINE 66 TO 75
LSTR,71,81 ! 66
LSTR,72,82 ! 67
LSTR,73,83 ! 68
LSTR,75,85 ! 69
LSTR,76,86 ! 70
LSTR,77,87 ! 71
LSTR,78,88 ! 72
LSTR,710,810 ! 73
LSTR,711,811 ! 74
LSTR,712,812 ! 75

AL,48,67,57,66 ! 19
AL,49,68,58,67 ! 20
AL,50,69,59,68 ! 21
AL,51,70,60,69 ! 22
AL,52,71,61,70 ! 23
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AL,53,72,62,71 ! 24
AL,54,73,63,72 ! 25
AL,55,74,64,73 ! 26
AL,56,75,65,74 ! 27

! ELEMENT DISTRIBUTION ALONG LINES

! CROSS-SECTION LINES

! LINE 48 TO 56
LESIZE,48,24 ! MAIN MESH
LESIZE,49,19 ! AVERAGE
LESIZE,50,,,1 ! ONE ELEMENT FOR CORNER RADIUS, LENGTH 13.9 MM
LESIZE,51,19 ! AVERAGE
LESIZE,52,24 ! MAIN MESH
LESIZE,53,19 ! AVERAGE
LESIZE,54,,,1 ! ONE ELEMENT FOR CORNER RADIUS, LENGTH 13.9 MM
LESIZE,55,19 ! AVERAGE
LESIZE,56,24 ! MAIN MESH

! LINE 57 TO 65
LESIZE,57,24 ! ALL THE SAME AS ABOVE PRESENTED DATA
LESIZE,58,19
LESIZE,59,,,1
LESIZE,60,19
LESIZE,61,24
LESIZE,62,19
LESIZE,63,,,1
LESIZE,64,19
LESIZE,65,24

! LONGITUDINAL LINES

! LINE 66 TO 75
LESIZE,66,24 ! MAIN MESH
LESIZE,67,24
LESIZE,68,24 ! FOUR TIMES CORNER RADIUS LENGTH
LESIZE,69,24
LESIZE,70,24 ! MAIN MESH
LESIZE,71,24
LESIZE,72,24 ! FOUR TIMES CORNER RADIUS LENGTH
LESIZE,73,24
LESIZE,74,24 ! MAIN MESH
LESIZE,75,24

! MESHING COMPRESSED ELEMENT

TYPE,1
MAT,1
REAL,1
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ESYS,0

! MAPPED MESHING

ESHAPE,2

ASEL,S,AREA,,19
ASEL,A,AREA,,21
ASEL,A,AREA,,23
ASEL,A,AREA,,25
ASEL,A,AREA,,27

AMESH,ALL
ASEL,ALL

! FREE MESHING

ESHAPE,0

ASEL,S,AREA,,20
ASEL,A,AREA,,22
ASEL,A,AREA,,24
ASEL,A,AREA,,26

AMESH,ALL
ASEL,ALL

! GENERATING ADDITIONAL PARTS

AGEN,2,19,27,1,,,50,,0,0
AGEN,2,19,27,1,,,100,,0,0
AGEN,2,19,27,1,,,150,,0,0
AGEN,2,19,27,1,,,200,,0,0
AGEN,2,19,27,1,,,250,,0,0
AGEN,2,19,27,1,,,300,,0,0
AGEN,2,19,27,1,,,350,,0,0
AGEN,2,19,27,1,,,400,,0,0
AGEN,2,19,27,1,,,450,,0,0
AGEN,2,19,27,1,,,500,,0,0

! YIELD ALL NODES TOGETHER

NUMMRG,ALL

! EXCENTRICITY LOAD BEARING PLATE

EXC=0

! KEYNODES LOAD BEARING PLATE

H=99.07 ! HEIGHT OF SECTION
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B=160.61 ! WIDTH OF SECTION
C=116.02 ! START OF TOP FLANGE FROM 0
D=63.83 ! END OF BOTTOM FLANGE FROM 0

K,40001,C-30,H+1,625 ! LOAD BEARING PLATE STARTS IN Z-DIRECTION ON 625
K,40002,C-30,H+1,725
K,40003,C-30,H+1+20,725
K,40004,C-30,H+1+20,625

K,40005,B+25,H+1,625
K,40006,B+25,H+1,725
K,40007,B+25,H+1+20,725
K,40008,B+25,H+1+20,625

! VOLUME (LOAD BEARING PLATE)

V,40001,40002,40003,40004,40005,40006,40007,40008

! LOAD BEARING PLATE ELEMENT DISTRIBUTION

LSEL,S,LOC,Y,H+0.5,200
LESIZE,ALL,,,1
ALLSEL,ALL

! MESHING SOLID ELEMENT

TYPE,3
MAT,2
VMESH,1

! SYMMETRIC BOUNDARY CONDITIONS

! LONGITUDINAL DIRECTION
NSEL,ALL
NSEL,S,LOC,X,B-0.1,B+0.1
NSEL,R,LOC,Y,H-0.5,H+0.5
D,ALL,UX,0,,,,ROTY,ROTZ
NSEL,ALL

! CROSS DIRECTION
NSEL,S,LOC,Y,-10,H+0.5
NSEL,R,LOC,Z,699.9,700.1
D,ALL,UZ,O,,,,ROTX,ROTY
NSEL,ALL

! SUPPORTS

NSEL,S,LOC,Z,99.9,100.1
NSEL,R,LOC,X,-0.2,D+0.1
D,ALL,UX,0,,,,UY,ROTY,ROTZ
NSEL,ALL
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! NODES TARGET

NSEL,S,LOC,Y,H+1-0.1,H+1+0.1
CM,target,NODE
NSEL,ALL

! NODES CONTACT

NSEL,S,LOC,Z,650,710
NSEL,R,LOC,Y,H-25,H+0.1
CM,contact,NODE
NSEL,ALL

! BOUNDARY CONDITIONS LOAD BEARING PLATE

NSEL,S,LOC,Y,H+1+20-0.1,H+1+20+0.1
D,ALL,UX,0,,,,UZ,ROTX,ROTY,ROTZ
NSEL,ALL

! GENERATE CONTACTELEMENTS BETWEEN LOAD BEARING PLATE AND
COMPRESSED ELEMENT

TYPE,2,
REAL,2,
ESYS,0,
GCGEN,contact,target, , ,TOP,

! STRIPS PREVENTING SPREADING OF THE WEBS

! FIX STRIPS EVERY 250 MM BETWEEN WCMS AND SUPPORT

NSEL,S,LOC,Y,-0.1,0.01
NSEL,R,LOC,Z,500-1,500+20
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,Y,-0.1,0.01
NSEL,R,LOC,Z,300-1,300+20
D,ALL,UX,0
NSEL,ALL

! WEB CRIPPLING MEASUREMENT STRIP (WCMS)

NSEL,S,LOC,Y,-0.1,0.1
NSEL,R,LOC,Z,700-10-0.1,700+0.1
D,ALL,UX,0,,,,ROTZ
NSEL,ALL

MODMSH,DETACH
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! START SUBSTRUCTURE 50 MM FROM TRANSISTION ZONE (FINE-ROUGH MESH)

NSEL,S,LOC,Z,0,500
ESLN,S,1
EDELE,ALL
NDELE,ALL
ALLSEL,ALL

ET,4,MATRIX50
TYPE,4
SE,h31-2gen

! PARAMETERS CALCULATION

/SOLU
ANTYPE,0
NLGEOM,1
SSTIF,ON
NROPT,FULL, ,ON
EQSLV,FRONT
OUTRES,ALL,-1
TIME,1.1
AUTOTS,1
DELTIM,1.1,1.1,1.1,0
KBC,0
NCNV,0,0,0,0,0,
PRED,ON,,ON
NEQIT,20,
LNSRCH,ON

! LOAD

NSEL,S,LOC,Y,H+1+20-0.1,H+1+20+0.1
D,ALL,UY,-1.1
NSEL,ALL

! SAVE & SOLVE

SAVE
SOLVE

! NEXT LOAD STEP

NSEL,S,LOC,Y,H+1+20-0.1,H+1+20+0.1
D,ALL,UY,-8
NSEL,ALL

TIME,8
OUTRES,ALL,-8
OUTRES,NSOL,-40
OUTRES,RSOL,-40
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DELTIM,0.01,0.005,0.05

SAVE
SOLVE
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6.2 Input file for rolling finite element model (experiment 54 Bakker)

/FILENAM,m54

/PREP7

! KEYNODES SECTION

K,1,0,0,0
K,2,49,0,0
K,3,49.7071,0.2929,0
K,4,50,1,0
K,5,50,40,0
K,6,52.9289,47.0711,0
K,7,60,50,0
K,8,80,50,0
K,9,40,0,0
K,10,50,10,0

K,11,0,0,100
K,12,49,0,100
K,13,49.7071,0.2929,100
K,14,50,1,100
K,15,50,40,100
K,16,52.9289,47.0711,100
K,17,60,50,100
K,18,80,50,100
K,19,40,0,100
K,20,50,10,100

K,21,0,0,197.5
K,22,49,0,197.5
K,23,49.7071,0.2929,197.5
K,24,50,1,197.5
K,25,50,40,197.5
K,26,52.9289,47.0711,197.5
K,27,60,50,197.5
K,28,80,50,197.5
K,29,40,0,197.5
K,30,50,10,197.5

K,31,0,0,207.5
K,32,49,0,207.5
K,33,49.7071,0.2929,207.5
K,34,50,1,207.5
K,35,50,40,207.5
K,36,52.9289,47.0711,207.5
K,37,60,50,207.5
K,38,80,50,207.5
K,39,40,0,207.5
K,40,50,10,207.5
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K,41,0,0,232.5
K,42,49,0,232.5
K,43,49.7071,0.2929,232.5
K,44,50,1,232.5
K,45,50,40,232.5
K,46,52.9289,47.0711,232.5
K,47,60,50,232.5
K,48,80,50,232.5
K,49,40,0,232.5
K,50,50,10,232.5

! KEYNODES LOAD BEARING PLATE

K,61,25,52,220
K,62,25,52,237.5
K,63,25,62,237.5
K,64,25,62,220

K,65,85,52,220
K,66,85,52,237.5
K,67,85,62,237.5
K,68,85,62,220

! LINES AND ARCS

LSTR,1,9
LSTR,9,2
LARC,2,4,3
LSTR,4,10
LSTR,10,5
LARC,5,7,6
LSTR,7,8

LSTR,11,19
LSTR,19,12
LARC,12,14,13
LSTR,14,20
LSTR,20,15
LARC,15,17,16
LSTR,17,18

LSTR,21,29
LSTR,29,22
LARC,22,24,23
LSTR,24,30
LSTR,30,25
LARC,25,27,26
LSTR,27,28

LSTR,31,39
LSTR,39,32
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LARC,32,34,33
LSTR,34,40
LSTR,40,35
LARC,35,37,36
LSTR,37,38

LSTR,41,49
LSTR,49,42
LARC,42,44,43
LSTR,44,50
LSTR,50,45
LARC,45,47,46
LSTR,47,48

LSTR,1,11
LSTR,2,12
LSTR,4,14
LSTR,5,15
LSTR,7,17
LSTR,8,18
LSTR,9,19
LSTR,10,20

LSTR,11,21
LSTR,12,22
LSTR,14,24
LSTR,15,25
LSTR,17,27
LSTR,18,28
LSTR,19,29
LSTR,20,30

LSTR,21,31
LSTR,22,32
LSTR,24,34
LSTR,25,35
LSTR,27,37
LSTR,28,38
LSTR,29,39
LSTR,30,40

LSTR,31,41
LSTR,32,42
LSTR,34,44
LSTR,35,45
LSTR,37,47
LSTR,38,48
LSTR,39,49
LSTR,40,50
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! AREAS (SECTION)

AL,1,36,8,42
AL,42,9,37,2
AL,3,37,10,38
AL,4,38,11,43
AL,5,43,12,39
AL,6,39,13,40
AL,7,40,14,41

AL,8,44,15,50
AL,9,50,16,45
AL,10,45,17,46
AL,11,46,18,51
AL,12,51,19,47
AL,13,47,20,48
AL,14,48,21,49

AL,15,52,22,58
AL,16,58,23,53
AL,17,53,24,54
AL,18,54,25,59
AL,19,59,26,55
AL,20,55,27,56
AL,21,56,28,57

AL,22,60,29,66
AL,23,66,30,61
AL,24,61,31,62
AL,25,62,32,67
AL,26,67,33,63
AL,27,63,34,64
AL,28,64,35,65

! DISTRIBUTION ELEMENTS ALONG LINES
! FIRST PART

LESIZE,1,10
LESIZE,36,10
LESIZE,8,10
LESIZE,42,10
LESIZE,5,10
LESIZE,43,10
LESIZE,12,10
LESIZE,39,10
LESIZE,7,10
LESIZE,40,10
LESIZE,14,10
LESIZE,41,10
LESIZE,6,10
LESIZE,13,10



159

LESIZE,3,,,1
LESIZE,10,,,1

LESIZE,37,4
LESIZE,38,4
LESIZE,2,4
LESIZE,4,4
LESIZE,9,4
LESIZE,11,4

! SECOND PART

LESIZE,44,10
LESIZE,15,10
LESIZE,50,10
LESIZE,51,10
LESIZE,19,10
LESIZE,47,10
LESIZE,20,10
LESIZE,48,10
LESIZE,21,10
LESIZE,49,10

LESIZE,17,,,1

LESIZE,16,4
LESIZE,18,4
LESIZE,45,4
LESIZE,46,4

! THIRD PART

LESIZE,22,10
LESIZE,60,10
LESIZE,29,10
LESIZE,66,10

LESIZE,26,1
LESIZE,67,3
LESIZE,33,1
LESIZE,63,3
LESIZE,27,1
LESIZE,34,1
LESIZE,28,3
LESIZE,64,3
LESIZE,35,3
LESIZE,65,3

LESIZE,31,,,1
LESIZE,24,,,1
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LESIZE,61,4
LESIZE,62,4

! FOURTH PART

LESIZE,52,10
LESIZE,58,10
LESIZE,53,4
LESIZE,54,4

LESIZE,55,6
LESIZE,56,6
LESIZE,57,6
LESIZE,59,6

LESIZE,25,2
LESIZE,32,2
LESIZE,23,5
LESIZE,30,5

! VOLUME (LOAD BEARING PLATE)

V,61,62,63,64,65,66,67,68

! LOAD BEARING PLATE ELEMENT DISTRIBUTION

LSEL,S,LINE,,68,79
LESIZE,ALL,,,1
LSEL,ALL

! ELEMENT DATA

ET,1,SHELL43
KEYOPT,1,3,0
KEYOPT,1,4,0
KEYOPT,1,5,0
KEYOPT,1,6,0

ET,2,CONTAC49
KEYOPT,2,1,0
KEYOPT,2,2,1
KEYOPT,2,3,0
KEYOPT,2,7,1

ET,3,SOLID45

! REAL CONSTANT SETS

R,1,0.62
R,2,3000,,0.05
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! MATERIALS

MP,EX,1,210000
TB,MISO,1, ,7
TBPT,DEFI,0.0018,378
TBPT,DEFI,0.041,393
TBPT,DEFI,0.049,431
TBPT,DEFI,0.072,473
TBPT,DEFI,0.095,495
TBPT,DEFI,0.336,630
TBPT,DEFI,0.588,810

UIMP,2,EX, , ,210000,
UIMP,2,NUXY, , ,0.3,

! MESHING COMPRESSED ELEMENT

TYPE,1
MAT,1
REAL,1
ESYS,0

ESHAPE,2
ASEL,S,AREA,,1
ASEL,A,AREA,,3
ASEL,A,AREA,,5,7
ASEL,A,AREA,,8
ASEL,A,AREA,,10
ASEL,A,AREA,,12,14
ASEL,A,AREA,,22
ASEL,A,AREA,,24
ASEL,A,AREA,,26,28
AMESH,ALL
ASEL,ALL

ESHAPE,0
ASEL,S,AREA,,2
ASEL,A,AREA,,4
ASEL,A,AREA,,9
ASEL,A,AREA,,11
ASEL,A,AREA,,15,21
ASEL,A,AREA,,23
ASEL,A,AREA,,25
AMESH,ALL,
ASEL,ALL

! MESHING SOLID ELEMENT

TYPE,3
MAT,2
VMESH,1
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! SYMMETRIC BOUNDARY CONDITIONS

NSEL,ALL
NSEL,S,LOC,X,79,81
NSEL,R,LOC,Y,0,51
D,ALL,UX,0,,,,ROTY,ROTZ
NSEL,ALL

NSEL,S,LOC,Z,232.4,233
NSEL,R,LOC,Y,0,51
D,ALL,UZ,0,,,,ROTX,ROTY
NSEL,ALL

! SUPPORTS

NSEL,S,LOC,Z,99.9,100.1
NSEL,R,LOC,X,-0.1,49.1
D,ALL,UX,0,,,,UY,ROTY,ROTZ
NSEL,ALL

! NODES TARGET

NSEL,S,LOC,Y,51,53
CM,target,NODE
NSEL,ALL

! NODES CONTACT

NSEL,S,LOC,Z,208.5,233
NSEL,R,LOC,Y,30,51
CM,contact,NODE
NSEL,ALL

! BOUNDARY CONDITIONS LOAD BEARING PLATE

NSEL,S,LOC,Y,55,100
D,ALL,UX,0,,,,UZ,ROTX,ROTY,ROTZ
NSEL,ALL

! GENERATE CONTACTELEMENTS BETWEEN LOAD BEARING PLATE AND
COMPRESSED ELEMENT

TYPE,2,
REAL,2,
ESYS,0,
GCGEN,contact,target, , ,TOP,

! BREAKING LINK BETWEEN AREAS AND ELEMENTS

!MODMSH,DETACH
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! SELECTING NODES AND ELEMENTS TO DELETE, DELETING

!NSEL,S,LOC,Z,-10,190
!ESLN,S,1
!EDELE,ALL
!NDELE,ALL
!ALLSEL,ALL

! ATTACHING SUPERELEMENT

!ET,4,MATRIX50
!TYPE,4
!SE,m54sub

! PARAMETERS CALCULATION

/SOLU
ANTYPE,0
NLGEOM,1
NROPT,AUTO
EQSLV,FRONT
OUTRES,ALL,-1
TIME,2
AUTOTS,1
DELTIM,2,2,2,0
KBC,0
NCNV,0,0,0,0,0
PRED,OFF
NEQIT,5
LNSRCH,OFF

! LOAD

NSEL,S,LOC,Y,55,100
D,ALL,UY,-2
NSEL,ALL

! CALCULATE FIRST LOAD STEP (12 MM) AND SAVE

SAVE
SOLVE

! LOAD 2

NSEL,S,LOC,Y,55,100
D,ALL,UY,-22
NSEL,ALL

TIME,22
OUTRES,ALL,-44
OUTRES,NSOL,-88
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OUTRES,RSOL,-88
DELTIM,0.1,0.01,1
NEQIT,20

SAVE
SOLVE
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6.3 Input file for yield eye finite element model (experiment 40)

/FILENAM,t40

/PREP7

L1=-150
L2=-120
L3=120
L4=150

K,11, 0.0000000000E+00, 0.0000000000E+00,L1
K,12, 5.8423378809E+01, 0.0000000000E+00,L1
K,13, 6.8423378809E+01, 0.0000000000E+00,L1
K,14, 6.9475675948E+01, 4.3104222166E-01,L1
K,15, 6.9923193757E+01, 1.4764390242E+00,L1
K,16, 7.0080266930E+01, 1.1475205349E+01,L1
K,17, 7.1296747720E+01, 8.8912408552E+01,L1
K,18, 7.1453820892E+01, 9.8911174877E+01,L1
K,19, 7.1901338702E+01, 9.9956571679E+01,L1
K,110, 7.2953635841E+01, 1.0038761390E+02,L1
K,111, 8.2953635841E+01, 1.0038761390E+02,L1
K,112, 1.2077701465E+02, 1.0038761390E+02,L1

K,21, 0.0000000000E+00, 0.0000000000E+00,L2
K,22, 5.8423378809E+01, 0.0000000000E+00,L2
K,23, 6.8423378809E+01, 0.0000000000E+00,L2
K,24, 6.9475675948E+01, 4.3104222166E-01,L2
K,25, 6.9923193757E+01, 1.4764390242E+00,L2
K,26, 7.0080266930E+01, 1.1475205349E+01,L2
K,27, 7.1296747720E+01, 8.8912408552E+01,L2
K,28, 7.1453820892E+01, 9.8911174877E+01,L2
K,29, 7.1901338702E+01, 9.9956571679E+01,L2
K,210, 7.2953635841E+01, 1.0038761390E+02,L2
K,211, 8.2953635841E+01, 1.0038761390E+02,L2
K,212, 1.2077701465E+02, 1.0038761390E+02,L2

K,31, 0.0000000000E+00, 0.0000000000E+00,L3
K,32, 5.8423378809E+01, 0.0000000000E+00,L3
K,33, 6.8423378809E+01, 0.0000000000E+00,L3
K,34, 6.9475675948E+01, 4.3104222166E-01,L3
K,35, 6.9923193757E+01, 1.4764390242E+00,L3
K,36, 7.0080266930E+01, 1.1475205349E+01,L3
K,37, 7.1296747720E+01, 8.8912408552E+01,L3
K,38, 7.1453820892E+01, 9.8911174877E+01,L3
K,39, 7.1901338702E+01, 9.9956571679E+01,L3
K,310, 7.2953635841E+01, 1.0038761390E+02,L3
K,311, 8.2953635841E+01, 1.0038761390E+02,L3
K,312, 1.2077701465E+02, 1.0038761390E+02,L3

K,41, 0.0000000000E+00, 0.0000000000E+00,L4
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K,42, 5.8423378809E+01, 0.0000000000E+00,L4
K,43, 6.8423378809E+01, 0.0000000000E+00,L4
K,44, 6.9475675948E+01, 4.3104222166E-01,L4
K,45, 6.9923193757E+01, 1.4764390242E+00,L4
K,46, 7.0080266930E+01, 1.1475205349E+01,L4
K,47, 7.1296747720E+01, 8.8912408552E+01,L4
K,48, 7.1453820892E+01, 9.8911174877E+01,L4
K,49, 7.1901338702E+01, 9.9956571679E+01,L4
K,410, 7.2953635841E+01, 1.0038761390E+02,L4
K,411, 8.2953635841E+01, 1.0038761390E+02,L4
K,412, 1.2077701465E+02, 1.0038761390E+02,L4

! LINES

LSTR,11,12           ! 1
LSTR,12,13           ! 2
LARC,13,15,14        ! 3
LSTR,15,16           ! 4
LSTR,16,17           ! 5
LSTR,17,18           ! 6
LARC,18,110,19       ! 7
LSTR,110,111         ! 8
LSTR,111,112         ! 9

LSTR,21,22 ! 10
LSTR,22,23 ! 11
LARC,23,25,24 ! 12
LSTR,25,26 ! 13
LSTR,26,27 ! 14
LSTR,27,28 ! 15
LARC,28,210,29 ! 16
LSTR,210,211 ! 17
LSTR,211,212 ! 18

LSTR,31,32           ! 19
LSTR,32,33           ! 20
LARC,33,35,34        ! 21
LSTR,35,36           ! 22
LSTR,36,37           ! 23
LSTR,37,38           ! 24
LARC,38,310,39       ! 25
LSTR,310,311         ! 26
LSTR,311,312         ! 27

LSTR,41,42           ! 28
LSTR,42,43           ! 29
LARC,43,45,44        ! 30
LSTR,45,46           ! 31
LSTR,46,47           ! 32
LSTR,47,48           ! 33
LARC,48,410,49       ! 34
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LSTR,410,411         ! 35
LSTR,411,412         ! 36

LSTR,11,21 ! 37
LSTR,12,22 ! 38
LSTR,13,23 ! 39
LSTR,15,25 ! 40
LSTR,16,26 ! 41
LSTR,17,27 ! 42
LSTR,18,28 ! 43
LSTR,110,210 ! 44
LSTR,111,211 ! 45
LSTR,112,212 ! 46

LSTR,21,31 ! 47
LSTR,22,32 ! 48
LSTR,23,33 ! 49
LSTR,25,35 ! 50
LSTR,26,36 ! 51
LSTR,27,37 ! 52
LSTR,28,38 ! 53
LSTR,210,310 ! 54
LSTR,211,311 ! 55
LSTR,212,312 ! 56

LSTR,31,41 ! 57
LSTR,32,42 ! 58
LSTR,33,43 ! 59
LSTR,35,45 ! 60
LSTR,36,46 ! 61
LSTR,37,47 ! 62
LSTR,38,48 ! 63
LSTR,310,410 ! 64
LSTR,311,411 ! 65
LSTR,312,412 ! 66

! AREAS

AL,1,38,10,37 ! 1
AL,2,39,11,38 ! 2
AL,3,40,12,39 ! 3
AL,4,41,13,40 ! 4
AL,5,42,14,41 ! 5
AL,6,43,15,42 ! 6
AL,7,44,16,43 ! 7
AL,8,45,17,44 ! 8
AL,9,46,18,45 ! 9

AL,10,48,19,47 ! 10
AL,11,49,20,48 ! 11
AL,12,50,21,49 ! 12
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AL,13,51,22,50 ! 13
AL,14,52,23,51 ! 14
AL,15,53,24,52 ! 15
AL,16,54,25,53 ! 16
AL,17,55,26,54 ! 17
AL,18,56,27,55 ! 18

AL,19,58,28,57 ! 19
AL,20,59,29,58 ! 20
AL,21,60,30,59 ! 21
AL,22,61,31,60 ! 22
AL,23,62,32,61 ! 23
AL,24,63,33,62 ! 24
AL,25,64,34,63 ! 25
AL,26,65,35,64 ! 26
AL,27,66,36,65 ! 27

! ELEMENT DISTRIBUTION
! LENGTH CORNER RADIUS = 89.1/360 * 2 * PI * 1.5 = 2.33
! CORNER RADIUS IS MODELLED BY 3 ELEMENTS, WIDTH 0.78
! THUS LENGTH 0.78 * 4 = 3

! FINE MESHED MIDDLE PART, CROSS-SECTION LINES, BENEATH LOAD BEARING
PLATE

! LINE 10 TO 18
LESIZE,10,10
LESIZE,11,5
LESIZE,12,,,3
LESIZE,13,5
LESIZE,14,10
LESIZE,15,5
LESIZE,16,,,3
LESIZE,17,2
LESIZE,18,4

! LINE 19 TO 27
LESIZE,19,10
LESIZE,20,5
LESIZE,21,,,3
LESIZE,22,5
LESIZE,23,10
LESIZE,24,5
LESIZE,25,,,3
LESIZE,26,2
LESIZE,27,4

!LONGITUDINAL LINES

! LINE 47 TO 56
LESIZE,47,10
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LESIZE,48,10
LESIZE,49,3
LESIZE,50,3
LESIZE,51,10
LESIZE,52,10
LESIZE,53,3
LESIZE,54,3
LESIZE,55,4
LESIZE,56,4

! ROUGH MESHED PARTS
! CROSS-SECTION, SAME AS OUTER PARTS

! LINE 1 TO 9
LESIZE,1,24
LESIZE,2,15
LESIZE,3,,,1
LESIZE,4,15
LESIZE,5,24
LESIZE,6,15
LESIZE,7,,,1
LESIZE,8,15
LESIZE,9,24

! LINE 28 TO 36
LESIZE,28,24
LESIZE,29,15
LESIZE,30,,,1
LESIZE,31,15
LESIZE,32,24
LESIZE,33,15
LESIZE,34,,,1
LESIZE,35,15
LESIZE,36,24

!LONGITUDINAL LINES

! LINE 37 TO 46
LESIZE,37,17
LESIZE,38,17
LESIZE,39,7
LESIZE,40,7
LESIZE,41,17
LESIZE,42,17
LESIZE,43,7
LESIZE,44,7
LESIZE,45,14
LESIZE,46,14

! LINE 57 TO 66
LESIZE,57,17
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LESIZE,58,17
LESIZE,59,7
LESIZE,60,7
LESIZE,61,17
LESIZE,62,17
LESIZE,63,7
LESIZE,64,7
LESIZE,65,14
LESIZE,66,14

! ELEMENT DATA

ET,1,SHELL43
KEYOPT,1,3,0 !(INCLUDE IN-PLANE EXTRA DISPLACEMENT SHAPES)
KEYOPT,1,4,0 !(NO USER SUBROUTINE TO DEFINE ELEMENT COORDINATE SYSTEM)
KEYOPT,1,5,1
KEYOPT,1,6,0 !(BASIC ELEMENT SOLUTION)

! STEEL PLATE THICKNESS = 0.68 (T-SERIES)

R,1,0.68

! MATERIALS, TEST PIECE 2-DW-B/C

MP,EX,1,210000
TB,MISO,1, ,8
TBPT,DEFI,0.001685,353.8947
TBPT,DEFI,0.031064,362.3426
TBPT,DEFI,0.050218,404.1098
TBPT,DEFI,0.075107,441.8740
TBPT,DEFI,0.101202,467.9757
TBPT,DEFI,0.150143,504.1821
TBPT,DEFI,0.200080,532.8928
TBPT,DEFI,0.250370,554.6708

! MESHING COMPRESSED ELEMENT

TYPE,1
MAT,1
REAL,1
ESYS,0

! MAPPED MESHING

ESHAPE,2

ASEL,S,AREA,,10
ASEL,A,AREA,,12
ASEL,A,AREA,,14
ASEL,A,AREA,,16
ASEL,A,AREA,,18
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AMESH,ALL
ASEL,ALL

! FREE MESHING

ESHAPE,0

ASEL,S,AREA,,11
ASEL,A,AREA,,13
ASEL,A,AREA,,15
ASEL,A,AREA,,17

ASEL,A,AREA,,1
ASEL,A,AREA,,2
ASEL,A,AREA,,3
ASEL,A,AREA,,4
ASEL,A,AREA,,5
ASEL,A,AREA,,6
ASEL,A,AREA,,7
ASEL,A,AREA,,8
ASEL,A,AREA,,9

ASEL,A,AREA,,19
ASEL,A,AREA,,20
ASEL,A,AREA,,21
ASEL,A,AREA,,22
ASEL,A,AREA,,23
ASEL,A,AREA,,24
ASEL,A,AREA,,25
ASEL,A,AREA,,26
ASEL,A,AREA,,27

AMESH,ALL
ASEL,ALL

! ONE SECTION PART TO MULTIPLY

L7=-1000
L8=-950

! THIS DATA HAS BEEN PRODUCED BY TURBO-PASCAL PROGRAM ANSYS2.PAS

K,71, 0.0000000000E+00, 0.0000000000E+00,L7
K,72, 5.8423378809E+01, 0.0000000000E+00,L7
K,73, 6.8423378809E+01, 0.0000000000E+00,L7
K,74, 6.9475675948E+01, 4.3104222166E-01,L7
K,75, 6.9923193757E+01, 1.4764390242E+00,L7
K,76, 7.0080266930E+01, 1.1475205349E+01,L7
K,77, 7.1296747720E+01, 8.8912408552E+01,L7
K,78, 7.1453820892E+01, 9.8911174877E+01,L7
K,79, 7.1901338702E+01, 9.9956571679E+01,L7
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K,710, 7.2953635841E+01, 1.0038761390E+02,L7
K,711, 8.2953635841E+01, 1.0038761390E+02,L7
K,712, 1.2077701465E+02, 1.0038761390E+02,L7

K,81, 0.0000000000E+00, 0.0000000000E+00,L8
K,82, 5.8423378809E+01, 0.0000000000E+00,L8
K,83, 6.8423378809E+01, 0.0000000000E+00,L8
K,84, 6.9475675948E+01, 4.3104222166E-01,L8
K,85, 6.9923193757E+01, 1.4764390242E+00,L8
K,86, 7.0080266930E+01, 1.1475205349E+01,L8
K,87, 7.1296747720E+01, 8.8912408552E+01,L8
K,88, 7.1453820892E+01, 9.8911174877E+01,L8
K,89, 7.1901338702E+01, 9.9956571679E+01,L8
K,810, 7.2953635841E+01, 1.0038761390E+02,L8
K,811, 8.2953635841E+01, 1.0038761390E+02,L8
K,812, 1.2077701465E+02, 1.0038761390E+02,L8

! LINE 67 TO 75

LSTR,71,72 ! 67
LSTR,72,73 ! 68
LARC,73,75,74 ! 69
LSTR,75,76 ! 70
LSTR,76,77 ! 71
LSTR,77,78 ! 72
LARC,78,710,79 ! 73
LSTR,710,711 ! 74
LSTR,711,712 ! 75

! LINE 76 TO 84
LSTR,81,82 ! 76
LSTR,82,83 ! 77
LARC,83,85,84 ! 78
LSTR,85,86 ! 79
LSTR,86,87 ! 80
LSTR,87,88 ! 81
LARC,88,810,89 ! 82
LSTR,810,811 ! 83
LSTR,811,812 ! 84

! LINE 85 TO 94
LSTR,71,81 ! 85
LSTR,72,82 ! 86
LSTR,73,83 ! 87
LSTR,75,85 ! 88
LSTR,76,86 ! 89
LSTR,77,87 ! 90
LSTR,78,88 ! 91
LSTR,710,810 ! 92
LSTR,711,811 ! 93
LSTR,712,812 ! 94
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AL,67,86,76,85 ! 28
AL,68,87,77,86 ! 29
AL,69,88,78,87 ! 30
AL,70,89,79,88 ! 31
AL,71,90,80,89 ! 32
AL,72,91,81,90 ! 33
AL,73,92,82,91 ! 34
AL,74,93,83,92 ! 35
AL,75,94,84,93 ! 36

! ELEMENT DISTRIBUTION ALONG LINES

! CROSS-SECTION LINES

! LINE 67 TO 75
LESIZE,67,24 ! MAIN MESH
LESIZE,68,15 ! AVERAGE
LESIZE,69,,,1 ! ONE ELEMENT FOR CORNER RADIUS, LENGTH 3 MM
LESIZE,70,15 ! AVERAGE
LESIZE,71,24 ! MAIN MESH
LESIZE,72,15 ! AVERAGE
LESIZE,73,,,1 ! ONE ELEMENT FOR CORNER RADIUS, LENGTH 3 MM
LESIZE,74,15 ! AVERAGE
LESIZE,75,24 ! MAIN MESH

! LINE 76 TO 84
LESIZE,76,24 ! ALL THE SAME AS ABOVE PRESENTED DATA
LESIZE,77,15
LESIZE,78,,,1
LESIZE,79,15
LESIZE,80,24
LESIZE,81,15
LESIZE,82,,,1
LESIZE,83,15
LESIZE,84,24

! LONGITUDINAL LINES

! LINE 85 TO 94
LESIZE,85,24 ! MAIN MESH
LESIZE,86,24
LESIZE,87,12 ! FOUR TIMES CORNER RADIUS LENGTH
LESIZE,88,12
LESIZE,89,24 ! MAIN MESH
LESIZE,90,24
LESIZE,91,12 ! FOUR TIMES CORNER RADIUS LENGTH
LESIZE,92,12
LESIZE,93,24 ! MAIN MESH
LESIZE,94,24
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! MESHING COMPRESSED ELEMENT

TYPE,1
MAT,1
REAL,1
ESYS,0

! MAPPED MESHING

ESHAPE,2

ASEL,S,AREA,,28
ASEL,A,AREA,,30
ASEL,A,AREA,,32
ASEL,A,AREA,,34
ASEL,A,AREA,,36

AMESH,ALL
ASEL,ALL

! FREE MESHING

ESHAPE,0

ASEL,S,AREA,,29
ASEL,A,AREA,,31
ASEL,A,AREA,,33
ASEL,A,AREA,,35

AMESH,ALL
ASEL,ALL

! GENERATING ADDITIONAL PARTS

AGEN,2,28,36,1,,,50,,0,0
AGEN,2,28,36,1,,,100,,0,0
AGEN,2,28,36,1,,,150,,0,0
AGEN,2,28,36,1,,,200,,0,0
AGEN,2,28,36,1,,,250,,0,0
AGEN,2,28,36,1,,,300,,0,0
AGEN,2,28,36,1,,,350,,0,0
AGEN,2,28,36,1,,,400,,0,0
AGEN,2,28,36,1,,,450,,0,0
AGEN,2,28,36,1,,,500,,0,0
AGEN,2,28,36,1,,,550,,0,0
AGEN,2,28,36,1,,,600,,0,0
AGEN,2,28,36,1,,,650,,0,0
AGEN,2,28,36,1,,,700,,0,0
AGEN,2,28,36,1,,,750,,0,0
AGEN,2,28,36,1,,,800,,0,0
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AGEN,2,28,36,1,,,1150,,0,0
AGEN,2,28,36,1,,,1200,,0,0
AGEN,2,28,36,1,,,1250,,0,0
AGEN,2,28,36,1,,,1300,,0,0
AGEN,2,28,36,1,,,1350,,0,0
AGEN,2,28,36,1,,,1400,,0,0
AGEN,2,28,36,1,,,1450,,0,0
AGEN,2,28,36,1,,,1500,,0,0
AGEN,2,28,36,1,,,1550,,0,0
AGEN,2,28,36,1,,,1600,,0,0
AGEN,2,28,36,1,,,1650,,0,0
AGEN,2,28,36,1,,,1700,,0,0
AGEN,2,28,36,1,,,1750,,0,0
AGEN,2,28,36,1,,,1800,,0,0
AGEN,2,28,36,1,,,1850,,0,0
AGEN,2,28,36,1,,,1900,,0,0
AGEN,2,28,36,1,,,1950,,0,0

! YIELD ALL NODES TOGETHER

NUMMRG,ALL

! BOUNDARY CONDITIONS

D,302,UZ,0

! SUPPORTS

C=68.42338

NSEL,S,LOC,Z,-900-0.1,-900+0.1
NSEL,R,LOC,X,-0.1,C+0.1
D,ALL,UY,0,,,,UX,ROTY,ROTZ
NSEL,ALL

NSEL,S,LOC,Z,900-0.1,900+0.1
NSEL,R,LOC,X,-0.1,C+0.1
D,ALL,UY,0,,,,UX,ROTY,ROTZ
NSEL,ALL

! SYMMETRY CONDITIONS

BB=1.2077701465E+02

NSEL,S,LOC,X,BB-0.1,BB+0.1
D,ALL,UX,0,,,,ROTZ,ROTY
NSEL,ALL
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! STRIPS PREVENTING SPREADING OF THE WEBS

M=10

NSEL,S,LOC,X,-0.1,C+0.1
NSEL,R,LOC,Z,-675-M,-675+M
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,X,-0.1,C+0.1
NSEL,R,LOC,Z,-450-M,-450+M
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,X,-0.1,C+0.1
NSEL,R,LOC,Z,-225-M,-225+M
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,X,-0.1,C+0.1
NSEL,R,LOC,Z,225-M,225+M
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,X,-0.1,C+0.1
NSEL,R,LOC,Z,450-M,450+M
D,ALL,UX,0
NSEL,ALL

NSEL,S,LOC,X,-0.1,C+0.1
NSEL,R,LOC,Z,675-M,675+M
D,ALL,UX,0
NSEL,ALL

! WEB CRIPPLING MEASUREMENT STRIP (WCMS)

NSEL,S,LOC,Z,-0.1,0.1
NSEL,R,LOC,X,0-0.1,C+0.1
D,ALL,UX,0,,,,ROTZ
NSEL,ALL

MODMSH,DETACH

! SUBSTRUCTURES

NSEL,S,LOC,Z,-1500,-200
ESLN,S,1
EDELE,ALL
NDELE,ALL
ALLSEL,ALL
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NSEL,S,LOC,Z,200,1500
ESLN,S,1
EDELE,ALL
NDELE,ALL
ALLSEL,ALL

ET,4,MATRIX50
TYPE,4
SE,t40genl

ET,4,MATRIX50
TYPE,4
SE,t40genr

! ELASTIC CALCULATION

!NSEL,S,LOC,Z,-50,50
!NSEL,R,LOC,X,72.95-0.1,72.95+0.1
!D,ALL,UY,-1
!NSEL,ALL

!ANTYPE,0
!NLGEOM,OFF
!SSTIF,OFF
!OUTRES,ALL,ALL
!TIME,1

! PARAMETERS CALCULATION

/SOLU

ANTYPE,0
NLGEOM,ON
SSTIF,ON

ARCLEN,ON,10,0.001
NSUBST,1000
ARCTRM,U,10,UY

NROPT,AUTO,,OFF

EQSLV,FRONT
OUTRES,ALL,3

! FORCES

V=12.899

! SUM = -249.469 FTEST = 3218

F,     753,FY,  -58.928*V
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F,     754,FY,  -6.8001*V
F,     755,FY,  -14.582*V
F,     756,FY,  -6.2869*V
F,     757,FY,  -8.7935*V
F,     758,FY,  -4.1374*V
F,     759,FY,  -4.9191*V
F,     760,FY,  -3.7102*V
F,     761,FY,  -3.1654*V
F,     762,FY,  -2.4758*V
F,     763,FY,  -2.2145*V
F,     764,FY,  -1.9513*V
F,     765,FY,  -1.7788*V
F,     766,FY,  -1.4736*V
F,     767,FY,  -1.4589*V
F,     768,FY,  -1.3364*V
F,     769,FY,  -1.1519*V
F,     770,FY,  -1.1799*V
F,     771,FY,  -1.4158*V
F,     772,FY,  -1.6199*V
F,     773,FY,  -1.8150*V
F,     774,FY,  -1.9024*V
F,     775,FY,  -2.3027*V
F,     776,FY,  -2.2289*V
F,     777,FY,  -3.0797*V
F,     778,FY,  -3.6234*V
F,     779,FY,  -4.9989*V
F,     780,FY,  -3.9068*V
F,     781,FY,  -9.2043*V
F,     782,FY,  -6.3672*V
F,     783,FY,  -14.752*V
F,     784,FY,  -7.1844*V
F,     785,FY,  -58.724*V

! SAVE & SOLVE

SAVE
SOLVE
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