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1 Introduction

1.1 The growing demand for energy

The sustainability of the contemporary economy depends mainly on the availability of
fossil fuels. In2007 [Priddle et al., 2009] about81.4% of the total annual energy con-
sumption, estimated as12 billion tonnes of oil equivalent, was covered by oil (34%),
coal (26.5%) and natural gas (20.9%). The present level of consumption leads to the pro-
gressive depletion of these resources.
The rapid growth of the world population (predicted to reach10 billion people within
2050) and the growth of the economy of developing countries leadsto an even further
increase in the energy demand. The International Energy Agency [Priddle et al., 2009;
International Energy Agency, 2009] predicts a growth of57% in world energy consump-
tion, in the period2004 − 2030. The increase will be much greater (95%) in the non-
OECD countries1 than in the OECD countries (24%). The total estimated consumption
for 2030 is about18 billion tonnes of oil equivalent, as shown in figure1.2(b). The envi-
ronmental impact due to the massive consumption of fossil fuels, namely the production
of greenhouse gases which is directly related with the global warming [Bernstein et al.,
2007], sets a further constraint.

A solution is expected to come from the development of alternative, sustainable,
CO2-free energy sources. Several examples of alternative sources are available, namely
solar, wind, hydro, bio and nuclear energy. None of these represents yet a ultimate, reli-
able substitute of fossil fuels. Table1.1 shows that in order to produce1 GWyr electric
power, the size of a power plant (or the amount of raw material) required, may differ by
several orders of magnitude depending on the primary energysource. Renewable energy
sources, in principle inexhaustible and environmentally friendly, are available in almost
any place around the world. The energy density produced by each unit, such as solar
panels or wind turbines, is rather modest i.e. large areas are required. This makes these
sources very suitable for a decentralized distribution of electricity. Nuclear power plants,
presently exploiting the principle of nuclear fission, provide high concentration of energy
but they suffer of a low social acceptance due to the risk of major accidents, to long-lived
nuclear waste and to the proliferation of fissile material. In addition to this, the world
reserves of uranium are not well known and the use of breedersto close the fuel cycle, in
alternative to the storage of exhausted fuel as such, is still under development.

The picture drawn so far addresses the necessity of a diversified energy system, in
which the weight of fossil energy is slowly reduced in favourof more sustainable so-
lutions from an economical and environmental point of view.In this mixed energy sce-
nario all possible sources are implemented, so that the risks and negative impacts of all
sources can be limited. The capability of developing a sustainable energy infrastructure

1The so called “developing countries”, not belonging to the Organization for Economic Cooperation and
Development (OECD)
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1 Introduction

Figure 1.1: Fuel requirements for different energy sources. In the table [Westra et al.,
2005], the fuel use is shown for a1, 000 MW power plant for one year (total
output about7, 000 million kWh). Clearly, wind, solar and biomass need a
lot of space. Fission and fusion stand out as they require only very modest
amounts of fuel.

(a) (b)

Figure 1.2: (a) Fuel shares of total primary energy supply (TPES) in2007 and (b) in
2030, based on current climate-policy frameworks [Priddle et al., 2009].

will strongly depend on the improvement of existing technologies and on the efficiency
with which the energy is distributed and consumed.
Fusion power is usually not taken into account in energy scenarios up to2050, as it is
expected that fusion will not be commercially available before2040 - 2050. The enor-
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1.2 Introduction to nuclear fusion

mous potential of this technology lies in the combination ofa very high energy density
and higher environmental safety as compared to nuclear fission. Nuclear fusion tech-
nology can also be coupled, as neutron source, to the traditional nuclear fission reactor
in order to reduce the nuclear waste and avoid the issues related with chain reactions
[Bethe, 1979; Gerstner, 2009]. This type of sub-critical reactor could overcome some of
the above mentioned criticism concerning the use of nuclearfission.

1.2 Introduction to nuclear fusion

Nuclear fusion, the merging of light atomic nuclei to form heavier ones, is the process
powering the sun and stars. In the core of the sun, the temperature (≈ 1.3 keV) and
the density (≈ 1.5 × 105 kg m−3) are sufficiently high to allow the positively charged
nuclei to overcome the Coulomb barrier and reach distances of the order of10−15 m,
where the nuclear attractive force becomes dominant. At these temperatures, well above
typical ionization energies (13.6 eV in the hydrogen case), the fusion reactants exist in
the plasma state and they are confined by the gravitational force.

The most promising fusion reaction for a first generation nuclear power plant is the
fusion of the hydrogen isotopes deuterium (D) and tritium (T)

D + T → He(3.5MeV) + n(14.1MeV), (1.1)

producing anα particle, a neutron and a total (kinetic) energy of17.6 MeV. Compared
with other possible fusion reactions, such as D-D or D-3He, the D-T reaction shows
the highest reaction rate,〈σv〉, for energies between50 to 80 keV (see figure1.3(a)).
The reaction rate is calculated by averaging the cross section over the reactant thermal
distribution. To determine the requirements for a net energy output, the fusion power
density is calculated [Wesson, 2004] as

PDT =
1

4
n2〈σv〉kEDT MWm−3, (1.2)

wheren = 2nD = 2nT is the fuel ion density andEDT the total reaction energy. The
bar indicates the average over the plasma volume. Since80% of the energy delivered in
the D-T reaction is carried by neutrons, escaping from the plasma, onlyα particles can
be involved in the heating process. In present day tokamaks theα-power is usually small
and in steady state external heating,Paux is supplied to balance the rate of energy loss
from the plasma. The break even point is said to be reached when PDT = Paux. The
power density lost from the plasma is defined as the total plasma energy density devided
by the energy confinement timeτE,

PL =
3nT

τE
MWm−3, (1.3)

whereT refers to the plasma temperature. The “ignition” is reachedwhen the power
produced byα-particles is sufficient to sustain the plasma, such thatPα ≥ PL. This

3



1 Introduction

inequality, leads to a figure of merit for ignition requirements,nτE, depending only on the
temperature. This parameter has a optimum forT ≈ 30 keV, as shown in figure1.3(b). As
the energy confinement time scales also with the temperature, the optimal temperature for
ignition is further reduced to10−20 keV. In this range the DT reaction rate is proportional
to T 2 and the triple product of ion density, temperature and energy confinement time is a
constant. The ignition condition, known as “Lawson” criterion [Lawson, 1957] is,

nTτE ≥ 3 × 1021m−3 s keV . (1.4)

(a) (b)

Figure 1.3: In (a) the cross section for deuterium-tritium, deuterium-deuterium and
deuterium-3He reaction is shown. At lower energies the probability thata
fusion reactor will take place is much higher for a D-T reaction. In (b) the
ignition and the break-even criteria, for deuterium-tritium and deuterium-
deuterium reactions, are compared.

A different approach to nuclear energy

The most remarkable advantages in the use of nuclear fusion concern the inherent safety
of the reaction, the lack of long-lived radioactive waste and the fuel availability. In first
place a fusion reactor needs to be continuously fueled, in order to be sustained. This
reduces significantly the issues related with power plant accidents, namely explosion or
radioactive leakage. An uncontrolled increase in fusion fuel would lead to the plasma
being extinguished as it cannot be sustained when the plasmadensity is too high. In sec-
ond place, it is noticed that both the fuel and the products ofa fusion reaction are not
radioactive. The nuclear waste produced by a fusion reactorconsists of the radioactive
tritium and the in-vessel materials activated by high neutron energy. After≈ 100 years,
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1.2 Introduction to nuclear fusion

the level of radioactivity calculated for a decommissionedreactor is estimated to be com-
parable to that of coal ashes. The only radioactive isotope occurring during the reaction
is tritium, with a half-life of about12.3 years. This is produced by a neutron-induced
fission reaction from lithium, exploiting the neutrons released by the D-T reaction:

Li6 + n→ T +He4 + 4.8MeV. (1.5)

In a 1GWyr power plant the annual amount of tritium and deuterium required is very
limited, estimated to be about150 kg. Last but not least, nuclear fusion does not produce
greenhouse gases. The third main advantage of nuclear fusion regards the abundance of
fuel, deuterium and lithium. Deuterium can be extracted from the sea water, in principle
without limits. Known land reserves of lithium are sufficient to satisfy the world energy
consumption for about1000 years. These resources are distributed all over the planet,
overcoming in this way the present geopolitical tensions related to the control over oil
or uranium reserves. A final note concerns the economical feasibility of a reactor taking
into account the costs of design and construction. This is a difficult estimate, considering
that the technology is still under development. Using near term technology, the Power
Plant Conceptual Study (PPCS) [Maisonnier et al., 2005] calculates the cost of a kWh as
5 to 9 eurocents for a5 GW plant.

Plasma confinement

On earth, the high density and the gravitational confinementoccurring in the sun are
not achievable. It is possible though, to increase the temperature. The method gener-
ally exploited in order to keep energy and particles in the plasma, and hence to limit
the outward energy and particle fluxes, is the magnetic confinement. This is achieved by
generating a high (toroidal) magnetic field so that the charged ions of fusion fuel fol-
low spiral orbits around the field lines. The fuel is therefore trapped along the field lines
and can be heated to the required temperature by external means. Magnetic confine-
ment has been proposed in a number of different configurations. The most successful is
known as Tokamak [Wesson, 2004] (Toroidal’nayakamera smagnitnymi katushkami),
i.e. toroidal chamber with magnetic coils (see figure1.4).
In a tokamak the main magnetic field is produced in the toroidal direction by a set of
coils surrounding a toroidal vacuum vessel. A current flowing trough the plasma, in the
toroidal direction, provides a further magnetic field in thepoloidal direction and heats
the plasma. This current is driven by the toroidal electric field induced by means of a
transformer. As the current in the primary transformer circuit is ramped up, a varying
magnetic flux in the transformer’s core is produced, inducing in turn a toroidal electric
field in the secondary transformer circuit, i.e. the plasma.

In the central region, the temperature can reach15 keV, about10 times the tempera-
ture in the core of the sun. Further details are given in the following chapter. The tokamak
has proven to be the most promising machine currently available, to achieve ignition. The
Joint European Tokamak (JET), currently the world largest tokamak, obtained a record
peak fusion power in a D-T plasma of16 MW. This corresponded to a measured energy
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1 Introduction

Figure 1.4: Tokamak concept (property of EFDA-JET)

multiplication factorQ of approximately0.7. The parameterQ = PDT/Paux is the ratio
of fusion power to input heating power. These experiments have opened the way to future
nuclear fusion experimental reactors such as ITER [Shimada et al., 2007], presently be-
ing built in France. ITER, aims to demonstrate the technicalfeasibility of nuclear fusion,
is designed to achieve aQ of about10.

1.3 Introduction to the topic of the thesis

From an ideal confinement to magnetic islands

The combination of the toroidal and poloidal component of the magnetic field results in
helical field lines, which form toroidal, magnetic surfaces. For a plasma in equilibrium
(magnetic pressure is balanced by the plasma pressure), no pressure gradient along field
lines is allowed, leading to isobaric magnetic surfaces. Asthe heat transport along the
field lines is very fast, the surfaces are also isothermal. The number of toroidal windings
necessary for a field line to complete a poloidal orbit is defined with the parameterq,
also known as safety factor. Whenq is an irrational number the field line is ergodic,
i.e. it covers the entire toroidal surface. For rational values ofq = m/n the field line
closes upon itself afterm toroidal andn poloidal windings, respectively. These surfaces,
in particular at low rationalq, are critical with respect to magnetic field perturbations.As
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1.3 Introduction to the topic of the thesis

a consequence, the magnetic configuration, ideally structured as a set of nested surfaces,
is prone to reconnection phenomena, resulting generally ina loss of particle and energy
confinement.

Figure 1.5: In (a) a set of unperturbed nested magnetic surfaces is shownwhile in (b) the
effect of the reconnection at the rational surfacesq = 1 andq = 2 results in
a set of magnetic islands [de Bock, 2007].

This thesis is focused on a particular type of magnetic instability called “tearing
mode”, responsible for a new, non-symmetric magnetic topology, characterized by a
chain of “magnetic islands” (see Chapter 3). In a magnetic island a field line is dis-
placed radially by a distance which is comparable with the island width (see figure1.5).
The size of an island can reach a considerable fraction of theplasma cross section (up to
50% for a2/1 island). The result is an enhancement of the radial particleand energy flux
over the island region and consequently a flattening of the temperature profile which can
strongly limit the performance of a tokamak. When the perturbation is particularly large,
it may lead to a “disruption” [Schüller, 1995], a sudden termination of the plasma as a
whole where the confined energy is transferred to the wall (upto ≈ 2 MJ/m2, in JET)
with the risk of melting or vaporization of the plasma facingcomponents. The “energy
quench” is followed by a rapid loss of plasma current (≈ 102 up to103 MA/s), referred
also as “current quench”, which induces enormous forces in vessel components (≈ 106

N, in JET). This can affect the vessel integrity. It is therefore important to improve the
understanding and the control of tearing modes in order to achieve the requirements for
performance and safety of a tokamak reactor.

Analogy with Hamiltonian dynamics

The problem underlying magnetic reconnection is very broadand can be referred to as
“break up” of invariant tori in a perturbed Hamiltonian system. A general review of these
topics can be found in [Arnold, 1963; Berry, 1978] while in [Rosenbluth et al., 1966;
Hazeltine and Meiss, 1991] the destruction of magnetic surfaces is specifically treated.
To illustrate the analogy the case of a conservative, integrable, dynamical system with
N degrees of freedom is presented here, which is defined by the canonical equations of

7



1 Introduction

motion,

p = −∂H
∂q

, q =
∂H

∂p
(p = p1, . . . ,pN ; q = q1, . . . ,qN ) (1.6)

with HamiltonianH(p,q). This is in fact the formalism used to describe the field line
equations in a tokamak, given in equation (2.8). The state of a system is given by the
canonical coordinates{p,q} in the 2N -dimensional phase space, whereq represents
the spatial coordinate andp the related momenta. Being conservative and integrable, the
system hasN independent constants of motionI(p,q) such that,

∑

k

∂Ii
∂qk

∂Ij
∂pk

− ∂Ii
∂pk

∂Ij
∂qk

= 0, i 6= j, (1.7)

a property called involution. The HamiltonianH(p,q) is one of these constants. It can
be shown that, for bound motion in which the region of accessible phase space is finite,
the set of constants of motion describesN -dimensional tori in phase space. These tori
are said invariant because an orbit starting in one torus remains bound to that torus. An
appropriate choice ofN irreducible pathsγi, such that they cannot be shrunk to zero,
allows to define a preferred set of constant of motionJi,

Ji =

∫

γi

p · dq , (1.8)

called action variables, and their related anglesφi. A relevant quantity for the following
discussion is the frequency vector of the torusω, which can be defined as

ωi(J) =
∂φi
∂t

=
∂H

∂Ji
(J) , i = 1, N . (1.9)

It is found that, for most part of the orbits, the frequency vector is “incommensurable”,
i.e. no integer vectorm exists, such thatm ·ω = 0, with m 6= 0. The trajectories are then
called conditionally periodic and they cover densely the torus. This means that a point
moving on the torus never returns to its original position. When the frequency is com-
mensurable, the orbit closes upon itself afterm windings on the torus. The exceptional
class of periodic orbits is particularly important for stability analysis of quasi-integrable
systems, since these orbits are generally broken, when a small perturbation is applied.The
work by [Birkhoff, 1927] proved that, instead of a complete circle of fixed points, the per-
turbed orbits evolve into a finite even number of fixed points,half of them representing
a stable point (elliptic type) and half of them representingan unstable point (hyperbolic
type) as shown in figure1.6. Stable points are surrounded by closed invariant curves
while the unstable points are connected between each other by curves called “separatri-
ces”. In a two-dimensional torus the overall configuration can be defined as a “chain of
islands”.

This thesis

Magnetic islands and their evolution have been studied extensively for nearly four decades
[Furth et al., 1963; Rutherford, 1973]. Despite this long standing effort the complete sup-
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1.3 Introduction to the topic of the thesis

Figure 1.6: Break-up of invariant, rational tori [Berry, 1978].

pression of tearing modes (in modern tokamaks) has been achieved only ten years ago
[Gantenbein et al., 2000; Isayama et al., 2000; La Haye et al., 2002]. This outstanding
result was obtained by means of electron cyclotron waves (ECW) which allow to deposit
highly localized power at the island location. The EC power generates a current per-
turbation either inductively, through a temperature perturbation, or non-inductively by
direct current drive. Qualitatively, this means that the effect of the localized EC power on
magnetic islands is twofold: it increases the local stability, to make the island formation
more difficult, and it compensates for the effect of the temperature flattening inside the
island region by a local increase of the temperature and by inducing a current across the
island. This thesis addresses in particular the stabilizing effect of these techniques, usu-
ally referred as Electron Cyclotron Resonance Heating (ECRH) and Electron Cyclotron
Current Drive (ECCD). The aim of the study can be summarized as follows:

• To include new insights in the model for the evolution of a tearing mode by a close
comparison of the stabilizing contributions of the local heating and the current
drive;

• To extend the above mentioned model to a generalized geometry of the magnetic
island;

• To provide accurate predictions on the power requirementsfor the stabilization
of the mode. This requires the application of the model to realistic, machine-
dependent scenarios and has a particular relevance for ITERdesign.

In order to analyze the problem completely it is necessary totake into account both
the geometry of the tearing instability, which depends on the perturbed magnetic equi-
librium of the plasma and the parameters determining the EC power deposition, which
can be calculated by means of beam-tracing codes. The approach to the topic has been
therefore both theoretical and numerical. The theoreticalapproach relies on the model
developed by Rutherford in1973. Assuming a simplified description of both the mag-
netic equilibrium and the magnetic perturbation in the vicinity of the mode, the model

9



1 Introduction

leads to the well known equation for the evolution of the magnetic island width, called
the “Rutherford” equation. The equation relates the growthof the island width to the
different helical current perturbations occurring in the island region. The main merit of
the “Rutherford” model has been the capability to reproduceaccurately experimental re-
sults, despite its relative simplicity: effects related with toroidicity, as well as with the
geometry of the tokamak or any other feature “far” from the resonant surface are in fact
usually neglected. The EC the power deposition profile is assumed to be Gaussian, char-
acterized by the width of the profile, the position of the peak(along the radial and angular
directions) and a possible modulation of the power. All numerical evaluations have been
performed with MatLab.

The problem is generally non-trivial because we deal at the same time with quantities
which are constant over the magnetic surfaces (they will be called flux functions) and
highly localized ones, such as the EC power. In second place the geometry of a tearing
mode, even in a simplified model, can be deformed by second order effects or by relaxing
some of the assumptions underlying the model.

The thesis is structured as follows. Chapter2 introduces the background on tokamak
physics, necessary for a general understanding of the thesis. The theory of magnetic
islands, their topological properties and the temporal evolution are extensively discussed
in chapter3. In chapter4, the focus is drawn on the relative merits of ECRH and ECCD.
This chapter answers to the following questions:

• Is it possible to identify a set of relevant parameters in the expression for the con-
tribution of ECRH and ECCD to the Rutherford equation, in order to determine
their relative importance for island suppression?

• Why has ECRH been experimentally observed to be the dominanteffect for island
suppression in small size tokamaks such as TEXTOR and T-10 while it appears
negligible on middle-large size tokamaks (DIII-D, JT-60, ASDEX)?

• To what extent can the results of the analysis be applied to the experimental data?

In chapter5 an extension of the previously discussed model allows the treatment of
asymmetries in the island shape and discuss their effect on the previous predictions. The
interest in this topic has been justified by the experimentalevidence, since asymmet-
ric islands have been found in ASDEX-Upgrade, DIII-D and in JT-60U. This chapter
addresses the following questions:

• How can the magnetic perturbation due to tearing modes be reformulated consis-
tently, such that second order effects due to shear flow, temperature gradient and
“amplitude deformations” are taken into account?

• How do these perturbations in the island topology affect the evolution of the mode
and, in particular, the contribution of ECRH and ECCD?

• In the previous literature [Lazzaro and Nowak, 2009; Urso et al., 2010] island de-
formations are found to have a sizable effect on the island evolution. Can these
statements be confirmed or refuted?

10



1.3 Introduction to the topic of the thesis

Chapter6 addresses the requirements for NTM suppression by an extensive analysis
of the parameterηNTM. This is defined as the ratio between the maximum in the driven
current density, responsible for the stabilization of the mode and the maximum in the
bootstrap current density, the main drive of the mode destabilization. A particular em-
phasis is given to the optimization of the parameters determining NTM stability in ITER
ECRH system. The chapter answers to the following questions:

• Why isηNTM found not to be a suitable parameter to investigate the requirements
for NTM stabilization?

• What is the criterion for NTM stabilization that merges in a coherent theoretical
framework the numerous (and contrasting) experimental measurements performed
in different tokamaks?

• Which conclusions can be drawn for the ITER ECRH system?

In the last chapter, conclusions and perspectives considered in the thesis are summarized.

11
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2 Tokamak physics

The study of the tearing mode instability involves a number of different basic physical
concepts, concerning the magnetic confinement, the transport and the use of external
heating systems to control and suppress the mode. This chapter is meant to introduce
a common theoretical framework, the tokamak physics, in which each of these topics is
addressed separately. This constitutes the necessary background to the theory of magnetic
islands, treated in the following chapters.

2.1 Magnetic confinement

Motion of a single particle in a magnetic field

A charged particlep in a constant uniform magnetic field moves freely in the direction
parallel to the field, while in the perpendicular direction the Lorentz forceF = qv ×
B, forces the particle to gyrate around the field line with the characteristic cyclotron
frequencyωc = qpB/mp. HereB is the confining magnetic field, whileq, v andm
are the charge, the velocity, and the mass of the particle, respectively. The radius of this

Figure 2.1: Cartoon of a charged parti-
cle gyrating around a magnetic
field line.

circular motion (or gyro-radius) is known as the Larmor radius and is given byrL =
mpv⊥/qpB, wherev⊥ is the magnitude of the perpendicular velocity. For a10 keV
plasma in a magnetic fieldB = 5 T, a typical value of the electron and the ion gyroradius
is rLe ≈ 5×10−5 m andrLi =≈ 2×10−3 m, respectively. In the direction parallel to the
magnetic field, the particle moves with a velocityv‖ which is of the order of the thermal
speed,vTp = (kBTp/mp)1/2, T being the temperature of the particle distribution andkB

the Boltzmann constant. This implies that, in a fusion plasma with densityn ≃ 1020 m−3,
the mean free path covered by a particle before experiencinga collision,Lp = vTp/νp, is
about10 km for electrons and ions,νp being the particle collision rate. The comparison
of Lp andrLp shows how the tokamak enforces a good perpendicular confinement while,
along the magnetic field, particles are free to flow for a distance much larger than any
linear magnetic device. The transport parallel and perpendicular to a straight magnetic
field caused by collisions, fast parallel motions and the finite size of the Larmor radii is
denoted as classical transport. To prevent parallel losses, the magnetic field can be bent,
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2 Tokamak physics

for example by means of a toroidal set of magnetic coils, in order to create a closed
toroidal configuration. Due to the curvature and the gradient of the toroidal magnetic
field, a vertical drift of the particle orbits arises, which acts in opposite direction for
positive and negatively charged particles. The vertical electric field established by this
vertical charge separation, leads to an outward radial drift (E × B -drift), the direction
thereof being independent of the charge of the particles. Asa result, the plasma would be
expelled from a torus with a purely toroidal field. In order tocounterbalance the charge
separation, a poloidal magnetic field is introduced. By adding a small poloidal field the
particles still move mainly in the toroidal direction, but they now cover the entire poloidal
cross section before returning near the initial position. Ions and electrons still have a
vertical drift associated with them but this now cancels in the upper and lower halves of
the torus with the effect that there is no net drift. The vertical drift along the flux surfaces
leads in particular to particle orbits on closed drift surfaces, which are slightly shifted
horizontally with respect the flux surfaces.

The curvature of the field lines and the variation in the field strength is also respon-
sible for distinct classes of particles which can be distinguished into trapped and passing
particles, as shown in figure2.2. Trapped particles bounce backward and forward be-
tween the two turning points [Wesson, 2004]. The mirror force responsible for the trap-

Figure 2.2: Poloidal projection of typical charged particle orbits in atokamak. The par-
ticles experience a vertical drift (strongly exaggerated for purpose of illus-
tration) dependent upon their velocity parallel to the magnetic field [Pinches,
1996]

ping is a consequence of the parallel gradient of the magnetic field∇B‖ which acts on
the perpendicular component of particle velocityv⊥ as

F = −µ∇B‖ , with µ =
1
2mv

2
⊥

B
. (2.1)

The magnetic momentµ is an adiabatic invariant, being almost constant in a slowlyvary-
ing magnetic field. Recalling that the magnetic field is minimal at the midplane, where the
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2.1 Magnetic confinement

perpendicular velocity is defined asv0,⊥, the magnetic momentum conservation yelds,

v2
⊥
B

=
v2
0,⊥

Bmin
, (2.2)

wherev⊥ can be conveniently calculated at the bounce point (v‖ = 0) by using the energy
conservationv⊥ = v0,⊥ + v0,‖, to obtain

Bb

Bmin
=
v2
0,‖
v2
0,⊥

. (2.3)

Equation (2.3) determines the trapping condition for a particle. Particles with a suffi-
ciently largev0,‖/v0,⊥, such thatBb exceeds the maximum magnetic field at a given
magnetic surface, can flow around the torus following the helical path of the field lines.
The trapped particles have insufficient parallel kinetic energy compared with their per-
pendicular energy to penetrate into the high-field side of the torus and are consequently
located in the outer low-field side of the tokamak. They bounce backwards and forwards
between their mirror points experiencing a continual vertical drift due to the combined ef-
fects of field curvature and gradient. The projection of these orbits on the poloidal plane,
shows a “banana” shape.

Collisional transport in a toroidal geometry, where the excursion of the particle orbits
from the flux surfaces, determined by drifts, is much larger than the Larmor radius, is
denoted as “neoclassical” transport. In this transport model, the step size in the diffusion
processes is defined by the banana width.

Magnetic confinement in a tokamak

In the previous chapter, the tokamak plasma was introduced as an axially symmetric sys-
tem with closed magnetic surfaces, in which the magnetic field is a combination of a
dominant toroidal field produced by external coils and of a poloidal field induced by a
current flowing in the plasma [Braams and Stott, 2002; Wesson, 2004]. The toroidal ge-
ometry can be generally described by a set of coordinates{r, θ, φ} wherer, θ andφ are
the radial coordinate, the poloidal and the toroidal angles, respectively as illustrated in
figure2.3(a)for the case of a circular cross section. The combination of the toroidal field
Bφ and the poloidal fieldBθ gives rise to magnetic field lines which have a helical trajec-
tory around the torus as shown in figure2.3(b). A measure of the pitch of the helical field
lines is the safety factorq (introduced in section1.3). Owing to the axisymmetric prop-
erty, the equilibrium does not depend on the toroidal angleφ, meaning that the magnetic
field lines lie on nested toroidal magnetic surfaces. The basic condition for plasma equi-
librium requires that the magnetic force balances the forcedue to the plasma pressure,
that isj × B = ∇p. This implies that magnetic surfaces coincide with surfaces of con-
stant pressure,B ·∇p = 0 and that current lines lie on magnetic surfaces,j ·∇p = 0. The
ratio of plasma pressure and magnetic pressure, known as theparameterβ ≡ 2µ0p/B

2,
is a measure for the quality of plasma confinement.
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2 Tokamak physics

R

Z

φ
r θ

(a) (b)

Figure 2.3: In figure (a) a set of toroidal coordinates is represented while in (b) the main
components of the magnetic field and the resulting field linesare shown.

It is customary to label magnetic surfaces by the radial coordinater or by introducing
a toroidal flux functionχ, which is proportional to the toroidal flux contained withinthe
surface. A flux representation of the total magnetic field canbe formulated as,

B =
1

R
(∇χ×∇θ + ∇φ×∇ψ) (2.4)

whereR is the major radius of the torus,θ the poloidal angle andψ the poloidal flux
function. The two terms in equation (2.4) correspond to the toroidal and the poloidal
components of the field, respectively. More generally [Hazeltine and Meiss, 1991] any
function f that is constant along fields lines, i.e.B · ∇f ≡ 0 is called a “flux label”.
Reformulating the safety factor in terms of magnetic fluxesq = dχ/dψ, it is possible to
rewrite equation (2.4),

B =
1

R
∇ψ ×∇(qθ − φ) =

1

R
∇ψ × q∇ξ , (2.5)

where a new helical angleξ = θ − 1
qφ has been defined. Whenq varies along the radial

direction, the field is said to have magnetic shear. On a “rational surface” withq = m/n,
wherem andn are integers, the field lines close upon themselves afterm toroidal andn
poloidal revolutions. Using equation (2.4) it can easily be shown that the field line orbits
are described by a Hamiltonian system [White, 2001]. Magnetic field line equations are
defined as,dχ/dφ = (B · ∇χ)/(B · ∇φ) anddθ/dφ = (B · ∇θ)/(B · ∇φ) or by
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2.2 From banana orbits to the bootstrap current

substitutingB,

dχ

dφ
=

∇χ · (∇ψ ×∇φ)

(∇χ×∇θ) · ∇φ
dθ

dφ
=

∇θ · (∇ψ ×∇φ)

(∇χ×∇θ) · ∇φ . (2.6)

Since the gradient of the poloidal flux function∇ψ can be written in a general form as

∇ψ = ∂χψ∇χ+ ∂θψ∇θ + ∂φψ∇φ , (2.7)

equation (2.6) reduces to
dχ

dφ
= −∂ψ

∂θ
;

dθ

dφ
=
∂ψ

∂χ
. (2.8)

This is a Hamiltonian representation of the field lines whereψ(χ, θ, φ) is the Hamilto-
nian,χ the action,θ the angle andφ the time coordinate.

2.2 From banana orbits to the bootstrap current

In a high temperature, low collisional plasma, when a trapped particle can complete at
least one bounce orbit before suffering a collision, the plasma is said to be in the banana
regime. The width of a banana orbitwb ≈ ǫ1/2rLθi is typically of the order of several
centimetres for ions whereǫ = r/R is the local inverse aspect ratio for minor radiusr,R
is the major radius andrLθi = (2mikBTi/e

2Bθ)
1/2 is the ion poloidal gyroradius. It can

be shown [Wesson, 2004] that a fractionǫ1/2 of the particles are trapped into such orbits.
In the cylindrical limit, corresponding to a very small inverse aspect ratio approximation,
the fraction of trapped particles becomes negligible, as expected.

The number of trapped particles following a banana orbit is proportional to the den-
sity. Observing the region between two adjacent field lines (see the figure2.4), it is noted
that a particle imbalance between the “inner leg” of green orbit and the “outer leg” of
the pink orbit, owing to a finite density gradient, results ina net, toroidal momentum or,
“banana” current,

Jbanana = −eǫ1/2(ǫ1/2vT )wb
dn

dr
, (2.9)

where the termǫ1/2vT represents the typical parallel velocity of the trapped particles and
n is the plasma density. Both trapped ions and trapped electrons carry such a current.
A momentum source to passing particles results from collisions with the trapped parti-
cles carrying this net toroidal momentum. In steady state these momentum sources are
balanced by a momentum exchange between the passing ions andelectrons requiring a
difference in average, toroidal velocities of these species. This represents the bootstrap
current. An heuristic derivation of the bootstrap current density, valid for negligible tem-
perature gradients and small (yet non negligible) inverse aspect ratio can be argued from
the balance of the momentum exchange (expressed as the variation of the momentum

19



2 Tokamak physics

Figure 2.4: Charged particles travel in tight "gyro-orbits" around magnetic field lines. In
some cases, due to the gradient of the magnetic field, their trajectory traces
out banana-shape orbits (property of EFDA-JET).

density in time) between the passing electrons and the passing ions,νeimeJBS/ewith the
momentum exchange between the passing and trapped electrons≈ (νee/ǫ)meJBanana/e.
Hereνee is the collision frequency between passing and trapped electrons,νei is the col-
lision frequency between passing ions and passing electrons while e andme are the
electron charge and mass, respectively. Under the assumption νee ≃ νei, the previous
argument implies that the bootstrap current differs from the “banana” current by a factor
1/ǫ. A more elaborate analysis, for smallǫ values, leads to the following expression for
the bootstrap current,

JBS ≃ −
√
ǫn

Bθ

[

2.44(Ti + Te)
1

n

∂n

∂r
+ 0.69

∂Te
∂r

− 0.42
∂Ti
∂r

]

(2.10)

whereTi,e is the electron and ion temperature. In the limitǫ = 1, when most of the
particles are trapped, the bootstrap current is driven by the pressure gradient,

JBS ≃ − 1

Bθ

∂p

∂r
. (2.11)

Such a current exists independently of the externally driven toroidal current. At highβ it
can become a significant fraction of the total parallel current densityJ‖.
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2.3 Electron cyclotron waves

2.3 Electron cyclotron waves

The plasma in a tokamak is partly heated by means of ohmic heating due to the induced
plasma current. This method is generally limited by two factors, the capability of induc-
ing a current while maintaining the plasma stable and the reduction of the plasma resis-
tivity as the temperature increases. From MHD stability thecurrent limit [Shimada et al.,
2007] is taken as equivalent toqa & 2 whereqa ≈ 2π(aBφ/µ0I)(a/R)k is the value of
the safety factor at the plasma edger = a, k being the vertical elongation. In the case
of ITER, the current limit is approximately15 MA. This limitation of Ohmic heating
motivated the use of auxiliary heating systems in order to enhance plasma performance
up to the ignition condition.

Among the most successful methods commonly applied, neutral beam injection (NBI)
and radio frequency (or microwave frequency) heating are briefly described. In the first
method an energetic beam of charged particles is neutralized and injected into the plasma
core where the beam is ionized and the energy transferred by collisions to the bulk
plasma. In the second method, energy is transferred to the plasma by means of electro-
magnetic waves, through resonant interaction with the cyclotron motion (or harmonics
of it) of the ions or electrons. Depending on the resonance frequency we can distin-
guish between Ion Cyclotron Resonance Heating (ICRH) and Electron Cyclotron Res-
onance Heating (ECRH), respectively. The use of Electron Cyclotron Waves (ECW)
[Bornatici et al., 1983; Prater, 2004], has proved to be of particular importance both for
plasma heating and as a means to locally drive non inductive toroidal current. In the
following EC waves will be presented in more detail.

R

Z

r

REC

s

Figure 2.5: Cartoon showing the ECW in-
jection at the resonance radius
REC. In the following chapters
we will refer more often to the
resonance radius as the distance
rs, from the axis with respect to
the poloidal cross section.

The non-relativistic cyclotron frequency for an electron gyrating around a magnetic
field line is defined as,ωce = eB

me
, or, numerically, asfce = ωce/2π ≃ 28 ·B[T ]GHz. In

the range of interest, this implies a frequency of the order of 100 GHz and consequently a
wavelength in the millimetre range. Electron cyclotron waves are injected from vacuum
and propagate as a narrow, well-defined beam, with high powerdensity. The absorption
of the EC waves in the plasma is limited around a resonance layer where the cyclotron
frequency or an harmonic thereof, equates the wave frequency [Westerhof, 2008]. Ap-
proximating the magnetic field with its (dominant) toroidalcomponent, the position of
this layer for thenth harmonic at frequencyω isREC = R(neBφ/meω − 1). The com-
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2 Tokamak physics

bination of a thin resonant layer and a narrow beam defines a small plasma volume where
the EC power is deposited. This allows to manipulate locallythe pressure and the current
density.

Electron cyclotron waves can drive a non-inductive current(ECCD) in a toroidal
plasma [Ohkawa, 1976; Fisch and Boozer, 1980]. For an electron moving in the plasma
the resonance occurs at a Doppler shifted frequencyω = nωce/γ + k‖v‖ whereγ is the
relativistic factor,k‖ andv‖ are the parallel components of the wave vector and the ve-
locity, respectively. Injecting electron cyclotron wavesat a given toroidal angle (oblique
injection) allows to select a population of resonant electrons with a certainv‖. Electron
cyclotron absorption results in an increase of the perpendicular energy of resonant elec-
trons and hence to a lower collisionality (see figure2.6-a). The collision rate decreases
asv−3. This creates an asymmetry in the electron distribution function, i.e. an excess of
electrons moving in the direction ofv‖. This corresponds to a net current in the oppo-
site (toroidal) direction, known as the Fish-Boozer current. When trapped particles are

Ohkawa
v⊥

v‖0
IECCD

T-P

Fisch-Boozer
v⊥

v‖0 IECCD

ECH

Boundary

(a) (b)

Figure 2.6: (a) Schematic illustration [Prater, 2004] in velocity space of electron cy-
clotron current drive by the Fisch-Boozer process and (b) bythe Ohkawa
process. The acronym “T-P” stays for Trapped-Passing boundary.

involved, EC-induced velocity excursions might move electrons from the passing region
to the trapped region as shown in figure2.6-b. In steady state the flux of electrons, in-out
of the trapped region is balanced, but the detrapping process is symmetric inv‖ while
the trapping process is asymmetric for a finitek‖. This generates a net electrical current
flowing in the opposite direction with respect to the Fish-Boozer current which is known
as Ohkawa current.
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3 The theory of magnetic islands

3.1 Introduction

Magneto hydrodynamic (MHD) instabilities are one of the major limiting factors to
achieve high confinement [Hazeltine and Meiss, 1991; Biskamp, 1993; Wilson, 2008].
They can be broadly distinguished in terms of the characteristic time scale with which
they evolve in the plasma. Here two main categories are introduced, ideal and resistive
instabilities. Ideal instabilities are modes which occur for a perfectly conducting plasma,
growing on the fast Alfvén time scale,τa = a/(B/

√
µ0ρ), wherea, µ0 andρ are the

plasma minor radius, the permeability of free space and the mass density, respectively.
In a tokamak these instabilities can lead to a rapid loss of confinement, (a so called
plasma disruption) in a few microseconds [Wesson, 2004]. The appearance of ideal in-
stabilities sets therefore a limit in the achievable plasmapressure and current, which is
usually referred to as the idealβ limit [ Sauter et al., 1997]. The latter is defined, for
monotonicq profiles and neglecting the effects owing to the wall or otherinstabilities as
βN ≡ β(%)/(I[MA]/a[m]B[T ]) ≈ 4li whereli is the internal plasma inductance. The
idealβ limit has been reached in most of the tokamaks for short discharges, while for
discharges lasting several confinement times,τE, the achievableβ is limited by the ex-
citation of resistive instabilities. Unlike ideal instabilities, these can change the topology
of the magnetic field. Tearing instabilities, in particular, reconnect magnetic flux-surfaces
to form chains of magnetic islands, allowing field lines to drift radially, for a distance of
the order of the island width. These modes evolve during the initial, linear phase on an
hybrid time scaleτH ∝ τ

2/5
a τ

3/5
r whereτr = µ0a

2/η is the resistive time scale, for a
finite resistivityη. In a tokamakτH is of the order of10ms, justifying the term “hybrid”
sinceτa ≪ τH ≪ τr. In the non-linear phase they evolve on the slow local resistive time
scale. More details will be given in the following section.

A magnetic island effectively “short-circuits” magnetic surfaces by making a path for
heat and particles to radially transit the island region without crossing the equilibrium
magnetic field. As a consequence of heat and particle transport along the field lines,
temperature and pressure inside the island are found to be locally flattened. This results
in a loss of energy and particle confinement. According to the“belt” model [Sauter et al.,
1997] the degradation in energy confinement due to this flatteningis predicted to range
from a few percent up to50% for a large island (see figure3.1). In addition a magnetic
island slows the plasma rotation because of the radial magnetic field fluctuation imposed
at the resistive wall. As the island tends to rotate with the plasma, it induces eddy currents
on the wall whose magnetic field opposes the island perturbation. At high frequencies the
resistive wall behaves like a perfect conductor but as the plasma rotation is slowed, the
oscillating magnetic field penetrates further into the wall, increasing the drag. This leads
eventually to mode locking and to disruptions [La Haye, 2006a].

This chapter provides a theoretical framework for the description of tearing mode
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3 The theory of magnetic islands

Figure 3.1: Flattening of the pressure
and temperature profiles
across the island, along the
radial direction. The degra-
dation in energy confine-
ment due to this flattening
is predicted to range from a
few percent up to50% for a
large island.[Wilson, 2008]

instabilities. We shall begin with a brief introduction of the magnetic reconnection pro-
cess, in order to describe the geometrical properties of theperturbed magnetic topology
and afterwards, the temporal evolution of the mode. A particular emphasis is given to the
mechanisms driving the so called neoclassical tearing mode, appearing at highβ, even
when the plasma is linearly stable.

3.2 Resistive MHD and magnetic reconnection

Tearing modes are macroscopic, resistive instabilities which affect the whole plasma.
It is natural therefore to investigate them using the magnetohydrodynamical approxi-
mation, which effectively treats the plasma as a single-fluid. The model combines the
Maxwell equations with the equations of fluid dynamics [Goedbloed and Poedts, 2004].
As general assumptions, the quasi-neutrality condition isrequired for the fluid while the
magnetic field must be sufficiently strong to enforce a small Larmor radius to the particle
orbits; furthermore viscosity and heat conduction are neglected. With these premises, the
MHD equations describing a plasma in presence of a finite resistivity η, can be written
as,

dρ

dt
= −ρ∇ · v (Continuity) , (3.1)

ρ

(

dv

dt

)

= J × B −∇p (Momentum) , (3.2)

dp

dt
= −γp∇ · v (Internal energy) , (3.3)

∂B

∂t
= −∇× E (Faraday’s law) , (3.4)
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3.2 Resistive MHD and magnetic reconnection

where,

E = −v × B + ηJ , (Ohm’s law) , (3.5)

J =
∇× B

µ0
(Ampere’s law) , (3.6)

∇ · B = 0 (Absence of magnetic monopole) . (3.7)

In equations (3.1), (3.2) and (3.3) the definition of convective derivative,

d

dt
≡
(

∂

∂t
+ v · ∇

)

,

has been used. The parameterγ denotes the ratio of specific heats. It is noticed here
that, in equation (3.6), the displacement current has been neglected, assuming for most
plasma phenomena non-relativistic velocitiesv ≪ c. Substituting equations (3.5) and
(3.6) in equation (3.4) the following expression for the evolution of the magneticfield is
obtained,

∂B

∂t
= ∇× (v × B) +

η

µ0
∇2B . (3.8)

The first term on the rhs of equation (3.8), describes the convection of the magnetic field
by the plasma flow. When the first term is dominant, the magneticflux is frozen into
the plasma and the topology of the magnetic field cannot change. On the other hand,
when the diffusive term is not negligible, the topology of the magnetic field is free to
change. The relative magnitude of the two terms on the right-hand side of equation (3.8)
is conventionally measured in terms of the Lundquist number:

S =
µ0vaL

η
(3.9)

whereva is the Alfven speed and L the characteristic length-scale ofthe plasma. IfS is
much larger than unity then convection dominates, and the frozen flux constraint prevails,
while, in the opposite limit, the diffusion dominates, and the coupling between the plasma
flow and the magnetic field is weak.

In a tokamak the conditionS ≫ 1 is typically satisfied. This leads to the conclusion
that in most part of the plasma the resistivity plays no role and the plasma itself can be
treated as a perfectly conducting fluid. In this limit the resistive model described above
reduces to the so called ideal MHD. In the “resistive layer”,where the instability oc-
curs, the effect of the magnetic diffusion is responsible for the magnetic reconnection of
the field lines, as shown in figure3.2. Here the ideally stable magnetic topology breaks
towards a new equilibrium with a lower magnetic energy.

In order to describe the geometry and, later, the temporal evolution of a tearing
mode, a few further simplifications are made, leading to the so called “reduced MHD”
[Biskamp, 1993; White, 2001]. In first place a large aspect ratio is assumed, such that
ǫ = a/R ≪ 1. This reduces the problem from a three dimensional to a two dimensional
one. Secondly a strongly magnetized plasma in the toroidal direction is introduced, such

27



3 The theory of magnetic islands

Figure 3.2: Cartoon [Urso, 2009] describing the reconnection of the field lines in a slab
geometry, around the resonant radius, due to a finite resistivity.

thatB ≃ Bφeφ, where to the lowest orderBφ = const. The plasma motion is therefore
highly anisotropic, such that strong local gradients are allowed only in the poloidal plane.
As a consequence, along the toroidal directionvφ ≪ 1. Introducing the vector potential
A and the scalar potentialϕ in the Faraday’s law (3.4) and substituting the electrical field
from Ohm’s law (3.5) the following expression,

∂A

∂t
= v × B + ηJ −∇ϕ, (3.10)

is obtained. Consider now the poloidal component of equation (3.10). It is noted that the
term∂tA⊥ is negligible sinceBφ = (∇⊥ × A⊥) · eφ is approximately constant. The
subscript⊥ denotes the direction perpendicular to the toroidal field. In addition resistive
instabilities are driven by the parallel currentJ‖ ≃ Jφ, so thatJ⊥ can also be negligible.
This leads to an expression for the poloidal velocity,

v⊥ =
eφ ×∇ϕ
Bφ

. (3.11)

Equation (3.11) satisfies the condition∇ · v = 0, indicating the incompressibility of the
flow. It is noticed that the incompressibility holds when theperturbed plasma moves with
a speedv ≪ va andv ≪ vs wherevs is the sound speed. Recalling the poloidal flux
functionψ and using equation (3.11) it is possible to reformulate the parallel component
of equation (3.10) as,

1

R

∂ψ

∂t
= ∇‖ϕ+ ηJ, (3.12)

where the operator∇‖, defined as,

∇‖ ≡ B · ∇
Bφ

, (3.13)
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3.3 Topology of the mode

is the gradient along the perturbed magnetic field lines of the island and the current
densityJ can be written asJ ≃ Jφ = ∇2

⊥ψ. It is remarked that, the relationψ = −RAφ
is used in order to substitute the flux functionψ to the parallel component of the vector
potentialAφ.

The equation for the potentialϕ is obtained by considering theφ-component of the
curl of the equation of motion (3.2),

∂U
∂t

= −v · ∇U + B · ∇J , (3.14)

whereU = ∇2
⊥Φ is the plasma vorticity,Φ = ϕ/Bφ being the stream function. Equa-

tions (3.12) and (3.14) for the two scalar quantitiesψ andΦ, along with the definition of
the magnetic field and equation (3.11) are a closed set, known as reduced MHD equa-
tions.

Having described the mathematical framework of the problem, we will focus on the
consequences of the mode, namely the creation of a magnetic island. In the next sec-
tion the geometrical aspects of the problem will be discussed, while in section 3.4 the
temporal evolution of the instability will be treated.

3.3 Topology of the mode

A magnetic island can be seen as a closed helical flux tube, bounded by the separatrix,
with its typical X-point in the poloidal cross section. The magnetic axis of the island
is represented by a field line which closes upon itself afterm toroidal andn poloidal
windings, respectively. The projection of this field line onthe poloidal plane is called
O-point. In order to describe the region in the vicinity of a magnetic island chain, it

(a) (b)

Figure 3.3: Magnetic surface reconnection forming a magnetic island, described in a
toroidal geometry (a) [de Bock, 2007]. In slab geometry (b) the annulus of
plasma has been cut along the poloidal and toroidal direction and unfolded
[Wilson, 2008].
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3 The theory of magnetic islands

is customary to introduce the slab approximation. The toroidal annulus, adopting a large
aspect ratio approximation, can be “unfolded” along the toroidal direction into a cylinder,
and then along the poloidal direction as shown in figure3.3(b). The approximation is
valid in the limit of a small island, the width being negligible with respect to the minor
radiusa. In the model, the coordinate system{x, θ, φ} will be used as a set of cartesian
coordinates,x = r−rs being the distance from the resonant surface,θrs andφR being the
poloidal and the toroidal direction, respectively. Takinginto account the helical character
of the tearing perturbation, it is convenient to recall the helical angleξ (introduced in
chapter 2), such thatmξ = mθ − nφ. The unit vectoreφ is directed perpendicularly
to the green dashed line connecting the O-points, representing the locus of points where
ξ = 0. The large aspect ratio approximation and the definition ofξ, allow to write the
following relation,

∇ξ = ∇θ +
n

m
∇φ =

eθ

rs
+
n

m

eφ

R
≈ eθ

rs
, (3.15)

leading to the conclusion that theξ-direction of the helical angle can be approximated
with theθ-direction. In the following treatment we will make use of the coordinate system
{x, ξ, φ}. Along with this set of toroidal coordinates, it is customary to introduce the
equilibrium helical flux function,

ψh,0 = ψ − n

m
χ , (3.16)

defining the helical fieldBh,0 ≡ 1
R∇ψh,0 × ∇ξ which vanishes at the rational surface,

∇ψh,0|rs = 0. When the small-amplitude approximation is assumed, equation (3.16) can
be approximated near the resonant surface by its lowest termfrom a Taylor expansion
such that,

ψh,0 ≈ −x
2

2

q′s
qs

∂ψ

∂x

∣

∣

∣

∣

rs

, (3.17)

whereψ′|rs = RBp|rs andq′s denotes the magnetic shear at the rational surface. In the
Taylor approximation, the constant zero order termψ0,h(rs) has been neglected, since
it does not affect fields lines. The perturbed helical flux function can be written then as
ψh = ψh,0 + ψh,1, whereψh,1 represents the perturbation to the equilibrium helical flux
function. In the following, the subscripthwill be dropped for simplicity. Being a periodic
function inθ andφ, the functionψ1 can be written as a Fourier series,

ψ1 =
∑

m0,n0

ψ̃m0,n0
ei(m0θ−n0φ) , (3.18)

where the dominant contribution toψ1 is provided by the resonant harmonic, such that
the approximation to the first leading order is

ψ1 = ψ̃1(r)e
(i(mθ−nφ)).

The expression forψ1 can be further simplified by neglecting the radial dependence of
ψ̃1, near the rational surface. This last assumption, known as the constant-̃ψ1 approxi-
mation is valid for small islands, whose width is much smaller than the tokamak minor
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3.4 Derivation of the Rutherford equation

radius. In order to simplify the notation, in the rest of the chapterψ̃1(rs) ≡ ψ̃ is de-
fined. The equation of the field lines in the vicinity of the magnetic island can then be
formulated as,

Ω = 8
x2

w2
+ sign(ψ′′

0 ) cos(mξ) , (3.19)

where the flux labelΩ = ψh

sign(ψ′′

0 )ψ̃
was introduced and

w = 4

(

ψ̃

|ψ′′
0 |

)1/2

, (3.20)

represents the width of the island. It is noted that in a typical tokamak equilibrium, with
a monotonically increasingq-profile, the shear profile is such thatψ′′

0 is negative. This
property sets the O-point atx = 0, ξ = 0, leading toΩ = −1 while the X-point falls
at x = 0, ξ = ±π, for Ω = 1. Flux labels−1 ≤ Ω < 1 refer to the region inside the
island while, the locus of points such thatΩ = 1 is called separatrix. Externally to the
separatrix,Ω > 1, the helical flux function is an invariant of the perturbed field lines.
This condition remains valid only when the perturbation hada single helicity. In case of
multiple helicities ergodic regions or stochasticity can occur near the separatrix.

Having defined the flux coordinates{ψ, ξ, φ}, it is worth introducing the flux surface
average operator〈f〉 ≡ {f}/{1}, [Fitzpatrick, 1995; Hegna and Callen, 1997] where the
curly bracket is defined as,

{f(σ,Ω, ξ)} ≡
∮

dξ

2π

w

4
√

2

f(σ,Ω, ξ)
√

Ω + cos(mξ)
, (3.21)

for Ω > 1 and,

{f(σ,Ω, ξ)} ≡ m

∫ ξ̃

−ξ̃

dξ

2π

w

4
√

2

1
2 [f(σ,Ω, ξ) + f(−σ,Ω, ξ)]

√

Ω + cos(mξ)
, (3.22)

for Ω ≤ 1, with ξ̃ = arccos(−Ω)/m andσ = sign(r−rs). An important property, which
will be used in the next section is that the flux surface average annihilates the operator
∇‖ ≡ B · ∇, i.e.

〈∇‖〉 = 0. (3.23)

3.4 Derivation of the Rutherford equation

In order to solve the non-linear stability problem for a magnetic island, the external and
the internal regions, with respect to the island separatrix, are treated separately. In the
“outer region”, which comprises most of the plasma, non-linear, non-ideal, and inertial
effects are negligible. Neglecting the inertia term∂U/∂t = 0 and linearizing the vortic-
ity equation in (3.14), a differential equation forψ1(r) [Biskamp, 1993] is obtained. In
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3 The theory of magnetic islands

cylindrical geometry this equation can be written as,

1

r

∂

∂r
r
∂ψ1

∂r
−
(

m2

r2
+

∂J0,‖/∂r
Bθ

µ0

(

1 − nq
m

)

)

ψ1 = 0 . (3.24)

Equation (3.24) shows clearly the resonant nature of the tearing mode instability, since

Figure 3.4: Trend of the amplitude of the flux perturbation,ψ1, in cylindrical geometry
[Wilson, 2008].

the third term on the equation (3.24) diverges atq = m/n, and the important role played
by the equilibrium density gradient at the rational surface. It can be shown [Biskamp,
1993] that only lowm modes can be unstable. Integrating equation (3.24) over the ideal-
MHD region until the right-hand boundary,r = r+s and the left-hand boundary,r = r−s ,
ψ1(r) is found to have a gradient discontinuity across the rational surface. It is customary
to characterize this jump of the logarithmic derivative ofψ1 across the island with the so
called tearing stability index∆′

0. In the limit of a small island, the tearing stability index
is written as

∆′
0 = lim

ε↓0

ψ′
1(rs + ε) − ψ′

1(rs − ε)

ψ1(rs)
, (3.25)

wherers ≫ ε≫ w. It is remarked here that∆′
0 represent the jump in the derivative of the

outer solution. Asrs ≫ ε, this is calculated in the limit ofε→ 0. ∆′
0 is a global property

of the plasma, depending only on the equilibrium and on the boundary conditions. It
can be interpreted as a measure for the free energy availablein the plasma to drive a
tearing mode. According to [Hegna and Callen, 1994], the change in magnetic energy in
the presence of an island is given by:

δW = −1

4
rsψ

2
0∆′

0 . (3.26)

In the internal region, non-ideal, non-linear effects, andplasma inertia can all be
important. In order to obtain a smooth solution forψ(r) over the entire range, the inner
solution must be asymptotically matched to the outer solution calculated above. Asε ≫
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3.4 Derivation of the Rutherford equation

w, the step in the derivative of theinternal solution can be calculated in the limit of
ε→ ∞,

∆′
0 = lim

ε↑∞

ψ′
1(ε) − ψ′

1(−ε)
ψ1(rs)

. (3.27)

The argument, despite the apparent contradiction, has a large importance in the following
discussion, as shown in equation (3.31). For a finite size island, the matching is calculated
at the separatrix, forε = w/2. As a consequence equation (3.27) is modified as follows,

∆′(w) =
ψ′

1(rs + w/2) − ψ′
1(rs − w/2)

ψ1(rs)
. (3.28)

An analytical solution can be derived in the simplified geometry introduced in the previ-
ous section.

According to the linear tearing mode theory, for∆′
0 > 0 the mode is growing expo-

nentially within the resistive layer of widthδ, with a linear growth rateγ. These quantities
are approximately dependent on the Lundquist number as,γ ∝ S−3/5 andδ ∝ S−2/5.
In the non-linear regime the growth slows down, eventually leading to a saturated state.
When the non-linear effects are reducing the island growth well before the saturation
level or when the island width becomes larger than the thin resistive layer, the linear
model is no longer valid and a non-linear approach should be applied. It is also noted
that, due to the narrow width of the resistive layer, only thenon-linear stage is accessible
to experimental measurements.

When the island exceeds the resistive layer width, the inertia becomes negligible and
the equation of motion degenerates to the equilibrium equation B · ∇J = 0 so thatJ is
by definition a flux function:J(ψ). From Ampère’s law, relating the perturbation of the
helical flux to the parallel current density perturbationJ1,‖(ψ), it follows that,

1

R
∇2ψ1 = µ0J1,‖(ψ) . (3.29)

To obtain them-th Fourier harmonic, equation (3.29) is multiplied with the phase factor
cos(mξ) and integrated overξ. In addition, integrating overx in the inner region and
using the approximation∇2ψ1 ≈ ∂2ψ1/∂x

2, one obtains

1

R

∫ ∞

−∞
dx

∮

dξ
∂2ψ1

∂x2
cos(mξ) =

∫ ∞

−∞
dx

∮

dξ µ0J1,‖(ψ) cos(mξ). (3.30)

Now the left hand side can be evaluated and matched to the linear exterior solution with
the result of

1

R

∫ ∞

−∞
dx

∮

dξ
∂2ψ̃

∂x2
cos2(mξ) =

π

R
∆′

0ψ̃ . (3.31)

As a result we arrive at the following basic equation for the tearing mode, relating∆′
0 to

the total perturbed helical current flowing in the island region,

∆′
0ψ̃ = 2µ0R

∫ ∞

−∞
dx

∮

dξ

2π
cos(mξ)J1,‖ . (3.32)
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3 The theory of magnetic islands

In order to connect the perturbation of the parallel currentdensityJ1,‖ with the time
rate of change of the helical flux perturbation∂ψ1/∂t, the flux surface average of equa-
tion (3.12),

1

R

〈

∂ψ1

∂t

〉

= ηJ1,‖(ψ) + 〈∇‖ϕ〉 , (3.33)

is used. It is noticed that the term depending on the electrostatic potential,∇‖ϕ, van-
ishes. To derive the last statement, it is sufficient to recall the definition of∇‖ given in
equation (3.13) and the surface average property in equation (3.23) so that〈∇‖ϕ〉 = 0 is
obtained. The right hand side of equation (3.30) can now be rewritten by substitution of
J1,‖ from equation (3.33). In addition, the previous literature suggests a change ofcoor-
dinates,{ξ, x} to {ξ,Ω}, in order to make explicit theΩ-dependence of the flux surface
average〈∂ψ1/∂t〉. Rearranged in this way, the above mentioned integration in(3.30) is
performed over the flux labelΩ, from the O-point to infinity,

∆′
0ψ̃ = 2µ0R

∫ ∞

−1

dΩ

[

1

ηR

〈

∂ψ1

∂t

〉 ]∮

dξ

2π

cos(ξ)

dΩ/dξ
(3.34)

=
2µ0

η

∂ψ̃

∂t

∫ ∞

−1

dΩ 〈cos(mξ)〉
∮

dξ

2π

cos(ξ)

dΩ/dξ
.

From the definition of the island width (3.20), it is possible to rearrange the equation (3.34)
such that the linear stability index∆′

0 is related with the resistive time scaleτr = µ0r
2
s /η

and the time derivative of the island width. The amplitude ofthe perturbatioñψ can be
formulated as

ψ̃ =
w2

16
ψ′′

0 and
dψ̃

dt

1

ψ̃
=

2

w

dw

dt
, (3.35)

resulting in the well known Rutherford equation,

rs∆
′
0 = g1

τr
rs

dw

dt
. (3.36)

Both the left and right hand sides are dimensionless andg1 is a numerical coefficient
related to the island geometry,

g1 =
4

w

∫ ∞

−1

dΩ

(

∮

dξ
2π

cos(ξ)
dΩ/dx

)2

∮

dξ
2π

1
dΩ/dx

≈ 0.82 . (3.37)

Despite the appearance,g1 does not depend onw asdΩ/dx also scales as1/w. This
equation is equivalent to the one used in Chapter 5 where the radial coordinate is nor-
malized. As it was mentioned in the previous section, the equation (3.36) predicts the
island to grow linearly in time for∆′

0 > 0, as long as∆′
0 is independent ofw, i.e. for

sufficiently small islands. For finite size island,∆′
0 is typically observed to decrease lin-

early withw: ∆′(w) ≃ ∆′
0 − αw. The island is seen to saturate at a finite size such that

∆′(w) = 0 and all available free energy of the originally unstable equilibrium has been
exhausted.
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3.5 Neoclassical tearing modes

3.5 Neoclassical tearing modes and the modified Ruther-
ford equation

Neoclassical tearing modes (NTMs) are magnetic islands destabilized by a helically per-
turbed bootstrap current, introduced in chapter2. Unlike the classical tearing modes,
occurring when the plasma current profile is linearly unstable, such that the tearing mode
has a lower magnetic energy than the original plasma, the NTMis a high-β phenomenon,
linearly stable (∆′

0 < 0) and non-linearly unstable. The main reason for a perturbation in
the bootstrap current nearby the island, originates from the effect of the magnetic island
on the local pressure. For conventional profiles of safety factor and pressure gradient, a
“seed” island can flatten locally the pressure, because of the rapid parallel transport along
the field lines which makes the pressure approximately a flux function. As a result the
bootstrap current inside the island is removed while in the outer region the pressure gra-
dient is maintained and so is the current. The helical perturbation of the bootstrap current
reinforces the seed, i.e. it destabilizes the equilibrium.

The inclusion of the helical perturbation of the bootstrap current, along with a number
of other effects (treated separately in the following paragraphs), leads to a generalized
formulation of the Rutherford equation (GRE). The model is based on the generalization
of the flux surface averaged Faraday-Ohm’s law (3.33), relating the time rate of change
of the helical flux perturbation, i.e. the helical electric field, to the parallel current density
perturbations with the same helicity,

1

R

〈

∂ψ1

∂t

〉

= η0

(

J1,‖(ψ) −
∑

i

J1,i(ψ)

)

+ η1(ψ)

(

J0 −
∑

i

J0,i

)

. (3.38)

The helical perturbation of the parallel current density and any non-inductive contribution
therein are indicated withJ1,‖(ψ) andJ1,i(ψ), respectively. In equation (3.38), η1(ψ)
represents a possible helical perturbation to the resistivity as a consequence of heating
(or cooling) inside the island, whileJ0 andJ0,i represent the total equilibrium current
density and every non-inductive contribution to the latter, respectively. A final note con-
cerns the resistivityη, denoted here withη0, to be distinguished from its perturbation
η1.

In analogy with the procedure used in the previous section the generalized Rutherford
equation appears as,

0.82
τr
rs

dw

dt
= rs∆

′(w) + rs
∑

i

∆′(J1,i) + rs∆
′(η1) , (3.39)

where the second term on the right hand side, accounts for corrections to the classical
tearing mode equation, due to all possible non-inductive perturbations and the final term
due to the inductive helical perturbation of the parallel current density. The general con-
tribution from a non-inductive helical current perturbation can be written as,

∆′(J1,i) = −16µ0Lq

Bpπw2

∫ ∞

−∞
dx

∮

dξJ1,i cos(mξ) . (3.40)
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3 The theory of magnetic islands

Here the formula for the island width in equation (3.20) was used in place of̃ψ while
the second derivative of the equilibrium flux function was replaced as|ψ′′

0 | = RBp/Lq,
Lq = q/(∂q/∂r) being theq scale length. In the following subsections a number of
effects contributing to the generalized Rutherford equation will be described.

Effect of bootstrap current gap

In the island region, for−1 ≤ Ω ≤ 1, the bootstrap current is negligible, such that the
current density perturbationJ1,BS(Ω) = −J0,BS|rs . SubstitutingJ1,BS in place ofJ1,i

in equation (3.40) and integrating within the island separatrix, where the perturbation is
localized, the expression

∆′
BS =

16µ0Lq

πBpw2

∫ 1

−1

dΩ

∮

dξJ0,BS
cos(mξ)

∂Ω/∂x
, (3.41)

is obtained. Using the approximation forJ0,BS given in equation (2.10),

g1
τr
rs

dw

dt
= rs∆

′ +
Lq

Lp

rs
w
βp

√
ǫcneo , (3.42)

whereLp = −p/(∂p/∂r) is the pressure scale length while the geometrical coefficient
cneo is expressed as

cneo =
8

π

∫ 1

−1

dΩ

∮

dξ
cos(mξ)

∂Ω/∂x
= 32/3π . (3.43)

The inclusion of the bootstrap term implies that the width ofthe island reaches a stable
point atw = wsat, wheredw/dt = 0, as shown in figure3.5. This relation shows that
the saturated width grows withβp producing consequently a progressive degradation of
the confinement. In particular for lowm-modes, the width reaches a size comparable to
the resonant radius. The tearing instability appears therefore to limit severely the achiev-
able performances of a tokamak, eventually terminating thedischarge in a disruption.
The divergence of∆′

BS ∝ 1/w indicates that the mode should always be unstable. Ex-
perimentally nonetheless, it is observed that NTMs are destabilized only above a certain
threshold island. This suggests that, in the limit of small island size, further mechanisms
should exist accounting for the stability of the mode. Two such mechanisms are related to
the influence of radial diffusion in competition with parallel transport and to finite orbit
width effects. The flattening of the temperature, density and pressure inside the island, is
based on the assumption that the perpendicular transportχ⊥ is negligible with respect to
the parallel transportχ‖. When the island reaches a critical valuewχ, the two transport
time scales become comparable and the pressure is not flattened any longer. As a conse-
quence an island below the critical width cannot drive an NTM. A corrected formulation
for the bootstrap term is,

rs∆BS = cneo
Lq

Lp

rs
w
βp

√
ǫ

(

w2

w2 + w2
χ

)

, (3.44)
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where the critical islandwχ is [Wilson, 2008]

wχ =

√

RqLq

m

(

χ⊥
χ‖

)1/4

.

Effect of polarization

The second effect, still debated, concerns the polarization current correction [Wilson et al.,
1996; Waelbroeck et al., 2001], due to the island rotation. This appears to be dominant in
particular in the limit of small islands. An island propagates at frequencyω in the frame
of the plasma flow, resulting in a fluctuation of the electric field. Because the electron
banana width is small for electrons, trapped electrons respond to the local electric field.
In contrast, the ion banana orbits are much wider leading to an average response to the
fluctuating electric field. The different responses of trapped electrons and trapped ions re-
sults in the so-called perpendicular ion polarization current, which is not divergence free.
Since the charge neutrality needs to be maintained, the electrons respond with a parallel
current to make the total current divergence free. The latter can be either stabilizing or
destabilizing depending on the sign ofω, but is generally expected to be stabilizing. An
often used approximation for this term is [Wilson, 2008],

rs∆
′
pol = −cneo

Lq

Lp

rs
w
βp

√
ǫ

(

w2
pol

w2

)

, (3.45)

where the polarization width iswpol = (Lq/Lp)1/2wb, wb being the banana width. The
generalized Rutherford equation now appears as

g1
τr
rs

dw

dt
= rs∆

′ − cneo
Lq

Lp

rs
w
βp

√
ǫ

(

w2

w2 + w2
χ

−
w2

pol

w2

)

, (3.46)

the trend thereof is shown by the blue curve of figure3.5.

Effect of an external perturbation field

In this subsection the effect of an external perturbation field on the NTM evolution is
briefly described. For a detailed theory of perturbation fields, we refer to [Fitzpatrick et al.,
1991; Fitzpatrick, 1993, 1998; de Bock, 2007].

Resonant magnetic perturbation fields, generated outside the plasma (or the island
region) by external currents, have a remarkable influence onmagnetic island stability.
Due to the conservation of the magnetic flux in a conducting fluid, a plasma counter-
balances the effect of an external field by inducing shielding currents, in accordance to
Lenz’ law. In analogy with the previous sections, the perturbation field is modeled as
a helical flux function expressed by a Fourier series. The(m,n) Fourier component of
this field induces a shielding current with the same helicity, which flows parallel to the
magnetic field on the(m,n) resonant surface. It follows that the dominant contributions
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Figure 3.5: Cartoon illustrating the phase-space diagram of the islandwidth, in arbitrary
units. The blue curve represents the evolution of an NTM as described by the
rhs of equation (3.46). The red solid curve refers to the stabilizing contribu-
tion of the current drive and the local heating. The suppression of the mode,
by means of current drive and local heating, is illustrated by the green curve.
Sincedw/dt ≤ 0 for every value of the width, the island is said to be fully
suppressed.

of the perturbation field are represented by the resonant harmonics, as in equation (3.18).
The shielding currents, in turn, modify the equilibrium at the rational surface and induce
a finite electromagnetic torque on the corresponding mode. The effect of this torque is to
reduce the frequency gap between the mode and the perturbation field. It will be shown
that the effect of the perturbation is maximal when the frequency gap is zero, i.e. when
the mode is rotating with the same frequency of the perturbation field.

The (m,n) perturbation can be seen as produced by a helical current in the coil,
located atr = rc, outside the plasma. In the approximation of a single helicity and in
absence of plasma, the perturbation can therefore be written asψvac = ψ̃vac exp(i(mθ+
nφ)) with,

ψ̃vac(r, t) = ψc(t)

(

r

rc−

)m

(0 < r < rc−) (3.47)

ψ̃vac(r, t) = ψc(t)

(

r

rc+

)−m
(rc+ < r). (3.48)

The amplitudeψc(t) is the value ofψ̃vac inside the coil and is proportional to the current
applied to the coil. The ideal MHD response of the plasma to the helical current flowing
in the coil is such that the perturbation field is shielded for0 < r < r−s . Assuming
that the equilibrium plasma current is mainly concentratedinside the rational surface so
thatJ0,‖ ≃ 0 whenr > rs+ the response of the plasma is approximated as a thin layer
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3.5 Neoclassical tearing modes

around the resonant surface where the shielding current is flowing. The amplitude of the
corresponding flux functionψsh can be written as,

ψ̃sh(r, t) = ψsh,0(t)

(

r

rs−

)m

(0 < r < rs−) (3.49)

ψ̃sh(r, t) = ψsh,0(t)

(

r

rs+

)−m
(rs+ < r), (3.50)

showing a discontinuity at the rational surface,

[

r
∂ψ̃sh

∂r

]r+s

r−s

= −2mψ̃sh. (3.51)

Since in the regionr < rs, the sum ofψ̃vac and ψ̃sh must vanish, equating̃ψvac(r, t)
in equation (3.47) to −ψ̃sh(r, t) in equation (3.49) results in an expression forψsh,0(t)
in terms ofψc(t). The amplitude of the total perturbation field̃ψcoil, results from the
superposition of the vacuum perturbation and the plasma response to the former,̃ψcoil =
ψ̃vac(r, t) + ψ̃sh(r, t), as

ψ̃coil(r, t) = 0 (0 < r < rs+)

= ψ̃vac(rs+ , t)

[

(

r

rs+

)m

−
(

r

rs+

)−m]

(rs+ < r < rc−)

= ψ̃vac(rs+ , t)

[

(

rc
rs+

)m

−
(

rc
rs+

)−m](
r

rc

)−m
. (rc+ < r)

(3.52)

The flux functionψcoil = ψ̃coil exp(i(mθ + nφ − ωt)) has in general a time dependent
component of the phase,ωt, accounting for the phase difference between the perturbation
field rotation and the mode rotation. The “slip” frequencyω is assumed to be quasi-
stationary. Having defined properly the perturbed flux function, the relative contribution
to the modified Rutherford equation can be calculated by following the same procedure
applied in section 3.4. The matching condition at the resonant surface is now modified
as,

∫ ∞

−∞
dx

∮

dξ µ0J1,‖(ψ) cos(mξ) =
π

R

(

∆′(w)ψ̃ + ∆′
extψ̃coil

)

, (3.53)

where∆′
ext is defined as,

∆′
extψ̃coil =

[

∂ψcoil

∂r

]rs+

rs−

=
2m

rs
ψ̃vac. (3.54)

Using the Faraday-Ohm’s law in equation (3.12) and rearranging the equation as in (3.36)
the following expression is obtained,

rs∆
′
ext = 2m

(wvac

w

)2

cos(∆(mξ)) . (3.55)
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3 The theory of magnetic islands

The vacuum island widthwvac ∝ |ψvac(rs)|1/2 has been introduced along with∆(mξ) =
(mξ0,plasma −mξ0,vacuum), the phase difference between the O-point of the plasma and
the vacuum island. As anticipated at the beginning of this subsection,∆′

ext has a maxi-
mum when the island is locked in phase and rotating at the samefrequency as the pertur-
bation field,∆(mξ) = 0.

In section 4.7, the focus will be drawn on the magnetic perturbation generated in
the TEXTOR tokamak by the so called “Dynamic Ergodic Divertor” (DED) [Finken,
1997; Finken et al., 2005]. The DED consists of a set of16 coils wound helically at
the high field side of the torus. These coils are aimed to perturb the outer flux surfaces
of the plasma in order to divert them to divertor plates, at the edge of the plasma. The
main advantages are the distribution of the energy flux from the plasma over the divertor
(target) plates and the shielding of the plasma from impurities coming from the wall. In
addition the DED is found to remove efficiently helium particles from the plasma. The
magnetic field produced by the DED is parallel to the field lines atq = 3/1 surface, with
a large2/1 side band which becomes the dominant perturbation inside the plasma. When
the amplitude of the perturbation exceeds a well defined threshold, a2/1 tearing mode is
excited in the plasma. The3/1 mode is more stable and thus more difficult to excite (but
is also seen to be triggered as the DED current is increased further. Since the mode is
rotating with the same frequency of the perturbation field, the magnetic island is said to
be “locked” [Yu and Günter, 2008] to the DED frequency, typically of the order of1kHz.
For a static perturbation, the mode can be even locked to a known, stationary position
allowing a favorable setting to study the evolution of the instability.

Effect of electron cyclotron waves

The stabilizing contributions to the GRE owing to ECCD and ECRH are extensively
treated in chapters4, 5 and6. In this subsection a brief qualitative description will be
presented. As described in section2.3, EC waves allow to deposit highly localized power
inside the mode. The radial power density profile is generally well approximated with a
normalized Gaussian function,pEC = Ptotp̃CW(x) with,

p̃CW(x) =
1

2π5/2wdepRrs
e−4(x−xdep)2/w2

dep , (3.56)

wherePtot is the total deposited power,wdep the full e−1 power density width andxdep

is the deposition location relative to the resonant radius,i.e. rdep − rs. By means of a
significant heating power deposited at the resonant surface, a finite temperature perturba-
tion δTe is produced at the island O-point, with respect the temperature at the separatrix,
with a consequent perturbation of the local (neoclassical)resistivity [Wesson, 2004],

η1 ≈ 2.8 · 10−8 Zeff

δT
3/2
e

(1 −
√
ǫ)2, (3.57)

where the effective ion chargeZeff is assumed to be constant. The Ohm’s law suggests
that such a perturbation induces an inductive current density, JH = (η1/η0)J0,‖ which
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3.5 Neoclassical tearing modes

can be expressed in terms of the temperature perturbation,

JH = Jsep
δTe

Te,sep
, (3.58)

whereJsep refers to the value of the inductive part of the equilibrium current density
at the island separatrix. By using the current density perturbationJH associated to the
temperature perturbation, the contribution to the GRE owing to the local heating can be
expressed as in equation (3.40),

∆′(η1) =
16µ0Lq

Bpπw2

∫ ∞

−∞
dx

∮

dξJ1,H cos(mξ) . (3.59)

Under appropriate conditions (see2.3) EC waves have been shown to induce also a
non-inductive current, a process referred to as ECCD. When the current is mostly driven
within the island region, the main effect is to compensate the bootstrap current gap, which
is acknowledged to be the drive for NTM growth. It is noted that it is not possible to drive
a non-inductive current without also heating the plasma. Onthe contrary, it is possible
to isolate the effect of ECRH, by injecting the power perpendicularly to the magnetic
field. The amplitude and the width of the current density profile are usually calculated
by means of numerical codes, but in this discussion a Gaussian profile having the same
width of the power deposition profile and an amplitudejCD is assumed. The total driven
current is denotedICD. Following the notation used in [Sauter, 2004; Westerhof et al.,
2007] and equation (3.40), one can write

∆′(J1,CD) =
16µ0Lq

Bpπw2

∫ ∞

−∞
dx

∮

dξJ1,CD cos(mξ) . (3.60)

In general the integral is solved numerically, except for simplified current density profiles.
More details can be found in [Hegna and Callen, 1997] or [Giruzzi et al., 1999].

A second effect of a localized non-inductive current drive concerns the change in
the total equilibrium current densityJ‖ and consequently in the linear stability index
[Westerhof, 1990; Pletzer and Perkins, 1999]. Assuming the induced current to be in the
same direction of the equilibrium current (co-current drive), this results in a more nega-
tive∆′, i.e. the mode is more difficult to destabilize. When the condition ICD ≪ I0 holds,
I0 being the total plasma current, the contribution to the classical stability coefficient∆′

can be derived naturally as a generalization of the perturbative model treated at the be-
ginning of the chapter. To this purpose, the total equilibrium current density is defined as
J = J0,‖ + JCD and the perturbation of the helical flux functionψ1,gen = ψ1 + δψ with
δψ ≪ ψ1. The classical stability index∆′ is therefore modified as,

∆′ = lim
ε↓0

[ψ′
1(rs + ε) + δψ′(rs + ε)] − [ψ′

1(rs − ε) − δψ′(rs − ε)]

ψ1(rs) + δψ(rs)

≈ ∆′
0 + lim

ε↓0

δψ′(rs + ε) − δψ′(rs − ε)

ψ1(rs)

≈ ∆′
0 + δ∆′ , (3.61)
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3 The theory of magnetic islands

where in the rhs of equation (3.61) the denominatorψ1(rs)+δψ(rs) ≈ ψ1(rs). In analogy
with equation (3.24), the radial profile of the perturbed flux functionψ1,gen(r) in the ideal
outer region, is described as,

1

r

∂

∂r
r
∂(ψ1 + δψ)

∂r
−
(

m2

r2
+
∂(J0,‖ + JCD)/∂r

Bθ

µ0

(

1 − nq
m

)

)

(ψ1 + δψ) = 0 , (3.62)

whereψ1 is the solution for the “unperturbed” differential equation. Standard perturba-
tion theory suggests then that perturbative terms of the same order are required to cancel
each other. Neglecting the second order perturbation term,proportional to(∂JCD/∂r)δψ
≪ 1, the equation for the first order perturbation terms appearsas,

1

r

∂

∂r
r
∂(δψ)

∂r
− m2

r2
δψ +

∂(JCD)/∂r
Bθ

µ0

(

1 − nq
m

)ψ1 = 0 . (3.63)

In the limit of a highly localized current,δψ/r2s ≪ (δψ)′/rs ≪ (δψ)′′. For ψ1 the
constant-ψ approximation,ψ1 ≈ ψ1|r=rs , is applied. With the substitution ofJCD in
equation (3.63) and recalling the identityx ≡ r − rs, the following expression,

1

ψ1(x)

∂2(δψ(x))

∂x2
≈ 4Lq

π3/2rs

µ0

Bp

ICD

w2
dep

2(x−xdep)
wdep

exp
(

− 4(x−xdep)2

w2
dep

)

x
, (3.64)

can be integrated fromx = −∞ to x = −ǫ and fromx = ǫ to x = +∞. It is reminded
that the extension of the integration domain to infinity is allowed since the current is well
localized. The variation of the classical stability index,δ∆′, following [Westerhof, 1990]
appears finally as

rsδ∆
′ = −4µ0Lq

Bpπ

ICD

w2
dep

℘

∫ ∞

−∞

2(x−xdep)
wdep

exp
(

− 4(x−xdep)2

w2
dep

)

x
, (3.65)

where℘ indicates the principal value of the integral. The termδ∆′ is finally found as,

rsδ∆
′ = −4µ0Lq

Bpπ

ICD

w2
dep

(

1 +
2

wdep
xdepℜ

[

Z
(

2

wdep
xdep

)])

, (3.66)

whereℜ[Z] is the real part of the plasma dispersion function. This has amaximum for
xdep = 0. For a finite size island, given that only the current inducedin the outer region
can contribute to the stability index, the singularity atx = 0 is solved by splitting the
integral domain in two regions, fromx = −∞ to x = −w/2 and fromx = w/2 to
x = +∞. When the current density profile is centred at the resonant surface (xdep = 0),
the analytical form

rsδ∆
′ = −4µ0Lq

Bpπ

ICD

w2
dep

[

erfc

(

w

wdep

)]

(3.67)

is obtained.
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4 On the Merits of Heating and Cur-
rent Drive for Tearing Mode Stabi-
lization

The work presented in this chapter merges the paper published in Nucl. Fusion49,
075002 (2009) and the erratum [De Lazzari and Westerhof, 2010]. The appendix, con-
cerning the application of the model to experimental data, refers to [De Lazzari et al.,
2009; Ayten et al., 2011].

Abstract

Neoclassical tearing modes (NTMs) are magnetohydrodynamic modes
that can limit the performance of highβ discharges in a tokamak, lead-
ing eventually to a plasma disruption. A NTM is sustained by the pertur-
bation of the “bootstrap” current, which is a consequence ofthe pressure
flattening across a magnetic island. Control and suppression of this mode
can be achieved by means of electron cyclotron waves (ECW) which allow
to deposit highly localized power at the island location. The ECW power
replenishes the missing bootstrap current by generating a current pertur-
bation either inductively, through a temperature perturbation (ECRH), or
non-inductively by direct current drive (ECCD). Although both the meth-
ods have been applied successfully to experiments showing apredominance
of ECRH for medium size limiter tokamaks (TEXTOR, T-10) and of ECCD
for mid-to-large size divertor tokamaks (AUG, DIII-D, JT-60), conditions
determining their relative importance are still unclear. We address to this
problem with a numerical study focused on the contributionsof heating
and current drive to NTMs temporal evolution as described bythe modified
Rutherford equation. For the effects of both heating as wellas current drive,
simple analytical expressions have been found in terms of anefficiency fore-
factor times a “geometrical” term depending on the power deposition width
wdep, location and modulation. When the magnetic island widthw equals the
width of the deposition profile,w ≃ 2wdep, both geometric terms are prac-
tically identical. Whereas for current drive the geometric term approaches a
constant for small island widths and is inversely proportional to(w/wdep)2

for large island widths, the heating term approaches a constant for large is-
land widths and is proportional to(w/wdep) for small island widths. For
medium sized tokamaks (TEXTOR, AUG) the heating and currentdrive ef-
ficiencies are of the same order of magnitude, whereas in a future, large
reactor like ITER the current drive efficiency is expected tobe significantly
larger.
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4.1 Introduction

Control and stabilization of neoclassical tearing modes (NTMs) is one of the major re-
quirements in fusion plasma physics in order to optimize performances of a tokamak
discharge. For values ofβ well below ideal MHD limits [Sauter et al., 1997; La Haye,
2006a], these modes have been found to appear near resonant surfaces, at rationalq val-
ues, giving rise to magnetic islands. The formation of an NTMleads to a flattening of
the temperature and pressure profiles inside the island. Thelatter induces a helical per-
turbation of the bootstrap current which can sustain the mode and increase its amplitude.
According to the so called “belt model” [Chang and Callen, 1990; Günter et al., 1999],
the overall confinement is degraded up to35% for a 3/2 island and up to50% for a 2/1
island, as a consequence of the enhanced radial particle andenergy flux around the is-
land. In case of a2/1 island, mode locking eventually can occur; this results in further
growth of the mode and leads finally to a plasma disruption.
Theoretical [Hegna and Callen, 1997; La Haye, 2006a] and experimental [Isayama et al.,
2000; Gantenbein et al., 2000; Prater, 2004; La Haye et al., 2006b] publications have
shown the possibility to stabilize these modes, by depositing heat and driving current
through electron cyclotron waves (ECW) near the flux surface where the mode is lo-
cated. Electron cyclotron resonance heating (ECRH) and electron cyclotron current drive
(ECCD) affect the current density profile and the equilibrium temperature enhancing the
linear and non-linear stability. ECCD inside the island cancompensate the perturbation
in bootstrap current reducing the size of the mode. Althoughboth methods have been
proven to be successful, a clear understanding of the conditions determining their rela-
tive importance is still missing. Experiments on magnetic island suppression in medium
size limiter tokamaks like TEXTOR or T-10 [Kislov et al., 1997; Westerhof et al., 2007]
revealed ECRH to be by far the dominant effect with respect toECCD. An opposite
result comes from analogous experimental campaigns performed in mid-to-large size
divertor tokamaks such as JT-60, DIII-D and ASDEX-Upgrade (AUG) [Isayama et al.,
2000; Gantenbein et al., 2000; La Haye et al., 2002]. In case of AUG, early theoretical
work predicted ECRH to be more effective than ECCD [Yu and Günter, 1998]. A more
recent theoretical paper [Yu et al., 2000] showed a dominance of ECCD, in particular to-
wards smaller island sizes, in agreement with the experiments [Gantenbein et al., 2000].
Following the experimental results for these mid-to-largesize divertor tokamaks, theo-
retical predictions concerning NTM stabilization in ITER do not include currently the
effect of the heating.

The present paper addresses this problem with a systematic study of ECCD and
ECRH contributions to the modified Rutherford equation (MRE) [Rutherford, 1973],
which describes the non-linear evolution of NTMs. Section 2presents the theoretical
framework of the model. In sections 3 and 4 the efficiency of each method is calculated
in the form of a fore-factor times a geometrical function depending on the properties de-
termining the power deposition profile, namely the profile widthwdep, the power modu-
lationD and the centre of the deposition profile with respect to the resonant radiusxdep

[La Haye et al., 2008]. Analytical approximations to the geometrical functionshave been
found, describing the effect of each of these aspects. The fore-factor is proportional to
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the efficiency by which the injected power generates a current perturbation either non-
inductively (ECCD) or inductively trough a temperature perturbation (ECRH). In section
5 the relative importance of heating and current drive is treated, identifying the merit of
each term in a relevant set of parameters for typical TEXTOR and AUG (neoclassical)
tearing mode suppression scenarios. Extrapolation to ITERis also presented.

4.2 Theoretical Background

A theoretical model for the growth of a tearing mode is provided by the modified Ruther-
ford equation (MRE) which describes the temporal evolutionof the full width w of a
magnetic island as a function of different driving and stabilizing mechanisms [La Haye,
2006a; Wilson, 2008], namely,

0.82
τr
rs

dw

dt
= rs∆

′
0(w) − rs

∑

i

∆′(δji) . (4.1)

With the standard notation,τr = µ0r
2
s /η is the resistive time scale at the resonant ra-

dius rs of the mode,η being the plasma resistivity andµ0 the permeability of the free
space. The classical stability index∆′

0 is defined as the logarithmic discontinuity in the
radial derivative of the perturbed magnetic flux functionψ across the island. The model
assumes, for small islands,ψ to be constant across the island region. This is known also
as the “constantψ approximation”. The second term on the right hand side of theequa-
tion (4.1), accounts for corrections to the classical tearing mode equation, due to either
inductive or non-inductive perturbations of the parallel current density around the reso-
nant surface,

rs
∑

i

∆′(δji) =
16µ0Lqrs
Bpπw2

∫ ∞

−∞
dx

∮

dξ(δj‖,1 + δj‖,2 + . . .) cos(mξ) . (4.2)

Here the helical phaseξ is defined asξ = θ − nφ/m (whereθ(φ) andm(n) are the
poloidal (toroidal) angles and the poloidal (toroidal) mode number, respectively) and
x = r − rs is the displacement from the resonant surface; furthermorewe make use of
the magnetic shear lengthLq = q/(dq/dr), of the poloidal component of the magnetic
fieldBp and of the safety factorq.
Among the contributions toδj‖, the most relevant for this paper comes from the perturbed
bootstrap current, which results in a driving term in the MREgiven, in the notation of
Ref. [La Haye, 2006a], by

rs∆
′
BS = −cBSβp

√
ǫ
Lq

Lp

rs
w

w2

w2 + w2
d

, (4.3)

wherecBS ≈ 1 is a constant factor,βp is the ratio between the plasma pressure and the
poloidal magnetic pressure,ǫ is the inverse aspect ratio,Lp is the pressure scale length
andwd is the critical island width.
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The ECW deposition inside the island can lead to the stabilization of the mode either
directly through a non-inductive currentrs∆′

CD, or indirectly, by a perturbation of the
temperature profile resulting in a perturbation of the inductive current,rs∆′

H. Following
the notation used in [Sauter, 2004; Westerhof et al., 2007], one can write

rs∆
′
CD =

16µ0Lqrs
Bpπw2

∫ ∞

−∞
dx

∮

dξ jCD cos(mξ) , (4.4)

rs∆
′
H =

16µ0Lqrs
Bpπw2

∫ ∞

−∞
dx

∮

dξ jH cos(mξ) , (4.5)

where, in equation (4.5), jCD and jH are the perturbations to the current density as a
consequence of non-inductive current drive and heating, respectively. The latter is related
to the temperature perturbationδTe as jH ≡ jsep

T
3/2
sep

δ(T
3/2
e ). The inductive part of the

current density and the temperature at the island separatrix are denoted withjsep and
Tsep, respectively.

4.3 Current Drive Contribution to the modified Ruther-
ford equation

The application of EC waves to drive off-axis current parallel to the equilibrium current
is probably one of the most common and successful approachesto NTM stabilization.
In the following discussion a normalized Gaussian distribution is assumed for the radial
power deposition profile,pEC = Ptotp̃CW(x)M(ξ;D, φ) with

p̃CW(x) =
1

2π5/2wdepRrs
e−4(x−xdep)2/w2

dep , (4.6)

wherewdep is the fulle−1 power density width,R denotes the tokamak major radius and
xdep is the deposition location relative to the resonant radius,i.e.rdep − rs. Ptot refers to
the total injected power in case of continuous wave (CW) application, to be distinguished
from the time averaged power used in reference [Sauter, 2004]. The functionM accounts
for the effect of power modulation; it is written in terms of aHeaviside functionH as

M(ξ;D, φ) = H(cos(mξ + φ) − cos(Dπ)) . (4.7)

It depends on the helical angleξ, the power on-time fractionD and the phase mismatch
φ between the power modulation and the island rotation. In theremainder of the paper
the power modulation will be assumed to be exactly centered about the island O-point,
i.e.φ = 0. To ease the notation, the variableφ will be dropped.
Under the assumption of fast transport along the field lines,the current density driven
non-inductively by the absorbed EC power is a flux functionjCD = jCD(ψ) whereas
the power deposition has generally a very localized profile.In order to relate these two
figures, the power density can be averaged over a flux surface (see definition below) so
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that jCD = 2πRηCD〈pEC〉. The current drive efficiencyηCD, defined here asηCD =
ICD/Ptot, differs from a more conventional representation [Prater, 2004] by a factor
neR, with ne being the electron density. The power deposition and drivencurrent profile
widths have been assumed to be identicalwCD = wdep, although the latter could be
broader by the effect of the radial diffusion. As a consequence,ηCD is assumed constant
over the deposition profile.
Here, the flux surface average of a functionF is indicated as〈F 〉. Following the notation
of [Hegna and Callen, 1997] and [Fitzpatrick, 1995], this flux surface average can be
defined as〈F 〉 ≡ {F}/{1} with

{F (σ,Ω, ξ)} ≡ m

∮

dξ

2π

w

4
√

2

F (σ,Ω, ξ)
√

Ω + cos(mξ)
, (4.8)

for Ω > 1 and

{F (σ,Ω, ξ)} ≡ m

∫ ξ̂

−ξ̂

dξ

2π

w

4
√

2

1
2 [F (σ,Ω, ξ) + F (−σ,Ω, ξ)]

√

Ω + cos(mξ)
, (4.9)

for Ω ≤ 1. The island topology is defined here, by the normalized flux surface label
Ω , which in a large aspect ratio approximation is given byΩ = 8x2/w2 − cos(mξ)

[Fitzpatrick, 1995]. We denoteσ = sgn(x) andξ̂ = arccos(−Ω)/m. Flux labels−1 ≤
Ω ≤ 1 refer to the region inside the island, withΩ = −1 at the O-point andΩ = 1 at the
separatrix.

The contribution of the current drive to the MRE can now be written as:

rs∆
′
CD =

16µ0Lqrs
Bpπw2

∫ ∞

−1

dΩ 〈pEC〉ηCD2πR

∮

dξ
w

4
√

2

cos(mξ)
√

Ω + cos(mξ)
. (4.10)

Substituting the modulated power density〈pEC〉 in 4.10and following the formulation
of [Sauter, 2004], the termrs∆′

CD is given by,

rs∆
′
CD =

16µ0Lq

Bpπ

ηCDPtot

w2
dep

FCD(w∗, xdep,D) , (4.11)

FCD(w∗, xdep,D) =
w2

dep

w2

∫∞
−1

dΩ 〈p̃CWM〉{cos(mξ)}
∫∞
−1

dΩ 〈p̃CW〉{1} , (4.12)

wherew∗ = w/wdep is the normalized island width. In this way the contributionrs∆′
CD

from non-inductive current to the MRE, according to4.11, is split into a fore-factor
times a dimensionless effectivity.FCD depends only on geometrical parameters like the
normalized island width, the displacement of the power deposition from the resonant
surface and the modulation. The fore-factor is seen to be proportional to the total injected
power and the current drive efficiencyηCD.
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Figure 4.1: The ECCD geometrical functionFCD (red circles), obtained from a numer-
ical evaluation of equation (4.12) in the case of no misalignment and con-
tinuous power deposition, i.e.FCD = NCD. The green dash-dotted curve
displays the fit toNCD given in equation (4.14). The blue dotted curve rep-
resents the fit given in [Perkins and Harvey, 2003; Sauter, 2004].

Evaluation of the geometrical function,FCD

Equation (4.12), although rather simple, is time consuming to evaluate numerically. In
order to achieve a fast calculation of Rutherford equation including the effect of current
drive, an analytical approximation forFCD is needed. At first let us suppose the effect of
relative misalignment with respect to the rational surfaceto depend weakly onw∗; sec-
ondly the dependence on the on-time fraction, within a good approximation (≈ 10%), not
to change for different values ofxdep. Under these assumptions the geometrical function
can be factorized into three figures of merit:

FCD(w∗, xnorm,D) = NCD(w∗)GCD(w∗, xnorm)MCD(w∗,D) , (4.13)

whereNCD(w∗) provides the normalization to the geometrical function depending on
the normalized island width,GCD accounts for the misalignment andMCD for the mod-
ulation. The parameterxnorm = xdep/max(w,wdep) denotes the normalized radial ex-
cursion from the O-point. Note thatGCD(w∗, xnorm = 0) = 1,MCD(w∗,D = 1) = 1.

The simplest case in exam presumes a continuous power deposition on the island
(D = 1), centered at the O-point (xnorm = 0), with a constant width. Figure4.1compares
the present calculations forFCD(w∗, xnorm = 0,D = 1) = NCD(w∗) (red circles) with
a previous fit (blue dotted line) proposed in [Perkins and Harvey, 2003; Sauter, 2004]
showing a quite good agreement. The discrepancy in the range0 < w∗ < 1.5 appears
also in the cited papers. A more precise approximation to thepresent numerical calcula-
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4 On the Merits of Heating and Current Drive

tion is proposed here,

NCD(w∗) =
0.25 + 0.24w∗

1 + 0.64w∗3 + 0.43w∗2 + 1.5w∗ , (4.14)

converging to the previous one forw∗ ≪ 1 and forw∗ ≫ 1, but giving a significantly
better fit in the range of0 < w∗ < 1.5 as it is shown in figure4.1 (green dash-dotted
curve).

The loss in efficiency due to deposition misalignment is represented in figure4.2, as
function of the normalized radial excursion from the O-point. The curve shows a steep
decrease ofGCD, such that it is reduced by50% for |xnorm| ≈ 0.3. For |xnorm| & 0.5
(deposition around the separatrix) the function assumes even negative values, i.e. cur-
rent drive destabilizes the mode. These results implicate astrong constraint on ECCD
localization accuracy in order to achieve island stabilization, as recently reported in
[La Haye et al., 2008]. Figure4.3 shows the functionMCD accounting for the effect of
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Figure 4.2: Detrimental effect of deposition misalignment on the CD normalized geo-
metrical functionGCD(w∗, xnorm), varying the island sizew∗ = w/wdep.
The displacement is normalized asxnorm = xdep/max(w,wdep). This nor-
malization results in the non-monotonic dependence of the minimum effi-
ciency withw∗.

modulation as a function of the on-time fraction assuming perfect phasing of the modu-
lation centered around the island O-point, i.e.φ = 0. Also calculations for finite phase
mismatch have been performed. These showed that the stabilization efficiency drops by
less than10% provided the phase mismatch does not exceed|φ| = 20◦. For small values
of w∗ (in ITER w∗ ≈ 0.5 is expected) efficiency is optimized modulating the power
with 50% on-time fraction. For larger islands this estimate rises toan on-time fraction
of 70%. A set of fitting functions has been obtained for both terms,GCD andMCD with
a discrepancy≤ 15% with respect to the numerical evaluation of equation (4.11). The
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Figure 4.3: Enhancement of the CD normalized geometrical functionMCD(w∗,D),
with on-time fractionD, varying the island sizew∗ = w/wdep. Modulat-
ing the power with50% on-time fraction, the efficiency is found to be, for
w∗ = 0.1, up to 7 times larger (blue circles) than the case of continuous
wave application.

effect of the misalignment can be fitted reasonably well withthe help of the real part of
the plasma dispersion function as,

GCD(w∗, xnorm) = 1 − 2
xnorm

g(w∗)

∫ xnorm/g(w
∗)

0

dte(t
2−(xnorm/g(w

∗))2) , (4.15)

with

g(w∗) =
0.38w∗2 + 0.26w∗ + 0.5

w∗ + 1
,

whereg(w∗) accounts for the changing scale of the effect as the island width is varied. In
the limit of small islandsg = 1/2. The real part of the plasma dispersion function appears
to fit accuratelyGCD for 0.1 < w∗ < 1. Forw∗ ≥ 1 the plasma dispersion function
provides a far less accurate fit in particular of the regions with negative efficiency.

Concerning the modulation, a fit in terms of an algebraic function has been found,
which can be written as

MCD(w∗,D) =
1

w∗3 (m1(D)w∗2 +m2(D)) +m3(D) , (4.16)

where
m1(D) = 2.26D4 − 3.44D3 − 0.99D2 + 2.2D − 0.02 ,

m2(D) = 10−2(0.34D5 − 1.02D4 + 0.87D3 − 0.28D2 + 0.1D) ,

m3(D) = (1.34D4 − 3.54D3 + 1.1D2 + 2.09D + 0.01) .

The fit is valid in the domain0.1 ≤ w∗ ≤ 10, 0 ≤ xnorm ≤ 2 and0.1 ≤ D ≤ 1.
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4.4 Local Heating Contribution to the modified Ruther-
ford equation

The effect of local heating on a neoclassical tearing mode isa perturbation of the in-
ductive current density inside the magnetic island due to a perturbation of the electron
temperatureTe. In order to calculate the latter, we assume that, on the timescales of
interest,Te equilibrates along the perturbed field lines, so thatTe = Te(Ω). Introducing
the heat fluxΓ through the magnetic surface, the heat diffusion equation appears as,

〈pEC〉 = ∇ · Γ +
3

2

∂nekBTe
∂t

. (4.17)

Assuming steady state conditions (forτr ≫ τdiff with τdiff = w2/χ⊥) and neglecting
the convective contribution to the heat flux one obtains,

〈pEC〉 +
∂Ω

∂V

∂

∂Ω

(

∂V

∂Ω
〈(∇Ω)2〉neχ⊥kB

∂Te
∂Ω

)

= 0 , (4.18)

where the gradient is written in terms of the normalized flux surface labelΩ andV (Ω)
denotes the total volume enclosed within a given flux surface. The perpendicular heat
conductivityχ⊥ is assumed to be a constant;ne is the electron density, andkB is the
Boltzmann constant (in units of J/keV). Calculating the volume of the flux shell as
∂V/∂Ω = 8π2Rrs{1}, the previous equation reduces to

〈pEC〉∂V = −∂
(

8π2Rrs{|∇Ω|2}neχ⊥kB
∂Te
∂Ω

)

. (4.19)

Integrating twice4.19overΩ and denoting withP (Ω) the total power injected inside the
flux tube between the O-point and the flux surface labeledΩ, an expression forTe =
Tsep + δTe is obtained, where

δTe =
Ptotw

8π2Rrsχ⊥nekB
δT̃e , (4.20)

and1

δT̃e ≡
∫ 1

Ω

dΩ
P̃

{|∇Ω|2}
1

w
; P̃ =

P (Ω)

Ptot
. (4.21)

The integral fore-factor in equation (4.20) is dimensionally a temperature whileδT̃e is
dimensionless. Let us introduce an approximation for the current perturbationjH ∝
δ(T

3/2
e ),

δ(T 3/2
e ) = (Tsep + δTe)

3/2 − T 3/2
sep ≈ T 1/2

sep

3

2
δTe , (4.22)

such thatjH can be approximated as,

jH ≈ jsep
Tsep

3

2
δTe . (4.23)

1Equation (4.21) differs from equation (21) in the original paper by a factor8π
2
Rrs.
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Substituting equations (4.20) and4.23 in equation (4.5) a new expression forrs∆′
H is

obtained,

rs∆
′
H ≈ 16µ0Lq

Bpπ

ηHPtot

w2
dep

FH(w∗, xdep,D) (4.24)

where

FH(w∗, xdep,D) =
1

2πw

∫ 1

−1

dΩ ˜δTe

∮

dξ
w

4
√

2

cos(mξ)
√

Ω + cos(mξ)
(4.25)

The factorηH has been defined as the efficiency with which the power is converted into
a perturbative inductive current. It can be shown [de Baar et al., 2008] that

ηH =
3w2

dep

8πRneχ⊥kB

jsep
Tsep

. (4.26)

The expression obtained forηH is such that it is independent of the island size; it contains
only plasma parameters, the power deposition width and an estimate of the anomalous
heat diffusivity inside the island. The reader is reminded thatjsep refers to the inductive
part of the current density at the separatrix only. In cases where a significant fraction of
the equilibrium current density is non-inductively driven, for example in the presence of
a large bootstrap current fraction, this can result in a significant reduction ofηH. All the
geometrical properties describingrs∆′

H are enclosed in the dimensionless functionFH.

Evaluation of the geometrical function,FH

In analogy with the previous section the last dimensionlessintegral can be modeled with
an analytical functionFH,

FH(w∗, xnorm,D) = NH(w∗)GH(w∗, xnorm)MH(w∗,D) . (4.27)

As in the case of current drive the functionsGH andMH are defined asGH(w∗, xnorm =
0) = 1, MH(w∗,D = 1) = 1. The normalization functionNH is shown in figure4.4.
The trend is approximately linear for small values ofw∗ converging to a constant for
w∗ ≫ 1. Figures4.5 and4.6 show the dependencies on the radial mismatch and the
power modulation. The trend ofGH in figure 4.5 presents a peak atxnorm = 0 which
rapidly decreases to zero for a displacement0.5 < xnorm < 1. The curve does not
assume negative values around the separatrix region. In figure 4.6 the effect of power
modulation on the normalized geometrical factor appears essentially independent from
the island width. In contrast with the case ofMCD(w∗,D), modulation never results in a
improved efficiency. A strongly reduced efficiency is found for on time fractions below
D < 50%. Following the same procedure as shown in paragraph 3.1, a set of fitting
functions has been obtained2, with a discrepancy< 10% with respect to the numerical
evaluation of4.25:

NH(w∗) =
0.077w∗2 + 0.088w∗

w∗2 + 0.8w∗ + 2.17
, (4.28)

2Equation (4.28) differs from equation (28) in the original paper approximately by a constant factor0.26.
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Figure 4.4: The ECRH geometrical functionFH (red circles), obtained from a numerical
evaluation of equation (4.25) in the case of no misalignment and continuous
power deposition, i.e.FH = NH. The green dash-dotted curve displays the
fit to NH given in equation (4.28). This picture has been corrected according
to [De Lazzari and Westerhof, 2010].
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Figure 4.5: Detrimental effect of deposition misalignment on the heating normalized ge-
ometrical functionGH(w∗, xnorm), varying the island sizew∗ = w/wdep.
The displacement is normalized asxnorm = xdep/max(w,wdep). Note that,
differently from figure4.2, the function does not assume negative values
around the separatrix.
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Figure 4.6: Effect of power modulation on the heating normalized geometrical function
MH(w∗,D) with on-time fractionD. No improvement of the efficiency ap-
pears from the picture. The dependence on the island size in this case is
negligible.

GH(w∗, xnorm) = exp

(

−
(

xnorm

g(w∗)

)2
)

, (4.29)

with
g(w∗) = 0.00035w∗4 − 0.008w∗3 + 0.07w∗2 + 0.02w∗ + 0.5 ,

MH(D) = 1.2D3 − 3.5D2 + 3.3D − 0.06 . (4.30)

4.5 About the relative merits of Heating and Current
Drive

In the previous sectionsrs∆′
CD andrs∆′

H have been treated separately in terms of their
geometrical properties. At first glance (figures4.2 and4.5) the most striking difference
appears in the misalignment dependence whereGCD is assuming negative values near
the X-point. In this region current drive is destabilizing the island, while the heating
contribution is still positive. This affects the requirements for power deposition accuracy:
atxnorm ≈ 0.4,GCD decreases by83%, whileGH is reduced by45%.

To derive the relative impact on the Rutherford equation, the full expressions for
rs∆

′
CD,H (i.e. equations (4.11) and (4.24), respectively) must be compared. It is noted

that the expressions forrs∆′
CD andrs∆′

H differ only in the appearance of the current
generation efficiencyηCD,H and the geometrical functionFCD,H,

rs∆
′
CD,H ∝ ηCD,HFCD,H(w∗, xnorm,D) . (4.31)
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Values forηCD,H shown in the table4.1indicate that the relative merits of heating and
current drive in TEXTOR are directly related to their geometrical factors. This suggests a
direct comparison for the case of continuous power deposition at the O-pointxnorm = 0
andD = 1, shown in figure4.7. The plot shows the trend ofNCD,H (marked with green
stars and blue circles, respectively), which are found to take the same value atw∗ = 2. In
the regionw∗ ≪ 2 current drive appears almost two orders of magnitude more effective
than the heating. The efficiency of the former scales as a constant, while for the latter, it
grows linearly.

In the region wherew∗ ≫ 2 this trend is opposite:NH approaches a constant and
NCD is decreasing quadratically as1/w∗2. Observing the typical range of the island
width, during its evolution, in a particular tokamak, it is possible to determine whether
the mode will be affected by either ECCD or ECRH. For a medium-size tokamak like
TEXTOR, experiments on the suppression of resonant magnetic perturbations (RMP)
induced tearing modes confirmed the island suppression is highly independent on the
current drive. These measurements are compatible with the theoretical predictions (see
red arrows in figure4.7), since the typical 2/1 island detected is larger than the deposition
width. In this region the ratioNH/NCD ≫ 1.

In the ASDEX Upgrade experiments electron cyclotron current drive is predicted
to play a dominant role over most of the relevant parameter regime with still a signifi-
cant contribution from heating. This is consistent with theexperiments and the theoreti-
cal analyses of these experiments[Yu et al., 2000; Gantenbein et al., 2000]. The previous
picture, together with figure4.3, are helpful also to discuss the merits of the modulation
in the island suppression. The method seems to enhance the stabilization primarily in
the case of small islands, whereas it appears pointless in the region where the heating
contribution is dominant, forw∗ ≫ 2.

Observing the values ofηCD,H reported in table 1 for a large tokamak such as ITER
“scenario 2”, ECCD appears one order of magnitude more efficient than ECRH. This is

Table 4.1: Typical values ofηCD,H (in units of [kA]/[MW ]) estimated for different
tokamaks. These should be considered as a rough estimation,provided the
uncertainty on the perpendicular heat diffusivityχ⊥. Parameters used to de-
termineηCD,H refer to datasets reported in [Westerhof et al., 2007] for TEX-
TOR and in [Leuterer et al., 2001; Urso et al., 2005] for AUG. In the case of
ITER, our calculations refer to the so called “scenario 2” [Prater et al., 2008].

ηCD ηH

TEXTOR 2.5 2.8
AUG 4 − 6 5 − 9
ITER 5.7 0.4
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4.6 Conclusion

• At w* =1,  FCD=FH;

• NCD is decreasing quadratically 

for    w>>w* while NH is

decreasing linearly for w<<w* ;

• Modulation is mostly relevant in 

the region where current drive is

dominant.
TEXTOR

ITER

ASDEX

Current Drive Heating

Figure 4.7: Geometrical efficiency for ECCD and ECRH (green stars and blue circles,
respectively), calculated atxnorm = 0 with continuous power deposition.
Note that the ratioNH/NCD (red squares) is ranging from10−1 forw∗ ≃ 0.1
to 102 for w∗ ≃ 10. Red arrows refer to the typical range of a3/2 island in
AUG and ITER, and of a2/1 island in TEXTOR. This picture has been
corrected according to [De Lazzari and Westerhof, 2010].

in agreement with the results of [Yu and Günter, 1998]. The contour plot in figure4.8
represents thelog(ηCDFCD/ηHFH) depending on the island width and the power mod-
ulation. Positive values of the logarithmic ratio correspond to the region where current
drive is predominant. This one is found forw∗ . 8. The figure4.8 permits to draw
some conclusions concerning the possible improvement of the island stabilization due to
ECRH in ITER. For a saturated 3/2 island with an estimated width of 12.5 cm, ECCD
appears about4.5 times more efficient than ECRH. This implies that in the earlyphase
of NTM evolution, ECRH adds a≈ 6− 7% contribution to the stabilization of the mode.
This contribution rapidly decreases along with the island shrinkage.

4.6 Conclusion

The successful application of EC waves to the stabilizationof magnetic islands has mo-
tivated a further theoretical effort in order to assess which conditions are determining the
relative importance of ECCD and ECRH. These conditions are important for a correct
prediction of the power required for mode suppression.
The paper has shown the possibility to compare ECCD and ECRH by describing their
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Figure 4.8: Contour plot of log(ηCDFCD/ηHFH) representing the relative merits of
heating and current drive for ITER scenario 2, with front steering de-
position. Typical parameters are:Ptot = 13.3MW, ICD = 0.076MA,
wdep = 4.9cm. The curve labeled with0 represents the locus of points
where ηCDFCD = ηHFH. This picture has been corrected according to
[De Lazzari and Westerhof, 2010].

contribution to the Rutherford equation with a parallel structure as represented by equa-
tions (4.11) and 4.24, respectively. This formulation allows to separate the machine-
related parameters from the geometrical properties of the deposition, namely deposition
width, location and modulation.
For each of these parameters a systematic study has been performed, delineating two
main regimes. Current drive is shown to be the dominant effect for w∗ ≪ 2, wherew∗ is
equal to the full widthw of the island normalized to the full Gaussian widthwdep of the
power deposition profile. In this scenario deposition location and modulation are playing
a crucial role; the former causes a strong reduction of the efficiency as it moves away
from the island O-point, the latter avoids power from being deposited around the sepa-
ratrix (assuming no phase mismatch) with the consequent destabilization of the mode.
In the region wherew∗ ≫ 2, ECRH becomes the main reason for island stabilization.
In this case a radial misalignment does not cause mode destabilization. As the temper-
ature perturbation is a solution of a diffusion equation, itwill always be peaked at the
island O-point. Accordingly, also power modulation does not enhance the geometrical
efficiency.

Results of the calculations have been compared to differentexperiments, such as
TEXTOR, AUG and ITER scenario 2. It is worthwhile to mention that, for significant
fraction of bootstrap current, the perturbative model usedfor the modified Rutherford
equation might not be entirely valid. For TEXTOR theoretical predictions are in qual-
itative agreement with experiments, showing that heating is the dominant cause of the
achieved stabilization. In AUG, on the contrary, heating isexpected to play a marginal
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role, in agreement with the experimental results. Extrapolations to ITER predict a strong
predominance of current drive with respect to ECRH.

4.7 Appendix: Application to TEXTOR experiments

In this appendix the theoretical predictions developed so far are benchmarked with a
number of experiments [Westerhof et al., 2007; Classen et al., 2007] addressing the sup-
pression ofm/n = 2/1 tearing mode by ECRH and ECCD. The results presented here
are part of a more extensive analysis, acknowledged to [Ayten et al., 2011], performed
on experimental measurements obtained from a medium-size limiter tokamak, TEXTOR
[Samm, 2005]. A brief description of the machine parameters is given in the table below.

Table 4.2:TEXTOR machine and plasma parameters

Major radius (R) 1.75 m
Plasma radius (a) 0.47 m
Plasma volume 7.0 m3

Magnetic field (B) 1.1 − 2.9 T
Plasma current (Ip) 200-800 kA
Pulse length <10 s
Ohmic power 0.3 − 0.5 MW
Electron temperature (Ti) 1 keV
Ion temperature (Ti) 1 keV
Electron density (ne) 3 × 1019 m−3

In these experiments magnetic islands are driven by the dynamic ergodic divertor
(DED), introduced in3.5, located on the high field side of the tokamak and operating
at a frequency of1 kHz. The resulting tearing mode, the saturated width being denoted
with wDED, is therefore locked to the rotating perturbation field, atrs = 0.25 − 0.28 m.
Tearing mode control is achieved by means of a800 kW, 140 GHz, long pulse gyrotron
injecting microwave radiation into the plasma. This causesthe heating of electrons by
the resonant absorption of the waves at the2nd harmonic of the electron cyclotron reso-
nance (from which the name ECRH). The gyrotron can be operated either continuously
(CW) or modulated. The radial position of the ECRH depositionis tuned by rotating the
front mirror of a steerable launcher. An appropriate choiceof the toroidal injection angle
allows to drive non-inductive current, ECCD. The two main diagnostics in use to deter-
mine the size of magnetic islands are the electron cyclotronemission (ECE) receiver and
the soft x-ray camera (sxr). Both can measure the temperature oscillations of the plasma
at the resonant surface, from which the island width can be estimated. In particular the
141 GHz ECE channel measures the radiation temperature on the high-field side coming
from a region several cm inside the q = 2 surface. The measurement of the island width
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has been realized by measuring the amplitude of the temperature oscillations, having
the same frequency as the DED. A detailed description of these instruments is beyond
the scope of the thesis; further informations concerning TEXTOR diagnostics can be
found in [Donné et al., 2005]. All the experiments reported in the following discussion,
have been set up with a toroidal magnetic fieldBφ = 2.25 T, a toroidal plasma current
Ip = 300 kA, and a line averaged density of2× 1019m−3. The current in the DED coils
was ramped up to reach a value of2 kA. It should be noted that in TEXTOR the bootstrap
current is usually negligible and consequently insufficient to drive an NTM. This implies
that the benchmark addresses only classical tearing modes.The benchmark of the GRE
is performed by comparing the simulated reduction in saturated island width, according
to equation (4.11), for ECRH and ECCD with the experimental data. In order to calcu-
late the effectivity of the heatingηH, the heat conductivity and the plasma parameters as
obtained in [Classen et al., 2007; Westerhof et al., 2007] are used, while the current drive
efficiencyηCD is obtained from beam tracing calculations.

In the first dataset, two radial deposition scans at750 kW with wdep = 1.2cm and
wdep = 4.6 cm respectively, are performed (see figures4.9). Each scan shows the trend
of the island width (normalized towDED) as function of the power deposition location.
In the first case the vertical injection angle has been variedfrom 0◦ to 12◦, resulting in a
deposition radius ranging fromrdep = 0.23 m to0.31 m. In the second scan, the vertical
injection angle was scanned from1◦ to 13◦ and accordingly, the deposition radius from
0.21 m to0.34 m. The model, although qualitatively compatible with experimental data,
results in a symmetric suppression around the resonant radius rs ≈ 28 cm which does
not match the asymmetric trend of the data (see black solid lines). This could be due to
a modification in the magnetic equilibrium in response to theheating well outside the
island resulting in a further destabilization forrdep < rs and a further stabilization for
rdep > rs. In the wide deposition scan4.9-b a finite local current drive has been induced,
although the effect on the saturated island width appears negligible. These observations
are compatible with the theoretical predictions (see red arrows in figure4.7), since the
typical2/1 island detected is larger than the deposition width. A second dataset has been
used to benchmark the dependence of the (normalized ) saturated island width on the
modulation (see equation (4.11)) as shown in figure4.10. The modulated power varies
between70 kW and400 kW, while the duty-cycle has been varied from0% to 100%. The
power is deposited in phase with the O-point, at the resonantradius. This is assumed to
coincide with the deposition radiusrdep = 0.262 m. In addition the efficiency of200 kW
CW power is compared with that of the modulated power with40% duty-cycle for the
400 kW, which corresponds to the same average power. In the case of modulated ECRH
and varying the duty-cycle, a reasonable agreement with theexperimental data appears
when the on-time fraction is larger than50%. At lower duty-cycle, the discrepancy might
be due to a radial misalignment: in the experiments the powerdeposition was optimized
to coincide withrs for the high power, high duty cycle cases; as a consequence ofsmall,
global profile changes at lower powersrs may be slightly shifted for those cases. As
the duty-cycle is increased, the suppression efficiency increases as well but no further
improvement is observed beyond a duty-cycle of about60%. Modulated ECRH power
with 40% duty-cycle provides a stronger suppression than CW ECRH at the same average
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4.7 Appendix: Application to TEXTOR experiments

Figure 4.9: Suppression of the 2/1 magnetic island as a function of the radial deposi-
tion displacement (normalized to the minor radius,a = 47cm) for different
toroidal injection anglesφ and deposition width at full powerP = 750kW:
(a)φ = +0.5◦ andwdep = 1.2 cm; (b)φ = −16◦ andwdep = 4.6 cm. The
red solid curve in (a) represents the numerical calculationof pure ECRH
stabilization. In (b) green markers refer to experimental points, while the
red solid line refer to the effect of pure ECRH. Note that the contribution
of ECCD (blue dashed line) is clearly negligible. Differentsymbols refer to
data taken on different days which may imply slight variations in the position
of theq = 2 surface.
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Figure 4.10:Suppression of a 2/1 mode by modulated ECRH centered around the O-
point as a function of the duty cycle of the ECRH high-power phase. Red
solid lines refer to the numerical simulations while blue markers to ex-
perimental data. Horizontal lines refer to the200 kW continuous power
deposition case.
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power of200 kW.
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5 The role of asymmetries in the growth
and suppression of neoclassical tear-
ing modes

The work presented in this chapter has been published inPlasma. Phys. Control. Fusion
53 (2011) 035020

Abstract

The evolution of neoclassical tearing modes (NTMs) is usually described
by the generalized Rutherford equation (GRE) for a symmetric magnetic is-
land. Despite the success of this representation, various experiments have
found the evidence of asymmetries in the island geometry. A generaliza-
tion of the model suggests that a number of effects, such as a quasi-linear
correction of the constant-ψ approximation, a shear flow or a temperature
gradient across the island, might be responsible for the deformation of the
island geometry. In addition, it is noticed that the symmetry is broken in the
radial direction also by approximating the equilibrium helical flux function
by a Taylor expansion up to the third order derivative. The present paper
addresses the role of these asymmetries in the growth and suppression of
neoclassical tearing modes in a slab geometry, with particular attention to
the implications for the local current drive (ECCD) and resonant heating
(ECRH) terms. The stabilizing contributions provided by electron cyclotron
waves to neoclassical tearing modes are found to be largely unaffected by
these perturbations. These results correct and extend someof the conclu-
sions presented in Lazzaro and Nowak (2009 Plasma Phys. Control. Fusion
51, 035005).
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5.1 Introduction

Neoclassical tearing modes (NTMs) are acknowledged to severely limit the tokamak
performance well below the idealβN limit [ Chang et al., 1995], [Sauter et al., 1997;
La Haye et al., 1997; Zohm et al., 1997; Gates et al., 1997], [Isayama et al., 1999; JET,
1999] and [La Haye, 2006a]. Localized heating and current drive at the location of the
magnetic island created by an NTM have been demonstrated both experimentally and
theoretically to provide efficient suppression of these modes [Hegna and Callen, 1997;
Gantenbein et al., 2000; Isayama et al., 2000; La Haye et al., 2002; Westerhof et al., 2007;
De Lazzari et al., 2009]. The main mechanism for the suppression is the replacementin-
side the island of the missing bootstrap current (i.e. the reason for the growth of the mode)
with an inductive or non-inductive current perturbation, respectively. The framework for
the description of the mode growth and suppression is formedby a generalization of the
Rutherford equation [Rutherford, 1973] to take into account localized perturbations to
Ohm’s law inside and around the magnetic island [Sauter et al., 1997; La Haye, 2006a].

The Rutherford equation and its generalization have been derived originally for sym-
metric islands in the so-called constant-ψ approximation only. Despite the success of
this representation, various experiments performed in ASDEX Upgrade, in DIII-D, in
JT-60 and in TEXTOR have found the evidence of asymmetric islands [Meskat et al.,
2001; Udintsev et al., 2003; La Haye et al., 2010; Urso et al., 2010]. Also from a the-
oretical point of view, several effects have been identifiedthat introduce asymmetries
in the magnetic islands. For example, an in-out asymmetry can be generated both by a
finite third order derivative in the equilibrium helical fluxfunction as well as by a quasi-
linear correction to the constant-ψ approximation. Furthermore, a finite flow shear across
the magnetic island can result in a poloidal deformation of the island [Ren et al., 1999;
Smolyakov et al., 2001]. A priori, such changes to the geometry of the flux surfaces can
be expected to affect the two dimensional integrals over theisland region appearing in the
generalized Rutherford equation. In particular, changes can be expected to the stabilizing
terms coming from localized heating or localized current drive as affected, for example,
by electron cyclotron resonance heating (ECRH) or current drive (ECCD), as these terms
involve in addition the flux surface average of the EC power deposition profile which is
highly localized in minor radius as well as in toroidal and poloidal angles.

A first study of the effects of these asymmetries on the efficiency of localized current
drive for mode stabilization has appeared in [Lazzaro and Nowak, 2009]. The present
paper extends these results to the case of localized heating, and corrects the generalized
Rutherford equation as proposed in [Lazzaro and Nowak, 2009] to take into account the
consequences of the asymmetries in the magnetic island moreproperly. The theoretical
background, both of the origin of the asymmetries and of the resulting modifications
to the generalized Rutherford equation are presented in section 5.2. In section5.3 the
consequences of the asymmetries for the drive of the NTM by the perturbation of the
bootstrap current and for the mode suppression by localizedheating and current drive are
presented, while in section5.4 the validity of the model is discussed with respect to the
previous literature. The final section provides a summary ofthe main conclusions of this
work.
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5.2 Asymmetric islands and the generalized Rutherford
equation

Island geometry

Considering a single helicity perturbation, the geometry of a magnetic island is deter-
mined by the surfaces of constant helical fluxψ, i.e.

ψ ≡ ψ0 + ψ1, (5.1)

whereψ0(r) is the axisymmetric equilibrium helical flux, which is defined up to an ar-
bitrary constant, andψ1 is the perturbation to the helical flux. A Taylor expansion ofthe
equilibrium flux around the rational surfacers, where the first derivative ofψ0 vanishes,
reads

ψ0(r) =
1

2
ψ′′

0x
2 +

1

6
ψ′′′

0 x
3 + O(x4) (5.2)

with x = r − rs and a prime indicating derivation with respect tor at r = rs. A quite
general form of the helical flux function perturbation in theregion of the magnetic is-
land itself can be written as [Smolyakov et al., 2001; van der Plas and de Blank, 2007;
Lazzaro and Nowak, 2009]

ψ1 = ψ̃(1 + 1
2∆′

cx) cos(ξ − 1
2∆′

sx− 1
2∆′

T |x|), (5.3)

whereψ̃ = ψ1(rs) is a constant giving the amplitude of the helical flux perturbation at
the resonant surface andξ = mθ − nφ is the helical angle. The third order derivative
of the equilibrium helical flux and the constant∆′

c are both seen to break the up-down
symmetry in the radial shape of the island. The constants∆′

s and∆′
T are responsible

for the generation of different types of asymmetries in the phase of the magnetic island.
In principle all these symmetry breaking terms should remain small over the full island
width, w. Possible physical origins for these terms will be discussed below. As a slab
approximation will be used for the region covering both the island and the EC deposition,
bothw andx are required to remain much smaller than the minor radiusa.

Outside the magnetic island the shape of the perturbed flux function is determined by
the linearized ideal MHD equations. Matching across a smallisland in the approximation
of constant-ψ1(x), i.e.∆′

c = 0, results in the well known tearing mode stability parameter
∆′ which is defined by the jump of the logarithmic derivative (inthe limit of vanishing
island width) of the perturbed helical flux function,

∆′ ≡ lim
ǫ↓0

ψ′
1(rs + ǫ) − ψ′

1(rs − ǫ)

ψ1(rs)
. (5.4)

For large islands, an instability index∆′(w) can be introduced by substitutingǫ ↓ 0
with w/2. In addition, the constant-ψ1(x) approximation will be broken due to the non-
zero average gradient in the perturbed flux function across the island. The latter effect is
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accounted for by a quasi-linear correction introducing theparameter∆′
c which through

matching to the exterior solution is given by

∆′
c ≡

ψ′
1(rs + w/2) + ψ′

1(rs − w/2)

ψ1(rs)
. (5.5)

This parameter∆′
c is responsible for the breaking of the up-down symmetry of the mag-

netic island (as shown in figure5.1(a)). To estimate the size of this symmetry breaking
the dimensionless smallness parameterε is introduced as

ε ≡ w

2
∆′
c with |ε| = O

(w

a

)

≪ 1 , (5.6)

which is seen to be smaller than unity in general. A second cause for breaking of the
up-down symmetry in case of large islands is the third order term in the equilibrium flux.
To estimate the relative size of this effect, the third orderequilibrium term can be com-
pared with the amplitude of the perturbation. This defines the dimensionless smallness
parameterγ

γ ≡ w3

6

ψ′′′
0 |ψ′′

0 |
ψ′′

0 ψ̃
=

16

6

ψ′′′
0

ψ′′
0

w = O
(w

a

)

≪ 1, (5.7)

which is also seen generally to be a small number. For typicaltokamak conditions both
the third order term in the equilibrium flux and the quasi-linear correction toψ1(x), result
in a larger island width insiders and a smaller width outside. Up-down asymmetries due
to cylindrical and toroidal effects have not been taken intoaccount in this paper. It is
noticed though that these might be described in a slab model with a similar coefficientε
as introduced above.

The symmetry of the island can also be broken by a radial dependence of the phase.
For example, a sheared flow has been shown to result in a small,yet finite sin(ξ) con-
tribution to the perturbed flux function, which depends linearly onx. This can be seen
as a finite phase shift,12∆′

sx, in equation (5.3) [Smolyakov et al., 2001] and results in a
shearing of the shape of the island (see figure5.1(b)). An expression for the phase shift
can be obtained which, in the notation of [Smolyakov et al., 2001], is given by

∆′
s = −64

νV ′
0L

2
q

kθv2
Apw

4
. (5.8)

Here,ν is the viscosity,V ′
0 is the local velocity shear,Lq = q/q′ the shear length,

kθ = m/rs, andvAp =
√

B2
p/µ0ρ the poloidal Alfvén velocity. In addition the following

parameters are used,q the safety factor,m the poloidal mode number,Bp the poloidal
magnetic field,µ0 the permeability of free space andρ the plasma mass density. Note
that this effect is largest for small islands. This suggeststhat the phase shift and the
up-down asymmetry of the island width will not simultaneously be large, and that their
consequences can be studied separately. A dimensionless smallness parameter is again
introduced asδ ≡ ∆′

sw/2.
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Finally, a phase shift across the island can be generated which is up-down symmetric
as represented by the term with∆′

T . This results in a droplet shaped island (see fig-
ure5.1(b)). Such a phase shift is introduced, for example, by the presence of finite tem-
perature gradients across the magnetic island as discussedin [van der Plas and de Blank,
2007]. In the relevant parameter regime it may be written as

∆′
T = 2cTω∗

qR

vtrs
, (5.9)

wherecT is a constant of order 1,ω∗ = mT ′
e/eBrs the electron diamagnetic frequency,

R the major radius andvt the electron thermal velocity. In the expression forω∗, T ′
e is the

equilibrium temperature gradient,B the magnetic field ande the elementary charge. Also
for this case a dimensionless parameterτ ≡ ∆′

Tw/2 is introduced, which under normal
conditions will be very small, but may become significant within a transport barrier.

When we normalize the distances from the rational surface by the island width as
x̄ ≡ x/w and normalize the helical flux function asΩ ≡ ψ/sign(ψ′′

0 )ψ̃, the normalized
perturbed flux takes the general form

Ω = 8x̄2 + γx̄3 + sign(ψ′′
0 )(1 + εx̄) cos(Φ(ξ, x̄)), (5.10)

where the spatially varying phaseΦ(ξ, x̄) ≡ ξ − δx̄ − τ |x̄| is introduced. It is noted
again, that in the notation of this paper the parametersγ, ε, δ, andτ are dimensionless.
In a comparison with [Lazzaro and Nowak, 2009] for, in particular,ε andδ, these dimen-
sionless parameters need to be divided byw to obtain the corresponding parameters in
the notation of [Lazzaro and Nowak, 2009]. When the parametersγ, ε, δ, andτ responsi-
ble for the different types of asymmetry all are vanishinglysmall, the usual equation for
a symmetric island is obtained. Taking into account that under normal shear conditions
in a tokamakψ′′

0 is negative, the symmetric case is written

Ω = 8x̄2 − cos(ξ), (5.11)

where the island interior is given by−1 ≤ Ω < +1 with Ω = −1 corresponding to the
O-point andΩ = +1 to the separatrix.

The condition determining the radial position of the O(X)-point, the phase and the
corresponding value forΩ can be formulated as

{

∂Ω
∂x̄ (x̄ = x̄O−point, Φ(ξ, x̄O−point) = 0) = 0
∂Ω
∂x̄ (x̄ = x̄X−point, Φ(ξ, x̄X−point) = ±π) = 0

(5.12)

wherex̄O−point and x̄X−point indicate the radial position of the O-point and of the X-
point, respectively. These two do not coincide as a consequence of the up-down symmetry
breaking,ε 6= 0. The O-point is located at

x̄O−point = − 8
3γ +

(

(

8
3γ

)2

+ ε
3γ

)1/2

ξO−point = δx̄O−point + τ |x̄O−point|
ΩO−point = γx̄3

O−point + 8x̄2
O−point − εx̄O−point − 1 ,

(5.13)

74



5.2 Asymmetric islands and the generalized Rutherford equation

while the X-point is located at

x̄X−point = − 8
3γ +

(

(

8
3γ

)2

− ε
3γ

)1/2

ξX−point = ±π + δx̄X−point + τ |x̄X−point|
ΩX−point = γx̄3

X−point + 8x̄2
X−point + εx̄X−point + 1 .

(5.14)

It is noticed here that forγ 6= 0 each equation in5.12has two solutions. In the following
discussion we will consider only the solution, consistent with the conditionx̄O−point =
x̄X−point = 0 for ε = 0. A finite γ introduces a second solution which represents a non-

physical island chain, the O-point and the X-point being located at− 8
3γ −

√

(

8
3γ

)2

± ε
3γ

far from the original resonant surface. This reflects the breakdown of the Taylor expan-
sion of the equilibrium flux function far from the resonant flux surface. This could be
resolved using the exactψ0 instead of its Taylor expansion. For a general case with
a monotonicq-profile, then only the first solution is found. The “extra” island chain
limits the validity of the approach to the region of parameters where it does not af-
fect the field lines. Forγ = 0, equation5.10 reduces to a second order equation and
consequentlȳxO−point = ε/16, x̄X−point = −ε/16. Further details can be found in
[Lazzaro and Nowak, 2009].

In the remainder of the paper the dimensionless parametersε, γ, δ andτ will all be
treated as arbitrary numbers which will mostly be held fixed as both the island width
and the width of the EC deposition profile are varied. This in fact corresponds to the
presentation of the results in [Lazzaro and Nowak, 2009], where generallyw∆s, and
w∆t are held constant. Both amount to keeping the shape of the island constant as its
size is varied.

Generalized Rutherford equation

Here, we analyze the consequences of the island asymmetriesfor the generalized Ruther-
ford equation [Rutherford, 1973; Sauter et al., 1997; La Haye, 2006a]. In our analysis
we closely follow the derivation of the Rutherford equationas presented, for example,
in [Biskamp, 1993] with appropriate generalizations for the case of asymmetric islands
and in the presence of both inductive and non-inductively driven current density pertur-
bations. Starting points are Ampère’s law relating the perturbation of the helical flux to
the parallel current density perturbationJ1,‖(ψ),

1

R
∇2ψ1 = µ0J1,‖(ψ), (5.15)

and the flux surface averaged Ohm’s law relating the time rateof change of the helical
flux perturbation, i.e. the helical electric field, to the parallel current density perturbation
with the same helicity,

1

R

〈

∂ψ1

∂t

〉

= η1(ψ)(J0 − J0,BS − J0,CD) + η0
(

J1,‖(ψ) − J1,BS(ψ) − J1,CD(ψ)
)

.

(5.16)
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Figure 5.1: Geometry of an asymmetric island withw = 1. Figure (a) shows the de-
formation in amplitude due to the effect of either the quasi-linear correction
to the constant-ψ1(r) approximation,ε = 1, or the third order term in the
equilibrium flux,γ = 1. The circle and the x markers represent the radial
position of the O-point and of the X-point, respectively. These are not coin-
cident owing to theε-asymmetry. In the plot the perturbations are shown to
deform the island in the opposite directions; it is noticed that in a tokamak
both are directed towards the magnetic axis. Figure (b) shows the deforma-
tion in phase due to the shear flow,δ = 1, or to a finite temperature gradient
across the magnetic island,τ = 1. The dashed lines represent the locus of
the inversion points for the “ε-asymmetry” (a) and for the “δ-asymmetry”
(b).

In equation5.16, η1(ψ) represents a possible helical perturbation to the resistivity as
a consequence of heating (or cooling) inside the island,J0, J0,BS andJ0,CD are the
total equilibrium current density, the non-inductive contribution to the latter of the boot-
strap current and the non-inductive contribution of a possible current drive, respectively.
The helical perturbations of the non-inductive bootstrap current density and of the non-
inductively driven current density are indicated withJ1,BS andJ1,CD, respectively. Note
that in the island region, for−1 ≤ Ω ≤ 1, the relationJ1,BS(Ω) = −J0,BS|rs is valid. It
is also remarked that the helical current density perturbation is a flux function since the
tearing mode evolves on a slow time scale such that the equation of motion is degener-
ated to the equilibrium conditionB · ∇J = 0 [Biskamp, 1993]. The operation of flux
surface averaging, as indicated by the brackets, is defined as

〈A〉 ≡
∮

A(dl/|∇ψ|)
∮

(dl/|∇ψ|) ,

where the integral is along the closed line segment with constant helical fluxψ.
In the next step, Ampère’s law (5.15) is multiplied by the phase factorcos(Φ(ξ, x̄)),

with the spatially varying phaseΦ(ξ, x̄) and integrated over the interior region. At the
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5.2 Asymmetric islands and the generalized Rutherford equation

same time using the approximation∇2ψ1 ≈ ∂2ψ1/∂x̄
2, one obtains

∫ ∞

−∞
dx̄

∮

dξ
∂2ψ1

R∂x̄2
cos(Φ(ξ, x̄)) =

∫ ∞

−∞
dx̄

∮

dξ µ0J1,‖(ψ) cos(Φ(ξ, x̄)).

Now the left hand side can be integrated and matched to the linear exterior solution with
the usual result of

∫ ∞

−∞
dx̄

∮

dξ
∂2ψ̃(1 + 1

2∆′
cx̄)

R∂x̄2
cos2(Φ(ξ, x̄)) =

π

R
∆′(w)ψ̃.

The right hand side of equation (5.17) is rewritten by substitution from Ohm’s law (5.16)
as (see also section5.4):

∫ ∞

−∞
dx̄

∮

dξ µ0J1,‖(ψ) cos(Φ(ξ, x̄)) =

∫ ∞

−∞
dx̄

∮

dξ µ0

[

1

η0R

〈

∂ψ1

∂t

〉

− η1(ψ)

η0
(J0 − J0,BS − J0,CD)

+ J1,BS(ψ) + J1,CD(ψ)

]

cos(Φ(ξ, x̄)) = (5.17)

∫ ∞

−∞
dx̄

∮

dξ µ0

[

1

η0R

∂ψ̃

∂t

〈

(1 + 1
2∆′

cx̄) cos(Φ(ξ, x̄))
〉

−η1(ψ)

η0
(J0 − J0,CD) + J1,BS(ψ) + J1,CD(ψ)

]

cos(Φ(ξ, x̄)).

It is stressed here, that the multiplication with the full, space dependent phase factor is
essential. Multiplication instead withcos(ξ) as is done in [Lazzaro and Nowak, 2009]
adds additional terms both on the left (neglected in [Lazzaro and Nowak, 2009]) and
right hand sides of equation (5.17). Such terms will be important, in particular, for the
stabilizing contribution of non-inductive current drive in the case of a power deposition
or driven current density profile much broader than the island width. The integration
domain then covers the full width of this deposition profile and, consequently, extends
well beyond the island width into regions where the phase shift in Φ(ξ, x) becomes large.

The combination of these equations results in an equation for the evolution of the
amplitudeψ̃ of the perturbed flux function which can be transformed into an equation

for the evolution of the “full island width”w by means of the relationw ≡ 4
√

ψ̃/ψ′′
0 . It

must be noted that, in the presence of finiteε or γ asymmetries, the value ofw defined
here is not identical to but a good approximation of the full island width as defined by
the radial distance between the maximal radial excursion ofthe separatrix. The result is
known as the generalized Rutherford equation, which we write as

g1(γ, ε, δ, τ)
τr
rs

dw

dt
= rs∆

′(w) + rs∆
′
BS + rs∆

′
H + rs∆

′
CD (5.18)
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5 The role of asymmetries in the growth and suppression of NTMs

whereg1(γ, ε, δ, τ) is a quantity of order unity defined by

g1(γ, ε, δ, τ) =
2

π

∫ ∞

ΩO−point

dΩ

∮

dξ (1+εx̄) cos(Φ(ξ,x̄))
∂Ω/∂x̄

∮

dξ cos(Φ(ξ,x̄))
∂Ω/∂x̄

∮

dξ 1
∂Ω/∂x̄

, (5.19)

with Ω given by equation (5.10). The parameterτr ≡ µ0r
2
s /η is the local resistive time

scale for the resistivityη at the rational surfacers of the mode (µ0 is the permeability of
the free space). A transition from a representation in{x̄, ξ} coordinates to one in flux
coordinates{Ω, ξ} has been made here for consistency of notation with most existing lit-
erature. In this notation, the effect of the asymmetric deformations of the island appears,
apart from the flux surface averages, also in the Jacobian∂Ω/∂x̄. Outside the island,
i.e. for Ω > ΩX−point, theΩ integral implicitly contains a sum over the contributions
at the two surfaces at positive and negativex̄, which in the case of asymmetric islands
will generally not be identical. Note, thatg1 is no longer a simple constant but depends
implicitly on w through its dependence on the normalized asymmetry parametersγ, ε,
δ, andτ . In case of symmetric islands,g1 becomes a constant which can be evaluated
analytically resulting in the well known value of0.82 [Biskamp, 1993].

The contribution to the Rutherford equation owing to the “missing” bootstrap current
[Hegna and Callen, 1997] within the island separatrix, can be written as,

rs∆
′
BS =

16Rrsµ0

π|ψ′′
0 |w

JBS

∫ ΩX−point

ΩO−point

dΩ

∮

dξ
cos(Φ(ξ, x̄))

∂Ω/∂x̄
. (5.20)

The shear factor is written here as|ψ′′
0 | = RBp/Lq. Reminding that, in the limit of small

inverse aspect ratioǫ and negligible temperature gradient, the bootstrap current can be
approximated [La Haye, 2006a] asJBS ≈ −

√
ǫ

Bp

∂p
∂r , equation5.20can be rearranged as

rs∆
′
BS =

Lq

Lp

rs
w
βp

√
ǫcneo , (5.21)

whereLp = −p/p′ is the pressure scale length andβp = 2µ0p
B2

p
is the ratio between

the plasma pressure and the poloidal magnetic pressure. Thelast term accounts for the
perturbations of the island geometry,

cneo(γ, ε, δ, τ) =
8

π

∫ ΩX−point

ΩO−point

dΩ

∮

dξ
cos(Φ(ξ, x̄))

∂Ω/∂x̄
. (5.22)

For the symmetric case, this integral is evaluated analytically to yield 32/3π ≃ 3.4.
Effects due to a finite perpendicular transport limiting thebootstrap current perturbation
for small islands, are neglected.

The contributions from either a perturbation to the inductive current or the non-
inductively driven current density are represented by∆′

CD and ∆′
H, respectively. An

explicit equation for the term coming from a non-inductively driven current is

rs∆
′
CD = −16Rrsµ0

π|ψ′′
0 |w

∫ ∞

ΩO−point

dΩ

(

J1,CD(ψ)

∮

dξ
cos(Φ(ξ, x̄))

∂Ω/∂x̄

)

, (5.23)
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5.2 Asymmetric islands and the generalized Rutherford equation

which can be brought into a form similar to the expressions obtained in [Sauter, 2004;
De Lazzari et al., 2009]. The power deposition, as for example in the case of ECRH and
ECCD, is assumed to be highly localized in radius as well as inpoloidal and toroidal an-
gle with a possible periodic on-off modulation in time synchronous to the island rotation.
As is commonly done, a fast rotating island is assumed and thepower deposition is aver-
aged over a single rotation period. The resulting power source is symbolically written as
pCWM. Here, the CW radial power deposition profile is a function ofradius only, which
is taken to be a GaussianpCW ∝ exp(−4(x−xdep)2/w2

dep) localized atxdep = rdep−rs
and with full Gaussian widthwdep, and the modulationM becomes a function only of
ξ, approximated asM(ξ;D, φ) = H(cos(ξ+ φ)− cos(Dπ)). In this formulation theM
depends on the power on-time fractionD and the phase mismatchφ between the power
modulation and the island rotation. The symbolH denotes the Heaviside function.

A current drive efficiency,ηCD ≡ ICD/Ptot, is introduced as the ratio of the total
driven currentICD and the total unmodulated powerPtot, which is assumed to be a
simple constant. The current density driven non-inductively by the absorbed EC power
is a flux functionJ1,CD = J1,CD(ψ) whereas the power deposition now is a localized
function in radius andξ. In order to relate these two, the power density is averaged over
a flux surface so thatJ1,CD(ψ) = 2πRηCD〈pCWM〉. A deformation of the flux surfaces
will change the flux surface average of the deposited power and, consequently, the driven
current densityJ1,CD. Finally, noting that the total unmodulated power is

Ptot = 2πRrsw

∫ ∞

ΩO−point

dΩ

∮

dξ
〈pCW〉
∂Ω/∂x̄

,

one obtains [De Lazzari et al., 2009]

rs∆
′
CD = −16µ0Lq

Bpπ

ηCDPtot

w2
dep

FCD(w/wdep, xdep,M; γ, ε, δ, τ). (5.24)

FCD is a dimensionless function which depends on the geometrical properties of the
power deposition profile (its width in relation to the islandwidth, its radial location,
and its modulation) and now also on the parameters defining the particular shape of the
magnetic island:

FCD ≡
w2

dep

w2

∫∞
ΩO−point

dΩ 〈pCWM〉
∮

dξ cos(Φ(ξ,x̄))
∂Ω/∂x̄

∫∞
ΩO−point

dΩ 〈pCW〉
∮

dξ 1
∂Ω/∂x̄

(5.25)

It is assumed that the dependencies on deposition width, location and modulation are
such thatFCD can be factorized as

FCD(w∗, xdep,M; γ, ε, δ, τ) = NCD(w∗)GCD(w∗, xdep)MCD(w∗,M), (5.26)

wherew∗ ≡ w/wdep. The functionNCD(w∗) represents the geometrical function in
case of a power source which is exactly positioned atrdep = rs, and unmodulated.
This means that functionsGCD(w∗, xdep) andMCD(w∗,M) are normalized such that,
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5 The role of asymmetries in the growth and suppression of NTMs

for rdep = rs, GCD(w∗, xdep = 0) = 1, and that for the unmodulated power case,
MCD(w∗,CW) = 1.GCD(w∗, xdep) describes the effect of misalignment of the power,
andMCD(w∗,M) accounts for the effect of power modulation.

For the effect of heating inside the magnetic island one obtains the expression

rs∆
′
H =

16Rrsµ0

π|ψ′′
0 |w

∫ ∞

ΩO−point

dΩ

(

η1(ψ)

η0
(J0 − J0,CD)

∮

dξ
cos(Φ(ξ, x̄))

∂Ω/∂x̄

)

. (5.27)

The helical perturbation to the resistivity is now associated with the perturbation of the
electron temperature due to net power deposition inside themagnetic island,

η1(ψ) ≈ −3δT (ψ)

2Tsep
η0 (5.28)

whereη0 andTsep are the resistivity and electron temperature at the separatrix. The elec-
tron temperature perturbation inside the islandδT (ψ) is obtained from the solution of the
power balance equation inside the island. Following the discussion in [De Lazzari et al.,
2009], it is assumed that the power balance is given by the localized electron heating
represented by the power sourcepCWM as above, balanced by cross field anomalous
transport characterized by a heat diffusivityχ⊥ which is assumed to be constant over the
entire magnetic island. Thus, the electron temperature perturbation is obtained through
solution of [De Lazzari et al., 2009],

δT (Ω) =

∫ ΩX−point

Ω

dΩ
P (Ω)

neχ⊥kB4π2Rrs
∮

dξ|∇Ω|2/(∂Ω/∂x̄)
, (5.29)

whereP (Ω) represents the total power absorbed inside the volume enclosed by the flux
surface labeledΩ, ne the electron density andkB is the Boltzmann constant. As in the
case of non-inductive current drive, the temperature perturbation is affected by the island
asymmetries trough both the flux surface averaged power deposition profile and the term
|∇Ω|2/(∂Ω/∂x̄).

Next, the normalized, dimensionless temperature perturbation δT̃ is introduced as

δT̃ ≡ 8π2Rrsneχ⊥kB
Ptotw

δT , (5.30)

and an “efficiency of current generation” through heating ina plasma slab of widthwdep

is defined as

ηH ≡
3w2

dep

8π2Rrsneχ⊥kB

J0 − J0,BS − J0,CD

Tsep
. (5.31)

With these definitions, the heating term can now also be written is accordance with
[De Lazzari et al., 2009] as

rs∆
′
H = −16µ0Lq

Bpπ

ηHPtot

w2
dep

FH(w∗, xdep,M; γ, ε, δ, τ), (5.32)
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whereFH is again a geometrical function which is given by

FH =
1

2πw

∫ ΩX−point

ΩO−point

dΩ δT̃ (Ω)

∮

dξ
cos(Φ(ξ, x̄))

∂Ω/∂x̄
. (5.33)

Analogous toFCD, also the geometrical functionFH is factorially written as

FH(w∗, xdep,M; γ, ε, δ, τ) = NH(w∗)GH(w∗, xdep)MH(w∗,M), (5.34)

whereNH(w∗) represents the geometrical function in case of a power source which is
exactly positioned atrdep = rs and unmodulated,GH(w∗, xdep) describes the effect
of misalignment of the power andMH(w∗,M) again accounts for the effect of power
modulation.

5.3 Consequences for NTM growth

In this section the effects of the symmetry breaking are discussed for each term appearing
in the Rutherford equation. The results presented are obtained though numerical evalu-
ation of the integrals given above, mostly but not exclusively using their representation
in {x̄, ξ} coordinates. The calculations have been checked extensively for accuracy and
convergence. In a number of cases the evaluations have been performed both in{x̄, ξ}
coordinates as well as in flux coordinates{Ω, ξ}, with identical results given the achieved
accuracy. However, due to the divergence of terms in the flux coordinate representation,
accurate and converged results are more difficult to obtain in that case.

The factorsg1 and cneo

The extension of the Rutherford equation, to the case of asymmetric islands, in equation
5.18, introduced two coefficients,g1 andcneo, depending on the parameters of the per-
turbation,γ, ε, δ andτ . Here the trend of these coefficients in the parameter space is
discussed. Figure5.2(a)and5.2(b)show for both the coefficients a slight increase when
a deformation in amplitude is taken into account; this is represented by blue circles for
the quasi-linear correction to the constant-ψ approximation (ε) and by red squares for the
finite third order term in the equilibrium flux (γ). The discrepancy with the symmetric
case is at most of the order of1%. Phase deformations appear to be negligible. These
results appear in accordance with the conclusions of [Lazzaro and Nowak, 2009]. Note
that the last two points forγ 6= 0 have been calculated reducing the integration range, in
order to avoid the perturbation due to the “second island chain”. This might reduce the
accuracy of these results without affecting the validity ofthe conclusions.

Efficiencies for NTM suppression by heating and current drive

The capability of the current drive and local heating to suppress NTMs is affected by
perturbations of the island geometry trough the geometrical efficiencyFCD 5.25andFH
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Figure 5.2: Consequences of asymmetries on the generalized Rutherfordequation: (a)
the behavior of the coefficientg1(γ, ε, δ, τ) in equation (5.18) and (b) the
behavior of the coefficientcneo(γ, ε, δ, τ) in equation (5.22) are presented.
Every dependency is considered separately. The value atγ = ε = δ = τ = 0
corresponds to the symmetric island case.

5.33, respectively. First the case of continuous EC power deposition at the exact mode
resonant surfacers is considered, in which case the functionsFCD,H reduce toNCD,H.
Every perturbation of the symmetric case is implemented separately and kept constant,
i.e. the normalized shape of the island is kept constant, while the normalized island width,
w∗, varies over the displayed range. As shown in figure5.3(a)and5.3(b), all the effects
appear to be negligible. Despite the marginal effect observed, it is interesting to observe
how the up-down asymmetry modifies the normalized geometrical functionGCD,H when
a misalignment with respect to the resonant radius is taken into account. In figure5.4
and 5.5, the shape of the functionGCD,H clearly reflects the up-down asymmetry of
the island with the function being broader on the side where the island is wider. This is
particularly evident when the power is deposited mainly inside the magnetic island, i.e.
when the island is considerably larger than the power deposition width. The asymmetry
is larger for the current drive than for the heating. It is noticed that a simple phase shift
cannot affect this function, since it is obtained integrating over the full angular domain.
The last statement is not valid when the modulation of the EC power (with a phase
mismatch) is introduced or when the combination of two or more effects is taken into
account, i.e. when deformations both in amplitude and in phase are occurring. Here, a
relevant example for the experimental suppression of tearing modes is discussed, namely
the deposition of EC power with a duty cycleD = 50%, in phase with either the O-point
or the X-point. The magnetic island (w∗ = 3) is described with a quasi-linear correction
for the constant-ψ approximation, i.e.ε 6= 0, such that the radial position of the O-
and X-points is displaced symmetrically from the resonant surface. Note that the simple
factorization proposed in equation (5.26) breaks down forφ 6= 0. For this reason the
factorGCD,HMCD,H is indicated in the following withGCD,H(w∗, xdep,D, φ).
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Figure 5.3: (a) The ECCD geometrical functionNCD defined in equation (5.25) and (b)
the ECRH geometrical functionNH defined in equation (5.33). Both have
been obtained in case of no misalignment and continuous power deposition.
The solid black line refers to the reference case,γ = ε = δ = τ = 0,
squares toγ = 1, ε = δ = τ = 0, circles toε = −1, γ = δ = τ = 0, stars
to δ = 1, γ = ε = τ = 0 and diamonds toτ = 1, γ = ε = δ = 0.

As described in [De Lazzari et al., 2009] for a symmetric island of this normalized
size, the effect of modulation with no phase mismatch,φ = 0, enhances the current drive
efficiency at the resonant surface by20% while the efficiency of the resonant heating is
reduced by10%. This is shown with blue solid lines in figure5.6. The efficiency of the
normalized, modulated geometrical functionsGCD,H shows a decrease (in the absolute
value) of about one order of magnitude for a phase displacement φ = π (red solid line).
By effect of the perturbation, the curves appear shifted towards the displaced O-point
for φ = 0 (blue circles) while forφ = π, they appear to shift towards the X-point (red
squares). This has a particular relevance for the current drive, since the efficiency is found
to be negative, i.e. the current drive destabilizes the island. It is noticed also how the
power modulation reduces considerably the asymmetry of thecurrent drive efficiency
introduced byε, along the radial coordinate, with respect to the continuous deposition
(black solid line in figure5.6(a)).
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Figure 5.4: Detrimental effect of deposition misalignment on the heating normalized ge-
ometrical functionGCD(w∗, xdep), varying the island sizew∗ = w/wdep:
in figure (a) the reference case for a symmetric island (solidlines) is com-
pared with the case of an asymmetric island withε = −1, γ = δ = τ = 0
(circles forw∗ = 0.3|0.8, squares forw∗ = 3). In figure (b) the same as
in (a) but forγ = 1, ε = δ = τ = 0. The displacement is normalized as
xnorm = xdep/max(w,wdep).
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Figure 5.5: Detrimental effect of deposition misalignment on the heating normalized ge-
ometrical functionGH(w∗, xdep), varying the island sizew∗ = w/wdep:
in figure (a) the reference case for a symmetric island (solidlines) is com-
pared with the case of an asymmetric island withε = −1, γ = δ = τ = 0
(circles forw∗ = 0.3, squares forw∗ = 3). In figure (b) the same as in
(a) but forγ = 1, ε = δ = τ = 0. The displacement is normalized as
xnorm = xdep/max(w,wdep).
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Figure 5.6: Effect of power modulation (D = 50% duty cycle), combined with phase
mismatch on the normalized geometrical functionsGCD,H(xdep,D, φ; ε),
for ECCD (a) and for ECRH (b). The displacement is normalizedasxnorm =
xdep/max(w,wdep), the island size beingw = 3wdep. . Each picture shows
the reference case, calculated for a symmetric island atφ = 0 (blue solid
lines) and atφ = π (red solid lines), compared with the efficiency for an
asymmetric island withε = −1 (blue circles forφ = 0 and red squares for
φ = π). The black dash-dotted line refers to the case of continuous power
deposition on an asymmetric island. It is noticed forGCD, that the asymme-
try of this last curve, with respect to the rational surface (x0 = 0), is strongly
reduced when the power is modulated.

5.4 Discussion

The conclusion of the previous section, that the effect of all the asymmetries on the
efficiency of NTM suppression by either heating or localizedcurrent drive is negligible
as long as the power is deposited at the resonant surface, is in stark contrast with the
results presented in [Lazzaro and Nowak, 2009]. In the latter work it was suggested that
the efficiency of current drive might even change sign and become destabilizing for small
islands with a phase asymmetry (finiteδ). In order to understand this discrepancy one has
to consider the flux surface average of the cosine of the island phase, i.e.

〈cos(Φ(ξ, x̄))〉 =

∮

dξ cos(Φ(ξ,x̄))
∂Ω/∂x̄

∮

dξ 1
∂Ω/∂x̄

. (5.35)

As can be seen in section5.2, it provides the weight with which the current density or
temperature perturbation at a given location contributes to stabilization of the mode. It is
noted here that in the asymmetric cases〈cos(Φ(ξ, x̄))〉 depends also on sign(x̄): in the
outer region,Ω > Ωsep, the behavior of this function for̄x > 0, will generally differ from
the one calculated for̄x < 0. In the case of a symmetric island, i.e.γ = ε = δ = τ = 0,
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analytical expressions exist for〈cos ξ〉 [Biskamp, 1993; Giruzzi et al., 1999], which have
been used to benchmark our numerical results. In [Lazzaro and Nowak, 2009] the island
phase in this term is simply approximated asΦ(ξ, x̄) ≈ ξ. This is found to lead to a
strong discrepancy when the phase deformationδ is taken into account. In detail, the
approximation results in a too slow convergence of the〈cos(Φ(ξ, x̄))〉 to zero for large
Ω, as shown in figure5.7(a). When contributions from the external region in the inte-
grals defining the geometrical efficiency function for current drive FCD 5.25 become
important (i.e. forw∗ ≪ 1), this results in a further negative contribution to the ge-
ometrical efficiency, as shown in figure5.8. In this figure, the blue circles, represent
the normalized efficiency of current drive in the notation of[Lazzaro and Nowak, 2009]
ηhel = w∗2FCD(w∗, x0 = 0,CW; δ = 1.9) with Φ(ξ, x̄) ≈ ξ, which is found to be
negative for small values ofw∗. Moreover, in [Lazzaro and Nowak, 2009] an additional
approximation is made to the island geometry as representedby their equations (10) and
(11), which are obtained using a Taylor expansion ofcos(ξ − δx̄) aroundδx̄ = 0 up
to second order inδx̄. This approximation breaks down for largēx, while this region
contributes significantly to the term from non-inductive current drive in case ofw∗ ≪ 1.
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Figure 5.7: In figure (a) the trend of the flux averaged cosine〈cos(Φ(ξ, x̄))〉 is repre-
sented. The picture has been zoomed in to show how different approxima-
tions affect the asymptotic behavior at largerΩ. The black dash-dotted lines
represent the symmetric case. The results obtained in case of a finite phase
asymmetryδ = 1.9 (i.e. δ = 1.9/w in the notation of [Lazzaro and Nowak,
2009]) are indicated as follows: squares are obtained with the full phase fac-
tor Φ(ξ, x̄) = ξ − δx̄. Circles are calculated adding the approximation of
Φ(ξ, x̄) ≈ ξ. Diamonds are obtained as in [Lazzaro and Nowak, 2009], i.e.
using also approximate expressions for the island geometry. In (b) the effect
of finite up-down asymmetries is plotted. The results shown refer toε = 1.9
(blue circles) andγ = 1.9, (red squares). The black dashed curve again
shows the results for the symmetric case.
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Figure 5.8: Trend of ηhel = w∗2NCD, varying w∗ = w/wdep, in the notation of
[Lazzaro and Nowak, 2009]. It is reminded thatNCD = FCD(w∗;x0 =
0,CW). The black dash-dotted lines represent current drive efficiency for
the symmetric case. The results obtained in case of a finite phase asymmetry
δ = 1.9 (i.e. δ = 1.9/w in the notation of [Lazzaro and Nowak, 2009]) are
indicated as follows: squares are obtained using the expression5.25derived
in the present paper retaining the full phase factorΦ(ξ, x̄) = ξ− δx̄. Circles
are calculated adding the approximation ofΦ(ξ, x̄) ≈ ξ in equation (5.25).
Diamonds are obtained as in [Lazzaro and Nowak, 2009], i.e. using also ap-
proximate expressions for the island geometry.

As a result the asymptotic behaviour of〈cos(Φ(ξ, x̄))〉 for large Ω and the predicted
normalized efficiency for NTM suppression becomes even morenegative as illustrated
(green diamonds) in figure5.8, for the parameters used in Fig. 3 of [Lazzaro and Nowak,
2009]. The results presented in figure5.7(a)and5.8 even show that〈cos(Φ(ξ, x̄))〉 as
well asηhel andFCD are identical up to the numerical accuracy of the calculation for the
symmetric case and the case with a finite phase asymmetryδ even for this large value
of δ = 1.9. That 〈cos(Φ(ξ, x̄))〉 really must be independent of any phase shearing as
represented byδ or τ is understood as follows. Take the flux average of any function
A(x̄, ξ) over a sheared flux surface as resulting from a finiteδ and/orτ . Performing a
change of coordinates as{x̄, ξ} to {x̄, ξ′ = Φ(ξ, x)} then results in an integral represent-
ing the corresponding average over a symmetric flux surface of the same function shifted
by δx̄ + τ |x̄|. It follows that for any value ofδ or τ the average of〈cos(Φ(ξ, x̄))〉 over
a sheared flux surface is identical to the corresponding average〈cos(ξ)〉 in the symmet-
ric island case. Similarly, for any functionA with translational symmetry inξ the flux
surface average will be independent of the shearing of the flux surface. This holds, in
particular, for the flux surface average of the power densityor driven current in case of
continuous wave application. These arguments result in theconclusion that a finiteδ or
τ asymmetry cannot affect the geometrical efficiency for tearing mode stabilization of
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5 The role of asymmetries in the growth and suppression of NTMs

either heating or current drive in the unmodulated case. In case of power modulation in
phase with the island rotation a finite effect of the shearingis still to be expected in par-
ticular for smallw/wdep as the power is deposited at different island phases for different
values ofx̄.

The arguments given above do not apply to the cases with an up-down asymmetry. In
these cases, illustrated in figure5.7(b)(see also [Lazzaro and Nowak, 2009]), the effect
on 〈cos(Φ(ξ, x̄))〉 nevertheless is very small: in case of finiteε the whole curve is just
seen to be slightly shifted to the left as the flux values at theO- and X-points are slightly
decreased from their values of−1 and+1 in the symmetric case. While in case of a finite
γ the curves virtually overlap in the interior region. The major effect then comes from
the changes in the flux surface averaged power density and driven current. As long as
the power is deposited at a radius close to the O-point position, the flux surface averaged
driven current density is found to be peaked inside the island resulting in an effective sta-
bilization. When the X- and O-point radii diverge, as in the case of a finiteε, a mismatch
between the power deposition location and the O-point can result in more power being
localized in the X-point region. In such cases a larger destabilizing (i.e. negative value
of FCD) effect may be found in case of a radial mismatch towards the X-point as can be
seen also in the results as presented in figures5.4(a)and5.6(a). In fact, in the case of
an asymmetric island size the normalized flux surface averaged current density and the
consequent geometrical efficiency can be seen as an average of the same over two cases
with different island sizes as discussed in [Urso et al., 2010]. In that paper an asymmetric
deformation in amplitude is applied by dividing the island in two parts, where in one part
for r > rs the width is changed toγw with 0 < γ < 1, while for the other part,r < rs,
the island widthw remains unchanged. As a consequence the efficiency for the resulting
asymmetric island,ηECCD,ASYM = w2

wdep
FCD in the notation of [Urso et al., 2010], can

be equated to the average of the efficiency of two symmetric islands,

ηECCD,ASYM(w) =
1

2
(ηECCD,SYM(w) + ηECCD,SYM(γw)), (5.36)

their width beingw andγw, respectively. However in [Urso et al., 2010] this averaged
efficiency is then compared to the efficiency for a symmetric island at double the size
of the larger of the two island parts, which leads to the unsurprising conclusion that
the latter is larger. However, in the context of our present work a consistent comparison
with the symmetric case should be performed with respect to the averaged island width
wasym = 1

2 (w + γw) < w, resulting in a smaller value forηECCD,SYM(wasym). This
results in just a small difference between the symmetric andasymmetric island cases
consistent with the conclusions of the present paper.

5.5 Conclusions

This paper addressed the effects of a number of asymmetries,affecting the geometry of
a magnetic island and hence the temporal evolution of the mode. In detail, a finite third
order approximation of the unperturbed flux function and a quasi-linear correction to the
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constant-ψ approximation have been identified to break the up-down symmetry of the
mode while a shear flow and a temperature gradient across the island have been found
to produce a phase shift, proportional to the radial excursion from the resonant surface
[Ren et al., 1999; Smolyakov et al., 2001; van der Plas and de Blank, 2007]. The model
focused in particular on the consequences for the control and the suppression of an NTM
by means of ECCD and ECRH. As a consequence the Rutherford equation has been
reformulated consistently for the generalized topology ofthe magnetic island, accounting
for the contributions of the bootstrap current, of the localcurrent drive and of the resonant
heating. The outcome of this study shows that the effect of asymmetries is negligible for
the coefficientsg1 andcneo appearing in the generalized Rutherford equation5.18in front
of the tearing mode growth rate and the neoclassical drive term, respectively. The effect
is small for both the current drive and the heating efficiency, FCD,H when the EC power
is deposited at the rational surface. Deformations in amplitude do affect the normalized
geometrical functions,GCD,H in a trivial manner: the maximum for the efficiency moves
with the O-point along the radial coordinate, while the width of these functions reflects
the asymmetry in the island width.

These conclusions appear to be partly in contrast to opposite conclusions reached in
the previous literature [Lazzaro and Nowak, 2009; Urso et al., 2010]: a significant reduc-
tion of the efficiency for NTM stabilization by ECCD in case ofan up-down asymmetric
island size was claimed in [Urso et al., 2010], while in [Lazzaro and Nowak, 2009] this
efficiency was even shown to become negative in case of a finitephase shiftδ and an
island much smaller than the EC deposition width. It is shownthat the former claim
is based on an improper comparison between the asymmetric and symmetric cases as
made in [Urso et al., 2010], while the latter conclusion is shown to be the result of the
approximations made in [Lazzaro and Nowak, 2009].
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6 Requirements on localized current drive
for the suppression of neoclassical tear-
ing modes

The work presented in this chapter refers to the paper by Bertelli, De Lazzari and West-
erhof, submitted toNucl. Fusion.

Abstract

A heuristic criterion for the full suppression of an NTM was formulated
asηNTM ≡ jCD,max/jBS ≥ 1.2 [Zohm et al.,J. Phys. Conf. Ser., 25 234
(2005)], wherejCD,max is the maximum in the driven current density profile
applied to stabilize the mode andjBS is the local bootstrap current density.
In this work we subject this criterion to a systematic theoretical analysis
on the basis of the generalized Rutherford equation. Takinginto account
only the effect ofjCD inside the island, a new criterion for full suppression
by a minimum applied total current is obtained in the form of amaximum
allowed value for the width of the driven current,wdep, combined with a
required minimum for the total driven current in the form ofwdepηNTM,
where both limits depend on the marginal, and saturated island sizes. These
requirements can be relaxed when additional effects are taken into account,
such as a change in the stability parameter∆′ from the current driven outside
the island, power modulation, the accompanying heating inside the island,
or when the current drive is applied preemptively. When applied to ITER
scenario 2, the requirement for full suppression either the3/2 or 2/1 NTM
becomeswdep . 5 cm andwdepηNTM & 5 cm in agreement with [Sauteret
al., Plasma Phys. Control. Fusion, 52 025002 (2010)]. Optimization of the
ITER ECRH Upper Port Launcher design towards minimum required power
for full NTM suppression requires an increase in the toroidal injection angle
of the lower steering mirror of several degrees compared to its present design
value, while for the upper steering mirror the present design value is close
to the optimum.
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6.1 Introduction

The suppression of Neoclassical Tearing Modes (NTMs) is likely to be an essential re-
quirement for the achievement of the main goals of ITER [Shimada et al., 2007]. NTMs
are driven unstable by a dip in the current density profile inside the magnetic island
which results from the annihilation of the pressure gradient driven bootstrap current as
a consequence of the pressure flattening inside the magneticisland [Sauter et al., 1997].
The main strategy for their suppression then is to fill this dip in the current density pro-
file by another current generated either inductively through heating inside the island or
non-inductively through direct current drive [Hegna and Callen, 1997; La Haye, 2006a].
Because of their good localization electron cyclotron resonance heating (ECRH) and cur-
rent drive (ECCD) are the preferred tools to achieve NTM stabilization [Prater, 2004].
In particular, ECCD has been applied successfully in several tokamaks to suppress both
m = 3, n = 2 andm = 2, n = 1 NTMs wherem andn are the poloidal and toroidal
mode number, respectively [Gantenbein et al., 2000; Isayama et al., 2000; La Haye et al.,
2002]. Also on ITER, the suppression of NTMs is expected to come from ECCD. In fact,
it is one of the main tasks of the ITER ECRH Upper Port Launcher, whose design has
been optimized specifically for this task [Henderson et al., 2008; Ramponi et al., 2008].

What the precise requirements on such a system should be in order to achieve full
NTM suppression remains an open question. In the ITER ECRH design studies, the pa-
rameterηNTM defined as the ratio of the maximum in the driven current density profile
over the bootstrap current density at the mode rational surface

ηNTM ≡ JCD,max

JBS
, (6.1)

was introduced. Assuming thatηNTM ≥ 1.2 is a sufficient requirement for NTM sup-
pression, a design requirement was imposed that the ITER ECRH system should be able
to achieve this number over a range of discharge scenarios for both them = 3, n = 2 and
m = 2, n = 1 modes [Zohm et al., 2005]. Different experiments, however, report widely
different values ofηNTM required for the full suppression of NTMs [Petty et al., 2004;
Isayama et al., 2009]. Theoretical considerations [Sauter et al., 2010], based on the gen-
eralized Rutherford equation (GRE) [Rutherford, 1973; La Haye, 2006a], show that the
required value ofηNTM depends amongst others on the marginal island size and the dom-
inant physical effect limiting the neoclassical growth of the tearing mode for island sizes
below this marginal size (finite parallel transport or ion polarization current) as well as on
the EC driven current density profile width. Fitting of modelpredictions from the GRE
to the experimental data from different tokamaks, has been used to establish the value
of a number of constants in the GRE and from there to extrapolate to ITER conditions
[La Haye et al., 2006b; Urso et al., 2010]. This method, however, does not discriminate
between experimental uncertainties in the various parameters that enter the GRE, like
the bootstrap current density, the maximum EC driven current density and the width of
the EC driven current density profile, and the theoretical uncertainties in the coefficients
appearing in the model itself. Moreover, the effect of the inescapable heating that accom-
panies the EC current drive is generally neglected in these analyses. Whereas the effect of
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heating in ITER is expected to be small compared to the effectof non-inductive current
drive, this is not the case in present experiments [Kislov et al., 1997; Westerhof et al.,
2007; De Lazzari et al., 2009]. Since the effects of heating and non-inductive current
drive scale completely different with respect to the size ofthe magnetic island, the ef-
fects of the two should be properly separated when scaling current experiments to ITER
[Hegna and Callen, 1997; De Lazzari et al., 2009].

This paper aims to provide a systematic theoretical formulation for the requirements
on the heating and current drive on the basis of the generalized Rutherford equation.
Section 2 presents and discusses the generalized Rutherford equation as used in this
paper. An equation for the requirement onηNTM to achieve full suppression of an NTM
is presented. In Section 3 the resulting numerical values for ηNTM are presented covering
the relevant two dimensional parameter space defined by the saturated NTM island size
and the width of the EC power deposition and driven current density profile. The possible
location of present day experiments in this space and the resulting conclusion for the
latter are discussed. Also the power requirements for the immediate, full suppression
of a seed island (preemptive ECCD) are presented. In Section4, these results are used
to formulate practical requirements for the ITER ECRH system to achieve full NTM
suppression. An optimization of the ITER ECRH Upper Port Launcher is then presented,
starting from its present design. It is shown that a significant reduction in the power
requirement for full NTM suppression can be obtained by a moderate change in the
toroidal injection angle. Finally, the main conclusions ofthe work are summarized in
Section 5.

6.2 Theoretical framework

The generalized Rutherford equation

The non-linear evolution of neoclassical tearing modes is commonly described by the
generalized Rutherford equation (GRE), which gives the time rate of change of the full
width w of the magnetic island as the sum of a series of terms each originating from a
specific perturbation of the parallel current density with the proper helicity [Rutherford,
1973; La Haye, 2006a]. Including only the most relevant terms for the present work, the
GRE is written as

0.82
τr
rs

dw

dt
= rs∆

′
0 + rsδ∆

′
0 + rs∆

′
BS + rs∆

′
CD + rs∆

′
H (6.2)

whereτr ≡ µ0r
2
s /η is the local resistive time scale for the resistivityη at the rational sur-

facers of the mode (µ0 is the permeability of free space). The terms on the right hand side
provide the effect of the linear stability index, the variation of ∆′

0 due to the perturbation
of the equilibrium current, the perturbation of the bootstrap current, the localized non-
inductive current drive, and the localized heating, respectively. It is important to realize
that the last three terms all derive from the generic form of the contribution in the GRE
arising from a non-inductive helical currentδJ in the flux surface averaged, generalized
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Ohm’s law for the helical electric field perturbation:(1/R)〈∂ψ1/∂t〉 = η0(J1,‖ − δJ),
whereR is the major radius,ψ1 the perturbation of the helical flux function creating the
magnetic island,η0 the equilibrium plasma resistivity at the rational surface, andJ1,‖
the associated total perturbation of the parallel current density. The flux surface average
operator〈.〉, as indicated by the brackets, is defined as

〈A〉 ≡
∮

A(dl/|∇ψ|)
∮

(dl/|∇ψ|) ,

where the integral is along the closed line segment with constant helical fluxψ. Following
Ref. [De Lazzari et al., 2009] this generic contribution is written as

rs∆
′
δJ = −16µ0Lqrs

Bpπw

∫ +∞

−∞
dx̄

∮

dξ δJ cos ξ

= −16µ0Lqrs
Bpπw

∫ +∞

−1

dΩ δJ

∮

dξ
cos ξ

dΩ/dx̄
(6.3)

whereLq ≡ q/(dq/dr) is the shear length,q = m/n the safety factor calculated at
the rational surface,Bp the poloidal magnetic field,̄x ≡ (r − rs)/w the normalized
radial displacement from the rational surface,ξ ≡ mθ − nφ the helical angle, andΩ ≡
8x̄2−cos ξ the normalized perturbed helical flux function describing the geometry of the
island.

The neoclassical instability drive comes from the cancellation of the bootstrap current
inside the magnetic island, that is to sayδJBS = −JBS inside the magnetic island, and
thus equals

rs∆
′
BS = +

16µ0Lqrs
Bpπw

JBS

∫ +1

−1

dΩ

∮

dξ
cos ξ

dΩ/dx̄

= +
16µ0Lqrs
Bpπ

4

3w
f(w,wmarg)JBS (6.4)

where the factor4/3 derives from the analytical evaluation of the double integral and
the factorf(w,wmarg) has been introduced to describe the limitation of the neoclassical
drive for small island sizes below a marginal island sizewmarg. The marginal island size
is defined here as the island size at which the NTM growth rate reaches its maximum
value (in the absence of a possible non-inductive current applied towards its stabiliza-
tion or the associated heating). As in [Sauter et al., 2010] two alternate choices for this
limitation f(w,wmarg) will be considered. The first choice,

ftra(w,wmarg) =
w2

w2 + w2
marg

(6.5)

derives from the incomplete flattening of the pressure gradient inside the magnetic island
as consequence of a finite parallel transport time scale [Fitzpatrick, 1995]. In this case
the marginal island size is found to scale aswmarg ∝ (χ⊥/χ‖)

1/4, whereχ⊥ andχ‖ are
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the perpendicular and parallel heat diffusivity, respectively. In the following this choice
is referred to as ‘transport’ model (label ‘tra’). In the second choice, the limitation comes
from the stabilizing ion polarization effect [Mikhailovskii, 2003], in which case the factor
f is written as

fpol(w,wmarg) = 1 −
w2

marg

3w2
. (6.6)

In this case the marginal island size is expected to scale with the ion banana width. In
the following this choice is referred to as ‘polarization’ model (label ‘pol’). In the experi-
ments both effects may act simultaneously resulting in a behaviour intermediary between
ftra andfpol. However the actual values forwmarg are poorly known. Typical values for
the marginal island size, consistent with experimental observation, are in the range of 1
to 6 cm [Sauter et al., 2010].

For the heating and current drive terms, the expressions derived in [De Lazzari et al.,
2009] will be used. As is commonly done, a fast rotation of the island is assumed and
the power deposition and current drive profiles are averagedover a complete rotation
period. The stabilizing contribution from a non-inductively driven currentδJ = 〈JCD〉 =
2πRηCD 〈pEC〉, defined in terms of the global current drive efficiencyηCD ≡ ICD/Ptot,
i.e. the ratio of the driven current over the total absorbed power, and the flux surface
averaged power density〈pEC〉, is written as

rs∆
′
CD = −16µ0Lqrs

Bpπw

∫ ∞

−1

dΩ

(

2πR 〈pEC〉 ηCD

∮

dξ
cos ξ

dΩ/dx̄

)

= −16µ0Lq

Bpπ

ηCDPtot

w2
dep

FCD(w/wdep, x̄dep,Dmod, φmod) (6.7)

= −16µ0Lqrs
Bpπ

π3/2JCD,max

wdep
FCD(w/wdep, x̄dep,Dmod, φmod)

whereFCD is a dimensionless geometrical function depending on the ratio of the island
widthw over the full, Gaussian width of the power deposition profilewdep, as well as on
the location of the power deposition̄xdep = (rdep−rs)/w, and the duty cycleDmod and
phaseφmod of a possible power modulation. The final expression is obtained, substituting
the total driven current as

ICD = π3/2rswdepJCD,max, (6.8)

assuming an identical Gaussian profile for the power deposition and driven current den-
sity ∝ exp[−4(x̄ − x̄dep)2/w2

dep]. In the following, only a perfectly aligned power de-
position (̄xdep = 0) and either a continuous power (Dmod = 1) or a modulated power
(Dmod 6= 1) ideally centred around the island O-point will be considered, i.e.φmod = 0.
Following the work of De Lazzari et al. [De Lazzari et al., 2009], one can now write an
expression for the geometrical functionFCD, in the form

FCD(w/wdep, x̄dep = 0,Dmod, φmod = 0) = NCD(w/wdep)MCD(w/wdep,Dmod),
(6.9)
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where the functionNCD is well approximated by the rational function

NCD =
0.25 + 0.24(w/wdep)

1 + 0.64(w/wdep)3 + 0.43(w/wdep)2 + 1.5(w/wdep)
(6.10)

and a good approximation for the factorMCD, representing the effect of power modula-
tion, is

MCD = (wdep/w)3[m1(w/wdep)2 +m2] +m3; (6.11)

with

m1 = 2.25D4
mod − 3.44D3

mod − 0.99D2
mod + 2.2Dmod − 0.02, (6.12)

m2 = 0.01
(

0.33D5
mod − 1.02D4

mod + 0.87D3
mod − 0.28D2

mod + 0.1Dmod

)

, (6.13)

m3 = 1.34D4
mod − 3.54D3

mod + 1.1D2
mod + 2.09Dmod + 0.01. (6.14)

Coefficientsm1 andm2 have been adjusted with respect to those in [De Lazzari et al.,
2009], such thatMCD(Dmod = 1) = 1. These modifications do not affect the fitting
results. The corresponding arguments ofFCD will be suppressed in the remainder of the
paper.

In the case of localized heating, one may writeδJ = −(η1/η0)J0,‖, whereη1
is the perturbation to the resistivity andJ0,‖ the parallel equilibrium current density.
Its stabilizing contribution is written similar to the current drive contribution (6.7) as
[De Lazzari et al., 2009]

rs∆
′
H = −16µ0Lq

Bpπ

ηHPtot

w2
dep

FH(w/wdep, x̄dep,Dmod, φmod) (6.15)

whereηH represents a current generation efficiency through heatingwhich is defined as
[De Lazzari et al., 2009]

ηH ≡
3w2

dep

8πRneχ⊥kB

Js

Ts
(6.16)

wherene is the electron density, andJs andTs are the inductive part of the current density
and the electron temperature at the rational surface, respectively. Analogously toFCD,
the geometrical functionFH is well approximated by a rational function,

FH(w/wdep, x̄dep = 0,Dmod = 1, φmod = 0) =
0.077(w/wdep)2 + 0.088(w/wdep)

(w/wdep)2 + 0.8(w/wdep) + 2.17
.

(6.17)

For the heating term, power modulation will not be considered. The corresponding argu-
ments ofFH will be suppressed in the remainder of the paper.

Finally, one needs to know the linear stability index∆′
0. In principle this can be

calculated from a detailed knowledge of the plasma equilibrium, but the calculation is
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6 Requirements on current drive for NTM suppression

so sensitive to the details of, in particular, the current density profile that a reasonable
value cannot be obtained in this way from experimentally available data. However, by
observing that for a saturated NTM the neoclassical drive and the linear stability index
must cancel, an indirect expression in terms of the bootstrap term can be obtained:

∆′
0 = −∆′

BS(w = wsat), (6.18)

wherewsat is the saturated island size. It is noted, that without localheating or current
drive the main characteristics of the Rutherford equation are determined by the two pa-
rameterswmarg andwsat [Sauter et al., 2010]: the maximum growth rate is reached at
w = wmarg and the growth stops oncew = wsat is reached.

This is not yet the whole story: the linear stability index isalso affected by the non-
inductively driven current. On a local resistive time scalethe equilibrium current density
profile adapts to the presence of this non-inductively driven current changing the linear
stability index. This effect is represented by the termδ∆′

0 in the GRE equation (6.2). In
the absence of a magnetic island the effect of a well localized non-inductively driven cur-
rent has been evaluated using a perturbation analysis resulting in the expression [Westerhof,
1990]

rsδ∆
′
0 = rs

µ0Lq

Bp
P
∫ +∞

−∞
dx

1

x

∂δJCD

∂x
, (6.19)

whereP indicates that the possible singularity in the integrand has to be treated by eval-
uating the principal value integral. However, in the presence of a finite size island∆′

0 is
to be evaluated by the jump in the derivative of the perturbedhelical flux function over
the entire island. While it will be assumed that this does not affect ∆′

0, this cannot be
maintained for its perturbation coming from a very localized driven current. Excluding
the current driven within the intervalx = [−w/2 : +w/2] the equation forδ∆′

0 becomes

rsδ∆
′
0 = rs

µ0Lq

Bp

(

∫ −w/2

−∞
+

∫ +∞

+w/2

)

dx
1

x

∂δJCD

∂x
. (6.20)

Using the Gaussian profile forJCD as defined above, and assuming again perfect align-
ment of the driven current on the rational surface, i.e.x̄dep = 0, one obtains

rsδ∆
′
0 = −4µ0Lq

Bpπ

ηCDPtotDmod

w2
dep

erfc

(

w

wdep

)

= −4µ0Lqrs
Bpπ

π3/2JCD,maxDmod

wdep
erfc

(

w

wdep

)

(6.21)

whereDmod has been inserted to account for the reduction of the total driven current due
to power modulation and where

erfc(x) ≡ 2√
π

∫ ∞

x

e−t
2

dt = 1 − erf(x) (6.22)
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is the complementary error function. Note, that for perfectalignment (̄xdep = 0) and no
modulation (Dmod = 1) the expressions for∆′

CD equation (6.7) andδ∆′
0 equation (6.21)

reduce to the same value in the limit ofw/wdep → 0. Thus the total stabilizing effect
from a relatively broad driven current density profile can besubstantially bigger then
estimated from considering only the effect of driven current inside the island. However,
the time scales on which these terms take effect is essentially different: while ∆′

CD is
established on a fast collisional time scale as soon as the power is applied,δ∆′

0 is only
established on a much slower current diffusion time scale.

General formulation of the requirements for mode stabilization

A typical curve of the growth ratedw/dt as a function of the normalized island size
w/wmarg is sketched in figure6.1for a case withwsat/wmarg = 10.0. The two full lines
represent the growth rate for the two cases limiting the bootstrap driven term at small
islands: the incomplete flattening inside the island due to afinite parallel transport time
scale (labelled ’tra’), or the ion polarization effect (labelled ’pol’). When some heating
and or current drive power is introduced withwdep/wmarg = 1.5, the curve is seen to
shift downward (dashed lines in figure6.1). A new, smaller stable island size is found
at whichdw/dt vanishes. When the power is increased further, the whole curve can be
shifted belowdw/dt = 0. At the minimum required power for full stabilization the max-
imum of the curve of the growth rate just touches the linedw/dt = 0. The calculation of
this minimum required power or driven current density is discussed below.

The required power, or driven current density to keep the mode stable at a given island
size is obtained from

rs∆
′
0 + rsδ∆

′
0(w) + rs∆

′
BS(w) + rs∆

′
CD(w) + rs∆

′
H(w) = 0. (6.23)

Substituting the individual terms from the equations givenabove, and removing common
fore factors, one obtains an expression for the ratio of the the maximum in the driven
current densityJCD,max over the bootstrap current densityJBS required to keep the mode
stable at this size. Denoting this ratio asηNTM(w) one finds

ηNTM(w) =
4wdep

3π3/2







1
wf(w,wmarg) − 1

wsat
f(wsat, wmarg)

FCD +
w2

dep

w2
marg

η̄HFH + Dmod

4 erfc
(

w
wdep

)






, (6.24)

where the functionf can be interpreted either asftra according to equation (6.5) or as
fpol according to equation (6.6). The three terms in the denominator originate from the
stabilizing effects of current drive inside the island, heating inside the island, and the
changes to the mode stability index from the current driven outside the island, respec-
tively. Note, that a normalized ratio of the inductive over the non-inductive current drive
has been introduced as

η̄H ≡
w2

marg

w2
dep

ηH
ηCD

(6.25)
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Figure 6.1: The evolution of the island width,dw/dt (in arbitrary units), as a function
of the island width normalized to the marginal island size,w/wmarg. The
parameters are given in the text. The solid curves indicate the evolution of the
island width without heating and/or current drive whereas the dash (dotted)
curves indicate the case introducing heating and/or current drive power for a
partial (full) suppression.

which brings out explicitly the correct dependence onwdep of the heating contribution.
The requirement for full suppression of the NTM now immediately follows as the maxi-
mum ofηNTM(w) over all possible values ofw: i.e.

ηNTM = Max







4wdep

3π3/2







1
wf(w,wmarg) − 1

wsat
f(wsat, wmarg)

FCD +
w2

dep

w2
marg

η̄HFH + Dmod

4 erfc
(

w
wdep

)






; 0 ≤ w ≤ wsat






.

(6.26)

Note, that given a normalized ratio of inductive over non-inductive current drivēηH this
final result depends on just two dimensionless parameters, namely, the saturated island
width and the power deposition width, both normalized by themarginal island size: i.e.
w̄sat ≡ wsat/wmarg andw̄dep ≡ wdep/wmarg.
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Figure 6.2: Contours of (a)ηtra
NTM and (b)ηpol

NTM keeping only the effect of current drive
inside the island in case of CW current drive, i.e. keeping only FCD with
Dmod = 1 in the denominator of equation (6.26) determiningηNTM. All
contours are drawn equidistantly with a spacing of0.1 up to a value of 2,
with the thick line accentuating the level of 1.

6.3 Analysis of theηNTM criterion

In this section, we show and analyze numerical results of theNTM suppression figure of
merit, ηNTM, given by equation (6.26). As shown in the previous section,ηNTM finally
only depends on two dimensionless parameters:w̄sat andw̄dep. A complete picture can
thus be obtained by calculatingηNTM over a region of parameter space covering most
current and future experiments and plotting the results in terms of contours of constant
ηNTM in the space spanned bȳwsat and w̄dep. The results presented below cover the
regionw̄sat = [1 : 15] andw̄dep = [0 : 10]. In the existing literatureηNTM has mostly
been analysed keeping only the stabilizing effect of the non-inductively driven current
inside the magnetic island, i.e. keeping onlyFCD in the denominator of equation (6.26)
determiningηNTM [Zohm et al., 2005; Sauter et al., 2010]. In line with this common
practice, figure6.2shows the 2D contours of constantηNTM over the space studied taking
into account only the current drive inside the island for continuous power application
(CW).

The following conclusions can be drawn from figure6.2(a). For large saturated island
sizes (̄wsat > 7) the optimum value forηtra

NTM is close to unity and is found for̄wdep ≈ 2.
On the other hand, for moderate saturated island sizes (w̄sat < 7) the optimum value for
ηtra
NTM is smaller than unity (decreasing with decreasingw̄sat) and is found forw̄dep ≈

1. The same conclusions can be drawn forηpol
NTM (figure 6.2(b)), except that in both

cases mentioned above an about25% narrower power deposition and a slightly higher
value ofηpol

NTM is required. In all casesηNTM increases dramatically when̄wdep is either
increased or decreased. This strong dependence ofηNTM indicates that it cannot be used
as the sole criterion to guide and optimize the design of an ECRH system for NTM
control. An additional criterion must be imposed onw̄dep. In fact, for a fixed toroidal
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Figure 6.3: Contours of (a)w̄depη
tra
NTM and (b)w̄depη

pol
NTM keeping only the effect of

current drive inside the island in case of CW current drive. The thick contours
are drawn equidistantly with a spacing of 1 up to a value of 10 (0.25 for the
thin lines).

injection angle of the ECRH, the product ofw̄dep andηNTM is a constant being related
to the ratio of the total driven current over the total bootstrap current annihilated by
an island of marginal sizewmarg. When formulating the requirement in terms of this
product,w̄depηNTM, figure6.3 shows that, at a given̄wsat, the required value remains
almost constant when the deposition widthw̄dep is decreased below the value at which
the minimum inηNTM was found under the same conditions in figure6.2. In particular,
for large saturated island sizes (w̄sat > 7) an almost optimum value for̄wdepη

tra
NTM

is close to two and is found for̄wdep ≃ 2 while for moderate saturated island sizes
(w̄sat < 7) the optimum value for̄wdepη

tra
NTM is close to unity and is found for̄wdep ≃ 1.

A similar behavior is found for the case considering the limitation of NTM growth by
the ion polarization effect, except that again a slightly narrower deposition is required. In
the remainder of this section, the results will be shown in terms ofw̄depηNTM rather than
simplyηNTM.

So far, only the stabilizing effect of a driven current inside the island obtained by
CW power application has been considered. When one also includes the effect from the
driven current outside the island on the tearing mode stability index, i.e. theerfc term
in the denominator of equation (6.26) determiningηNTM, the requirement for full NTM
stabilization changes considerably (figure6.4(a)): while for narrow deposition widths
w̄dep . 1 there is hardly any change, for a broader depositionw̄dep & 2 the required
value ofw̄depη

tra
NTM is significantly reduced. An even further reduction in the required

value of w̄depη
tra
NTM in case of broad deposition profiles is obtained by power modu-

lation. This is shown in figure6.4(b) for a case with a 50% duty cycle of modulated
ECCD, i.e.Dmod = 0.5. As pointed out already in [Perkins et al., 1997; Giruzzi et al.,
1999; Yu et al., 2004; Maraschek et al., 2007], an advantage from power modulation is
only obtained in case of broad deposition profiles. When the NTM growth is supposed to
be limited by the polarization effect rather than by the finite parallel transport, the same
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Figure 6.4: Contours ofw̄depη
tra
NTM including both the effect of current drive inside the

island as well as the effect of the current outside the islandon the tearing
stability index in case of (a) CW current drive and (b) modulated current
drive with a duty cycle of 50%.

qualitative behavior is observed in response to either theδ∆′
0 term or to power modula-

tion. Quantitatively, the required values ofw̄depη
pol
NTM are about 20% higher. The most

important message to be taken from these results, is that fora given value ofw̄depηNTM

the requirement on the maximum deposition width can be considerably relaxed when the
favourable effects from either the equilibrium profile modifications or a power modula-
tion are accounted for. In the latter case even by almost a factor of 2.

Finally, we analyze the contribution of localized heating inside the island on the re-
quirement for NTM suppression (6.26). Although in the current experiments the heating
contribution is not dominant and in theoretical works oftenis neglected, it appears rel-
evant to analyze the behavior of̄wdepηNTM for different relative values of the heating
contribution. In figure6.5 2D contours ofw̄depη

tra
NTM are again shown as a function of

w̄sat and w̄dep for the case of a normalized current generation efficiency (6.25) of (a)
η̄H = 0.3 and (b)η̄H = 1.0. The effect of the heating comes in addition to the effect of
the driven current in both∆′

CD as well asδ∆′
0. Comparing with figure6.4(a) it is seen

that the localized heating mostly affects the requirementsat smallw̄dep, reducing the re-
quired value ofw̄depη

tra
NTM considerably. It is important to note that the values ofη̄H are

just examples in order to illustrate the effect of the heating contribution onw̄depηNTM.
As mentioned in the introduction, widely different values for the NTM stabilization

requirement in terms ofηNTM have been obtained on the basis of the analysis of available
experimental results: the analyses of both JT-60U and AUG experiments with saturated
island sizes in the range of̄wsat = 2 – 3 have yielded a requirement ofηNTM = 0.3 –
0.6 [Isayama et al., 2009; Urso, 2009], while a requirement ofηNTM = 2 – 3 is obtained
from the analysis of DIII-D experiments with a saturated island size ofw̄sat = 4 – 5
[Petty et al., 2004]. In both data sets the deposition width is typically between 1 and 2
timeswmarg. Thus the parameter range of the JT-60U and AUG experiments is covered
by the lower left hand corners of the figures presented above.In particular, figure6.2
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Figure 6.5: Contours ofw̄depη
tra
NTM taking into account the effect of localized heating in-

side the magnetic island. A normalized current generation efficiency is used
with the value of (a)̄ηH = 0.3 and (b)η̄H = 1.0. The effect of the heating
comes in addition to the effect of the driven current in both∆′

CD as well as
δ∆′

0.

where predictedηNTM values are consistent with the experimental values quoted.How-
ever, the parameter range of the DIII-D experiments lies only slightly to the right of this
corner at values of̄wdep whereηNTM is still close to 1, considerably smaller than the
required value reported in [Petty et al., 2004]. More dedicated experiments will be re-
quired to extend the data base from present experiments in order to verify the detailed
predictions made above. In particular, the data base needs to be extended to larger values
of w̄sat in order to come closer to the relevant parameter range for future experiments
like ITER.

Preemptive ECCD

Under preemptive ECCD is understood the application of localized ECCD at a rational
surface well before an NTM is actually excited [Pletzer and Perkins, 1999; Nagasaki et al.,
2003; La Haye et al., 2005; La Haye, 2006a]. Preemptive ECCD can act in two ways.
First, by the effect ofδ∆′

0 the classical stability index is made more negative, thus in-
creasing the linear stability of the mode and making the plasma more resilient against the
creation of a seed island. Second, when a seed island is created nevertheless, the localized
ECCD inside the island will immediately take effect and can suppress the seed island be-
fore it has had the time to grow. Since the physics processes responsible for the seeding
are still poorly quantifiable, it is difficult to assess the requirements for the prevention of
the seeding itself. However, the power requirements for theimmediate, full suppression
of the seed island are easily formulated in the context of thepresent theoretical analysis:
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Figure 6.6: Contours of (a)ηtra
pre,7 and (b)w̄depη

tra
pre,7. For the case with a saturated island

size ofwsat = 7wmarg, the requirement for full NTM suppression by pre-
emptive ECCD is given as a function of the seed island size andthe ECCD
power deposition width. The effect of localized heating is neglected, i.e.
η̄H = 0.0. Contours are drawn with an equidistant spacing of 0.1 (a) and
0.25 (b).

in analogy to the requirement for full suppression of a saturated NTM (6.26) one obtains

ηpre,w̄sat
= Max







4wdep

3π3/2







1
wf(w,wmarg) − 1

wsat
f(wsat, wmarg)

FCD +
w2

dep

w2
marg

η̄HFH + 1
4erfc

(

w
wdep

)






; 0 ≤ w ≤ wseed






,

(6.27)

whereηpre,w̄sat
, indicates the minimum required ratio of the driven currentdensity over

the bootstrap current density in case the island would grow to the given saturated island
size w̄sat without ECCD. Note, that preemptive ECCD would typically beperformed
with CW power application such thatDmod = 1 has been assumed in (6.27). As long
aswseed is smaller than the island at whichηNTM(w) (6.24) reaches its maximum, this
would considerably relax the requirement for the full suppression of NTMs.

In figure 6.6, ηtra
pre,w̄sat

is given for a saturated island size ofwsat = 7wmarg and
considering the transport model for the limitation of the neoclassical NTM drive at
small island sizes. This figure is to be compared to a cross section of figure6.4(a) at
wsat = 7wmarg, which shows a requirement for full suppression of a saturated NTM
asw̄dep . 1 andw̄depη

tra
NTM & 1. From this comparison, the following conclusion can

be drawn: as long as the seed stays smaller thanwmarg, the requirement for preemp-
tive ECCD allows either a reduction of the driven current (proportional tow̄depηpre,w̄sat

)
by about 50%, or to relax the requirement onwdep by about a factor of 2. It is noted
that, where the curves become horizontal in the figure, the seed island size exceeds the
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island size at whichηtra
NTM(w) (6.24) reaches its maximum. Consequently, in that pa-

rameter regime the advantage of preemptive ECCD disappears. This is the case for large
deposition widths or seed island sizes larger than about double the marginal island size.
When the saturated island size is increased (decreasing the effect of the second term in
the numerator of (6.27)), the requirement on preemptive ECCD increases and the relative
advantage of ECCD is found to decrease slightly. Similarly,for small saturated island
sizes the advantage is expected to disappear when seed islands up towmarg will need to
be suppressed.

A smaller required value of̄wdepηpre,w̄sat
of course translates into a smaller power

requirement for the ECCD. It is indeed also observed experimentally that the power re-
quirement for full suppression of the NTM by preemptive ECCDis considerably smaller
than the power requirement for the full suppression of a saturated NTM [Nagasaki et al.,
2003, 2005]. It has even been noted that in case of incomplete suppression of NTMs the
mode is suppressed to a smaller island size by preemptive ECCD than by late ECCD
applied after the mode has reached its saturated island size[Nagasaki et al., 2005]. In the
context of our current analysis a possible explanation is suggested by the additional sta-
bilizing effect ofδ∆′

0 which is present from the outset in the case of preemptive ECCD
as long as it is has been applied sufficiently in advance of theisland seeding, but which
initially is absent in the case of late ECCD. The measurements then could even indicate
a possible hysteresis in this term.

6.4 Application to ITER

The control of NTMs and sawteeth in ITER is achieved by means of the ECRH upper port
launcher (UPL) which can deliver up to20MW continuous wave (CW) at170 GHz. The
system consists of four antennas (or launchers) each containing eight waveguides and
two steering mechanisms, a lower steering mirror (LSM) and an upper steering mirror
(USM). The maximum total injected power from either the set of four LSMs or USMs is
13.3 MW. A detailed description of the launcher subsystems can befound in the work by
Henderson et al. [Henderson et al., 2008]. The configuration allows to access the relevant
flux surfaces associated with NTM destabilization. Mirrorsare steered along the poloidal
direction, while the toroidal injection angleβ is kept constant. The toroidal injection
angleβ is defined as the angle between the initial wave vector and itsprojection in the
poloidal plane [Prater et al., 2008]. In case of a typical ITER equilibrium, the steering
range of the LSM covers the region from0.55 . ρtor . 0.85 while the USM covers
the region from0.3 . ρtor . 0.8, ρtor being the square root of the normalized toroidal
flux [Ramponi et al., 2008]. According to the present designβLSM = 18◦ andβUSM =
20◦. These values were optimized to obtain the highest values ofηNTM [Ramponi et al.,
2007].

In this section the results obtained so far in this paper willbe applied to ITER. In
particular the ITER standard scenario 2 [Prater et al., 2008; Sauter et al., 2010] is con-
sidered. The relevant parameters for the NTMs on theq = 3/2 andq = 2/1 surfaces are
taken from [Ramponi et al., 2008; Sauter et al., 2010] and summarized in table6.1.
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Table 6.1:Relevant parameters for3/2 and2/1 modes.

q ρtor wsat JBS

[cm] [MAm−2]

3/2 0.62 25 0.094
2/1 0.75 32 0.073

The saturated island width is25 cm and32 cm for the3/2 and2/1 modes, respec-
tively, while the marginal island size is considered to be inthe range between2 ≤
wmarg ≤ 6 cm for both modes. Note that the values given here refer to theaverage
minor radius in the mid-plane, which in the case of the elongated ITER plasma differs
by a factor1/

√
κ, whereκ = 1.7 is the elongation, from a radial coordinate defined as

√

S/π, whereS is the surface in the poloidal plane enclosed by the given fluxsurface,
as used in some other studies. It is also remarked that in ITER, the heating contribution
to ηNTM is negligible in the relevant range15◦ ≤ β ≤ 25◦, beingη̄H . 0.1.

Using these parameters forq = 3/2 andq = 2/1 modes andwmarg = 2 cm, the
normalized saturated island sizes becomew̄sat = 12.5 and w̄sat = 16, respectively.
Looking at the relevant parameter regime in figure6.3(a), this suggests the requirement
w̄dep . 2.5 andw̄depηNTM & 2.5. Similarly, forwmarg = 4 cm, the relevant parameter
range becomes̄wsat = 6 to 8, in which case figure6.3(a) suggests the requirement
w̄dep . 1.25 and w̄depηNTM & 1.25. In this way a single unnormalized criterion is
obtained for the range ofwmarg = 2 to 4 cm, which reads,

wdep . 5 cm and wdepηNTM & 5 cm, (6.28)

which agrees with the criterion obtained in [Sauter et al., 2010]. Forwmarg = 6 cm this
criterion can be slightly relaxed. Since the product ofwdepηNTM for a given bootstrap
current, stands for the total driven current, it is convenient to reformulate this criterion
asICD & (π3/2

√
κrswdepJBS)|wdep= 5 cm. It is observed that in the current design for

the ITER ECRH system the focus on the optimization of onlyηNTM has resulted in
deposition widths considerably smaller than the optimum value of5 cm [Ramponi et al.,
2007, 2008]. Note that in [Ramponi et al., 2007] the widths are given in terms of

√

S/π
rather than the average mid-plane radius. As a consequence,the new criterion for NTM
stabilization in ITER, as derived above, is in particular cases not met. In those cases the
current optimization is lacking the proper trade off between the width and total driven
current density. As shown in figure6.2, an over-focused beam leads to a strong increase
in theηNTM requirement. In the light of these conclusions, a reassessment of the ITER
design is found to be necessary.

Optimization of the ITER ECRH Upper Port Launcher

Since, for a given equilibrium of the plasma, both the drivencurrent density and the
power deposition width are determined by the injection parameters, an optimization anal-
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6 Requirements on current drive for NTM suppression

ysis can be achieved by calculating these quantities as a function of the toroidal injection
angleβ, for LSM and USM configurations. For every value ofβ the poloidal injection
angleα, defined as the angle between a horizontal plane and the poloidal projection of
the initial wave vector [Prater et al., 2008], is tuned in order to keep the location of the
power deposition constant at the resonant surface. The calculation of the EC driven cur-
rent and the width of the current density profile have been obtained with a single beam
for either LSM or USM, with properties as defined in [Ramponi et al., 2007]. The com-
putation has been performed by means of a beam-tracing code,TORBEAM [Poli et al.,
2001]. The code computes the current drive by an analytical solution to the adjoint equa-
tion [Lin-Liu et al., 2003]. An optimumβ angle minimizes the required power when it
satisfies the two criteria given above, namely a small value for wdep ≤ 5 cm and the
maximum achievable current drive. This optimum is then compared to the toroidal an-
glesβLSM andβUSM as in the present ITER ECRH system design. In the following
discussion a number of figures will be shown, representing four cases: subscripts (a) and
(b) address the3/2 mode for LSM and USM, respectively, while (c) and (d) represent
the same configurations for the2/1 mode.

Figure 6.7, presents the total driven current per unit power and the corresponding
deposition width forq = 3/2 andq = 2/1, according to LSM and USM configurations,
as a function ofβ. All the plots show a large, nearly flat region ofwdep between15◦ ≤
β ≤ 21◦ where, in turn,ICD grows approximately linearly. This trend indicates the
possibility to increase the total driven current without affecting significantly the width of
the current profile, by a modest increase of the angleβ from its current design value.

A detailed optimization requires nonetheless the estimation of the power requirement
for mode stabilization, based on the full criterion given inequation (6.26). For a given
launcher configuration and equilibrium (i.e. for given values ofw̄dep andw̄sat), the min-
imal power for the stabilization in ITER is determined by ,

PNTM = ηNTM (w̄dep, w̄sat)
JBS,ITER

γCD,ITER
, γCD,ITER ≡ JCD,max/Ptot (6.29)

whereγCD,ITER is the maximum in the driven current density profile for unit power,
obtained from the beam tracing calculation and the value ofw̄sat andJBS,ITER depend
on the mode under consideration. In analogy with the work of Sauter et al. [Sauter et al.,
2010], a set of values for the marginal island width has been chosen:wmarg = 2, 4 and6
cm, covering the range of predicted values ofwmarg as found in the literature. The result
appears in figure6.8where the trend for the power requirement is plotted forηtra

NTM and
ηpol
NTM. The calculation takes into account only the stabilizing effect of JCD inside the

island as is generally done in the literature. Forwmarg = 4 cm and6 cm (dashed and
dotted lines, respectively), the minimum power in all the cases is found forβ larger than
the currently designed angles. In particular for the LSM an increase inβ by about4◦

results in a significant reduction of the power. In the casewmarg = 2 cm (solid lines)
the minimum power is reached at approximately21◦. For USM the current design is
generally close to the optimum.

In order to complete the analysis for the angle optimization, additional effects need to
be taken into account. In a recent work by Bertelli et al. [Bertelli and Westerhof, 2009],
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Figure 6.7: Total driven current per unit powerICD/Ptot (solid lines) and the relative
power deposition widthwdep (dashed lines) as a function of the toroidal in-
jection angleβ. Arrows indicate for every curve, the correspondent ordinate
axis.

the (anomalous) radial transport is shown to affect the driven current density causing a
non-negligible broadening of the profile. This is caused by the high temperature predicted
for ITER, which leads to a long collisional time for the resonant electrons. Using the
effective diffusion coefficientDeff as inBertelli and Westerhof[2009], an expression for

the corrected width is found aswCD =
√

w2
dep + 4Deffτ/κ, where the factor4 was

added for consistency with the full Gaussian width used in this paper and the factorκ
accounts for the difference between the average mid-plane radial coordinate used here
and the

√

S/π used in [Bertelli and Westerhof, 2009]. The effective electron collision
time related to the EC current generationτ is defined asτ ≡ τcoll(vres/vth)3, whereτcoll
is the electron collision time [Wesson, 2004] and vres, vth indicate the velocity of the
resonant electrons and the electron thermal velocity, respectively. In the case of ITER,
the ratio of the velocitiesvres/vth ≈ 2.5, such that we refer toτ ≡ τ2.5 [Prater et al.,
2008; Bertelli and Westerhof, 2009]. The broadening ofwCD implies a reduction of the
maximum in the driven current density and therefore an increase in the required power. It
should be noted that when the correction to the current profile width is taken into account,
wCD replaceswdep in all the equations related to∆′

CD (7-14) and withδ∆′
0 (6.21). In
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Figure 6.8: Power requirements for the stabilization ofq = 3/2 andq = 2/1 modes
in ITER scenario 2, as a function of the toroidal injection angleβ. Only the
stabilizing effect of a CW driven current inside the island,∆′

ECCD, is taken
into account. Each picture shows the trend of the power forwmarg = 2 cm
(solid lines),wmarg = 4 cm (dashed lines) andwmarg = 6 cm (dotted lines).
For every value ofwmarg the power has been determined for the “transport
model” (6.5) and the “polarization model” (6.6). Black vertical lines denote
the values of the toroidal angle for the current design of theITER ECRH
system,β = 18◦ for LSM andβ = 20◦ for USM.

addition to the radial transport, two extra stabilizing effects need to be considered, namely
the contribution of the non-inductivly driven current on the linear stabilityδ∆′

0, derived
in (6.21), and the possibility of power modulation.

This is illustrated, forwmarg = 2 cm, in figure6.9 and forwmarg = 4 cm, in fig-
ure 6.10. In these two sets of figures, only results obtained in the case of the transport
model are considered. Unlike figure6.8, the marginal island width is kept constant, while
the different curves are obtained by adding extra physics inthe calculation ofηNTM and
the resulting required power. The reference case, denoted with solid lines, accounts only
for the stabilizing effect of current drive inside the island with no radial transport, and no
modulation. In the remaining curves the additional effectsare added one by one.
At first the effect of the radial diffusion at a rate ofDeff = 0.3 m2/s is added (dashed
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Figure 6.9: Power requirements for the stabilization ofq = 3/2 andq = 2/1 modes in
ITER scenario 2, as a function of the toroidal injection angleβ, forwmarg =
2 cm. Solid lines indicate the reference case (figure6.8) taking into account
only ∆′

ECCD in case of CW current drive and neglecting radial diffusion,
i.e. Deff = 0 m2/s. The second set of curves (dashed lines) introduces a
finite radial transport,Deff = 0.3 m2/s. The third case (dot-dashed lines)
considers in addition the effect ofδ∆′

0. In the last set of curves (dotted lines),
power modulation is introduced withDmod = 0.5 while all other parameters
are as in the previous case.

lines), with the consequent broadening ofwdep. This results in a sizable increase in the
power requirement in particular for the case of the3/2 mode. The power requirement for
the2/1 mode is hardly affected as long asβ . 20◦, which is understood, since in these
cases the power deposition width was originally significantly smaller than the required
minimum value of 5 cm (6.28).
The inclusion of theδ∆′

0 effect, denoted with dashed-dotted lines, can have a large sta-
bilizing effect, increasing with larger values ofβ. For the case ofwmarg = 2 cm, a
reduction of the minimum required power of40% is found for the3/2 mode. However,
for the2/1 mode and in case ofwmarg ≥ 4 cm, the improvement in minimum power is
negligible.
The largest achievable improvement for all cases is observed with modulation of the
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Figure 6.10:The same as in figure6.9, for wmarg = 4cm.

power,Dmod = 0.5 (dotted lines). In this case the optimum is obtained atβ ≈ 23◦ in
case of the LSM andβ ≈ 22◦ in case of the USM. For these values ofβ, the power
deposition width is increased by a factor of 2 for LSM while for USM it is increased by
approximately25% (see figure6.7).

From the analysis shown so far, the best compromise for all LSM scenarios isβ =
22◦ while for USM the current design appears a good choice. If thesize of the marginal
island for ITER were confirmed to bewmarg ≈ 4 cm, as suggested in the “Progress in the
ITER physics basis” [Shimada et al., 2007], a further increase inβ would be profitable
suggestingβ = 23◦ for LSM andβ = 22◦ for USM. If the design has to be optimized
taking full advantage of ECCD modulation, these angles could be even increased by one
extra degree. For LSM, increasing the angle by≃ 5◦, is expected to yield a reduction
of the required power of the order of20% in the modulated ECCD case. For USM the
increase of the angle by≃ 2◦, corresponds to a predicted reduction of about10%.

6.5 Summary and conclusions

In this paper the requirements for full NTM suppression havebeen addressed, by means
of an analytical expression ofηNTM obtained from the GRE in (6.2), where the linear
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stability index has been approximated with the bootstrap term evaluated at the saturated
island width,∆′

0 = −∆′
BS(w = wsat). Concerning the bootstrap term, two possible

models determining the scaling ofwmarg have been considered, the first based on the
finite parallel transport, the second on the ion polarization effect. For each model an
analytical expression forηNTM was calculated,ηtra

NTM andηpol
NTM, as a function of the

power deposition width and the saturated island width normalized to the marginal island
size. This purely analytical approach is thought to have twomerits. First, it does not rely
on fitting of individual terms in the GRE, to experimental data which does not properly
discriminate between uncertainties in the determination of various physical quantities ap-
pearing in these terms, such as the bootstrap current density or the driven current and its
profile width, and the uncertainties in the (geometric) coefficients appearing in front of
these terms in the GRE. Since most terms in the numerator and in the denominator of the
equation forηNTM (6.26) originate from the same term for a generic helical current per-
turbation (6.3), these latter coefficients cancel out in the expression forηNTM, such that
the theoretical uncertainties in these coefficients do not affect ηNTM. Second, it provides
a simple, yet complete description ofηNTM, taking into account also additional terms
such as the localized heating and the effect of the driven current on the linear stability.
The theoretical limits of the model are therefore the limitsof the GRE itself.

A systematic study of theηNTM requirement has been performed over the relevant
parameter space, defined by the power deposition width and the saturated island width
normalized to the marginal island size. The strong dependence ofηNTM onwdep has led
to the conclusion that a more appropriate condition is basedon a combination of̄wdep

andw̄depηNTM. A crude estimation of this condition for NTM suppression isgiven in
section6.3, taking into account only the stabilizing effect of the non-inductively driven
current inside the island. This criterion distinguishes between two regions in parame-
ter space, depending on the size ofwsat. For large saturated island sizes (w̄sat > 7) a
minimum required value for̄wdepη

tra
NTM is close to two and is found for̄wdep . 2. For

moderate saturated island sizes (w̄sat < 7) the minimum value for̄wdepη
tra
NTM is close to

unity and is found for̄wdep . 1. An analogous conclusion is drawn forηpol
NTM except that

a slightly narrower deposition is required. A further decrease of power deposition width
does not lead to any significant reduction of the required driven current. Increasinḡwdep

however, leads to a rapid increase of the required driven current. A smaller value of̄wsat

implies generally a lower required current.

The inclusion of additional stabilizing effects namelyδ∆′
0 and the power modulation

is found to provide a remarkable reduction, up to a factor 2, in the power requirement. The
use of power modulation appears beneficial only for broad profiles,w̄dep & 2. In contrast,
a finite value for the normalized current generation efficiency, η̄H, from localized heating
inside the island leads to a reduction in the required drivencurrent mostly in case of
relatively narrow deposition profiles,̄wdep . 2.

Available data from experimental results obtained in JT-60 and AUG [Isayama et al.,
2009; Urso, 2009] show good consistency with the model, while the required values
for ηNTM reported from DIII-D [Petty et al., 2004] are about a factor of 2 in excess of
current predictions. However, these data refer only to the lower left hand corner of the
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diagrams presented and do not reach the parameter regime expected for ITER. Dedicated
experiments are required to extend the database and test thepredictions made by the
present analysis.

In case the driven current is applied preemptively, full suppression of a seed island
with a maximum size equal to the marginal island is found to require up to a factor of
2 lower driven current or to allow a factor of 2 broader deposition profile than the full
suppression of saturated NTM. The advantage of preemptive ECCD is smaller in case
of small saturated island sizes and vanishes when significantly larger seed islands occur.
In the second part of the paper the criterion derived for NTM stabilization has been
applied to ITER scenario 2. The analysis points out that the focus of the previous design
optimization on only theηNTM criterion has led to an over-focused power deposition.
This suggests a reassessment of the present design values for the toroidal injection angle
β in the ITER ECRH system, which are for LSMβ = 18◦ and for USMβ = 20◦. The
optimum condition must satisfy (6.28), yielding the maximum possible driven current
while keeping the current density width close to or below 5 cm. Analyzing the trend
of ICD andwdep as functions ofβ, this optimum is found nearβ ≃ 21◦ for either
LSM or USM. In this range, the contribution of the heating term toηNTM is found to be
negligible. Further optimization of the power requirement, including the effect owing to
the broadening of the current density profile as a consequence of finite radial diffusion
and the stabilizing effects related toδ∆′

0, indicates an optimum angle of21◦ − 22◦ for
the LSM while the current design value ofβ = 20◦ is a good optimum for the USM.
Power modulation has the potential to significantly reduce the required power. Taking
full advantage of this reduction requires a further increase of the toroidal injection angle
to β = 23◦ for the LSM and forβ = 22◦ for the USM. This implies a reduction of the
power requirement of approximately25% for the LSM and10% for the USM compared
to the present design.
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7 Conclusions and Outlook

This thesis addresses the stabilization of (neoclassical)tearing modes by localized heat-
ing and current drive. The problem has a significant relevance for the stability of a plasma
and for the performance of a future fusion reactor. The theoretical modeling was based
on the generalized Rutherford equation (GRE), describing the time evolution of the mag-
netic island. This equation is derived by matching a linear exterior solution of the helical
flux perturbation to an equation for the interior solution obtained by averaging the dif-
fusion equation for the helical current perturbation over the interior region. The GRE
allows a detailed study of the effect of ECRH and ECCD on the tearing mode evolution
and accurate predictions concerning the power requirements for full suppression. In the
following section the results of the thesis are reviewed. Inthe last part of the chapter pos-
sible future developments in both model development and experimental validation are
commented.

7.1 Conclusions

This section follows closely the structure presented in theintroduction to this thesis,
where a number of questions have been raised on each of the topics treated in the dis-
sertation. In the first place, the comparison of the stabilizing contributions of the local
heating and the current drive has been addressed aiming at a further understanding of the
model. The study has first been performed under the “customary” approximations for the
island topology (Chapter 4) while in a second step an extension to a generalized, asym-
metric topology has been made (Chapter 5). Chapter 6 is devoted to the requirements
for the full suppression of the mode. The resulting predictions are found to be in reason-
able agreement with the existing experimental data. The application to ITER resulted in
particular recommendations for improvements of the ECRH system design.

About the merits of localized heating and current drive

Localized heating and current drive are acknowledged to stabilize NTMs by generating
a current perturbation either inductively, through a temperature perturbation (ECRH), or
non-inductively by direct current drive (ECCD). Experimental measurements have shown
that the heating is the dominant effect for medium size limiter tokamaks (TEXTOR, T-
10) while the ECCD appears to be more effective for mid-to-large size divertor tokamaks
(AUG, DIII-D, JT-60). This has motivated the study of the relative merits of ECCD and
ECRH as performed in Chapter 4, with the results as reported below.

• To determine the relevant merits of ECCD and ECRH, the contributions to the
Rutherford equation of ECCD and ECRH are described with a parallel structure:
they are written as the product a common fore-factor, a current generation effi-
ciencyηCD,H, and a geometrical factorFCD,H. The current generation efficiency
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represents the efficiency with which the EC power is converted into a current either
non-inductively, by driving a current directly, or inductively, trough a temperature
perturbation. The geometrical factor depends on the NTM width and the deposition
properties, namely the power deposition widthwdep, the relative locationxdep with
respect to the rational surface and the modulation duty cycle,D (in chapter 6 re-
ferred to asDmod). It is shown thatFCD is larger thanFH, forw/wdep < 2, while
FH is the largest in the region wherew/wdep > 2. The productηCD,HFCD,H de-
termines the efficiency of current drive and heating for eachtokamak experiment.

• For small-medium size tokamaks like TEXTOR or T-10, the current generation
efficiencyηCD is found to be of the same order asηH. As a consequence the relative
merits of ECCD and ECRH are determined only byFCD,H. Since the size of a
typical magnetic island is of the same order or larger than the deposition width
these modes fall in the (dynamical) range where ECRH is foundto be dominant.
ASDEX-Upgrade shows an intermediate behavior, where localized heating can
still play a role for large islands.

• The case of large tokamaks like ITER is generally characterized byηCD ≫ ηH.
As a consequence, even whenw > 2wdep, localized heating is predicted to play a
marginal role.

• The appendix of chapter 4 shows the application of the results to the TEXTOR
experiments on tearing mode suppression by ECRH and ECCD. Itis shown that the
model is generally in good agreement with the experimental data. In particular, the
modeling confirms that the dominant stabilizing mechanism in TEXTOR comes
from the heating. One aspect not explained by the current model is the asymmetric
response of the island suppression to a radial mismatch of the power deposition.
The contribution of the non-inductive driven current on thelinear stability, or the
eventual modification in the magnetic equilibrium owing to the heating outside the
island might explain this non-symmetric trend.

Asymmetries of islands and their impact on the GRE

The experimental evidence for asymmetric islands found in several experiments per-
formed in AUG, DIII-D, JT-60 and in TEXTOR motivated the extension of the model
presented in chapter 5. This was achieved by relaxing the basic assumptions which are
leading to the well known symmetric shape for the magnetic island in a plasma slab.
In addition, the consequences for the island geometry of a number of effects such as a
finite flow shear and a finite temperature gradient across the island have been consid-
ered. The resulting asymmetric mode has been studied in order to determine the role of
asymmetries in the growth and suppression of neoclassical tearing modes, with partic-
ular attention to the local current drive (ECCD) and resonant heating (ECRH) terms. A
comparison is made with existing literature in which unexpectedly large effects of these
asymmetries are claimed. The outcome of this work can be summarized as follows:
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• The topology of a tearing mode can be deformed by considering a finite third order
term in the unperturbed flux function or a quasi-linear correction to the constant-ψ
approximation. Both effects break the up-down symmetry of the mode leading to
an “amplitude deformation”. When the shear flow and the temperature gradient
across the island are considered, a phase shift proportional to the radial excursion
from the resonant surface is produced [Ren et al., 1999; Smolyakov et al., 2001;
van der Plas and de Blank, 2007]. As a consequence of the deformation in the is-
land topology, the Rutherford equation must be modified consistently as shown in
equation (5.4).

• The effect of the asymmetries on the evolution of an NTM appears to be mostly
negligible. This is found to be valid for the coefficientsg1 andcneo appearing in the
generalized Rutherford equation5.18and for the stabilizing contributions provided
by electron cyclotron waves to neoclassical tearing modes.It is shown that phase
shifts over the island do not affect the stabilizing terms from ECCD and ECRH in
case of CW power application. Also the effect on the island width of an up-down
asymmetry is small, except that the consequences of a radialmismatch change in a
predictable way: on the side of the larger island width the ECCD and ECRH terms
are less sensitive to the effects of a radial displacement ofthe power deposition.

• A significant reduction of the efficiency for NTM stabilization by ECCD in case
of an up-down asymmetric island size was claimed in [Urso et al., 2010], while
in [Lazzaro and Nowak, 2009] this efficiency was even shown to become negative
in case of a finite phase shift and an island much smaller than the EC deposition
width. It could be shown that the former claim is based on an improper comparison
between the asymmetric and symmetric cases as made in [Urso et al., 2010], while
the latter conclusion was a numerical artifact, due to incorrect approximations.

The requirements for full suppression of NTMs

The requirement for full NTM suppression is often describedin the literature with the
ratio of the maximum driven current density over the bootstrap current density at the ra-
tional surface,ηNTM = jCD/jBS. Theoretical calculations giveηNTM > 1.2 as the crite-
rion for complete NTM suppression. Experimentally, complete suppression was reached
for 0.3 . ηNTM . 3. This large variation motivated a systematic study of the require-
ment for full NTM suppression as reported in Chapter 6. An analytical expression for
ηNTM has been obtained from the GRE, depending only on the saturated island width
wsat and on the power deposition widthwdep, both normalized to the marginal island
sizewmarg. A new criterion for the full suppression of the mode is formulated by means
of an analysis ofηNTM over the full parameter space. An application of this criterion to
ITER suggests that a further optimization of the ITER ECRH system is possible. The
main findings of this study are listed below.

• The results show a strong dependence ofηNTM on the normalized power depo-
sition width, w̄dep = wdep/wmarg, which has led to the conclusion that a more
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appropriate criterion is based on a combination ofw̄dep and w̄depηNTM. In par-
ticular, for large saturated island sizes (w̄sat > 7) a minimum required value for
w̄depηNTM has been found close to two, with̄wdep . 2. For moderate saturated
island sizes (̄wsat < 7) the minimum value forw̄depηNTM has been found to be
close to unity, withw̄dep . 1. A further decrease of power deposition width does
not lead to any significant reduction of the required driven current. Increasinḡwdep

however, leads to a rapid increase of the required driven current. A smaller value
of w̄sat implies generally a lower required current.

• As anticipated in the introduction to this subsection, theavailable experimen-
tal estimates ofηNTM from various tokamaks are rather different. A value of
ηNTM = 0.3 − 0.6 with saturated island sizes in the range ofw̄sat = 2 – 3 was
reported for JT-60U and AUG, while for DIII-DηNTM = 2 – 3 with w̄sat = 4
– 5 is calculated. Note that these experiments all occupy a similar position in the
parameter space defined by the normalized saturated island size and deposition
width. The predictions from the present analysis are in agreement with the obser-
vations from JT-60U and AUG, whereas for DIII-D the value forηNTM is found to
be considerably smaller than the experimental estimate.

• Application of the analysis to ITER points out that the focus of the ITER ECRH
system design optimization on only theηNTM criterion has led to an over-focused
power deposition in particular when the lower steering mirror is exploited. Our
analysis shows that the optimization towards a minimum power requirement for
NTM suppression requires an increase of the toroidal injection angle for the lower
steering mirror of4◦ from its present design value ofβ = 18◦ to the optimum
value ofβ = 22◦. The current design value ofβ = 20◦ is a good optimum for the
upper steering mirror.

7.2 Outlook

The Generalized Rutherford Equation as provided in this thesis, can describe the non-
linear island evolution as observed in the experiments, at least qualitatively, reasonably
well. This makes the GRE well suited for modeling in the context of the design of feed-
back control loops for NTMs. From the point of view of the physics, a number of inter-
esting effects neglected in the GRE, still require further investigations. The examination
of merits and limits of this approach, leads to outline a few questions that might represent
the most immediate future developments in relation to this thesis. The most immediate
extension in the theoretical modeling is possibly the studyof the time dependency of
ECCD and ECRH.

Further improvements in the understanding of the NTM stabilization might require
a more critical review of the theory. In the first place the GREis generally applied in
regimes where the basic assumptions underlying the model are questionable. This occurs
in the limit of large islands where the width is comparable tothe resonant radius so that
the “small amplitude” and the constant-ψ approximations do not hold, or in the limit of
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small islands, where a number of poorly understood effects (as described in chapter 3),
can play a significant role. In addition the Rutherford equation neglects effects related
with toroidicity and any other feature far from the resonantsurface. A second problem
is related to the experimental uncertainty concerning someimportant parameters such as
the bootstrap current density, the driven current density and the power deposition width.
The lack of accurate estimations and of a careful error analysis results in a problematic
validation of the existing model. The combination of these two issues makes it rather
difficult to discriminate whether discrepancies observed between GRE predictions and
experimental measurements is due to a lack in the physics described by the model or can
be understood as being due to the experimental uncertainties. From this argument, the
future developments in the topic might probably follow two directions. From a experi-
mental point of view, in the regime where the basic assumptions are satisfied, the GRE
can still provide important predictions, with a particularattention to the power require-
ment for the full NTM suppression. In this regime, a detailederror analysis might be
relevant for the validation of the model. From a numerical point of view, the limits in
the validity of the GRE might be benchmarked with 3D non-linear MHD simulations ac-
counting for a more complete description of the mode stability. In the following, a more
detailed description of these future challenges is presented.

Time dependence of the ECCD and ECRH terms in the Rutherford equation

A further extension of the model concerning the ECCD and ECRHterms in the GRE
appears of particular interest. According to the present model, the time scale for the
mode rotationτrot is assumed to be much shorter than both the collision timeτcol and the
typical time scale for the evolution of the modeτisl. As a consequence, the effect of the
driven current and the localized heating can be averaged over a rotation period. When the
last is comparable to the collision time (the time scale for the generation and decay of the
driven current), a variation of∆′

CD is expected owing to the fluctuation of the generated
current. This fluctuation averages out as long as the NTM evolution is slow compared
to the rotation period. When this approximation does not holdthe evolution of the mode
will be affected.

Experimental benchmark of GRE andηNTM

A glance at the recent literature indicates a general interest towards an experimental
benchmark of the GRE aiming to achieve accurate predictionsof the required power to
achieve full NTM stabilization. The current status of benchmarking of the GRE against
experiments [La Haye et al., 2006b; Sauter et al., 2010; Urso et al., 2010], consists of the
fitting of individual terms in the GRE, to experimental data from different tokamaks. This
is generally used to extrapolate, using the fitted coefficients to the conditions for ITER
stability. As explained in chapter 6, this method does not properly distinguish between
uncertainties in the physical quantities appearing in these terms, such as the bootstrap
current density or the driven current and its profile width, and the uncertainties in the
geometric coefficients appearing in front of these terms in the GRE. As a consequence,
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although this method might provide a qualitative benchmarkto the Rutherford equation,
it cannot be considered a consistent validation of the theoretical model. The analytical
expression forηNTM, as proposed in chapter 6, being unaffected by the theoretical un-
certainties related with the geometrical coefficients, is thought to be a more appropriate
solution. An experimental benchmark of this expression, especially in the ITER relevant
region, might therefore be an interesting road to follow.

Benchmark of the GRE with a fully non-linear resistive MHD code

Another interesting development might address the limits in the validity of the GRE, ob-
tained by comparing the model with the predictions of a non-linear MHD code. Such a
code solves for every time step the reduced resistive MHD equations accounting for the
correct helical flux function and the toroidal geometry of the tokamak. This tool opens
the possibility to focus on the transition between the linear and the non-linear regime in
the evolution of a tearing mode. The further implementationof a localized current and
a temperature perturbation related with an external source, are expected to simulate the
effect of ECCD and ECRH. In the range of validity of the Rutherford equation, it is in-
teresting to stress that the benchmark proposed is twofold:it is meant at the same time to
be a benchmark of the non-linear MHD code in the range where the approximations un-
derlying the derivation of the GRE are verified and a study of the limits of the Rutherford
model.
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Summary

Stabilization of magnetic islands in tokamaks by localizedheating and current drive

This thesis deals with the theory of active stabilization ofthe so-called Neoclassical Tear-
ing modes (NTMs) in fusion reactors. Hot fuel, in the form of afully ionized gas (referred
to as “plasma”), is confined by a magnetic field with the topology of toroidally nested
magnetic surfaces. The NTM is a spontaneous break of this magnetic configuration, lead-
ing to a non-symmetric topology characterised by a chain of magnetic islands. Within a
magnetic island temperature and pressure are flattened. TheNTM onset occurs when
the plasma pressure exceeds a certain limit. Since the fusion power is proportional to
the pressure squared, NTMs limit the performance of the reactor. Active stabilization of
such instabilities can yield an enhanced performance of thefusion reactor of up to50%.
For this reason, it is important to study the mechanisms responsible for their growth and
achieve a reliable control strategy.

Control and suppression of NTMs is achieved experimentallyby depositing highly
localized radio-frequency power, in the range of electron cyclotron frequency (EC), at the
island location. Qualitatively, the effect of the localized EC power on magnetic islands is
twofold: it makes the island formation more difficult, and itcompensates for the effect of
the temperature flattening inside the island region by a local increase of the temperature
and by inducing a current inside the island. These effects are referred to as Electron
Cyclotron Resonance Heating (ECRH) and Electron CyclotronCurrent Drive (ECCD),
respectively.

The thesis addresses the stabilizing contribution of ECRH and ECCD, on the tempo-
ral evolution of a magnetic island. This model relies on the equation for the evolution of
the magnetic island width, the generalized "Rutherford" equation (GRE), which depends
on the different driving and stabilizing mechanisms.

There are three main open questions that this work tries to answer: the relative merits
of ECRH and ECCD, the role of asymmetries in the magnetic island topology and finally
the determination of a criterion for full NTM suppression.

The research focused at first on the relative merits of each method. The conditions
determining the relative importance of ECRH and ECCD are found to depend on the
product of two factors, the efficiency with which ECRH or ECCDgenerates a current
inside the magnetic island and a geometrical factor showingessentially different scalings
for either ECRH or ECCD. For a fusion reactor like ITER the main stabilizing mechanism
for a magnetic island is found to be the ECCD, while ECRH becomes relevant in smaller
devices.

In the following step an extension of the model allowed to treat asymmetries in the
island shape and to discuss their effect on the ECCD and ECRH contribution to the island
evolution. This study demonstrates that these deformations have a small or negligible
impact on the tearing mode evolution. Opposing claims in theexisting literature could be
shown to be based on inappropriate approximations or comparisons.
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The last part of the thesis is devoted to the determination ofthe requirements for the
suppression of a magnetic island. This is usually describedby the parameterηNTM, de-
fined as the ratio between the local driven current density, responsible for the stabilization
of the mode and the local bootstrap current density, the drive of the NTM instability. An
extensive analysis allowed to formulate a general criterion for the full NTM suppression
in the form of a combined criterion for the maximum allowed width of the EC power
density profile and a minimum required EC driven current. Theresults of this analysis
have been used to suggest an improvement of the design of ITER-ECRH system. A mod-
erate increase of the angle with which EC waves are injected into the plasma of up to5◦

from its present design value is shown to reduce the power requirement by up to25%.
In conclusion, the theoretical work presented in this thesis has provided a comprehen-

sive analysis of the stabilization of a magnetic island by means of the localized heating
and driven current. The proposed model verifies and improvescriteria for the design of
ITER-ECRH system. Finally, it provides a sound theoreticalbasis for the design of NTM
feedback control loops.
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