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Chapter 1

Organic electronics, a general
introduction

ABSTRACT

Organic light-emitting diodes (OLEDs) are promising high-efficiency lighting
sources that are presently being introduced in a wide variety of applications.
These devices work as follows. Electrons and holes are injected in a stack of lay-
ers of organic molecular or polymeric semiconducting materials, in which they
are transported under the influence of an applied bias voltage and their mu-
tual Coulombic interactions either to the collecting electrode or to each other.
When electrons and holes meet, they recombine to form a bound electron-hole
pair (exciton) which can decay radiatively under the emission of a photon.
Due to the amorphous nature of the organic materials used, charge carriers are
transported by means of hopping between neighboring molecules or segments
of a polymer. The energy levels of the hopping ”sites” are often assumed to
be randomly distributed according to a Gaussian density of states (DOS). In
the last two decades the theoretical understanding of the transport of charge
carriers through this disordered energetic landscape of sites has grown substan-
tially. The further development of a predictive model describing all important
electronic processes in OLEDs, like, in addition to charge-carrier transport,
the injection of charge carriers, the recombination of electrons and holes, the
formation and motion of excitons and the luminescent decay of excitons, is of
profound importance to enhance the efficiency and lifetime of OLEDs.

In this chapter, certain aspects of OLEDs are introduced. First, an overview of
organic electronics in general and specifically OLEDs is given. Afterwards, the
effects of disorder on the charge-carrier transport and recombination in organic
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semiconductors are discussed. This chapter ends with a presentation of the
overview of the contents of this thesis.
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1.1 Organic electronics

It is often thought that all organic materials are electrically insulating. However, the first
organic material with conductive properties, polyaniline, was already found in the second
half of the 19th century.1–3 During the 1950s en 1960s, the study of conduction in polymers
intensified and in 1963 for the first time conductivities were found comparable with those
in inorganic materials, viz. in the polymer polypyrrole.4–6 In 1974 the first actual organic
device, a voltage-controlled switch, was built with the polymer melanin.7 Since the 1970s,
layers of organic photoconductors were used in xerographic devices, like printers, replacing
inorganic selenium and silicon layers.8 The area of organic electronics got a huge boost in
1977 by the work of A.J. Heeger, A.G. MacDiarmid, and H. Shirakawa,9 who discovered
that the conductivity of polyacetylene after doping with iodine increases by seven orders
in magnitude. For this and following work, and in general, as in the words of the Nobel
committee, for the discovery and development of electrically conductive polymers, they
obtained the Nobel prize in chemistry in 2000.10 Soon after their discovery other conductive
organic materials were found and the research field of organic electronics matured over the
years from a proof-of-principle phase into a major interdisciplinary research area, involving
physics, chemistry and other disciplines.

Organic materials have many benefits over inorganic materials:

• It is possible to process polymers from a solution via spin-coating or ink-jet printing,
whereas for the processing of inorganic materials expensive processing setups are
needed like high-vacuum clean chambers. As a result it becomes very easy to deposit
polymers over large areas and on top of different types of substrates, including thin
flexible substrates.

• Most conductive organic materials are relatively cheap to synthesize. Often, the
substrate on which the organic material is deposited is the cost-limiting factor.

• Organic materials are chemically tunable. For example, to change the color emitted
by an OLED, the organic material that causes the photon emission can be chemically
modified.

There are numerous electronic applications for organic materials. They are nowadays
used in a wide variety of devices like organic light-emitting diodes (OLEDs),11 organic
field-effect transistors (OFETs)12 and organic photovoltaic cells (OPCs).13 Examples of
devices containing OFETs are electronic paper, smart windows and cheap radio-frequency
identification (RFID) tags. Some of these devices are already commercially successful on
the market.
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Figure 1.1: A prototype OLED TV. Source: Philips.

1.2 Organic light-emitting diodes

In 1950 it was observed by Bernanose et al. for the first time that organic materials can show
electroluminescence.14–17 Specifically, the organic material used was the small-molecule dye
acridine orange. The authors attributed the electroluminescence to the direct excitation of
the dye molecules. Partridge observed in the 1980s that electroluminescence could also take
place in polymers.18–21 Tang and van Slyke built the first bi-layer organic diode, consisting
of separate electron and hole transporting layers.22 As a result, radiative recombination, the
process in which electrons and holes meet and annihilate each other under the emission of a
photon, took place in the middle of the device. In 1990, Burroughes et al. developed the first
high-efficiency green-emitting OLED, based on a poly(p-phenylene vinylene) derivative.11

A basic OLED consists of a single layer of organic material sandwiched between two elec-
trodes. Electrons are injected at the electron-injecting electrode (cathode) and collected at
the electron-collecting electrode (anode). A hole can be conceived of as a lacuna, missing
an electron, and is therefore positively charged. In general, holes are injected at the anode
and collected at the cathode. Both electrons and holes generally have to overcome an
energetic barrier when they are injected. This energetic barrier, which we call injection
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Figure 1.2: Working principle of a single-layer OLED. Electrons (denoted by red circles with
a minus sign) are injected at the cathode. Holes (denoted by green circles with a
plus sign) are injected at the anode. Both electrons and holes move to the opposite
electrodes. Whenever an electron and a hole meet, they recombine and a photon
can be emitted.

barrier, is the result of a misalignment between the Fermi level of the electrode and the
energy level at which electrons or holes are injected into the organic material. Under the
influence of the driving potential applied over the device, the electrons are transported to
the anode and the holes to the cathode. When the electrons and holes meet each other,
recombination takes place and light is emitted. Often, a transparent material, for example
indium tin oxide (ITO), is chosen for one of the electrodes, such that the light can leave
the device.

Nowadays, OLEDs consist of multiple layers of organic compounds, each with its own
function. There are layers functioning as electron/hole transporting layers, electron/hole
blocking layers, electron/hole injection layers, and emission layers. With these layers the
transport of charges and the precise location of the recombination processes can be regu-
lated. By adding specific dye molecules to the emission layers the frequency of the emitted
light can be optimized to the value that is needed. By combining several emission layers
with dye molecules it is even possible to manufacture an OLED that can emit white light.

OLEDs have the potential to become commercially successful, but improvement of their
efficiency and stability is still needed. Compared to inorganic LEDs, OLEDs still have a
shorter lifetime. The operational lifetime of a device is often defined as the total time that a
device can be used before the intensity of the emitted light has dropped by 50%. The state-
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of-the-art white OLEDs nowadays have a lifetime of around 10,000 hours, which is around
8 years if operated at 3 hours per day. OLEDs also still have a lower luminous efficacy as
compared to state-of-the-art inorganic devices. State-of-the art white OLEDs have been
made in laboratoria that have a luminous efficacy of 100 lm/W, a value that is six times as
large as incandescent lighting devices. On the other hand, state-of-the art inorganic LEDs
exist that have a (laboratorium) luminous efficacy of around 200 lm/W. Increasing the
efficiency of OLEDs is important for two reasons. Obviously, less electrical power is used.
However, when the device needs less electrical power, it is also less electrically stressed,
which in turn is beneficial for the lifetime of the device.

1.3 Conduction in organic materials

We usually distinguish two groups of organic materials, polymers and small-molecule ma-
terials. Polymers are chain-like molecules with a long carbon backbone. This carbon
backbone can be either linear or branched. Apart from hydrogen atoms, different (func-
tional) side groups can be attached to each individual carbon atom of this backbone.
Small-molecule materials are materials consisting of molecules with a much lower molecu-
lar weight than polymers. Examples are small oligomers, like pentacene, which are bound
by van der Waals bonds, and organometallic complexes, which are ionically bonded. These
molecules have the tendency to stack in a more ordered fashion than polymers.

Most conductive organic materials are conjugated. In general, this means that alternat-
ing single and double carbon bonds are present. In non-conjugated materials, like poly-
ethylene, all four electrons in the outer shell of the carbon atoms occupy hybridized sp3-
orbitals, leading to a strong σ-bonding between the carbon atoms. In conjugated materials,
only three electrons in the outer shell of the carbon atoms occupy hybridized sp2-orbitals
in the plane of the backbone and contribute to the single σ-bonding of the carbon atoms.
The fourth electron is located in a pz-orbital pointing out of the plane of the backbone.
The pz-orbitals of neighboring carbon atoms overlap with each other and form a π-bond,
which is weaker than the σ-bonds. The combination of a σ- and π-bond leads to a double
carbon bond. The electrons belonging to π-orbitals formed by the overlapping pz-orbitals
are delocalized over the whole conjugated part of the molecule. The formation of a sys-
tem of π-bonds via the overlap of pz-orbitals is called π-conjugation. Molecules with an
alternating series of primarily single and double carbon bonds in the carbon backbone are
not the only molecules in which conjugation occurs. π-conjugation can also occur with
interruption of the carbon backbone by a single nitrogen or sulfur atom.

The total set of occupied molecular π-orbitals can be compared to the states in the valence
band of inorganic materials, while the set of unoccupied molecular π orbitals, or π∗-orbitals,
can be compared to states in the conduction band of inorganic materials. The occupied
molecular orbital with the highest energy is called the Highest Occupied Molecular Orbital
(HOMO), whereas the unoccupied molecular orbital with the lowest energy is called the
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Lowest Unoccupied Molecular Orbital (LUMO). The band gap between the HOMO and
LUMO energy is typically a few eV large, which explains the semiconducting nature of the
organic material.

On a microscopic scale a thin film of a conjugated organic material often looks amorphous.
The material can be disordered due to the irregular packing of the molecules. Polymers
have twists, kinks, and defects. Moreover, the functional side groups that are attached to
the carbon backbone can vibrate and rotate over time. All these effects lead to the split-
up of the π-conjugated system of overlapping pz-orbitals into separate electronic states
localized at specific sites, extending over a few molecular units. Transport of charges takes
place via a hopping process in between those sites. This process will be explained in the
following two sections.

1.4 Energetic disorder

We call the HOMO and LUMO energies electron and hole site energies, respectively. Dif-
ferent sites in conjugated organic materials have different electron and hole site energies
depending on the inter- and intra-molecular interactions. This implies an energetic disor-
der. The randomness in the positions of the sites leads to a so-called positional disorder.
The distribution of site energies is called a density of states (DOS). Often, the DOS, g(E),
in organic materials is assumed to be Gaussian:

g(E) =
Nt√
2πσ

exp

[
− E2

2σ2

]
, (1.1)

with E the site energy, σ the standard deviation of the DOS, and Nt the density of sites.
In the case of small molecule materials the assumption of a Gaussian distribution can be
justified with the Central Limit Theorem, which states that the addition of many random
numbers leads to a Gaussian distribution. For polymers, the experimentally obtained
distribution in general does not have to be Gaussian. For example, Blom et al. successfully
modeled the hole mobility in a poly(p-phenylenevinylene) (PPV) device by assuming an
exponential DOS and the electron mobility in the same material by assuming a Gaussian
DOS plus a smaller extra exponential DOS.23 The precise form of the DOS is still a major
point of uncertainty in the modeling of the mobility. In this thesis we always assume the
DOS to be Gaussian. Typically, the standard deviation σ, which we call disorder strength,
is 50 − 150 meV. In the rest of the thesis we will look at regular lattices of sites with a
lattice constant a. In that case the density of sites is Nt = a−3 and there is no positional
disorder.

In this thesis we consider the site energies to be either spatially uncorrelated or correlated.
In the case of uncorrelated disorder, we distribute the site energies at each site randomly
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Figure 1.3: Schematic representations of disordered site energies (E) in the case of different
kinds of correlations. The site energies are distributed according to a Gaussian DOS
with a width σ. The representation at the left corresponds to spatially uncorrelated
disorder and that at the right to spatially correlated disorder.

according to Eq. (1.1). In the case of correlated disorder, we take the site energies Ei,
with site i = {ix, iy, iz} a three-dimensional vector, to be equal to the electrostatic energy
resulting from random dipoles of equal magnitude d but random orientation at all other
sites j ̸= i. The resulting density of states is Gaussian, with a width σ proportional to
d.24–26 The dimensionless correlation function C(r) between the site energies is defined by

C(r = |Rij|) ≡
⟨EiEj⟩
σ2

, (1.2)

in which ⟨...⟩ denotes an ensemble average over different random configurations of the
dipole orientations. Numerical studies show that the correlation function is at an inter-site
distance r = a equal to C(r = a) ≈ 0.7, at r = 2a equal to C(r = 2a) ≈ 0.35, and for
larger inter-site distances equal to C(r = |Rij|) ≈ 0.74a/|Rij|.27

We note that thermally induced torsions of polymer chains28 have also been proposed as
the origin of spatial correlations between site energies in polymers. However, in this thesis
we will limit ourselves to the above widely used dipole model as the origin of correlations.

1.5 Hopping transport

As discussed in the previous section, due to the structural disorder of the organic material
charge carriers are located on localized sites. Therefore, transport of charges does not occur
via band conduction, but takes place by the hopping of charge carriers from one site to
another. The rate of hopping of a charge carrier between two sites depends on the overlap
of the electronic wave functions of these two sites, which allows tunneling from one site to
another. Whenever a charge carrier hops to a site with a higher (lower) site energy than
the site that it came from, the difference in energy is accommodated for by the absorption
(emission) of a phonon. The mechanism of phonon-assisted tunneling or ”hopping” has
been proposed by Mott and Conwell to explain DC conduction properties of inorganic
semiconductors.29–31 Nowadays this mechanism is also used to describe the conductivity in
a wide variety of organic materials. In this thesis we make use of the hopping formalism
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of Miller and Abrahams.32 The rate of hopping of a charge carrier from site i = {ix, iy, iz}
to site j = {jx, jy, jz}, Wij, is then given by

Wij = ν0 exp

[
−2α|Rij| −

Ej − Ei − eFRij,x

kBT

]
, Ej ≥ Ei + eFRij,x, (1.3)

Wij = ν0 exp [−2α|Rij|] , Ej < Ei + eFRij,x,

with ν0 the attempt-to-jump frequency, α the inverse of the wave function decay length,
|Rij| ≡ a|i − j| the distance between site i and j, kB the Boltzmann constant, T the
temperature, and eFRij,x ≡ eFa(jx − ix) a contribution due to an applied field that is
directed along the x-axis. The factor exp [−2α|Rij|] is the tunneling probability between

sites with equal energy. The factor exp
[
−Ej−Ei−eFRij,x

kBT

]
is a Boltzmann penalty for a

charge hopping upwards in energy. This penalty is absent when a charge hops downwards
in energy. The prefactor ν0 is an attempt frequency that is of the order of a phonon
frequency.

From Eq. (1.3) it becomes clear that the hopping transport depends on several factors.
The energetic disorder and electric field play an important role. Charge carriers preferably
hop to sites with a lower site energy. By increasing the temperature the Boltzmann penalty
for hops upwards in energy becomes less strong. Furthermore, there is a trade-off between
hops over a long distance to energetically favorable sites and hops over a short distance to
energetically less favorable sites, leading to the phenomenon of variable-range hopping.30

We suppose that a site can only be occupied by one charge carrier due to the high Coulomb
penalty for the occupation of a site by two charges. When charge carriers are given enough
time, they will generally move to those sites with the lowest energies. Once this has
happened, we say that the system is in equilibrium (in the absence of a net current) or in
steady-state (when a net current flows through the system). In equilibrium, the density of
occupied states (DOOS), n(E), is given by

n(E) = g(E)
1

1 + exp (E − EF)/kBT
, (1.4)

with EF the Fermi energy. The lower-energy tail of the DOS is now filled by the charge
carriers. When the density of charge carriers in the device is low, charge carriers are
hopping from a relatively low Fermi level to neighboring sites with site-energies which
are on average much higher than the Fermi level. However, when the density of charge
carriers in the device is high, the difference between the Fermi level and the site-energies
of the neighboring sites will be on average small, due to the state-filling effects. At a fixed
potential gradient, this leads to a higher current in the device.

It should be noted that the Miller-Abrahams hopping formalism is not the only hopping
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formalism that can be found in the literature. When a charge carrier is placed in a solid,
the atoms surrounding this charge carrier will be displaced and its energy will be effectively
lowered. As a result, the charge carrier can be thought of as being positioned in a potential
well caused by its own presence. The combination of the charge carrier and the polarization
due to the displacement of the atoms is called a polaron. When these polaronic effects are
important, one should use the Marcus hopping formalism.33–35 The rate of hopping of a
charge carrier from site i = {ix, iy, iz} to site j = {jx, jy, jz} is then given by

WMarcus,ij = ν0

√
π

4EakBT
exp

[
−2α|Rij| −

Ea

kBT
− ∆Eij

2kBT
− (∆Eij)

2

16EakBT

]
(1.5)

with ∆Eij = Ej − Ei − eFRij,x the site-energy difference between sites j and i and Ea the
polaron activation energy. If σ ≪ Ea, the quadratic energy term in the exponent can be
neglected. This approximation is justified in most disordered organic materials.36

1.6 Models for charge transport in bulk systems

When an electric field is applied in an organic material, charge carriers will start to drift
along this field. Due to the energetic disorder the speed at which the charge carriers move
in the direction along the electric field is far from uniform. At a given moment in time,
some charges will hop to sites that have a considerably lower energy than the surrounding
sites, and will remain trapped for a relatively long time. Other charges hop along a path
of energetically favorable sites and will therefore move relatively quickly. We are therefore
interested in the average speed of the charge carriers, ⟨v⟩, which we also call drift velocity.
By dividing the drift velocity by the applied electric field, F , we obtain the carrier mobility,
µ,

µ =
⟨v(F )⟩

F
. (1.6)

The mobility can be calculated by various three-dimensional simulation approaches, like
Master-Equation calculations and Monte-Carlo simulations. These simulation approaches
will be explained in detail in the next chapter.

Monte-Carlo (MC) simulations of the hopping transport of a single carrier in a regular lat-
tice of sites with site energies distributed according to an uncorrelated Gaussian DOS were
performed by Bässler et al.37,38 These simulations showed a non-Arrhenius temperature
dependence of the mobility
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µ(F = 0) = µ0 exp

[
−
(
2

3
σ̂

)2
]
, (1.7)

with µ0 a constant mobility prefactor that is equal to the carrier mobility when no ener-
getic disorder is present, and σ̂ = σ/(kBT ) the dimensionless disorder strength. For the
dependence on the electric field a Poole-Frenkel behavior was found:

µGDM = µ(F = 0) exp
[
C(σ̂2 − 2.25)

√
F
]

(1.8)

with C a prefactor of order unity. We will call this mobility function the Gaussian Disorder
Model (GDM). We note that the effects of positional disorder were also investigated by
Bässler et al. The result Eq. (1.8) is valid for the case of small positional disorder. We also
note that the electric-field dependence Eq. (1.8) was found to be valid in a rather limited
range of electric fields.

Experimental data obtained from time-of-flight measurements show a Poole-Frenkel behav-
ior on a much broader field range than the GDM. Gartstein and Conwell pointed out that
a spatially correlated potential for the charge carriers can better explain the experimental
data.39 This led to the Correlated Disorder Model (CDM), a model that agrees with the
experimentally observed Poole-Frenkel behavior for a larger range of electric field strengths
than the GDM:

µCDM = µ0 exp

[
−
(
3

5
σ̂

)2

+ 0.78(σ̂3/2 − 2)

√
eaF

σ

]
. (1.9)

The calculations for the GDM and CDM were performed in the limit of small charge carrier
densities. As we have argued in Section 1.5, transport properties are changed considerably
by the state-filling effect when the charge carrier density is increased. For organic field-
effect transistors (OFETs), in which the charge carrier density is much higher than in
OLEDs, it was already known that the mobility has a strong dependence on the charge
carrier density.40 A strong dependence of the mobility on the carrier density was also found
in disordered inorganic semiconductors.41 For the case of a Gaussian DOS with σ ≥ 2kBT
and very low carrier densities, the density of occupied states (DOOS) is approximately
Gaussian, with the average of the DOOS equal to −σ2/(kBT ). In this regime, the carriers
are effectively independent from each other and hence the mobility is independent of the
carrier density. For very high carrier densities, the addition of extra charges leads to the
filling of the DOS to higher energies. As explained in the previous section, this results in
hops over a smaller energy difference. The transition from one regime to the other, occurs
at the cross-over concentration ccross−over = (1/2) × exp[−σ̂2/2].42 Schmechel argued that
the resulting enhancement of the mobility in a Gaussian DOS could explain the mobility
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in disordered doped injection layers used in OLEDs, in which the carrier concentrations
are very high.43

Recently, Pasveer et al.44 have shown that the effects of state-filling on the mobility can
described very well with an extension of the GDM, taking the density dependence into
account, which led to the Extended Gaussian Disorder Model (EGDM). By numerically
solving a master equation for the site occupational probabilities, the temperature, field,
and hole-density, nh, dependence of the mobility were studied. This study gave a good
quantitative explanation for the concentration dependence of the hole mobility that was
found experimentally by Tanase et al.45 for hole-only devices based on a semiconducting
polymer poly(p-phenylenevinylene) (PPV) derivative. The density dependence of the mo-
bility was found to be much more important than the electric-field dependence in this
experimental study. A similar extension of the CDM was made, leading to the Extended
Correlated Disorder Model (ECDM).46 Also in the ECDM, the mobility is dependent on
the temperature, the charge carrier density, and the electric field strength.

1.7 Percolation and the three-dimensional structure

of charge transport

Percolation is the probabilistic model describing the probability that percolating pathways
are formed. What is meant by a percolating pathway depends on the system that is studied.
The concept of percolation was first proposed in 1957 by Broadbent and Hammersley.47

Percolation has been used to describe the temperature dependence of the DC conductivity
in organic materials.48–50 Percolation arguments lead to the conclusion that the conduc-
tivity predominantly depends on the hopping between a single pair of sites. This pair of
sites is called the critical bond. We now give a short description of how to determine this
critical bond and how it influences the conductivity.

We assume for simplicity a regular lattice with the site energies distributed according to
a Gaussian DOS. Provided that there is only a small electric field and that the thermal
energy is small compared to the disorder strength, the conductance between two sites is
given by50

Gij = G0 exp [−sij] , (1.10)

with G0 a conductance prefactor and sij given by

sij = 2α|Rij|+
|Ei − EF|+ |Ej − EF|+ |Ei − Ej|

2kBT
. (1.11)

The conductivity is determined by the critical bond with the critical conductance Gc,
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defined by the condition that removal of all Gij < Gc still gives a path through the entire
lattice. This path is called a percolating pathway. The critical conductance is given by Gc =
G0 exp [−sc]. The value of sc is called the (bond) percolation threshold. The bonds with
bond conductance Gij > Gc contribute to the current while bonds with bond conductance
Gij < Gc are bypassed by the current. The mobility is then given by

µ ≈ σc

en
≈ Gca

en
(1.12)

with σc = Gca the critical conductivity. The second equality only holds in the case of
nearest-neighbor hopping. Generalization to finite electric fields and non-homogeneous
situations (e.g. with spatially varying densities and fields) changes Eqs. (1.10) and (1.11)
but concepts like critical bonds and percolating pathways still hold.

We conclude that conduction through disordered organic occurs by charges that move pref-
erentially over three-dimensional percolating pathways across critical bonds. The current
is strongly concentrated around these pathways, which results in the occurrence of so-called
current filaments. The resulting strongly inhomogeneous character of the charge transport
raises the question whether in the modeling of a realistic device the three-dimensional
nature of the charge transport can be mapped onto a one-dimensional description with a
small set of parameters. For charge transport in a homogeneous bulk system with uncor-
related or correlated Gaussian disorder the EGDM and ECDM give a good description of
the mobility as a function of the temperature, electric field, and charge carrier density,
with a relatively small set of parameters. However, it is not a priori clear that this is also
the case for realistic devices in which the density and electric field may show significant
gradients, especially near the electrodes.

1.8 Recombination

Electrons and holes in an OLED move to each other under the influence of an external
electric field and their mutual attractive Coulombic interactions. When the distance be-
tween an electron and a hole is smaller than the capture radius, rc, a Coulombically bonded
pair will be formed. The capture radius is the distance at which the Coulomb interaction
energy becomes equal to the thermal energy kBT and is given by rc = e2/(4πϵrϵ0kBT ),
where ϵr is the relative dielectric constant of the organic material. Once the electron and
hole have formed such a bonded pair it is very probable that they will recombine. When
both the electron and hole are on the same site, an on-site exciton is formed. This on-site
exciton can decay to the ground state, which leads to the recombination of the electron
and the hole and to the emission of a photon, if the recombination is radiative.

Already in 1903, Langevin gave an expression for the total number of recombination events
per second and per volume unit in an ionic gas system.51 We call this quantity recombi-
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nation rate, R. Since then the expression for the recombination rate has been successfully
applied for numerous systems, including devices. The expression is given by

RLan =
e(µe + µh)

ϵrϵ0
nenh ≡ γLannenh, (1.13)

with µe and µh the electron and hole mobility, respectively, ne and nh the electron and
hole density, respectively, and γLan the Langevin bimolecular recombination rate factor.

One of the underlying assumptions in the derivation of this expression is that the mean free
path of the charge carriers λ is much smaller than the thermal capture radius. In previous
sections we already saw that the transport of charges takes place by hopping between
sites. The mean free path is thus of the order of the inter-site distance a ≈ 1-2 nm. At
room temperature and with a relative dielectric constant ϵr ≈ 3, a value typical for organic
semiconductors, the thermal capture radius is rc ≈ 18.5 nm. Hence, the assumption λ ≪ rc
is valid.

Another assumption made in deriving Eq. (1.13) is that charge-carrier transport occurs
homogeneously throughout the semiconductor. As we have seen in the previous section,
the charge transport in disordered organic media is inhomogeneous, with percolating path-
ways along which most of the charges are transported. This raises the question whether
Eq. (1.13) is still valid under such conditions.

Another issue that plays a role in this context is the possible correlation between the on-
site energies of holes and electrons. In the case of correlation between on-site electron
and hole energies electrons and holes may prefer to be located at the same sites. As
a result, the current filaments of the electrons and holes overlap. In the case of anti-
correlation between on-site electron and hole energies, sites with an energy favorable for
electrons are unfavorable for holes and vice versa. In that case, the current filaments of the
electrons avoid the current filaments of the holes. One would intuitively expect a larger
recombination rate in the case of correlated energies than in the case of anti-correlated
energies. Correlation between electron and hole energies can occur when the energetic
disorder is caused by fluctuations in the local polarizability of the semiconductor or by
differences in the length of conjugated segments. Anti-correlation between electron and
hole energies can occur when the disorder is caused by fluctuations in the local electrostatic
potential.

1.9 From three-dimensional modeling calculations and

simulations to a predictive OLED model

The development of a complete and predictive ab initio OLED model consists of many
different steps.
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1. First, the microscopic nature of the organic material should be studied. Information
about, for example, the packing of the molecules, the disorder (energetic and posi-
tional), the correlation between HOMO and LUMO levels, the energetic correlation,
and the lattice of sites can be obtained by means of Molecular Dynamics simulations.
By means of Density Functional Theory the transfer integrals, and from those the
hopping rates between sites, can be calculated.

2. Second, the information obtained from the first step can be used as an input for the
calculations of the three-dimensional current distribution in the presence of a uniform
field and carrier concentration. This current distribution can be obtained by means
of Master-Equation calculations or Monte-Carlo simulations. This distribution is
inhomogeneous, because of the percolating nature of the charge-carrier transport.
The resulting mobility reflects the complete microstructure of the material and the
inhomogeneous current distribution.

3. Third, to be applicable in industry and other research groups, the mobility obtained
in this way should be cast in a mobility function with as few model parameters as
possible, which can then be used in one-dimensional drift-diffusion calculations. This
can be done by means of theoretical percolation arguments, an approach which was
for example used in the development of the EGDM.44 As we will see in the following
steps, the translation from results obtained with three-dimensional computer sim-
ulations to parameterizations that can be used in one-dimensional calculations is a
common theme in this theses.

4. The fourth step is the calculation of the current in a single-carrier single-layer de-
vice. Electrodes are introduced and the interaction of charges with those electrodes
by means of image-charges. The effect of space-charge is taken into account. Results
for the current obtained from one-dimensional drift-diffusion calculations with a pa-
rameterized mobility function can be compared with three-dimensional simulations.

5. The fifth step is the calculation of the electronic processes in a single-layer double-
carrier OLED. The drift-diffusion equation is solved for electrons and holes. Re-
combination of electrons and holes is taken into account by means of a position-
dependent recombination rate. The results for the current and the recombination
profile obtained from the one-dimensional modeling can again be compared with
three-dimensional simulations. In this way models for the recombination rate can be
tested.

6. The sixth step consists of generalizing the fifth step to a situation with multiple
organic layers, with appropriate boundary conditions for the carrier densities and
the electric field at the organic-organic interfaces. In a comparison with three-
dimensional simulations models for the organic-organic boundary conditions can be
tested.
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7. In a seventh step exciton transport should be studied. Excitons are allowed to diffuse,
to decay radiatively or non-radiatively.

8. The eighth and final step is the calculation of the light-outcoupling by solving the
Maxwell equations.

By following all these steps a predictive one-dimensional OLED model is obtained, which
gives the current and the output of light as a function of the applied voltage.

In this thesis we will study the mobility including Coulomb interactions between the charges
in the presence of a uniform field and carrier concentration (second step). We will also
study the current in single-carrier single-layer devices (fourth step). Furthermore, we study
the radiative recombination of electrons and holes in a homogeneous bulk system in order
to construct a position-dependent recombination rate (part of fifth step).

We make a simplification by skipping over the first step. Because there is at present prac-
tically no information available about the microstructure of OLED materials, we assume
the sites to be ordered in a regular lattice. We do not expect that this simplification has
a strong influence on charge transport properties. We expect that this simplification does
have an influence on charge injection from electrodes and on the current across organic-
organic interfaces, where charge densities occur that can vary by a large amount on the
scale of a lattice constant. In such cases, we expect that the precise microstructure becomes
important.

1.10 Scope of this thesis

In this thesis the three-dimensional character of charge transport and recombination in
OLEDs is studied by means of two different simulation approaches: the Master-Equation
(ME) approach and the Monte-Carlo (MC) approach. In the ME approach, the steady-
state situation of a device is calculated by iteratively solving the master equation, which
is an equation for the time-averaged occupational probabilities of the sites. In the MC
approach, the hopping of the actual charges is simulated. Both approaches will be described
in Chapter 2.

The EGDM and ECDM are based on results from ME calculations assuming a Gaussian
DOS. As the master equation is an equation for the time-averaged occupational proba-
bilities, the effects of Coulomb interactions cannot be taken into account in a consistent
manner. In Chapter 3 mobilities corresponding to the EGDM and ECDM as calculated
by MC simulations are presented, in which Coulomb interactions can be taken into account.
For low carrier densities the mobilities as obtained from MC calculations with and without
taking into account Coulomb interactions agree quite well. The same is true in the case
of high carrier densities and high electric fields. For high carrier densities and low electric
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field, taking into account Coulomb interactions leads to a lower mobility. In this regime
charges can be thought of as being trapped in the potential well formed by the Coulomb
potential of the surrounding charges.

A modeling study of a single-carrier single-layer device is presented in Chapter 4. The
calculations are based on the ME approach assuming an uncorrelated Gaussian DOS. The
effects of space charge, the interaction of charges with the electrodes in the form of an image
charge potential, and an injection barrier are taken into account. For low injection barriers,
the current is almost independent of the injection barrier. In this regime, the injection is
predominantly limited by the space charge in the devices, therefore we call this regime
space-charge-limited. When the injection barrier increases the device enters the injection-
limited regime in which the injection is predominantly limited by the injection barrier itself.
The simulation model treats the space-charge-limited-current regime, the injection-limited-
current regime and the transition between those two regimes. The results are compared
with a one-dimensional continuum drift-diffusion model based on the EGDM. In this drift-
diffusion model the effective lowering of the injection barrier by the image potential is
taken into account. Furthermore, it is shown that the three-dimensional current density
can be highly filamentary for voltages, device thicknesses, and disorder strengths that are
realistic for organic light-emitting diodes. It is shown that for devices with a high injection
barrier and a high disorder strength the current filaments become one-dimensional. In this
regime a good agreement is obtained with a model assuming injection and transport over
one-dimensional pathways.

In the modeling study described in Chapter 4 Coulomb interactions are taken into account
in a layer-averaged way, by solving a one-dimensional Poisson equation with the appropriate
boundary conditions, while the interaction of a charge with its image charge is taken
into account explicitly. This approach cannot be fully consistent, since the interactions
with image charges are also included via the boundary conditions in the one-dimensional
Poisson equation for the space charge, albeit in a layer-averaged way. This leads to a
double-counting problem that cannot be solved within the ME approach. This double-
counting problem can be avoided in the MC approach. In Chapter 5 a MC modeling
study of single-carrier single-layer devices is presented in which the Coulombic interactions
are taken into account in an explicit way, including the Coulomb interactions of charges
with the image charges of other charges. Both a correlated as well as an uncorrelated
Gaussian DOS is considered. It is shown that in the case of uncorrelated disorder and
for injection barriers higher than 0.3 eV, the current-voltage characteristics from the MC
simulations can be nicely described by a one-dimensional drift-diffusion model. However,
for injection barriers lower than 0.3 eV, the current is significantly decreased when Coulomb
interactions are taken into account explicitly.

The recombination rate is traditionally described by the Langevin formula, with the sum
of the electron and hole mobilities as a proportionality factor. The underlying assumption
for this formula is that charge transport occurs homogeneously. As is shown in Chapters
3 and 4 the current in disordered organic media is far from homogeneous. In Chapter 6
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it is shown that the Langevin formula is still valid in disordered organic media, provided
that a change of the charge carrier mobilities due to the presence of the charge carriers
of the opposite type is taken into account. For a finite electric field, deviations from the
Langevin formula are found, but these deviations are small in the field regime relevant for
OLED modeling.

As a step beyond steady-state three-dimensional modeling, we also had a look at the
relaxational properties of charge transport in disordered organic media. The results are
shown in Chapter 7. When a charge is injected in the organic medium, the current is
immediately after the injection event somewhat higher than the steady-state current. It
takes time before the charge is relaxed in the Gaussian DOS. Results of both the relaxation
of the current as well as the energy of the visited sites are shown.

In Chapter 8 conclusions and an outlook are presented.
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Chapter 2

Computational methods for device
calculations

ABSTRACT

For the three-dimensional device modeling, we make use of two different model-
ing approaches: the Master-Equation approach and the Monte-Carlo approach.
The master equation describes the steady-state occupational probabilities of
sites in terms of the Pauli master equation. This equation is solvable by means
of an iterative scheme, after which relevant quantities like the mobility and
current are obtained. The Master-Equation model has two disadvantages. The
model only describes occupational probabilities and therefore it is not possible
to treat Coulomb interactions in a consistent manner. Moreover, correlations
in occupational probabilities are neglected. These two disadvantages can be
overcome by using a Monte-Carlo model, in which the motion of the actual
charges are simulated.

In this chapter, both simulation methods are presented for the case of charge-
carrier transport in a single-carrier homogeneous bulk system made of an or-
ganic semiconducting material.
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2.1 Master-Equation approach

The master equation is a differential equation describing the time evolution for the oc-
cupational probability of a site.1 The occupational probability of a site is defined as the
probability that a site is occupied by a charge. The master equation is given by:

dpi
dt

= −
∑
j̸=i

[Wijpi(1− pj)−Wjipj(1− pi)] , (2.1)

with pi the occupational probability of site i and Wij the rate for the transition from site i
to site j. The factors 1− pj account, in a mean field approximation, for the fact that a site
can only be occupied by one charge, due to the high Coulomb penalty for the presence of
two charges on one site. The sum is over all sites j ”neighboring” with site i. A site j is
”neighboring” site i when the distance between the two sites is smaller than the maximum
hopping distance. When the lattice is simple cubic, the maximum hopping distance is a
(nearest-neighbor hopping, which means hopping to the nearest 6 neighbors),

√
2a (next-

nearest-neighbor hopping, which means hopping to the nearest 18 neighbors) or
√
3a (2nd-

next-nearest-neighbor hopping, which means hopping to the nearest 26 neighbors). In this
thesis we always assume a maximum hopping distance of

√
3a, which is sufficient for the

cases we will consider.

We are interested in the steady-state situation of the system. In this situation, dpi/dt = 0
for every site i. Then

0 =
∑
j̸=i

[Wijpi(1− pj)−Wjipj(1− pi)] . (2.2)

The particle current Jij between two neighboring sites i and j is given by

Jij = Wijpi(1− pj). (2.3)

When the system of equations given by Eq. 2.2 is solved, we obtain the total current
density, J , by summing the particle current over all pairs of sites ij in the direction of the
electric field. Assuming that the electric field is directed in the x-direction, the current
density is then given by

J =
e

a3N

∑
i,j

Wijpi(1− pj)Rij,x (2.4)

with N the total number of sites in the simulation box and Rij,x ≡ a(jx − ix) the hopping
distance in the x-direction.



2.2 Solving the steady-state master equation for a homogeneous bulk system23

The mobility is given by:

µ =
J

enF
=

1

a3nFN

∑
{i,j}

Wijpi(1− pj)Rij,x (2.5)

with n the charge carrier density and F the electric field strength.

2.2 Solving the steady-state master equation for a ho-

mogeneous bulk system

In this subsection we present an algorithm for solving the steady-state master equation
(Eq. 2.2) for a homogeneous single-carrier bulk system with an applied field F . The one-
dimensional steady-state master equation can be solved analytically in an exact way, as
has been shown by Derrida.2 For the situation of two and three dimensions this equation
has to be solved numerically.

In our calculations we make use of a regular periodic three-dimensional simple-cubic
lattice of sites. We assume that the lattice constant is equal to a and that the lat-
tice is periodic with periodicity Lx, Ly, and Lz in the x-,y-, and z-direction, respec-
tively. The sites i are then positioned on {x, y, z} = a{ix, iy, iz} with ix ∈ 0, Lx − 1,iy ∈
0, Ly − 1, and iz ∈ 0, Lz − 1. Due to the periodicity property, a site inon−periodic =
nxLx + ix, nyLy + iy, nzLz + iz with arbitrary integers nx, ny, and nz is then the same
site as iperiodic = ix, iy, iz. By making use of a periodic lattice, one does not have to care
about the boundary of this lattice.

The approach that we follow is the one developed by Yu et al.3,4 By algebraically solving
Eq. 2.2 for pi we get

pi =

∑
j ̸=i Wjipj∑

j̸=i [Wij(1− pj) +Wjipj]
. (2.6)

In the following iteration scheme, we define p
(n)
i to be the solution for pi of Eq. 2.6 in the

n-th iteration. The initial value for the pi’s is given by p
(0)
i Using Eq. 2.6 we make use of

the following iteration scheme:

1. Define for every site a random contribution, Erand,i, to the site-energy Ei drawn from
a normalized Gaussian DOS with a standard deviation σ. The random site-energy
contributions are the HOMO and LUMO levels of the material in the case of electron
and hole transport, respectively.
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2. Start with initial values for the p
(0)
i . A reasonably good choice for the initial value is

given by assuming the p
(0)
i to be distributed according to a Fermi-Dirac distribution:

p
(0)
i =

1

exp(Ei−EF

kBT
) + 1

, (2.7)

where the Fermi level EF can be calculated by the condition that the charge-carrier
density is constant and equal to n. This condition is given by

∑
i

pi = Nn, (2.8)

An additional constraint is posed by the fact that the pi’s are occupation probabilities,
i.e., 0 ≤ pi ≤ 1.

3. At every iteration step, we sequentially solve Eq. 2.6 for every site i to obtain new
pi’s. This step is done via implicit calculation. Specifically, this means that at the n-
th iteration step we use p

(n)
j in Eq. 2.6 whenever already calculated; otherwise we use

p
(n−1)
j from the previous iteration step. In this way we avoid convergence problems

encountered when the ”new” p
(n)
i are calculated by Eq 2.6 via explicit iteration,

meaning that only the ”old” p
(n−1)
i ’s are used.3,4

4. When Eq. 2.6 is solved sequentially for all sites, we could scale all pi’s by the same
proportionality factor in order to satisfy condition Eq. 2.8 . A problem with this
approach is that the condition 0 ≤ pi ≤ 1 is not automatically satisfied.

Another way to scale all pi’s is to first obtain a site-resolved energy Ēi from the
following equation:

poldi =
1

exp( Ēi

kBT
) + 1

. (2.9)

By adding a constant shift ∆Ē to the energies Ēi, we obtain the new occupational
probabilities pnewi :

pnewi =
1

exp( Ēi+∆Ē
kBT

) + 1
, (2.10)

where the shift ∆Ē is determined by condition Eq. 2.8. In this way, we obtain
occupational probabilities for which both conditions Eq. 2.8 and 0 ≤ pi ≤ 1 are
satisfied.
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5. After a predefined number of iteration steps, the mobility µ (Eq. 2.5) is calculated.
When this mobility has converged to a predefined level of accuracy, the iteration
stops; otherwise we go back to step 3.

6. All steps are repeated for a number of disorder configurations. The final mobility is
the average of the mobilities obtained for each disorder configuration.

The Master-Equation approach has some disadvantages. The master equation is obtained
by a mean-field approximation, meaning that correlations between occupational probabil-
ities are neglected. By taking into account correlations between the occupational proba-
bilities of pairs of neighboring sites it was shown by Cottaar et al. that the effect of such
correlations on the mobility is very small, with a maximum difference of 2-3 %.5 The effect
of correlations between the occupational probabilities of clusters of more than two neigh-
boring sites on the mobility has not yet been evaluated. However, we will show in Chapter
3 and 5 that the effect of taking into account all correlations between the occupational
probabilities on the mobility is minor.

A second disadvantage is that Coulomb interactions cannot be taken into account in a con-
sistent manner in the Master-Equation approach, because in this approach we are working
with time-averaged occupational probabilities, and not with the actual occupational prob-
abilities.

These two disadvantages can be overcome by performing Monte-Carlo simulations instead
of Master-Equation calculations. In the next section we will elaborate on the Monte-Carlo
approach.

2.3 Kinetic Monte-Carlo approach

In this section we will describe a Monte-Carlo (MC) approach to calculate the mobility
in a homogeneous single-carrier bulk system with an applied field F and with Coulomb
interactions between charges. Monte-Carlo algorithms are a broad class of computer algo-
rithms, in which a set of events is sampled in a random fashion. This set of events is in
general not static, but changes dynamically after every sampling step. For our simulations
we make use of the so-called kinetic Monte-Carlo (kMC) method, which is also known as
dynamical Monte-Carlo method. The kMC method was first used in 1966 by Young et al.,6

but is more known by the work of Bortz et al.7 in 1975, who simulated the Ising model.
Since then it has been used for a wide variety of problems in physics and chemistry.

The advantage of MC simulations over Master-Equation calculations is that the dynamics
of the charges themselves is calculated, instead of the occupational probabilities of the sites.
As a result, it is possible to simulate in a consistent manner Coulomb interactions between
charges, by adding the Coulomb interaction energy Ui due to the Coulomb potential of
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all charges around site i to the energy of site i. Hence, the site-energy consists of two
contributions, a random contribution Erand,i, which is distributed according to a Gaussian
DOS, and the Coulomb interaction energy Ui.

There are several different methods available to take Coulomb interactions into account.
First of all, there is the possibility to take the interaction between all pairs of charges
into account explicitly, but this is computationally very expensive. Approaches like the
Ewald or Lekner summation approach make use of the periodicity of the lattice to take the
infinite number of periodic copies of charges into account via a computationally efficient
summation.8–11 However, these approaches are still quite expensive. In our simulations we
therefore use the following finite-range variant of the Coulomb potential Vc:

Vc(|Rij|)=

 e
4πϵrϵ0

(
1

|Rij| −
1
Rc

)
, 0 < |Rij| ≤ Rc,

0, |Rij| > Rc,
(2.11)

with Rc a cut-off radius. The interaction energy Ui is then given by

Ui =
∑
j̸=i

ejVc(Rij), (2.12)

with ej = e when a charge is present on site j and ej = 0 when the site is empty.

With this expression, only the Coulomb interactions between pairs of charges that are less
than a distance Rc from each other are taken into account. By taking Rc = ∞ we obtain
full exactness. By running the same simulation for different values of Rc we obtain the
dependence of the mobility or current on Rc. From this we can make a choice for a value
of Rc that gives a good compromise between accuracy and computational speed.

The term −1/Rc is added in Eq. 2.11 to make the Coulomb potential smooth and to
prevent the existence of an energy barrier for charges hopping from sites outside of a
sphere of radius Rc around a site with a charge to sites inside of this sphere.

2.4 Kinetic Monte-Carlo scheme for a homogeneous

bulk system

In this subsection we describe the kinetic Monte-Carlo method.

We make use of the following scheme:

1. Initialization of site-energies. Define for every site i a random contribution, Erand,i, to
the site-energy Ei, drawn from a normalized Gaussian DOS with a standard deviation
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Figure 2.1: Placement of a charge in the system. The interval (0, 1) is subdivided into intervals
with lengths equal to the probabilities p̄k. The partial sums Sk are calculated. A
random number η ∈ (0, 1) is drawn. The chosen site is the one with index k for
which Sk−1 ≤ η ≤ Sk.

σ. The random site-energy contributions are the HOMO and LUMO levels of the
material in the case of electron and hole transport, respectively.

2. Initialization of site occupational probabilities. For every site we define an occupa-
tional probability, pi, that the site is occupied by a charge. The probability is given
by the Fermi-Dirac distribution:

pi =
1

exp(
Erand,i−EF

kBT
) + 1

(2.13)

The probability, p̄i, that out of the set of all sites, site i is chosen is then given by

p̄i =
pi∑
j pj

(2.14)

3. Initial placement of charges. We place charges at sites with a probability given by
Eq. 2.14. To choose the sites, we make use of the following algorithm. First, we
define for every site an index k ∈ {1, ..., kmax}, with kmax the total number of sites.
We then define for every index k ∈ {1, ..., kmax} a partial sum Sk given by

Sk =
k∑

m=1

p̄m. (2.15)

Note that for every k ∈ {1, ..., kmax} the length of the interval [Sk−1, Sk] is equal
to the probability p̄k. The length of the sum of all intervals is equal to 1, hence
Skmax = 1.

We draw a random real number η from the interval [0, 1]. Then we find the index k
such that Sk−1 ≤ η ≤ Sk. This gives us the site on which a charge will be placed; see
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Fig. 2.1. We place a charge on that site. We set the probability that this site will be
occupied again to 0, i.e. p̄k = 0. Because the probability p̄k has changed, all partial
sums given by Eq. 2.17 have to be recalculated. We repeat the placement of charges
until all charges are placed on the lattice.

4. Calculation of Coulomb interactions. We calculate the interaction energy, due to sur-
rounding charges, for every occupied site and its neighboring sites by using Eq. 2.12.

5. Choice of hopping event. We first calculate all hopping rates Wij for hops from an
occupied site to an unoccupied site according to Eq. 1.3. To prevent the hopping of
a charge from an occupied site to an occupied site, we set the rate for such a hopping
event equal to 0. The probability, W̄ij, that out of the set of all hopping rates, the
rate for hopping from site i to site j is chosen, is given by

W̄ij =
Wij∑

{k,m}Wkm

, (2.16)

where we sum over all pairs of neighboring sites.

We randomly choose a hopping event with a probability equal to Eq. 2.16. The way
in which a random hopping event is chosen is analogous to the way in which the
initial locations of the charges are chosen.

We define for every possible hopping event an integer index h ∈ {1, ..., hmax} with hmax

the total number of hopping events. Then we define for every index h ∈ {1, ..., hmax}
a partial sum Hh given by

Hh =
h∑

m=1

W̄h. (2.17)

For every h ∈ {1, ..., hmax}, the length of the interval (Hh−1, Hh) is equal to the
probability W̄h. Moreover, Hhmax = 1.

We draw a random real number η from the interval [0, 1]. We then find the index
h such that Hh−1 ≤ η ≤ Hh. This gives us the hopping event that will occur. The
hopping event occurs by moving the charge from the site from which it hops to the
site to which it hops.

6. Calculation of simulation time. After every hopping event, we add the waiting time t
that has passed until the event took place to the total simulation time. This time is
obtained by drawing a random number from the following exponential waiting-time
distribution:

τ(t) = Wtot exp [−Wtott] , t ≥ 0, (2.18)

τ(t) = 0 , t < 0,
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with Wtot the sum of all hopping rates Wij:

Wtot =
∑
{k,m}

Wk,m. (2.19)

The justification for using the distribution given by Eq. 2.18 is given in the appendix
of this chapter.

We also keep track of the total number of hops, x+, along the electric field and the
total number of hops, x−, against the electric field.

We now return to step 4.

7. Equilibration. Every time that a predefined number of hops has occurred, we calcu-
late the current, I, via the following expression:

I =
e(x+ − x−)

tsimLx

. (2.20)

We keep track of the time-evolution of the current I. After the charges are placed
into the system, it will take some time before the current has reached its steady-state
value, because the charges have not relaxed yet. When the current stabilizes, the
equilibration is stopped. We set the simulation time tsim, the total hopping distance
parallel along the electric field, f , and against the electric field, b, equal to 0 and we
return to step 4.

In this way, effects due to the relaxation of charges or other initialization effects are
not taken into account in the calculation of the steady-state current I.

8. Calculation of the equilibrium current. Every time that a predefined number of hops
has occurred, we calculate the current, I, with Eq. 2.20.

If the number of hops is too small, the sampling for the current is inadequate. If
the number of hops is too large, we are wasting computational time. Whenever a
converged current I has been obtained, the simulation stops. Otherwise we return
to the loop consisting of steps 4-6.

9. Calculation of the mobility. The mobility µ is obtained from

µ =
I

enFLyLza2
, (2.21)

where the electric field is pointing in the x-direction.

10. All steps are repeated for a number of disorder configurations. The final current or
mobility is the average of the currents or mobilities obtained for all disorder config-
urations.



30 Computational methods for device calculations

This scheme will be used for the calculation of the mobility for a homogeneous system in
Chapter 3. An analogous scheme will be used in the Monte-Carlo simulations of a complete
single-layer single-carrier device in Chapter 5.

Appendix - Derivation of the exponential waiting-time

distribution Eq. 2.18

The hopping of a single charge is a Poisson process, i.e., the probability to make a hop
in a time interval of a certain length is constant and independent of the history of the
system. The probability that a hop occurs in the time interval [ta, ta + ∆t], with ∆t an
infinitesimally small time change, is then given by P = r∆t + O((∆t)2), where r is the
hopping rate. Here, ta is an initial time. The probability that a hop does not occur in
this time interval is then given by Q = 1 − P = 1 − r∆t + O((∆t)2). Let us now take
an integer k and denote t = k∆t. The probability that a hop does not occur in the
time interval [ta, ta + k∆t] is Q = (1 − r∆t + O((∆t)2))k = (1 − rt/k + O((∆t)2))k. For
large k we get limk→∞Q = exp(−rt). The probability that a hop will occur in the time
interval [ta, ta+ k∆t] with k large is then given by P = 1− exp(−rt). This is a cumulative
distribution function. By taking the derivative we get the probability distribution function
for the waiting time until a hop will occur. This probability function is then given by
f(t) = r exp(−rt).

The above result is valid for the case of one hop of a single charge. Denote now by R =
∑

i ri
the sum of all hopping rates ri of all charges. The probability that no hop will take place
in the time interval [ta, ta+∆t] is given by Q =

∏
i(1−ri∆t+O((∆t)2)) ≈ (1−

∑
i ri∆t) =

(1 − Rt). The probability that a hop will occur in the time interval [ta, ta + k∆t] with k
large is then given by P = 1−R exp(−Rt). By taking the derivative we obtain Eq. 2.18.
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Chapter 3

Monte-Carlo study of the
charge-carrier mobility in disordered
semiconducting organic materials

ABSTRACT

We present the results of a Monte-Carlo study of the charge-carrier mobility
in disordered organic semiconductors. The density of states is assumed to be
Gaussian. The Coulomb interactions between charges are taken into account
explicitly. We find that for low charge-carrier densities it is not necessary
to take Coulomb interactions into account. However, for high carrier densi-
ties Coulomb interactions lead to an effectively lower mobility for low electric
fields. For high electric fields the trapping effect disappears and the mobility
with Coulomb interactions agrees reasonably well with the mobility without
Coulomb interactions.
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3.1 Introduction

The disorder in organic semiconductors used in OLEDs is often modeled by assuming that
the on-site energies are random variables, taken from a Gaussian density of states (DOS).
Monte-Carlo (MC) simulations of the hopping transport of single carriers (the low carrier-
density Boltzmann limit) in a Gaussian DOS were performed by Bässler et al.,1,2 showing
a non-Arrhenius temperature dependence µ ∝ exp[−(2/3σ̂)2] of the charge-carrier mobility
µ, with σ̂ ≡ σ/kBT the disorder parameter, T the temperature, kB the Boltzmann constant,
and σ the width of the Gaussian DOS. This is usually referred to as the Gaussian Disorder
Model (GDM). For the dependence on the electric field, F , a Poole-Frenkel µ ∝ exp[γ

√
F ]

behavior was found, in a limited field range, where the factor γ depends on temperature.
Gartstein and Conwell pointed out that a spatially correlated potential for the charge
carriers is needed to better explain experimental data. These data suggest the existence
of Poole-Frenkel behavior in a rather wide region of field strengths.3 Their work led to
the introduction of the Correlated Disorder Model (CDM). Several possible causes for this
correlation were given, such as the presence of electric dipoles4,5 or (in the case of polymers)
thermally induced torsions of the polymer chains.6

For a long time, it has been known that the mobility in disordered inorganic7 and organic8

materials is not only a function of the temperature and electric field, but also of the
carrier density. This dependence has to be accounted for at densities for which state-filling
effects are important. The independent-carrier assumption, made in the MC simulations by
Bässler et al.,1,2 is then invalid and the mobility increases with increasing carrier density, as
the occupation of the deepest states by a certain fraction of the carriers reduces the effect
of these states as trapping centers. For the case of a Gaussian DOS, this effect occurs
for concentrations (ratio of the carrier density to the site density) larger than ccross−over =
(1/2) × exp[−σ̂2/2].9 Schmechel argued that the resulting enhancement of the mobility
in a Gaussian DOS could explain the mobility in disordered doped injection layers used
in OLEDs, in which the carrier concentrations are very high.10 Using the results of a
computational study of the T , F and nh (hole density) dependence of the hopping mobility
in a Gaussian DOS, Pasveer et al.11 showed that the effect can provide a good quantitative
explanation for the concentration dependence of the hole-mobility and the occurrence of a
cross-over density; both which were discovered experimentally by Tanase et al.12 for hole-
only devices based on the undoped semiconducting polymer poly(p-phenylenevinylene)
(PPV). The experimental temperature-dependent current density versus voltage (J(V ))
curves of sandwich-type hole-only devices could be explained without invoking a correlation
between the site energies.11 At room temperature, the density dependence of the mobility
was found to be much more important than the electric-field dependence. The version
of the GDM presented in Ref. 11, which takes into account both the dependence of the
mobility on the carrier density and the electric field, will be called the Extended Gaussian
Disorder Model (EGDM).

Coehoorn et al.9 showed that the carrier-density and temperature dependence of the mobil-
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ity obtained from the numerically exact Master-Equation approach in Ref. 11 is consistent
with the results obtained from various existing semi-analytical models for transport in dis-
ordered materials,8,13,14 and that in other models15,16 a simple but important correction
(to more properly take into account the percolative nature of the transport) is sufficient.
The similarity of these models was explained by their common notion of critical hops on
a percolating path that determine the size of the current. A mean-medium approximation
which neglects this notion17,18 was shown to yield an incorrect temperature dependence of
the mobility.9

In the EGDM, the effect of Coulomb interactions was neglected, because those interactions
could not be taken into account in a consistent manner in the Master-Equation approach,
since this approach involves the time-averaged and not the actual occupational probabilities
of the sites. For a bulk organic semiconductor, these effects have recently been investigated
using MC simulations by Zhou et al.19 Very important effects were found at a rather
large electric field and high carrier densities (> 10−2 carriers per site), where Coulomb
interactions were found to decrease the mobility at low disorder strengths but to increase
the mobility at high disorder strengths.

Another reason to prefer Monte-Carlo (MC) simulations over Master-Equation calculations
is that correlations between occupational probabilities of sites are not taken into account
in the Master-Equation approach. Cottaar et al.20 showed that the effect of correlations
between the occupational probabilities of pairs of neighboring sites on the current is very
small. However, the effects of correlations beyond nearest-neighbor correlations were not
studied.

In this chapter we investigate the effects of Coulomb interactions on the charge-carrier
mobility in organic semiconducting materials. We show that taking into account Coulomb
interactions in general does not lead to a significant change in the charge-carrier mobility,
except for low field strengths and high carrier densities (n > 10−2a−3). In this regime, the
mobility is significantly decreased by the Coulomb interactions.

This chapter is built up as follows. In Section 3.2 the simulation details are discussed. In
Section 3.3 we present the results of the MC simulations. In Section 3.4 we discuss the
difference between the mobility when Coulomb interactions are taken into account and
when these interactions are not taken into account. Section 3.5 contains a summary and
conclusions.

3.2 Monte-Carlo method

In this section we describe the simulation details for calculating the mobility in a disordered
organic semiconductor. The material is modeled as a simple cubic lattice of Lx × Ly × Lz

sites, with Lx,Ly, and Lz the size of the lattice in the x−, y− and z−direction. Periodic
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boundary conditions are taken. The inter-site distance is given by a. The electric field
is directed in the x-direction. We assume that transport of charge carriers takes place
by hopping of charges from one site to another, as a result of a tunneling process that is
thermally assisted due to the coupling to a system of acoustical phonons. The hopping
rate from site i to j is then of the Miller-Abrahams form:21

Wij = ν0 exp

[
−2α|Rij| −

Ej − Ei − eFRij,x

kBT

]
, Ej ≥ Ei + eFRij,x, (3.1)

Wij = ν0 exp [−2α|Rij|] , Ej < Ei + eFRij,x,

with ν0 is an intrinsic rate, |Rij| ≡ a|i− j| the distance between sites i and j, α the inverse
localization length of the localized wave functions, Ei the on-site energy of site i, e the
unit charge, and eFRij,x ≡ eFa(jx− ix) a contribution due to an applied field. The on-site
energy Ei is the sum of the random on-site energy contribution Erand,i and the Coulomb
interaction energy eΦi due to the surrounding charges.

We only consider the situation of uncorrelated Gaussian disorder. The energies Erand,i are
then randomly drawn from a Gaussian density of states (DOS):

g(E) =
1√

2πσa3
exp

[
− E2

2σ2

]
, (3.2)

with σ the width of this DOS.

The algorithm that is used to calculate the mobility is described in Chapter 2.2. We took
averages over time and over different disorder configurations until the relative accuracy of
the resulting mobilities is around 10%

3.3 Influence of Coulomb interactions on mobility

In Fig. 3.1 we display the room-temperature mobility µ as a function of the electric field
F , as obtained from the MC simulations described in the previous section. Closed symbols
denote results of MC simulations in which the Coulomb interactions are taken into account.
Open symbols denote results of MC simulations in which the Coulomb interactions are not
taken into account. The results are given for three different disorder strengths, σ, equal
to 2 (Fig. 3.1(a)), 4 (Fig. 3.1(b)), and 6kBT (Fig. 3.1(c)). The mobility has been
calculated for three different charge-carrier densities, n = 10−3, 10−2, and 10−1 a−3. The
relative dielectric constant ϵr is taken equal to 4, like in Ref. 19. We have chosen the
lattice constant equal to a = 1.0 nm (no value for the lattice constant was given in Ref.
19). The box size is 100 × 100 × 100 sites, which corresponds with 100× 100 × 100 nm3.
The mobilities are expressed in units of µ0 = (a2ν0e)/(σ), like in Ref. 11. Like in Ref. 11
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we take the wave-function decay length, α−1, equal to a/10. The values for the Coulomb
cut-off radius were Rc = 12, 8, and 5, for n = 10−3, 10−2, and 10−1 a−3, respectively.

For low electric field strengths (F < σ/(ea) for σ = 2kBT and F < 0.5σ/(ea) for σ = 4 and
6kBT ), the results from the MC simulations with Coulomb interactions are lower than the
results from simulations without Coulomb interactions. The difference between the results
for the case with Coulomb interactions and for the case without Coulomb interactions
attains its maximum in the zero-field limit. The difference is a factor of about 1.8 for a
carrier density of n = 10−1 a−3 and disorder strength σ = 6kBT and increases to a factor
of about 2.5 for the same density and σ = 2kBT . The difference is a factor of about 1.4
for n = 10−2 a−3 and a factor of about 1.2 for n = 10−3 a−3 for all disorder strengths.
For higher electric field strengths than mentioned above, the results from simulations with
Coulomb interactions agree in general quite well with the results from simulations without
Coulomb interactions.

3.4 Discussion

To tentatively explain the decrease in the mobility for high carrier densities when Coulomb
interactions are taken into account, we note that these interactions will lead to a mutual
repulsion of the charges. As a results, charges are trapped in a Coulomb potential well
formed by other surrounding charges. As the average distance between the charges becomes
smaller with higher carrier density, the Coulomb potential well becomes steeper. To hop
from the minimum of a potential well to a neighboring site, on average a higher energy
penalty is involved than in a situation without Coulomb interactions. This in turn leads
to a decrease in the mobility.

With increasing electric field, more and more hops in the direction of the field will be
downwards in energy. When a hop is downwards in energy, the hopping rate, as described
by Eq. 3.1, does not depend on the involved Coulomb energies. Hence, the effect of the
existence of a Coulomb potential well becomes less important with increasing field. In
the case of very high electric field strengths, when practically all hops are downwards
in energy, the effect of a Coulomb potential well vanishes. In this case, the inclusion of
Coulomb interactions does not lead to a significant change in the mobility.

One could be tempted to attribute the effect of the reduction of the mobility with in-
clusions of Coulomb interactions to the enhancement of the effective disorder due to the
random Coulomb field. The effective disorder σeff would be obtained by calculating the
standard deviation of all on-site energies, consisting of a random on-site contribution and
the Coulomb interaction energy of all charges. Instead of taking the random on-site en-
ergies from a Gaussian distribution with a width equal to σ and taking the Coulomb
interactions explicitly into account, one could then take these energies from a Gaussian
distribution with a width equal to the effective disorder strength σeff and omit the Coulomb
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Figure 3.1: Dependence of the room-temperature mobility (µ) on the applied electric field (F )
for an uncorrelated Gaussian density of states. The lattice constant is a = 1.0 nm.
The displayed results are for disorder strengths of σ = 6kBT (a), σ = 4kBT (b), and
σ = 2kBT (c). Results are shown for different indicated carrier densities n: 10−1a−3

(downwards pointing triangles), 10−2a−3 (circles), and 10−3a−3 (upwards pointing
triangles). The mobility is expressed in units of µ0 = a2ν0e/σ. Closed symbols:
results obtained from Monte-Carlo simulations including short-range Coulomb in-
teractions. Open symbols: results obtained from Monte-Carlo simulations without
Coulomb interactions.
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interactions. This could possibly be done along the lines set out by Arkhipov et al.,22 who
calculated the increase of the effective disorder strength due to Coulomb interactions with
dopant ions.

However, it turns out that an effective disorder strength defined in this way would diverge
when Rc goes to infinity. This can be shown by the following analytical argument. As-
sume a disorder-free system (σ = 0) and a random distribution of the charges over the
system, with a carrier density equal to n. The mean < V > and the standard deviation√
< V 2 > − < V >2 of the Coulomb interaction energy are then given by:

< V > =

∫ ∫ ∫
drdθdϕn sin(θ)

e2

4πϵrϵ0

[
r2

r
− r2

Rc

]
(3.3)

=
e2

4πϵrϵ0

2

3
πnR2

c , (3.4)

< V 2 > − < V >2 =

∫ ∫ ∫
drdθdϕn sin(θ)r2

e2

4πϵrϵ0
(
1

r
− 1

Rc

)2− < V >2 (3.5)

=
e2

3πϵrϵ0
πnRc(1−

1

3
πnR3

c), (3.6)

√
< V 2 > − < V >2 =

√
e2

3πϵrϵ0
πnRc(1−

1

3
πnR3

c) (3.7)

Therefore, for not too high carrier densities, the standard deviation of the Coulomb inter-
action energy is proportional to

√
Rc and thus diverges for

√
Rc → ∞. As a consequence,

an effective disorder strength obtained by adding to the random energy of the sites the
random Coulomb energies due to all charges is ill-defined and can therefore not be used to
model the reduction of the mobility.

3.5 Summary and conclusions

We performed Monte-Carlo simulations on the charge-carrier transport in a bulk organic
semiconductor. The site energies are distributed according to a Gaussian density of states.
Coulomb interactions are taken into account. The dependence of the mobility on the charge
carrier density and the electric field strength were studied.

The calculations show, contrary to earlier calculations performed by Zhou et al.,19 that
taking the Coulomb interactions into account does not change the mobility significantly in
the case of high electric field strengths. In this regime the EGDM is thus still applicable,
even in the presence of Coulomb interactions.

In the regime of low electric field strengths and high carrier densities (n > 10−2 a−3), a
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significant decrease in the mobility is obtained when Coulomb interactions are taken into
account. This decrease is stronger for higher carrier densities. We tentatively explain
this by the trapping of charges in the Coulomb potential well formed by the surrounding
charges. In the hopping of a charge from the minimum of a potential well to a neighboring
site, this potential well leads to an extra energy penalty. This results in a lower mobility.
This trapping effect decreases for higher electric field strengths.

We conclude that Coulomb interactions only have a strong effect on the mobility in the
case of small electric field strengths and high carrier densities. In this regime the mobility
is decreased significantly by the Coulomb interactions.
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Condens. Matter 2002, 14, 9899.



41

[16] Martens, H.; Hulea, I.; Romijn, I.; Brom, H.; Pasveer, W.; Michels, M. Phys, Rev. B
2003, 67, 121203(R).

[17] Roichman, Y.; Tessler, N. Synth. Met. 2003, 135, 443.

[18] Roichman, Y.; Preezant, Y.; Tessler, N. Phys. Stat. Sol. (a) 2004, 201, 1246.

[19] Zhou, J.; Zhou, Y.; Zhao, J.; Wu, C.; Ding, X.; Hou, X. Phys. Rev. B 2007, 75,
153201.

[20] Cottaar, J.; Bobbert, P. Phys. Rev. B 2006, 74, 115204.

[21] Miller, A.; Abrahams, E. Phys. Rev. 1960, 120, 745.

[22] Arkhipov, V.; Heremans, P.; Emelianova, E.; Bässler, H. Phys. Rev. B 2005, 71,
045214.





Chapter 4

Modeling and analysis of the
three-dimensional current density in
sandwich-type single-carrier devices
of disordered organic semiconductors

ABSTRACT

We present the results of a modeling study of the three-dimensional current
density in single-carrier sandwich-type devices of disordered organic semicon-
ductors. The calculations are based on a Master-Equation approach, assuming
a Gaussian distribution of site energies without spatial correlations. The effects
of space charge, image charge potential, injection barrier, and the full depen-
dence of the mobility on the charge carrier density, electric field, and tempera-
ture are taken into account. The model provides a comprehensive treatment of
the space-charge-limited current (SCLC) as well as the injection-limited current
(ILC) regimes. Reasonable agreement is found between the three-dimensional
Master-Equation calculation results and a one-dimensional continuum drift-
diffusion model. This one-dimensional drift-diffusion model uses the EGDM
mobility functions. The injection-barrier lowering due to the image potential
is taken into account. However, the current distribution can be highly filamen-
tary for voltages, layer thicknesses, and disorder strengths that are realistic for
organic light-emitting diodes. As a result, the current density as obtained from
the Master-Equation calculations can be significantly larger than that obtained
from a one-dimensional continuum drift-diffusion device model, specifically in
the case of strong disorder, high voltages and high injection barriers. For de-
vices with large injection barriers and strong disorder, in the ILC transport
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regime, good agreement is obtained with the average current density predicted
from a model assuming injection and transport via one-dimensional filaments.1

1The contents of this chapter are based on work that has been published: J.J.M. van der Holst, M.A.
Uijttewaal, B. Ramachandhran, R. Coehoorn, P.A. Bobbert, G.A. de Wijs, R.A. de Groot, Physical Review
B: Condensed Matter 2009, 79, 085203
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4.1 Introduction

Organic semiconductors are presently used in a wide variety of devices, such as organic
light-emitting diodes (OLEDs),1 organic field-effect transistors,2 and organic photovoltaic
cells.3 In these materials, which are often amorphous or near-amorphous, an important role
is played by disorder: it contributes to the localization of electronic states, and strongly
influences the hopping rates of the charge carriers between the localized states. Our un-
derstanding of devices based on disordered organic semiconductors within which hopping
conduction takes place is far less developed than our understanding of transport in devices
based on crystalline inorganic semiconductors.

In this chapter, we investigate the effects of disorder on the transport through complete
single-carrier single-layer devices. It is already well-known that the percolative nature
of the transport in a disordered organic semiconductor leads to a strongly filamentary
structure of the current along the percolation paths.4–8 This raises the question to what
extent one-dimensional (1D) continuum drift-diffusion device models, within which the
current density is assumed to be laterally uniform, provide accurate predictions of the
J(V ) curves. It is important to answer this question because such 1D models are nu-
merically much more efficient than complete three-dimensional device models, and are the
obvious choice in modeling the complex multilayer structures that will be used in com-
mercial OLEDs. We address this question by making a detailed comparison between the
current densities obtained from a full three-dimensional (3D) Master-Equation model for
the hopping transport in single-layer single-carrier sandwich-type devices and the current
densities obtained from a 1D continuum drift-diffusion device model. The 1D model that
we will use is based on the Extended Gaussian Disorder Model (EGDM). It is an extension
of an approach introduced in Ref. 9 to include the effective injection-barrier lowering due
to the image-potential effect. Earlier work on PPV-based polymers revealed no necessity
to take correlated disorder into account,10 such as is done in the work of Tutǐs et al..4

These authors used a Master-Equation model for calculating the current density in the
case of correlated disorder for the situation that the current is limited by injection, taking
the image potential into account but neglecting space-charge effects.

We show that the 1D continuum model provides for various cases of interest quite accurate
predictions of the voltage dependence of the current density. However, we also find a dis-
tinct offset of the current for relatively large disorder (σ̂ = 6) and a small layer thickness
(22 nm). The filamentarity of the current density is then quite pronounced. We present
visualizations of the three-dimensional current density and discuss the effects of the fila-
mentary nature of the current density in the case of strong disorder on the current density
in the space-charge-limited current (SCLC) and injection-limited current (ILC) transport
regimes. Our 3D model will allow us to analyze the appropriateness of various previously
proposed models for charge-carrier injection in OLEDs. We will now give an overview of
existing models of injection and transport in single-carrier single-layer devices.
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Within the simplest approach to the problem of carrier injection and subsequent transport
in organic semiconductor devices it is assumed that the charge carriers in the organic
semiconductor at the contact are in thermal equilibrium with the electrons in the metal
electrode. The presence of an injection barrier, ∆, then reduces the density of carriers at
the contact with the metal, nc, to a value given by nc = Nt/(1 + exp[∆/kBT ]), with Nt

the total density of molecular sites. Here, ∆ is defined as the (positive) energy difference
between the Fermi energy in the metal and the energy of the HOMO or LUMO states in
the semiconductor. The current density is obtained by self-consistently solving the drift-
diffusion equation, taking the space-charge in the device into account and using nc as a
fixed boundary condition. For the case of a constant mobility and diffusion coefficient, this
boundary value problem can be solved analytically.11 In a symmetric device (equal left and
right contacts) the current density is then injection-limited if nc ≈ n0 ≡ ϵkBT/(e

2L2), or
smaller, with ϵ the dielectric constant, e the elementary charge, and L the device thickness.
For L = 100 nm, Nt = 1027 m−3, and a relative dielectric constant ϵr = 3 (a typical
device), the injection-limited transport regime therefore sets in (at room temperature)
around ∆ ≈ 0.4 eV. For larger injection barriers, the space charge in the device can be
neglected, and the carrier density is uniform and equal to nc. The injection-limited current
density is then given by JILC = encµV/L.

For two reasons the problem of carrier injection in organic semiconductors is more com-
plicated than assumed in the model discussed above. First, the model neglects the image-
charge interaction between an individual charge and its image charge in the electrode. In
the SCLC regime, the image-charge effect is to a certain extent taken into account by self-
consistently solving the Poisson equation for the layer-averaged charge density. In that
regime, the resulting error is small. However, in the ILC regime the actual injected charge
at a specific site associated with one carrier is one electronic charge at that site, which
is much larger than the layer-averaged charge at sites in the same layer. The effect of
the image potential on the current density in the ILC regime has been studied by Em-
tage and O’Dwyer,12 and more recently by Scott and Malliaras13 and by Masenelli et al.14

Effectively, it leads to a lowering of the effective injection barrier with increasing voltage.

Second, all models discussed so far neglect the effects of energetic disorder. Its relevance
to the injection process in OLED-type devices was first noted by Gartstein and Conwell,
who studied the combined effects of the image potential and the Gaussian disorder in the
ILC regime, using a MC simulation.15 These authors showed that disorder can give rise to
a strongly enhanced field dependence of the injection-limited current density. Arkhipov et
al. developed a semi-analytical 1D approach to this problem.16 For relatively high temper-
atures and small disorder good agreement was found with the results of MC calculations.17

As a result of the injection in tail states, the ILC in a material with a Gaussian DOS was
predicted to be larger than the ILC in an ordered material, for a given value of ∆, and its
decrease with decreasing temperature was predicted to be smaller. The latter effect was
confirmed by van Woudenbergh et al. from an experimental study of the ILC in PPV-based
devices.18 Burin and Ratner (BR) studied this problem by assuming that for sufficiently



4.2 Theory and methods 47

high field strengths and in the ILC regime the injection and transport occurs through 1D
straight paths, effectively lowering the injection barrier.19 Recently, support for the lat-
ter model has been obtained from a measurement using electric-force microscopy of the
potential drop near the injecting contacts in a lateral two-terminal metal/organic/metal
device.20 As noted already by the authors,17 it is expected that the Arkhipov model un-
derestimates the stochastic nature of the carrier motion in the vicinity of the barrier, when
at high fields only a few rare easy pathways dominate the current density. On the other
hand, the BR model will overrate this effect, in particular for relatively small fields when
more easy non-linear trajectories are neglected. These weaknesses of the Arkhipov and BR
models are confirmed by the 3D modeling results presented in this chapter.

This chapter is built up as follows. Sections 4.2.1 and 4.2.2 discuss the 3D Master-Equation
method and the 1D continuum model, respectively, used for calculating the current density
in single-carrier devices. In Section 4.3 we present the results of the 3D Master-Equation
and 1D continuum modeling of the voltage dependence of the current density. In Section 4.4
we investigate the 3D structure of the current distribution and discuss the consequences of
this structure for the validity of different models: our 1D continuum model, the BR model,
and the Arkhipov model. Section 4.5 contains a summary and conclusions.

4.2 Theory and methods

4.2.1 Three-dimensional Master-Equation model

In this section the 3D Master-Equation method is described for calculating the current
density in single-carrier devices, consisting of a single organic layer that is sandwiched
in between two metallic electrode layers. The device is modeled as a three-dimensional
cubic Lx × Ly × Lz lattice with an inter-site distance a. Lattice sites will be denoted by
i ≡ {ix, iy, iz}. The applied field is directed along the x-axis, and the planes formed by the
sites at ix = 1 and ix = Lx are viewed as the metallic injecting and collecting electrode
planes, respectively. The sites at all other planes will be called “organic sites”. Along the
lateral (y and z) directions periodic boundary conditions are applied. Every site represents
a localized state and the carrier occupation probability on a site i will be denoted by pi.

We assume that conduction in the organic semiconductor takes place by hopping of charge
carriers from one localized site to another, as a result of a tunneling process that is thermally
assisted due to the coupling to a system of acoustical phonons. This leads to a hopping
rate from site i to j of the Miller-Abrahams form21

Wij = ν0 exp

[
−2α|Rij| −

Ej − Ei

kBT

]
forEj ≥ Ei, (4.1a)

Wij = ν0 exp [−2α|Rij|] forEj < Ei, (4.1b)
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where ν0 is an intrinsic rate, |Rij| ≡ a|i− j| is the distance between sites i and j, α is the
inverse localization length of the localized wave functions, and Ei is the energy of the state
at site i. For simplicity, we assume that the hopping rates from the electrode sites to the
organic sites and vice versa are given by the same expression (Eq. (4.1)) as the rates for
the mutual hopping between organic sites. It is to be expected that the specific rate taken
for the hopping between the electrode sites and the sites in the first and last organic layer
has almost no influence on the final current-voltage characteristics of the device, as long
as this hopping rate is large enough to establish equilibrium between these sites.

Only symmetric devices are considered in this chapter, i.e. devices with equal injection
barriers, ∆, at the injecting and collecting electrodes, but our methods can just as well be
applied to asymmetric devices. The injection barrier is defined as the distance in energy
between the Fermi level in the electrode and the top of the Gaussian DOS. The energy
of each organic site is therefore equal to the sum of a random on-site contribution, drawn
from a Gaussian DOS with a width equal to σ, and an offset due to the injection barrier,

g(E) =
1√

2πσa3
exp

[
−(E −∆)2

2σ2

]
, (4.2)

plus the electrostatic energy contributions eΦi and eΦim,i due to the applied field and the
space charge, and due to the image-charge effect, respectively. The Fermi energy in the
collecting electrode is taken as the zero-energy reference value, so that the electrostatic
potentials at the two electrode planes are given by eΦ(ix = 1) = eV and eΦ(ix = Lx) = 0,
where V is the applied driving voltage (bias). The contribution to the electrostatic potential
due to the space charge is calculated using the Poisson equation from the laterally averaged
charge-carrier density in each layer ix. As a consequence of this approximation, eΦi depends
only on the layer index ix. Also the image-charge contribution depends only on the distance
of the site to each of the electrodes. It is given by

eΦim(ix) = − e2

16πϵ0ϵra

(
1

Lx − ix
+

1

ix − 1

)
(4.3)

at the organic sites. Here e is the unit charge, ϵ0 the vacuum permeability, and ϵr the
relative dielectric constant of the organic material. There is no image-charge contribution
at the electrode sites. Eq. (4.3) is the first-order term in an expansion in which repetitive
images are taken into account.22 For the device thicknesses considered, no significant change
of the results was obtained when taking higher-order images into account.

The occupational probabilities pi for the organic sites are obtained by solving the Pauli
master equation

∂pi
∂t

= −
∑

j̸=i,jx ̸=1,Lx

[Wijpi(1− pj)−Wjipj(1− pi)]

−
∑

j̸=i,jx=1,Lx

[Wijpi −Wji(1− pi)] (4.4)

= 0 ,
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where the first sum is related to hopping between organic sites and the last term to hopping
from and to the electrodes. The factors 1 − pi in this first sum account, in a mean-field
approximation, for the fact that only one carrier can occupy a site, due to the high Coulomb
penalty for the presence of two or more carriers. The second sum describes the hopping
from sites of the outermost organic layers to the electrode sites (first term between square
brackets) and the hopping from electrode sites to the outermost organic layers (second
term), where we assume that there are always charges on the electrode sites ready to hop
to the organic sites and that the electrode sites can always accept a charge from the organic
sites. We take into account hopping over a maximum distance of

√
3 a, which is sufficient

for the values of a and α that we will consider (see Section 4.3).

In order to solve the Pauli master equation for the occupational probabilities pi, we use an
iterative procedure similar to the one described in Refs. 8 and 10. From these occupational
probabilities we can calculate the current through the device. At each organic site i, we
define a local particle current Jp,i in the direction of the collecting electrode:

Jp,i =
∑

{Wijpi(1− pj)−Wjipj(1− pi)}, (4.5)

where the summation is over all sites j for which jx > ix. The total electrical current
density is then given by

J =
1

LyLz

∑ eJp,i
a2

, (4.6)

where the summation is over all Ly × Lz sites within any plane parallel to the electrodes
within the device.

As the electrostatic potential is determined by the charge distribution, whereas the charge
distribution can only be calculated if the potential is known, both should be determined
self-consistently. To obtain the self-consistent solution we use the following iteration pro-
cedure:

1. Start with a potential Φ that linearly decreases from injecting to collecting electrode.

2. Solve the master equation, Eq. (4.4).

3. Update the electrostatic potential, which has changed due to the change of the space
charge.

4. Recalculate all the hopping rates Wij, using Eq. (4.1).

If the total charge and the current in the device have converged the procedure stops,
otherwise the procedure starts again at the second step.
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4.2.2 One-dimensional continuum model

We will compare the J(V ) curves obtained from the 3D Master-Equation model discussed
in the previous subsection to the J(V ) curves obtained from a 1D continuum drift-diffusion
model. The current density in this model is given by

J = n(x)eµ(x)F (x)− eD(x)
dn(x)

dx
, (4.7)

where n(x) and F (x) are the local charge-carrier density and electric field, respectively,
which are related by the Poisson equation, dF/dx = (e/ϵ)n(x). The dependence of the
local mobility, µ(x) = µ(T, n(x), F (x)), on the temperature, the charge-carrier density,
and the electric field is taken from the parametrization given for the EGDM in Ref. 10.
The local diffusion coefficient, D(x), is obtained from the local mobility by using the
generalized Einstein equation.23 We note that the expressions given in Ref. 10 for the
mobility within the EGDM were obtained from essentially the same 3D Master-Equation
model as discussed above, but then for a system with a uniform carrier density and electric
field, and including also periodic boundary conditions along the x-direction. Therefore,
any difference between both approaches will be exclusively due to a failure of taking the
actual non-uniform 3D current density into account in the 1D model.

For efficiently solving the 1D drift-diffusion-Poisson problem within the EGDM, we have
used an extended version of the numerical method described recently by Van Mensfoort
and Coehoorn.9 Within the standard form of that method, described in Ref. 9, the carrier
densities at the electrode planes are assumed to be constant (voltage independent), and
given by the condition of local thermal equilibrium between the metal and the organic
layer. The density of carriers at the contact with the metal, nc, is then given by

nc =

∫ ∞

−∞

g(E)

1 + exp
[

E
kBT

]dE, (4.8)

with the DOS g(E) given by Eq. (4.2). When the injection barrier is sufficiently small,
the large carrier density in the organic layer near the injecting electrode will give rise to a
local drift contribution of the particle current towards the injecting electrode. Under these
conditions, the electrostatic field near the interfaces is the result of a net electrostatic
interaction that is the overall sum of the individual contributions from the charges and
image charges of many electrons. The standard 1D model treats this in a fair way, viz. by
solving the 1D Poisson equation assuming a laterally homogeneous charge density. On the
other hand, when the injection barrier is sufficiently large, so that the local drift contribu-
tion to the particle current is directed away from the injecting electrode, the predominant
contribution to the electrostatic field near the electrode is due to the image charge of the
injected carrier itself. In order to be able to account for such cases, we have extended the
1D model presented in Ref. 9 by making use of an image-charge-corrected barrier height
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of the form first suggested by Emtage and O’Dwyer,12

∆′ = ∆− e

√
eFc

4πϵ0ϵr
, (4.9)

with Fc the (positive) electric field at the contact plane. Fc and ∆′ are determined self-
consistently using an iterative procedure. When Fc < 0, the full injection barrier ∆ is
used. We show in Section 4.3 that this method of taking the image-charge potential into
account in 1D calculations of J(V ) curves leads to a surprisingly good agreement with the
results of the 3D Master-Equation model, provided that the transport is well in the ILC
regime.

4.3 Results

In Fig. 4.1 we display the room-temperature current density as a function of applied
voltage, as obtained from the 3D and 1D calculations described in the previous section.
The results are given for different injection barriers, ∆, equal to 0, 0.33, 0.67, and 1
eV. The lattice constant has been taken equal to a = 1.6 nm, a value found in Ref. 10
from modeling the transport in a hole-only device based on the PPV derivative OC1C10-
PPV (poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-p-phenylene vinylene]). The four plots
show the results for two values of the dimensionless disorder parameter, σ̂ = 3 and 6,
corresponding to σ = 75 meV and σ = 150 meV at room temperature, respectively, and
for two layer thicknesses L, indicated in the figures as “22 nm” and “102 nm”. The actual
thicknesses are 13 layers (22.4 nm) and 63 layers (102.4 nm), respectively. The attempt-to-
jump frequency, ν0, is chosen such that at vanishing injection barrier, the current density
as obtained from the 3D model is equal to 1 A/m2 at V = 10 V for the 102 nm devices.
This value of ν0, and the corresponding values of the mobility at zero field in the low-
density Boltzmann limit used within the 1D-model calculations, are given in the figure
caption and will be used throughout the rest of the chapter. Like in Ref. 10, we take the
wavefunction decay length, α−1, equal to a/10. The lateral grid size is 50× 50 sites. The
relative accuracy of the results is approximately 10 %, which was concluded by carrying
out calculations for different lateral grid sizes and disorder realizations.

A remarkably good agreement is obtained between the 3D Master-Equation results (sym-
bols) and the 1D continuum-model results (lines), except for the thin (L = 22 nm) device
with strong disorder (σ = 150 meV) at voltages exceeding 1 V (Fig. 4.1d). For the lowest
injection barriers, ∆ = 0 and 0.33 eV, the devices are in the space-charged-limited current
(SCLC) regime and the current is almost independent of the size of the injection barrier. At
small voltages, the current-voltage curves are linear (Ohmic), as expected when the trans-
port is predominantly due to charge-carrier diffusion.9 The slope of the current-voltage
curve (on a double-log scale) increases with increasing voltage, eventually to a value that
exceeds the value of two that would be obtained for the case of a constant mobility in the
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Figure 4.1: Dependence of the current density (J) on the driving voltage (V ) for devices with
thicknesses of L = 102 nm and L = 22 nm, and disorder strengths of σ = 75 meV
and σ = 150 meV, as indicated in (a)-(d). The results are for room temperature and
lattice constant a = 1.6 nm. The values used for the attempt-to-jump frequency, ν0,
are 3.5× 1013 s−1 for devices with σ = 75 meV and 1.4× 1016 s−1 for devices with
σ = 150 meV. These values correspond to a mobility pre-factor µ0 (as defined in Ref.
10) equal to 4.8×10−14 m2/Vs and 1.1×10−16 m2/Vs, respectively. Symbols: results
obtained from the 3D Master-Equation approach for different injection barriers ∆:
0 eV (downwards pointing triangles), 0.33 eV (circles), 0.67 eV (upwards pointing
triangles), and 1 eV (squares). In (b) no converged Master-Equation results for
∆ = 1 eV could be obtained. Solid lines: results obtained from the 1D continuum
drift-diffusion model as explained in the main text.
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presence of a drift contribution only (Mott-Gurney relationship). This can be viewed as
a result of the carrier-density dependence and the electric-field dependence of the mobil-
ity.9,10 When the injection barrier increases the injection-limited current (ILC) regime is
entered and the voltage dependence becomes much more pronounced. For high injection
barriers the current in the 22 nm and 102 nm devices is almost the same for equal injection
barriers, if the voltage is scaled with the device thickness. For the case σ = 75 meV this
happens for injection barriers ∆ = 0.67 and 1 eV. For the case σ = 150 meV, space-charge
effects are still dominant at an injection barrier of ∆ = 0.67 eV, the reason being that a
higher value of σ leads to a higher carrier density at the interface than for σ = 75 meV
(the tail states of the Gaussian DOS are filled to a larger extent), and hence to stronger
limitation of the current by space-charge effects. We remark that because of convergence
problems we were not able to obtain Master-Equation results for ∆ = 1 eV for the 102 nm
device.

We analyze the situation in more detail with the help of Fig. 4.2, which shows a comparison
of the calculated injection-barrier dependent current density in the 22 nm devices at a bias
of 2 V and room temperature as obtained from the 3D Master-Equation approach and as
obtained from various other approaches, for σ = 75 meV (Fig. 4.2(a)) and σ = 150 meV
(Fig. 4.2(b)). We first focus on the results in the SCLC regime. For very small values
of ∆, the 1D calculations were carried out without taking the image-charge effect into
account since the field is then directed towards the injecting electrode (Fc < 0 as explained
in Section 4.2.2). Calculations including the image-charge effect were only carried out for
∆ > 0.20 eV and ∆ > 0.35 eV for σ = 75 and σ = 150 meV, respectively, as indicated
by the arrows in Fig. 4.2. For these cases the inclusion of the image potential leads to
an effective barrier decrease (Eq. (4.9)). Actually, for smaller values of ∆ the inclusion of
the image potential would lead to a small effective barrier increase, due to charge trapping
in the potential well near the interface, deepened by the image potential. As a result, the
actual current density would be smaller than as predicted from the 1D-model used here.
One may estimate the effect by extrapolating the 1D current-density curve as obtained
with the image potential to ∆ = 0 eV. The extrapolated current density is a factor ∼ 1.5
and ∼ 4.5 smaller than the 1D current density given in Fig. 4.2 for the cases σ = 75
and σ = 150 meV, respectively. For σ = 75 meV the agreement between the 3D Master-
Equation and 1D continuum-model results is very good, with an underestimation of the
current density by the 1D continuum model in the SCLC regime by only a factor of about
two. However, for σ = 150 meV the 1D continuum model underestimates the current
density in the SCLC regime by a factor of about four. We note that the extrapolated current
densities mentioned above, including the image potential, yield a stronger underestimation
of the current densities in the SCLC regime. We may thus conclude that the omission of
the image potential in the 1D continuum model accidentally corrects part of an intrinsic
underestimation of the current density by the 1D model. In the next section, we will
investigate the origin of this underestimation.

With increasing injection barrier we see in Fig. 4.2 a transition from the SCLC to the
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Figure 4.2: Dependence of the current density (J) on the injection barrier (∆), for different
models. The displayed results are for devices with disorder strengths of σ = 75
meV (a) and σ = 150 meV (b), device thickness L = 22 nm, room temperature,
and lattice constant a = 1.6 nm. The other parameters are the same as in Fig. 4.1.
The arrows indicate the points where the electric field at the injecting electrode
switches sign within the 1D continuum model.
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ILC regime, with finally an Arrhenius behavior, J ∝ exp[−∆/kBT ] of the current density.
In the ILC regime the inclusion of the image potential is of crucial importance, which
can be seen from the continuation of the 1D continuum-model calculations without image
potential (dashed lines), which predict a far too low current. For σ = 75 meV the agreement
between the 3D Master-Equation and the 1D continuum-model results in the ILC regime
is excellent. For σ = 150 meV the 1D continuum model underestimates the current density
in the ILC regime by a factor of about 8. The origin of the underestimation of the current
density by the 1D model in the SCLC and ILC regime is investigated in the next section.

4.4 Three-dimensional structure of the current distri-

bution; consequences for different models

In order to obtain a better insight in the effects that cause the discrepancies between
the 3D Master-Equation and the 1D continuum-model results, we have studied the three-
dimensional structure of the current distribution. Fig. 4.3 shows the room-temperature
current-density distribution for the 22 nm device at a bias of V = 2 V, an injection barrier
∆ = 1 eV, for σ = 75 (Fig. 4.3(a,b)) and σ = 150 meV (Fig. 4.3(c,d)). Fig. 4.3(a) and
Fig. 4.3(c) show the current distribution as viewed from the side, whereas Fig. 4.3(b)
and Fig. 4.3(d) show views from the injecting to the collecting electrode. The local
current density has been calculated by summing for each site in a box of 13 × 50 × 50
sites the net currents to the 9 sites in the adjacent layer to which we allow hopping and
attributing this sum to this site, according to Eq. (4.5). We have used the same disorder
realization for σ = 75 meV and σ = 150 meV, apart from an obvious factor of two. The
figures reveal that the current density is strongly filamentary for σ = 150 meV and already
weakly filamentary for σ = 75 meV. Such filamentary structures in the current distribution
have been reported before4–8 and are caused by percolation effects, which increase with
increasing disorder. We have also investigated the current distributions for zero injection
barrier and found a less pronounced but still clear filamentary structure, showing that this
structure is enhanced by the injection barrier, but that its existence does not require a
finite injection barrier.

Clearly, the filamentary structure of the current distribution means that almost all the
current flows through a relatively small number of sites. Since the 1D continuum model is
based on the EGDM, in which the bulk effects of the filamentary structure of the current
have been properly taken into account,10 it can be expected that the 1D continuum model
works properly for thick devices. Indeed, Fig. 4.1(a,b) shows that for the device with
L = 102 nm device the agreement between the 3D Master-Equation and 1D continuum-
model results is very good. As long as the typical length scale of the spatial structure of
the current distribution is small compared to the device thickness, one can speak about
a ”local” mobility that can successfully be used in 1D continuum models. However, for
devices with a thickness of the order of or smaller than this typical length scale the concept
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Figure 4.3: Three-dimensional representation of the relative local current density, given by
Jrel,i = Ji/Jav, with Ji the absolute local current density given by Eq. (4.5) and Jav
the average local current density in the device. The displayed results are for devices
with disorder strengths of σ = 75 meV ((a) and (b)) and σ = 150 meV ((c) and
(d)), device thickness L = 22 nm, driving voltage V = 2 V, injection barrier ∆ = 1
eV, room temperature, and lattice constant a = 1.6 nm. In (a) and (c) the device
is viewed from the side with the injecting electrode at the bottom, whereas (b)
and (d) give views from the injecting to the collecting electrode. The local current
density is coded with a color and transparency, with the coding scheme indicated
at the bottom. The lateral grid size used is 50 × 50 sites. The boundaries of the
device are depicted by a white bounding box.
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of a local mobility breaks down.6 The presence of current filaments from the injecting
to the collecting electrode then leads to a higher net current than obtained with a 1D
continuum model, the effect becoming larger for larger electric field. This is the reason
for the discrepancies found in Fig. 4.1(d) and Fig. 4.2(b) found for L = 22 nm and
σ = 150 meV between the 3D Master-Equation and 1D continuum-model results, both in
the SCLC and ILC regime. Indeed, one can see from Fig. 4.3 that the typical length scale
of the structures in the current distribution is roughly of the order of 10 nm. Since the
filamentary structure is less pronounced for smaller disorder the agreement between the
3D Master-Equation and 1D results in Fig. 4.1(c) and Fig. 4.2(a) found for σ = 75 meV
is much better.

In the remainder of this section, we discuss to what extent the filamentary nature of the
current density in the ILC regime is properly taken into account in the Burin-Ratner
model19 and the Arkhipov model.16 The above point of view about the underestimation
of the current by the 1D continuum model is supported by an analysis of the current
density using the Burin-Ratner (BR) model.19 Within that model, it is assumed that the
total current is a simple sum of independent contributions from linear (one-dimensional)
filaments that start at all injecting sites. These contributions can be obtained by solving
a 1D master equation for a chain of sites with random Gaussian disorder. We have used
the exact solution for the contribution to the current density from a filament at the point
(iy, iz), given by Eq. (5) in Ref. 19:

J(iy, iz) =
exp

(
− e∆

kBT

)
exp

(
− e∆

kBT

)
+ 2

∑Lx−1
ix=2 exp

(
E(ix)−eaixF+eΦim(ix)

kBT

)J0, (4.10)

with the energies E(ix) taken randomly from a Gaussian DOS with width σ, and with Φ(ix)
the image potential at site ix, given by Eq. (4.3). In contrast to the original expression in
Ref. 19 this expression takes into account the finite thickness of the device. The current
density is expressed relative to J0, defined as

J0 ≡
eν0
a2

exp[−2αa], (4.11)

which is the current density that would be obtained from a master-equation calculation for
a system with all sites fully occupied (pi = 1), in the large-field limit, neglecting the (1−pi)
factors that prohibit double occupation (cf. Eq. (4.4)). The total current density is then
obtained by averaging the contributions from a sufficiently large number of points (iy, iz).
These contributions are obtained by applying Eq. (4.10) repeatedly for a large ensemble of
random sets of energies E(ix), and are thus assumed to be uncorrelated. The assumption
of 1D filaments, made within the BR model, is consistent with the observation in Fig. 4.3
of straight filaments close to the injecting electrode. We note that Eq. (4.10) is derived by
assuming instead of the Miller-Abraham hopping rate Eq. (4.1b) a hopping rate

Wij =
ν0

1 + exp
[
Ej−Ei

kBT

] . (4.12)
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We checked that the differences between the two hopping rates only lead to minor differ-
ences in the final results.

The current density as predicted from the BR model is indicated in Fig. 4.2 (line with
plusses). For ∆ > 0.8 eV, the model provides a quite good approximation to the results
of the full 3D Master-Equation results for large disorder (σ = 150 meV), so that it may
be concluded that the discrepancy with the 1D continuum-model results for large injection
barriers is indeed the consequence of a neglect of transport via rare very easy pathways.
Fig. 4.2 also shows that the BR model predicts a too high current density for injection
barriers smaller than ≈ 0.5 eV and ≈ 0.7 eV for σ = 75 and σ = 150 meV, respectively.
This may be attributed to the fact that the BR model neglects the effects of space charge,
as may be concluded from the results of the 3D Master-Equation calculations with the
space-charge potential switched off (Fig. 4.2, open circles), which follow the BR results
to lower values of ∆.

Another consequence of the filamentary nature of the current density is the occurrence of
a statistical variation of the total current through a given surface area. As an example,
Fig. 4.4 shows the distributions of the current density through 80× 80 nm2 devices (i.e.
50 × 50 sites) of the type studied in Fig. 4.3, for ∆ = 1 eV, and with σ = 75 (Fig.
4.4(a)) and σ = 150 meV (Fig. 4.4(b)), obtained from 3D Master-Equation calculations
(light-gray bars) and from the BR model (black bars). The distributions were obtained
using the BR model for 800 and 1600 devices in the case of a disorder strength σ = 75
and σ = 150 meV, respectively, with different random Gaussian disorder realizations. For
σ = 75 meV, the statistical variations are moderate. The width of the distributions is
limited to approximately 40% of the average current density and the largest observed
current density in the ensemble considered is approximately 4 times the average value.
The BR distribution is clearly shifted to smaller current densities as compared to the
Master-Equation distribution. We attribute this to the limitation to one dimension of
hops in the BR model, which leads to lower currents than when 3D hopping is allowed.
For σ = 150 meV, the statistical variations are very large. The width of the distributions
is comparable to the peak current density and the largest observed current density in the
ensemble considered is now ∼ 90 times the average value (outside the range displayed in the
figure). The strongly asymmetric distributions give rise to an average current density that
is equal to more than twice the peak current densities (note the log-scale for the x-axis).
The relative shift of the BR distribution to smaller current densities is significantly larger
than for σ = 75 meV. The fact that the BR model underestimates the current density
because of its neglect of side-jumps is just visible in (Fig. 4.2(b)).

Whereas the BR model yields already at the relatively high fields considered in Fig. 4.2
(108 V/m) current densities that are lower than the 3D Master-Equation results, it may
be expected that the model breaks down even more clearly at small fields. Trajectories
containing side-jumps are then expected to yield even more important contributions to
the current density. This is confirmed by the results given in Fig. 4.5. For devices with
σ = 75 meV, the figure displays the electric-field dependence of the injection-limited current
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Figure 4.4: Probability distribution of the current density J . The displayed results are for
devices with disorder strengths of σ = 75 meV (a) and σ = 150 meV (b), device
thickness L = 22 nm, room temperature, lattice constant a = 1.6 nm, and injection
barrier ∆ = 1 eV. The lateral grid size is 50 × 50 sites. Equally sized bins on a
logarithmic scale have been used and the normalization is such that the sum of the
lengths of the bars is equal to one. Light-gray bars: results obtained from the 3D
Master-Equation model. Black bars: results obtained from the Burin-Ratner model.
For devices with disorder strength of σ = 75 (150) meV 656 (62) samples were used
for the 3D Master-Equation model and 3200 (6400) samples for the Burin-Ratner
model. The arrows indicate the corresponding average current densities, which
could be very accurately determined, except for the Master-Equation result for
σ = 150 meV, where an error bar indicates the uncertainty.



4.4 Three-dimensional structure of the current distribution; consequences for
different models 61

107 108

10-35

10-30

10-25

10-20

10-15

10-10

150 K

200 K

250 K

 

 

 = 75 meV
L = 22 nm
a = 1.6 nm

 = 1 eV

 3D master-equation model
 1D continuum model
 Burin-Ratner model
 Arkhipov model

cu
rre

nt
 d

en
si

ty
 J

 [J
0]

electric field F [V/m]

T = 300 K

Figure 4.5: The current density (J in units of J0 as given by Eq.( 4.11)) as function of the
electric field (F ), for different temperatures and four different models.



62
Modeling and analysis of the three-dimensional current density in

sandwich-type single-carrier devices of disordered organic semiconductors

density as obtained from the 3D Master-Equation model, the 1D-continuum model, the
BR model and the Arkhipov model (discussed later in this section). The injection barrier
is ∆ = 1 eV. The temperature is varied from 300 K to 150 K, corresponding approximately
to σ̂ = 3 and σ̂ = 6, respectively. It has already been established from Fig. 4.1 that
the voltage dependence of the current density as obtained from the 1D continuum model
is in fair agreement with the results from the 3D Master-Equation model. Therefore,
we regard these results (solid curves) as a benchmark. The figure shows that the BR
model underestimates the current density at small fields. This indeed suggests that at
smaller fields non-linear trajectories, which are neglected within the BR model, contribute
significantly to the current density.

The 1D continuum model yields the following expression for the current density in the ILC
regime:

J = encµ(nc, F )F

∼=
e

a3
exp

[
−e∆′(F )

kBT
+

1

2
σ̂2

]
µ(0, F )F

=
e

a3
exp

[
−e∆′(F )

kBT
+

1

2
σ̂2

]
a2ν0ec1

σ
exp

(
−c2σ̂

2
) µ(0, F )

µ(0, 0)
F (4.13)

∼= exp

[
−e∆′(F )

kBT
+

(
1

2
− c2

)
σ̂2

]
f(F )

eaF

σ
J0,

with ∆′(F ) as given by Eq. (4.9). Use has been made of the fact that the barrier is
sufficiently large, so that transport is in the Boltzmann regime; Eq. (A2) in Ref. 24 can
therefore be used to relate nc to ∆′. Also the expressions for the temperature and field
dependence of the mobility, given in Ref. 10, have been used, with the approximation
c1 = 1.8 × 10−9 ≈ exp(−2αa) = exp(−20), with c2 = 0.42 and with f(F ) a factor that
expresses the field dependence of the mobility:

f(F ) ∼= exp

0.44(σ̂3/2 − 2.2)

√1 + 0.8

(
eaF

σ

)2

− 1

 . (4.14)

For the devices studied, the maximum of the field scale used in Fig. 4.5 corresponds to
eaF/σ ≈ 2. It follows from Eqs. (4.13) and (4.14) that at all temperatures considered
approximately 30 % of the increase of the current density (on a log scale) with the field,
observed in Fig. 4.5, is due to the field dependence of the mobility. The remainder of the
effect is due to the energy-barrier lowering with increasing field and to the linear (eaF/σ)-
factor in Eq. (4.13).

The dash-dotted curves in Fig. 4.5 give the current density as obtained from the 1D
continuum injection model by Arkhipov et al..16 Within this model, it is assumed that the
current density can be written as an integral over contributions due to hops over variable
distances from the electrode to sites at distance x0 > a, and with energy E ′ with respect
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to the Fermi level in the electrode. The contribution of each hop is weighed by the escape
probability wesc(x0) out of the image-potential well in which the charge carrier resides after
the first hop, towards the bulk of the device:

J = e

∫ ∞

a

dx0

∫ ∞

−∞
dE ′W (x0, E

′)wesc(x0)g(E
′ − e∆+ ex0F − eΦim(x0)), (4.15)

with W (x0, E) the Miller-Abrahams hopping rate given by Eq. (4.1) and with wesc(x0)
given by

wesc(x0) =

∫ x0

a
dx exp

(
−exF+eΦim(x)

kBT

)
∫∞
a

dx exp
(

−exF+eΦim(x)
kBT

) . (4.16)

It may be seen from Fig. 4.5 that the Arkhipov model yields a field dependence of the
current density that is quite close to that obtained from the 1D continuum model (and
from the 3D Master-Equation model), but that the temperature dependence of the current
density is much smaller. We tentatively attribute this to the fact that in the expression
for the escape probability Eq. (4.16) the effect of disorder is neglected. The percolative
nature of the escape process is expected to be more strongly temperature dependent than
as predicted by Eq. (4.16), just as the mobility of disordered materials is more strongly
temperature dependent than that of ordered materials. An earlier test of the validity
of the Arkhipov model, using Monte-Carlo calculations, has not been able to reveal this
inadequacy of the model, as the analyses have been carried out only for relatively high
temperatures.17

4.5 Summary and conclusions

We have performed a three-dimensional modeling study of the single-carrier transport
in devices that consist of a single layer of an organic semiconducting material with a
Gaussian distribution of site energies with standard deviation σ, sandwiched in between
two metallic electrodes. The voltage-dependent current density was obtained by solving
the Pauli master equation corresponding to the related hopping problem, taking the effects
of the space charge, the image potential, a finite injection barrier, and the full dependence
of the hopping rates on temperature, carrier density, and electric field into account.

The calculations reveal that the current density can be strongly filamentary, and that
the current filaments become more pronounced with increasing disorder parameter σ̂ =
σ/(kBT ), decreasing layer thickness, and increasing injection barrier. Visualizations of the
three-dimensional (3D) current density show that these filaments become straight near the
injecting electrode when the injection barrier is large, for high fields and for strong disorder,
as assumed in a one-dimensional (1D) master-equation model by Burin and Ratner.19 In
that limit the non-uniformity of the current density is found to give rise to wide distribu-
tions of the current density in an ensemble of nanometer-scale devices. The average current
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density can be much larger than the peak value in the distribution due to the occurrence
of a small fraction of devices with extremely high current densities.

A quantitative analysis of the results has been given by making a comparison with the
results from a 1D continuum drift-diffusion model, which extends an earlier developed
model9 by including the image-charge effect. The voltage-dependent current-density curves
as obtained from both models show a remarkably good agreement (Fig. 4.1), except for
large voltages, disorder parameters, and injection barriers, where the full 3D calculations
reveal an enhanced current density. This is attributed to the effects of rare easy pathways
for the filamentary current density, as confirmed in Section 4.4 from an analysis using the
Burin-Ratner model.

We conclude that the 3D Master-Equation model developed has provided valuable insight
in the degree of validity of an also newly developed 1D continuum model. The limita-
tions of the 1D model arise under conditions at which the current density becomes highly
non-uniform. However, 1D continuum drift-diffusion models will remain important as a
computationally efficient tool for evaluating the materials and device properties of OLED-
type devices. In our view, future research towards the improvement of such models should
focus on the three following subjects: (i) the explicit consideration of the effect of current
filaments, (ii) the development of an approach to the image potential contribution in the
SCLC regime that more consistently takes the space charge near the electrodes into ac-
count, (iii) the possible effects of positional disorder, in particular on the injection-limited
current density.
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Chapter 5

Monte-Carlo study of charge
transport in organic sandwich-type
single-carrier devices: effects of
Coulomb interactions

ABSTRACT

We present the results of Monte-Carlo simulations of transport of charge carri-
ers of a single type in devices consisting of a disordered organic semiconductor
sandwiched in between two electrodes. The simulations are based on hopping
of carriers between sites with a Gaussian energetic distribution, which is either
spatially uncorrelated or has a correlation based on interactions with randomly
oriented dipoles. Coulomb interactions between the carriers are taken into ac-
count explicitly. For not too small injection barriers between the electrodes and
the organic semiconductor, we find that the current obtained from the simula-
tions can be described quite well by a one-dimensional drift-diffusion continuum
model, which takes into account the long-range contributions of Coulomb in-
teractions through the space-charge potential. For devices with low injection
barriers, however, the simulations yield a considerably lower current than the
continuum model. The reduction of the current for uncorrelated disorder is
larger than for correlated disorder. By performing simulations in which the
short-range contributions of the Coulomb interactions between the carriers are
omitted we demonstrate that the difference is caused by these short-range con-
tributions. We can rationalize our results by analyzing the three-dimensional
current distributions resulting from the simulations for different injection bar-



68
Monte-Carlo study of charge transport in organic sandwich-type

single-carrier devices: effects of Coulomb interactions

riers with and without taking into account these short-range contributions.1

1The contents of this chapter are based on work that has been published: J.J.M. van der Holst, F.W.A.
van Oost, R. Coehoorn, P.A. Bobbert, Physical Review B: Condensed Matter 2009, 80, 235202
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5.1 Introduction

Organic light-emitting diodes (OLEDs) are promising high-efficiency light-sources that are
presently used in a variety of lighting and display applications. They consist of one or more
layers of organic semiconducting material sandwiched in between electrodes, of which one
is usually a low-work function metal and the other a transparent conducting oxide like
indium-tin-oxide. Despite the growing commercial success of OLEDs, knowledge of many
aspects of their functioning is still fragmental.

One of the most important of these aspects is the charge transport. It has become clear
in the last two decades that disorder plays a very important role in charge transport since
it leads to the localization of electronic states. The transport is assumed to take place
by hopping of carriers between the sites at which the states are localized. The energetic
disorder is often modeled by assuming that the on-site energies are random variables, taken
from a Gaussian density of states (DOS), resulting in what has been called the Gaussian
Disorder Model (GDM). The dependence of the charge-carrier mobility µ on temperature
and electric field in the GDM was investigated by Bässler et al. using Monte-Carlo (MC)
simulations of the hopping transport of a single carrier in a Gaussian DOS.1,2

Gartstein and Conwell suggested that spatial correlation in the disorder should be included
to better describe experimental charge-transport data. These data show a mobility µ with
a Poole-Frenkel dependence on the electric field, µ ∝ exp[γ

√
F ], in a rather wide range of

electric-field strengths F , with γ a factor depending on temperature.3 In particular, it was
suggested that the fields of randomly oriented dipoles could be the origin of such correlated
disorder.4,5 The resulting model is known as the Correlated Disorder Model (CDM).

In addition, the dependence of the mobility on the carrier density has to be accounted
for at densities where state-filling effects become important.6,7 For such densities, the
independent-carrier assumption in the MC simulations of Bässler et al.,1,2 also called the
Boltzmann limit, is invalid. The mobility increases with increasing density, since the
occupation of the lowest-energy states by carriers reduces the effect of these states as
trapping centers. Pasveer et al.8 performed a computational study - involving a solution
of the Pauli master equation for the occupational probabilities of a cubic array of hopping
sites - of the dependence of the mobility on temperature, electric field, and carrier density
in the case of a spatially uncorrelated Gaussian DOS. It was shown that the mobility
obtained from that study can provide an excellent quantitative explanation of measured
current-voltage characteristics of hole-only devices of two derivatives of the semiconducting
polymer poly(p-phenylenevinylene) (PPV)8 as well as a derivative of polyfluorene.9 It was
found that in these devices at room temperature the density dependence of the hole mobility
is more important than the field dependence. We will refer to this extension of the GDM,
regarding the inclusion of the density dependence of the mobility, as the Extended Gaussian
Disorder Model (EGDM).

For the case of a spatially correlated Gaussian DOS, a similar computational study of
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the density dependence of the mobility was performed by Bouhassoune et al.10 We will
refer to this extension of the CDM as the Extended Correlated Disorder Model (ECDM).
Comparison of EGDM and ECDM modeling of current-voltage characteristics of hole-
only devices of conjugated polymers like derivatives of PPV10 and a polyfluorene-based
co-polymer11 has led to the conclusion that for these polymers the inter-site distance as
obtained from a fit of the EGDM modeling is more realistic than the one obtained from a
fit of the ECDM modeling. On the other hand, a similar comparison of EGDM and ECDM
modeling of current-voltage characteristics of hole-only devices of the molecule N,N ′-bis(1-
naphthyl)-N,N ′-diphenyl-1, 1′-biphenyl-4, 4′-diamine (α-NPD) and of electron-only devices
of the molecule bis(2-methyl-8-quinolinolato)(4-phenylphenolato)aluminum (BAlq) shows
that the inter-site distance as obtained from a fit with the ECDM modeling is more realistic
than the one obtained with the EGDM modeling.12,13 This work suggests that for the
investigated polymers and small-molecule semiconductors the EGDM and the ECDM,
respectively, are thus the best models to describe charge transport.

In the above device-modeling studies within the EGDM and ECDM a one-dimensional
(1D) continuum drift8 or drift-diffusion equation9,14 was solved using a mobility with a
parametrization of the dependence on temperature, electric field, and carrier density based
on a numerical solution for the mobility obtained by solving the Pauli master equation for
the site occupational probabilities.8,10 In order to investigate the consistency of this ap-
proach and to study the injection of carriers in more detail, we performed a computational
study of single-carrier devices by solving the Pauli master equation for a collection of sites
representing a full three-dimensional (3D) device, including its electrodes.15 The details
concerning this computational study are described in the previous chapter. The density
of states was taken to be Gaussian and to be spatially uncorrelated, corresponding to the
EGDM. The effects of space charge, the image-charge potential, and an injection barrier
were taken into account. The space charge was taken into account in a layer-averaged way,
neglecting any explicit short-range Coulomb interactions between charges. The image-
charge potential was taken into account by including the Coulomb interaction between a
charge and its image charge when it is close to one of the electrodes.

In these 3D device studies,15 the current density was found to be highly inhomogeneous, in
agreement with other studies.16–19 This inhomogeneous structure involves narrow current
filaments that carry almost all the current, characteristic of the percolative nature of charge
transport in disordered materials. Despite these 3D inhomogeneities, the current-voltage
characteristics were found to be described quite well by the 1D continuum drift-diffusion
device model of Ref. 14, with an image-charge-induced lowering of the injection barrier
included in a similar way as in the work of Emtage and O’Dwyer.20 For thin devices and
high disorder strengths the current obtained from the 3D calculations was found to be
somewhat higher than that obtained from the 1D drift-diffusion model. It is in this regime
that the current density becomes extremely non-uniform. It was found that in this regime
the current-voltage characteristics can be described rather well with a model of Burin and
Ratner, which assumes injection of carriers along 1D current pathways.21
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While the above 3D device studies properly take into account the effects of percolation,
the effects of Coulomb interactions between the carriers are only taken into account in an
average way by evaluating a layer-averaged space charge. In fact, the short-range effects
of Coulomb interactions between carriers cannot be taken into account in a consistent way
within the Master-Equation approach, since this approach involves the time-averaged and
not the actual occupational probabilities of the sites. On the other hand, in MC simulations
it is - in principle - straightforward to take the effects of Coulomb interactions fully into
account. For a bulk organic semiconductor, these effects have been investigated using
MC simulations. A description of the results of this MC study is given in chapter 3. In
general, it was found that the mobility in the case that Coulomb interactions are taken into
account agree quite well with the mobility in the case that the Coulomb interactions are
not taken into account. However, for low electric fields, the mobility was somewhat lower in
the presence of Coulomb interactions. For the highest studied carrier density (0.1a−3) the
difference was about a factor 1.7. Therefore, it is important to study the effects of Coulomb
interactions in devices, where high carrier densities can be reached at the electrodes in the
case of low injection barriers and where the carrier density can vary over several orders of
magnitude within a distance of only a few nanometers from the electrodes.

Another reason to study the effects of Coulomb interactions explicitly is a double-counting
problem that occurs when both the space charge and the image-charge potential are taken
into account either in a 3D Master-Equation approach or in a 1D continuum drift-diffusion
model. The problem is that in taking into account the space charge and the correct bound-
ary conditions for the electrostatic potential at the electrodes, the image-charge potential
related to the space charge has already been taken into account. When considering a par-
ticular charge, it is therefore not consistent to take into account the interaction of this
charge with its image charge, since the contribution of this charge to the space charge was
already accounted for, albeit in an average way. It is not a priori clear what the size is of
the error that is made by this double counting. The problem of taking into account the
image-charge potential in a consistent way was recently discussed in detail by Genenko
et al.22 and in Subsection 5.2.2 and Section 5.3 we will discuss this issue further. The
problem can obviously be circumvented by performing MC simulations in which Coulomb
interactions are taken into account explicitly.

In the present work we will show and discuss the results of MC simulations for single-
carrier devices consisting of an organic semiconductor sandwiched in between two equal
electrodes. We will take into account Coulomb interactions in the following way. Around
every charge in the device a cut-off sphere is defined. Interactions with charges within this
sphere are taken into account explicitly, while interactions with charges outside this sphere
are take into account in a layer-averaged way. With an optimal choice of the radius of the
cut-off sphere, we take into account the short-range as well as the long-range contributions
of the Coulomb interactions in a proper way, while maintaining a sufficient computational
efficiency. Moreover, by reducing the radius of the cut-off sphere to zero, we can study the
situation where Coulomb interactions are only taken into account in a layer-averaged way,
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corresponding to the approximation made in the 3D Master-Equation approach and the
1D continuum drift-diffusion model.

This chapter is built up as follows. Section 5.2 discusses the theory and the methods
used. In Subsection 5.2.1 we describe our MC approach and discuss in detail our method
to take into account Coulomb interactions, which was briefly sketched in the previous
paragraph. Subsection 5.2.2 discusses the 1D drift-diffusion model used for calculating
the current density in single-carrier devices. In Section 5.3 we present the current-voltage
characteristics of devices with uncorrelated as well as correlated disorder, corresponding
to the EGDM and ECDM, respectively. For the case of the EGDM, we compare our
results with our previous work based on the Master-Equation approach,15 (as described in
the previous chapter) while for both the EGDM and the ECDM we compare our results
with those of 1D drift-diffusion modeling. In Section 5.4 we show plots of the 3D current
density in devices with correlated and uncorrelated disorder, with and without taking into
account the short-range contributions of the Coulomb interactions. These results allow
us to rationalize the effects of short-range Coulomb interactions. Section 5.5 contains a
summary and conclusions.

5.2 Theory and methods

5.2.1 Monte-Carlo method

In this section we describe our MC approach for calculating the current density in a single-
carrier device consisting of an organic semiconducting material sandwiched in between
two electrodes. The organic semiconductor and the electrodes are modeled by a three-
dimensional cubic Lx × Ly × Lz lattice with lattice constant a. A lattice site is denoted
by i = {ix, iy, iz}. The sites with ix = 1 and ix = Lx represent the injecting and collecting
electrodes, respectively. The other sites, which we call “organic” sites, represent localized
electronic states in the organic semiconductor. Periodic boundary conditions are taken in
the y- and z- directions. The applied electric field is in the x-direction.

We assume that the hopping of charge carriers from one site to another is a thermally
assisted tunneling process with a coupling to an acoustical phonon bath. The hopping rate
Wij from site i to j is then described by the Miller-Abrahams formalism,23

Wij = ν0 exp

[
−2α|Rij| −

∆Eij

kBT

]
for∆Eij > 0, (5.1a)

Wij = ν0 exp [−2α|Rij|] for∆Eij ≤ 0, (5.1b)

where ν0 is an intrinsic rate, α is the inverse localization length of the localized wave
functions, |Rij| ≡ a|i− j| is the distance between sites i and j, kB is Boltzmann’s constant,
T is the temperature, and ∆Eij is the difference Ej − Ei between the on-site energies of
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sites j and i. The on-site energy Ei of an organic site is equal to the sum of a random on-
site energy contribution Erand,i, an electrostatic contribution eΦapplied,i due to the applied
potential, a contribution eΦself,i due to the Coulomb interactions of a charge with its own
(repetitive) image charges, and a contribution eΦinteract,i due to Coulomb interactions of a
charge with all other charges and their image charges.

We assume that the hopping rate of a charge carrier from an electrode site to an organic
site and vice versa is described by the same expression (Eq. (5.1)) as the mutual hopping
rate between organic sites. It is to be expected that the specific form of this hopping rate
has almost no influence on the current-voltage characteristics, as long as there is a thermal
equilibrium between the electrode and the adjacent organic sites. We model injection and
collection by the electrodes by assuming that there is always a carrier at an electrode
site ready to hop to an adjacent empty organic site and that a carrier at an organic site
can always hop to an adjacent electrode site. When a charge hops from the injecting or
collecting electrode to an organic site, it will experience an injection barrier, ∆1 or ∆2,
respectively. To take this into account in Eq. (5.1), we use then ∆Eij = Ej + ∆1 or
∆Eij = Ej + ∆2 when a charge hops from the injecting electrode (ix = 1) or collecting
electrode (ix = Lx), respectively, to an organic site. A similar change is made for hopping
from an organic site into one of the electrodes.

We consider the situations of spatially uncorrelated as well as spatially correlated disorder.
In the case of spatially uncorrelated disorder, the energies Erand,i are randomly drawn from
a Gaussian density of states (DOS):

g(E) =
1√

2πσa3
exp

[
− E2

2σ2

]
, (5.2)

with σ the width of this DOS. For the electrode sites we set these energies equal to 0. In
the case of spatially correlated disorder, we take the energy Erand,i at site i equal to the
electrostatic energy resulting from permanent random dipoles dj of equal magnitude d but
random orientation on all the other organic sites j ̸= i. The resulting density of states is
Gaussian, with a width σ proportional to d.5,24,25 The on-site energy Erand,i is then given
by:

Erand,i = −
∑
j̸=i

edj ·Rij

ϵ0ϵr|Rij|3
, (5.3)

with the sum over all sites j in a sufficiently large box around site i, e the unit charge,
ϵ0 the vacuum permittivity, and ϵr the relative dielectric constant of the organic material.
The resulting disorder strength is then given by σ ≈ 2.35(ed)/(ϵ0ϵra

2). The dimensionless
correlation function C(r) between the on-site energies is defined by

C(r = |Rij|) ≡
⟨Erand,iErand,j⟩

σ2
, (5.4)

in which ⟨...⟩ denotes an ensemble average over different random configurations of the
dipole orientations. The correlation function is at an inter-site distance r = a equal to
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C(r = a) ≈ 0.7, at r = 2a equal to C(r = 2a) ≈ 0.35, and for larger inter-site distances
equal to C(r = |Rij|) ≈ 0.74a/|Rij|.26

The Fermi energy in the collecting electrode is taken as the zero-energy reference value, so
that the electrostatic contribution due to the applied potential, eΦapplied,i, at the injecting
and collecting electrode is given by eΦapplied,{ix=1,iy ,iz} = eV and eΦapplied,{ix=Lx,iy ,iz} = 0,
respectively, with V the applied driving voltage. eΦapplied,i at the organic sites is determined
by a linear drop of the potential over the device.

A charge on an organic site will experience an interaction with its repetitive image charges
with alternating sign in the two conducting electrodes. Up to order nimages the contribution
due to the Coulomb interactions of a charge with its image charges, eΦself,i, is given by

eΦself,i = − e2

16πϵ0ϵra

 nimages∑
n=−nimages

1

2ix + 2nLx

−
nimages∑

n=−nimages,n̸=0

1

2nLx

 , (5.5)

at the organic sites. Because of the translational symmetry in the y- and z-direction, eΦself,i

only depends on the layer index ix. In our simulations we took nimages = 100, which is
more than sufficient.

The on-site energy Ei also contains the Coulomb interaction energy eΦinteract,i with all
the other charges and the image charges of these other charges. For practical reasons
we split eΦinteract,i into three contributions. (1) First, we take into account a short-range
contribution eΦsr,i, in which the Coulomb interaction energy with charges within a sphere of
radius Rc is taken into account explicitly. (2) Next, we add a layer-averaged contribution
eΦlayer,i, in which the Coulomb interaction energy with the other charges is taken into
account in a layer-averaged way. Because this contribution also takes into account the
layer-averaged Coulomb energy of charges in the disc-shape parts of the layers within the
sphere, a double-counting occurs. (3) Therefore, we subtract a contribution eΦdiscs,i to
correct for this double-counting. By increasing Rc we can systematically investigate the
effect of taking into account the short-range contributions of the Coulomb interactions.
For Rc = 0, Coulomb interactions of a charge with other charges and their image charges
are only taken into account in a layer-averaged way while the interaction of a charge with
its own image charges is taken into account explicitly, as in our previous Master-Equation
calculations.15 With increasing Rc, Coulomb interactions are taken into account in an
increasingly exact way, with full exactness for Rc = ∞. For a well-chosen finite value of
Rc we can obtain a good compromise between accuracy and simulation speed. For the
device simulations discussed in Sections 5.3 and 5.4 we have taken Rc = 10a, which yields
sufficient accuracy.

The short-range contribution of the Coulomb potential at site i = {ix, iy, iz} due to a
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charge at site j = {jx, jy, jz} and its image charges is given, up to order nimages, by

fc,i,j=


e

4πϵ0ϵra
( a
|Rij|

−
∑nimages

n=−nimages

1√
(jx+ix+2nLx)2+(jy−iy)2+(jz−iz)2

+
∑nimages

n=−nimages,n̸=0
1√

(jx−ix+2nLx)2+(jy−iy)2+(jz−iz)2
), |Rij| ≤ Rc,

0, |Rij| > Rc.

(5.6)

The interaction energy eΦsr,i is then obtained as

eΦsr,i =
∑
j ̸=i

ejfc,i,j, (5.7)

with ej = e when a charge is present at site j and ej = 0 otherwise. In our simulations we
also took nimages = 100 in Eq. (5.6).

In order to calculate the layer-averaged electrostatic contribution eΦlayer,i, the Poisson
equation is solved with the layer-averaged charge density ρjx in each layer jx as source
term. Consequently, eΦlayer,i depends only on the layer index ix. Due to the image-charge
contribution, eΦlayer,i is zero at both the injecting and collecting electrode sites.

Finally, we have to calculate the double-counting correction eΦdiscs,i, due to the average
charge in the discs in each layer jx formed by the intersection between the sphere with
radius Rc centered around site i and the layer jx. These discs have the same layer-averaged
charge density ρjx as the layer jx in which they are located. The potential at site i of the
disc in layer jx, up to order ndiscs images of the discs, is given by

fdisc,ix,jx =



ρjx
2ϵ0ϵr

(
√

R2
jx−ix

+ a2(jx − ix)2 − a|jx − ix|

−
∑ndiscs

n=−ndiscs
{
√
R2

jx−ix
+ a2(jx + ix + 2nLx)2

−a|jx + ix + 2nLx|}
+
∑ndiscs

n=−ndiscs,n̸=0{
√

R2
jx−ix

+ a2(jx − ix + 2nLx)2

−a|jx − ix + 2nLx|}), 0 < a|jx − ix| ≤ Rc,
0, a|jx − ix| > Rc,

(5.8)
with Rjx−ix =

√
R2

c − a2(jx − ix)2 the radius of the disc in layer jx. We note that in
Eq. (5.8) the Coulomb potential of a continuous disc-shape charge distribution is calculated,
while in Eq. (5.6) the Coulomb potential of a discrete set of point charges is calculated. The
error as a result of the mismatch of these two potentials becomes smaller when Rc becomes
larger. As mentioned before, we have taken Rc = 10a, which yields sufficient accuracy. We
have taken ndiscs in our simulations equal to 100, 000, which is more than enough for the
value Rc = 10a that we have used. We note that ndiscs should be taken much larger than
nimages, since the potential of a disc-shape charge distribution decays much slower with
increasing distance than the potential of a point-charge. The total contribution eΦdiscs,i is
obtained by:

eΦdiscs,i =
∑
jx

efdisc,ix,jx . (5.9)
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Of particular interest is the spatial structure of the current density in the device. To
investigate this structure we define at each site i a local current Ji in the direction of the
collecting electrode:

Ji = e
(fi − bi)

tsim
, (5.10)

with fi (bi) the total number of forward (backward) hops from site i in the direction of
the collecting (injecting) electrode and tsim the total simulation time. We note that we
only allow hops over a maximum distance of

√
3a (see Section 5.3). Therefore, the forward

(backward) hops are over a maximum distance of a in (against) the x-direction. The total
current density Jix in layer ix is then given by

Jix =

Ly∑
iy=1

Lz∑
iz=1

Ji
a2LyLz

, (5.11)

where the summation is over all sites in the layer ix parallel to the electrodes within the
device. In a stationary situation, the current density Jix should be the same in each layer
ix.

Our simulations proceed as follows. We start with an empty device and apply the voltage
V . We arbitrarily assume that the hopping carriers are positively charged. Hops of carriers
are chosen with weights determined by the hopping rates given by Eq. (5.1). For every
hop, a hopping time is chosen from an exponential distribution with an inverse decay time
equal to the sum of all possible hopping rates. After every hop the short-range Coulombic
energy contribution eΦsr,i is updated for every site in the device to which another hop
can occur. For practical reasons, the layer-averaged contributions eΦlayer,i and eΦdiscs,i are
only updated after every 100 hops. After a sufficiently long simulation time a stationary
situation is obtained, as judged by monitoring the spread and the time dependence of
the current densities Jix in the different layers ix. After that the data gathering starts.
The simulation ends when a sufficiently accurate current density Jix is obtained for every
layer ix. The final result for the current density is obtained after averaging over a number
(typically 10-20) of disorder configurations. The relative accuracy of the resulting averaged
current densities J is around 10%.

5.2.2 One-dimensional continuum drift-diffusion model

We will compare the J(V ) curves obtained from the MC simulations described in the
previous subsection to the J(V ) curves obtained from a 1D continuum drift-diffusion model.
In this model the current density is given by the drift-diffusion equation:

J = n(x)eµ(x)F (x)− eD(x)
dn(x)

dx
, (5.12)

with n(x), F (x), µ(x), and D(x) the local charge-carrier density, the local electric field, the
local mobility, and the local diffusion coefficient, respectively. n(x) and F (x) are related
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to each other via the Poisson equation, dF/dx = (e/ϵ0ϵr)n(x). The density, field, and
temperature dependence of the local mobility µ(x) = µ(n(x), F (x), T ) is given by the
EGDM- or ECDM-parametrization8,10 in the case of uncorrelated or correlated disorder,
respectively. The local diffusion coefficient is obtained from the local mobility by using the
generalized Einstein equation.27

To solve the 1D drift-diffusion equation, the carrier densities at the electrode planes, nc,
are assumed to be constant and given by the condition of thermal equilibrium between the
electrode and the organic layer:

nc =

∫ ∞

−∞

g(E)

1 + exp
[
E+∆
kBT

]dE. (5.13)

When the local field Fc at the electrode plane, as calculated by the external field V/L and
by the Poisson equation, is negative, the local drift contribution of the current is directed
towards the electrode. In this case we do not correct for the image potential. However,
when the local field at the electrode plane is positive, the local drift contribution of the
current is directed away from the injecting electrode. In this case we assume a thermal
equilibrium between the electrode and the maximum of the total potential formed by the
external potential V/L, the potential as calculated by the Poisson equation, and the image
potential. Like in chapter 4 we make use of an image-charge-corrected barrier height, ∆′,
in Eq. (5.13), as first suggested by Emtage and O’Dwyer,20

∆′ = ∆− e

√
eFc

4πϵ0ϵr
, (5.14)

where Fc and ∆′ are determined self-consistently by using an iterative procedure.

The above approach of taking into account the effect of image charges suffers from a simi-
lar double-counting problem as the Master-Equation approach. For the case of Boltzmann
statistics and absence of disorder the problem of taking into account the effect of image
charges in a consistent way was recently discussed in detail by Genenko et al.22 These
authors delineate the regions of validity of what they call the “mean-field” (MF) and
“single-particle” (SP) approach for varying injection barrier and local field at the elec-
trodes. In the MF approach the effects of image charges are accounted for solely by the
boundary conditions for the electrostatic potential at the electrodes, while in the SP ap-
proach only the explicit image potential of a single charge close to the electrodes is taken
into account. The “modified mean-field” (MMF) approach proposed by these authors cor-
responds to Eq. (5.14), where the second term in this equation is multiplied by a prefactor
that accommodates a smooth switch-on of the image-charge potential when passing the
region of validity of the MF approach to the region of validity of the SP approach. The au-
thors argue that the MMF approach more accurately treats injection for intermediate-size
injection barriers.
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5.3 Results for current-voltage characteristics

In Fig. 5.1 we display the room-temperature current density J in symmetric single-carrier
devices with uncorrelated Gaussian disorder as a function of the applied voltage V , for
different values of the injection barrier ∆ = ∆1 = ∆2. The open symbols indicate the
results of MC simulations for the case that short-range Coulomb interactions are neglected,
which corresponds to setting the cut-off radius Rc of the sphere within which Coulomb
interactions are taken into account explicitly equal to zero. The closed symbols correspond
to the results of MC simulations for which the short-range contributions of the Coulomb
interactions are taken into account (Rc = 10a, see Subsection 5.2.1). Results are given
for four different values of the injection barrier, ∆ = 0, 0.33, 0.67, and 1 eV. The lattice
constant is taken equal to a = 1.6 nm, a value found in Ref. 8 from modeling the transport
in a hole-only device based on the PPV derivative OC1C10-PPV (poly[2-methoxy-5-(3’,7’-
dimethyloctyloxy)-p-phenylene vinylene]). We choose α = 10/a in Eq. (5.1) and allow for
hops over a maximum distance of

√
3a, as in our calculations with the Master-Equation

approach.15 The four plots in Fig. 5.1 show results for two different values of the disorder
strength, σ = 3kBT (Figs. 5.1a and c) and 6kBT (Figs. 5.1b and d), which correspond
at room temperature to σ = 75 meV and 150 meV, respectively. Two device thicknesses
are taken, L = 22.4 (13 layers, Figs. 5.1c and d) and 102.4 nm (63 layers, Figs. 5.1a
and b), which are denoted by “22 nm” (“thin”) and “102 nm” (“thick”), respectively. The
lateral grid size is 50× 50 sites, which is sufficiently large. The relative dielectric constant
ϵr is taken equal to 3, like in Ref. 8. The attempt-to-jump frequency, ν0, is chosen in such
a way that the current density as obtained from the simulations is equal to 1 A/m2 for
the thick device at V = 10 V, for the case that Rc = 0. The value of ν0 is then equal to
3.5× 1013 s−1 and 1.4× 1016 s−1 in the case of a device with disorder strength σ = 3kBT
and 6kBT , respectively. We were not able to obtain sufficiently accurate results for the 102
nm device in the case of a disorder strength σ = 6kBT for the lowest injection barriers and
voltages (Fig. 5.1b).

We find that the results obtained without taking into account short-range Coulomb inter-
actions are virtually indistinguishable from the results obtained by the Master-Equation
calculations of exactly the same devices in chapter 4. Since the Master-Equation is an
equation for the time-averaged occupational probabilities of the sites, it is not possible
to include Coulomb interactions explicitly in these calculations. Another aspect of the
Master-Equation calculations is that correlations between occupational probabilities of
sites are not accounted for, whereas such correlations are taken into account in the MC
simulations (even if short-range Coulomb interactions are not accounted for). By taking
into account correlations between the occupational probabilities of pairs of neighboring
sites it was shown that the effect of such correlations on the current is very small.28 This is
in agreement with the observed indistinguishability between the Master-Equation results
and the MC results without short-range Coulomb interactions. We do not plot the results
of the Master-Equation calculations in Fig. 5.1, since these essentially coincide with the
open symbols.
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Figure 5.1: Dependence of the current density (J) on the driving voltage (V ) for devices with
an uncorrelated Gaussian density of states. The devices have thicknesses of L =
102 nm and L = 22 nm and disorder strengths of σ = 75 meV and σ = 150
meV, as indicated in (a)-(d). The results are for room temperature and lattice
constant a = 1.6 nm. The values used for the attempt-to-jump frequency, ν0 in
Eq. (5.1), are 3.5 × 1013 s−1 for devices with σ = 75 meV and 1.4 × 1016 s−1 for
devices with σ = 150 meV. These values correspond to a mobility pre-factor µ0 (as
defined in Ref. 8) equal to 4.8× 10−14 m2/Vs and 1.1× 10−16 m2/Vs, respectively.
Closed symbols: results obtained from Monte-Carlo simulations including short-
range Coulomb interactions, for different injection barriers ∆: 0 eV (downwards
pointing triangles), 0.33 eV (circles), 0.67 eV (upwards pointing triangles), and 1
eV (squares). In (b) no reliable results could be obtained for ∆ = 0 and 0.33 eV for
the lower voltages. Open symbols: results obtained from Monte-Carlo simulations
without short-range Coulomb interactions. Solid lines: results obtained from the
1D continuum drift-diffusion model as explained in the main text. A linear Ohmic
dependence J ∝ V expected at low voltage is indicated, as well as a quadratic
dependence J ∝ V expected for a space-charge-limited current with a constant
mobility.



80
Monte-Carlo study of charge transport in organic sandwich-type

single-carrier devices: effects of Coulomb interactions

The drawn lines in Fig. 5.1 correspond to results obtained from the 1D drift-diffusion
model described in Subsection 5.2.2. These results follow the MC results without short-
range Coulomb interactions quite accurately, except for the thin device (L = 22 nm) with
strong disorder (σ = 6kBT ) at voltages higher than 1 V (Fig. 5.1d). These observations
are equivalent to those made in chapter 4.

For the lower injection barriers (∆ = 0 and 0.33 eV) the devices are in the space-charge-
limited current (SCLC) regime and the current density almost does not depend on the size
of the injection barrier. In devices with weak disorder (σ = 3kBT ) the current density is
dependent on the injection barrier for the higher injection barriers (∆ = 0.67 and 1.0 eV).
In this case the devices are in the injection-limited current (ILC) regime. For devices with
strong disorder (σ = 6kBT ) the current density is still dominated by space-charge effects
at an injection barrier of ∆ = 0.67 eV, because the higher disorder leads to a higher carrier
density close to the electrodes as compared to the devices with σ = 3kBT , due to the larger
filling of the states in the tail of the Gaussian DOS. For high injection barriers the current
density in the 22 nm and 102 nm devices is almost the same for equal injection barriers if
the voltage is scaled with the device thickness.

The most important observation to be made, however, is that for devices without injection
barrier (∆ = 0 eV), the current density resulting from the MC simulations with short-
range Coulomb interactions is considerably lower than the current density resulting from
the simulations without these interactions (and also considerably lower than the 1D drift-
diffusion results). For the thin device (L = 22 nm) with weak disorder (σ = 3kBT ) the
current density with short-range interactions is at V = 2 V about 25% lower than without
short-range interactions (Fig. 5.1c). This difference increases for lower voltages to a factor
of about 6. The difference is less for devices with a higher disorder strength (a factor of
about 3 for the thin device with σ = 6kBT at low voltages, see Fig. 5.1d) and a larger
thickness (a factor of about 2 for the thick device with σ = 3kBT at low voltages, see
Fig. 5.1a). When short-range Coulomb interactions are taken into account, the current
density in devices with no injection barrier is almost the same as the current density in
a device with an injection barrier ∆ = 0.33 eV. Hence, the effect of taking into account
short-range Coulomb interactions is similar to the effect of an increase of the injection
barrier. By analyzing the dependence of the current density on the injection barrier we
found that at about ∆ = 0.3 eV the difference between the MC results with and without
short-range Coulomb interactions disappears. This means that for injection barriers higher
than about 0.3 eV the density of carriers in the device becomes so low that short-range
Coulomb interactions have no influence anymore.

The saturation of the current with decreasing injection barrier at an injection barrier of
about 0.3 eV is reminiscent of the pinning of the injection barrier by the transfer of charge
from the electrode to the first organic layer under the influence of the image potential,
leading to the formation of a dipole layer, as described by Tutǐs et al.29 In this way these
authors try to explain the experimentally observed pinning of the injection barrier for
devices of tris(8-hydroxyquinolinato)aluminium (Alq3) at about 0.6 eV with low work-
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function metals.30 However, the distance between the electrode and the first organic layer
assumed by Tutǐs et al. is 0.3 nm and hence much smaller than the value of 1.6 nm assumed
by us, so that this mechanism of pinning of the injection barrier would occur at much lower
injection barriers in our case. We explicitly checked that the difference in charge transfer
to the first organic layer for the situation with and without Coulomb interactions is not
enough to yield an injection barrier difference of 0.3 eV, so that another mechanism should
be responsible for the difference in the current between the situation with and without
short-range Coulomb interactions. We will try to identify this mechanism in what follows.

In Fig. 5.2 we display similar results as in Fig. 5.1, but now for the case of dipole-
correlated disorder. Correspondingly, the 1D drift-diffusion calculations were performed
with the ECDM mobility function.10 The attempt-to-jump frequency is chosen in a similar
way as in Fig. 5.1, leading to ν0 = 9.5× 1012 s−1 and 4.8× 1013 s−1 in the case of disorder
strengths σ = 3kBT and 6kBT , respectively. For the 102 nm device in the case of a disorder
strength σ = 6kBT and injection barrier ∆ = 0 we could not obtain an accurate result at
the lowest voltage (Fig. 5.2b).

The agreement between the MC results without short-range Coulomb interactions and
the 1D drift-diffusion results is somewhat worse than in the case of uncorrelated disorder,
especially for thin devices, high disorder strengths, low applied voltages, and low injection
barriers. For low injection barriers (∆ = 0 and 0.33 eV) the current is again space-charge
limited. For both disorder strengths σ = 3kBT and 6kBT and at high injection barriers
∆ = 0.67 and 1.0 eV the devices are injection-limited.

The difference between the results of the MC simulations with short-range Coulomb inter-
actions and those without short-range Coulomb interactions are now smaller than for the
case of uncorrelated disorder. The current density in the thin device with weak disorder
(Fig. 5.2c) with short-range Coulomb interactions is at V = 2 V only about 10% lower
than without short-range Coulomb interactions. This difference increases for lower voltages
to a factor of about 2. The difference is almost negligible in the thick device (Figs. 5.2a
and b) and at high disorder strength (Fig. 5.2d). We note that the difference between the
current-voltage characteristics with and without short range Coulomb interactions occurs
at very small injection barriers, as shown in Fig. 5.1 for the case ∆ = 0. The effect
occurs thus in the MF regime (within the terminology used by Genenko et al.22), within
which the electric field is directed towards the electrode. The MMF approach of Genenko
et al., which applies to intermediate energy barriers resulting in a positive field, is then
inapplicable. At the non-zero injection barriers that we studied the double-counting error
made in the Master-Equation approach and in the 1D drift-diffusion modeling apparently
does not lead to any significant error.

An important conclusion is that the current with short-range Coulomb interactions in-
cluded is in our simulations always smaller than without short-range Coulomb interactions.
This conclusion appears to be at odds with the conclusion of Zhou et al.31 that Coulomb
interactions decrease the mobility at low disorder strength but increase the mobility at
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Figure 5.2: The same as in Fig. 5.1, but for correlated disorder. The values used for the attempt-
to-jump frequency, ν0 in Eq. (5.1), are 9.5× 1012 s−1 for devices with σ = 75 meV
and 4.8 × 1013 s−1 for devices with σ = 150 meV. These values correspond to
a mobility pre-factor µ0 (as defined in Ref. 10) equal to 2.4 × 10−14 m2/Vs and
2.4× 10−17, respectively. In (b) no reliable results could be obtained for ∆ = 0 at
the lowest voltage.
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high disorder strength. However, this conclusion was drawn from results obtained at a
rather large electric field of F = 4kT/ea, a field strength that is only reached at the high-
est voltages in Figs. 1 and 2. The reduction of the current found by us is compatible
with the theoretical prediction of a Coulomb gap opening up around the Fermi energy in
the DOS of a system of interacting localized charges,32,33 which leads to a reduction of the
carrier mobility at low electric field.

5.4 Effects of short-range Coulomb interactions on

the three-dimensional current distributions

In this section we show the 3D current distributions in the devices with and without taking
into account short-range Coulomb interactions. From the structure of these distributions
we will try to rationalize the trends in the effects of short-range interactions on the total
current observed in the previous section. Fig. 5.3 shows the time-averaged 3D current
distributions, calculated with Eq. (5.10), at room temperature of a thin device of L = 22
nm for uncorrelated disorder with a disorder strength of σ = 3kBT (Figs. 5.3a and b) and
σ = 6kBT (Figs. 5.3c-f) at an applied voltage of V = 0.5 V. Figs. 5.3a-d show the results
without an injection barrier, while Figs. 5.3e and f show the results for σ = 6kBT with an
injection barrier of ∆ = 1 eV. In Figs. 5.3a, c, and e short-range Coulomb interactions
have been taken into account, while these have been omitted in Figs. 5.3b, d, and f.
Apart from a factor of two difference in the energies between σ = 3kBT and σ = 6kBT ,
exactly the same disorder configuration of the random energies of the organic sites has
been taken in Figs. 5.3a-f. Fig. 5.4 shows the same results for correlated disorder.

In the case of vanishing injection barrier ∆ = 0 there is a significant effect of short-range
Coulomb interactions on the current distributions (compare Figs. 5.3a and b, Figs.
5.3c and d, Figs. 5.4a and b, and Figs. 5.4c and d). As already noted in chapter 4
the energetic disorder leads to a strong filamentary structure of the current distribution,
because of the percolative character of the charge transport. We observe that when short-
range Coulomb interactions are taken into account, the current distribution is changed and
the filamentary character of this distribution is reduced (compare in particular Fig. 5.3c
with Fig. 5.3d and Fig. 5.4c with Fig. 5.4d). The reason for this is that the short-range
Coulomb interactions prevent carriers from always following the most favorable percolating
path from one electrode to the other, since a trapped carrier close to a percolating path may
temporarily block that path by repelling other carriers. This leads to the reduction of the
current as described in the previous section. We remark that with growing disorder strength
the contribution of the Coulomb interactions (eΦinteract,i) to the on-site energy of a charge
as compared to the random contribution (Erand,i) becomes less important. Conversely,
this means that, although the filamentary structure for σ = 3kBT is less pronounced than
for σ = 6kBT , the relative effect of short-range Coulomb interactions as compared to the
energetic disorder is larger. This explains the relatively stronger reduction of the current
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Figure 5.3: Three-dimensional representation of the relative local current density in the direc-
tion of the applied field, given by Jrel,i = Ji/Jav, with Ji the absolute local current
density given by Eq. (5.10) and Jav the average local current density in the device.
The displayed results are for devices with uncorrelated disorder, device thickness
L = 22 nm, driving voltage V = 0.5 V, room temperature, and lattice constant
a = 1.6 nm. In all representations (a)-(f) the device is viewed from the side with
the injecting electrode at the bottom. The energetic disorder configurations of the
organic sites are all the same, apart from a factor two difference in energies between
σ = 75 and σ = 150 meV. In (a), (c), and (e) short-range Coulomb (SRC) inter-
actions have been included, while these are omitted in (b), (d), and (f). The local
current density is coded with a color and transparency, with the coding scheme
indicated at the bottom. The lateral grid size used is 50× 50 sites. The boundaries
of the device are depicted by a white bounding box.
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Figure 5.4: The same as in Fig. 5.3, but for correlated disorder.
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by short-range Coulomb interactions for weaker disorder found in the previous section.

On the other hand, in the case of an injection barrier of ∆ = 1.0 eV there is no observable
effect of short-range Coulomb interactions on the current distributions (compare Figs.
3e and f and Figs. 4e and f), in line with the absence of an effect on the current-
voltage characteristics in Figs. 1 and 2. The absence of an effect of short-range Coulomb
interactions on the current distribution for this relatively high injection barrier is related
to the very low carrier density in the device. We note that for an applied voltage of 2 V we
could for σ = 6kBT very accurately reproduce the current distribution obtained with the
Master-Equation approach shown in figure 4.3c in chapter 4. for the case of uncorrelated
disorder, using the same disorder configuration as in that work. This is in line with the
observation made in the previous section that the current-voltage characteristics obtained
from the MC simulations without short-range Coulomb interactions are indistinguishable
from these obtained from the Master-Equation calculations in chapter 4. Although we do
not show the current distributions for the case of σ = 3kBT and an injection barrier of
∆ = 1.0 eV, these conclusions also hold for that case.

For the case of correlated disorder we observe that the filamentary structure of the current
is different than for uncorrelated disorder. The current filaments are now typically broader
than for uncorrelated disorder (this is in particular clearly visible in Figs. 4d-f). The
reason is that due to the spatial energetic correlation the percolating paths acquire a
width that is broader than the single lattice spacing typical for the case of uncorrelated
disorder. As a consequence, the blocking effect caused by short-range Coulomb interactions
is less effective, since carriers have a broad choice of well conducting spatially correlated
pathways. This explains the observation in the previous section that the effect of short-
range Coulomb interactions on the total current is smaller than in the case of uncorrelated
disorder.

5.5 Summary and conclusions

By performing three-dimensional (3D) Monte-Carlo (MC) simulations we have studied
single-carrier transport in devices consisting of an organic semiconductor sandwiched in
between two metallic electrodes, for the cases of uncorrelated Gaussian energetic disorder
in the organic semiconductor as well as correlated Gaussian energetic disorder caused by
the electrostatic field of random dipoles. In particular, the effects of Coulomb interac-
tions between the carriers were studied. Up to now, in device modeling studies only the
long-range effects of Coulomb interactions have been included through the space-charge
potential. We studied the situations with and without inclusion of short-range Coulomb
interactions. We also varied the injection barrier between the electrodes and the organic
semiconductor. The effects of image charges in the electrodes were fully taken into account.

For the case of uncorrelated disorder we found that with an injection barrier of about 0.3 eV
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or higher, for the devices we studied, it is not necessary to include the short-range Coulomb
interactions, because of the low carrier density in the devices. Our results for the current-
voltage characteristics are then in accurate agreement with the calculations as shown in
chapter 4 of the same devices with a Master-Equation approach, in which the Coulomb
interactions between the charges were taken into account in a layer-averaged way. This also
means that the way we have taken into account image charges in chapter 4, which suffers
from a double-counting problem due to the fact that image charges have also been taken
into account in a layer-averaged way via the space charge, does not lead to significant errors
for these injection barriers. Our results for the current are then also in good agreement
with one-dimensional (1D) drift-diffusion calculations with a mobility function based on
the Extended Gaussian Disorder Model (EGDM),8 in which the dependence of the mobility
on temperature, electric field, and carrier density is taken into account.

If the injection barrier in the case of uncorrelated disorder is smaller than 0.3 eV, how-
ever, the inclusion of short-range Coulomb interactions leads to a significant reduction of
the current. By analyzing the 3D current distribution we attributed this to the fact that
the short-range Coulomb interactions change the filamentary structure of this distribution,
where favorable percolating pathways for the current are partially blocked. The reduction
of the current is larger for smaller disorder strength due to the relatively larger importance
of Coulomb interactions in that case. The difference between current-voltage characteris-
tics with and without taking in account short-range Coulomb interactions should not be
attributed to the double-counting problem because the image-charge contribution to the
potential then does not appear in the 1D drift-diffusion calculations.

For the case of correlated disorder we found similar results, with the important difference
that the short-range Coulomb interactions lead to a smaller reduction of the current at
vanishing injection barrier than for uncorrelated disorder. Due to the spatial energetic
correlation the current filaments are broader and hence the blocking effect of the short-
range Coulomb interactions is smaller. For not too small injection barriers we found a fair
agreement between our 3D MC results for the current and 1D drift-diffusion calculations
with a mobility function based on the Extended Correlated Disorder Model.10

The relevance of the present work for the modeling of organic light-emitting diodes is
that the conventional drift-diffusion modeling approach can be applied in the transport
for not too small injection barriers, when the effects of short-range Coulomb interactions
can be neglected. In the case of small injection barriers the effects of short-range Coulomb
interactions become important, as demonstrated in the present work, but there is presently
no systematic and simple theory to include these effects. We note that we have recently
shown that in order to properly describe electron-hole recombination in double-carrier
devices it is also necessary to take into account the effects of short-range interactions (as
described in the next chapter).34 If these interactions are included in the mobilities in a
double-carrier situation, an accurate description of the recombination rate is found when
these mobilities are used in the conventional Langevin expression for this rate, as shown
in the next chapter. It would therefore be highly desirable to develop a systematic theory
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for including short-range Coulomb effects on charge-carrier mobilities in disordered organic
semiconductors.
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Chapter 6

Electron-hole recombination in
disordered organic semiconductors:
validity of the Langevin formula

ABSTRACT

Accurate modeling of electron-hole recombination in organic light-emitting
diodes (OLEDs) is essential for developing a complete description of their func-
tioning. Traditionally, the recombination rate is described by the Langevin
formula, with a proportionality factor equal to the sum of the electron and
hole mobilities. In the disordered organic semiconductors used in OLEDs these
mobilities have been shown to depend strongly on the carrier densities and on
the electric field. Moreover, the energetic disorder leads to percolating path-
ways for the electron and hole current, which may or may not be correlated.
To answer the question whether the Langevin formula is still valid under such
circumstances we perform Monte-Carlo simulations of the recombination rate
for Gaussian energetic disorder. We vary the disorder energy, the temperature,
the densities and mobility ratio of electrons and holes, the electric field, and the
type of correlation between the electron and hole energies. We find that at zero
electric field the Langevin formula is surprisingly well obeyed, provided that a
change of the charge-carrier mobilities due to the presence of charge carriers of
the opposite type is taken into account. Deviations from the Langevin formula
at finite electric field are small at the field scale relevant for OLED modeling.1

1The contents of this chapter are based on work that has been published: J.J.M. van der Holst, F.W.A.
van Oost, R. Coehoorn, P.A. Bobbert, Physical Review B: Condensed Matter 2010, Submitted
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6.1 Introduction

Organic light-emitting diodes (OLEDs) are very promising efficient light sources in display
and lighting applications. Commercial OLED pixelated displays as well as large-area OLED
white-light sources are presently entering the market. An essential process in OLEDs is
the recombination of an electron and a hole, leading to the emission of a photon. In the
emitting organic semiconductor the electrons and holes move towards each other under
the influence of an external electric field and their mutual attractive Coulomb interaction.
The rate of recombination, R, is defined as the total number of electron-hole recombination
events per second and per unit volume. Already in 1903, Langevin1,2 gave an expression
for this recombination rate:

RLan =
e(µe + µh)

ϵrϵ0
nenh ≡ γLannenh, (6.1)

where e is the unit charge, ne and nh the electron and hole density, and µe and µh the
electron and hole mobility, respectively; ϵ0 is the vacuum permeability, ϵr the relative
dielectric constant of the semiconductor, and γLan the Langevin bimolecular recombination
rate factor.

One of the underlying assumptions in the derivation of this expression is that the mean
free path of the charge carriers λ is much smaller than the thermal capture radius rc =
e2/(4πϵrϵ0kBT ), where T is the temperature and kB Boltzmann’s constant. For the dis-
ordered organic semiconductors used in OLEDs charge transport takes place by hopping
between molecules or conjugated segments of a π-conjugated polymer, which we will call
”sites”, and the mean free path is of the order of the inter-site distance a ≈ 1-2 nm. At
room temperature and with a relative dielectric constant ϵr ≈ 3, typical for organic semi-
conductors, the thermal capture radius is rc ≈ 18.5 nm. Hence, the assumption λ ≪ rc is
valid.

Another assumption made in deriving Eq. (6.1) is that charge-carrier transport occurs ho-
mogeneously throughout the semiconductor. This is, however, in general not the case. Due
to the percolative nature of charge transport in energetically disordered organic semicon-
ductors, the current distribution has a highly inhomogeneous filamentary structure, with
differences in local current densities that can vary over many orders of magnitude.3–7 This
raises the question whether Eq. (6.1) is still valid under such conditions. Another issue
that plays a role in this context is the possible correlation between the on-site energies of
holes and electrons. In the case of correlation between on-site electron and hole energies,
the current filaments of the electrons and holes overlap. One would then intuitively expect
a larger recombination rate than in the case of uncorrelated or even anti-correlated ener-
gies. Correlation between electron and hole energies occurs when the energetic disorder
is caused by fluctuations in the local polarizability of the semiconductor or by differences
in the length of conjugated segments. Anti-correlation between electron and hole energies
occurs when the disorder is caused by fluctuations in the local electrostatic potential. In
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this chapter we will study both extremes of perfect correlation and perfect anti-correlation.
In reality, the situation will be intermediate.

A further complication arises when the recombination occurs in the presence of an external
electric field, because the electron and hole mobilities have an electric-field dependence.
Moreover, it has become clear in recent years that under typical operating conditions
of OLEDs the dependence of the mobilities on the charge-carrier densities is even more
important than their dependence on the electric field.8,9 This raises the question whether
it is possible to use the Langevin expression Eq. (6.1) by including these dependencies in
the mobilities occurring in the expression.

Giving an analytical description of recombination under such complicating circumstances is
impossible and one therefore has to resort to numerical methods. Various aspects of recom-
bination in disordered semiconductors have been studied in the 1990s by using Monte-Carlo
(MC) simulations.10–12 The on-site energies in these simulations are randomly drawn from
a Gaussian distribution. Using Miller-Abrahams hopping rates,13 Albrecht and Bässler10,11

have calculated the MC recombination cross-section and from that the bimolecular recom-
bination rate factor γ. They find that the ratio between γ and γLan from Eq. (6.1) is
almost independent of temperature, but increases with electric field. Gartstein et al.12

have calculated the ratio between the MC and the Langevin recombination cross-section.
At room temperature, they find a slight decrease followed by an increase of this ratio with
increasing electric field for Miller-Abrahams hopping rates and a decrease for polaronic
hopping rates.14,15 These authors find a weak dependence of this ratio on temperature at
low electric field, developing into a considerable temperature-dependence at high electric
field. Both these MC studies consider the recombination of only two carriers, where one of
the carriers is fixed at a particular site in a simulation box and the other carrier is released
at a random site located up-field in a plane orthogonal to the electric field. Therefore,
these simulations correspond to the case of vanishing electron and hole densities.

More involved MC simulations of recombination were very recently performed by Groves
and Greenham.16 In these simulations both electrons and holes are allowed to hop with
polaronic hopping rates, in the presence of an external electric field, and the density of
electrons and holes is varied. Like in the previous MC simulations10–12 the on-site energies
are drawn from a Gaussian distribution. Perfect correlation between hole and electron
energies at a site is assumed. After recombination of an electron-hole pair, the electron
and hole are reintroduced into the simulation box at random sites, guaranteeing constant
prescribed charge-carrier densities. The ratio R/RLan is studied, where the charge-carrier
mobilities in the Langevin expression Eq. (6.1) are determined by separate MC simulations
of only one type of charge carrier at the same density as in the MC simulations with
recombination. Considerable deviations (up to about 40%) from the Langevin expression
are found.16 Effects of anisotropy and blends of electron- and hole-transporting materials
are also considered in that work, but these will not be considered in the present work,
which will focus on isotropic and homogeneous recombination.
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Accurate modeling of electronic processes in OLEDs is of paramount importance for their
further development and optimization. Regarding the modeling of the injection and trans-
port in single-carrier devices much progress has been made in recent years. Bässler pro-
posed that transport in disordered organic semiconductors can be described by hopping
of charge carriers between sites with a Gaussian energetic disorder.17 This model became
known as the ”Gaussian Disorder Model” (GDM). The inclusion of the dependence of the
charge-carrier mobility on the charge-carrier density in this model9,18 has led to the ”Ex-
tended Gaussian Disorder Model” (EGDM). It turns out that the EGDM can be used in
efficient one-dimensional (1D) device modeling studies that can quite accurately describe
the current-voltage characteristics of hole-only devices of derivatives of the well-known con-
jugated polymers poly(p-phenylenevinylene)9,19 (PPV) and polyfluorene.20 In the previous
two chapters, we showed results of complete three-dimensional (3D) single-carrier device
simulations which were done by solving the master equation for the occupational proba-
bilities of the sites in such a device.7 The effects of an injection barrier, of image charges,
and of space charge were included. We demonstrated that current-voltage characteristics
are obtained that are in very good agreement with those obtained with a 1D drift-diffusion
model,21 with injection included by a relatively simple approach based on work of Emtage
and O’Dwyer.22

We remark that it has been argued by several authors23–25 that the energetic disorder in
organic semiconductors should be spatially correlated. One of the situations for which
this would occur is when the energetic disorder is caused by random dipolar fields. Such
correlation leads to a strongly enhanced electric-field dependence of the mobility.23–25 In
combination with the dependency on the charge-carrier density this leads to what we call
the ”Extended Correlated Disorder Model” (ECDM). Comparison of ECDM and EGDM
modeling of current-voltage characteristics of hole-only devices of a derivative of PPV19

and of a polyfluorene-based co-polymer26 has led to the conclusion that the inter-site
distance as found from a fit with the EGDM (with spatially uncorrelated disorder) is more
realistic than that found from a fit with the ECDM. Therefore, we will consider in this
work spatially uncorrelated disorder.

Accurate modeling of double-carrier devices additionally requires an adequate description
of the recombination rate in such devices. Obviously, it would be attractive to have avail-
able an efficient, yet sufficiently precise way of including recombination in a 1D device
model, instead of needing to calculate the recombination rate for every specific situation
with time-consuming 3D MC simulations. One of the objectives of the present work is to
make a first step into this direction. We will investigate the recombination process with MC
simulations for an isotropic and homogeneous organic semiconductor, varying the disorder
energy of the Gaussian disorder, the temperature, the densities of electrons and holes, the
mobility ratio of electrons and holes, the electric field, and the type of correlation between
electron and hole energies. As in the MC studies discussed above10–12,16 we will study
the validity of the Langevin expression Eq. (6.1). Since Miller-Abrahams hopping rates
have been used in the EGDM modeling,9,18 we will also use these hopping rates in our
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study. Like Groves and Greenham,16 we find rather large deviations from the Langevin
expression if the electron and hole mobilities in the Langevin expression are taken to be
those of the electrons and holes separately at their respective densities. On the other hand,
we find that the Langevin expression describes our MC recombination rates surprisingly
well if the electron and hole mobilities are taken to be those in exactly the double-carrier
situation studied. In the case of an externally applied electric field we find deviations
from the Langevin expression that can be attributed to the electric-field dependence of
the mobilities. However, these deviations are small for the electric-field strengths relevant
for OLEDs. All these findings can open the way to efficient and accurate modeling of
double-carrier devices.

This chapter is built up as follows. In the next section we discuss our Monte-Carlo proce-
dure. In Section 6.3 we present various results of our Monte-Carlo studies. In Section 6.4
we discuss our results and present our conclusions.

6.2 Monte-Carlo method

Wemodel the localized electronic states in the organic semiconductor by a three-dimensional
cubic lattice with lattice constant a. Periodic boundary conditions are taken in all three
Cartesian directions. We assume that the hopping of charge carriers from one localized
state to another is a thermally assisted tunneling process with coupling to a bath of acous-
tical phonons. The hopping rate from site i to site j is then of the Miller-Abrahams form13

Wij,q = ν0,q exp

[
−2α|Rij| −

Ej,q − Ei,q

kBT

]
, forEj,q ≥ Ei,q, (6.2a)

Wij,q = ν0,q exp [−2α|Rij|] , forEj,q < Ei,q, (6.2b)

with q the charge of the hopping charge carrier (q = −e for electrons and q = e for holes),
ν0,q the intrinsic attempt-to-jump frequency of carrier q, α the inverse localization length
of the localized wave functions, and |Rij| ≡ a|i− j| the distance between sites i and j. The
energy Ei,q of charge q at site i contains a random contribution, a contribution eFRij,x due
to a field F applied in the x-direction, and a contribution due to the interaction with all
the other charges in the system. We take α = 10/a and allow hopping to the 26 nearest
neighbors, which is a good approximation for derivatives of PPV at room temperature.9

The random contribution to the energy Ei,q is drawn from a Gaussian density of states
(DOS):

g(E) =
1√

2πσa3
e−E2/2σ2

. (6.3)

The disorder energy σ is the width of the Gaussian DOS and is in this work taken equal
for electrons and holes. As explained in the Introduction, we distinguish two cases for
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Figure 6.1: The different types of correlation between on-site electron and hole energies con-
sidered in this work, reflected in the energies for the LUMO (lowest unoccupied
molecular orbital) and HOMO (highest unoccupied molecular orbital). Left/right:
correlated/anti-correlated electron and hole energies.

the correlation between on-site electron and hole energies: (1) perfect correlation and (2)
perfect anti-correlation; see Fig. 6.1. In case (1) the random part of the hole on-site energy
is taken equal to that of the electron on-site energy, while in case (2) the random part of
the hole on-site energy is taken opposite to that of the electron on-site energy. Therefore,
it is energetically advantageous for an electron and a hole to reside on the same site in case
(1), while in case (2) this is disadvantageous.

The energy Ei,q also contains the Coulomb interaction energy Ui with all other charges.
For practical reasons we use a finite-range variant of the Coulomb potential:

fc(|Rij|)=
{ 1

4πϵrϵ0
( 1
|Rij|

− 1
Rc
), 0 < |Rij| ≤ Rc,

0, |Rij| > Rc,
(6.4)

with Rc a cut-off radius. We will always use a value of Rc that is large enough to have no
influence on the final results. The interaction energy Ui is taken as

Ui =
∑
j ̸=i

qiqjfc(|Rij|), (6.5)

where qi and qj are the charges of the interacting carriers at sites i and j (qj = 0 if there is
no charge at site j). We assume that due to strong on-site Coulomb repulsion the presence
of two equal charges at a site is not allowed.

When an electron and a hole are on neighboring sites, the hopping of the hole to the electron
or vice versa is always assumed to be downwards in energy, such that the hopping rate will
be given by Eq. (6.2b). After such a process, the electron and hole are removed from the
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system and reintroduced randomly on empty sites according to an equilibrium distribution
determined by the random contribution to the site energies (excluding the contribution
from the electric field and the Coulomb interaction with other charges). Reintroduction
of the electron and hole guarantees that the electron and hole densities are kept fixed.
We note that our method of reintroduction is slightly different from that of Groves and
Greenham, who choose random empty sites for reintroducing the electron and hole and then
take new random energies of these sites according to the equilibrium density of occupied
states.16 Both methods of reintroduction are of course artificial. In a real OLED, electrons
and holes approach each other from opposite electrodes. One can argue what method of
reintroduction gives the most accurate description of the real situation. An alternative
would be reintroduction of the electron and hole at completely randomly chosen sites. If
the electrons and holes are energetically relaxed before they recombine, which should be the
case for sufficiently low densities of electrons and holes, the precise way of reintroduction
should become irrelevant. We will come back to this issue in the next section and show
that our main conclusion is not affected by the choice of the reintroduction procedure.

Our simulations proceed as follows. First, a cubic simulation box is filled with a prescribed
number of electrons and an equal number of holes. After that, hops of electrons and holes
are chosen with weights determined by the hopping rates Eq. (6.2). A hopping time is
chosen from an exponential distribution with an inverse decay time equal to the sum of all
possible hopping rates. After a sufficiently long equilibration time, counting of the number
of recombination events starts. This proceeds until a sufficiently accurate result for the
recombination rate is obtained.

We use two different methods of calculating carrier mobilities. In the first method, which
corresponds to that of Groves and Greenham,16 we fill our simulation box with exactly the
same number of charge carriers of one type as we have in the double-carrier simulation.
We then apply a small electric field (or apply the same field as in the double-carrier
simulation) and obtain the current by counting the number of hops in the field direction.
From the current, we straightforwardly obtain the mobilities µuni of each carrier type in
this ”unipolar” system. We remark that the results obtained in this way are equivalent
to those of Zhou et al.27 In the second method, we take our double-carrier simulation,
apply a small electric field (or apply the same field as in the double-carrier simulation) and
calculate the current contribution of each carrier type separately. Accordingly, we obtain
µbi of each carrier type in this ”bipolar” system. We have sketched these two methods of
calculating the mobilities in Fig. 6.2. Using these differently calculated mobilities in the
Langevin expression Eq. (6.1) we obtain recombination rates that we will call RLan,uni and
RLan,bi, respectively.
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u n i p o l a r b i p o l a r

e l e c t r i c f i e l d

Figure 6.2: The two methods of calculating mobilities in this work. In the ”unipolar” method
we consider the presence of only one type of carrier and calculate its mobility. In
the ”bipolar” method we consider the presence of both types of carriers (blue: elec-
trons, red: holes) and calculate both their mobilities. In the ”bipolar” method the
mobilities of one carrier type are smaller than in the ”unipolar” method, because
of the additional Coulomb interactions with the other carrier type. The figure indi-
cates the typical situation in which almost all carriers are trapped in energetically
deep-lying states in the Gaussian density of states, with only a few carriers that are
mobile and contribute to the conduction.
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6.3 Results

In our simulations we have used the following parameters: a = 1.6 nm, ν0,h = 3.5 × 1020

s−1, and ϵr = 3 (typical for organic semiconductors). The values for a and ν0,h are
those found in Ref. 9 from a fit of the EGDM to measured current-voltage character-
istics for a PPV derivative (poly(2-methoxy-5-(3’,7’-dimethyloctyloxy)-p-phenylene viny-
lene), OC1C10-PPV). The simulation box has a size of 100 × 100 × 100 sites. Averages
are performed over several (typically 20) different configurations of the Gaussian disorder,
from which an error estimate is obtained. The following values for the cut-off radius of the
finite-range Coulomb potential of Eq. (6.4) were found to be sufficient: Rc = 19.2, 32, and
64 nm for the electron and hole densities studied in this work: ne = nh = 10−3, 10−4, and
10−5 carriers per site, respectively.

In Fig. 6.3 we investigate the effect of disorder on the ratio R/RLan of the zero-field (F = 0)
MC recombination rate R and the Langevin recombination rate RLan, given by Eq. (6.1).
In Figs. 6.3(a), (c), and (e) we display R/RLan as a function of disorder energy σ for equal
electron and hole hopping frequencies (ν0,e = ν0,h), at room temperature (T = 300 K), using
three different electron and hole densities in a range typical for OLEDs: ne = nh = 10−3

(a), 10−4 (c), and 10−5 carriers per site (e). In Figs. 6.3(b), (d), and (f) the corresponding
unipolar and bipolar mobilities are displayed. Results are shown for correlated as well as
anti-correlated disorder. In Fig. 6.4 we investigate the effect of taking different mobilities
of electrons and holes. In Figs. 6.4(a), (c), and (e) we display R/RLan as a function of
the ratio ν0,e/ν0,h between the electron and hole hopping frequencies in Eq. (6.2), at room
temperature, using three different disorder energies: σ = 50 (a), 100 (c), and 150 meV (e).
The density of electrons and holes is ne = nh = 10−4 carriers per site. In Figs. 6.4(b),
(d), and (f) the corresponding mobilities are displayed.

With the unipolar mobilities used in the Langevin formula Eq. (6.1) (RLan,uni) substantial
deviations are found from the simulated recombination rates. As expected (see the Intro-
duction), the recombination rate for correlated electron and hole energies is larger than for
anti-correlated electron and hole energies. Surprisingly, however, the deviations from the
simulated recombination rates almost completely disappear when the bipolar mobilities
are used in the Langevin formula (RLan,bi). Only for the largest density, ne = nh = 10−3

carriers per site, some deviations are observed. This is not unexpected, since the aver-
age distance between electrons and holes is then smaller than the thermal capture radius.
Also surprisingly, R/RLan,bi ≈ 1 both for correlated and anti-correlated disorder, when the
corresponding bipolar mobilities are inserted in the Langevin formula. We note that the
bipolar mobilities µbi,corr and µbi,anti−corr are different for the cases of correlated and anti-
correlated electron and hole energies, whereas the unipolar mobilities µuni are the same. A
very important conclusion that we draw from these results is that the Langevin formula is
still valid when the appropriate mobilities are used.

This conclusion is further supported by Fig. 6.5, in which we investigate the temperature-
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Figure 6.3: (a), (c), (e): Zero-field recombination rate R relative to the Langevin recombina-
tion rate RLan as a function of disorder energy σ, at temperature T = 300 K and
three different electron and hole densities ne and nh. Red circles/blue triangles:
correlated/anti-correlated electron and hole energies. Solid/dashed lines: Langevin
recombination rate calculated with bipolar/unipolar mobilities. (b), (d), (f): Cor-
responding unipolar (black squares) and bipolar mobilities.
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Figure 6.4: (a), (c), (e): Zero-field recombination rate R relative to the Langevin recombination
rate RLan as a function of relative hopping frequency ratio ν0,e/ν0,h of electrons and
holes, at temperature T = 300 K, electron and hole densities ne = nh = 10−4/a3,
and three different disorder energies. (b), (d), (f): Corresponding electron and hole
mobilities. Symbols and lines as in Fig. 6.3.
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Figure 6.5: (a), (c), (e): Zero-field recombination rate R relative to the Langevin recombina-
tion rate RLan, calculated for correlated electron and hole energies, as a function
of temperature T , at electron and hole densities ne = nh = 10−4/a3 and three
different disorder energies. Red circles/black squares: Langevin recombination rate
calculated with bipolar/unipolar mobilities. (b), (d), (f): Corresponding mobilities.
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Figure 6.6: (a): Zero-field recombination rate R relative to the Langevin recombination rate
RLan as a function of disorder strength σ, at temperature T = 300 K, electron
and hole densities ne = nh = 10−4/a3, and correlated electron and hole ener-
gies, calculated for different reintroduction procedures of electrons and holes. Red
circles/green triangles: equilibrium/random reintroduction. Solid/dashed lines:
Langevin recombination rate calculated with bipolar/unipolar mobilities. (b): Cor-
responding unipolar (black squares) and bipolar mobilities.

dependence of R/RLan and the corresponding mobilities for three different disorder energies:
σ = 50 (a,b), 100 (c,d), and 150 meV (e,f). The density of electrons and holes is ne =
nh = 10−4 carriers per site and correlated electron and hole energies are taken. Again,
with unipolar mobilities substantial differences are found between the Langevin and the
simulated recombination rates, whereas with bipolar mobilities these differences disappear
completely.

To check the influence of the specific way of reintroducing the electron and hole after a
recombination event, we performed room-temperature simulations with random reintro-
duction of electrons and holes, for ne = nh = 10−4 carriers per site, varying disorder
strengths, and correlated electron and hole energies; see Fig. 6.6. As expected, we find
larger bipolar mobilities (by about a factor eight for σ = 150 meV) but if we use these
mobilities in the Langevin expression Eq. (6.1), R/Rlan becomes indistinguishable from the
values found with reintroduction according to an equilibrium distribution (the latter are
the same as in Fig. 6.3 (c)). Hence, the specific reintroduction mechanism does not affect
the above conclusion.

Finally, we investigate the electric-field dependence of the recombination rate. Fig. 6.7
shows the ratio R/RLan,bi and the corresponding bipolar mobilities as a function of the elec-
tric field F , at room temperature, for three different electron and hole densities and three
different disorder energies: σ = 50 (a,b), 100 (c,d), and 150 meV (e,f). Correlated electron
and hole energies are taken. We now observe that some deviations between the Langevin
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Figure 6.7: (a), (c), (e): Recombination rate R relative to the Langevin recombination rate
RLan,bi, calculated with bipolar mobilities and correlated electron and hole energies,
as a function of electric field F , at temperature T = 300 K, at three different electron
and hole densities, and three different disorder energies. (b), (d), (f): Corresponding
bipolar mobilities.
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and the simulated recombination rates occur. In the limit of vanishing carrier densities
such deviations were already observed in the MC simulations of Albrecht and Bässler10,11

and Gartstein et al.,12 who suggested that these can be attributed to ”field-induced mo-
bility anisotropy”.12 Moreover, the electric-field dependence of the charge-carrier mobility
leads in the original Langevin problem to a gradient in the charge-carrier density around
a recombination site, leading to a non-zero diffusion contribution that has to be taken
into account.28 The deviations from the Langevin recombination rate that we observe in-
crease with increasing disorder energy σ. This is in agreement with the increase of the
electric-field dependence of the mobility with increasing σ.9 Interestingly, we observe that
the electric-field dependence of R/RLan,bi has only a weak dependence on the charge-carrier
density, which is in agreement with the observation that the electric-field dependence can
be included in the mobility by a density-independent prefactor.9 We note that in Fig. 6.7
the electric field was applied along an axis of the cubic lattice (the (100)-direction). We
observed that different dependencies at high electric field (F ≫ σ/(ea)) are found when
applying the field along the (111)-direction, due to the increasing anisotropy in the mobility
tensor with electric field. However, the relevant region for OLED modeling is F < σ/(ea).
In this region, the deviations from the Langevin prediction remain quite modest.

6.4 Discussion and conclusions

We have performed Monte-Carlo simulations of electron-hole recombination in a homo-
geneous and isotropic disordered organic semiconductor, including all aspects that are
relevant for this process: disorder, finite densities of electrons and holes, Coulomb inter-
actions, an applied electric field, different mobilities of electron and holes, and different
types of correlation between on-site electron and hole energies. We come to the important
conclusion that at zero applied electric field the Langevin expression for the recombination
rate is very accurate if the appropriate charge-carrier mobilities are used, i.e., the charge-
carrier mobilities as calculated in exactly the bipolar system studied. These mobilities are
different from the corresponding mobilities as calculated in a unipolar system with only
one charge-carrier type present. In particular, the ”unipolar” mobilities are higher than
the ”bipolar” mobilities. The reason for this is that in the bipolar system the additional
Coulomb interactions with the oppositely charged carriers lead to an enhanced disorder,
resulting in a lower mobility; see Fig. 6.2. In the bipolar system, the mobilities for the
case of correlated electron and hole energies are larger than for the case of anti-correlated
electron and hole energies. We attribute this to the larger effect of state-filling for the
correlated case as compared to the anti-correlated case, since electrons and holes compete
for low-energy sites. Because state-filling effect increase the mobility, this leads to a higher
mobility for the correlated case. This higher mobility then leads to a higher recombina-
tion rate. Apparently, this higher recombination rate can be fully accounted for by the
Langevin expression. This means that the filamentary structure of the electron and hole
current as mentioned in the Introduction does not lead to a breakdown of the Langevin
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expression, provided that the appropriate mobilities are used.

In order to better understand this result, we considered the distribution of the frequency of
recombination events at each site as a function of the random part of the on-site energy of
the site, at a disorder energy σ = 100 meV, room temperature, electron and hole densities
ne = nh = 10−4 carriers per site, zero electric field, and equal electron and hole mobilities;
see Fig. 6.8. It turns out that in the case of correlated electron and hole energies this
distribution has two components; see Fig. 6.8(a). The first component peaks at a low
energy and is approximately proportional to the density of occupied states (DOOS) of
electrons and holes. The second, roughly equally large, component peaks at higher energies.
Analysis of our simulations shows that a typical recombination process occurs by a mobile
carrier approaching an immobile carrier of opposite charge. The last step involves either
the hopping of the mobile carrier to the site of the immobile carrier or the hopping of
the immobile carrier to the site of the mobile carrier. Since for both possibilities this last
step is downward in energy they have equal weights. The first possibility leads to the first
component in the distribution and the second possibility to the second component. As
compared to the Gaussian DOS, the second component is shifted downwards in energy,
because the mobile charge approaches the immobile charge preferentially via a low-energy
site.

In the case of anti-correlated electron and hole energies the distribution has three compo-
nents; see Fig. 6.8(b). The third component is the mirror image of the first component
of the correlated case, and arises because for anti-correlated electron and hole energies a
high-energy site for an electron is at the same time a low-energy site for a hole. The sum
of the first and third component is now approximately equally large as the second, middle,
component. The middle component now becomes symmetric and is closer to the Gaussian
DOS than in the correlated case.

The consequence of the above analysis is that the location of sites at which recombination
events preferentially take place does not coincide with the location of the current filaments
of electrons or holes. Rather, these locations coincide with, or are neighbors of, energetically
low-lying sites for electrons or holes. Hence, the conclusion from this analysis is that,
whereas current filaments play a primary role in determining the mobility of electrons and
holes, they do not play a primary role in determining the location at which recombination
events take place.

We remark that in the present work we have taken equal electron and hole densities and
equal disorder energies for electrons and holes, and we have only studied the extremes
of correlated and anti-correlated on-site electron and hole energies. We expect, however,
that our conclusion about the validity of the Langevin expression, with the appropriate
mobilities inserted, will also hold in the general case of arbitrary electron and hole densities,
different disorder energies for electrons and holes, and an arbitrary correlation between
electron and hole energies.

This important conclusion opens the way to simplified and accurate modeling of the re-
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combination rate in OLEDs. In order to realize such modeling, the effect of the reduction
of the mobility caused by the enhanced disorder due to the random Coulomb field should
be quantified. This could possibly be done along the lines set out by Arkhipov et al.,29

who calculated the increase of the effective disorder energy due to Coulomb interactions
with dopant ions. We already showed in chapter 3 that the usage of an effective disorder
strength is ill-defined. Hence, we should look at the distribution of energy differences. One
of the additional issues that should be analyzed is the fact that the contribution to the
energetic disorder from the random Coulomb field will be spatially correlated, which means
that the total effective energetic disorder cannot be treated purely within the EGDM.

In the presence of an applied electric field, our simulations show deviations from the
Langevin recombination rate, which can be attributed to field-induced mobility anisotropy12

and to a non-zero diffusion contribution caused by the electric-field dependence of the mo-
bilities. These deviations show only a weak dependence on the electron and hole density.
In the range of electric fields relevant for OLEDs the deviations are quite modest.

Our conclusions are expected to have important consequences for calculations of the width
of the recombination zone in OLEDs. The inclusion of the carrier-density dependence in
the electron and hole mobilities leads to a narrowing of the calculated recombination zone
in OLEDs, since the mobility of charge carriers entering the recombination zone decreases
due to the reduced carrier density caused by recombination. Moreover, ”behind” the
recombination zone the mobility of charge carriers of one type decreases further due to
their now very strongly reduced density.30 According to the present work, an additional
reduction of the carrier mobilities in and ”behind” the recombination zone should occur
by the increased enhanced disorder due to the random Coulomb field of the carriers of
the opposite sign. This should lead to a further reduction of the calculated width of the
recombination zone.
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Chapter 7

Relaxation of charge carriers in
organic semiconductors

ABSTRACT

In the previous chapters we showed results from three-dimensional simulations
of devices of organic semiconductors. In these simulations, the electronic prop-
erties were obtained in a steady-state situation. However, in many experiments
electronic properties are not measured in a steady-state condition. For example,
in a device with a time-varying applied voltage, carriers cannot relax immedi-
ately to a steady-state situation. In this chapter we study the time-dependent
mobility due to relaxation of charges.

Right after the introduction of additional charges in an organic semiconductor,
the charges on average have higher energies than in equilibrium. This results
in an increase of the current. This current decreases as charges start to relax to
energetically lower-lying sites. The decrease of the current continues until the
current reaches its new steady-state value. Surprisingly, the time-dependent
current is independent of the charge-carrier density for quite a long time, until
this current attains a value somewhat higher than the steady-state current.
Beyond this point, the time-dependent current branches off and saturates to
the steady-state current.1

1The contents of this chapter are based on work that has been published: W. Chr. Germs, J.J.M. van
der Holst, S.L.M. van Mensfoort, P.A. Bobbert, R. Coehoorn 2010, In preparation
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7.1 Introduction

In the device-modeling approaches that we used in the previous chapters of this thesis, the
charge-carrier current and mobility were obtained assuming a steady-state (when a net cur-
rent flows) or equilibrium (when no current flows) condition. However, many experiments
probe charge-carrier transport in a non-steady-state condition.

When the charge-carrier density n in a system is increased by a small amount δn, the
current I will accordingly instantaneously increase by a small amount, as shown in Fig.
7.1. The reason for this is that the additional charge carriers have to be situated on sites
with on average a higher site-energy than the already present charge carriers and therefore
they will be more mobile, resulting in a higher current. After the introduction, charges
move to sites with on average a lower site-energy, leading to a slow relaxation of the current,
until it saturates to the steady-state value. As the carrier density is obviously higher after
the introduction of the charge carriers, the steady-state current after the introduction will
be somewhat higher than the steady-state current before the introduction.

n ( t )

d n

I ( t )

t

t 0

Figure 7.1: An increase of the carrier density n by a small amount δn at time t0 leads to an
increase of the current I. Right after the introduction of the additional charges, the
current I will slowly decrease and saturate to its steady-state value.

The relaxation of charge carriers in a Gaussian DOS has been studied earlier by Bässler
et al.1,2 using Monte Carlo (MC) modeling. However, they only studied the Boltzmann
limit of vanishing carrier density, with one carrier in the simulation box. With the present
computational power, we are able to study the relaxational properties of charge-carrier
transport at finite carrier densities, with many carriers in the simulation box.

Another, more phenomenological, approach is the use of the multiple-trapping (MT)
model.3 The MT model assumes the transport to take place by the fraction fc of the charges
in a high-energy transport level Ec, while the rest of the charges are immobile in a distribu-
tion of lower lying energetic trap levels. The time-dependent occupational probability fc of
the transport level is in this model related to the time-dependent occupational probability
of the energetically lower-lying trap levels via a master equation. Charge transport takes
place by hopping from the trap levels to the transport level, in which charge transport can
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take place. By solving the corresponding master equation, one obtains the time dependence
of fc. The fraction fc decreases over time and therefore the current I also decreases, until
it saturates to the steady-state current. Results of MC simulations of the charge-carrier
transport are consistent with the MT model.4 From these results a frequency-dependent
mobility function can be calculated. We have found that this frequency-dependent mobility
function can describe the charge-carrier relaxation contribution to the frequency-dependent
electrical response in single-carrier devices of polyfluorene-(7,5 mol-% triarylamine) (PF-
TAA) quite well.4

In this chapter we present the results of the MC simulations used to carry out the analysis
as reported in Ref. 4. We study the time-dependence of the relaxation mobility for different
disorder strengths, charge-carrier densities, and electric field strengths. As was shown in
chapter 3, the Coulomb interactions between the charges only have a minimal effect on
the steady-state mobility for the studied carrier densities. For this reason, we neglect the
Coulomb interactions in this study.

This chapter is built up as follows. In the next section we discuss our Monte-Carlo proce-
dure. In Section 7.3 we present the mobility relaxation curves. In Section 7.4 we discuss
our results and present our conclusions.

7.2 Monte-Carlo method

In this section the Monte-Carlo method is described for calculating the time-dependent
mobility relaxation curves. We take a simple-cubic lattice of Lx × Ly × Lz sites, with
Lx,Ly, and Lz the size of the lattice in the x−, y− and z−direction. We take periodic
boundary conditions. The inter-site distance is given by a. The electric field is directed in
the x-direction. We assume that transport of charge carriers takes place by the hopping
of charges from one site to an other, as a result of a tunneling process that is thermally
assisted due to the coupling to a system of acoustical phonons. The hopping rate from site
i to j is then of the Miller-Abrahams form:5

Wij = ν0 exp

[
−2α|Rij| −

Ej − Ei − eFRij,x

kBT

]
forEj ≥ Ei + eFRij,x, (7.1a)

Wij = ν0 exp [−2α|Rij|] forEj < Ei + eFRij,x, (7.1b)

with ν0 an intrinsic rate, |Rij| ≡ a|i − j| the distance between sites i and j, α the inverse
localization length of the localized wave functions, Ei the on-site energy of site i, e the unit
charge, and eFRij,x ≡ eFa(jx − ix) a contribution due to an applied field.

We only consider the situation of uncorrelated Gaussian disorder, as Mensfoort et al. had
shown that the current density in sandwich-type device consisting of PF-TAA could be
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very well described by the EGDM.6,7 The energies Ei are then randomly drawn from a
Gaussian density of states (DOS):

g(E) =
1√

2πσa3
exp

[
− E2

2σ2

]
, (7.2)

with σ the width of this DOS.

Our simulations proceeds as follows. First, charge carriers are placed into the simulation
box at random sites. This reflects the injection of charge carriers as shown in Fig. 7.1.
After that, carriers are allowed to hop to other sites. Hops of carriers are chosen with
weights determined by the hopping rates given by Eq. (7.1). For every hop, a hopping
time is chosen from an exponential distribution with an inverse decay time equal to the
sum of all possible hopping rates. We take an integer number k, which is set to 1. The time-
dependent total distance x(t) that all the charges have hopped in the x-direction, which is
the direction along the electric field, is stored every time the simulation time tsim is larger
than tk = 10dktc with tc = ν0 exp[−2aα]. Here, d a constant with which the frequency
that the distance x(t) is sampled can be controlled. This is done up to the largest k for
which tsim ≥ tk, after which k is increased by one. The simulation stops once the simulated
current is within 5% equal to the steady-state current. This is a condition which is hard
to check during the simulation itself, as we will see in the next paragraph. Therefore, a
maximum simulation time tkmax is chosen, after which we check whether the current at
this maximum simulation time is close to constant as a function of the simulation time.
In that case, the current is close to the steady-state current. We compare the obtained
steady-state current with the EGDM as an extra check.

To obtain the current I(t), we calculate the derivative of the time-dependent position
function x(t). I(tk) is then obtained by

I(tk) =
e

2

[
x(tk+1)− x(tk)

tk+1 − tk
+

x(tk)− x(tk−1)

tk − tk−1

]
. (7.3)

If d is too small, the time intervals after which the average position of the charges are
sampled are too small. As a result, the relaxation curves are quite noisy and the resulting
error bars are quite large, as the derivative is calculated over noisy x(t) curves. By taking
a larger value for d, the frequency of the time steps at which the average position is
sampled becomes lower and the effect of the noisiness of x(t) is reduced considerably,
leading to a smoother J(t) curve with a smaller relative error. The noise can also be
reduced by calculating the derivative of the average of several time-dependent position
functions, < x(t) >, from different disorder configurations and different starting sites for
the charges, instead of calculating the derivative of a single time-dependent position curve
x(t). The final result for the time-dependent current is obtained by averaging over different
disorder configurations and initial starting sites for the charges. The relative accuracy of
the part of the current relaxation curve in which we are interested is around 20− 25% in
the case of the Boltzmann limit and better for higher carrier densities.
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The time-dependent mobility µ(t) is obtained from the time-dependent current I(t) by the
following equation

µ(t) =
I(t)

enFLyLza2
. (7.4)

7.3 Relaxation of the mobility

In Fig. 7.2(a) we display the average total distance < x(t) > over which the charges
have hopped in the direction along the electric field and in Fig. 7.2(b) we display the
time-dependent mobility function µ(t). The calculations are performed for the Boltzmann
limit, for uncorrelated Gaussian disorder with three different disorder strengths (σ = 3,
4 and 5.11 kBT ). The value of σ = 5.11 kBt is the value obtained by fitting the EGDM
to the experimentally measured hole mobility in PF-TAA.6,7 The lattice constant is taken
equal to a = 1.19 nm, which is also the value obtained from this fitting.6,7 The wave-
function decay length is chosen equal to α−1 = 0.1 nm. We allow hops over a maximum
distance

√
3a, as in all our previous simulations. The periodic simulation box is chosen to

be 250 × 250 × 250 sites, which is sufficiently large to obtain converged results. For the
electric field we use the value F ≈ 0.6σ/(ea), a value for which, as we will show, the time-
dependent mobility curve approximates the zero-field time-dependent mobility curve. We
express the simulation time in terms of t0 = (ν0 exp[−2αa])−1, which for a typical values
of ν0 = 1010s−1 and 1015s−1 corresponds to t0 = 2s and 2 10−5s, respectively.

The mobility right after the charges have been placed into the simulation box is larger
than the steady-state value. For σ = 3 kBT the difference between the mobility right after
the injection and the steady-state value of the mobility is about a factor 10, for σ = 4 kBT
the difference is about a factor 100, and for σ = 5.11 kBT the difference is about a factor
10, 000.

As the DOS is Gaussian, the sites at which the charges are initially placed have on average
a site-energy equal to zero. After the charges are placed in the simulation box, the charges
will hop around to sites which are on average lower in energy. When the time-dependent
mobility becomes equal to the steady-state mobility, the average energy of the sites that
are visited by the charges becomes equal to Et=∞ = −σ2/(kBT ) in the Boltzmann limit,
as shown by Bässler et al.2 The higher the disorder strength, the longer it takes for the
mobility to relax to the steady-state mobility. This can be explained by the fact that the
waiting time, the time that a charge is located on a site, is on average larger when the
disorder strength is larger. Moreover, during the relaxation, the charge will be trapped on
sites with increasingly lower energy, which leads to longer waiting times.

In Fig. 7.3 we display the time-dependent mobility function µ(t) for six different charge
carrier densities. The disorder strength is taken equal to σ = 5.11 kBT . The other
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Figure 7.2: (a): Time-dependence of the average total distance < x(t) > that all charges in the
simulations box have hopped in the direction along the electric field (x-direction)
for three different disorder strengths. The results are obtained in the Boltzmann
limit. (b): Time-dependent mobility relaxation curves obtained from < x(t) >.
Solid curves: relaxation results. Dashed lines: steady-state values of the mobility.
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Figure 7.3: Mobility relaxation curves for six different charge-carrier densities. The disorder
strength is taken equal to σ = 5.11kBT . Solid curves: relaxation results. Dashed
lines: steady-state values of the mobility.
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Figure 7.4: Mobility relaxation curves for three different field strengths. The disorder strength
is taken equal to σ = 5.11 kBT . The calculation is done in the Boltzmann limit.
Solid curves: relaxation results. Dashed lines: steady-state values of the mobility.

parameters are the same as in Fig. 7.2. The lower the charge-carrier density, the longer
it takes for the time-dependent mobility to relax to the steady-state value of the mobility.
The initial time dependence of the mobility is approximately independent of the density.
When the mobility is somewhat higher than the steady-state values, the curves branch off
from a carrier-independent mobility curve to the steady-state values. The higher the charge
carrier density, the higher the steady-state mobility, because of the state-filling effect.8

To check whether the time-dependent mobility curve as calculated for an electric field of
F = 0.6 σ/(ea) correctly approximates the mobility curve for zero-electric field, we also
studied the relaxation of the mobility for other electric field strengths. In Fig. 7.4 we
display the Boltzmann-limit mobility curve µ(t) for three different electric field strengths.
The disorder strength is again taken equal to σ = 5.11 kBT , while the rest of the device
parameters are the same as in Fig. 7.2.

The transition of the time-dependent mobility to the steady-state value occurs approxi-
mately at the same time, independent of the studied electric field strengths. The curves
calculated for F = 0.3 σ/(ea) and F = 0.6 σ/(ea) are equal, up to a constant shift. Because
of field-reversal symmetry, the mobility in the regime of very low electric fields should be
a quadratic function of the electric field. From this we conclude that the time dependence
of the mobility for F = 0.6 σ/(ea) is approximately equal to the time dependence of the
time dependent mobility curve for a vanishing electric field, up to a constant shift.
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7.4 Conclusion and outlook

In this chapter we studied the time-dependent properties of the mobility by means of
Monte-Carlo simulations. Right after the injection of additional charges, the mobility will
be higher than in steady-state. The mobility decreases with time due to the relaxation of
the charges in the disordered landscape or random site energies. The dependence of the
time-dependent mobility on the disorder strength, charge carrier density and electric field
strength was studied. Coulomb interactions were neglected, as these interactions have a
negligible effect on the mobility at the carrier densities of interest.

In all studied cases, the difference between the mobility right after charge injection and
the steady-state mobility is very large. The relaxation of the mobility to the steady-state
mobility strongly depends on the disorder strength. The higher the disorder strength, the
longer it takes for the mobility to relax to its steady-state value. Right after the injection
of the charges, the time-dependent mobility is independent of the charge carrier density.
Once the time-dependent mobility curve reaches a value that is somewhat higher than the
steady-state mobility, the mobility branches off from the carrier-independent curve to this
steady-state mobility. The modeling of the time-dependent mobility is important for the
correct understanding of (ac)-frequency-dependent properties of organic devices. When
the applied voltage over a device contains a (small) oscillating contribution, the charges
experience an oscillating field. Therefore, the mobility cannot relax to its steady-state
value. The frequency-dependent mobility that describing this situation can be obtained by
Fourier transformation of the time-dependent mobility determined in this chapter.4

Also in the context of recombination processes the time-dependence of the mobility plays
an important role. As we saw in the Monte-Carlo simulations of recombination in Chapter
6, whenever an electron and a hole recombine, another electron and another hole have
to be reintroduced at other sites. After the two charges are reintroduced, they are not
yet in a steady-state situation. These charges will have a time-dependent mobility, which
is right after the reintroduction either larger or smaller than their steady-state mobility,
depending on the chosen reintroduction procedure. We came to that conclusion that the
Langevin formula is still valid when ”bipolar” mobilities are used. In able to parameterize
this ”bipolar” mobility, the relaxational effect of the mobility should be taken into account.

This is also true in a real double-carrier device setting. In a double-carrier device, electrons
are injected from the cathode, while holes are injected from the anode. Right after the
injection of a charge, this charge is not yet in a local equilibrium. When the charge hops
through the device, it potentially reaches the collecting electrode before it can properly
relax. To be able to use the Langevin formula, one should then use mobilities in which the
relaxational effect is taken into account.

We conclude that the time-dependence of the mobility due to energetic relaxation of charges
is highly important for the modeling of devices. This is not only true for applied voltage
that vary with time, but also for a constant applied voltage.
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Chapter 8

Conclusions and outlook

In this thesis we have performed a modeling study of devices consisting of disordered
organic semiconducting materials. The disorder of the organic material gives rise to the
localization of quantum-mechanical states at specific positions, which we call sites. We have
assumed that the energies of these states are randomly distributed according to a Gaussian
distribution. The transport of charges occurs via the hopping of charges from one site to
another. We have assumed that this hopping can be described by a thermally assisted
tunneling process with coupling to a bath of acoustic phonons. The energetic disorder
gives rise to an important effect, namely the transport of charges through preferential
pathways. This effect is caused by percolation. The charge-carrier mobility in organic
semiconducting materials can be described by the Extended Gaussian Disorder Model
(EGDM) or Extended Correlated Disorder Model (ECDM), for spatially uncorrelated and
correlated Gaussian disorder, respectively. These two models have been derived from
Master-Equation calculations and take into account the percolating nature of charge-carrier
transport and the state-filling effect, leading to a dependence of the mobility on the electric
field, charge carrier density and temperature. The precise effect of the three-dimensional
nature of charge-carrier transport on device properties was to a large extent unknown at the
start of this thesis work. The results reported in this thesis can be used for the development
of a predictive one-dimensional (1D) OLEDmodel, yielding reliable predictions of electronic
processes occurring in OLEDs. In this chapter, we will summarize our main conclusions
and indicate directions for future research.

In (Chapter 3) we conclude that the effect of Coulomb interactions between the charges
on the EGDM mobility is relatively small, except for high carrier densities and low electric
field strengths. In that regime, charges experience a Coulomb potential well formed by the
surrounding charges, leading to an extra energy penalty for hopping of a charge. In the
EGDM (and ECDM) as developed originally, the effect of Coulomb interactions between
the charge carriers was not taken into account. The reason is that it is not possible to
take into account those interactions consistently in Master-Equation calculations, since the
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corresponding master equation involves the time-averaged and not the actual occupational
probabilities of the sites. In a Monte-Carlo approach those interactions can be taken into
account explicitly, as the motion of the charges is simulated explicitly.

In (Chapter 4) we conclude that results of Master-Equation calculations of single-layer
single-carrier devices, including the effect of the space charge, the image-charge potential
and an injection barrier, agree surprisingly well with the results of a one-dimensional drift-
diffusion continuum model. In this one-dimensional model, the mobility is described by the
EGDM and an injection barrier lowering due to the image potential is taken into account.
In the regime of high disorder strengths and high injection barriers deviations occur. In this
regime, the current distribution becomes highly filamentary, consisting of one-dimensional
current pathways. The current then agrees very well with a model developed by Burin and
Ratner, which assumes the injection to occur over one-dimensional pathways.

In (Chapter 5) we conclude that the explicit inclusion of Coulomb interactions in Monte-
Carlo simulations does not significantly influence the current for injection barriers of about
0.3 eV or higher. For these injection barriers, the charge-carrier density in the device is so
low that Coulomb interactions do not have a significant effect. For lower injection barriers
and low voltages, the Coulomb interactions lead to a decrease of the current. In this regime,
the current filaments are shifted by the Coulomb interactions. The decrease in the current
becomes less significant for higher disorder strengths and is smaller for correlated disorder
than for uncorrelated disorder.

The classical Langevin formula for the recombination rate of charges of opposite sign
was originally derived under the assumption that charge-carrier transport is homogeneous,
which is obviously not the case in disordered organic materials. Nonetheless, we conclude
in (Chapter 6) that the Langevin formula describes the recombination rate in disordered
organic materials very well, when ”bipolar” charge-carrier mobilities are used. In ”bipolar”
mobilities, the effect of the Coulomb interactions of both charge-carrier types are taken into
account. Depending on the mechanism for the reintroduction of charges, this ”bipolar”
mobility is either larger or smaller than the ”unipolar” mobility, in which only the effect
of the coulomb interactions of one charge carrier type is taken into account.

In (Chapter 7) we conclude that the time-dependent mobility, right after the introduction
of charges in a disordered organic semiconductor, is independent of the charge-carrier
density up to the time that this mobility has decreased to a value which is only slightly
higher than the density-dependent steady-state mobility. Right after the introduction of
extra charges in the material, the charge-carrier mobility is temporarily higher than its
steady-state value. Before this steady-state situation is reached, charge carriers have to
relax in the Gaussian energy distribution. The higher the disorder strength, the longer
the relaxation of the charges to the steady-state takes. After Fourier transformation, the
resulting frequency-dependent mobility can be used to describe the current in single-carrier
devices for which a small ac voltage is added to a dc voltage.

We conclude that taking the three-dimensional nature of charge-carrier transport into ac-
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count in the modeling of devices is of paramount importance. In most cases it turned
out to be possible to describe the three-dimensional charge-carrier transport properties by
one-dimensional modeling approaches. To establish how far the translation from three-
dimensional computational modeling to one-dimensional modeling approaches can be ex-
tended, we propose research in the following directions:

• From our successful simulation attempts, it seems to be very well feasible to simulate
complete OLEDs. In these simulations, complete double-carrier devices would be
modeled in three dimensions, including the injection of electrons at the cathode and
holes at the anode. It even seems feasible to take multiple organic layers into account,
each with their own disorder strengths, lattice constants, etc.. Furthermore, even the
spatial correlation can be varied. It will be a challenge to extend the one-dimensional
continuum drift-diffusion modeling to these situations.

• In every simulation in this thesis, a cubic lattice of sites is assumed. In reality,
the site lattice in organic materials will be disordered. By performing Molecular
Dynamics simulations for the organic materials used in OLEDs, the precise disordered
lattice can be obtained. Moreover, the nature of the energetic disorder can then be
described, including the spatial correlation and the correlation in the electron and
hole site energies. Density-Functional Theory calculations can be used to calculate
the hopping integrals. The obtained lattice, energetic disorder and hopping integrals
can be implemented in the existing Monte-Carlo simulation software, paving the road
towards advanced device simulations with realistic and material-specific input.

• In the Monte-Carlo simulations we performed for recombination, we investigated
the validity of the classical Langevin formula for disordered organic materials. In
those simulations, we assumed equal electron and hole densities. In double-carrier
devices the electron and hole densities are in general locally unequal. It is therefore
important to also investigate the validity of the Langevin formula for the case of
unequal electron and hole densities.

• We have seen that the mobility in devices after the injection of charges is time-
dependent. The modeling of the time-dependent mobility is important for the de-
scription of the (ac)-electrical response properties in organic materials. However,
we think that the time dependence of the mobility also plays an important role in
modeling the recombination in double-carrier device simulations. The Monte-Carlo
modeling of recombination involves the reintroduction of an electron and a hole after
a recombination event. After this reintroduction, the electron and hole will have a
time-dependent mobility due to relaxation. In order to evaluate the ”bipolar” mo-
bilities to be used in the Langevin formula, this relaxation should be modeled. Only
then can the Langevin formula be used in one-dimensional drift-diffusion calculations
of double-carrier devices.





Summary

Three-dimensional modeling of charge transport, injection and recombination
in organic light-emitting diodes

Organic light-emitting diodes (OLEDs) are ideally suited for lighting and display appli-
cations. Commercial OLED displays as well as OLED white-light sources are presently
being introduced to the market. Essential electronic processes in OLEDs are the injection
of electrons and holes into an organic semiconductor, their transport through the semicon-
ductor, and their radiative recombination. In these processes an important role is played
by the energetic disorder present in the organic semiconductor. This disorder leads to
the localization of electronic states to specific sites. Charges move via a hopping process
from one site to another. This hopping process involves quantum-mechanical tunneling
assisted by a coupling to lattice vibrations. The energies of the sites are often taken to be
distributed according to a Gaussian density of states (DOS). With these ingredients, the
electronic processes taking place in OLEDs have been intensively investigated in the last
two decades. However, this has not yet led to a satisfactory and complete OLED model
that includes these processes in a consistent way, taking into account three-dimensional
effects at the microscopic level. The goal of this thesis was to make an important step into
this direction.

In this thesis, the motion of charge carriers is evaluated by means of calculations based
on the Pauli master equation and by means of Monte-Carlo simulations, which are both
introduced in Chapter 2. The Pauli master equation describes the time-averaged occupa-
tional probabilities of a three-dimensional assembly of sites. This equation can be solved
by means of an iterative calculation scheme, after which relevant quantities like the current
and the charge-carrier mobility can be obtained. In the Monte-Carlo approach, the actual
motion of the charges is simulated in time. The advantage of Monte-Carlo simulations
over Master-Equation calculations is that Coulomb interactions between the charges can
be taken into account in a consistent manner.

In Chapter 3 it is shown that Coulomb interactions only influence the mobility in the
case of high carrier densities and low electric field strengths. In this regime, taking into
Coulomb interactions significantly decreases the mobility. This decrease is attributed to
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the trapping of charge carriers by the Coulomb potential well formed by the surrounding
charges. For high electric field strengths and low charge-carrier densities, the mobility
with Coulomb interactions agrees quite well with the mobility obtained without taking
into account Coulomb interactions.

In Chapter 4 the charge-carrier transport in single-carrier single-layer devices consisting of
a disordered organic semiconductor sandwiched in between two metallic electrodes is stud-
ied by means of Master-Equation calculations. The effects of space charge, image-charge
potentials close to the electrodes, finite injection barriers, and the complete dependence of
the charge-carrier mobility on the temperature, the carrier density and the electric field
are taken into account. The obtained three-dimensional current density is very inhomo-
geneous, showing filamentary regions that carry most of the current. Nevertheless, the
total current agrees quite well with that of a one-dimensional continuum drift-diffusion
model. For very thin devices with a high injection barrier and a high disorder strength
(large width of the Gaussian DOS), the one-dimensional continuum drift-diffusion model
underestimates the current. In this regime, the current can be described very well by a
model assuming injection and transport over one-dimensional straight filaments.

In the Master-Equation approach followed in Chapter 4, Coulomb interactions between
charges were only taken into account in a layer-averaged way, because the approach can-
not account explicitly for Coulomb interactions in a consistent way. To study the influence
of explicitly taking into account Coulomb interactions between charges, the studies of the
single-carrier single-layer devices were repeated with Monte-Carlo in Chapter 5. It was
found that in the absence of an injection barrier taking into account Coulomb interactions
explicitly leads to a decrease in the current as compared to Master-Equation calculations.
This decrease can be rationalized by studying the three-dimensional current density dis-
tributions. Taking into account explicit Coulomb interactions leads to a change in the
pattern of the filamentary current pathways, which in turn leads to a decrease of the total
current. The case of spatial correlations in the energetic disorder was also studied. For this
case the filamentary current pathways are broader and the effects of taking into account
explicit Coulomb interactions are smaller.

Traditionally, the rate of recombination between electrons and holes is described by the
Langevin formula, which contains the sum of the electron and hole mobilities as a factor.
In Chapter 6 the question of the validity of this formula for electron-hole recombination
in disordered organic semiconductors is addressed. One of the main assumptions made
in deriving the Langevin formula is that charge-carrier transport occurs homogeneously
throughout the semiconductor. As shown in Chapters 4 and 5, however, this is generally
not the case in organic semiconductors. Nonetheless, it is found from double-carrier Monte-
Carlo simulations of recombining electrons and holes that the recombination rate can be
very well described by the classical Langevin formula, provided that a change in the charge-
carrier mobilities due to the presence of carriers of the opposite type is taken into account.
Deviations from the Langevin formula at finite electric field are found to be small at the
field scale typical for OLEDs.
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In Chapter 7, the time-dependent relaxational properties of charge transport are studied.
When a charge is injected in a disordered organic semiconductor, its mobility will gradu-
ally decrease because of energetic relaxation of the charge into the tail of the DOS. This
relaxation process was studied by inserting charges randomly in an assembly of sites with
a Gaussian DOS and following the time dependence of their mobility. For short simulation
times the mobility was found to be almost independent of the carrier density. However,
when the mobility has decreased to a value somewhat higher than the steady-state mobil-
ity, the time-dependent mobility branches off and relaxes to the carrier-density dependent
steady-state mobility. The obtained results can be used in studying the response of organic
devices to a small additional ac voltage.

Finally, in Chapter 8 overall conclusions and outlook for the three-dimensional modeling
of OLEDs are presented. The results presented in this thesis should be considered as a
significant step towards the development of a predictive model for state-of-the-art OLEDs.
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