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Abstract—To date many activity spotting approaches are
static: once the system is trained and deployed it does not
change anymore. There are substantial shortcomings of this
approach, specifically spotting performance is hampered when
patterns or sensor noise level changes.

In this work an unsupervised sensitivity adaptation mecha-
nism is proposed for activity event spotting based on expected
activity event rates. The expected event rate for activity
spotting was derived from the generalisation metric used
in information retrieval. To illustrate generalisation effects
and depict relations of spotting performance and event rate,
different event rates were simulated and their precision-recall
spotting performance analysed. Subsequently, the sensitivity
adaptation concept is presented and evaluated. For this purpose
two large datasets from personal healthcare applications were
considered to explore benefits and limitations of this adaptation
approach: recognition of drinking motions from inertial sensors
and chewing strokes from sound. Results showed up to 28%
spotting performance increase for event rate adapted operation,
confirming performance benefits for sensitivity adaptation. The
approach will be most applicable in situations, where estimated
event rate statistics show low variance and long monitoring
durations allow effective sensitivity adaptations.

I. INTRODUCTION

Activity spotting can be regarded as a special area of ac-

tivity recognition, which aims at detecting pattern instances

in continuous sensor data. Thus, the result of an activity

spotter is a set of predicted activity pattern events from

a given section of sensor data. An activity pattern event

in turn, has at least known event boundaries and activity

duration. Given this coarse definition, activity pattern events

could have arbitrary extend. Practically, the specification of

what is an activity pattern event is performed during system

design. Event modelling is limited by spotting algorithm and

pattern model capabilities to capture relevant event pattern

properties. Activity spotting principles have received broad

attention in different related fields, such as spotting gestures

or sounds. Nevertheless, for activity spotting in ubiquitous

systems various additional sensor modalities can be equally

considered for spotting. Particular examples include the

spotting of car fabrication and maintenance work [1], [2],

workshop tasks [3], and dietary activities [4].

Although many further applications of activity spotting

exist, the realisation of spotting systems is essentially ham-

pered by a fundamental modelling problem: activity event

pattern must be detectable in a continuous stream of sensor

data in absence of a complete system model. For example,

a gesture event may occur in principle anytime in sensor

data stream, while the remaining sensor data is arbitrary.

The lack of models to describe this embedding data (also

referred to as NULL class) is what distinguishes activity

spotting from the general class of continuous activity recog-

nition methods, such as multi-class classification. An ideal

activity spotting algorithm and model does not include any

assumptions about embedding data. Thus, an ideal spotting

algorithm could operate under conditions that have not been

captured during design time (time of training the system).

Without a completely described system it is difficult to put

a decision boundary, typically a threshold, around relevant

event instances to separate them from embedding data. In

addition, activity spotting requires to search for events in

sensor data, which is often a processing-intensive task. In

turn, robustness of a spotter may be hampered when system

parameters change or event instance representations change.

Missing adaptive behaviour under changing patterns renders

classic activity spotting algorithms error-prone under such

conditions. However, maintaining a stable adaptation process

is challenging, thus often the user is involved to confirm

system decisions.

To perform runtime adaptations of spotting algorithms

or activity event models, the previous spotting performance

could be considered as a measure of success of an current

parameter set. Furthermore, adapting the sensitivity of an

spotting algorithm could provide a transparent control loop,

where actual pattern models are left unchanged. In this

work an unsupervised parameter adaptation was considered

that changes the decision threshold between relevant activity

event instances and embedding data. This approach could be

used autonomously, hence it does not require an operator or

user to provide feedback on actual performance. Activity

event models were left unchanged, thus they were used as

derived during supervised training.

Various metrics exist that can be considered for adaptive

feedback. Typically they depict specific details of informa-

tion retrieval performance [5], [6]. However, such metrics

generally utilise ground truth information, which renders
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them infeasible for unsupervised algorithm or model adapta-

tions. In contrast to search and retrieval problems in related

fields, e.g. for images and text (see discussion of related

works below), activity pattern events have specific properties

that could provide cues for estimating current performance.

In this work, the expected activity event rate is considered.

The activity event rate can be viewed as a common-sense

property, where denoting the deviation of currently reported

event rate from an conceptually expected rate provides

autonomous feedback on current spotting performance. The

expectation of a particular activity event rate can be a

reasonable calibration measure in different activity spotting

applications. Often, an averaged event rate can be estimated

if the considered timeframe to sample this rate is sufficiently

large. As an example, consider spotting of drinking motions

in everyday activities during average days, which is relevant

to prevent dehydration [7]: it is unlikely that a system user

takes more than 30 sips per hour from a container. Similarly,

not drinking for 3-4 hours may be unusual as well. In both

cases the decision sensitivity between relevant activity event

instances and embedding data could be adapted towards an

expected event rate.

A. Paper contributions

The activity event frequency is a specific property of

activity spotting applications that is considered in this work

to adapt a spotting algorithm. This work focuses on eval-

uating benefits of such sensitivity adaptation. Thus, this

approach is semi-supervised: activity event pattern models

and parameters were initially derived in a supervised training

step. Subsequently, an unsupervised adaptation of a spotter’s

sensitivity was performed by modifying the decision bound-

ary between recognised activity events and embedding data.

The following specific contributions are made:

1) Properties of activity spotting performance estimation

and generalisation are discussed with regard to related

fields of information retrieval. This is done to highlight

relations of the selected spotting algorithm feedback

approach with retrieval metrics. Section II addresses

the fundamental properties of activity spotting. Sec-

tion III illustrates the challenge of activity spotting

generalisation in two datasets.

2) An approach for adaptive activity spotting based on

expected activity event frequencies is proposed. Adap-

tation was performed through a control loop that modi-

fied a spotter’s decision threshold. The performance of

this adaptation technique was subsequently evaluated

in relation to a static spotter performance. Section IV

presents this adaptation approach and Section V eval-

uates its performance in two datasets representing

complex activity pattern events from personal health

monitoring.

This work presents a novel approach to obtain self-

adaptive activity spotting systems that implement an unsu-

pervised control loop. Moreover, this work performs first

evaluations of an event rate-based adaptation concept to

estimate potential benefits of adaptive activity spotting.

However, this work does not attempt to validate dynamic

robustness of self-adaptive systems and applicability of this

approach for any activity spotting application. The work

focuses on introducing the concept of event rates and re-

lated generalisation-dependent performance analysis in the

activity spotting domain.

B. Related work

Pattern spotting problems have been considered in various

domains, most prominently in motion and gesture recogni-

tion, sign language interpretation, and sound analysis. Ex-

amples of motion and gesture recognition include immersive

gaming [8], [9], and many forms of computer interaction,

e.g. [10], [11], [12]. Sign language recognition is a closely

related topic and considered in several works, e.g. [13]. A

recent review on gesture recognition and its applications

was compiled by Mitra and Acharya [14]. Systems for

acoustic word spotting were considered, e.g. in [15]. In

these applications a static algorithmic approach was typically

considered to extract words as individual events. After an

initial system training, algorithm and pattern models were

not further adapted.

Semi-supervised and unsupervised techniques have been

less frequently considered for pattern spotting. Recently,

Yang et al. [16] proposed a threshold adaptation technique

for spotting sign language based on conditional random

fields (CRFs). In their approach, a threshold CRF model

is constructed from state and transition feature functions

of gesture CRFs. Their approach to threshold modelling

is conceptually similar to the work of Lee and Kim [17],

who used hidden Markov models (HMMs). Adaptation of

algorithms and models after an initial training was generally

not considered in these works. Yang et al. and further

groups, e.g. Alon et al. [18] combat signal noise, including

fractals, co-articulation, and sub-gestures using additional

pattern filters. While these techniques can improve system

performance, they are primarily applicable for motion and

gesture recognition. In contrast, this work aims at developing

an adaptive spotting technique applicable for different sensor

modalities and applications.

Due to the challenges in acquiring annotated data in ac-

tivity recognition, several approaches have been investigated

to minimise annotation needs and thus data cost. Unlabelled

samples have been considered for active learning, e.g. to

ask a user to annotate key examples of activities [19]. Guan

and colleagues have used co-learning and noise-removal

learning to achieve sparse training datasets [20]. Stikic and

Schiele have explored a similar technique, called multi-

instance learning [21]. In contrast, this work focuses entirely

on the performance outcome rather than modifying pattern

models. However, it can be expected that active learning
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techniques are complementary to the approach presented in

this work.

II. PROPERTIES OF ACTIVITY SPOTTING

GENERALISATION

Information retrieval metrics, such as precision and recall

are frequently considered to asses performance of activity

spotters. This section summarises the relation of these met-

rics with regard to activity spotting. It highlights specific

aspects that many current considerations of activity spotting

systems lack, namely to quantify performance generalisa-

tion. Generalisation, in turn is tightly coupled to the activity

spotting event rate, which is shown in this sections.

A. Normalised performance metrics

Individual retrieval metrics can only partly depict spotting

performance and several of these metrics are required to

completely capture system performance [22], [3]. They are

characterised using the following key parameters:

1) number of relevant items c,
2) number of irrelevant items e,
3) number of retrieved items s.

The number of retrieved items (s) can be further

distinguished in the number of correctly recognised

items (sCorrect) and the number of incorrectly returned

ones (s − sCorrect).

To express retrieval performance in terms of its expected

success precision and recall are widely considered. Those

metrics are derived as follows:

Precision: p =

number of correctly recognised items sCorrect

number of retrieved items s
.

(1)

Recall: r =

number of correctly recognised items sCorrect

relevant items c
, and

(2)

With respect to activity spotting, these parameters can

be interpreted as follows: relevant items are those activity

events that have been conducted by a subject. Retrieved

items represent the events that have been reported by a

spotting algorithm. A correctly recognised item is a relevant

activity event that has been retrieved.

The most severe errors of activity spotters are insertions

and deletions, which increase the number of incorrectly

returned items and lower the number of correctly recognised

items respectively. Substitutions represent another severe

error, however these can be neglected when activity spotters

in their principal form are considered, one activity event

class vs. embedding data.

B. Activity spotting generalisation

In a general class of information retrieval systems, the

total number of items is described as database size, thus

D = (c + e). Moreover, in a typical retrieval application,

the number of irrelevant items broadly exceeds the number

of relevant ones, thus e ≫ c. Here, activity spotting

requires a conceptual diversion: while activity pattern events

correspond to parameter c (number of relevant items), the

number of irrelevant items (e) corresponds to embedding

data, which cannot be counted in a comparable manner.

For activity spotting, embedding data is arbitrary sensor

data that lacks structural information. As a consequence,

different approaches have been used to deal with it. Both

relevant and irrelevant items can be considered based on

continuous time or timeframe results [3], [4]. Alternatively,

relevant items can be viewed as countable event instances,

while irrelevant and the entire database are further consid-

ered as time-continuous (in the absence of similar countable

items). This latter approach is used here to describe the

activity spotting generalisation. Moreover, this approach is

supported by precision and recall, which both are referencing

countable parameters only.

The metric generalisation which is used in retrieval sys-

tems to measure the embedding data size considered in an

evaluation is:

Generalisation: g =

number of correctly recognised items sCorrect

database size D
.

(3)

A number of important observations with respect to

generalisation and activity spotting can be made:

• While precision and recall are widely used for evaluat-

ing recognition performance of activity spotters, their

performance assessment always depends on generali-

sation, hence the embedding data size. Thus, general-

isation or embedding data size, e.g. as the amount of

arbitrary data included, should always be reported in

spotting evaluations. As exception, if different spotters

are to be compared on the same dataset, generalisation

remains constant and could be omitted.

• The generalisation metric in its isolated form is not

helpful to characterise an activity spotting systems

since both, sCorrect and D dependent on dataset and

spotting algorithm. E.g. low generalisation performance

is obtained for high D as well as low sCorrect.

• When considering the dataset size in time domain, as

detailed above, generalisation is derived as a frequency:

number of events per time unit. This allows to conve-

niently interpret generalisation as event rate in practical

activity spotting applications.

The mutual dependency of precision and recall can be

observed from Eq. 1 and Eq. 2. How generalisation influ-

ences both, precision and recall is illustrated with the help
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of activity spotting datasets in Section III below.

III. GENERALISATION IMPACT ON PERFORMANCE

The generalisation, or more conveniently, the event rate

crucially influences precision-recall (PR-) performance re-

sults. This effect can be illustrated in the widely used PR-

plots. In this section two activity spotting datasets and

one spotting algorithm is considered to discuss spotting

performance depending on generalisation.

A. Activity spotting datasets

1) Dataset 1: spotting drinking gestures: Spotting and

interpreting drinking motions with a simple wearable sensor,

while being exposed to other arbitrary activities virtually

at the same time, is a challenging issue. In this dataset

a 3-dimensional acceleration and gyroscope sensor was

considered. The sensors were attached to the user’s wrist

to monitor drinking motions using different containers. Sce-

nario and analysis using a static spotting algorithm had been

previously reported for this dataset in [7]. Here, the dataset

properties are briefly summarised.

The dataset consists of totally 5.84 hours of sensor data

from six student subjects who randomly in time took 560

sips from four different containers (glass, bottle, beer mug,

cup) and four broadly scripted scenarios. The scenarios

were office work, eating, gaming, and leisure. The sensor

unit was sampled at 50Hz. The recording procedure took

around 50–60min per participant. Of those, accumulated

time for drinking (fetch motions) was about 11min per

subject. The remaining time contained other non-relevant

activities. Overall, this dataset included 66.8min of relevant

drinking motions. Embedding data accounted for >90% of

the entire dataset.

2) Dataset 2: spotting chewing strokes: Chewing is an

important feature of the eating microstructure and relevant

in various biomedical investigations and assessments, as

well as to estimate food intake routines. In this dataset a

ear-worn sound transducer was considered to monitor food

chewed between teeth. The vibration of broken foods is

conducted through mandible and skull to the ear canal.

Scenario and analysis using a static spotting algorithm had

been previously reported for this dataset in [23]. Here the

dataset properties are briefly summarised.

Eight volunteer students (two female, six male) aged

between 20 to 35 years were recruited to consume dif-

ferent foods in their habitual style, while chewing sounds

were recorded. Sound was recorded at 44.1 kHz. The total

dataset was 8.64 h. The average recording per participant

was 64.83min. In total 7910 chewing cycles were identified

and annotated in 504 chewing sequences. Here we consider

two example participants, who were consuming apples.

Embedding data was ∼97.7% on average for these cases.

B. Considered activity spotting algorithm

Activity event spotting was performed using the feature

similarity search (FSS) algorithm [4], [24]. The algorithm

uses continuous sensor streams to spot events that are

embedded in arbitrary data and can cope with variable-length

events. This section briefly outlines FSS.

1) Feature processing and selection: A general set of

time-domain features (for dataset 1) and frequency-domain

features (for dataset 2) was computed to model event data

patterns, as described in [7] and [23] respectively.

In both datasets the feature set was computed for three

evenly distributed sections of sensor data, and the entire

event instance. To select relevant features a Mann-Whitney-

Wilcoxon test was used to compare event instances to

embedding data of a training set. This ranking was refined

by analysing correlations among all features. A set of

20 features (for dataset 1) and 40 features (for dataset 2)

was selected that yielded the highest rank and minimum

correlation scores. This approach corresponds to a method

described in [25].

2) Feature similarity search (FSS): The FSS algorithm

consists of a signal pattern modelling (training) and a search

stage. In both datasets one category of activity events was

considered: drinking motions and apple chewing strokes

respectively. A separate training dataset was used to de-

termine FSS model parameters and select the feature set.

An independent evaluation set was subsequently used to

determine performance results.

For the FSS algorithm we used an equidistant segmen-

tation of 0.5Hz for dataset 1 and 0.125Hz for dataset 2.

These setting provided sufficient resolution for drinking

“Sip” motions (length was ≥3 s) and chewing strokes (length

was ≤1 s).

While spotting performance could be improved using

data-adaptive segmentation approaches, this work empha-

sises the generalisation and spotter adaptation analysis. The

FSS algorithm operation can be summarised as follows [4]:

For each of the segmentation points, a scaling window of

previously received data is analysed. The features in this

window are compared to a trained model and the Euclidean

distance dS to this model was computed. A sliding window

is maintained to capture temporal collisions between previ-

ously retrieved events and new ones. Each retrieved event is

associated with its respective model distance dS . A distance

threshold θd is used to determine sections that are considered

as spotting result (retrieved items). This threshold and the

scaling window search bounds were determined during the

training step.

The decision step in FSS can be formulated as a function

hFSS to be evaluated at each timestep t:

t : hFSS =

{

report event, if dS ≤ θd

ignore, otherwise
. (4)
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C. Generalisation analysis

The generalisation effect was analysed by arbitrary chang-

ing dataset sizes. In particular, to demonstrate effects of

varying PR-performance, the number of relevant items was

changed with a constant set of embedding data.

Figure 1 shows the effect of generalisation for one partic-

ipant of dataset 1 exemplary. A fraction of relevant event c
was applied for each PR-curve. As this PR-plot illustrates,

the spotter achieves an excellent performance when left

unchanged (r=1.0, p=0.96). However, when the number of

relevant events is decreased, performance drops as well. A

similar effect could be observed when increasing embedding

data size with respect to relevant items (here, drink gesture

events).
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Figure 1. Drinking gesture spotting performance (dataset 1) for different
generalisation settings and a constant-sized embedding data. The legend
shows applied fractions of relevant events (1.0 . . . 0.1). For 1.0c the
base event rate was 0.023Hz, representing an excellent spotting perfor-
mance (r=1.0, p=0.96).

Figure 2 illustrates an example performance for one

participant of dataset 2. This plot is derived in the same

way as for Fig. 1 before. However, in this case the spotter

performs weaker (r=0.61, p=0.55), thus effects for changing

the number of relevant items is not as strong as in dataset 1.

At a event rate of 0.6c and below, spotting did not achieve

usable results for dataset 2.

From both analyses it can be concluded that generalisation

plays an important role in activity spotting analysis. On

its own, generalisation can be assessed and compared with

domain knowledge on the number of events per time unit to

expect. In combination with PR-information, generalisation

provides a more complete assessment of spotting perfor-

mance. The concept of generalisation is further utilised in

the following sections to adapt spotting sensitivity, given an

expected event rate.
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Figure 2. Chewing spotting performance (dataset 2) for different general-
isation settings and a constant-sized embedding data. The legend shows
applied fractions of relevant events (1.0, 0.8, 0.6). For 1.0c the base
event rate was 0.069Hz, representing a weak spotting performance (r=0.61,
p=0.55).

IV. CONCEPT OF EVENT RATE-ADAPTIVE SPOTTING

As shown by generalisation analysis in the previous

section, spotting performance results essentially depend on

selecting an appropriate relation between the number of

relevant items and total dataset size. Given a constant

generalisation, it is shown in this section how an FSS spotter

could utilise event rate information as feedback to adapt its

sensitivity.

A. Event rate notation

Section II-B introduced generalisation for activity spot-

ting. Specifically in activity spotting, generalisation corre-

sponds to a easily interpretable rate of events. Given the

formulation of generalisation in Eq. 3, the event rate E is

subsequently measured as:

Event rate: E =
events

time unit
. (5)

The separate notation is made here to distinguish the

event rate as a specific measure of the activity spotting

domain from a general definition of generalisation used in

information retrieval. In this work, event rate E is used

to measure both correctly recognised event rates (during

training) and retrieved event rates (during evaluation) and

denoted in Hz.

B. Threshold-adaptive FSS

The decision boundary between relevant events and em-

bedding data is an interpretable and influential element de-

termining spotter performance. This is particularly relevant

for FSS, which depends on estimating an decision threshold

during a training step.

For FSS, a decision threshold θd is derived by evaluating

relevant events in a training set with respect to embedding
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data. Thus the training set XTrain must be composed of

feature instances of positive (relevant events) f+Train and

embedding data examples f−Train. Thus θd is estimated by

minimising the empirical training error εemp:

θd,Train = argmin
θd

εemp(hFSS , θd,XTrain) . (6)

For the threshold-adaptive FSS, θd can be dynamically

modified, by minimising:

θd,Adaptive(t) = argmin
θd

(

1 −
EActual(t)

EExpected

)

. (7)

In Eq. 7, the minimisation problem is now dependent on

a ratio of actual and expected (estimated from training data)

event rates. Since the actual event rate is time-dependent,

this holds for an adaptive threshold as well.

Eq. 7 denotes magnitude and direction of a sensitivity

adaptation. The larger the ratio of EActual(t)/EExpected,

the larger is the estimated performance gap. Moreover, the

sign in Eq. 7 denotes whether too many or too few events

are reported with regard to an expected rate. Based on

this concept, a standard control procedure can be deployed

to perform decision threshold adaptations during system

runtime.

V. PERFORMANCE ANALYSIS OF EVENT RATE-ADAPTIVE

SPOTTING

Spotter sensitivity adaptation based on the event rate

criterion was subsequently analysed in two datasets, as

introduced before. In particular, training-based performance

is taken as baseline and performance gains achieved by the

adaptation were evaluated.

In this analysis individual contributions of precision and

recall are not relevant. Instead, an optimum between these

two metrics was used for simplified notation and perfor-

mance comparison. Thus, the f-measure was used in this

section according to:

f =
2 p r

p + r
. (8)

When using the decision threshold adaptation for FSS,

pattern model training does not need to consider the expected

event rate EExpected, as long as this rate is known and can be

configured during deployment. The condition of an arbitrary

event rate during event model training was considered in

evaluations of study participants S1-S4 of dataset 1. In

participants S5 and S6 the same expected and evaluation

set event rates were used. Both conditions are practically

relevant, since actual event rates might fluctuate during

runtime and hence require adaptations towards an expected

rate.

Figure 3 shows spotting performances with regard to

actual event rates EActual retrieved from the spotter. Vertical

lines in Fig. 3 indicate location of initial event rates accord-

ing to the threshold training (compare Eq. 6). Subsequently,

thresholds can be shifted to match EExpected. Table I

summarises all sensitivity adaptation performances. As these

results indicate, for all participants a performance improve-

ment or a constant performance was achieved. The largest

performance increase was 28% with regard to the initial

training threshold. This confirms that an expected event rate

is a useful measure to estimate spotting performance.
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Figure 3. Drinking gesture spotting performance (dataset 1) in relation
to actual event rate EActual for individual study participants (S1–S6).
Performance of a training-estimated threshold is shown as vertical lines:
upper plot: initially, EExpected 6= EActual, lower plot: EExpected =

EActual.

Figure 4 shows performance results for decision thresh-

old adaptation in dataset 2. Due to the fact that spotting

performance is lower over the entire PR-space compared

to dataset 1 (see Section III), adaptation gains are lower as

well. This can be seen in a less pronounced maximum f-

metric point. Table 4 summarises results for dataset 2. A

maximum adaptation gain of 12.2% was achieved, despite

the fact that initial training was performed at the expected

event rate. This indicates that training and evaluation data
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Table I
SUMMARY OF THE DRINKING GESTURE SPOTTING

PERFORMANCE (DATASET 1) FOR INDIVIDUAL STUDY

PARTICIPANTS (S1–S6).

Metric S1 S2 S3 S4 S5 S6

cTrain 63 66 66 74 72 76

ETrain 0.029 0.033 0.030 0.029 0.029 0.032

cTest 23 26 25 25 34 32

EEval 0.017 0.023 0.02 0.02 0.029 0.033

1 − g [%] 93 95 94 94 91 90

Adaptation [%]a 28 2 4 17 5 2

Peak test [%]b 34 4 5 22 12 2

a Gain in f-metric performance of event rate adaptation compared to
static FSS spotting using θd,Train.

b Difference between maximum f-metric result and static FSS spotting.

have different properties, which can be compensated by the

event rate adaptation.
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Figure 4. Chewing spotting performance (dataset 2) in relation to actual
event rate EActual for individual study participants (S1, S2). Performance
of a training-estimated threshold is shown as vertical lines, coinciding with
EExpected.

In addition, Tables II and I show differences between

training-estimated thresholds and maximum f-metric perfor-

mance on evaluation data. This value represents an upper

bound for the adaptation gain. In practise however, as the

results of this work show, this cannot be fully exploited.

Obviously there are more severe pattern differences between

training and evaluation, which cannot be compensated by the

event rate adaptation.

VI. CONCLUSION AND FURTHER WORK

This work presented a novel approach to adapt the sensi-

tivity of activity spotting algorithms according to its event

rate performance. Event rate is an alternate interpretation for

generalisation in activity event spotting problems. Results of

Table II
SUMMARY OF THE CHEWING SPOTTING PERFORMANCE (DATASET 2)

FOR INDIVIDUAL STUDY PARTICIPANTS (S1, S2).

Metric S1 S2

cTrain 225 267

ETrain 0.069 0.077

cTest 225 267

EEval 0.069 0.077

1 − g [%] 97.7 97.7

Adaptation [%] 12.2 −1.3

Peak test [%] 14.7 1.9

this work show that sensitivity adaptations can profoundly

improve spotting performance.

A sensitivity adaptation mechanism, as it is proposed in

this work, allows to obtain a transparent control loop and

avoid instability. Here, adaptation was limited to event rate

as single parameter for which a target (expected event rate)

was specified. Moreover, contributing to system stability, an

dynamically adaptive algorithm may start from a pre-trained

event model configuration, which had been derived under

supervised conditions.

Prerequisites for this approach are that an expected event

rate can be estimated from training data, or event rate bounds

can be derived based on expert knowledge of an application.

It can be expected that event rate-based adaptations of

activity spotters become most useful for applications where

minimal event rate variance is observed. In these situations

the adaptation process can compensate for variable event pat-

terns and pattern noise levels, which hampers performance

of static spotting.

This work identified generalisation as a relevant metric

and useful tool for activity spotting. Performance improve-

ments due to this self-adaptive concept are promising and

suggest further exploration. In subsequent work dynamic

control techniques should be considered to realise adaptive

systems based on this approach.
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nition of user activity sequences using distributed event de-
tection,” in EuroSSC 2007: Proceedings of the 2nd European
Conference on Smart Sensing and Context, ser. Lecture Notes
in Computer Science, vol. 4793. Springer, October 2007, pp.
126–141.

[2] T. Stiefmeier, D. Roggen, G. Troster, G. Ogris, and P. Lukow-
icz, “Wearable activity tracking in car manufacturing,” IEEE
Pervasive Computing, vol. 7, no. 2, pp. 42–50, April-June
2008.

[3] J. Ward, P. Lukowicz, G. Tröster, and T. Starner, “Activity
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