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Abstract. This paper presents a novel and fast scheme to detect differ-
ent body parts in human motion. Using monocular video sequences, tra-
jectory estimation and body modeling of moving humans are combined
in a co-operating processing architecture. More specifically, for every in-
dividual person, features of body ratio, silhouette and appearance are
integrated into a hybrid model to detect body parts. The conventional
assumption of upright body posture is not required. We also present a
new algorithm for accurately finding the center point of the human body.
The body configuration is finally described by a skeleton model. The fea-
sibility and accuracy of the proposed scheme are analyzed by evaluating
its performance for various sequences with different subjects and motion
types (walking, pointing, kicking, leaping and falling). Our detection sys-
tem achieves nearly real-time performance (around 10 frames/second).

Keywords: motion analysis, trajectory estimation, body modeling, ob-
ject detection.

1 Introduction

Successful estimation of the pose and modeling of human body facilitates the
semantic analysis of human activities in video sequences [1,2]. The detection of
human-body parts lays a solid ground to capture the human motion in more
detail, which is essential for object/scene analysis and behavior modeling of
deformable objects. Such semantic analysis can be explored for specific applica-
tions, such as surveillance, human computer interaction, virtual reality, sports
analysis and 3-D gaming.

Accurate detection and efficient tracking of various body parts are ongoing
research topics. However, the computation complexity needs significant reduc-
tion to meet a real-time performance, especially for surveillance applications.
Existing fast techniques can be classified into two categories: appearance-based
and silhouette-based methods. Appearance-based approaches [3,4] utilize the in-
tensity or color configuration within the whole body to infer specific body parts.
They can simplify the estimation and collection of training data. However, they
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are significantly affected by the variances of body postures and clothing. For the
silhouette-based approach [5,6,7,8], different body parts are located employing
the external points detected along the contour, or internal points estimated from
the shape analysis. The geometric configuration of each body part is modeled
prior to performing the pose estimation of the whole human body. However, the
highly accurate detection of body parts remains a difficult problem, due to the
effectiveness of segmentation. Human limbs are often inaccurately detected be-
cause of the self-occlusion or occlusion by other objects/persons. Summarizing,
both silhouette and appearance-based techniques do not offer a sufficiently high
overall accuracy of body-part detection. Also, the assumption of upright posture
is generally required.

To address the challenging problem of accurately detecting and modeling
human-body parts in a fast way, we contribute in two aspects. First, various
differentiating body features (e.g. body ratio, shape, color) are integrated into
one framework to detect different body parts without the assumption of the
human’s posture being upright. Second, we have proposed a novel scheme for
capturing human motion, that combines the trajectory-based estimation and
body-based modeling. This is effective to improve the detection accuracy. Our
approach differs from current state-of-the-art work in the sense that it lacks
training, while efficiently preserving the overall quality of the final results. More
generally, the presented work aims at the object/scene analysis and behavior
modeling of deformable objects. As our system is efficient and achieves nearly
real-time performance (around 10 frames/second), we facilitate its application
in a surveillance system.

The structure of this paper is as follows. Section 2 briefly presents the scheme.
Section 3 introduces every detection component involved. The body-part detec-
tion that is based on seamless integration of different observation clues, is ex-
plained in detail. Promising experimental results and analysis are presented in
Section 4. Finally, Section 5 discusses conclusions and our future work.

2 System Architecture

When combining the trajectory-based estimation and body-based detection, we
intend to capture the human motion and locate the body parts using a skele-
ton model. The block diagram of our proposed scheme is shown in Figure 1.
First, each image covering an individual body is segmented to extract the hu-
man silhouette after shadow removal. Second, both the trajectory-based and
body-based modules are co-operating based on a particular sequence of internal
functions. The position of the moving object in every frame is extracted. Occur-
ring situations (behaviors) can be validated along the estimated trajectory for
every individual person. Based on the trajectory-based estimation, the system
initializes the local body-part detection. In this body-modeling module, various
features are applied, such as appearance, body ratio and posture direction. As
the fundamental anchor point in our skeleton modeling scheme, the center point
of the whole body is also extracted. After different body parts are detected,
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Video input

Human silhouette

Skeleton construction

Regions of interest

Trajectory Estimation
Detection and tracking moving objects

Foreground segmentation
Shadow removal

Body modeling
- Body ratio, appearance
- Posture direction (PCA) 
- Center-point extraction
- Dominant points (convex hull)

Update the trajectory estimation

Human geometry modeling

Fig. 1. Block diagram of our body-part modeling system

the human geometry is modeled. Finally, the skeleton model of every person is
constructed.

3 Component Algorithms

3.1 Background Substraction

Background modeling is generally the first step of detection and/or analysis
of moving objects in a video sequence. We perform an adaptive background
subtraction to support person-behavior analysis. The intention is to maintain a
statistical background model at every pixel.

In the case of common pixel-level background subtraction, the scene model
has a probability density function for each pixel separately. A pixel from a new
image is considered to be a background pixel if its new value is well described
by its density function. For a static scene the simplest model could be just an
image of the scene without the intruding objects. After the background model-
ing, the next step would be to e.g. estimate appropriate values for the variances
of the pixel intensity levels from the image, since the variances can vary from
pixel to pixel. Pixel values often have complex distributions and more elaborate
models are needed. The Gaussian mixture model (GMM) is generally employed
for the background subtraction. We apply the algorithm from reference [9] to
produce the foreground objects using a Gaussian-mixture probability density.
The parameters for each Gaussian distribution are updated in a recursive way.
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(b) (c)

(d) (e) (f)

(a)

Fig. 2. Procedure of body-based processing: a) original frame, b) foreground segmen-
tation (after shadow removal), c) body modeling based on convex hull, d) center-point
estimation, e) body-part location and f) skeleton construction in single-person motion

Furthermore, the method can efficiently select the appropriate number of Gaus-
sian distributions during pixel processing so as to fully adapt to the observed
scene.

In the actual segmentation of foreground and background, shadow removal is
another important issue. Based on the assumption that shadows decrease the
brightness of pixels but do not affect their color, shadows are detected and re-
moved [9]. To consider lighting changes during the process of video acquisition,
the pixels labelled as background are used to update in a recursive manner. Fi-
nally, the labelled foreground pixels are grouped together to represent potentially
moving objects.

3.2 Trajectory Estimation

The trajectory-based module estimates the human position over time, i.e. the
movement, which is regarded as a fundamental function of surveillance systems.
In our trajectory-based module, we apply blob tracking in two approaches. In a
simple setting (e.g. static background, no occlusion), the first approach is based
on an object’s segmented binary mask. In the second approach, we employ the
broadly accepted mean-shift algorithm for tracking persons, based on their indi-
vidual appearance model represented as a color histogram. When the mean-shift
tracker is applied, we detect every new person entering the scene and calcu-
late the corresponding histogram model in the image domain. In subsequent
frames for tracking that person, we shift the person object to the location whose
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histogram is the closest to the previous frame. After the trajectory is located,
we can conduct the body-based analysis at the location of the person in every
frame.

3.3 Body-Based Modeling

The body-based processing block models the human motion by a skeleton model.
The detailed procedure is illustrated in Figure 2. In the example of single-person
motion, the input frame (Fig. 2a) is segmented to produce a foreground blob after
shadow removal is applied(Fig. 2b). Then the convex hull is implemented for the
whole blob (Fig. 2c). The dominant points along the convex hull are strong clues,
in the case of single-person body-part detection. They infer the possible locations
of body parts, like head, hands and feet. Here we employ a content-aware scheme
(Section 4.1) to estimate the center point (Fig. 2d), which is fundamentally used
to position the human skeleton model. Meanwhile, dominant points along the
convex hull are selected and refined (Section 4.2) to locate the the head, hands
and feet (Fig. 2e). Finally, different body parts are connected to a predefined
skeleton model involving a center point, where the skeleton is adapted to the
actual situation of the person in the scene (Fig. 2f).

4 Construction of Skeleton Model

We represent the body by using a skeleton model, which is used to infer the
relative orientation of body parts and body posture. The center point is first
estimated from the silhouette. Afterwards, it is connected to different body parts
to construct the skeleton model.

4.1 Center-Point Extraction

The center point plays an important role in the skeleton model as a reference
point. Its estimation accuracy significantly affects the detection of body parts.
Here we apply a content-aware scheme to detect the center point ci at the frame
with index i. Contents of posture direction, human-body ratio and appearance
are taken into account.

The posture direction of a human body can be estimated by the major axis mi

of the body’s foreground region at the frame i. The major axis is determined by
applying the Principal Component Analysis (PCA) to the foreground pixels. Its
direction is given by an Eigenvector v associated with the largest Eigenvalue of
its covariance matrix. Along the above direction and based on the somatological
knowledge, we initially classify the whole body into three segments: head, upper
body (including torso and hands) and lower body (two legs). Also, an initial body
boundary bi, dividing upper body and lower body, is produced. Next, within the
neighboring area A from body boundary bi, we perform the Laplacian filter
Li(x, y) to each pixel (x, y) prior to a thresholding function f(.) by value δ.
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If Li(x, y) > δ, f(.) = 1. Otherwise, f(.) = 0. Then we search the optimal
boundary line b̂′i between the upper body and lower body in Equation (1) by

b̂′i = arg max
b′

i

∑

(x,y)εb′
i

f(Li(x, y), δ), (1)

where Li(x, y) indicates the Laplace operation with the 3 × 3 kernel at point
(x, y). Finally, the center point Ci is located by the crossing point of the major
axis mi and the boundary line b̂′i in Equation (2), hence

Ci = mi � b̂′i, (2)

where “�” denotes returning the intersection position between two lines. Dur-
ing our experiments, we have found that this center-point extraction is effective
and accurate, and it is superior to the centroid-of-gravity (CoG) approach of
the whole blob, as used in [5]. An example is visualized in Figure 3. Our pro-
posed scheme is simple but effective, even when disturbed by residual noise after
shadow removal. If the clothes between the upper body and the lower body are
similar in the appearance, only the silhouette feature is employed. The center
point is estimated based on the domain knowledge of the human-body ratio.

(a) (b) (c) (d)

Fig. 3. Estimation of center point: (a) original frame, (b) silhouette after foreground
segmentation, (c) result of CoG approach, (d) result of content-aware center point

4.2 Skeleton-Model Extraction

Different body parts are connected to the center point according to a predefined
human geometry model, which is similar to the one reported in [8]. Every indi-
vidual part is estimated according to the Euclidean distance between the center
point Ci and every dominant point along the convex hull at the frame i. Based on
the body-ratio knowledge, we initially select a set of dominant points Pi with the
maximum distance in the three body segments, i.e. head, upper body and lower
body. These dominant points are used to infer the locations of potential body
parts. As we obtain the body segments (head, upper body, lower body) along
the posture direction from Section 4.1, we can refine the points Pi in each indi-
vidual segment to locate the body parts. Then we use a simple nearest-neighbor
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filtering scheme to correlate different body parts over time. Afterwards, a Dou-
ble Exponential Smoothing (DES) filter is added to refine the results. This filter
provides good performance for moving object tracking [10].

The DES smoothing operator is defined by
{

si = α · oi + (1 − α) · (si−1 + di−1) ,
di = γ · (si − si−1) + (1 − γ) · di−1 ,

(3)

where oi is the observed body-part position value at the frame i. The parameter
si refers to the position after smoothing the observed position, di represents the
trend of the change of body-part position, and α and γ are two weighting pa-
rameters controlling motion smoothness. Equation (3) applies to every detected
body-part position for the individual person. The first smoothing equation ad-
justs si directly for the trend of the previous period with di−1, by adding it to
the last smoothed value si−1. This helps to eliminate possible position discon-
tinuities. The second smoothing equation updates the trend, which is expressed
as the weighted difference between the last two position values.

After the smoothing filter is performed on the observed body parts, another
post-processing step is implemented to improve the detection accuracy. If the
distance between the detected hands and the center point is below a predefined
threshold, we set the location of the hands as a default value, i.e. the position of
center point. This additional processing can remove some inaccurate observation
and improve the accuracy, especially in the self-occlusion case.

5 Experimental Results and Analysis

In our experiments, we have tested the algorithm for different monocular video
sequences covering more than 2,500 frames. The video sequences were recorded
at 15-Hz frame rate at a resolution of 320×240 samples (QVGA). The sequences
cover different persons, background, clothes and behaviors in both indoor and
outdoor situations.

We have evaluated our scheme with different motion types such as walk-
ing, pointing, kicking, leaping and falling. We implemented two state-of-the-art
contour-based methods [5,8] for performance comparison. Figure 4 summarizes
the accuracy comparison when using the different methods. In our experiments,
the ground truth of body-part locations were manually obtained. The maximum
tolerable errors in the evaluation is set to 15 pixels. Some visual examples of our
experimental results are illustrated in Figure 5. After the body-part detection,
the skeletons are superimposed on the images. Our system is implemented in
C++ on a 3.0-GHz PC. The detection system operates at nearly real-time speed
(around 10 frames/second).

From our experiments, we have found that the dominant points (with high cur-
vature) along the contour play an important role in the three presented contour-
based methods. If the dominant points are highly observable, e.g. in the motion
types of pointing and kicking, all three methods yield similar performance. How-
ever, as we integrate the temporal constraints by employing the DES filter, our
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Fig. 4. Comparison of the detection accuracy of three different methods for walking,
pointing, kicking, leaping and falling

detection accuracy is higher by around 5%, especially in the case of the self-
occlusion when the hands/legs appear within the silhouette. Another interesting
point is that our method does not assume that the human posture is upright.
Moreover, the posture direction can be estimated in our algorithm. In the falling
case, our method clearly outperforms the other two [5,8] by around 20% in the
detection of hands.
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(a)

(e)

(c)

(d)

(b)

Fig. 5. The modeling result of single-person motion: (a) walking, (b) pointing, c) kick-
ing, (d) leaping and (e) falling

6 Conclusions and Future Work

We have proposed a novel dual-module scheme for human-body modeling, that
combines trajectory-based estimation and body-based analysis in a co-operating
way, to capture the human motion and locate the different body parts. The
trajectory-based module provides a platform for performing body-based anal-
ysis. The body-based module updates the tracking process, infers the posture
of the human body and describes the body geometry efficiently by a skeleton
model. We have presented a new algorithm for accurately locating the body cen-
ter point, using the body silhouette and an upper/lower-body separation line.
This algorithm outperforms the conventional center-of-gravity approach from
existing literature, addressing the same center-point usage. Body-part detection
was performed after estimation of the center point, analysis of body ratio, sil-
houette and appearance. An advantage is that the conventional assumption of
upright body posture is not required. The above scheme has proven to be a fast
(nearly real-time speed at 10-Hz frame rate) and effective technique for the au-
tomatic detection of different body parts within monocular video sequences in
indoor/outdoor areas.

However, the current system has a few limitations. The self-occlusion prob-
lem is not completely solved, requiring additional exploration, as the dominant
points along the convex hull fail to differentiate and locate the underlying body
parts within the silhouette. We have found that the color appearance of the per-
son is important in the case of self-occlusion. The region-based nature of color
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will be utilized to improve the body-part segmentation. Also, we are going to
capture motion sequences from different viewpoints and train the optimal pa-
rameters for different motion types, aiming at becoming more view-independent
in performance.
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