

Check-mate: Automatic constraint checking of IFC models

Citation for published version (APA):
Niemeijer, R. A., Vries, de, B., & Beetz, J. (2009). Check-mate: Automatic constraint checking of IFC models. In
A. Dikbas, E. Ergen, & H. Giritli (Eds.), Managing IT in Construction/Managing Construction for Tomorrow (pp.
479-486). CRC Press.

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/1cccc43f-27c9-4e67-b3d2-d0a5dd936a06

1 INTRODUCTION

Adoption of CAD (Computer Aided Design) in the
building industry has so far focused mainly on re-
placing drawing lines on paper with drawing lines on
a computer. Although this is an improvement – mak-
ing changes is now much easier – it uses only a frac-
tion of the potential of CAD. Checking whether a
building complies with building codes and other leg-
islation, for instance, is still left up to the architects
and building committees. Adding semantic informa-
tion to the current CAD models opens up (among
others) the possibility of delegating this task to the
computer.

While designing the building, the architect could
get immediate feedback on whether or not his design
violates any of the constraints imposed by building
codes. Although this would be useful in its own
right, such an approach offers even more potential
for the field of mass customization (van den Thillart
2004; Huang & Krawczyk 2007). The idea of mass
customization is to allow client input in the product
design without losing the benefits of mass produc-
tion. The limited adoption of mass customization in
the building industry has so far focused on providing
the client with a few alternatives to choose from. In
this new approach, however, the client would have
significantly more freedom without requiring a cor-
responding increase in effort from the architect.

In this paper we describe a method of automati-
cally checking constraints on IFC (Industry Founda-
tion Classes) files.

2 SYSTEM DESCRIPTION

The prototype discussed in this paper is part of a
larger system that aims to make mass customization
easier for architects. The basic philosophy is that the
architect makes a design as usual, but in addition to
that he also specifies the requirements he wants the
final, customized, design to meet. For instance: “this
wall must contain at least three windows” or “the
façade material must be brick”. These rules are
known as constraints (Kelleners 1999; Strömberg
2006; Donath & Böhme 2007). The design is then
presented to the buyers, who are free to make
changes, as long as these changes are not prohibited
by the rules of the architect, building codes, laws,
etc. Whenever they make a change that violates any
of the constraints, they are presented with a warning.
The final design is not accepted until all such warn-
ings have been resolved.

Ideally the architect’s design would be made in a
CAD package that allows both real-time constraint
checking and constraint creation. That way the archi-
tect can get the most benefit from this approach.
Creating a full CAD package, however, is far from
trivial. In the meantime we therefore focus on check-
ing constraints on models created in existing CAD
packages. In order to make the approach as applica-
tion-agnostic as possible we focus on the interna-
tional IFC standard, which is the most widely sup-
ported file format among CAD applications that
preserves semantic information (i.e. information
other than just geometry).

Check-mate: automatic constraint checking of IFC models

R.A. Niemeijer, B. de Vries & J. Beetz
Eindhoven University of Technology, Eindhoven, Netherlands

ABSTRACT: Building Information Models (BIMs) allow for computationally checking whether a building
design satisfies all the building codes, requirements, etc. if constraints are included in the model. One applica-
tion for this is mass customization in the housing sector, when clients modify the design without help from the
architect. This paper describes the technical aspects of checking constraints on a building model. Specifically,
we look at the feasibility of checking constraints on an IFC model by creating a prototype in which constraints
can be entered and checked on an imported IFC model. Conclusions are drawn on the suitability of the IFC
model and how IFC can be extended or adjusted to support constraint checking.

3 RELATED RESEARCH

The idea of using constraints to check designs has
been accepted in the mechanical engineering indus-
try for many years (Anderl & Mendgen 1996; Gross
1996; Bettig & Shah 2003). In the building industry,
however, it has yet to be widely adopted. The two
closest analogues to our proposed system are proba-
bly the commercial CAD package Revit (Strömberg
2006) and the SMARTcodes project (Wix et al.
2008), but there are also several important differenc-
es. Revit – and indeed most research on constraints
(Martini 1995; Eggink et al. 2001; Hoffman & Kim
2001; Belblidia & Alby 2003; Nassara et al. 2003) –
focuses only on geometrical constraints. Our system
also considers non-geometrical constraints, such as
price, color and heat transmission. And whereas
SMARTcodes focuses exclusively on building codes
and laws, we also include constraints from other
domains, such as architecture, constructive engineer-
ing, building physics, common sense, etc.

Additionally, little attention has so far been given
to the method of specifying constraints. We want to
provide a simple method for architects to enter these
constraints. One of the examples of a system that
tries to facilitate constraint specification is the
SMARTcodes Builder of the SMARTcodes project
(AEC 3 2009). In this program, constraints are en-
tered by highlighting parts of regulations text with
one of four colors. These four colors represent four
functions (somewhat similar to the different puzzle
piece types in our system), which are used to convert

to convert the highlighted regulations text to com-
puter-checkable constraints. A screenshot of this ap-
plication is shown in Figure 1. Although the underly-
ing translation of text to constraints appears very
difficult from a technical standpoint, given the ap-
parent freeform nature of the text, this is one option
to consider for a future system.

4 CONSTRAINTS

A constraint is an assertion about building elements,
such as “every window must be less than 1200 mm
high”. A constraint is effectively a function that
takes as its argument a building element and returns
true (the element satisfies the constraint) or false (it
does not). Checking whether a certain design satis-
fies all the constraints is therefore a matter of apply-
ing all constraints to all elements in the design, and
checking whether they all return true. Some con-
straints, such as a constraint on the distance between
two elements, may take multiple building elements
as arguments.

Constraints are comparable to universal quantifi-
ers in the field of mathematics. For instance, the
quantification

means “for every x in the set of natural numbers, x is
more than or equal to 0”. If we rephrase our example
constraint to “for every window, the height of that
window must be at least 1200 mm”, the similarity
between the two is even easier to see.

Figure 1. SMARTcodes Builder (AEC 3 2009)

4.1 Limitations of Constraints

Although a lot of building codes can be checked by
the computer in this way, there are exceptions. As an
example, the constraint “The quality of the new
dormer must at least be equal to that of the existing
surrounding buildings” could in theory be entered,
but since it is not clearly defined it cannot be
checked by the computer. After all, what is meant by
quality? Technical quality? Aesthetics? Something
as subjective as aesthetical quality cannot objectively
be assessed. A solution to this is to add a type of
constraint that is not evaluated by the computer, but
instead poses the question to the user whether or not
the constraint has been met. At first glance this
might seem to be useless, but it does serve a pur-
pose. Constraints of this type serve as a sort of
checklist, so that none of the hundreds of rules the
architect has to follow is forgotten. Even the worst-
case scenario, where every constraint is a question
constraint, would still be an improvement on the cur-
rent situation, as it prevents overlooked constraints
and the subsequent failure costs.

4.2 Constraint-based design

It is important to distinguish between constraint-
based design and constraint solving. In constraint
solving the system tries to automatically find a de-
sign that matches all the constraints. In building de-
sign this approach is fairly impractical for two rea-
sons: Firstly, the solution space in building design is
very large. Even the simplest of houses will have
millions of possible solutions, which makes it in-
feasible to try to solve this on today’s computers.
Secondly, the client has little, if any, influence on the
resulting design, which ignores the philosophy be-
hind mass customization. Constraint-based design,
on the other hand, only verifies whether the design
that was created by the architect or the client does
not violate any of the given constraints; it is a valida-
tion rather than a creation tool.

One other thing to note is that the system can only
indicate if all the constraints have been satisfied; not
whether it is a good design. It should be possible to
reach a good technical and functional quality, pro-
vided that enough constraints are entered. The aes-
thetical quality, on the other hand, will remain an en-
tirely human judgment. Some aspects, such as
symmetry or color schemes, could be enforced by
constraints, but that will check taste rather than ob-
jective beauty. We therefore choose to focus on the
technical side of the constraint system, and conse-
quently the functional quality of the design, rather
than on value judgments of the design.

5 BUILDING INFORMATION MODELS

Checking constraints on a building requires a repre-
sentation of the building that carries the needed in-
formation. The traditional way of storing a building
design as a collection of lines – i.e. a direct replace-
ment of paper drawings – is insufficient for this pur-
pose. Instead, the building should be stored in a way
that preserves the semantic information. This can be
achieved by using a so-called Building Information
Model, or BIM. In a BIM the design is stored as a
collection of objects with associated properties (e.g.
a wall that has a length, height and material) instead
of a collection of lines. This building element based
approach makes it possible to check constraints,
since all the required data is present.

5.1 IFC

In the last few years, building information modeling
has become popular in the building industry, and as
a result of that there is now a wealth of different
building information models, with most CAD pack-
ages having an internal BIM. Unfortunately these
BIMs are not compatible; they all store different in-
formation and save to proprietary formats, making
data exchange very difficult. As a solution for this,
the Industry Foundation Classes (IFC) were created.
IFC is an ISO-certified standard to describe a BIM.
This is one of the few data exchange standards that
the building industry has that does not only describe
geometry, and most CAD packages are compatible
with it. Thus, a system that is compatible with IFC
should automatically work with all major CAD ap-
plications, without having to account for all their dif-
ferent internal BIMs. Another advantage of the IFC
standard is that is an open standard, as opposed to
the mostly closed standards of the CAD software
manufacturers, making it easier to implement.

5.2 Constraints in IFC

The IFC schema is defined in a language called EX-
PRESS. This language already supports defining
constraints. As a simple example, the IfcPositive-
LengthMeasure is defined as follows (IAI 2009):

TYPE IfcPositiveLengthMeasure =

 IfcLengthMeasure;

 WHERE

 WR1 : SELF > 0.;

END_TYPE;

The where clause restricts the values of this type
to positive ones. Although this appears to be rela-
tively similar to what we need, we unfortunately
cannot use it, since these constraints apply only to
the schema level. A change in IfcWall, for example,
would affect every wall in the design. What we need

are constraints on the instance level, to affect only
specific walls.

6 PROTOTYPE

The goal of the prototype is to import a design made
in a commercial CAD package that was exported as
an IFC file and check constraints on it.

6.1 Constraint entry

 The constraints that the system checks need to be
entered into the system at some point. Since this will
be done mostly by architects, the input method has to
be easy for them to work with. The method we chose
was to create the constraints by using puzzle pieces.
This is effectively a Domain Specific Language
(DSL) for constraints (Spinellis 1999). Each puzzle
piece contains one or more words. By linking these
puzzle pieces together you create the sentences that
make up the constraints. The reason for choosing
this approach was that the resulting rules are gram-
matically correct English (which makes it easier for
people to understand) while limiting the grammar
that can be used, which makes it easy for the com-
puter to understand as well. Ideally it would be poss-
ible to enter the constraints in natural language, as
this requires no learning on the part of the user, but
unfortunately this is not yet technically feasible due
to the difficulty of parsing natural language.

 The left side of Figure 2 shows an example con-
straint. Every constraint is divided into four sections

for the sake of readability and ease of entry. The first
section specifies which element types the constraint
applies to, such as walls or rooms. In the second sec-
tion definitions can be created. Originally inspired
by clauses from legal contracts such as “…Mr. Hen-
ry Woolworth-Kensington, hereafter to be referred to
as the buyer…”, definitions can be compared to con-
stants in programming. They serve to refer to a com-
plex concept by an easy name. In the third section
we can make a further refinement of the selection of
elements given in the first section. In the example in
Figure 3 we narrow the initial selection of all walls
down to those with an area of over 20 m

2
. The final

section contains the actual constraints that the se-
lected elements must adhere to.

As mentioned earlier, each of the sentences from
Figure 3 is created by linking together puzzle pieces.
Figure 2 shows the associated puzzle pieces for the
last sentence from Figure 3. The left side of the
screen holds a “library” of available pieces. When-
ever a piece is placed, the library is updated to only
show the pieces that can grammatically follow the
sentence constructed so far. This speeds up the
process of creating the constraints. By dragging
these to the right, they are added to the sentence.

Testing this prototype on architects revealed that
although not very complicated to learn, this method
is rather laborious. For use in practice it will have to
be further refined or replaced altogether. One sug-
gested improvement was that over time the architect
builds up a library of constraints so that he does not
have to start from scratch for each project.

Figure 2. Puzzle piece editor

6.2 Prototype implementation

Since a good library for importing IFC’s native file
format (based on the EXPRESS language defined by
STEP) was not yet available for Microsoft’s .NET
framework, we instead chose to work with the
ifcXML format. Like IFC, this format is widely sup-
ported, but it has the advantage that it can be handled
by the XML parser in the .NET framework.

Like the standard EXPRESS-based file format,
the ifcXML format uses a lot of references; if an ob-
ject is used more than once, it is defined once and
then referenced whenever it is needed. Although this
result in smaller file sizes, it is not particularly prac-
tical to work with; a reference is merely an ID, with
no indication of where to find the referenced ele-
ment. Because of this, we replace all references with
the object they point to.

Although it would be possible to use the resulting
data structure directly, it is more convenient to ex-
tend it with additional information. The reason for
this is that some common properties of objects are
not available in a straightforward manner. For in-
stance, walls do not have a length, width or height
property. To get this information, the associated
shape representation has to be examined.

To give an example, most walls will be
represented by an extrusion. Getting the dimensions
for an ifcWallStandardCase involves the following
steps:

 Take the Representation property
 Choose the correct item from the Representations

property
 Choose the first item from the Items property
 The height of the wall is the Depth property
 Take the SweptArea property
 Take the Outercurve property
 Take the points in the Points property
 The length and width of the wall are the differ-

ences between the maximum and minimum x and
y coordinates of those points, respectively.

After adding the needed properties to all the ob-

jects, they can be used for constraint checking. In the
prototype, the human-readable constraints are con-
verted to computer-executable code as follows:

First the series of puzzle pieces is converted to a
string consisting of a series of identifiers, which in-
dicate the type of puzzle piece, followed by the user
input for that piece (if any). For example, the con-
straint “its height must be more than 50 mm” is con-
verted to

;ITS;PROPNHeight;COMPINEQcgt;INT50;UNITmm

i.e. an Its piece (no input), a numeric property
piece (Height), a Comparison piece specifying an in-
equality (greater than), an Integer piece (50) and fi-
nally a Unit piece (mm). This string is then parsed
by the constraint parser, in which the allowed gram-
mar is defined. This is also how the library of pieces
is filtered, since the parser can indicate which strings
(pieces) it expects at any point. The parser converts

Figure 3. Prototype main screen

each (group of) puzzle piece(s) to a lambda function
(a lambda function is virtually the same as a regular
function; the only difference is that it does not have
a name; lambda functions are frequently used in
functional programming languages such as lisp or
Haskell). The example above would be converted as
follows (slightly simplified and using C# syntax):

;ITS;PROPNHeight becomes:

e => e.GetProperty(“Height”)

;COMPINEQcgt becomes:

e => ((a, b) => a(e).MoreThan(b(e)))

;INT50;UNITmm becomes:

e => new MillimeterValue(50)

So the whole constraint becomes:

element =>

 ((e => e.GetProperty(“Height”))(element))

 .MoreThan

 ((e => new MillimeterValue(50))(element))

or, simplified:

element => element.GetProperty(“Height”)

 .MoreThan(new MillimeterValue(50));

which is a function that takes a building element
and returns a Boolean, i.e. a functions that tells
whether or not an element meets a constraint. This
function is then applied to all the elements selected
by the first and third section of the constraint (which
are also converted to lambda functions) to see which
elements violate the constraint.

Figure 4. Apartment floor plan

6.3 Test case

As a test case we used the floor plan of a typical

apartment, shown in Figure 4. There are four types

of elements in this scene: walls, doors, windows and

rooms (not shown in the image). This design was

created in ArchiCAD and exported as an ifcXML

file.
Figure 3 shows the results of importing this de-

sign into the prototype application, defining a con-

straint and checking it. Elements that violate the
constraint are highlighted in red, other elements are
colored green. In the case of the example constraint,
the wall in the middle is the only violation, since the
other walls that are longer than 6 m are all outer
walls, which are 300 mm thick.

7 DISCUSSION

For the future of this project there are four main
tasks:
 improve the constraint entry method for architects
 develop a CAD interface that makes it easy for

clients to modify the design.
 choose a standardized constraint representation
 find a way to add the required information to IFC

7.1 Improving constraint entry

One of the alternative methods of entering con-
straints would be the solution based on highlighting
mentioned in paragraph 3. Another solution would
be to have architects type in the constraints with the
help of autocompletion. Different approaches will
have to be tested to determine which one offers the
best balance between intuitiveness and speed.

7.2 CAD interface for clients

Although a good CAD interface will be needed to
use this system in practice, it is only of limited inter-
est from a scientific standpoint, since there are no
real technical challenges to be solved. It is primarily
an exercise in user interface design, with the main
goal being to discover the minimum required set of
features so that users will not feel overwhelmed by
the program.

7.3 Standardizing constraints

There are many applications in the building industry
that work with constraints already, even if they do
not identify them as such. Constructive engineering
applications indicate whether or not the construction
will fail. Building physics software checks whether
the building will not get too hot or too cold. Projects
such as ePlanChecking (IAI 2005) check for building
code compliance. These constraints are typically
hardcoded, or at least stored in incompatible data
formats, meaning that a design will have to be im-
ported into multiple different packages to see wheth-
er all the constraints have been met. Aside from the
risk of incorrect results by flaws in the importers,
this is a very laborious process; when a violation is
discovered the designer will have to go back to the
CAD application, go to the location of the problem,
fix it, re-export the file, check it again, etc.

By standardizing a representation of constraints
that works for all domains of the building industry
these problems disappear. One application can verify
the entire design, which means you can get real-time
feedback on the design. The cycle required to fix
problems and re-check the design becomes much
shorter. Aside from saving the architect a lot of time,
this also facilitates incorporating client input into the
design. Because errors are reported by the applica-
tion, clients can modify designs without the need for
direct contact with the architect.

There are several options for standardizing con-
straint representations. The first option would be to
use the IfcPropertyConstraintRelationship in IFC.
However, this option has a few disadvantages, which
stem from the fact that you can only set constraints
on properties. The first is an inability to set con-
straints on attributes defined in the schema, such as
the overall height of a door. Second, constraints that
include arithmetic, e.g. “The width of the dormer
cannot be more than one third of the width of the
house” are inexpressible. Finally, constraints that do
not reference properties, such as “these two walls
must be connected” become significantly harder, or
even impossible, to define. These problems make
this option a less desirable one.

Another option is the SMARTcodes project (ICC
Online 2009), which defines constraints in EX-
PRESS-X, an extension to the EXPRESS language
used by IFC. Storing constraints in EXPRESS-X is
not very different from storing them in general-
purpose programming code, except for the fact that
in the SMARTcodes project the code is automatical-
ly generated. A downside of using EXPRESS-X is
that it is not a very widely adopted standard. There
are fairly few working implementations, which will
slow down widespread adoption.

The SWOP project (Swop 2009) opts for W3C’s
Web Ontology Language (OWL) instead. Con-
straints are stored in a tree that is very similar to the
Abstract Syntax Trees (AST) that underlie virtually
all programming languages (Louden 1997). Figures
5 and 6 (E-Bouw 2009) show the class hierarchy
used to create these trees in SWOP. Like most
ASTs, they distinguish nullary, unary and binary
nodes. Since this approach is so common, it is a
good method of storing constraints. In the SWOP
project, however, it is also used when entering them.
Constraints are entered by creating the constraint
tree, which is not particularly quick or intuitive.
Both of these last two alternatives are viable options
for storing constraints.

Figure 5. SWOP class hierarchy for rules

Figure 6. SWOP class hierarchy for operations

7.4 IFC

Although constraint checking on IFC models has
proven to be possible, IFC was not explicitly de-
signed for that purpose. As a consequence, several
common parameters that architects want to use when
specifying constraints either have to be inferred from
other properties or are missing altogether. Some ex-
amples include the length, width and height of a
wall, the texture of a material (rough, smooth, etc.)
and the durability class of wooden materials (the du-
rability class determines whether or not wood can be
used in the exterior of a dwelling).

Additionally, many classes are not yet present,
making it difficult or impossible to refer to such
things as walk-in closets, dormers or sheds. It is dif-
ficult to estimate how many new properties and

classes would be necessary to represent everything
architects will need. As an illustration, the documen-
tation page for IfcExtendedMaterialProperties, a
class which facilitates the definition of material
properties that do not yet exist in IFC, lists (among
others) viscosity temperature derivative, thermal
gradient coefficient for moisture capacity, thermal
conductivity temperature derivative and the index of
refraction for solar rays. The only way to get a good
overview of the missing information would be to do
an experiment with a large group of architects and
noting what concepts they use to define the con-
straints.

There are three possible ways to solve this prob-
lem. The first is a separate database with the missing
information (e.g. maple wood has durability class 5).
This approach was used to a limited extent in the
prototype (a few extra properties, such as color, were
hardcoded). Such a database would consist of a se-
ries of tables with data (e.g. colors, material types,
etc.) and one large table that links together a proper-
ty name and an object with a value, e.g. “IfcDurabili-
tyClass”, “Maple”, 5.

Alternatively, an extension to the IFC standard
could be devised. Due to the nature of ISO certifica-
tion, however, this will not be a quick solution. This
extension would most likely consist of a series of
classes to store the AST of constraints, much like the
ones used in the SWOP project, i.e. classes to define
binary operations (e.g. addition), property access,
etc.

Finally, a new standard that is tailored for con-
straint checking could be created. The main im-
provement over IFC would be to make this new
standard extensible, similar to OWL (Lacy 2005).
This allows programmers to add their own classes or
properties to the model without having to wait for
ISO standardization or having to make a distinction
between properties defined in property sets and
attributes from the schema. The main downside of
this final solution is that it will take a lot of work to
reach the adoption rate that IFC has.

8 REFERENCES

AEC 3 2009. Building Codes & Regulations.
www.aec3.com/downloads/BuildingRegulations.pdf

Anderl, R. & Mendgen, R. 1996. Modelling with constraints:
theoretical foundation and application Computer-Aided De-
sign 28 (3): 155-168

Belblidia, S. & Alby, E. 2003. Implicit handling of geometric
relations in an existing modeler. In CAADRIA 2003 Confe-
rence, Bangkok, Thailand.

Bettig, B. & Shah, J. 2003. Solution selectors: a user-oriented
answer to the multiple solution problem in constraint solv-
ing. Journal of Mechanical Design 125 (3): 443-451

Donath, D. & Böhme, L.F.G. 2007. Constraint-Based Design in
Participatory Housing Planning. In eCAADe 2007 Confe-
rence, Frankfurt am Main, Germany.

E-Bouw 2009. The SWOP Semantic Product Modelling Ap-
proach. http://wiki.e-bouw.org/images/4/4a/
SWOP_D23_WP2_T2300_TNO_2008-04-15_v12.doc

Eggink, D. et al. 2001. Smart Objects: Constraints and Beha-
viors in a 3D Design Environment. In eCAADe 2001 Confe-
rence, Helsinki, Finland.

Gross, M.D. 1996. Elements That Follow Your Rules: Con-
straint Based CAD Layout. In ACADIA 1996 Conference,
Tuscon, USA.

Hoffmann, C.M. & Kim, K.J. 2001. Towards valid parametric
CAD models Computer-Aided Design 33 : 81-90

Huang, C. & Krawczyk, R. 2007. A Choice Model of Consum-
er Participatory Design for Modular Houses. In eCAADe
2007 Conference, Frankfurt am Main, Germany.

IAI 2005. CORENET e-Plan Check System.
www.iai.no/2005_buildingSMART_oslo/Session%2001/
eSubmission_eplancheck_Singapore_Case.pdf

IAI 2009. IfcPositiveLengthMeasure. http://www.iai-
tech.org/ifc/IFC2x3/TC1/html/ifcmeasureresource/
lexical/ifcpositivelengthmeasure.htm

ICC Online 2009. ICC Online | SMARTcodes™.
http://www.iccsafe.org/news/102006smartcodes.html

Kelleners, R.H.M.C. 1999. Constraints in object-oriented
graphics. Eindhoven University of Technology

Lacy, L.W. 2005. OWL: Representing Information Using the
Web Ontology Language. Victoria: Trafford

Louden, K.C. 1997. Compiler construction : principles and
practice. Boston: PWS

Martini, K. 1995. Hierarchical geometric constraints for build-
ing design Computer-Aided Design 27 (3): 181-191

Nassara, K. et al. 2003. Building assembly detailing using con-
straint-based modeling Automation in Construction 12 :
365– 379

Spinellis, D. 1999. Reliable software implementation using
domain-specific languages. In ESREL, 10th european soft-
ware conference on safety and reliability.

Strömberg, J. 2006. Integrating Constraints with a Drawing
CAD Application. Stockholm University

Swop 2009. SWOP - Semantic Web-based Open engineering
Platform. http://www.swop-project.eu/

van den Thillart, C.C.A.M. 2004. Customised Industrialisation
in the Residential Sector: Mass customisation modelling as
a tool for benchmarking, variation and selection. Amster-
dam: Sun

Wix, J. et al. 2008. Using Constraints to Validate and Check
Building Information Models. In ECPPM 2008 Conference,
Sophia Antipolis, France.

