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1 INTRODUCTION 

Adoption of CAD (Computer Aided Design) in the 
building industry has so far focused mainly on re-
placing drawing lines on paper with drawing lines on 
a computer. Although this is an improvement – mak-
ing changes is now much easier – it uses only a frac-
tion of the potential of CAD. Checking whether a 
building complies with building codes and other leg-
islation, for instance, is still left up to the architects 
and building committees. Adding semantic informa-
tion to the current CAD models opens up (among 
others) the possibility of delegating this task to the 
computer. 

While designing the building, the architect could 
get immediate feedback on whether or not his design 
violates any of the constraints imposed by building 
codes. Although this would be useful in its own 
right, such an approach offers even more potential 
for the field of mass customization (van den Thillart 
2004; Huang & Krawczyk 2007). The idea of mass 
customization is to allow client input in the product 
design without losing the benefits of mass produc-
tion. The limited adoption of mass customization in 
the building industry has so far focused on providing 
the client with a few alternatives to choose from. In 
this new approach, however, the client would have 
significantly more freedom without requiring a cor-
responding increase in effort from the architect. 

In this paper we describe a method of automati-
cally checking constraints on IFC (Industry Founda-
tion Classes) files. 

2 SYSTEM DESCRIPTION 

The prototype discussed in this paper is part of a 
larger system that aims to make mass customization 
easier for architects. The basic philosophy is that the 
architect makes a design as usual, but in addition to 
that he also specifies the requirements he wants the 
final, customized, design to meet. For instance: “this 
wall must contain at least three windows” or “the 
façade material must be brick”. These rules are 
known as constraints (Kelleners 1999; Strömberg 
2006; Donath & Böhme 2007). The design is then 
presented to the buyers, who are free to make 
changes, as long as these changes are not prohibited 
by the rules of the architect, building codes, laws, 
etc. Whenever they make a change that violates any 
of the constraints, they are presented with a warning. 
The final design is not accepted until all such warn-
ings have been resolved. 

Ideally the architect’s design would be made in a 
CAD package that allows both real-time constraint 
checking and constraint creation. That way the archi-
tect can get the most benefit from this approach. 
Creating a full CAD package, however, is far from 
trivial. In the meantime we therefore focus on check-
ing constraints on models created in existing CAD 
packages. In order to make the approach as applica-
tion-agnostic as possible we focus on the interna-
tional IFC standard, which is the most widely sup-
ported file format among CAD applications that 
preserves semantic information (i.e. information 
other than just geometry). 
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ABSTRACT: Building Information Models (BIMs) allow for computationally checking whether a building 
design satisfies all the building codes, requirements, etc. if constraints are included in the model. One applica-
tion for this is mass customization in the housing sector, when clients modify the design without help from the 
architect. This paper describes the technical aspects of checking constraints on a building model. Specifically, 
we look at the feasibility of checking constraints on an IFC model by creating a prototype in which constraints 
can be entered and checked on an imported IFC model. Conclusions are drawn on the suitability of the IFC 
model and how IFC can be extended or adjusted to support constraint checking. 



3 RELATED RESEARCH 

The idea of using constraints to check designs has 
been accepted in the mechanical engineering indus-
try for many years (Anderl & Mendgen 1996; Gross 
1996; Bettig & Shah 2003). In the building industry, 
however, it has yet to be widely adopted. The two 
closest analogues to our proposed system are proba-
bly the commercial CAD package Revit (Strömberg 
2006) and the SMARTcodes project (Wix et al. 
2008), but there are also several important differenc-
es. Revit – and indeed most research on constraints 
(Martini 1995; Eggink et al. 2001; Hoffman & Kim 
2001; Belblidia & Alby 2003; Nassara et al. 2003) – 
focuses only on geometrical constraints. Our system 
also considers non-geometrical constraints, such as 
price, color and heat transmission. And whereas 
SMARTcodes focuses exclusively on building codes 
and laws, we also include constraints from other 
domains, such as architecture, constructive engineer-
ing, building physics, common sense, etc. 

Additionally, little attention has so far been given 
to the method of specifying constraints. We want to 
provide a simple method for architects to enter these 
constraints. One of the examples of a system that 
tries to facilitate constraint specification is the 
SMARTcodes Builder of the SMARTcodes project 
(AEC 3 2009). In this program, constraints are en-
tered by highlighting parts of regulations text with 
one of four colors. These four colors represent four 
functions (somewhat similar to the different puzzle 
piece types in our system), which are used to convert 

to convert the highlighted regulations text to com-
puter-checkable constraints. A screenshot of this ap-
plication is shown in Figure 1. Although the underly-
ing translation of text to constraints appears very 
difficult from a technical standpoint, given the ap-
parent freeform nature of the text, this is one option 
to consider for a future system. 

4 CONSTRAINTS 

A constraint is an assertion about building elements, 
such as “every window must be less than 1200 mm 
high”. A constraint is effectively a function that 
takes as its argument a building element and returns 
true (the element satisfies the constraint) or false (it 
does not). Checking whether a certain design satis-
fies all the constraints is therefore a matter of apply-
ing all constraints to all elements in the design, and 
checking whether they all return true. Some con-
straints, such as a constraint on the distance between 
two elements, may take multiple building elements 
as arguments. 

Constraints are comparable to universal quantifi-
ers in the field of mathematics. For instance, the 
quantification 

 
means “for every x in the set of natural numbers, x is 
more than or equal to 0”. If we rephrase our example 
constraint to “for every window, the height of that 
window must be at least 1200 mm”, the similarity 
between the two is even easier to see. 

 

 
Figure 1. SMARTcodes Builder (AEC 3 2009) 



4.1 Limitations of Constraints 

Although a lot of building codes can be checked by 
the computer in this way, there are exceptions. As an 
example, the constraint “The quality of the new 
dormer must at least be equal to that of the existing 
surrounding buildings” could in theory be entered, 
but since it is not clearly defined it cannot be 
checked by the computer. After all, what is meant by 
quality? Technical quality? Aesthetics? Something 
as subjective as aesthetical quality cannot objectively 
be assessed. A solution to this is to add a type of 
constraint that is not evaluated by the computer, but 
instead poses the question to the user whether or not 
the constraint has been met. At first glance this 
might seem to be useless, but it does serve a pur-
pose. Constraints of this type serve as a sort of 
checklist, so that none of the hundreds of rules the 
architect has to follow is forgotten. Even the worst-
case scenario, where every constraint is a question 
constraint, would still be an improvement on the cur-
rent situation, as it prevents overlooked constraints 
and the subsequent failure costs. 

4.2 Constraint-based design 

It is important to distinguish between constraint-
based design and constraint solving. In constraint 
solving the system tries to automatically find a de-
sign that matches all the constraints. In building de-
sign this approach is fairly impractical for two rea-
sons: Firstly, the solution space in building design is 
very large. Even the simplest of houses will have 
millions of possible solutions, which makes it in-
feasible to try to solve this on today’s computers. 
Secondly, the client has little, if any, influence on the 
resulting design, which ignores the philosophy be-
hind mass customization. Constraint-based design, 
on the other hand, only verifies whether the design 
that was created by the architect or the client does 
not violate any of the given constraints; it is a valida-
tion rather than a creation tool. 

One other thing to note is that the system can only 
indicate if all the constraints have been satisfied; not 
whether it is a good design. It should be possible to 
reach a good technical and functional quality, pro-
vided that enough constraints are entered. The aes-
thetical quality, on the other hand, will remain an en-
tirely human judgment. Some aspects, such as 
symmetry or color schemes, could be enforced by 
constraints, but that will check taste rather than ob-
jective beauty. We therefore choose to focus on the 
technical side of the constraint system, and conse-
quently the functional quality of the design, rather 
than on value judgments of the design. 

5 BUILDING INFORMATION MODELS 

Checking constraints on a building requires a repre-
sentation of the building that carries the needed in-
formation. The traditional way of storing a building 
design as a collection of lines – i.e. a direct replace-
ment of paper drawings – is insufficient for this pur-
pose. Instead, the building should be stored in a way 
that preserves the semantic information. This can be 
achieved by using a so-called Building Information 
Model, or BIM. In a BIM the design is stored as a 
collection of objects with associated properties (e.g. 
a wall that has a length, height and material) instead 
of a collection of lines. This building element based 
approach makes it possible to check constraints, 
since all the required data is present. 

5.1 IFC 

In the last few years, building information modeling 
has become popular in the building industry, and as 
a result of that there is now a wealth of different 
building information models, with most CAD pack-
ages having an internal BIM. Unfortunately these 
BIMs are not compatible; they all store different in-
formation and save to proprietary formats, making 
data exchange very difficult. As a solution for this, 
the Industry Foundation Classes (IFC) were created. 
IFC is an ISO-certified standard to describe a BIM. 
This is one of the few data exchange standards that 
the building industry has that does not only describe 
geometry, and most CAD packages are compatible 
with it. Thus, a system that is compatible with IFC 
should automatically work with all major CAD ap-
plications, without having to account for all their dif-
ferent internal BIMs. Another advantage of the IFC 
standard is that is an open standard, as opposed to 
the mostly closed standards of the CAD software 
manufacturers, making it easier to implement. 

5.2 Constraints in IFC 

The IFC schema is defined in a language called EX-
PRESS. This language already supports defining 
constraints. As a simple example, the IfcPositive-
LengthMeasure is defined as follows (IAI 2009): 

TYPE IfcPositiveLengthMeasure = 

    IfcLengthMeasure; 

  WHERE 

   WR1 : SELF > 0.; 

END_TYPE; 

The where clause restricts the values of this type 
to positive ones. Although this appears to be rela-
tively similar to what we need, we unfortunately 
cannot use it, since these constraints apply only to 
the schema level. A change in IfcWall, for example, 
would affect every wall in the design. What we need 



are constraints on the instance level, to affect only 
specific walls. 

6 PROTOTYPE 

The goal of the prototype is to import a design made 
in a commercial CAD package that was exported as 
an IFC file and check constraints on it. 

6.1 Constraint entry 

 The constraints that the system checks need to be 
entered into the system at some point. Since this will 
be done mostly by architects, the input method has to 
be easy for them to work with. The method we chose 
was to create the constraints by using puzzle pieces. 
This is effectively a Domain Specific Language 
(DSL) for constraints (Spinellis 1999). Each puzzle 
piece contains one or more words. By linking these 
puzzle pieces together you create the sentences that 
make up the constraints. The reason for choosing 
this approach was that the resulting rules are gram-
matically correct English (which makes it easier for 
people to understand) while limiting the grammar 
that can be used, which makes it easy for the com-
puter to understand as well. Ideally it would be poss-
ible to enter the constraints in natural language, as 
this requires no learning on the part of the user, but 
unfortunately this is not yet technically feasible due 
to the difficulty of parsing natural language. 

 The left side of Figure 2 shows an example con-
straint. Every constraint is divided into four sections 

for the sake of readability and ease of entry. The first 
section specifies which element types the constraint 
applies to, such as walls or rooms. In the second sec-
tion definitions can be created. Originally inspired 
by clauses from legal contracts such as “…Mr. Hen-
ry Woolworth-Kensington, hereafter to be referred to 
as the buyer…”, definitions can be compared to con-
stants in programming. They serve to refer to a com-
plex concept by an easy name. In the third section 
we can make a further refinement of the selection of 
elements given in the first section. In the example in 
Figure 3 we narrow the initial selection of all walls 
down to those with an area of over 20 m

2
. The final 

section contains the actual constraints that the se-
lected elements must adhere to. 

As mentioned earlier, each of the sentences from 
Figure 3 is created by linking together puzzle pieces. 
Figure 2 shows the associated puzzle pieces for the 
last sentence from Figure 3. The left side of the 
screen holds a “library” of available pieces. When-
ever a piece is placed, the library is updated to only 
show the pieces that can grammatically follow the 
sentence constructed so far. This speeds up the 
process of creating the constraints. By dragging 
these to the right, they are added to the sentence.  

Testing this prototype on architects revealed that 
although not very complicated to learn, this method 
is rather laborious. For use in practice it will have to 
be further refined or replaced altogether. One sug-
gested improvement was that over time the architect 
builds up a library of constraints so that he does not 
have to start from scratch for each project. 

 
Figure 2. Puzzle piece editor 



6.2 Prototype implementation 

Since a good library for importing IFC’s native file 
format (based on the EXPRESS language defined by 
STEP) was not yet available for Microsoft’s .NET 
framework, we instead chose to work with the 
ifcXML format. Like IFC, this format is widely sup-
ported, but it has the advantage that it can be handled 
by the XML parser in the .NET framework. 

Like the standard EXPRESS-based file format, 
the ifcXML format uses a lot of references; if an ob-
ject is used more than once, it is defined once and 
then referenced whenever it is needed. Although this 
result in smaller file sizes, it is not particularly prac-
tical to work with; a reference is merely an ID, with 
no indication of where to find the referenced ele-
ment. Because of this, we replace all references with 
the object they point to. 

Although it would be possible to use the resulting 
data structure directly, it is more convenient to ex-
tend it with additional information. The reason for 
this is that some common properties of objects are 
not available in a straightforward manner. For in-
stance, walls do not have a length, width or height 
property. To get this information, the associated 
shape representation has to be examined. 

To give an example, most walls will be 
represented by an extrusion. Getting the dimensions 
for an ifcWallStandardCase involves the following 
steps:  

 
 
 

 Take the Representation property 
 Choose the correct item from the Representations 

property 
 Choose the first item from the Items property 
 The height of the wall is the Depth property 
 Take the SweptArea property 
 Take the Outercurve property 
 Take the points in the Points property 
 The length and width of the wall are the differ-

ences between the maximum and minimum x and 
y coordinates of those points, respectively. 
 
After adding the needed properties to all the ob-

jects, they can be used for constraint checking. In the 
prototype, the human-readable constraints are con-
verted to computer-executable code as follows: 

First the series of puzzle pieces is converted to a 
string consisting of a series of identifiers, which in-
dicate the type of puzzle piece, followed by the user 
input for that piece (if any). For example, the con-
straint “its height must be more than 50 mm” is con-
verted to 

;ITS;PROPNHeight;COMPINEQcgt;INT50;UNITmm 

i.e. an Its piece (no input), a numeric property 
piece (Height), a Comparison piece specifying an in-
equality (greater than), an Integer piece (50) and fi-
nally a Unit piece (mm). This string is then parsed 
by the constraint parser, in which the allowed gram-
mar is defined. This is also how the library of pieces 
is filtered, since the parser can indicate which strings 
(pieces) it expects at any point. The parser converts 

 
Figure 3. Prototype main screen 



each (group of) puzzle piece(s) to a lambda function 
(a lambda function is virtually the same as a regular 
function; the only difference is that it does not have 
a name; lambda functions are frequently used in 
functional programming languages such as lisp or 
Haskell). The example above would be converted as 
follows (slightly simplified and using C# syntax): 

;ITS;PROPNHeight becomes: 

e => e.GetProperty(“Height”) 

 

;COMPINEQcgt becomes: 

e => ((a, b) => a(e).MoreThan(b(e))) 

 

;INT50;UNITmm becomes: 

e => new MillimeterValue(50) 

 

So the whole constraint becomes: 

element =>  

 ((e => e.GetProperty(“Height”))(element)) 

 .MoreThan 

 ((e => new MillimeterValue(50))(element)) 

 

or, simplified: 

element => element.GetProperty(“Height”) 

    .MoreThan(new MillimeterValue(50)); 

which is a function that takes a building element 
and returns a Boolean, i.e. a functions that tells 
whether or not an element meets a constraint. This 
function is then applied to all the elements selected 
by the first and third section of the constraint (which 
are also converted to lambda functions) to see which 
elements violate the constraint. 

 

 
Figure 4. Apartment floor plan 

6.3 Test case 

As a test case we used the floor plan of a typical 

apartment, shown in Figure 4. There are four types 

of elements in this scene: walls, doors, windows and 

rooms (not shown in the image). This design was 

created in ArchiCAD and exported as an ifcXML 

file.  
Figure 3 shows the results of importing this de-

sign into the prototype application, defining a con-

straint and checking it. Elements that violate the 
constraint are highlighted in red, other elements are 
colored green. In the case of the example constraint, 
the wall in the middle is the only violation, since the 
other walls that are longer than 6 m are all outer 
walls, which are 300 mm thick. 

7   DISCUSSION 

For the future of this project there are four main 
tasks: 
 improve the constraint entry method for architects 
 develop a CAD interface that makes it easy for 

clients to modify the design. 
 choose a standardized constraint representation 
 find a way to add the required information to IFC 

7.1 Improving constraint entry 

One of the alternative methods of entering con-
straints would be the solution based on highlighting 
mentioned in paragraph 3. Another solution would 
be to have architects type in the constraints with the 
help of autocompletion. Different approaches will 
have to be tested to determine which one offers the 
best balance between intuitiveness and speed. 

7.2 CAD interface for clients 

Although a good CAD interface will be needed to 
use this system in practice, it is only of limited inter-
est from a scientific standpoint, since there are no 
real technical challenges to be solved. It is primarily 
an exercise in user interface design, with the main 
goal being to discover the minimum required set of 
features so that users will not feel overwhelmed by 
the program. 

7.3 Standardizing constraints 

There are many applications in the building industry 
that work with constraints already, even if they do 
not identify them as such. Constructive engineering 
applications indicate whether or not the construction 
will fail. Building physics software checks whether 
the building will not get too hot or too cold. Projects 
such as ePlanChecking (IAI 2005) check for building 
code compliance. These constraints are typically 
hardcoded, or at least stored in incompatible data 
formats, meaning that a design will have to be im-
ported into multiple different packages to see wheth-
er all the constraints have been met. Aside from the 
risk of incorrect results by flaws in the importers, 
this is a very laborious process; when a violation is 
discovered the designer will have to go back to the 
CAD application, go to the location of the problem, 
fix it, re-export the file, check it again, etc. 



By standardizing a representation of constraints 
that works for all domains of the building industry 
these problems disappear. One application can verify 
the entire design, which means you can get real-time 
feedback on the design. The cycle required to fix 
problems and re-check the design becomes much 
shorter. Aside from saving the architect a lot of time, 
this also facilitates incorporating client input into the 
design. Because errors are reported by the applica-
tion, clients can modify designs without the need for 
direct contact with the architect. 

There are several options for standardizing con-
straint representations. The first option would be to 
use the IfcPropertyConstraintRelationship in IFC. 
However, this option has a few disadvantages, which 
stem from the fact that you can only set constraints 
on properties. The first is an inability to set con-
straints on attributes defined in the schema, such as 
the overall height of a door. Second, constraints that 
include arithmetic, e.g. “The width of the dormer 
cannot be more than one third of the width of the 
house” are inexpressible. Finally, constraints that do 
not reference properties, such as “these two walls 
must be connected” become significantly harder, or 
even impossible, to define. These problems make 
this option a less desirable one. 

Another option is the SMARTcodes project (ICC 
Online 2009), which defines constraints in EX-
PRESS-X, an extension to the EXPRESS language 
used by IFC. Storing constraints in EXPRESS-X is 
not very different from storing them in general-
purpose programming code, except for the fact that 
in the SMARTcodes project the code is automatical-
ly generated. A downside of using EXPRESS-X is 
that it is not a very widely adopted standard. There 
are fairly few working implementations, which will 
slow down widespread adoption. 

The SWOP project (Swop 2009) opts for W3C’s 
Web Ontology Language (OWL) instead. Con-
straints are stored in a tree that is very similar to the 
Abstract Syntax Trees (AST) that underlie virtually 
all programming languages (Louden 1997). Figures 
5 and 6 (E-Bouw 2009) show the class hierarchy 
used to create these trees in SWOP. Like most 
ASTs, they distinguish nullary, unary and binary 
nodes. Since this approach is so common, it is a 
good method of storing constraints. In the SWOP 
project, however, it is also used when entering them. 
Constraints are entered by creating the constraint 
tree, which is not particularly quick or intuitive. 
Both of these last two alternatives are viable options 
for storing constraints. 

 

 
Figure 5. SWOP class hierarchy for rules 

 
 

 
Figure 6. SWOP class hierarchy for operations 

7.4 IFC 

Although constraint checking on IFC models has 
proven to be possible, IFC was not explicitly de-
signed for that purpose. As a consequence, several 
common parameters that architects want to use when 
specifying constraints either have to be inferred from 
other properties or are missing altogether. Some ex-
amples include the length, width and height of a 
wall, the texture of a material (rough, smooth, etc.) 
and the durability class of wooden materials (the du-
rability class determines whether or not wood can be 
used in the exterior of a dwelling). 

Additionally, many classes are not yet present, 
making it difficult or impossible to refer to such 
things as walk-in closets, dormers or sheds. It is dif-
ficult to estimate how many new properties and 



classes would be necessary to represent everything 
architects will need. As an illustration, the documen-
tation page for IfcExtendedMaterialProperties, a 
class which facilitates the definition of material 
properties that do not yet exist in IFC, lists (among 
others) viscosity temperature derivative, thermal 
gradient coefficient for moisture capacity, thermal 
conductivity temperature derivative and the index of 
refraction for solar rays. The only way to get a good 
overview of the missing information would be to do 
an experiment with a large group of architects and 
noting what concepts they use to define the con-
straints. 

There are three possible ways to solve this prob-
lem. The first is a separate database with the missing 
information (e.g. maple wood has durability class 5). 
This approach was used to a limited extent in the 
prototype (a few extra properties, such as color, were 
hardcoded). Such a database would consist of a se-
ries of tables with data (e.g. colors, material types, 
etc.) and one large table that links together a proper-
ty name and an object with a value, e.g. “IfcDurabili-
tyClass”, “Maple”, 5. 

Alternatively, an extension to the IFC standard 
could be devised. Due to the nature of ISO certifica-
tion, however, this will not be a quick solution. This 
extension would most likely consist of a series of 
classes to store the AST of constraints, much like the 
ones used in the SWOP project, i.e. classes to define 
binary operations (e.g. addition), property access, 
etc. 

Finally, a new standard that is tailored for con-
straint checking could be created. The main im-
provement over IFC would be to make this new 
standard extensible, similar to OWL (Lacy 2005). 
This allows programmers to add their own classes or 
properties to the model without having to wait for 
ISO standardization or having to make a distinction 
between properties defined in property sets and 
attributes from the schema. The main downside of 
this final solution is that it will take a lot of work to 
reach the adoption rate that IFC has. 

8 REFERENCES 

AEC 3 2009. Building Codes & Regulations. 
www.aec3.com/downloads/BuildingRegulations.pdf 

Anderl, R. & Mendgen, R. 1996. Modelling with constraints: 
theoretical foundation and application Computer-Aided De-
sign 28 (3): 155-168  

Belblidia, S. & Alby, E. 2003. Implicit handling of geometric 
relations in an existing modeler. In CAADRIA 2003 Confe-
rence, Bangkok, Thailand.  

Bettig, B. & Shah, J. 2003. Solution selectors: a user-oriented 
answer to the multiple solution problem in constraint solv-
ing. Journal of Mechanical Design 125 (3): 443-451  

Donath, D. & Böhme, L.F.G. 2007. Constraint-Based Design in 
Participatory Housing Planning. In eCAADe 2007 Confe-
rence, Frankfurt am Main, Germany.  

E-Bouw 2009. The SWOP Semantic Product Modelling Ap-
proach. http://wiki.e-bouw.org/images/4/4a/ 
SWOP_D23_WP2_T2300_TNO_2008-04-15_v12.doc 

Eggink, D. et al. 2001. Smart Objects: Constraints and Beha-
viors in a 3D Design Environment. In eCAADe 2001 Confe-
rence, Helsinki, Finland.  

Gross, M.D. 1996. Elements That Follow Your Rules: Con-
straint Based CAD Layout. In ACADIA 1996 Conference, 
Tuscon, USA.  

Hoffmann, C.M. & Kim, K.J. 2001. Towards valid parametric 
CAD models Computer-Aided Design 33 : 81-90  

Huang, C. & Krawczyk, R. 2007. A Choice Model of Consum-
er Participatory Design for Modular Houses. In eCAADe 
2007 Conference, Frankfurt am Main, Germany. 

IAI 2005. CORENET e-Plan Check System. 
www.iai.no/2005_buildingSMART_oslo/Session%2001/ 
eSubmission_eplancheck_Singapore_Case.pdf 

IAI 2009. IfcPositiveLengthMeasure. http://www.iai-
tech.org/ifc/IFC2x3/TC1/html/ifcmeasureresource/ 
lexical/ifcpositivelengthmeasure.htm 

ICC Online 2009. ICC Online | SMARTcodes™. 
http://www.iccsafe.org/news/102006smartcodes.html 

Kelleners, R.H.M.C. 1999. Constraints in object-oriented 
graphics. Eindhoven University of Technology  

Lacy, L.W. 2005. OWL: Representing Information Using the 
Web Ontology Language. Victoria: Trafford  

Louden, K.C. 1997. Compiler construction : principles and 
practice. Boston: PWS  

Martini, K. 1995. Hierarchical geometric constraints for build-
ing design Computer-Aided Design 27 (3): 181-191  

Nassara, K. et al. 2003. Building assembly detailing using con-
straint-based modeling Automation in Construction 12 : 
365– 379  

Spinellis, D. 1999. Reliable software implementation using 
domain-specific languages. In ESREL, 10th european soft-
ware conference on safety and reliability.  

Strömberg, J. 2006. Integrating Constraints with a Drawing 
CAD Application. Stockholm University 

Swop 2009. SWOP - Semantic Web-based Open engineering 
Platform. http://www.swop-project.eu/ 

van den Thillart, C.C.A.M. 2004. Customised Industrialisation 
in the Residential Sector: Mass customisation modelling as 
a tool for benchmarking, variation and selection. Amster-
dam: Sun  

Wix, J. et al. 2008. Using Constraints to Validate and Check 
Building Information Models. In ECPPM 2008 Conference, 
Sophia Antipolis, France.  

 


