

Grasp: Tracing, visualizing and measuring the behavior of
real-time systems
Citation for published version (APA):
Holenderski, M. J., Heuvel, van den, M. M. H. P., Bril, R. J., & Lukkien, J. J. (2010). Grasp: Tracing, visualizing
and measuring the behavior of real-time systems. In G. Lipari, & T. Cucinotta (Eds.), 1st International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS, Brussels, Belgium, July
2010; in conjunction with ECRTS 2010) (pp. 37-42). Real-Time Systems Laboratory, Scuola Superiore
Sant'Anna.

Document status and date:
Published: 01/01/2010

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/234a04c1-6488-46c9-83b7-f6914cf959b3

Grasp: Tracing, Visualizing and Measuring the
Behavior of Real-Time Systems

Mike Holenderski, Martijn M.H.P. van den Heuvel, Reinder J. Bril and Johan J. Lukkien

Department of Mathematics and Computer Science

Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5600 AZ Eindhoven, The Netherlands

Abstract—Understanding and validating the timing behavior of
real-time systems is not trivial. Many real-time operating systems
and their development environments do not provide tracing
support, and provide only limited visualization, measurements
and analysis tools. This paper presents Grasp, a tool for tracing,
visualizing and measuring the behavior of real-time systems.
Grasp provides a simple plugin infrastructure for extending
it with custom visualization and measurement methods. The
functionality of Grasp is demonstrated based on experiences
during the development of various real-time extensions for the
commercially available μC/OS-II real-time operating system. All
the tools presented in this paper are open source and freely
available on the web1.

I. INTRODUCTION

A real-time system is usually comprised of a real-time
application running on top of a real-time operating system.
One such operating system is μC/OS-II [Labrosse, 1998]. It
is maintained and supported by Micrium, and is applied in
many application domains, e.g. avionics, automotive, medical
and consumer electronics. Our choice of μC/OS-II is in line
with our industrial and academic partners.

Based on the requirements posed by the real-time ap-
plications we are researching, we have set out on ex-
tending μC/OS-II with several real-time primitives. In
[Holenderski et al., 2008] we presented an application of our
industrial partner in the surveillance domain and pointed out a
problem with their current system. We proposed a solution and
identified several extensions required from the underlying real-
time operating system. These include processor reservations
based on deferrable servers, and support for resource sharing
based on the Stack Resource Policy (SRP) [Baker, 1991].

A. Problem Description

During the development of these μC/OS-II extensions we
needed to validate the behavior of the introduced primitives.
Many commercial off-the-shelf real-time operating systems
and their development environments, including μC/OS-II, do
not support tracing, and provide only limited visualization and
analysis support. Moreover, current visualization tools only
allow to visualize single level scheduled systems. Finally, most
commercial tools are not easily extensible.

1The work presented in this paper is supported in part by the
European ITEA2-CANTATA project and the Dutch HTAS-VERIFIED
project. The Grasp player together with two demo traces is available at
http://www.win.tue.nl/∼mholende/grasp

B. Contributions

In this paper we address the problem of tracing, visualizing
and measuring the behavior of real-time systems and present
Grasp, which is a set of tools addressing this problem. It
comes with a powerful set of features out of the box, such
as visualization of servers in hierarchical scheduling and
buffer usage for tasks communicating via shared buffers. It
also provides a simple infrastructure for extending it with
custom visualization and measurement plugins. We used Grasp
extensively during the development of several extensions of
μC/OS-II. The target systems were executed in the cycle
accurate OpenRISC simulator [OpenCores, 2009].

C. Outline

The remainder of this paper is structured as follows. In
Section II we summarize the related work, followed by a
description of our execution environment in Section III. Sec-
tion IV is the main contribution of this paper. It presents
Grasp, illustrated with examples from extending μC/OS-II
with additional real-time primitives. Section V concludes the
paper and outlines the future work.

II. RELATED WORK

In this section we outline the existing work related to the
real-time operating system under consideration, followed by
a discussion of the support for tracing, visualization, and
measurements provided by existing tools.

A. μC/OS-II and its tools

Micrium provides the full μC/OS-II source code accom-
panied by an extensive documentation [Labrosse, 1998]. The
μC/OS-II kernel provides preemptive multitasking, and the
kernel size is configurable at compile time, e.g. services like
mailboxes and semaphores can be disabled. It is well suited
for proprietary extensions and experimentation.

A μC/OS-II application can enable a built-in statistics
task, which collects information about the processor usage
of all tasks in the system. Micrium also provides a powerful
monitoring tool called μC/Probe, allowing to inspect the state
of any variable, memory location, and I/O port in a μC/OS-II
enabled application during runtime. However, there is no
tracing support for μC/OS-II.

B. Tracing

There are basically two approaches to tracing: instrumen-
tation and sampling [Mughal and Javed, 2008]. With instru-
mentation, code is inserted in key places of the system (such
as the top of particular method calls). This code then records
the events at runtime for later offline analysis. With sampling,
the system remains unmodified and is instead analyzed peri-
odically by a profiler during runtime, allowing inspection of
metrics such as the amount of CPU time used by processes
and/or functions. Grasp and all other tools presented in this
section take the instrumentation approach, where a recorder
component generates a trace file which later serves as input
for the visualization application.

The format of the trace file has several implications.
A standard textual file format (e.g. XML used by VET
[McGavin et al., 2006]) can be used as input for other tools
with relatively little effort. A binary file format (e.g. used by
the Tracealyzer [Mughal and Javed, 2008]) results in smaller
trace files, which can be important when tracing is a part of the
target system after deployment in the field. A Grasp trace is a
Tcl [Welch et al., 2003] script. It is less verbose than XML,
but not as compact as a binary representation. However, its
main advantage is the flexibility it offers for the Grasp player,
as explained in Section IV.

C. Trace visualization

Traces contain huge amounts of data, which may be of
no interest for a particular investigation. Several visualization
tools therefore provide filtering mechanisms, which allow
the user to display only those events he is interested in.
Tracealyzer [Mughal and Javed, 2008] offers predefined filters
which can be changed during the visualization, allowing to
hide certain events, such as locking of a semaphore. VET
[McGavin et al., 2006] provides a plugin mechanism allowing
an expert user to implement custom filters, which then can then
be reused by regular users. The Grasp player presented in this
paper allows to filter trace events referring to certain tasks.

A trace can be visualized in different ways, e.g. one may
want to show the task execution on a timeline, or how each
task contributes to the current processor load. Tracealyzer
provides a timeline and load view. VET provides a message
sequence and class association diagrams, but also supports
tracing of custom events, and an API which can be used to
implement custom visualizations. This API, however is limited
to a fixed event structure. The file format for Grasp traces
allows to easily extend the trace with arbitrary custom events
and visualizations.

To the best of our knowledge, all existing tracing tools
can visualize only single level scheduling. Grasp on the other
hand, also allows to visualize hierarchical systems by means
of illustrating the budget consumption of servers. In case
tasks communicate via shared buffers, Grasp can also provide
insight into the contents of the buffers at any moment during
the traced system execution.

D. Trace measurements

Tracealyzer measures the execution time, response time and
number of fragments for each job and the corresponding worst
case and average case values of all jobs of a task. Grasp
measures the execution and response time of jobs and provides
a summary of the average, best case and worst case times of
all jobs of a task. It also allows to easily implement custom
measurement tools, as illustrated in Section IV-D.

III. SIMULATION PLATFORM

To run our target systems we needed an execution envi-
ronment supporting μC/OS-II. To avoid the inconveniences of
running the target systems directly on hardware, we chose to
run them inside the cycle-accurate OpenRISC simulator.

The OpenCores project [OpenCores, 2009] provides an
open source platform architecture, including software devel-
opment tools. The hardware architecture comprises a scalar
processor and basic peripherals to provide basic functional-
ity [Bolado et al., 2004]. The small and predictable processor
architecture makes the OpenRISC processor suitable for real-
time computing [Whitham and Audsley, 2006]. The accompa-
nying Software Development Kit (SDK) is based on GNU
tools. It includes a C/C++ compiler, linker, debugger and ar-
chitectural simulator. The OpenRISC simulator allows simple
code analysis and system performance evaluation. Recently,
we created a port for μC/OS-II to the OpenRISC platform2.

Unlike other μC/OS-II simulators, such as the Windows and
Linux ports [uco, 2007], the OpenRISC port provides a cycle-
accurate simulation: it is independent of the system load due to
other applications on the host operating system and therefore
provides predictable timing behavior for timed events.

It is important to note that the only interface to the simulator
during runtime is via the standard input and standard output.
In particular, there is no support for reading from or writing
to files on the host operating system.

IV. GRASP

Grasp is composed of three entities, shown in Figure 1. The
recorder is responsible for generating the trace of the target
system. The generated trace file contains the raw data from a
particular run, which is not comprehensible in its raw form.
The player reads in a trace and displays it in an intuitive way.

Note that the recorder and the player are independent
of each other, as long as the trace follows the predefined
format. In this paper we demonstrate a Grasp recorder for
μC/OS-II. Porting Grasp to other operating systems requires
only implementing a Grasp recorder.

A. Grasp recorder

The Grasp recorder is implemented as a library providing
functions to initialize the recorder, log events, and finalize the
recorder. Calls to the event logging methods are inserted at
several places inside the kernel to log common events, such
as context switches and the arrival of periodic tasks. The

2A precompiled OpenRISC tool chain for Linux (Ubuntu 8.10) is available
at http://www.win.tue.nl/∼mholende/ucos

Target system

uC/OS-II

Grasp
recorder

Grasp
trace

Grasp
player

Application

OpenRISC
simulator

Fig. 1. The Grasp architecture

recorder also provides a function to log custom events, which
the programmer may call inside his application.

To limit the interference with the target system, during run-
time the μC/OS-II Grasp recorder stores the event information
in a binary format in an array in the memory. Each event
occupies 20 bytes of memory and takes 218 instruction cycles
to log (on a 32-bit OpenRISC architecture).

At the end of a simulation the log array is traversed, a
trace is generated and written to a file in text format. This
way the I/O overhead associated with writing the trace to a
file is postponed until the very end and limits the interference
with the target system during a simulation run. Note that the
OpenRISC simulator has no file system support, but does allow
to print to the standard output via the printf() method. The
recorder therefore prints the contents of the trace file to the
standard output, which is then redirected to a file on the host
operating system.

B. Grasp trace

The Grasp trace file is actually a Tcl [Welch et al., 2003]
script. An excerpt from an example trace is shown in Figure 2.

1 ...
2 plot 50 taskArrived Task0x11da50
3 plot 50 jobPreempted Job0x11d948_1 \\
4 -target Job0x11da50_1
5 [Job Job0x11da50_2] initWithTask Task0x11da50 \\
6 -name "Task1 2"
7 plot 50 jobResumed Job0x11da50_2
8 plot 60 jobCompleted Job0x11da50_2
9 plot 60 jobPreempted Job0x11da50_2 \\
10 -target Job0x11d948_1
11 plot 60 jobResumed Job0x11d948_1
12 ...

Fig. 2. An excerpt from a trace file.

Each line in the trace is a Tcl command. A Tcl command
has a very simple syntax: method name followed by a possibly
empty list of arguments separated by spaces. Let us take a
closer look at the first line in Figure 2, which indicates the

arrival of task Task0x11da50. The meaning of this command
is the following:

• plot is the method name responsible for handling this
trace event. In Section IV-D we will see how this
dispatching mechanism is used to implement plugins.
The method determines the semantics of the following
arguments. In this case, the plot method expects at least
two arguments:

• 50 is the event time. Time is measured in ticks. In our
simulations 1 tick corresponds to 1ms.

• taskArrived is the event kind.
• Task0x11da50 is an additional argument. In this case it

identifies the task which has arrived. In Grasp each trace
object such as a task or a job has a unique identifier.

Figure 2 shows also several other events. For example at
time 50 the job with id Job0x11d948_1 is preempted by the
job with id Job0x11da50_1. In the following sections we
will describe other events supported by Grasp.

Every task or job referred to by an event needs to be created
first. Line 5 in Figure 2 creates a job with id Job0x11da50_2

for a task with id Task0x11da50. The optional parameter
-name specifies a custom job name, referring to the second
job of task Task1.

Note that since a trace is a Tcl script it may contain any
Tcl code, in particular it may define its own methods, include
loops, etc. While we do not exploit this feature in this paper,
we have used it during the development of Grasp itself.

C. Grasp player

The Grasp player is written in the Tcl scripting language1.
The job of the Grasp player is basically to provide an ex-
ecution environment for the script inside a Grasp trace, by
implementing all methods called in a trace file.

The Grasp player goes through the following stages:

1) Load the default methods, e.g. the plot method in
Section IV-B.

2) Load any plugins, which define additional methods.
3) Read in and execute the trace script.
4) Do any post processing, e.g. export a postscript file.

Note that step 3 is a single Tcl command, but it is also the
place where the main work happens and where the trace is
actually visualized.

A handy feature of the Grasp player is the option to export
the trace visualization to a postscript file and an option to print
a legend. These are useful for automatically creating figures
for research articles. An example of such a figure is shown in
Figure 3, which visualizes the complete trace from Figure 2.

Shared resources: Grasp can visualize the synchronization
of tasks in case they share resources.

Figure 3 demonstrates the behavior of three fixed priority
scheduled tasks, with two of them (Task2 and Task3) sharing
one logical resource according to the Stack Resource Pol-
icy [Baker, 1991]. The highest priority task has the lowest
index number, i.e. Task1 has the highest priority. In this
example, the execution of a critical section is visualized by

0 50 100

Task1

Task2

Task3

Idle

Legend:

active

holding mutex

preempted

Fig. 3. Example trace visualization created by the Grasp player.

a dark section. Acquiring and releasing of mutexes is traced
by the events jobAcquiredMutex and jobReleasedMutex,
which are not visualized in the example.

Hierarchical scheduling: An interesting and unique feature
of Grasp is the built in support for visualizing behavior of
servers in a hierarchical real-time system. An example is
shown in Figure 4.

There are four server events:

1) serverReplenished sets the capacity of a server.
2) serverDepleted creates a depleted message for a

server.
3) serverResumed starts consuming a server’s budget at

a constant rate of 1 unit per time unit.
4) serverPreempted stops consuming a server’s budget.

These four events are sufficient to visualize the be-
havior of most servers in the real-time literature. We
have extended μC/OS-II with polling [Lehoczky et al., 1987],
periodic idling [Davis and Burns, 2005] and deferrable
servers [Strosnider et al., 1995].

Figure 4 shows a Grasp player window after loading a trace
file. The task execution is shown on top, with the server
capacities illustrated underneath. In this particular example
Task1 is assigned to the Deferrable Server, and Task2 is
assigned to the Polling Server. The different shapes under-
neath the timeline indicate different events. For example, a
triangle pointing upwards indicates a server replenishment and
a square indicates the arrival of a periodic task. Clicking on a
shape with the mouse reveals details about the event, e.g. the
name of the server which is replenished.

The thin vertical line spanning across the tasks and servers
is the time marker. It moves with the mouse cursor and
indicates the current time in the visualization, also shown in
the windows title bar.

During the development of the different servers Grasp
provided useful insight into their behavior and speeded up
the debugging process considerably.

D. Grasp plugins

Choosing the Tcl script format for a Grasp trace allows
for a very simple interface for implementing plugins: a Grasp
plugin is a set of methods which are called within a Grasp

Fig. 5. Example of a trace visualization using the BufferPlot plugin.

trace. There are no restrictions on the syntax of the plugin
methods, as long as they do not conflict with the default Grasp
player methods.

To facilitate plugins which depend on the current time
indicated by the time marker, Grasp provides an abstract event
<<TimeChanged>>. A plugin can register for an abstract event
using the Tcl bind command.

Plugins are loaded into a Grasp player by executing the
player from the command line with the -plugins option
followed by a list of paths to Tcl scripts implementing the
plugins. Alternatively, the plugin scripts can be placed in the
plugins subdirectory. All scripts residing in this directory are
loaded automatically by the player.

In our recent work on mode changes in multimedia applica-
tions [Holenderski et al., 2009] we investigated an application
comprised of a set of tasks communicating via shared buffers.
We used Grasp to gain insight into the behavior of buffers and
to measure the mode change latencies. We have implemented
two plugins for this purpose.

The BufferPlot plugin defines four new events: push,
pop, insert and drop. BufferPlot is implemented as a
XOTcl class, which is an object oriented extension for Tcl.

Fig. 4. Example of a trace visualization for hierarchical scheduling. The Task1 and Task2 tasks are assigned to the Deferrable Server and Polling Server,
respectively.

It follows the same structure as the Plot class behind the
plot command, and implements the new events as instance
methods. In the trace the new events are passed as arguments to
the bufferplot command, rather than plot, which then dis-
patches the appropriate BufferPlot method. Figure 5 shows
an example of how this Grasp plugin correlates the contents
of the buffers with the task execution of the application.

The Tcl file format of a Grasp trace makes it possible to
embed plugins inside a trace file. Since a plugin is simply a
definition of methods called within a trace file, inserting the
plugin code at the beginning of the trace file will make sure
that the necessary methods are defined before they are used.
This allows to distribute a single self-contained trace file which
can be visualized with any Grasp player, independent of the
available plugins.

E. Grasp measurement

The Grasp player measures the execution and response time
of jobs and provides a summary of the average, best case and
worst case times for all jobs of a task. This information is
shown on demand, by clicking on a job or a task label, or by
selecting “Measurements” from the menu, shown in Figure 6.

The Grasp plugins also allow to easily implement custom
measurement tools, as we did for measuring the mode change
latencies for our recent work [Holenderski et al., 2009].

To measure the mode change latencies we have added
a simple plugin which extended the Plot class with

Fig. 6. Example of trace measurements, summarizing the worst-case
(WCET), average-case (ACET) and best-case (BCET) execution times, and
the worst-case (WCRT), average-case (ACRT) and best-case (BCRT) response
times for all application tasks.

three new events: latencyStart, latencyStop and
latencySummary. The first two events are generated through-
out the simulation whenever a mode change occurs. The latter
event is generated at the end of the simulation. Its handler
collects all the latencies, uses the gnuplot tool [gnu, 2010]
to plot them on a graph, and automatically writes the graph
to a postscript file.

V. CONCLUSIONS

In this paper we presented the Grasp toolset for tracing,
visualizing and measuring the behavior of real-time systems.
Grasp can be used to evaluate new algorithms and scheduler
implementations in an operating system. We have used Grasp
extensively during the development of several extensions for
the μC/OS-II real-time operating system, some of which were

used in this paper to illustrate the Grasp features.
Grasp is composed of three parts: (i) the recorder, (ii) the

trace file and (iii) the player. The Grasp’s recorder takes the
instrumentation approach to tracing, catching all events of
interest. It limits the interference by storing the traced events
in memory during runtime and writing the trace to a file only
at the end of a run. The recorder is the only operating system
specific part of the Grasp toolset. A Grasp trace is stored in the
Tcl script format. The expressiveness of this format allows to
easily extend Grasp functionality with visualization and mea-
surement plugins. The Grasp player interprets the Tcl script
containing the recorded trace. It visualizes task execution, task
synchronization, servers in hierarchical scheduling and buffer
usage for tasks communicating via shared buffers.

Future work

We have implemented a Grasp recorder for μC/OS-II within
the OpenRISC simulator. Our current research focusses on
(i) deploying the Grasp recorder in an embedded environment,
and (ii) investigating the applicability of the Grasp recorder in
other real-time operating systems.

In this paper we have shown how to visualize a Grasp trace
using the Grasp player. A trace, however, can also be used
for validating the behavior of the target system by comparing
its trace to a reference trace automatically. To make sure
that a change in the implementation of one primitive has no
impact on other parts of the system, we have setup a test
suite which automatically checks whether a new μC/OS-II
extension did not invalidate existing behavior. The test suite
is comprised of a set of test applications with reference traces
and a shell script. The script executes all the test applications
and compares the new traces against the reference traces.
Currently, two traces are considered to be equivalent if they
exhibit the same timing behavior, modulo the unique identifiers
(e.g. job identifiers) particular to every simulation run. This
approach, however, may result in false positives, when a trace
exhibits correct behavior, but is not equivalent to the reference
trace due to different overheads of the primitives resulting in

different computation times of tasks and consequently leading
to a different preemption behavior, which nonetheless may be
correct. As future work we would like to investigate more
resilient testing methods for exploiting the Grasp traces to
validate the timing behavior of a real-time system.

REFERENCES

[uco, 2007] uCOS-II WIN32, LINUX und Freescale HCS12 PORT. 2007.
URL http://www.it.fht-esslingen.de/∼zimmerma/software/.

[gnu, 2010] Gnuplot. 2010. URL http://www.gnuplot.info.
[Baker, 1991] T. P. Baker. Stack-based scheduling for realtime processes.

Real-Time Systems, vol. 3(1):pp. 67–99, 1991.
[Bolado et al., 2004] M. Bolado, H. Posadas, J. Castillo, P. Huerta,

P. Sánchez, C. Sánchez, H. Fouren, F. Blasco. Platform based on
open-source cores for industrial applications. In Conference on Design,
Automation and Test in Europe (DATE), p. 21014. 2004.

[Davis and Burns, 2005] R. I. Davis, A. Burns. Hierarchical fixed priority
pre-emptive scheduling. In Real-Time Systems Symposium (RTSS), pp.
389–398. 2005.

[Holenderski et al., 2008] M. Holenderski, R. J. Bril, J. J. Lukkien. Using
fixed priority scheduling with deferred preemption to exploit fluctuating
network bandwidth. In Work in Progress session of the Euromicro
Conference on Real-Time Systems (ECRTS). 2008.

[Holenderski et al., 2009] M. Holenderski, R. J. Bril, J. J. Lukkien. Swift
mode changes in memory constrained real-time systems. In International
Conference on Embedded and Ubiquitous Computing (EUC), pp. 262–
269. 2009.

[Labrosse, 1998] J. J. Labrosse. Microc/OS-II. R & D Books, 1998.
[Lehoczky et al., 1987] J. P. Lehoczky, L. Sha, J. K. Strosnider. Enhanced

aperiodic responsiveness in hard real-time environments. In Real-Time
Systems Symposium (RTSS), pp. 261–270. 1987.

[McGavin et al., 2006] M. McGavin, T. Wright, S. Marshall. Visualisations
of execution traces (vet): an interactive plugin-based visualisation tool.
In Australasian User Interface Conference (AUIC), pp. 153–160. 2006.

[Mughal and Javed, 2008] M. I. Mughal, R. Javed. Recording of Scheduling
and Communication events on Telecom Systems. Master’s thesis,
Mälardalen University, 2008.

[OpenCores, 2009] OpenCores. OpenRISC overview. 2009. URL http://
www.opencores.org/project,or1k.

[Strosnider et al., 1995] J. K. Strosnider, J. P. Lehoczky, L. Sha. The de-
ferrable server algorithm for enhanced aperiodic responsiveness in hard
real-time environments. IEEE Transactions on Computers, vol. 44(1):pp.
73–91, 1995.

[Welch et al., 2003] B. Welch, K. Jones, J. Hobbs. Practical Programming
in Tcl and Tk. Prentice Hall, 2003.

[Whitham and Audsley, 2006] J. Whitham, N. Audsley. MCGREP–a pre-
dictable architecture for embedded real-time systems. In Real-Time
Systems Symposium (RTSS), pp. 13 –24. 2006.

