

Extending a HSF-enabled open-source real-time operating
system with resource sharing
Citation for published version (APA):
Heuvel, van den, M. M. H. P., Bril, R. J., Lukkien, J. J., & Behnam, M. (2010). Extending a HSF-enabled open-
source real-time operating system with resource sharing. In S. M. Petters, & P. Zijlstra (Eds.), Proceedings 6th
International Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT 2010,
Brussels, Belgium, July 6, 2010; in conjunction with 22nd ECRTS) (pp. 71-81). Politécnico do Porto.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/7fd7bae7-bcad-4b92-b9ac-77975d906400

Extending a HSF-enabled Open-Source Real-Time

Operating System with Resource Sharing

Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Moris Behnam

Real-Time Systems Design Group

Mälardalen Real-Time Research Centre

P.O. Box 883, SE-721 23 Västerås, Sweden

Abstract—Hierarchical scheduling frameworks (HSFs) provide
means for composing complex real-time systems from well-
defined, independently analyzed subsystems. To support resource
sharing within two-level, fixed priority scheduled HSFs, two syn-
chronization protocols based on the stack resource policy (SRP)
have recently been presented, i.e. HSRP [1] and SIRAP [2]. This
paper describes an implementation to provide such HSFs with
SRP-based synchronization protocols. We base our implementa-
tions on the commercially available real-time operating system
µC/OS-II, extended with proprietary support for periodic tasks,
idling periodic servers and two-level fixed priority preemptive
scheduling. Specifically, we show the implementation of SRP as
a local synchronization protocol, and present the implementation
of both HSRP and SIRAP. Moreover, we investigate the system
overhead induced by the synchronization primitives of each
protocol. Our aim is that these protocols can be used side-by-
side within the same HSF, so that their primitives can be selected
based on the protocol’s relative strengths1.

I. INTRODUCTION

The increasing complexity of real-time systems demands

a decoupling of (i) development and analysis of individual

applications and (ii) integration of applications on a shared

platform, including analysis at the system level. Hierarchical

scheduling frameworks (HSFs) have been extensively investi-

gated as a paradigm for facilitating this decoupling [3]. In such

open environments [4], an application that is validated to meet

its timing constraints when executing in isolation will continue

meeting its timing constraints after integration (or admission)

on a shared platform. Temporal isolation between applications

is provided by allocating a budget to each subsystem. In this

paper we assume a one-to-one relation between applications

and subsystems.

To accommodate resource sharing between fixed-priority

scheduled subsystems, two synchronization protocols have

been proposed based on the stack resource policy (SRP) [5],

i.e. HSRP [1] and SIRAP [2]. A HSF extended with such a

protocol makes it possible to share logical resources between

arbitrary tasks, which are located in arbitrary subsystems, in

a mutually exclusive manner. A resource that is used in more

than one subsystem is denoted as a global shared resource.

A resource that is only shared within a single subsystem

is a local shared resource. If a task that accesses a global

1The work in this paper is supported by the Dutch HTAS-VERIFIED
project, see http://www.htas.nl/index.php?pid=154

shared resource is suspended during its execution due to the

exhaustion of the corresponding subsystem’s budget, excessive

blocking periods can occur which may hamper the correct

timeliness of other subsystems [6]. To prevent the depletion

of a subsystem’s budget during a global resource access

SIRAP uses a skipping mechanism. Contrary, HSRP uses

an overrun mechanism (with or without payback), i.e. the

overrun mechanism reacts upon a budget depletion during a

global resource access by temporarily increasing the budget

with a statically determined amount for the duration of that

resource access. The relative strengths of HSRP and SIRAP

heavily depend on system characteristics [7], which makes

it attractive to support both within the same HSF. In this

paper we present the implementation of the synchronization

primitives for both synchronization protocols to support global

(i.e. inter-subsystem) resource sharing by extending a HSF-

enabled µC/OS-II operating system. The choice of operating

system is in line with our industrial and academic partners.

A. Problem Description

Most off-the-shelf real-time operating systems, including

µC/OS-II, do not provide an implementation for SRP nor

hierarchical scheduling. We have extended µC/OS-II with

support for periodic tasks, idling periodic servers [8] and two-

level fixed priority preemptive scheduling (FPPS). Although

global resource sharing protocols within HSFs are extensively

investigated for ideal system models, implementations are

lacking within real-time operating systems. Moreover, the run-

time overhead of these protocols is unknown and not included

in these models. These overheads become relevant during

deployment of such a resource sharing open environment.

B. Contributions

The contribution of this paper is fivefold. First, we present

an implementation of SRP within µC/OS-II as a local (i.e.

intra-subsystem) resource access protocol. We aim at a modu-

lar design, so that one can choose between the original priority

inheritance implementation, or our SRP implementation. We

show that our SRP implementation improves the existing

µC/OS-II implementation for mutual exclusion by lifting

several limitations and simplifying the implementation. We

restrict this implementation to single unit resources and single

processor platforms. Second, we present an implementation

71

for HSRP [1] and SIRAP [2] to support global (i.e. inter-

subsystem) resource sharing within a two-level fixed priority

hierarchically scheduled system. We aim at unified interfaces

for both protocol implementations to ease the integration of

HSRP and SIRAP within the same HSF. Third, we compare

the system overhead of the primitives of both synchronization

protocols. Fourth, we show how HSRP and SIRAP can be

integrated side-by-side within the same HSF. Inline with

µC/OS-II we allow to enable or disable each protocol exten-

sion during compile time. Finally, we show that our protocol

implementations follow a generic design, i.e. the µC/OS-II

specific code is limited.

C. Overview

The remainder of this paper is as follows. Section II

describes the related work. Section III presents background

information on µC/OS-II. Section IV summarizes our basic

µC/OS-II extensions for periodic tasks, idling periodic servers

and a two-level fixed priority scheduled HSF based on a

timed event management system [9, 10]. Section V describes

SRP at the level of local resource sharing, including its im-

plementation. Section VI describes common terminology and

implementation efforts for SRP at the level of global resource

sharing. Section VII and VIII describe the implementation of

global SRP-based synchronization protocols, i.e. SIRAP and

subsequently HSRP. In Section IX we compare both protocol

implementations. Section X discusses the challenges towards

a system supporting both protocols side-by-side. Finally, Sec-

tion XI concludes the paper.

II. RELATED WORK

In literature, several implementations are presented to

provide temporal isolation between dependent applications.

De Niz et al. [11] support resource sharing between reser-

vations based on PCP in their fixed priority scheduled

Linux/RK resource kernel. Buttazzo and Gai [12] implemented

a reservation-based earliest deadline first (EDF) scheduler

for the real-time ERIKA Enterprise kernel, including SRP-

based synchronization support. However, both approaches

are not applicable in open environments [4], because they

lack a distinct support for local and global synchronization.

Contrary, Behnam et al. [13] implemented a HSF on top of

the real-time operating system VxWorks, but do not support

synchronization between applications. Although resource shar-

ing between applications within HSFs has been extensively

investigated in literature, e.g. [1, 2, 7, 14, 15, 16, 17], none

of the above implementations provide such synchronization

primitives. In this paper we describe the implementation

of such synchronization primitives by further extending our

HSF-enabled µC/OS-II operating system. Looking at existing

industrial real-time systems, FPPS is the de-facto standard of

task scheduling. Having such support will simplify migration

to and integration of existing legacy applications into the HSF,

avoiding unbridgeable technology revolutions for engineers. In

the remainder of this section we provide a brief overview of

both local and global synchronization protocols.

A. Local synchronization

The priority inversion problem [18] can be prevented by the

priority inheritance protocol (PIP). PIP makes a task inherit

the highest priority of any other tasks that are waiting on

a resource the task uses. A disadvantage of PIP is that it

suffers from the chained blocking and deadlock problem [18].

As a solution, Sha et al. [18] proposed the priority ceiling

protocol (PCP). An easier to implement alternative to PCP

is the highest locker protocol (HLP). HLP uses an off-line

computed ceiling to raise a task’s priority when it accesses

a resource. In case of HLP a task is already prevented from

starting its execution when a resource is accessed by another

task sharing this resource, whereas PCP postpones increasing

of priorities until a blocking situation occurs. As an alternative

to PCP, Baker [5] presented the stack resource policy (SRP).

SRP has an easier implementation and induces less context

switching overhead compared to PCP, and supports dynamic

priority scheduling policies. Because of its wide applicability,

ease of implementation and its apparent improvements of the

existing synchronization protocol, we have decided to extend

µC/OS-II with SRP, as presented in this paper.

B. Global synchronization

Recently, three SRP-based synchronization protocols for

inter-subsystem resource sharing between tasks have been

presented. Their relative strength depends on various system

parameters [15]. BROE [14] considers resource sharing under

EDF scheduling. Most commercial operating systems, includ-

ing µC/OS-II, do not implement an EDF scheduler. Both

HSRP [1] and SIRAP [2] assume FPPS. In order to deal

with resource access while a subsystem’s budget depletes,

HSRP uses a run-time overrun mechanism [1]. The original

analysis of HSRP [1] does not allow for integration in open

environments due to the lacking support for independent

analysis of subsystems. Behnam et al. [16] lifted this lim-

itation, enabling the full integration of HSRP within HSFs.

Alternatively, SIRAP uses a skipping approach to prevent

budget depletion inside a critical section [2]. Recently, both

synchronization protocols are analytically compared and their

impact on the total system load for various system parameters

is analyzed using simulations [7]. In this paper we implement

both protocols within µC/OS-II, and compare the efficiency

of the corresponding primitives.

III. µC/OS-II: A BRIEF OVERVIEW

The µC/OS-II operating system is maintained and supported

by Micrium [19], and is applied in many application domains,

e.g. avionics, automotive, medical and consumer electronics.

Micrium provides the full µC/OS-II source code with accom-

panying documentation [20]. The µC/OS-II kernel provides

preemptive multitasking, and the kernel size is configurable

at compile time, e.g. services like mailboxes and semaphores

can be disabled.

72

A. µC/OS-II Task Scheduling

The number of tasks that can run within µC/OS-II is

64 by default, and can be extended to 256 by altering the

configuration. Each group of 8 tasks is assigned a bit in the

ready-mask, updated during run-time to indicate whether a task

is ready to run within this group. The ready-mask allows for

optimized fixed priority scheduling by performing efficient bit

comparison operations to determine the highest priority ready

task to run, as explained in more detail in [20, Section 3].

B. µC/OS-II Synchronization Protocol

The standard µC/OS-II distribution supports synchroniza-

tion primitives by means of mutexes [20]. However, it is not

clearly stated which synchronization protocol they implement.

Lee and Kim [21] attempted to identify the protocol by

analyzing the source code. The presence of a ceiling in

the mutex interface suggested the implementation of HLP.

However, we have analyzed the behavior in Figure 1 of two

tasks that reserve two resources in opposite order2. Since we

observe a deadlock, µC/OS-II does not seem to implement

HLP or an other deadlock avoidance protocol.

0 50 100

Task1

Task2

Idle

Legend:

active

holding

mutex

Fig. 1. The mutex implementation in µC/OS-II suffers from the deadlock
problem, inherited from the PIP definition. The task-set T contains tasks τ1
and τ2, where τ1 has the highest priority. τ1 first locks resource R1 and
subsequently R2, has a computation time2 C1 = 10 + 5 + 5 + 5 + 5, and
a phasing ϕ1 = 10. τ2 first locks resource R2 and subsequently R1, has a
computation time C2 = 5+10+25+10+5, and no phasing (i.e. ϕ2 = 0).

µC/OS-II only supports a single task on each priority-level,

independent of its execution state, because a priority is also

used as a task identifier. A priority-level is assigned to each

resource on creation of the resource. The priority-level is

used to raise the priority of a task when it blocks a higher

priority task, which is named priority calling in the µC/OS-II

terminology. Because of the assignment of a unique priority to

each resource, the transparent character of PIP is lost. In the

original PIP a priority is dynamically raised to the priority of

the task that is pending on a resource, which does not require

any off-line calculated information. Literature [21] outlines an

implementation of PIP within µC/OS-II lifting the limitation

on reserving a priority level.

2The fragmented computation time Ci denotes the task’s consumed
time units before/after locking/unlocking a resource, e.g. the scenario
C1,1 − Lock(R1) − C1,2 − Lock(R2) − C1,3 − Unlock(R2) − C1,4 −

Unlock(R1)− C1,5 is denoted as C1,1 + C1,2 + . . .+ C1,5.

IV. BASIC µC/OS-II EXTENSIONS RECAPITULATED

In this paper, we consider a HSF with two-level FPPS,

where a system S is composed of a set of subsystems, each

of which is composed of a set of tasks. A server is allocated

to each subsystem Ss ∈ S . A global scheduler is used to

determine which server should be allocated the processor at

any given time. A local scheduler determines which of the

chosen server’s tasks should actually execute. Given such

a HSF mapped on a single processor, we assume that a

subsystem is implemented by means of an idling periodic

server [8]. However, the proposed approach is expected to

be easily adaptable to other server models. A server has a

replenishment period Ps and a budget Qs, which together

define a timing interface Ss(Ps, Qs) associated with each

subsystem Ss. We say that tasks assigned to a server consume

processor time relative to the server’s budget to signify that

the consumed processor time is accounted to (and subtracted

from) that budget.

Most real-time operating systems, including µC/OS-II, do

not include a reservation-based scheduler, nor provide means

for hierarchical scheduling. Although some real-time operating

systems provide primitives to support periodic tasks, e.g.

RTAI/Linux [22], µC/OS-II does not. In the remainder of

this section we outline our realization of such extensions

for µC/OS-II, which are required basic blocks to enable the

integration of global synchronization.

A. Timed Event Management

Real-time systems need to schedule many different timed

events (e.g. programmed delays, arrival of periodic tasks

and budget replenishment) [9]. On contemporary computer

platforms, however, the number of hardware timers is usually

limited, meaning that events need to be multiplexed on the

available timers. Facing these challenges led to the invention

of RELTEQ [9].

The basic idea behind RELTEQ is to store the arrival times

of events relative to each other, by expressing the arrival time

of an event relative to the arrival time of the previous event.

The arrival time of the head event is relative to the current

time, as shown in Figure 2. While RELTEQ is not restricted

to any specific hardware timer, in this paper we assume a

periodic timer. At every tick of the periodic timer the time of

the head event in the queue is decremented.

Two operations can be performed on an event queue: new

events can be inserted and the head event can be popped. When

a new event ei with absolute time ti is inserted, the event

queue has to be traversed, accumulating the relative times of

the events until a later event ej is found, with ti < tj , where ti
and tj are both absolute times. When such an event is found,

then (i) ei is inserted before ej , (ii) its time is set relative to

the previous event, and (iii) the arrival time of ej is set relative

to ei. If no later event was found, then ei is appended at the

end of the queue, and its time is set relative to the previous

event.

In [10] we proposed a technique to extend RELTEQ with

the aim to minimize the overhead of handling events belonging

73

12 4 5 5 10

e
1

e
2

e
3

e
4

e
5

absolute time1002

event time

1006 1011 1016 1026990

now

Fig. 2. Example of the RELTEQ event queue.

to inactive servers. To support hierarchical scheduling, we

introduced a server queue for each server to keep track of the

events local to the server. At any time at most one server can

be active; all other servers are inactive. A stopwatch queue

keeps track of the time passed since the last server switch,

which provides a mechanism to synchronize the server queues

with the global time upon a server context switch. Finally,

we introduced the notion of a virtual event, which are timed

events relative to the consumed budget, e.g. budget depletion.

An additional server event queue that is not synchronized

with global time upon a server context-switch implements the

infrastructure to support virtual events.

B. Periodic Task Scheduling

The implemented RELTEQ extensions within µC/OS-II

easily allow the support for periodic tasks. Because different

µC/OS-II services can influence the state of a task, we do

not directly alter the task’s state. Instead, a periodic task is

characterized by an infinite loop which executes its periodic

workload and subsequently pends on a semaphore. The event

handler corresponding to RELTEQ’s activation event releases

the pending task and inserts a new event for the next period.

C. Simplified Server Scheduling

Extending the standard µC/OS-II scheduler with basic HSF

support requires the identification and realization of the fol-

lowing concepts:

1) Applications: An application can be modeled as a set of

tasks. Since µC/OS-II tasks are bundled in groups of eight to

accommodate efficient fixed priority scheduling, as explained

in Section III-A, a server can naturally be represented by a

multiple of eight tasks.

2) Idling Periodic Servers: A realization of the idling

periodic server is very similar to the implementation of a

periodic task using our RELTEQ extensions [10], with the

difference that the server structures do not require additional

semaphores. An idling task is contained in all servers at the

lowest local priority.

3) Two-level FPPS-based HSF: Similar to the existing

µC/OS-II task scheduling approach, we introduce an additional

bit-mask to represent whether a server has capacity left. When

the scheduler is called it determines the highest priority server

with remaining capacity, and hides all tasks from other servers

for the local scheduler. Subsequently, the local scheduler

determines the highest priority ready task within the server.

V. STACK RESOURCE POLICY IMPLEMENTATION

As a supportive step towards global synchronization, first

the SRP protocol is summarized, followed by the implemen-

tation description of the SRP primitives. Note that in its

original formulation SRP introduces the notion of preemption-

levels. In this paper we consider FPPS, which allows to unify

preemption-levels with task priorities.

A. SRP Recapitulated

The key idea of SRP is that when a task needs a resource

that is not available, it is blocked at the time it attempts

to preempt, rather than later. Therefore a preemption test is

performed during runtime by the scheduler: A task is not

permitted to preempt until its priority is the highest among

those of all ready tasks and its priority is higher than the

system ceiling.
1) Resource Ceiling: Each resource is assigned a static,

off-line calculated ceiling, which is defined as the maximum

priority of any task that shares the resource.
2) System Ceiling: The system ceiling is defined as the

maximum of the resource ceilings of all currently locked

resources. When no resources are locked the system ceiling

is zero, meaning that it does not block any tasks from

preempting. When a resource is locked, the system ceiling

is adjusted dynamically using the resource ceiling. A run-time

mechanism for tracking the system ceiling can be implemented

by means of a stack.

B. SRP Data and Interface Description

Each resource accessed using an SRP-based mutex is rep-

resented by a Resource structure. This structure is defined

as follows:

typedef struct resource{

INT8U ceiling;

INT8U lockingTask;

void* previous;

} Resource;

The Resource structure stores properties which are used

to track the system ceiling, as explained in the next subsection.

The corresponding mutex interfaces are defined as follows:
1) Create a SRP mutex:

Resource* SRPMutexCreate(INT8U ceiling,

INT8U *err);

2) Lock a SRP mutex:
void SRPMutexLock(Resource* r, INT8U *err);

3) Unlock a SRP mutex:
void SRPMutexUnlock(Resource* r);

C. SRP Primitive and Data-structure Implementation

Nice properties of the SRP are its simple locking and

unlocking operations. Moreover, SRP allows to share a single

stack between all tasks within an application. In turn, during

run-time we need to keep track of the system ceiling and the

scheduler needs to compare the highest ready task priority with

the system ceiling.
1) Tracking the System Ceiling: We use the Resource

data-structure to implement a system ceiling stack. ceiling

stores the resource ceiling and lockingTask stores the

identifier of the task currently holding the resource. The

previous pointer is used to maintain the stack structure, i.e.

it points to the previous Resource structure on the stack.

The ceiling field of the Resource on top of the stack

represents the current system ceiling.

74

2) Resource Locking: When a task tries to lock a resource

with a resource ceiling higher than the current system ceiling,

the corresponding resource ceiling is pushed on top of the

system ceiling stack.

3) Resource Unlocking: When unlocking a resource, the

value on top of the system ceiling stack is popped if the

corresponding resource holds the current system ceiling. The

scheduler is called to allow for scheduling ready tasks that

might have arrived during the execution of the critical section.

4) Scheduling: When the µC/OS-II scheduler is called it

calls a function which returns the highest priority ready task.

Accordingly to SRP we extend this function with the following

rule: when the highest ready task has a priority lower than or

equal to the current system ceiling, the priority of the task

on top of the resource stack is returned. The returned priority

serves as a task identifier.

D. Evaluation

To show that our SRP-based implementation improves on

the standard mutex implementation we have simulated the

same task set as in Figure 1. The resulting trace in Fig-

ure 3 shows that our SRP implementation successfully handles

nested critical sections, whereas the priority inheritance imple-

mentation causes a deadlock of the involved tasks.

0 50 100

Task1

Task2

Idle

Legend:

active

holding

mutex

Fig. 3. Using the SRP mutexes the deadlock problem for nested resources
is resolved. The task parameters are equal to the example in Section III-B.

Moreover, our implementation reduces the amount of source

code: µC/OS-II’s PIP implementation consists of 442 lines of

code (excluding comments) versus 172 lines of code for our

SRP implementation. Additionally, SRP avoids keeping track

of the waiting tasks, i.e. it is more processor time and memory

space efficient, and lifts the limitation to reserve a priority for

each resource.

VI. GLOBAL SRP-BASED SYNCHRONIZATION

Both HSRP and SIRAP can be used for independent de-

velopment of subsystems and support subsystem integration

in the presence of globally shared resources [2, 16]. Besides,

both protocols use SRP to synchronize global resource access,

and therefore parts of their implementations are common, as

described in this section.

A. Definitions

Lifting SRP to a two-level HSF requires to extend our notion

of a ceiling compared to the original SRP.

1) Resource ceiling: With every global resource two types

of resource ceilings are associated; a global resource ceiling

for global scheduling and a local resource ceiling for local

scheduling. These ceilings are defined according the SRP.

2) System/subsystem ceiling: The system/subsystem ceil-

ings are dynamic parameters that change during execution. The

system/subsystem ceiling is equal to the highest global/local

resource ceiling of a currently locked resource in the sys-

tem/subsystem. Under SRP, a task can only preempt the cur-

rently executing task (even when accessing a global resource)

if its priority is higher than its subsystem ceiling. A similar

condition for preemption holds for subsystems.

B. Extending the SRP Data Structures

Each global resource accessed using an SRP-based mutex

is represented by a Resource structure. Additionally, the

resource is represented by a localResource structure

defined as follows:

typedef struct {

struct resource* globalResource;

INT8U localCeiling;

INT8U localLockingTask;

void* previous;

} localResource;

The localResource structure stores properties which

are used to track the subsystem ceiling, as explained in the

next subsection.

C. Tracking the Subsystem/System Ceiling

Similar to the SRP implementation we need to maintain a

stack for the global and local resource ceilings. The global

stack is represented by the stack implementation described in

Section V-C. A global mutex creates a normal SRP mutex and

passes the system ceiling as a ceiling, i.e.

Pseudo-code 1 Resource∗ GlobalMutexCreate(INT8U globalCeiling);

1: InitializeLocalResourceData();
2: return SRPMutexCreate(globalCeiling, 0);

To keep track of local subsystem ceilings, we need to

maintain a separate subsystem ceiling stack for each sub-

system. We use the localResource data-structure to im-

plement a subsystem ceiling stack. The globalResource

points to the corresponding resource block at the global

level. localCeiling stores the local resource ceiling

and localLockingTask stores the identifier of the task

currently holding the resource. The previous pointer is

used to maintain the stack structure, i.e. it points to the

previous localResource structure on the stack. The

localCeiling field of the localResource on top of

the stack represents the current subsystem ceiling.

D. Scheduling

Extending the scheduler with a preemption rule is similar

to the SRP implementation. When the scheduler selects the

next server to be activated, its associated subsystem priority

must exceed the current system ceiling. Similarly, the priority

of the selected task must exceed the subsystem ceiling.

75

VII. SIRAP IMPLEMENTATION

This section presents the SIRAP implementation using the

SRP infrastructure described in Section VI. First, we summa-

rize SIRAP, followed by its realization within µC/OS-II.

A. SIRAP Recapitulated

SIRAP uses SRP to synchronize access to globally shared

resources [2], and uses a skipping approach to prevent budget

depletion inside a critical section. If a task wants to enter

a critical section, it enters the critical section at the earliest

time instant so that it can complete the critical section before

the subsystem budget expires. If the remaining budget is not

sufficient to lock and release a resource before expiration,

(i) the task blocks itself, and (ii) the subsystem ceiling is raised

to prevent other tasks in the subsystem to execute until the

resource is released.

B. SIRAP Data and Interface Description

The SIRAP interfaces for locking and unlocking globally

shared resources are defined as follows:
1) Lock SIRAP mutex:

void SIRAP_Lock(Resource* r, INT16U holdTime);

2) Unlock SIRAP mutex:
void SIRAP_Unlock(Resource* r);

The lock operation contains a parameter holdTime, which

is accounted in terms of processor cycles and allocated to the

calling task’s budget. Efficiently filling in this parameter in

terms of system load requires the programmer to correctly

obtain the resource holding time [2, 23]. Since this provides

an error-prone way of programming, we discuss an alternative

approach in Section X.

C. SIRAP Primitive Implementation

SIRAP’s locking and unlocking are building on the SRP

implementation. Note that kernel primitives are assumed to

execute non-preemptively, unless denoted differently (i.e. in

SIRAP’s lock operation).

1) Resource Locking: The lock operation first updates

the subsystem’s local ceiling according to SRP to prevent

other tasks within the subsystem from interfering during the

execution of the critical section. In order to successfully lock a

resource there must be sufficient remaining budget within the

server’s current period. The remaining budget Qremaining is

returned by a function that depends on the virtual timers mech-

anism, see Section IV-A. SIRAP’s skipping approach requires

the knowledge of the resource holding times (holdT ime) [23]

when accessing a resource. If Qremaining is not sufficient, the

task will spinlock until the next replenishment event expires.

To avoid a race-condition between a resource unlock and

budget depletion, we require that Qremaining is strictly larger

than holdT ime before granting access to a resource. The lock

operation in pseudo-code is shown in Source 2.

When the server’s budget is replenished, all tasks spin-

locking on a resource are unlocked as soon as the task is

rescheduled. Although after budget replenishment a repeated

test on the remaining budget is superfluous [2], we claim that

Pseudo-code 2 void SIRAP lock(Resource∗ r, INT16U holdTime);

1: updateSubsystemCeiling();
2: while holdT ime >= Qremaining do

3: enableInterrups;
4: disableInterrups;
5: end while

6: SRPMutexLock(r, 0);

spinlocking efficiently implements the skipping mechanism.

A disadvantage of this implementation is that it relies on

the assumption of a idling periodic server3. For any budget-

preserving server, e.g. the deferrable server [25], the skipping

mechanism by means of a spinlock is unacceptable, because

a task consumes server budget during spinlocking.

An alternative implementation would be to suspend a task

when the budget is insufficient and resume a task when the

budget is replenished. Firstly, this alternative approach induces

additional overhead within the budget replenishment event

due to the resumption of the blocked task. Secondly, µC/OS-

II requires at any time a schedulable ready task, which is

optionally a special idle task at the lowest priority. However,

the system/subsystem ceilings prevent the idle task to be

switched in. We could choose to make an exception for the

idle task, but this breaks the property of SRP allowing to share

stack space among tasks [5]. We consider further elaboration

on these issues out of the scope of this paper.

2) Resource Unlocking: Unlocking a resource simply

means that the system/subsystem ceiling must be updated and

the SRP mutex must be released. Note that the latter command

will also cause rescheduling.

Pseudo-code 3 void SIRAP unlock(Resource∗ r);

1: updateSubsystemCeiling();
2: SRPMutexUnlock(r);

VIII. HSRP IMPLEMENTATION

This section presents the HSRP implementation. First, we

summarize HSRP, followed by its realization within µC/OS-II.

A. HSRP Recapitulated

HSRP uses SRP to synchronize access to globally shared

resources [1], and uses an overrun mechanism to prevent ex-

cessive blocking times due to budget depletion inside a critical

section. When the budget of a subsystem expires and the

subsystem has a task τi that is still locking a globally shared

resource, this task τi continues its execution until it releases the

locked resource. When a task accesses a global resource the

local subsystem ceiling is raised to the highest local priority,

i.e. for the duration of the critical section the task executes

non-preemptively with respect to other tasks within the same

subsystem. Two alternatives of the overrun mechanism are

presented: (i) overrun with payback, and (ii) overrun without

3A polling server [24] also works under this assumption, but does not adhere
to the periodic resource model [3], and therefore increases the complexity
to integrate SIRAP and HSRP within a single HSF [7]. We leave the
implementation for alternative server models as future work.

76

payback. The payback mechanism requires that when a over-

run happens in a subsystem Ss, the budget of this subsystem

is decreased with the consumed amount of overrun in its next

execution instant. Without payback no further actions are taken

after an overrun has occurred. We do not further investigate

the relative strengths of both alternatives, since these heavily

depend on the chosen system parameters [7]. In this section

we show an implementation supporting both HSRP versions.

B. HSRP Data and Interface Description

The HSRP interfaces for locking and unlocking globally

shared resources are defined as follows:
1) Lock HSRP mutex:

void HSRP_Lock(Resource* r);

2) Unlock HSRP mutex:
void HSRP_Unlock(Resource* r);

Contrary to SIRAP, the lock operation lacks the holdT ime

parameter. Instead, HSRP uses a static amount of overrun

budget, Xs, assigned to each server within the system.

C. HSRP Primitive Implementation

HSRP’s locking and unlocking are building on the SRP

implementation. Additionally, we need to adapt the bud-

get depletion event handler to cope with overrun. This re-

quires to keep track of the number of resources locked

(lockedResourceCounter) within subsystem Ss. The server

data-structure is extended with four additional fields for book-

keeping purposes, i.e. lockedResourceCounter, inOverrun,

consumedOverrun and paybackEnabled. The consumption

of overrun budget ends when the normal budget is replen-

ished [17], which requires an adaption of the budget replenish-

ment event. Optionally, we implement an payback mechanism

in the budget replenishment event. These event handlers are

provided by RELTEQ as presented in Section IV-A.

1) Resource Locking: The lock operation first updates the

subsystem’s local ceiling to the highest local priority to prevent

other tasks within the subsystem from interfering during the

execution of the critical section. The lock operation in pseudo-

code can be denoted as follows:

Pseudo-code 4 void HSRP lock(Resource∗ r);

1: updateSubsystemCeiling();
2: Ss.lockedResourceCounter ++;
3: SRPMutexLock(r, 0);

2) Resource Unlocking: Unlocking a resource means that

the system/subsystem ceiling must be updated and the SRP

mutex must be released. Additionally, in case that overrun

budget, Xs, is consumed and no other global resource is

locked within the same subsystem, we need to inform the

scheduler that overrun has ended. Optionally, the amount of

consumed overrun budget is stored to support payback upon

the next replenishment. The unlock operation in pseudo-code

is is shown in Pseudo-code 5.

The command setSubsystemBudget(0) performs two ac-

tions: (i) the server is blocked to prevent the scheduler from

rescheduling the server, and (ii) the budget depletion event is

removed from RELTEQ’s virtual event queue.

Pseudo-code 5 void HSRP unlock(Resource∗ r);

1: updateSubsystemCeiling();
2: Ss.lockedResourceCounter −−;
3: if Ss.lockedResourceCounter == 0 and Ss.inOverrun then

4: if Ss.paybackEnabled then

5: Ss.consumedOverrun = Xs −Qremaining ;
6: end if

7: setSubsystemBudget(0);
8: end if

9: SRPMutexUnlock(r);

3) Budget Depletion: We extend the event handler corre-

sponding to a budget depletion by a conditional enlargement

of the budget of the size Xs, with Xs > 0, i.e. in pseudo code:

Pseudo-code 6 on budget depletion:

1: if Ss.lockedResourceCounter > 0 then

2: setSubsystemBudget(Xs);
3: Ss.inOverrun = true;
4: end if

Note that setSubsystemBudget(Xs) inserts a new event

in RELTEQ’s virtual event queue. Furthermore, we postpone

server inactivation.

4) Budget Replenishment: When a server is still consuming

overrun budget while its normal budget is replenished, the

overrun state of this server is reset. Additionally, to support the

optionally enabled payback mechanism, we replace the budget

replenishment line in the corresponding event handler. The

replenished budget is decreased with the consumed overrun

budget in the previous period, i.e. in pseudo code:

Pseudo-code 7 on budget replenishment:

1: if Ss.inOverrun then
2: if Ss.paybackEnabled then

3: Ss.consumedOverrun = Xs −Qremaining ;
4: end if

5: Ss.inOverrun = false

6: end if

7: setSubsystemBudget(Qs − Ss.consumedOverrun);
8: Ss.consumedOverrun = 0;

IX. COMPARING SIRAP AND HSRP

In this section we compare both implementations for HSRP

and SIRAP. First, we present a brief overview of our test

platform. Next, we compare the implementations of HSRP

and SIRAP and demonstrate their effectiveness by means of an

example system. Finally, we investigate the system overhead

of the synchronization protocol’s corresponding primitives.

A. Experimental Setup

In our experiments we use the cycle-accurate OpenRISC

simulator provided by the OpenCores project [26]. Within this

project an open-source hardware platform is developed. The

hardware architecture comprises a scalar processor and basic

peripherals to provide basic functionality [27]. The OpenRISC

simulator allows simple code analysis and system performance

evaluation. Recently, we created a port for µC/OS-II to the

77

Fig. 4. Example trace for HSRP using the overrun and payback mechanisms.

OpenRISC platform, and extended the toolchain with visu-

alization tools, which make it possible to plot a real-time

system’s behaviour [28, 29].

B. Protocol Comparison

To demonstrate the behavioural difference between HSRP

and SIRAP, consider an example system comprised of two

subsystems (see Table I) each with two tasks (see Table II)

sharing a single global resource R1. Note that the subsys-

tem/task with the lowest number has the highest priority and

that the computation times of tasks are denoted similarly as in

Section III-B2. The local resource ceilings of R1 are chosen

to be equal to the highest local priority for SIRAP, while for

HSRP this is the default setup.

TABLE I
EXAMPLE SYSTEM: SUBSYSTEM PARAMETERS

Subsystem Period (Ps) Budget (Qs) Max. blocking (Xs)

Server 1 50 20 15

Server 2 60 20 15

Inherent to the protocol, HSRP immediately grants access

to a shared resource and allows the task to overrun its server’s

budget for the duration of the critical section, see Figure 4.

Server 2 replenishes its budget with Xs at time 40. At time

50 task 4 releases R1 and the remainder of Xs is discarded.

Fig. 5. Example trace for SIRAP using the skipping mechanism. Note that
skipping occurs as normal task activation in the execution behaviour of a task.

TABLE II
EXAMPLE SYSTEM: TASK PARAMETERS

Server Task Period Computation time Phasing

Server 1 Task 1 100 10 10

Server 1 Task 2 150 5+15+5 -

Server 2 Task 3 100 10 10

Server 2 Task 4 200 5+15+5 -

The normal budget of server 2 is reduced with its consumed

overrun at the next replenishment (time 60).

Contrary, SIRAP postpones resource access when the bud-

get is insufficient, as illustrated in Figure 5. SIRAP’s spinlock-

ing implementation is visualized as a longer normal execution

time compared to HSRP, e.g. see the execution of task 2 in

time interval (10, 20]. Figure 6 shows the behaviour of the

example system when server 1 selects the SIRAP protocol

and server 2 selects the HSRP (with payback).

C. Measurements and Results

In this section we investigate the overhead of the syn-

chronization primitives of HSRP and SIRAP. Current analysis

techniques do not account for overhead of the corresponding

synchronization primitives, although these overheads become

of relevance upon deployment of such a system. All our

measurements are independent of the number of subsystems

78

Fig. 6. Example trace combining SIRAP (server 1) and HSRP with payback (server 2) to access a single shared resource.

and tasks within a system.

As we can observe in our implementation, SIRAP induces

overhead locally within a subsystem, i.e. the spinlock adds

to the budget consumption of the particular task that locks

the resource. HSRP introduces overhead that interferes at the

global system level, i.e. the overrun mechanism requires the

manipulation of event queues. The overheads introduced by the

implementation of these protocols is summarized in Table III.

A nice analogy of the implementation with respect to the

schedulability analysis [7] is that HSRP has an overrun term

at the global analysis level, while SIRAP accounts for self-

blocking at the local analysis level.

TABLE III
OVERVIEW OF THE SYNCHRONIZATION PRIMITIVE’S IMPLEMENTATION

COMPLEXITY FOR HSRP’S AND SIRAP’S RUN-TIME MECHANISMS.

Event HSRP SIRAP

Lock resource - spinlock

Unlock resource overrun completion -

Budget depletion overrun -

Budget replenishment overrun completion, spinlock-completion
payback (optionally)

SIRAP’s overhead consists at least of a single test for

sufficient budget in case the test is passed. The overhead

is at most two of such tests in case the initial test fails,

i.e. one additional test is done after budget replenishment

before resource access is granted. All remaining tests during

spinlocking are already included as self-blocking terms in the

local analysis [7]. The number of CPU instructions executed

for a single test is 10 instructions on our test platform.

The best-case HSRP overhead is null in addition to the

normal number of CPU instructions that are spent to increase

and decrease the subsystem and system ceilings. The worst-

case HSRP overhead occurs at overrun. When the budget

depletes, it is replenished with the maximum allowed overrun

budget, which takes 383 instructions4. Overrun completion can

occur due to two alternative scenarios: (i) a task unlocks a

resource while consuming overrun budget, or (ii) the normal

budget is replenished while the subsystem consumes overrun

budget. The system overhead for both cases is 966 CPU

instructions. When the payback mechanism is enabled, one

additional computation is done to calculate the number that

needs to be paid back at the next server replenishment, i.e.

a system overhead of 5 instructions. As expected, we can

conclude that especially ending overrun in HSRP’s unlock

operation is expensive.

4Our current setup only uses a dedicated virtual event queue for each server
to keep track of a subsystem’s budget, and the queue manipulations therefore
have constant system overhead. In case multiple virtual events are stored in
this queue, the system overhead for inserting and removing events becomes
linear in its length [10].

79

D. Evaluation

The synchronization protocol implementations are com-

posed of (i) variable assignments, (ii) (sub)system ceiling

stack manipulations, (iii) RELTEQ operations [9, 10], (iv) a

mechanism to allow non-preemptive execution (enable/disable

interrupts) and (v) scheduler extensions. The first three build-

ing blocks are not specifically bound to µC/OS-II. The latter

two are µC/OS-II specific. Especially, the extension of the

scheduler by SRP’s preemption rules is eased by µC/OS-II’s

open-source character.

X. DISCUSSION

In the previous section we compared the system overhead

of the HSRP and SIRAP primitives. Complementary, earlier

results have shown that these protocols induce different system

loads depending on the chosen (sub)system parameters [7].

To optimize the overall resource requirements of a system,

we would like to enable both protocols side-by-side within

the same HSF, as demonstrated in Figure 6. Enabling this

integration puts demands on the implementation and the

schedulability analysis. From the implementation perspective,

an unification of the primitive interfaces is requires. However,

the choice for a particular protocol at different levels in the

system impacts the complexity of the analysis.

A. Uniform Analysis

The synchronization protocols guarantee a maximal block-

ing time with respect to other subsystems under the assump-

tions that (i) the analysis at the local and global level is

correctly performed; (ii) the obtained parameters are filled in

correctly; and (iii) the subsystem behaves according to its pa-

rameters. In order to allow SIRAP and HSRP to be integrated

side-by-side at the level of subsystems within a single HSF,

we need to unify the (global) schedulability analysis of both

protocols. Initial results based on our implementation suggests

that this integration step is fairly straightforward. The analysis

of this integration is left as future work.

B. Uniform Interfaces

Assuming the system analysis supports integration of HSRP

and SIRAP within the same HSF at the level of subsystems,

one might choose a different synchronization protocol per

subsystem depending on its characteristics. Enabling this inte-

gration requires that an application programmer (i) can ignore

which synchronization protocol is selected by the system, and

(ii) cannot exploit the knowledge of the selected protocol. The

primitive interfaces therefore need to be unified.

The interface description of SIRAP differs from HSRP,

because it requires to explicitly check the remaining budget

before granting access to a resource, hence the occurrence of

the holdT ime parameter in its lock interface (see Section VII).

However, the integration of HSRP and SIRAP at the level of

subsystems only requires that the maximum critical sections

length, Xs, within subsystem Ss is known. Assuming Xs is

available from the analysis, we can easily store this infor-

mation within the server-structure. This relaxes the amount

of run-time information and allows to remove the holdT ime

parameter from SIRAP’s lock operation, although at the cost

of budget over-provisioning due to larger self-blocking times.

XI. CONCLUSION

This paper describes the implementation of two alternative

SRP-based synchronization protocols within a two-level fixed

priority scheduled HSF to support inter-application synchro-

nization. In such systems, several subsystems execute on a

shared processor where each subsystem is given a virtual share

of the processor and is responsible for local scheduling of tasks

within itself. We specifically demonstrated a feasible imple-

mentation of these synchronization protocols within µC/OS-II.

First, we presented an implementation of SRP within

µC/OS-II that optimizes its existing synchronization primitives

by a reduced amount of source code, a simplified implemen-

tation, and optimized run-time behaviour. Next, we presented

the implementation of SIRAP using a run-time skipping mech-

anism, and HSRP using a run-time overrun mechanism (with

or without payback). We discussed the system overhead of

the accompanying synchronization primitives, and how these

primitives can be integrated within a single HSF.

We aim at using these protocols side-by-side within the

same HSF, so that their primitives can be selected based on

the relative strengths of the protocol, which depend on system

characteristics [7]. We showed that enabling the full integration

of both synchronization protocols at the level of subsystems

is relatively straightforward.

Our current research focuses on an appropriate selection

criterium that minimizes the system overhead based on the

subsystem parameters. In the future we would like to in-

vestigate less restrictive ways of combining synchronization

protocols within HSFs in a predictable manner, e.g. per task,

resource or resource access, by extending the existing analysis

techniques and corresponding tooling. Finally, we would like

to further investigate (i) trade-offs between different design

and implementation alternatives of HSFs with appropriate

synchronization protocols, and (ii) their applicability to a wider

range of server models.

REFERENCES

[1] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in Proc. RTSS, Dec. 2006, pp. 257–270.

[2] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems,” in
Proc. EMSOFT, Oct. 2007, pp. 279–288.

[3] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in Proc. RTSS, Dec. 2003, pp. 2–13.

[4] Z. Deng and J.-S. Liu, “Scheduling real-time applications in an open
environment,” in Proc. RTSS, Dec. 1997, pp. 308–319.

[5] T. P. Baker, “Stack-based scheduling for realtime processes,” Real-Time

Syst., vol. 3, no. 1, pp. 67–99, 1991.
[6] T. M. Ghazalie and T. P. Baker, “Aperiodic servers in a deadline

scheduling environment,” Real-Time Syst., vol. 9, no. 1, pp. 31–67, 1995.
[7] M. Behnam, T. Nolte, M. Åsberg, and R. Bril, “Overrun and skipping

in hierarchically scheduled real-time systems,” in Proc. RTCSA, Aug.
2009, pp. 519–526.

[8] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive schedul-
ing,” in Proc. RTSS, Dec. 2005, pp. 389–398.

[9] M. Holenderski, W. Cools, R. J. Bril, and J. J. Lukkien, “Multiplexing
real-time timed events,” in Proc. ETFA, July 2009.

80

[10] M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien, “Virtual timers in hierarchical real-time systems,” Proc.

WiP session of the RTSS, pp. 37–40, Dec. 2009.
[11] D. de Niz, L. Abeni, S. Saewong, and R. Rajkumar, “Resource sharing

in reservation-based systems,” in Proc. RTSS, Dec. 2001, pp. 171–180.
[12] G. Buttazzo and P. Gai, “Efficient implementation of an EDF scheduler

for small embedded systems,” in Proc. OSPERT, July 2006.
[13] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards

hierarchical scheduling on top of VxWorks,” in Proc. OSPERT, July
2008, pp. 63–72.

[14] N. Fisher, M. Bertogna, and S. Baruah, “The design of an EDF-
scheduled resource-sharing open environment,” in Proc. RTSS, Dec.
2007, pp. 83–92.

[15] M. Behnam, T. Nolte, M. Åsberg, and I. Shin, “Synchronization proto-
cols for hierarchical real-time scheduling frameworks,” in Proc. CRTS,
Nov. 2008, pp. 53–60.

[16] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “Scheduling of semi-
independent real-time components: Overrun methods and resource hold-
ing times.” in Proc. ETFA, Sep. 2008, pp. 575–582.

[17] R. J. Bril, U. Keskin, M. Behnam, and T. Nolte, “Schedulability analysis
of synchronization protocols based on overrun without payback for
hierarchical scheduling frameworks revisited,” in Proc. CRTS, 2009.

[18] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, 1990.

[19] Micrium, “RTOS and tools,” March 2010. [Online]. Available:
http://micrium.com/

[20] J. J. Labrosse, Microc/OS-II. R & D Books, 1998.
[21] J.-H. Lee and H.-N. Kim, “Implementing priority inheritance semaphore

on uC/OS real-time kernel,” in Proc. WSTFES, May 2003, pp. 83–86.
[22] M. Bergsma, M. Holenderski, R. J. Bril, and J. J. Lukkien, “Extending

RTAI/Linux with fixed-priority scheduling with deferred preemption,”
in Proc. OSPERT, June 2009, pp. 5–14.

[23] M. Bertogna, N. Fisher, and S. Baruah, “Static-priority scheduling and
resource hold times,” in Proc. WPDRTS, March 2007, pp. 1–8.

[24] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task scheduling for
hard-real-time systems,” Real-Time Syst., vol. 1, no. 1, pp. 27–60, 1989.

[25] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time envi-
ronments,” IEEE Trans. Comput., vol. 44, no. 1, pp. 73–91, 1995.

[26] OpenCores. (2009) OpenRISC overview. [Online]. Available: http:
//www.opencores.org/project,or1k

[27] M. Bolado, H. Posadas, J. Castillo, P. Huerta, P. Sánchez, C. Sánchez,
H. Fouren, and F. Blasco, “Platform based on open-source cores for
industrial applications,” in Proc. DATE, 2004, p. 21014.

[28] M. Holenderski, M. M. H. P. van den Heuvel, R. J. Bril, and J. J.
Lukkien, “Grasp: Tracing, visualizing and measuring the behavior of
real-time systems,” in Proc. WATERS, July 2010.

[29] “Simulating uC/OS-II inside the OpenRISC simulator,” March 2010.
[Online]. Available: http://www.win.tue.nl/∼mholende/ucos/

81

