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CHAPTER ONE

Introduction

Abstract / In this chapter a brief introduction is given into the analysis of precision motion
systems. The consequences of non-linear system behavior with respect to system identifica-
tion are illustrated. In order to position this thesis, a short review is presented of the existing
techniques for non-linear identification. The problem formulation and main contributions of
the thesis are stated and an outline is presented.

This thesis is about the definition and application of a new technique for frequency re-
sponse identification of non-linear systems. The technique is a generalization of the
describing function concept and as such applicable for the analysis of a wide range of
non-linear system behavior. We believe that this technique is a useful addition to the
already wide family of analysis technique of non-linear system behavior.

1.1 Introduction to the analysis of precisionmotion systems

In many high precision positioning systems, position accuracy is a key performance ob-
jective. During the last three decades, accuracy requirements have changed from the
micrometer range to the sub micron and even nanometer range. Examples of high pre-
cision systems are wafer scanners for lithographic applications, laser beam recorders for
CD/DVD mastering, lathes for the production of optical components like contact lenses,
electron microscopes and coordinate-measuring machines (Fig. 1.1). But also in con-
sumer products, subcomponents like hard disc drives (Fig. 1.2) and optical storage devices
can not function without extreme positioning accuracy. The operating conditions under
which these products have to perform are changing from laboratory environment to an
environment as hostile as a car on an unmetalled road. This poses extra challenges to
both the mechanical and the control design. The mechanical design must be predictable
and stable in time, often it must accommodate a wide temperature range and still be as

1



2 1 INTRODUCTION

cheap as possible. The control design must be robust with respect to changes in me-
chanical behavior, but with a minimum of extra costs i.e. additional sensors. For both
the mechanical and the control aspects, this can only be achieved by the use of advanced
design techniques, often necessitating the incorporation of non-linear phenomena in the
design.

Figure 1.1 / Coordinate-measuring ma-
chine (van Seggelen, 2007).

Figure 1.2 / Hard disc drive.

1.2 Analysis of motion systems with linear techniques

The majority of high performance motion systems consists of a plant operating in feed-
back. The modern control theory and design procedures applied for the design and eval-
uation of these systems are frequency domain based. In this theory the Sensitivity Transfer
Function (STF) plays a key role both in controller design and in loop performance evalua-
tion. The STF is defined as (Skogestad and Postlethwaite, 2005)1:

S(s) =
1

1 + C(s)H(s)
(1.1)

withC(s) andH(s) the transfer functions of respectively the controller and the plant, with
s the Laplace operator. The product C(s)H(s) is called the Open Loop Transfer Function

(OLTF) and establishes the basis for stability analysis. For linear systems the OLTF can
be determined from the STF as:

C(s)H(s) = S(s)−1 − 1 (1.2)

For linear systems, thinking in terms of the Laplace transform and the transfer function
is a powerful tool, especially when supported in practice with FRF measurements derived

1In order to present the concepts without unnecessary complexity, single input single output (SISO)
descriptions are used in this thesis.
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R(jù)

N(jù) U(jù) D(jù)

Y(jù)

C H
+

-

Ó Ó

+

+

Figure 1.3 / Feedback system with additional summing node for determination of the
sensitivity frequency response function.

under realistic operating conditions. The Sensitivity Frequency Response Function (SFRF)
can be measured as depicted in Fig. 1.3. An external generator signal N(jω), uncorrelated
to both the setpoint R(jω) and the external disturbances D(jω), is inserted in the loop
through a summing node. The output from the summing node is U(jω). The H1 Fre-
quency Response Function (Randall, 1987) calculated from these signals yields the SFRF:

S(jω) =
GNU(jω)

GNN(jω)
(1.3)

with GNU(jω) the cross spectrum between N(jω) and U(jω) and GNN(jω) the power
spectrum of N(jω). From the SFRF the Open Loop Frequency Response Function (OLFRF)
can be calculated as:

C(jω)H(jω) = S(jω)−1 − 1 (1.4)

As an example, a controlled motion system is measured. The system consists of a small
DC motor driving a mass coupled through a torsion spring (Fig. 1.4).

Figure 1.4 / System under test
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Fig. 1.5 shows the Bode plots of both a measured SFRF (left column) and the calculated
OLFRF (right column) of the controlled system measured under large signal conditions.
The setpoint is a constant angular velocity of 2rev/sec, the generator signal is band lim-
ited white noise of 5mV RMS. The input signal of the measurement is the excitation
signal N(jω) inserted through the summing node amplifier. The output signal U(jω)

is the excitation voltage of the plant. The sampling frequency for this measurement is
1000Hz, the block-size is 1024, a Hanning window is applied and the frequency domain
results of 100 data-blocks are averaged.
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Figure 1.5 / Measured Sensitivity FRF and calculated Open Loop FRF. Conditions:
4πrad/sec setpoint, input: summing node excitation signal 5mVRMS , output: plant ex-
citation voltage.

From the OLFRF we can conclude that the system is stable with a gain margin of ap-
proximately 15dB and a phase margin of approximately 80deg and has a bandwidth (first
cross-over frequency) of approximately 15Hz.
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1.3 Non-linear behavior in motion systems

A limitation of using FRFs is the imperative assumption of linearity of the system behav-
ior. Every real life system is non-linear although the implications are not always notice-
able in the operating range. In Fig. 1.6 measurement results are presented of the same
system as in Section 1.2. For these measurements the velocity setpoint is 0rev/sec and
the band limited white noise generator signal is varied from 5mV RMS to 200mV RMS.
The sampling frequency, block-size, windowing and averaging remain unchanged. The
differences between the results in Fig. 1.5 and Fig. 1.6 clearly indicate non-linear behav-
ior. These differences are not only amplitude dependent, probably they are also caused by
harmonic components from the output being fed back to the input of the system. From
the SFRFs we see that depending on the operating conditions, error suppression of the
control loop will vary more than 10dB. From the OLFRFs we see large variations in the
bandwidth, the phase margin and the low frequency gain, which results in a large varia-
tion in the performance of the controlled system. The causes of non-linear behavior are as
numerous as their influences. Without being even remotely complete we mention causes
like harmonic distortion in power amplifiers, quantization in analog to digital converters,
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Figure 1.6 / Measured Sensitivity FRF and calculated Open Loop FRF. Conditions:
0rad/sec setpoint, input: summing node excitation signal 5mVRMS to 200mVRMS , out-
put: plant excitation voltage. The direction of the arrow indicates increasing excitation
voltage.
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saturation in magnetic material, play in kinematically over-constrained constructions and
hysteresis in friction contacts. In precision motion systems, non-linear behavior can not
be ignored, at best reduced with control loops. Control theory offers limited solutions
for reducing the influences of non-linear system behavior on the performance of the
controlled system. An example of an established technique is feedback linearisation of
smooth non-linear systems, which can be implemented in motion control as computed
torque control. With this technique the controlled system is linearized by implement-
ing an inverted model of the non-linear system in the feedback loop (An et al., 1988;
Nijmeijer and der Schaft, 1991; Slotine and Li, 1991; Sciavicco and Siciliano, 1996). For
non-smooth systems (friction, hysteresis, etc.) feedback linearisation is not applicable
and one has to resort to case specific approximative approaches for control. Non-linear
system behavior has to be taken into consideration from the first pondering in the con-
cept phase through the design and construction phase and even beyond the final release
test for condition monitoring. As an example, let us consider the impact which a com-
mon phenomenon like friction has on positioning accuracy of these controlled motion
systems and how friction influences the controller design process.

An example: Friction

In Fig. 1.7 the block-diagram of a motion system with friction is depicted. The system is
non-linear due to the non-linear relation between the output and the resulting restoring
friction force Ff (t). This relation may be very complex and up to now not completely
understood yet.

r(t)

Fc(t)
Ff(t)

y(t)

C H
+

-

Ó Ó

-

+

Figure 1.7 / Blockdiagram of non-linear feedback system

Friction has such a strong influence on positioning accuracy because it can
lead to tracking errors, large settling times and limit cycling (Hensen, 2002;
Hensen and van de Molengraft, 2002; Hensen et al., 2002b, 2003; Mihajlovic et al.,
2004; Putra, 2004). In ultra precision motion systems the effect of friction is mini-
mized by the application of gas bearings or fluid bearings. This results in rather com-
plex and expensive mechanical constructions. In the majority of industrial positioning
equipment however, the application of these ultra low friction bearings is too expen-
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sive. Hence, the negative effects of friction on the dynamics of these machines have
to be taken into account in the controller design. Advanced feedforward techniques
are applied (de Jager, 1993; Armstrong-Hélouvry et al., 1994; Lee and Tomizuka, 1996;
Kostic et al., 2004). These solutions are based on dynamic friction models like the Lu-
Gremodel and its modifications (de Wit et al., 1995; Swevers et al., 2000; Lampaert et al.,
2002). These models include the Stribeck effect, non-local memory hysteresis, spring-
like behavior for stiction and varying break-away force. Both for validating these friction
models and for generating reliable friction parameters for the control algorithms, the dy-
namic friction model parameters must be identified with experiments on real systems.
For this identification, time domain techniques are often used (de Wit and Lischinsky,
1997; Lampaert et al., 2004). Also linear frequency domain techniques are applied in
order to estimate a Frequency Response Function (FRF) from which a number of fric-
tion parameters can be identified. The FRF concept however, presumes linear system
behavior which is clearly not the case in this situation. This dilemma is dealt with by
applying random noise excitation signals (Hensen et al., 2002a) or swept sine excita-
tion (Sherif and Bassioni, 1994; Symens et al., 2002) which results in linearized (thus
approximated) FRFs. It is clear that, although modern, thus frequency domain based,
control theory still heavily draws on linear analysis techniques, a frequency domain based
non-linear approach to analyse and synthese motion systems becomes inevitable.

1.4 Frequency domain techniques for non-linear system

analysis

The measurements presented in the previous section showed that in case of a non-linear
system, the Frequency Response Function is not a sufficient description of the system
behavior. It has insufficient distinguishing and characterizing capabilities. The FRFmea-
surement results of non-linear systems always have to be treated with caution because the
characteristics of the excitation signal can have significant influence on the measured sys-
tem characteristics (Nuij, 2002). Or even worse, the non-linear behavior is not detected
and completely fools the experimenter (Billings and Tsang, 1990b). Many techniques
exist for detecting non-linear system behavior (Wyckaert, 1992; Adams and Allemang,
1998; Vanhoenacker et al., 2002; Gloth and Göge, 2004) and in a realistic measurement
situation a system linearity test should be the aim for the first measurement. Based upon
the results of this initial test, the experimenter has to choose a suitable measurement
technique to reveal the information he/she is looking for. In this section some com-
monly used frequency domain based techniques for the analysis of non-linear systems
will be reviewed.
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1.4.1 Linearisation

Frequency Response Functions are the starting point in modern control design and as
such have their value. There are several approaches to approximate a non-linear system
with a linear description. One approach assumes a weakly non-linear system to consist of
a parallel connection of a true linear part and a non-linear part (Fig. 1.8). The contribution
of the non-linear system ynl(t) to the output signal y(t) is treated as distortion. If yl(t),
the linear part of the response, dominates the system behavior for small excitations u(t),
the true linear system can be successfully identified. The influence of the non-linear dis-
tortion can be further minimized using odd multisine excitation signals with minimized
crest factor and with an amplitude kept as small as possible (Evans and Rees, 2000b;
Pintelon and Schoukens, 2001; Solomou et al., 2001). These multisine signals consist of
N frequency components such that:

u(t) =
1√
N

N
∑

k=−N

Uke
jk2πfmaxt/N (1.5)

with N the number of frequency components, Uk = U−k = |Û(kfmax/N)|ejϕk , fmax the
maximum frequency of the excitation signal and ϕk the phase distribution to yield the
minimized crest factor.

u(t) y(t)+

+

Ó

NL system

L system

ynl(t)

yl(t)

Figure 1.8 /Modeling a weakly non-linear system with a linear part and a non-linear part
in parallel.

A second approach is to find the best linear approximation to the weakly non-
linear system, i.e. the parallel connection of the truly linear part and the non-
linear part (Fig. 1.8) (Schoukens et al., 1998; Weiss et al., 1998; Evans and Rees,
2000a; Pintelon and Schoukens, 2001; Dedene et al., 2002; Solomou et al., 2004;
Schoukens et al., 2005). A system which response to a normalized random multisine ex-
citation can be approximated by a Volterra series, has a measured FRF that be expressed
as:

G(fk) = GR(fk) + GS(fk) + NG(fk) (1.6)
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with fk a multiple of the frequency spacing ∆f of the FRF, GR(fk) the Related Linear
Dynamic System (RLDS), GS(fk) the stochastic non-linear distortions and NG(fk) the
contribution of the measurement noise. The Related Linear Dynamic System consists of:

GR(fk) = GO(fk) + GB(fk) (1.7)

with GO(fk) the true linear system L and GB(fk) the systematic bias due to non-linear
distortion (Pintelon and Schoukens, 2001). The RLDS is a linearisation around an op-
erating point so the test signals must be chosen similar to the signals under operating
conditions for the approximation to be valid. The value of GB(fk) depends the power
spectrum and amplitude distribution of the excitation signals, the value ofGS(fk) also de-
pends on the the actual phases of themultisine input signal. Averaging over several phase
realizations will reduce GS(fk). Averaging over several data blocks with equal phase re-
alization will reduce NG(fk). Apart from leakage free measurements, these multi-sine
based signals also provide qualitative and quantitative information about the non-linear
distortions. Generating only the 4k + 1 frequency lines results in an odd-odd multisine.
The response signal at frequency lines 4k +1 will consist of the linear contribution of the
system and the odd non-linear distortion components. At frequency lines 4k + 2 only the
even non-linear distortion components will occur and the lines 4k + 3 only contain the
odd non-linear distortion components. The distribution is indicative for the non-linear
behavior the system.

1.4.2 Describing Functions

For weakly non-linear systems the RLDS is a useful description of the system behav-
ior. For systems with a stronger non-linear behavior, linearisation is only useful if the
excursions of the system around its nominal operating point are small. Incorporating
the excitation amplitude as a parameter in the (quasi)linear description can extend the
range of operating points over which the non-linear system can be approximated. The
resulting description, the Describing Function, is a function of the excitation signal char-
acteristics. The Sinusoidal Input Describing Function and the Random Input Describ-
ing Function are well known (Gelb and Velde, 1968; Atherton, 1975; Slotine and Li, 1991;
Taylor, 1999). The Describing Function concept extends the Frequency Response Func-
tion in the way that identification of amplitude dependency becomes possible. How-
ever this concept still does not describe the frequency transformation properties of non-
linear systems. It is successfully used in the identification of strong non-linear behavior
like the stick/sliding transition present in any common mechanical system with friction
(Guvenc and Srinivasan, 1994; Olsson, 1995; Taylor and Jin, 1995; Armstrong and Amin,
1996; Olsson and Åström, 1996; Kang and Kim, 1997; Besançon-Voda and Blaha, 2002;
Lim, 2003; Al-Bender and Symens, 2005a,b; Kim and Chung, 2006). An additional ben-
efit of the describing function concept is its simplicity. It is an elegant and intuitively
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apprehensible extension of linear techniques into the non-linear domain making it a use-
ful and transparent analysis technique.

1.4.3 Generalized Frequency Response Functions

The dynamic behavior of a causal, stable, time-invariant linear system can be described
by its impulse response function h(τ). The output y(t) of the system is related to the
input u(t) through the convolution integral, assuming u(t) = 0 for t < 0,

y(t) =

∞
∫

0

h(τ) · u(t − τ)dτ (1.8)

The Fourier transform of this integral results in the Frequency Response Function H(jω)

which describes the system behavior in the frequency domain.

Y (jω) = H(jω)U(jω) (1.9)

For the class of causal, stable, time-invariant, non-linear systems with analytic response
functions, the convolution integral description of the linear system (Eq. 1.8) can be gen-
eralized to an infinite series called the Volterra series (Volterra et al., 1913; Volterra, 1959;
Schetzen, 1980; Rugh, 1981). In that case the output y(t) can be expressed as the sum of
N components yn(t):

y(t) =
N

∑

n=1

yn(t) (1.10)

with yn(t) the n-th order output component defined as:

yn(t) =

∞
∫

0

...

∞
∫

0

hn(τ1, τ2, . . . , τn)
n

∏

i=1

u(t − τi)dτi (1.11)

where hn(τ1, τ2, . . . , τn) is the n-th order Volterra kernel (Bussgang et al., 1974;
Lesiak and Krener, 1978; Chua and Ng, 1979; Boyd and Chua, 1985). Similar to the 1-
dimensional Fourier transform of the impulse response function which yields the classi-
cal Frequency Response Function (Eq. 1.9), the n-dimensional Fourier transform of the
n-th order Volterra kernel yields the n-th-order Frequency Response Function, the Gen-
eralized Frequency Response Function (GFRF) (George, 1959; Bedrosian and Rice, 1971).

Yn(jω1, jω2 . . . , jωn) = Hn(jω1, jω2, . . . , jωn)
n

∏

i=1

U(jωi) (1.12)

These GFRFs can be estimated with non-parametric methods under the assumption that
the system can be described by a low order (truncated) Volterra kernel. The high numer-
ical cost however limits these methods to the identification of GFRFs up to a maximum
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order of three (Boyd et al., 1983; Chua and Liao, 1989). Parametric identification tech-
niques ease the numerical requirements and allow analytical expressions for GFRFs up
to any order (Billings and Tsang, 1989b,a, 1990a). The GFRFs also have their limitations
as a tool to describe non-linear system behavior. Firstly, systems with non-fading mem-
ory (Boyd and Chua, 1985), like non-local memory hysteresis as seen in friction, can not
be described with Volterra series, the basis of the GFRFs.2 Secondly, the interpretation
of the GFRFs is difficult due to their multidimensional nature (Jones and Billings, 1990;
Yue et al., 2005a,b). To our opinion it is premature to conclude that the GFRFs are the
ultimate tool for the analysis of non-linear system behavior because their visualization
and interpretation is very demanding. For this technique to be successfully applicable it
must at least provide useful information about the system behavior in a comprehensible
format and connect to the background of the user.

1.5 Problem formulation

From the observations in the previous sections we may conclude that the ever increasing
performance requirements of systems induce the relevance to address non-linear behav-
ior. This necessitates the increase in capabilities of analysis techniques for non-linear
system behavior and the design techniques for advanced control. This necessity is felt
both in theoretical analysis techniques as well as in synthesis techniques and practical
measurement techniques. We also conclude that there does not exist a comprehensive
technique for frequency domain based analysis of non-linear systems.

In the field of classical system analysis, the linear concept of the Frequency Response
Function displayed in Bode plots is well established. But its applicability in non-linear
system analysis is confined to the identification of a linearized representation of the real
system behavior. The Sinusoidal Input Describing Function concept extends the Fre-
quency Response Function in the way that identification of amplitude dependency be-
comes possible. However, it ignores the excitation frequency transformation property of
many non-linear systems. The Generalized Frequency Response Functions do not have
these limitations but they are difficult to visualize which hampers the interpretation of the
results. An additional limitation of the GFRFs is the fact that they only exist for non-linear
systems with fading memory. This raises the question whether it is possible to formulate
a new analysis technique for non-linear system behavior. A technique which (i) is applica-
ble for a broad class of non-linear systems, (ii) combines the quasi linearisation principle
of the Describing Function with (iii) the analysis capabilities of the GFRFs with respect to
frequency transformation, (iv) characterizes transitions in non-linear system behavior in

2A system has fading memory if two input signals which are close in the recent past, but not necessarily
close in the remote past yield present outputs which are close( (Boyd and Chua, 1985), p.1152)
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a structured way and finally (v) presents the information in an intuitively comprehensible
format. An additional question which immediately comes to mind is about the applica-
bility of such a new technique in practice. Can the usefulness of this new technique be
demonstrated? In this thesis we will answer both questions affirmatively.

1.6 Expected contribution of this thesis

In this thesis the extension of the application of linear techniques towards non-linear
systems analysis is studied. We focus on the class of time invariant non-linear systems
with a harmonic response to a sinusoidal excitation. We show that systems belonging
to this class can be modeled as a Virtual Harmonics Expander in series with a structure
consisting of Higher Order Sinusoidal Input Describing Functions (HOSIDF) in parallel.
The HOSIDF are the natural generalization of the Sinusoidal Input Describing Function
and can be defined as the complex ratio of the nth harmonic component in the output
signal to the virtual nth harmonic signal derived from the sinusoidal excitation signal.
Two measurement techniques are presented for the non-parametric identification of the
HOSIDF. One technique is FFT based and the second technique is based on IQ (in-
phase/quadrature-phase) demodulation. The selectivity and dynamic range of the two
identification techniques are investigated. Both aspects are tested on the basis of simula-
tion by comparing the HOSIDF estimates with the analytical expressions of the HOSIDF
for a system with backlash. To our knowledge, both this modeling technique and the
two non-parametric identification techniques of HOSIDF are new. They have first been
presented in (Nuij and Steinbuch, 2004) and have been published in (Nuij et al., 2006,
2007b).

We concluded in the previous section that for an analysis technique to be successful, it
must at least provide useful information about the system behavior. Although useful is a
subjective measure and depends on the needs of the user, we make a reasonable case for
the usefulness of this new analysis technique. From the odd HOSIDF identified in a real
mechanical systemwith dry friction, we are able to determine the transition from the stick
phase to the sliding phase as function of frequency and excitation amplitude (Nuij et al.,
2007a). From these results the maximum tangential force in the friction contact is deter-
mined without the need of a dedicated force measurement. This opens new possibilities
in for example machine condition monitoring.

To extend the area of applicability of the HOSIDF concept, we studied the implications
feedback has on the estimation of HOSIDF. We present two techniques for reducing bias
in the identification of HOSIDF of a non-linear plant operating in feedback. The first
technique is a new numerical compensation algorithm which compensates for the har-
monics fed back from the output of the non-linear system to the input. The second tech-
nique combines existing repetitive control strategies for harmonics suppression with a



1.7 OUTLINE 13

new layout of the repetitive controller. Both techniques show excellent results (Nuij et al.,
2007b).

The final contribution of this thesis is a new concept of a non-linear systems descrip-
tion. We name this concept the Higher Order Sinusoidal Output Describing Function
(HOSODF) and define it as the dual of the HOSIDF. Where the HOSIDF is a description
of non-linear behavior in the case of sinusoidal excitation, the HOSODF is the dual de-
scription of non-linear behavior in the case of a sinusoidal response. In this duality the
Virtual Harmonics Expander is transformed into a Virtual Harmonics Compressor and
positioned at the output of the non-linear systems model.

1.7 Outline

The outline of this thesis is as follows: in Chapter 2 the concept of the Higher Order
Sinusoidal Input Describing Function is defined. Hereto the Virtual Harmonics Ex-
pander is introduced as a new non-linear function. In Chapter 3 two methods for the
non-parametric identification of HOSIDF are described. Both methods are validated in
Chapter 4. In Chapter 5 some practical aspects of both methods are demonstrated on the
bases of a realistic measurement. In Chapter 6 we zoom in on a real application: the
analysis of the stick/sliding transition in a bearing with friction. In Chapter 7 we expand
our view again and present two techniques which enable the identification of HOSIDF of
a non-linear plant operating in feedback. A possible application of HOSIDF in machine
condition monitoring will be demonstrated in Chapter 8. Chapter 9 is the dual of Chap-
ter 2. In this chapter we present the Higher Order Sinusoidal Output Describing Func-
tions together with the Virtual Harmonics Compressor. In Chapter 10 conclusions are
drawn and recommendations for further research are given. In the Appendix the Fourier
coefficients of a system with backlash are presented, together with a short explanation of
the Modified Leuven friction model and the parameters used in the measurements and
simulation experiments.
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CHAPTER TWO

Generalizing the Describing Function to
Higher Order Describing Functions

Abstract / For a specific class of non-linear systems the Sinusoidal Input Describing Function
can be generalized to Higher Order Sinusoidal Input Describing Functions. The concept of
the Virtual Harmonics Expander is defined as the tool required for this generalization.

As stated in a Section 1.5, we will explore an extension of the well known (quasi) linear
techniques for system analysis like FRF and Describing Functions towards non-linear
systems analysis. Our strategy is the following:

1. Restrict the class of non-linear systems to be considered.

2. Separate the non-linear system in a highly non-linear part which can not be ana-
lyzed with (quasi) linear techniques but which can be successfully modeled and a
part which can be analyzed with (quasi) linear techniques.

3. Merge the information gained from the non-linear modeling technique and from
the (quasi) linear analysis technique.

2.1 Definition of the class of systems under consideration

Because the number of elements belonging to the class of non-linear systems is probably
tending towards infinity, we have to restrict ourselves to a subset which can be success-
fully analyzed.

Definition 1. (Class of non-linear systems under consideration): The class I of causal,
stable, time invariant non-linear systems which have a harmonic response to a sinusoidal
excitation.

15
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When we mention non-linear systems in the sequel of this thesis, we assume these sys-
tems to belong to I , unless mentioned otherwise.

2.2 Virtual Harmonics Expander

Consider a system which belongs to the class I as defined in the previous section. Let
u(t) = âcos(ω +ϕ) be the input signal. The system response y(t) is considered to consist
exclusively of harmonics of the fundamental frequency ω of the input signal u(t), i.e. we
assume that the transient behavior has vanished. Response y(t) can be written as a sum-
mation of harmonics of the input signal u(t), each with an amplitude and phase, which
can depend on the amplitude â, phase ϕ and frequency ω of the input signal (Fig. 2.1).
This system can be modeled as a cascade of a so called Virtual Harmonics Expander and
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Figure 2.1 / General sinusoidal input-output relation.

a (non) linear system (Fig. 2.2). The Virtual Harmonics Expander (VHE) is defined as a
non-linear component which transforms a sinusoidal input signal u(t) with frequency ω,
amplitude â and phase ϕ, (Eq. 2.1), into a harmonic output signal ŭ(t). This output signal
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Figure 2.2 / Virtual Harmonics Expander as separate block in the model of a non-linear
system with harmonic response.
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ŭ(t) consists of an infinite amount of harmonics of the input signal u(t) with frequency
nω, amplitude â and phase nϕ with n ∈ N:

u(t) = â cos(ωt + ϕ) (2.1)

ŭ(t) =
∞

∑

n=0

â cos(n(ωt + ϕ)) (2.2)

Remark: It is evident from Eq. 2.1, 2.2 that the VHE is not power invariant.

By defining a separate block for the generation of harmonics in modeling this class of
non-linear systems, the complexity of the subsequent (non) linear block will be signifi-
cantly less and linear approaches may become feasible depending upon the remaining
non-linear behavior. The resulting model structure has strong similarities with a Ham-
merstein model. This structure however is not a Hammerstein model since the second
block is not necessarily linear (Narendra and Gallman, 1966).

2.3 Higher Order Sinusoidal Input Describing Functions

Consider a stable, non-linear time invariant system as described in Section 2.2 with u(t)

as the input signal and y(t) as system response after the transient behavior has vanished
(Fig. 2.1). The describing function H(â, ω) of the system is defined as the complex ratio
of the fundamental component ỹ(t) of the system response and the input sinusoid u(t)

(Fig. 2.3).

)),ˆ(cos(),ˆ()()cos()( 11 wjjwwjw ataAtytatu ++=+=
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Figure 2.3 / Sinusoidal input describing function representation.

The describing function H(â, ω) can be calculated as (Slotine and Li, 1991):

H(â, ω) =
A1(â, ω)ej(ωt+ϕ+ϕ1(â,ω))

âejωt+ϕ
=

1

â
(b1(â, ω) + ja1(â, ω)) (2.3)

The Fourier coefficients a1 and b1 are calculated as in Eq. 2.4, 2.5 with T = 2π
ω
:

a1 =
2

T

t0+T
∫

t0

y(t) cos(ωt)dt (2.4)
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b1 =
2

T

t0+T
∫

t0

y(t) sin(ωt)dt (2.5)

In Fig. 2.4 the block representation of the non-linear system with a harmonic response is
redrawn by separating the Virtual Harmonics Expander from the system. The remaining
system can be represented as a parallel connection of subsystems, each relating a har-
monic component of the non-linear system output to the corresponding harmonic com-
ponent of the Virtual Harmonics Expander. The subsystem H1(â, ω) is the sinusoidal
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Figure 2.4 / Higher Order Sinusoidal Input Describing Functions representation.

input describing function of the system as defined in Eq. 2.3. This classical describing
function can be interpreted as the first element of a set of higher order describing func-
tions Hk(â, ω). These functions can be defined as the complex ratio of the kth harmonic
component in the output signal to the virtual kth harmonic signal derived from the ex-
citation signal. This virtual harmonic has equal amplitude as the fundamental sinusoid
but its starting-phase is n times the starting phase of the excitation signal. Like the first
order describing function (Eq. 2.3), the higher order describing functions are calculated
from the corresponding Fourier coefficients:

Hk(â, ω) =
Ak(â, ω)ej(k(ωt+ϕ)+ϕk(â,ω))

âejk(ωt+ϕ)

=
Ak(â, ω)ej(ϕk(â,ω))

â
=

1

â
(bk(â, ω) + jak(â, ω)) (2.6)



2.4 DISCUSSION 19

Hk(â, ω) can be interpreted as a descriptor of the individual harmonic distortion compo-
nents in the output of a time invariant non-linear system with a harmonic response as
function of the amplitude and frequency of the driving sinusoid. In this thesis Hk(â, ω)

will be referred to as the Higher Order Sinusoidal Input Describing Functions (HOSIDF).

2.4 Discussion

In this chapter the key concepts of this thesis are presented. These concepts are defined
for the class of causal, stable, time invariant non-linear systems that have a harmonic
response to a sinusoidal excitation. This class, denoted as I , also contains systems with
non-fading memory (Boyd and Chua, 1985) like for example non-local memory hystere-
sis. Systems with non-fading memory can not be described with (truncated) Volterra
series which constitute the basis of non-linear analysis techniques like the Generalized
Frequency Response Functions. The prime characteristic property of the non-linear sys-
tems belonging to the class I is the frequency transformation of a sinusoidal input signal
into a harmonic output signal possibly also containing a DC component. This transfor-
mation property is concentrated as the essential characteristic of the Virtual Harmonics
Expander. Although this property is highly non-linear, it also has linear aspects. Both
the amplitude and the phase of the harmonics at the output of the Virtual Harmonics
Expander have a linear relation with the amplitude and phase of the input sinusoid. This
transformation function greatly extends the application of successful (quasi) linear con-
cepts like the FRF and the Sinusoidal Input Describing Function towards the non-linear
environment. The generalization of the Sinusoidal Input Describing Function to the
Higher Order Sinusoidal Input Describing Functions is a logical result of this approach.
By merging the Virtual Harmonics Expander and the HOSIDF concept, all non-linear
systems belonging to this class I can be modeled as a parallel connection of weakly non-
linear systems connected in series with one single highly non-linear system. The fact
that the HOSIDF concept requires pure sinusoidal excitation both has advantages and
disadvantages. The sinusoidal excitation results in simple non-parametric identification
techniques of the HOSIDF which can be visualized easily. A disadvantage is the slow
speed of identification and the inability to identify non-linear effects like intermodulation
and desensitization (Billings and Tsang, 1989a).
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CHAPTER THREE

Non-parametric identification of HOSIDF

Abstract / Two distinctly different methods for the non-parametric identification of HOSIDF
are presented. The first method employs FFT techniques to determine the autospectrum and
phase information and operates upon blocks of data. The second method uses IQ demodula-
tion and is sample based.

In Section 2.2 the Virtual Harmonics Expander was presented. The frequency transfor-
mation property of this non-linear system is linear with respect to the amplitude and
phase of the excitation sinusoid. In this Section we will use this property for the non-
parametric identification of the HOSIDF of the systems belonging to the class defined in
Section 2.1. Two identification methods will be described, both using the orthogonality
properties of the sin and cos function. However, due to the way of implementation, the
results are distinctly different.

3.1 Fourier based technique

The first identification technique is FFT based. Both the input signal u(t) and output
signal y(t), (Fig. 2.1) are Fourier transformed with a transform size of 2m. The resulting
single sided spectra contain m + 1 frequency lines each with 0Hz in frequency line zero.
The frequency spacing is ∆f = 1/Tb with Tb the length of the data block. Tb is chosen
a multiple p times the period T = 2π/ω of the excitation signal. This assures that all
the power of the excitation signal is concentrated in frequency-line p. The power of the
response signal is fully concentrated in the frequency lines n.p with n ∈ N, so leakage
is absent. In Fig. 3.1 the Virtual Harmonics Expander (VHE) and the kth order HOSIDF
are highlighted. Let us consider the calculation of the kth order HOSIDF. According to
Eq. 2.6 this HOSIDF is calculated from the kth harmonic component in the output signal
y(t) of the system divided by the kth harmonic component ŭk(t) of the output of the VHE.

21
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Figure 3.1 / Determination of the kth order HOSIDF using FFT techniques.

The signal ŭk(t) however cannot be measured but has to be derived from the measurable
input signal u(t). Using Eq.2.1, 2.2 the frequency nω, amplitude â and phase nϕ of every
component n from the output of the VHE can be calculated. In the frequency spectrum
of u(t) the frequency line p with complex value ap + jbp represents the input signal. The
square root of the power in this frequency line is the amplitude â and the phase angle of
this frequency line equals phase ϕ:

â =
√

a2
p + b2

p (3.1)

ϕ = arctan(−bp

ap
) if ap ≥ 0

ϕ = arctan(−bp

ap
) + π if ap < 0

(3.2)

In the spectrum of the system output signal y(t), the frequency line with number k ·p and
complex value akp + jbkp represents the output of the subsystem Hk(â, ω). The square
root of the power in this frequency line is the amplitude Ak(â, ω):

Ak(â, ω) =
√

a2
kp + b2

kp (3.3)

The phase angle of this frequency line ϕkout
is the sum of the phase of the kth component

of the VHE ϕkin
and the system phase ϕk(â, ω):

ϕkout
= ϕkin

+ ϕk(â, ω) = kϕ + ϕk(â, ω) (3.4)
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From Eq. 3.1, 3.3 the magnitude of the kth order HOSIDF can be calculated as:

|Hk(â, ω)| =

√

a2
kp + b2

kp
√

a2
p + b2

p

(3.5)

The phase ϕk(â, ω) of the HOSIDF can be calculated from Eq. 3.2, 3.4:

ϕk(â, ω)= arctan(
−bkp

akp
) − [k arctan(−bp

ap
)]mod2π if ap ≥ 0, akp ≥ 0

= arctan(
−bkp

akp
) − [k{arctan(−bp

ap
) + π}]mod2π if ap < 0, akp ≥ 0

= arctan(
−bkp

akp
) + π − [k arctan(−bp

ap
)]mod2π if ap ≥ 0, akp < 0

= arctan(
−bkp

akp
)+π−[k{arctan(−bp

ap
)+π}]mod2π if ap < 0, akp < 0

(3.6)

3.2 IQ demodulation technique

An alternative to the FFT based technique is the IQ demodulation method (Rader, 1984;
Mitchell, 1989). The signals u(t) and y(t) from which the HOSIDF are to be calculated
only consist of the excitation sinusoid with frequency ω and its harmonics nω respectively
(Fig. 2.1). So their frequency spectra can be considered a collection of narrowband signals
with bandwidth much less than ω. The magnitude and phase of these spectral compo-
nents can be determined using IQ demodulation. In Fig. 3.2, IQ demodulation of the kth

harmonic of the output signal is explained inmore detail. The system output signal y(t) is
multiplied with 2 sin(kω) and 2 cos(kω) in two separate branches. These multiplications

Low-pass

filter×

×
Low-pass

filter

)),ˆ()(cos(),ˆ(

)(

0

å
¥

=

++
n

nn atnaA

ty

wjjww

)),ˆ(sin(),ˆ( wjjw akaAQ kkk +=

)),ˆ(cos(),ˆ( wjjw akaAI kkk +=

k

k

k

kkk

I

Q
ak

QIaA

=+

+=

)),ˆ(tan(

),ˆ( 22

wjj

w

)sin(2

)cos(2

tk

tk

w

w

-

+

Figure 3.2 / Determining amplitude and phase of the kth order component of the system
output signal using IQ demodulation.

result in the generation of two new signals, each consisting of the sum and difference
frequencies of the original signal and the local oscillators signals. These new signals
are 90◦ apart. After low-pass filtering with a cut-off frequency ωLP ≪ ω the remaining
signals representing the kth harmonic are Ak(â, ω) cos(kϕ + ϕk(â, ω)) called the I-signal
(in phase) component and Ak(â, ω) sin(kϕ + ϕk(â, ω)) called the Q-signal (quadrature)
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component. Because the frequency of the two local oscillators is kω, the Ik and Qk com-
ponents are the Fourier components of the IQ demodulated signal. So |Hk(â, ω)| and ϕk

can be calculated from â, ϕ, Ak(â, ω), and ϕkout
, (Fig. 3.3) with Eq. 3.1-3.6. The IQ demod-

Virtual

harmonics

expander

Hn(â,ù)

H0(â,ù)

Ó

Hk(â,ù)

·

·

·

·

·

IQ IQ

w w
p k.p

)cos(ˆ

)(

jw +

=

ta

tu

)cos(ˆ

))(cos(ˆ)(

in
k

k

tka

tkatu

jw

jw

+

=+=

)cos(),ˆ(

)),ˆ(cos(),ˆ(

koutk

kk

tkaA

aktkaA

jww

wjjww

+

=++

)),ˆ()(cos(),ˆ(

)(

0

å
¥

=

++

=

n

nn atnaA

ty

wjjww

in

in

inin

in

in

I

Q

QIa

aQ

aI

=

+=

=

=

)tan(

ˆ

)sin(ˆ

)cos(ˆ

22

j

j

j

outk

outk

outk

outkoutkk

kkoutk

kk
out

k

I

Q

QIaA

akaAQ

akaAI

=

+=

+=

+=

)tan(

),ˆ(

)),ˆ(sin(),ˆ(

)),ˆ(cos(),ˆ(

22

j

w

wjjw

wjjw

Figure 3.3 / Determining the kth order HOSIDF using IQ demodulation.

ulators for both signals u(t) and y(t) have identical lowpass filters, only the frequencies
of the local oscillators differ. Because the filters are identical, their characteristics will not
bias the results. However, any asymmetry between the filter characteristics will show up
in the HOSIDF to be calculated.

3.3 Discussion

We defined two methods for non-parametric identification of the HOSIDF. Both meth-
ods have in common that they generate the complex values of the HOSIDF from which
the magnitude and the phase information can be determined. The methods are distinctly
different from a signal processing point of view. The FFT based method operates with
data blocks where the IQ method is sample based. They also differ in the freedom of the
design of their filter characteristics. In the FFT based method, the applied time weight-
ing function dictates the effective filter characteristics of all frequency bins. In the IQ
methode the selectivity is determined by the lowpass filters trailing the multipliers. Both
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the type and the order of the I and the Q filter can be chosen freely as long as both filter
characteristics are identical. This allows for optimization with respect to real-time per-
formance which may be beneficial in applications where real-time, on-line information
about HOSIDF is desirable. These aspects are not studied in this thesis. It is to be ex-
pected however that a characteristic with increased attenuation of the harmonics of the
excitation frequency will lead to an increase in settling time of the filters. Once a filter
characteristic is chosen, all frequencies analyzed are subjected to that specific filter char-
acteristic. For the FFT based method each harmonic coincides with an FFT line and since
all lines have equal selectivity, every harmonic is filtered with equal filter characteristics.
In the IQmethode, after multiplication, each harmonic component is filtered by the same
lowpass filter. Consequently, in both methods the effective filter shape for each individual
harmonic is independent of frequency.
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CHAPTER FOUR

Validation of the proposed identification
techniques

Abstract / In this chapter the proposed measurement techniques are tested in a simulation
experiment to get a better understanding of their performance with respect to dynamic range
and selectivity under extreme variations in the excitation amplitude. First, the HOSIDF of a
known non-linear system will be derived analytically. These expressions serve as the refer-
ence for subsequent simulations. Time-sequences will be generated, simulating the dynamic
behavior of this system. These time-sequences are processed both with the FFT technique
and the IQ technique to derive the HOSIDF. A comparison between the analytically derived
HOSIDF and the HOSIDF derived from the simulation experiment shows that the dynamic
range of the IQ method suffers from limited selectivity.

In Chapter 3 two techniques for the non-parametric estimation of the HOSIDF were
presented. Both techniques require frequency selectivity, either as the result of an FFT
algorithm or from an analog or digital lowpass filter. In this Section we will investigate
the influence of frequency selectivity on the estimates of the HOSIDF. As a first step
the HOSIDF of a known and well defined non-linear process are derived analytically.
Subsequently these HOSIDF serve as a reference in a simulation experiment over a wide
range of excitation amplitudes.

4.1 Theoretical derivation of the HOSIDF for backlash

The reference system consists of a mass-less body m, connected to the surroundings by
a spring with stiffness k (Fig. 4.1). The body experiences a Coulomb friction force Fc of
magnitude b if ẏ 6= 0 (Fig. 4.2). Due to this friction in combination with the spring, the
body will experience a backlash of 2b when excited with a periodic force F (t) = A sin(ωt)

if A ≥ b. The non-linear relation between input force F (t) and output displacement y(t)

27
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m

k

y(t)

F(t)=Asin( t)ù

Fc

Figure 4.1 / System with Coulomb fric-
tion.

Fc

b

-b

)(ty&

Figure 4.2 / Coulomb friction.

is an odd function and can be expressed analytically in steady state as:

y(t) = 0 if A < b else
y(t) = (A − b)/k π

2
< ωt ≤ π − γ mod 2π

y(t) = (A sin(ωt) + b)/k π − γ < ωt ≤ 3
2
π mod 2π

y(t) = −(A − b)/k 3
2
π < ωt ≤ 2π − γ mod 2π

y(t) = (A sin(ωt) − b)/k 2π − γ < ωt ≤ 5
2
π mod 2π

(4.1)

with sin(ωγ) = 1 − 2b
A
. Fig. 4.3 shows the input-output relation for backlash. Using

Eq. 2.4, 2.5, y(t) can be decomposed in its Fourier coefficients an and bn (Appendix 11.1).
With Eq. 2.6 the HOSIDF are calculated as function of the excitation amplitude A. This
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Figure 4.3 / Input-output relation for backlash
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mass-less, non-linear system has no dynamics so the HOSIDF are independent of fre-
quency. In Fig. 4.4 the magnitude and phase relations of the HOSIDF are displayed as
function of the quotient of the magnitude of the resulting excitation force A − b and the
value of the Coulomb friction b. The top left graph shows the magnitude of the first order
Describing Function. The top right plot shows the phase. In the subsequent rows the
magnitudes and phases of the odd HOSIDF are shown. Obviously, the even orders are
all zero because y(t) is an odd function (Eq. 4.1). The HOSIDF clearly have a maximum
in their magnitude. This maximum occurs when A = 2b. For this excitation value, the
system has a maximum in its non-linear behavior and the harmonics in the output sig-
nal will reach maximum amplitude relative to the excitation amplitude. For much larger
excitation magnitudes, the magnitude of the friction force relative to the excitation force
decreases and the system tends to linear behavior. The magnitude of the first order SIDF
becomes constant, while the magnitudes of the HOSIDF decrease. An interesting ob-
servation is the symmetry of the magnitude plots of the HOSIDF when log(A − b)/b is
chosen as x-axis. In this thesis no further attempt is made to explain this symmetry.
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Figure 4.4 / Theoretical odd HOSIDF of backlash.
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4.2 Simulation experiments

In the simulation experiment, the system with backlash is solved numerically. The sim-
ulations are done in discrete time domain so in a perfect simulation the discrete-time
series can be treated as the sampled representation of the theoretical continuous time
series. Since the sampling frequency is finite, aliasing will occur and can only be reduced
by choosing the sampling frequency as high as practically possible. Leakage however can
be prevented by choosing the sampling frequency a multiple of the excitation frequency.
An additional pitfall apart from aliasing and leakage is the fact that the simulation re-
sults depend on the maximum values of the samples which represent each cycle of the
sinusoidal excitation signal. Due to the discrete time behavior of the simulation, the
maximum values of the calculated excitation signal samples in a cycle are not necessarily
the peak value of the theoretical excitation signal f0. Fig. 4.5 shows the influence of the
phase of the sampling signal relative to the phase of the theoretical excitation signal. In
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Figure 4.5 / Influence of sampling phase on the simulation results with backlash-width
b = 0.25. Legend: - theory, × fs = 6f0 with φ(0) = 0, ⋄ fs = 6f0 with φ(0) = π

6

Fig. 4.6 an extreme example is given of the fact that the input sinusoid must be sampled
at its maximum. The upper figure shows the theoretical input signal and its time dis-
crete representation with three different sampling frequencies of 4f0, 8f0 and 10f0, all
sufficiently high to correctly sample the input signal. The lower figure shows that a sam-
pling frequency which is sufficiently high with respect to the Nyquist frequency of the
input signal does not guarantee correct results of the output signal due to the non-linear
system behavior. The figure shows that the results obtained with the highest sampling
frequency are the poorest. This is due to the fact that for this frequency the input signal
with an amplitude of 10−6 above the backlash-width was not sampled at its maximum
value. Consequently the system remained within its backlash with zero output as result.
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Figure 4.6 / Influence of sampling frequency and sampling phase on the simulation
results with backlash-width b = 0.25 and A = b + 10−6. Legend: - theory, × fs = 8f0

with φ(0) = 0, ◦ fs = 4f0 with φ(0) = 0, ♦ fs = 10f0 with φ(0) = π
6 .

This phase influence can be minimized by synchronizing the phases of the sampling
frequency and hypothetical excitation frequency such that the theoretical excitation fre-
quency is sampled at its maximum values i.e. at φ = π

2
+kπ with k ∈ Z. This can be done

with a sampling frequency of fs = 4nf0 with n ∈ N and both ϕfs
(0) = 0 and ϕf0

(0) = 0.
The analytical results were derived for a sinusoidal excitation with a constant amplitude
in a range of 10−6 ≤ (A − b) ≤ 103. In the simulation this signal is implemented as a
sinusoid with a non-smooth stepped amplitude (staircase) with continuous phase tran-
sitions between the individual amplitude levels. This is implemented by changing the
amplitude at the moment of zero phase (Fig. 4.7(a)). Changing the amplitude at other
moments will result in large transients with a broad frequency content (Fig. 4.7(b)).
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Figure 4.7 / Phase continuous stepped amplitude.
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4.2.1 FFT based method

During this simulation experiment, every excitation level was kept constant during 3 pe-
riods of the excitation sinusoid. While processing the time series, the first period of every
excitation level was skipped in order to suppress effects caused by the transition between
subsequent excitation levels. Since the input signal for the simulation was free of noise,
no signal averaging was applied. Table 4.1 gives the relevant measurement parameters
for both measurement techniques.

FFT IQ
fs = 2048f0; 512f0 fs = 512f0

∆f = f0

2
Butterworth LP filter

no leakage f−3dB = f0

2

rect. window 4th order, 5th order
1 period settling 12 periods settling

k = 1 k = 1
b = 0.25 b = 0.25

Table 4.1 / Relevant measurement parameters

Fig. 4.8 shows the HOSIDF up to the 7th order for the staircase excitation when mea-
sured with the FFT method. The odd behavior of backlash is clearly reflected in the very
low magnitude values of the even HOSIDF. The noise in the corresponding even order
HOSIDF phase-plots is caused by the numeric resolution of the calculations. Fig. 4.9
shows the errors for both gain and phase between the simulated results and the analyti-
cally derived values for different sampling frequencies used in the simulation. The errors
are calculated as:

magnitude error [dB] = 20 log
|HOSIDFsim|
|HOSIDFan|

(4.2)

phase error [rad] = ∠(HOSIDFsim) − ∠(HOSIDFan) (4.3)

with HOSIDFsim, HOSIDFan the HOSIDF from the simulation experiment and the
analytically derived results respectively. The errors induced by the simulation sampling
frequency increase with the order number. The influence on the phase errors varies with
the magnitude of the HOSIDF. The influence on the magnitude errors is excitation mag-
nitude independent. From these results it may be concluded that the sampling frequency
of fs = 2048f0 used in Fig. 4.8 for the simulation of the HOSIDF up to order 7 was
sufficiently high to judge the dynamic range and selectivity of the analysis method.
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Figure 4.8 / Simulation results using FFT with fs = 2048f0.
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4.2.2 IQ based method

When analyzing the time series with the IQ method, special attention has to be payed
to the settling behavior of the lowpass filters, especially when the measurements have a
large dynamic range. Since the time-series consist of stepped amplitude time sequences,
each excitation level was kept constant for 12 periods of the excitation sinusoid to allow the
lowpass filters to settle. Although both time-series with fs = 2048f0 and fs = 512f0 have
been processed with the FFT method, only time-series with fs = 512f0 have been pro-
cessed with the IQ based method because of the memory allocation limitations induced
by the simulation software. In Fig. 4.10 the results after settling of the filters are shown.
A major difference with the FFT based results as displayed in Fig. 4.8 can be found in the
even orders. Because the non-linearity is odd, the even order HOSIDF should be zero.
This is not the case in the even order results here. Also the dynamic range of the third
order HOSIDF is limited to approximately -55dB for high excitation levels.
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Figure 4.10 / Simulation results using IQ with fs = 512f0, LP filter 5th order Butterworth
f−3dB = f0/2.

Fig. 4.11, 4.12 show the differences between the theoretical results and the results for the
odd orders generated by the IQ method for a 4th order and a 5th order lowpass filter. The
results show an excitation amplitude dependent error which decreases with the filter or-
der number. The source of the errors in both the even and the odd orders is the non ideal
low-pass filtering of the Ik and Qk signals (Fig. 3.2). The implemented digital filters have
finite attenuation at the harmonics of the excitation frequency. Power from the sum and
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Figure 4.11 / Magnitude and phase errors in the odd HOSIDF generated with the IQ
method. fs = 512f0 LP filter 5th order Butterworth f−3dB = f0/2.
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difference signals with frequencies ω = (n ± k)ω0 for n 6= k adds onto the power of the
difference signal with frequency ω = (n ± k)ω0 for n = k.

4.3 Discussion

The simulation shows that the FFT based method yields nearly perfect results. Both the
selectivity and the dynamic range are in line with the analytically derived results. The
reason for this near perfect behavior is the perfect selectivity of the FFT based filters, due
to the specific location of its zeros. If the window length lwindow = 1/∆f = k/f for k ∈ N

where ∆f is the FFT resolution, the frequency f to be analyzed coincides with an FFT
line. The zeros in the filter characteristic of this FFT line will provide infinite attenuation
of all the harmonics of f . Unlike the rectangular weighting function, for weighting func-
tions like Hanning and Hamming the first zero in their Frequency Response Function
has a frequency of 2∆f . If the excitation frequency f = ∆f , its harmonic 2f will not
be suppressed. To prevent this, the minimum length of the Hanning weighting function
must be 2/f (Fig. 4.13). The selectivity of the digital filters used in the IQ method is not
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Figure 4.13 / Frequency selectivity of the applied filters. FFT method: Rectangular
lwindow = 1/f0, Hanning lwindow = 2/f0. IQ method: 4th and 5th order Butterworth
f−3dB = f0/2.

perfect for the harmonics of the excitation frequency as can be seen in Fig. 4.13 also. This
results in a complicated error mechanism because the errors in the individual HOSIDF
depend on the combination of filter selectivity and the power distribution of the harmonic
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components in the response signal. The dynamic range of all HOSIDF will be limited
by the remaining power outside the passband of the lowpass filter after filtering the sum
and difference signals. An increased selectivity requires steeper filters, thus a higher fil-
ter order and/or a different filter type, but always at the expense of extra settling-time. In
this research no special attention is payed to the optimal tradeoff between the digital filter
characteristics, required settling time and the resulting selectivity. The simulations de-
scribed in Section 4.2 do not take the influences of noise into account. From Fig. 4.13 can
be concluded that, depending on the filter shape, the IQ method can be less susceptible
to broadband noise than the FFT method. In the FFT methode however, the influence of
noise can be reduced significantly by time domain averaging since the excitation signal
and the part of the output signal caused by the excitation signal are both deterministic.
From these results we conclude that the FFT based technique is superior due to its ideal
selectivity. If, however, real time implementation is required, additional arguments have
to be taken into consideration. These aspects are not evaluated in this thesis and can be
an interesting field for future research.
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CHAPTER FIVE

Application of the proposed identification
techniques in practice

Abstract / After the validation of both methods with respect to selectivity and dynamic range
under simulated extreme conditions, some practical aspects of a HOSIDF measurement like
design of the excitation signal and numerical compensation of the bias caused by harmonic
distortion will be presented on the basis of an experiment on a real system.

In Section 4.2 both measurement techniques were validated under extreme conditions:
noise free pure sinusoidal excitation over a very wide range of amplitudes. These hypo-
thetical conditions allowed the investigation of the dynamic range and selectivity of both
techniques. In this section some subjects will be discussed which become relevant in a
realistic measurement: design of the excitation signal, settling time in the IQ filters, noise
as limiting factor for the dynamic range of the measurements and a reduction of the bias
in HOSIDF estimates caused by the harmonic power distribution in the excitation signal.
In this case study a mechanical system with real friction is tested in physical reality.

5.1 Design of the excitation signal

The theoretical background for the HOSIDF as explained in Section 2.3 presumes a sin-
gle sinusoid excitation and thus a constant amplitude. In practice it is not possible to
completely realize this condition. The limitations are dictated by the hardware of the
signal generator, the linearity of the actuator, sensor noise and the measurement time
available.
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Hardware restrictions

Hardware restriction are dictated by the signal generating hardware and the actuators
used. Key elements determining the spectral purity of a digital signal generator are the
phase noise in its master oscillator, the dynamic range and linearity of the DA convertor
and the quality of the analog smoothing filters required to eliminate the impact of the zero
order hold reconstruction. The output subsystem of the SigLab analyzer which is used
for the experiments consists of an 18 bits DAC with analog reconstruction filter. This
limits the magnitude difference between the sine component in the output signal and all
other components to 90dB. In practice however the non-linear distortion caused by the
power amplifier and the actuator dominates the generation of harmonics in the excitation
signal. As examples one can think of crossover distortion in a push-pull amplifier and the
inability of an electromagnetic shaker to deliver a sinusoidal force to a load with a non-
linear impedance. Apart from harmonic distortion, the measured excitation signal which
serves as the input for the HOSIDF calculations can also contain noise generated by the
sensor. Especially under low excitation signal condition this noise contribution has to
be taken into consideration because it will negatively influence the dynamic range of the
measurements.

Amplitude-time relation

The required amplitude-time relation can be implemented as a phase continuous stepped
amplitude signal (Fig. 4.7). This garanties the required spectral purity but at the expense
of increased measurement time. One has to wait for the system to settle after every step
in the amplitude. Also the settling time of the digital filters used in the IQmethode has to
be respected. If the requirements for the spectral purity are reduced, different amplitude-
time relations can be used and the required total settling time can be decreased. Fig. 5.1
shows the results of this trade off. In this example two signals are analyzed, Gen1(t) with
a phase continuous stepped amplitude with 5 levels and Gen2(t) with a linear amplitude
time relation:

Gen1(t) =
1

5

{

floor(t) +
1

2

}

cos(2πf0t) 0 ≤ t ≤ 5 (5.1)

Gen2(t) =
t

5
cos(2πf0t) 0 ≤ t ≤ 5 (5.2)

with f0 = 320Hz and both sampled at 12.8kHz. Fig. 5.1 shows the spectral lines contain-
ing the fundamental frequency and its harmonics as function of time for both signals.
In the left hand column the analysis is done with a 1600 lines FFT and Hanning weight-
ing, resulting in 40 data-blocks and a frequency resolution ∆f = 8Hz. In the analysis of
Gen1(t), the data-blocks are chosen such that they contain constant amplitude levels. The
40 data-blocks in the analysis ofGen2(t) have an equal position in time as the correspond-
ing data-blocks of Gen1(t). Within any data-block of Gen2(t) the absolute increase in the
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amplitude is CG∆f with CG = 1/5 the amplitude gradient used in this example. Due to
the phase continuous stepped amplitude, Gen1(t) consists of the fundamental frequency
component f0 only. Apart from the fundamental frequency f0, the FFT representation of
Gen2(t) also contains frequency components with a periode equal to integer fractions of
the FFT block length. Since f0 is chosen to fit an integer number of periodes in the data
block, Gen2(t)will contain low level harmonics of f0 which only depend on the amplitude
gradient of the signal and the frequency resolution of the measurement. The right hand
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Figure 5.1 / Staircase vs. ramp. Left column: FFT based results, + staircase, * ramp.
Right column: IQ based results, black staircase, red ramp.

column of Fig. 5.1 shows the corresponding harmonics determined with the IQ methode.
The 3rd order Butterworth lowpass filters have a slope of−60dB/dec, equal to the slope of
the Hanning filter characteristic. The cutoff frequency f−3dB = 5.75Hz and is calculated
from the requirement that the Effective Noise Bandwidth (ENBW) of the IQ filters and
the FFT filters are equal. The ENWB is defined as the width of an ideal rectangular filter
of the same reference transmission level which transmits the same power from a white
noise source. The ENWB of a Hanning window is 1.5 · ∆f (Oppenheim and Schafer,
1999), the ENWB of a 3rd order Butterworth filter is 1.047 · f−3dB, (Shelton and Adkins,
1970). The response to the staircase signal clearly shows the settling behavior of the fil-
ters. Also the limited selectivity of the filters, as discussed in Section 4.2.2, is visible in
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the harmonic levels of the staircase signal: where the FFT technique shows harmonic lev-
els down to−300dB, the corresponding levels measured with the IQmethode are limited
to approximately −150dB. Because of this limited selectivity it is not possible to detect
the differences in harmonic levels between the two excitation signals with the chosen
filter characteristics. A major difference between the signals in this example is the total
settling time required by the filters in the measurement. For the ramp signal the set-
tling time is approximately 0.3sec where the stepped sine signal requires approximately
8 times longer. It is important to stipulate that these results only describe the difference
in settling time of the digital filters when measuring a stepped amplitude change versus a
ramped amplitude change. In the response signals of the non-linear system these condi-
tions will not be met and on top of a probably different settling behavior of the filters, one
also has to take the settling time of the system into account. However it is to expected that
this difference in overall settling time between both excitation signals will increase with
the amount of measured amplitude levels. No attempt is done to optimize the trade-off
between selectivity and settling time. This aspect can be a challenging subject for future
work.

5.1.1 Numerical compensation of harmonic excitation

As a result of hardware restriction and/or the implemented amplitude-time relation of
the excitation signal, harmonics of the excitation sinusoid will be present at the input of
the system under test. This conflicts with the sinusoidal excitation condition required
(Slotine and Li, 1991; Atherton, 1975; Nuij et al., 2006). This harmonic input signal u(t)

causes several non-linear phenomena in the output signal y(t) (Bussgang et al., 1974;
Wiener and Spina, 1980; Billings and Tsang, 1989a; Solomou et al., 2002; Yue et al.,
2005a) like:

Gain compression/expansion. The input amplitude dependent relation between an input
frequency component ω0 and the output signal at frequency ω0. This mechanism
is completely described by the first order SIDF.

Generation of harmonics. The generation of harmonics as function of frequency and input
amplitude which is described by the higher order SIDF.

Desensitization. Desensitization describes the influence an input frequency component
ω1 has on a not harmonically related output component with frequency ω2.

Intermodulation. As the result of intermodulation, two input frequency components of
for example 5ω0 and 3ω0 will cause an output frequency component 2ω0.

Neglecting the non-linear effects of desensitization and intermodulation, a numerical
compensation of the presence of harmonics at the input for the system under test is
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Figure 5.2 / Bias in the estimate of the nth order SIDF due to harmonic components in
the excitation signal.

possible. Consider the class of time-invariant, stable, non-linear systems with a harmonic
response to a sinusoidal excitation. Suppose the input signal u(t) can be decomposed
into its harmonic components U(ω) =

∑∞
n=0 Un with n ∈ N. Likewise the output y(t) of

the system can be expressed as Y (ω) =
∑∞

n=0 Yn. Let us consider the signal equations
relating the excitation signal components U1 and Un with n a prime number to the first
harmonic component Y1 and the nth harmonic component Yn of Y (ω) (Fig. 5.2(a)), hereby
neglecting the non-linear effects of desensitization and intermodulation. Under these
conditions the output component Yn only consists of the responses to U1 and Un:

Y1 = U1 · H11 (5.3)

Yn = U1 · H1n + Un · Hn1 (5.4)

with H11 the approximated first order SIDF at ω relating U1 and Y1. Hn1 represents the
relation between the nth order harmonic Un in the excitation signal and its contribution
to the total content of Yn. Hn1 can be estimated by evaluating the approximated first order
SIDF H11 at the frequencies nω. H1n is the nth order SIDF and models the contribution
of the first harmonic U1 in the excitation signal to the output signal Yn. This termmodels
the generation of the nth harmonic as function of the first harmonic. Without taking the
contribution of Un into account the estimate for H1n will be:

Ĥ1n =
Yn

U1

(5.5)

A better estimate can be made by incorporating the contribution of Un:

Ĥ1n =
Yn

U1

− Un

U1

Hn1 (5.6)
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If n is not a prime number, the output component Yn will consist of more than 2 signal
contributions (Fig. 5.2(b)). In this situation the output component Yn consists of the
responses of at least 2 harmonics summed with the response to the main sinusoidal
component U1:

Yn =
n

∑

k=1

Uk · Hk n
k

with k, n ∈ N and ∀k|
n

k
∈ N (5.7)

From Eq. 5.7 again an estimate of H1n can be derived, this time for the case that n is not
a prime number:

Ĥ1n =
Yn

U1

−
n

∑

k=2

Uk · Hk n
k

with k, n ∈ N and ∀k|
n

k
∈ N (5.8)

For non-prime number high order SIDF, it will prove necessary to first calculate the esti-
mates of the lower order SIDF before the estimate of the high order SIDF can be deter-
mined.

5.2 Description of the system under test

The test object is a system, which consists of a 20W electric DC collector motor. The
motor is powered by a voltage-to-current converter (Fig. 5.3). The input to the system,

Figure 5.3 / Case study on a small DC motor.

i.e. the motor current Im, is measured with a current probe with a sensitivity of 2A/V .
The response signal is angular velocity ωout. J represents the inertia of the motor and
T is the driving torque. A block diagram of the measurement set-up is given in Fig. 5.4.
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Figure 5.4 / Block diagram of measurement set-up.

For small rotations the angular velocity is measured with a dual fibre laser vibrometer.
The angular velocity ωout is approximated by the linear velocity difference between two
points spaced 1800 on the circumference of the shaft divided by the spacing of the points.
The resulting sensitivity is 0.588rad/s/V . Friction in the bearings and seals will cause
a friction-induced resonance (Symens et al., 2002; Nuij, 2002; Hensen et al., 2002a) the
frequency of which will depend upon the excitation level.

5.3 Measurement of the FRF using white noise excitation

The H1 Frequency Response Function ωout/Is was measured with a SigLab 20-42 dy-
namic signal analyzer providing 90dB aliasing protection. The resolution was ∆f =

0.313Hz in the frequency range of 0Hz to 1kHz. A Hanning weighting function was ap-
plied. The excitation signal was band-limited random noise in the same frequency range.
The crest factor of the noise was 3. The excitation levels were 1.5mARMS , 6mARMS and
36mARMS . These levels are not high enough to force the system from the stick phase
into the slip phase so the system-behavior will be non-linear due to the dominant influ-
ence of friction. This situation occurs frequently in accurate point-to-point motion tasks.
Fig. 5.5 shows the results after 20 averages per measurement. The FRFs in the upper two
graph clearly show excitation amplitude dependent system behavior. In the frequency
range up to approximately 400Hz the magnitude plot of the 1.5mA measurement shows
a +1 slope which is consistent with the phase of 90deg and indicates stiffness dominated
behavior. In the plots a resonance is visible with a frequency varying between 540Hz
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Figure 5.5 / H1 estimate of the FRF as function of excitation level.

and 200Hz. It is caused by the friction induced stiffness in combination with the motor
inertia J . Its damping varies significantly as can be seen from the differences in phase
gradients. The noisy behavior in these plots and the low value of the coherence plots
can be caused by the non-linear system behavior and/or by poor signal to noise ratios of
the measurement. Although the multisine excitation techniques (Schoukens et al., 1998;
Weiss et al., 1998; Evans and Rees, 2000a; Pintelon and Schoukens, 2001; Dedene et al.,
2002; Solomou et al., 2004; Schoukens et al., 2005) as discussed in Section 1.4.1 can be
used to distinguish between linear, odd and even non-linear components and noise, in
the next section the HOSIDF techniques described in Chapter 3 will be used to further
investigate the non-linear system behavior.

5.4 Measurements of the HOSIDF

In this case study, without any loss of generality, the HOSIDF will be determined for
only one excitation frequency. Subsequent measurements at different frequencies are re-
quired to gather information over a frequency range. An excitation frequency of 320Hz is
chosen. This frequency excites the system both above and below its friction induced res-
onance frequency depending upon the instantaneous amplitude of the excitation signal,
see the vertical dashed line in Fig. 5.5. Other considerations for the choice of this specific
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frequency are that 320Hz is not a multiple of the 50Hz mains frequency and that the sig-
nal can be generated with an integer number of 12.8kHz samples per period, being one
of the sampling frequencies of the SigLab 20-42 dynamic signal analyzer. This assures
leakage free results when being processed with the FFT method. In this example mea-
surement, the linear amplitude-time relation (Eq. 5.2) is chosen as discussed in Section5.1
in order to reduce the measurement time. Fig. 5.6 shows the generator signal, the input
current signal and the system response. The maximum angular displacements of the sys-
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Figure 5.6 / Generator signal, input and output measurement signals.

tem can be calculated from the system response and is approximately 25µrad. The main
parameters used for the FFT method are a block-size of 1600 samples and a sampling
frequency of 12.8kHz so ∆f = 8Hz, Hanning window, no overlap processing. Within
one data-block the absolute variation of the amplitude is 0.025. The 3rd order low-pass
filters used in the IQ method have a Butterworth characteristic with a cut-off frequency
f−3dB = 5.75Hz which guarantees an equal ENBW as is realized with the FFT basedmea-
surement. This lowpass characteristic offers at least 105dB suppression of all harmonics
outside the pass-band. This value exceeds the spectral purity which can be achieved by
the hardware of the signal generator by 15dB. In Fig. 5.7 the left column shows the
magnitudes of the harmonics as function of time present in the measured input signal.
The solid line shows the results from the IQmethod, the dots indicate the measurements
from the block based FFTmethod. The setting behavior of the Butterworth filter is clearly
visible in the magnitude of the first harmonic. In the right column, the level of the main
component in the input signal relative to the level of the other harmonics is show. A
comparison with Figs. 5.1 shows that the signal contains a high level of noise, as this rel-
ative strength is never less than approximately 100dB in the noise free situation. Since
the harmonics are noise dominated, as successful reduction of the bias in the estimates
of the HOSIDF is not possible. Fig. 5.8 shows the amplitude dependency of the HOSIDF
measured at the fixed frequency of 320Hz. Again, the solid line shows the results from
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Figure 5.7 / Harmonic content (left column) and relative harmonic level (right column)
of the input signal measured with IQ (solid line) and FFT method (dotted line) at a fixed
frequency of 320Hz.

the IQ method, the dots indicate the measurements from the block based FFT method.
The results of the two measurement techniques do not show the discrepancies as de-
scribed in Section 4.2. This is not due to a high suppression of the harmonics outside the
pass-band of the filters used in the IQ methode. In this case study, the estimates of the
HOSIDF will not have a high dynamic range due to the high noise levels. The limited
selectivity of the digital filters will not be noticed in this example, consequently the lim-
ited harmonic selectivity is sufficient. In the left column of Fig. 5.8, the magnitude plots
are presented for the HOSIDF. The right hand column gives the corresponding phase
relations. In the magnitude plot of the first order SIDF we can distinguish three regions.
From 0mA to approximately 0.4mA the system gain is strongly excitation dependent. In
this range the digital filters of the IQ methode settle and the signal to noise ratio is very
poor. This range can be typified as a poor measurement. Between 0.4mA and approxi-
mately 2.5mA an increasingly strong excitation level dependency is visible. Above 2.5mA

the gain is independent of the excitation level at a stable 18dB but the system remains
non-linear as can be concluded from the plots of the HOSIDF. The gain of the third or-
der SIDF decreases initially. Again, this is due to the settling behavior of the filters and
the low signal to noise ratios in this region which results in large uncertainties in the
calculations. For increasing excitation its magnitude increases and reaches a maximum
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Figure 5.8 / HOSIDF measured with IQ (solid line) and FFT method (dotted line) at a
fixed frequency of 320Hz.

of −8dB at approximately 2.5mA. Above that excitation level the gain decreases again
slightly. The same pattern is visible for the fifth order SIDF, however its maximum of
−15dB is reached at an excitation level of 4.5mA. The magnitude characteristics of the
even orders have a lower value compared to the odd orders. The amplitude dependency is
small too. In Fig. 5.8 first row, right column, the phase relation of the first order FRFmust
not be mistaken for the phase graph of the bode-plot of a standard linear second order
system relating input torque and output angular velocity, since the x-axis does not indicate
frequency but input signal magnitude here. This plot however does contain information
about the resonance frequency of the system as function of excitation level. In the phase
plot of Fig. 5.5 we see for low excitation levels at 320 Hz a phase of approximately 90o and
a resonance frequency above 320Hz. For high excitation levels the phase has decreased
to −90o, and the resonance frequency is shifted below 320Hz. At the actual resonance
frequency the phase will be 0o. From the phase plot in Fig. 5.8, the excitation level re-
quired for the system to resonate at 320Hz can be determined to be approximate 2.5mA.
The higher order phase plots have similar characteristics. In these plots the difference
∆ϕ between the phase values at 2mA and 6mA is approximately ∆ϕ(n) = (n + 1)90o

with n the order number. Based on these measured HOSIDF results, the phase values at
approximately 2.5mA, which correspond with the resonance condition of the first order
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SIDF, can be expressed as ϕ(n)res = (n + 1)45o − 2(n−1

2
)90o. Because of this measured

increase in steepness of the phase gradient as function of the order number the use of
this higher order phase information can be beneficial in the detection of this sliding reso-
nance. Although this example only describes a measurement at one frequency the results
clearly show that the concept of HOSIDF is suitable for analyzing amplitude dependent
non-linear system behavior.

5.5 Discussion

In this example some practical aspects of the HOSIDF measurement techniques were
discussed on the basis of a real measurement on a real system with friction. We showed
that a non-stationary excitation signal can be beneficial with respect to the required mea-
suring time of that excitation signal if some harmonic contamination of the excitation
signal is tolerated. The results indicate that under noise free conditions and with a given
selectivity of the IQ filters, the stepped amplitude excitation signal requires a longer total
measurement time for an equal amount of information compared to the ramped am-
plitude excitation signal. This observation motivates the search for an excitation signal
with an optimal amplitude-time relation with respect to harmonic contamination and
required overall measurement time under realistic (=not noise free) conditions. The op-
timal amplitude-time relation will probably depend on the parameters determining the
filter characteristics of the applied measurement technique (FFT or IQ) and the noise
distribution in the measurements. Another aspect for additional research is the impact
of the assumption that non-linear phenomena like desensitization and intermodulation
can be ignored in the compensation of the bias in the HOSIDF estimations due to har-
monic excitation. This assumption raises some questions about the influence of these
phenomena on the true non-linear behavior and about a possible quantification of the
estimation errors caused by this assumption. We noticed that the measured input signal
contained a significant amount of noise. This noise will influence the system behavior
and noise in the measurement signals has influence on the estimation results. Is it possi-
ble to quantify the influence of the noise in the excitation signal on the system behavior?
And finally, are both measurement techniques equally sensitive to noise in the measure-
ment signals? The FFT methode has ideal harmonics selectivity and signal averaging
capabilities but suffers from leakage. The IQ method, although with perhaps only suffi-
cient harmonics selectivity, can have better wide-band selectivity depending on the filter
type and order. Finding answers to these questions will be a challenging and rewarding
task for those scientists and engineers who really lost their heart to practical measuring
techniques.



CHAPTER SIX

Analysis of the stick to sliding transition
in a bearing with friction.

Abstract / In contrast to the classical FRF, HOSIDF reveal information about non-linear sys-
tem behavior. In this chapter the odd order HOSIDF will be used to determine the stick
to sliding transition of a linear bearing with friction. From this information the maximum
tangential force in the stick phase will be determined without the need of a separate force
measurement.

In the previous chapters the concept of the HOSIDF was presented, two non-parametric
measurement techniques were proposed and validated. In this chapter we will give an
answer to the question about practical use. Are we really able to generate useful, ad-
ditional information from a non-linear system with this new technique? Again we will
focus on a system with friction. In this chapter the stick to sliding transition present in
many positioning systems with friction will be studied with the HOSIDF method.

6.1 System under test

To study the applicability of the HOSIDF method with respect to characterizing stick to
sliding transitions, a small test set-up is designed. In this set-up, an electromechanical
shaker is excited with a sinusoidal current. The resulting force drives a sledge, which
is subjected to dry friction, through its stick/sliding transition. This happens in a well
controlled and reproducible way. Both the electrical stimulus to the shaker and the ac-
celeration of the mass are measured. From these data the HOSIDF are determined.
The excitation force is also measured for validation purposes. The system consists of
a supported mass with one translational degree of freedom. Although air bearings and
hydrostatic bearings have very low and reproducible friction behavior, low friction linear
ball bearings were chosen because of their low complexity and similarity with numerous

51
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drive systems in industry. The dry friction in the system is realized with a separate friction
finger mounted onto the sledge. This finger slides over a very smooth and wear-resistent
stationary surface to ensure reproducible and position independent friction behavior. The
normal force in the contact point can be changed to adjust the friction force. This addi-
tional friction force is made significantly larger than the friction in the ball bearings. The
overall system dimensions allow the use of commonly available piezo sensors for mea-
suring force and acceleration. The light-weight and stiff design results in clean dynamic
behavior in the frequency range of interest. In Figs. 6.1, 6.2 a picture and a functional
drawing of the measurement setup are shown. In Appendix 11.2 the details of the mea-
surement setup are presented.

x y

z

Figure 6.1 / Picture of the system under
test.

x
y

z

Force

Shaker

Sledge

Friction finger

Accelerometer

Bearing

Figure 6.2 / Layout of system under test.

Fig. 6.3 shows a model of the system. The various system components and their inter-
connections are modeled in order to explain the behavior of the system. The model has
only one translational degree of freedom. The linear bearings are assumed frictionless.
In the model the shaker, stinger (connection rod), sledge and friction finger can be rec-
ognized. The sledge has an acceleration of ẍ. The shaker has an elastically suspended
moving mass m1 and is driven with a current im. The axial stiffness and damping of the
suspension are b1 = 1.6Ns/m, k1 = 2.8e3N/m. The magnetic force F1 generated in the
shaker is proportional with the drive current im. The shaker is coupled with the sledge
m2 through a mass-less stinger. The axial stiffness k2 of the stinger is approximately
1.5e6N/m. The effective excitation force of the shaker is F2. For validation purposes
this force is measured with a force sensor which mass must be taken into consideration.
The mass between the sensor’s seismic plane and its connection to the sledge is added
to m2. The remaining mass of the sensor and the mass of the stinger are added to the
moving mass m1 of the shaker. As a result of this mass distribution, m1 = 0.045kg and
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Figure 6.3 / Block diagram of the system under test.

m2 = 0.133kg. In the friction finger, P is a generalized contact point representing the
sum of all the asperities of the friction finger between the static base of the set-up and
the sledge. In P the friction force is assumed to be generated. In the stick-phase, the
friction contact point P has a tangential stiffness k3 and a damping b3 because the tan-
gential force is less than the breakaway force (Armstrong-Hélouvry et al., 1994). In the
gross sliding phase, when the applied force exceeds the breakaway force, the stiffness k3

can be neglected. By imposing a high normal force in P , the friction force in P is high
compared to the real friction force in the linear bearing. Consequently, the pre-sliding
displacement of the system will be determined by k3, b3 and the tangential force in P .
The transition from stick to gross sliding depends on the breakaway force in P .

6.2 Measurements

The mechanical system will be analyzed using two different approaches. The first tech-
nique is the classical FRF measurement with band limited white noise excitation. The
results will approximate the linear behavior of the system. The alternative technique is
the newly developed HOSIDF technique able to investigate its non-linear behavior. For
both the FRF and HOSIDF measurements the shaker current im will serve as the refer-
ence signal. Firstly, because in many motion systems, for example equipped with a linear
motor, a measurement of the actual driving force is often impossible or is very difficult
to instrument. Secondly, sinusoidal excitation is a prerequisite for the HOSIDF tech-
nique. This is assured by taking the shaker current, generated in a highly linear voltage
to current converter, as reference signal.

6.2.1 Measurement of H1 FRF using band limited white noise

In the first set of measurements the classical Frequency Response Function (FRF) be-
tween the shaker current im as the input signal and the acceleration ẍ of the system as
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output signal is determined, using the H1 estimator (Randall, 1987):

H1 =
Gab

Gaa

(6.1)

with Gaa the estimate of the single sided spectrum of the input signal im and Gab the
cross spectrum between system input im and measured output ẍ based on 5 averages.
The excitation signal is band limited random noise in a frequency range from 0Hz to
1kHz. The RMS value of the signal is varied exponentially over 3.4 decades from 1mV to
2.5V . Figs. 6.4-6.6 show the magnitude, phase and coherence of the FRF as function of
the excitation frequency and the generator voltage. The dynamic behavior of the system
exhibits strong excitation level dependency. For low excitation levels, the system is in
the stick-phase and its Bode plot shows the friction-induced resonance (Nuij, 2002) at
approximately 200Hz, see the −50dBVrms traces in Figs. 6.4(b), 6.5(b). Knowing the
value of the friction-induced resonance frequency, and using the model as depicted in
Fig. 6.3, and assuming the friction-induced stiffness k3 independent of frequency, its
value can be calculated from:

k1 + k3 = (2πfres)
2 · (m1 + m2) (6.2)

with k1 = 2.8e3N/m the axial shaker stiffness. This results in a friction-induced stiffness
value for of approximately 2.8e5N/m. For high excitation values, the system is in the
sliding-phase and the value of the friction induces stiffness approaches 0N/m. Again, the
system can be characterized as a second order system with additional dynamics, see the
+8dBVrms trace in Figs. 6.4(b) and 6.5(b). The low frequency resonance of approximately
20Hz is caused by the axial stiffness of the shaker k1 = 2.8e3N/m and the combination
of the moving mass of the shaker and the sledge m1 +m2 = 0.178kg. The coherence plot,
Fig 6.6(a) indicates two regions with a low value. In the region with low excitation values
the frequency independent low coherence is a result of a poor signal to noise ratio of the
acceleration signal. The second region, centered around an excitation level of −25dBV

ranging from 0Hz to approximately 300Hz also has a low coherence value. But here the
drop in coherence indicates non-linear system behavior. An interesting aspect is the vari-
ation in damping in the system. For excitation levels both below and above approximately
−25dBV , the damping is less than the value at −25dBV . Specific information about the
stick to sliding transition can not be derived from these FRF measurements due to the
implicit assumption of linearity of the system to be described with the FRF technique.
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Figure 6.4 / Magnitude of the H1 FRF of the system.
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Figure 6.5 / Phase of the H1 FRF of the system.
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Figure 6.6 / Coherence of the H1 FRF of the system.
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6.2.2 Measurement of the HOSIDF

In order to get a better understanding of the friction-induced non-linear behavior of this
system, a HOSIDF analysis is done. The measurement setup remains unchanged.

Measurement setup

The system is excited with a single sinusoid, which frequency is varied with 5Hz incre-
ments from 10Hz to 1kHz resulting in a grid of 199 frequency point. In every point
of the frequency grid, the excitation amplitude is decreased exponentially in 50 discrete
steps from 2.5Vrms(8dBV ) to 1mVrms(−60dBV ). During every measurement the excita-
tion level is kept constant. Between consecutive measurements a fixed waiting time of
500msec is programmed to allow the system to settle. Time averaging over 5 time records
of 400msec is applied to reduce the influence of non-synchronous disturbance signals.
With the sampling frequency of 5120Hz, the maximum frequency of the nth order SIDF
is 5120/(2n)Hz. Using these measurement parameters, a complete measurement takes
approximately 8 hours.

Validation of the excitation condition

Since the measurement technique is based upon the assumption of single frequency si-
nusoidal excitation, the harmonic distortion of the excitation signal must be low. This
is assured by taking the shaker current, generated in a highly linear voltage to current
converter, as reference. In Fig. 6.7 the harmonic distortion magnitudes of the shaker
current im are shown. The values are calculated as the quotients of the power in the
individual harmonics and the power of the base component. Values of −90dB indicate
measurement points with a harmonic power less than the quantization noise of the in-
strumentation. The largest distortion component is the second order component at max-
imum drive level. Its magnitude is less than −55dB with respect to the base component.
From these measurements it is decided that the shaker current can serve as input signal
although some bias due to harmonic excitation can not be ruled out. This bias is most
like to occur when a harmonic component of the excitation signal coincides with a reso-
nance frequency in the first order SIDF, creating the contribution Un · Hn1 as described
in Eq. 5.3 in Section 5.1.1. In all subsequent HOSIDF measurements in this chapter the
shaker current im will be the excitation signal and acceleration ẍ the response (Fig. 6.3).

Results

In Figs. 6.8- 6.18 the magnitude plots and the phase plots of the first order up to the fifth
order SIDF are shown. The frequency axes have an upper limit depending on the order
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Figure 6.7 / Magnitudes of the harmonic distortion components of the shaker current
signal relative to the magnitude of the base component [dB] as function of frequency
[Hz] and excitation amplitude [dBrel1Vrms].

number. The excitation magnitude axes indicating the generator voltages are equal for all
3D plots. All 2D plots except Fig. 6.10 show cuts along the frequency axis for constant
excitation levels of −50dBV,−20dBV and +8dBV . The measurement results show two
groups of HOSIDF with distinctly different characteristics. The odd orders, (Figs. 6.8-
6.14), and the even order, (Figs. 6.15-6.18). The odd orders show features with a strong
excitation amplitude dependency. The first order SIDF, Figs. 6.8(a), 6.8(b) bears resem-
blance with the H1 FFT method measurements Figs. 6.4(a), 6.5(a). The differences are
mainly concentrated in the frequency region from 0Hz to 250Hz centered around an
excitation level of−25dBVrms as can also be seen in Figs. 6.10(a), 6.10(b). This region co-
incides with the region of low coherence in the FFTmeasurements (Fig. 6.6(a)). The first
order SIDF (Fig. 6.9) displays the friction induced resonance at approximately 180Hz for
an excitation levels of −50dBV . This value is 20Hz lower than the corresponding value
determined in the FFT measurement with equal excitation RMS level but obtained with
a random noise excitation signal (Fig. 6.4(b)). A possible explanation for this shift is the
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(b) First order SIDF phase

Figure 6.8 /Magnitude and phase of the first order SIDF.
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Figure 6.9 / Magnitude and phase of the first order SIDF for 3 excitation levels.

difference in the probability density functions of the excitation signals which for the sine
signal is more concentrated towards the extreme values. This might result in a lower
value of the friction induced stiffness in comparison with the FRF measurement with
the noise excitation signal with equal RMS value. An overview of the magnitude plot of
the third order SIDF (Fig. 6.11(a)) and fifth order SIDF (Fig. 6.13(a)) clearly reveals the
development of odd order non-linear system behavior. Two regions can be distinguished
as function of the excitation level. For low excitation levels when the friction contact P

(Fig. 6.3) is in the stick phase, the magnitude of the third order and fifth order SIDF is
low. For high excitation levels, so P is in the sliding phase, the magnitude increases by
more than 20dB. The transition between the two regions is both dependent on excitation
level and frequency. For increasing excitation levels in the sliding region, the magnitude
of the third order and fifth order SIDF decreases again (Fig. 6.10(a)). This can be ex-
plained by the fact that for increasing excitation levels, the influence of the stick/sliding
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Figure 6.10 / Magnitude and phase as function of excitation level for constant frequency
of 105Hz and 220Hz. Legend: Solid line black H1 FRF, Dashed line green HOSIDF1,
Dash-dot red HOSIDF3, dotted blue HOSIDF5.

transition of P on a full periode of movement will decrease and the system tends to linear
behavior for large excitation forces compared to the friction force. This decrease is also
visible in the theoretical HOSIDF plots (Fig. 4.4) of the system with backlash as presented
in Sec. 4.1. An interesting phenomenon in the third and fifth order SIDF measured at
105Hz is the sudden drop in magnitude at an excitation level of approximately −19dBV

before the steep increase until an excitation level of approximately−17dBV (Fig. 6.10(a)).
This drop is absent in the magnitude plots of the third and fifth order SIDF measured at
220Hz (Fig. 6.10(c)). This local decrease in magnitude occurs in the same excitation band
in which the phase difference between the third order and fifth order HOSIDF at 105Hz

changes from 2πrad to 0rad (Fig. 6.10(b)). In the transition from 2πrad to 0rad, this
phase difference will reach πrad which apparently leads to destructive interference in the
third and fifth order components in the output signal, causing the drop in magnitude. In
the fixed frequency plot measured at 220Hz (Fig. 6.10(c)), so a frequency above the fric-
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(b) Third order SIDF phase

Figure 6.11 /Magnitude and phase of the third order SIDF.
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Figure 6.12 /Magnitude and phase of the third order SIDF for 3 excitation levels.

tion induced resonance frequency of 180Hz, this drop is not visible in the the third and
fifth order SIDF. A closer inspection of the phase plot measured at 220Hz (Fig. 6.10(d))
shows that the phase difference between the third and fifth order components is close
to πrad in the excitation band from −17dBV to −12dBV . In this excitation region both
the third and fifth order magnitude plots measured at 220Hz (Fig. 6.10(c)) are more flat-
tened off by comparison with the corresponding values in the magnitude plot measured
at 105Hz (Fig. 6.10(a)). This difference also can be explained by the assumption of de-
structive interference reducing the magnitudes of the third and fifth order components
in the output signal. Additional research is necessary to prove this assumption. In the
HOSIDF phase plots, phase unwrapping is necessary. The unwrapping is done in such a
way that the phase values for the highest excitation levels are set closest to zero and the
derivatives of the phase to frequency and excitation magnitude are minimized over the
stick/sliding boundary. In the third and fifth order magnitude plots (Figs. 6.11(a)-6.14(a))
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(b) Fifth order SIDF phase

Figure 6.13 / Magnitude and phase of the fifth order SIDF.
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Figure 6.14 / Magnitude and phase of the fifth order SIDF for 3 excitation levels.

the friction induced resonance is not clearly visible because this resonance occurs in the
linear region of the HOSIDF, so the magnitudes are low. In the corresponding phase
plots (Figs. 6.11(b)-6.14(b)) the phase shift due to the friction-induced resonance is clearly
visible. The magnitudes of the even HOSIDF (Figs. 6.15(a), 6.17(a)) are approximately
30dB lower than the odd HOSIDFmagnitudes indicating dominant odd order non-linear
behavior. The transition between stick and sliding is less pronounced and the magni-
tudes do not decrease for high excitation levels. The even HOSIDF show a stronger
frequency dependent behavior than the odd order SIDF. The second order SIDF shows
two strong resonance like phenomena at approximately 640Hz and 700Hz. In a lesser
extent these resonances are also visible in the fourth order SIDF at 320Hz and 350Hz

(Figs. 6.16(a), 6.18(a)). At twice, respectively four times these frequencies i.e. 1280Hz and
1420Hz the FRF of the measured excitation force F2 as function of the shaker current im
has two resonances (Fig. 6.19). These resonances are identified as bending modes in the
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Figure 6.15 /Magnitude and phase of the second order SIDF.
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Figure 6.16 / Magnitude and phase of the second order SIDF for 3 excitation levels.

stinger, the flexible element coupling the shaker and the test object. These resonances are
also visible in the odd HOSIDF but at frequencies of 1/n ·1280Hz and 1/n ·1420Hz with
n the order number. The mechanism behind the appearance of these structural dynamic
phenomena in the HOSIDF is not investigated. It is unlikely that it is solely caused by
harmonic pollution of the excitation signal im (Fig. 6.3). The strength of each harmonic
component in the shaker current is an exponential function of the excitation voltage with
the exponent linked to the harmonic number (Fig. 6.7). For low excitation levels, with
very low harmonic pollution, these structural dynamic phenomena are still visible in the
HOSIDF plots. A more likely explanation is a combination of harmonic distortion in the
shaker which generates harmonics in the force signal F2 and strong resonances in the
frequency dependent relation between the shaker current and the true excitation force F2

(Fig. 6.19).
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(b) Fourth order SIDF phase

Figure 6.17 /Magnitude and phase of the fourth order SIDF.
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Figure 6.18 /Magnitude and phase of the fourth order SIDF for 3 excitation levels.
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Figure 6.19 / H1 FRF of excitation force F2 as function of shaker current im measured
with high level random noise excitation.
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6.3 Determination of the stick to sliding transition

From the third order SIDF magnitude characteristics, the stick/sliding transition is deter-
mined as function of the measured amplitude/frequency grid. Fig. 6.11(a) shows that for
a fixed frequency, the stick/sliding transition is a continuous, monotonous function of the
excitation amplitude. Consider such a constant excitation frequency with increasing ex-
citation amplitude. The transition is assumed to coincide with the positive extreme value
of the partial derivative of the magnitude of the third order SIDF with respect to the exci-
tation magnitude, being the maximum in the transition from linear to non-linear system
behavior. Fig. 6.20 shows this partial derivative in the measured amplitude/frequency
grid-points. The stick/sliding transition is clearly visible as a Λ-shape, dividing the two
regimes. Because of the discrete steps in excitation magnitude, the true transition will
only be approximated. The partial derivative of the first order SIDF is not discriminative
for the stick/sliding transition as is shown in Fig. 6.21. The extreme values are not strictly
positive and the extreme values do not separate between the stick/sliding transition and
influence of the excitation magnitude on the frequency of the friction-induced resonance.
The measurements show that this influence is caused by the decrease of the tangential
stiffness k3 in the friction contact P (Fig. 6.3) as a result of an increase in elastic dis-
placement in the stick phase. For frequencies close to the friction induced resonance
frequency, an extreme value of the partial derivative of the first order SIDF is therefore
not an indication for the stick/sliding transition. Based on the information provided by
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∂V .

the partial derivative of the third order SIDF (Fig. 6.20), the amplitude/frequency grid-
points approximating the stick/sliding transition are displayed in Fig. 6.22 together with
curves of constant displacement amplitude of the sledge (solid lines). The displacement
x of the sledge is calculated by double integration of the measured acceleration signal ẍ

(Fig. 6.3). Between the curve indicating 100nm displacement amplitude and the curve
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of 1µm displacement amplitude, curves representing a multiple of 100nm displacement
amplitude are shown. The plot shows that the stick/sliding transition approximately co-
incides with the 200nm displacement curve. For frequencies below the friction-induced
resonance the stick/sliding transition is steep, δx

δV
is large. Here a small variation in excita-

tion magnitude will result in a large variation in displacement. For frequencies above the
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Figure 6.22 / Excitation/frequency grid-
points for stick/sliding transition.
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Figure 6.23 / Displacement of sledge.

friction-induced resonance δx
δV

is significantly smaller. At the friction-induced resonance,
the displacement due to the excitation force reaches a maximum. For equal magnitude
excitation signals with a different frequency, the resulting displacement will be less. Con-
sequently, the excitation signal with the lowest magnitude causing a stick/sliding transi-
tion has a frequency equal to the actual friction-induced resonance frequency. Both the
friction-induced resonance at approximately 180Hz and the steep stick/sliding transition
region between 10Hz..100Hz and −20dBV..− 10dBV are also clearly visible in Fig. 6.23
which shows the displacement of the sledge in the measured amplitude/frequency grid-
points. From the identified stick/sliding transition grid-points, the maximum displace-
ment of the system in the stick regime can be calculated by double integrating the ac-
celeration values in these grid-points. Fig. 6.24 shows that the maximum pre-sliding
displacement of the system is approximately 200nm with a slight tendency to decrease
with increasing frequency. Also indicated are the error bars on these displacement val-
ues. Due to the discrete excitation levels, the real stick/sliding transition per frequency
is likely to occur between two excitation grid points Vn and Vn±1. For every identified
stick/sliding transition grid-point (fk, Vn), the real transition is certain to occur between
Vn−1 and Vn+1. The very wide error bars for the frequencies below the friction-induced
resonance are caused by the very high sensitivity of the magnitude of the third order
SIDF to the excitation magnitude when the system is close to the stick/sliding transition.
This is clearly visible in Fig. 6.10(a) for excitation levels between −20dBV and −15dBV .
This uncertainty can be reduced by decreasing the amplitude steps between consecutive
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Figure 6.24 / Pre-sliding displacement

measurements of equal excitation frequency when the system is close to the stick/sliding
transition, so when the partial derivative ∂|H3|

∂V
of the third order SIDF is high.

6.4 Calculation of the maximum tangential force

Because the friction-induced resonance frequency just before the stick/sliding transition
is known from the results of the first order SIDF, one is able to calculate the related
stiffness to yield this resonance if the moving mass is assumed to be known. Using (6.2),
k3 is approximately 2.2e5N/m, again assuming k3 independent of frequency. Since this
stiffness is realized in the stick-phase, the required tangential force Ft(ω) in contact point
P can be calculated with:

Ft(ω) = −F3(ω) = k3 · xps(ω) (6.3)

where xps(ω) is the pre-sliding displacement of the system. In Fig. 6.25(a) the calculated
tangential force Ft(ω) in P is shown together with the uncertainty intervals due to the
final resolution of the excitation grid. The uncertainty in the stick/sliding results prop-
agates linearly in the calculation of the tangential force. Increasing the density of the
excitation grid when the partial derivative ∂|H3|

∂V
of the third order SIDF is high will also

reduce the uncertainty intervals in the calculation of the tangential force.

In order to validate the values of the calculated tangential force, the measured force sig-
nals F2 (Fig. 6.3) are used:

F3(ω) = F2(ω) − m2 · ẍps(ω) (6.4)

where ẍps(ω) is the maximum pre-sliding acceleration. The results are displayed in
Fig. 6.25(b) together with the uncertainty intervals. The data from the acceleration
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(b) Based on force measurements.

Figure 6.25 / Reconstructed maximum tangential force in P in the stick-phase.

based method correspond very well with the results from the force measurements based
method. The main difference is the width of the uncertainty intervals up to 150Hz. It
should be noticed however, that in many real positioning systems, a true measurement
of the actual friction force under operating conditions is impossible.

6.5 Discussion

The purpose of this chapter was to show that the HOSIDF reveal information about a
non-linear system that otherwise would have been hidden using linear analysis methods.
Where both the FRF technique and the HOSIDF technique are conclusive about the ex-
istence and value of the friction induced resonance, the transition from stick phase to
sliding phase is not visible in the H1 FRF. The first order SIDF is not discriminative for
the stick/sliding transition because this order is also sensitive for the influence of the
excitation level on the frequency of the friction induced resonance. The odd HOSIDF
however clearly depict this transition. Merging information about the friction induced
resonance frequency from the first order SIDF and the stick/sliding transition from the
third order SIDF results in both qualitative and quantitative information about the fric-
tion force without the need of a force sensor. From these results it is obvious that the
HOSIDF method generates additional information about non-linear behavior. These re-
sults however also raise some important questions which will not be answered in this
thesis: how does the HOSIDF technique relate to other non-linear methods like bifur-
cation diagrams and Poincaré sections and how does a bifurcation manifest itself in a
HOSIDF? These questions are guides for direction of future research.



68



CHAPTER SEVEN

Measuring the HOSIDF of a non-linear
plant operating in feedback

Abstract / In this chapter two measuring techniques are presented for measuring the
HOSIDF of a non-linear plant operating in feedback. In a controlled system the harmon-
ics generated by the non-linear system will be fed back to the input of the plant, changing the
sinusoidal excitation into a harmonic excitation. The first method applies linear techniques to
compensate the bias caused by the harmonic components in the excitation signal. The second
method uses a modified repetitive control scheme to suppress the harmonic components in
the excitation signal. The effectiveness of both methods is tested in simulation experiments of
a mass subjected to Coulomb friction, Stribeck-effect and hysteresis in the pre-sliding regime.
The friction forces are modeled with the modified Leuven friction model. The results are
compared with the HOSIDF measured under open loop condition. Both methods prove able
to produce reliable results.

In this chapter we will expand the realm of the HOSIDF technique to non-linear sys-
tems operating in feedback. This greatly expands the applicability because it allows the
HOSIDF technique to be used in a class of non-linear systems which require feedback
for their stable operation, as is the case for most motion systems.

7.1 HOSIDF of a non-linear plant in a controlled system

Let us consider the class of systems consisting of a causal, time invariant, controlled, sta-
ble non-linear plant with a harmonic response to sinusoidal excitation. As stated in Sec-
tion 2.3, sinusoidal excitation is a necessary condition in the concept of HOSIDF. Fig. 7.1
shows the non-linear plant H with feedback controller C. This system is subjected to
sinusoidal excitation p(t) and generates an output y(t). Due to the non-linear behavior
of the plant the output of H will also contain harmonics of the excitation frequency. As
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Figure 7.1 / Feedback system.

a result of the feedback, these harmonics will appear at the input of the plant H . This
conflicts with the sinusoidal excitation condition required (Taylor, 1999; Slotine and Li,
1991; Atherton, 1975; Nuij et al., 2006). This harmonic input signal u(t) causes sev-
eral non-linear phenomena in the output signal y(t) like gain compression/expansion,
generation of harmonics, desensitization and intermodulation (Bussgang et al., 1974;
Wiener and Spina, 1980; Billings and Tsang, 1989a; Solomou et al., 2002; Yue et al.,
2005a) as described in Section 5.1.1.

In Section 7.1.1 a numerical compensation method will be presented to reduce the bias
in the HOSIDF caused by gain compression/expansion. This compensation technique
is based on the methode presented in Section 5.1.1. An alternative approach is presented
in Section 7.1.2. In this section is described that, since the harmonics in the input signal
can be treated as periodic disturbances and since their period-time is exactly known, sig-
nificant rejection is possible using repetitive control (Hara et al., 1988; Tomizuka et al.,
1988; Yau and Tsai, 1999). Both approaches will be demonstrated with a simulation in
order to objectively evaluate their effectiveness under well controlled circumstances.

7.1.1 Numerical compensation

Consider the class of causal, time-invariant, controlled, stable non-linear systems with a
harmonic response to a sinusoidal excitation. Due to the feedback a sinusoidal excitation
signal p(t) results in a harmonic excitation u(t) of the non-linear plantH , (Fig. 7.1). In the
frequency domain the input signal of the plant u(t) can be decomposed into its harmonic
components U(ω) =

∑∞
n=0 Un with n ∈ N. Likewise the output y(t) of the plant can be

expressed as Y (ω) =
∑∞

n=0 Yn, (Fig. 7.2). Let us consider the signal equations relating
the excitation signal P (ω) to the first harmonic component U1 and the nth harmonic
component Un of U(ω), hereby neglecting the non-linear effects of desensitization and
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Figure 7.2 / Compensation of the linear bias in the nth order HOSIDF due to harmonic
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intermodulation (Billings and Tsang, 1989a).

U1

P
=

1

1 + H11C11

(7.1)

Un

P
= − 1

1 + H11C11

· H1nCn1

1 + Hn1Cn1

(7.2)

with C11 and Cn1 the complex values of the (linear) controller for respectively ω and nω.
H11 is the approximated first order SIDF at ω relating U1 and Y1. Hn1 represent the
relation between the nth order harmonic Un in the excitation signal and its contribution
to the total content of Yn. Hn1 can be estimated by evaluating the approximated first order
SIDF H11 at the frequencies nω. H1n is the nth order SIDF and models the generation of
the nth harmonic as function of the first harmonic. H11 and H1n can be determined from
the excitation signal P , which can serve as the instrumental variable, and the input signal
U of the plant:

∣
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− Un
(1 + Hn1Cn1)

Cn1

}

+ n∠
{1 + H11C11

P

}

(7.6)

In Eq.7.3, 7.4 the first order SIDF H11 will be biased because this model does not take
the influences of intermodulation into account. This non-linear process can generate a
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signal with frequency ω in Y1 which is not modeled. Its influence however is considered
small with respect to the signal generated by U1H11. Subsequently Hn1 will be biased too
because it is derived from H11 by evaluating H11 at frequency nω. The term (1 +Hn1Cn1)

in Eq.7.5, 7.6 is the compensation of the bias in the nth order SIDF which results from
the linear effects of the nth harmonic present in the excitation signal. The bias in H1n

caused by intermodulation however can not be removed because the contributions of this
phenomenon to Yn has not been modeled.

7.1.2 Repetitive control

Consider the ideal repetitive control system shown in Fig.7.3. The repetitive controller
M is an add-on device which generates infinite amplification at the harmonics of the
excitation frequency ω0 (Steinbuch, 2002). The function relating the input signal e(t) of
the memory loop to the excitation signal p(t) is given by:

T = − CH

1 + CH + M
(7.7)

Since |M(nω0)| = ∞ ∀n ∈ N, the input e(t) of the memory loop will be zero for DC
and all the harmonics of the sinusoidal excitation signal p(t). Consequently the input
of the plant u(t) will be equal to the excitation signal p(t). The system is in an open
loop condition for the excitation frequency and its harmonics and so the HOSIDF can be
determined without bias from u(t) and y(t).

Figure 7.3 / Feedback system including repetitive control memory loop M.

Repetitive controller

In its basic layout, the repetitive controllerM consists of a delay of length T0 = 2π/ω0 and
positive feedback. In Fig. 7.4 a block diagram of the applied repetitive controller is shown.
The controller consists of two delays, a robustness filter Q(z), constant gain blocks γ, γ−1,
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Figure 7.4 / Memory loop with positive feedback and DC reconstruction filter.

DC reconstruction filter DC(z) and learning filter L(z). The delays are implemented as
discrete time FIFO shift registers. Their total length is N − q − l and l respectively with
N = T0 · fs, fs being the sampling frequency of the memory loop. The constants q and l

are the delays caused by the linear phase lowpass filter Q(z) and the learning filter L(z)

required for stability. The DC reconstruction filter is required for canceling the gain at
0Hz in the memory loop. Without this filter, the DC amplification in the memory loop
will be infinite so there will be no feedback at 0Hz in a repetitive control system. This
is undesirable in applications where DC feedback is required for the system to function
like positioning systems subjected to gravity. The output of the DC reconstruction filter,
which equals the DC level of the memory loop, is subtracted from thememory loop signal
(Fig. 7.4). The transfer function of the DC reconstruction filter is given by the following
comb-filter:

DC(z) =
1

N

zN−1 + zN−2 + ... + z0

zN
(7.8)

The upper trace of Fig. 7.5 shows the magnitude of the Frequency Respons Function
(FRF) of the ideal memory loop without DC reconstruction. The FRF of the memory loop
with DC reconstruction filter is shown in the lower trace of Fig. 7.5.

Stability

In order to successfully apply the memory loop as an add-on device under measure-
ment conditions, overall system stability must be preserved (Tomizuka et al., 1988;
Hillerström, 1996; Chew and Tomizuka, 1990). The transfer function of the memory
loop M is given by:

M(z) =
Qγz−(N−q−l)

1 − Qγz−(N−q)
(1 − DC)L (7.9)

Assuming linearity of H, Eq. 7.7 can be rewritten as:

T = − CH

1 + CH + M
= − CH

1 + CH
Ms (7.10)

Ms is the modifying complementary sensitivity function and describes the modification
of the complementary sensitivity function of the original system without repetitive con-
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Figure 7.5 / Magnitude of the FRF of the memory loop, without (upper trace) and with
DC reconstruction filter (lower trace).

trol. Substituting Eq. 7.9 in Eq. 7.10 yields:

Ms(z) =
1 − Qγz−(N−q)

1 − Qz−(N−q){γ − SLzl(1 − DC)} (7.11)

where S is the sensitivity:

S =
1

1 + CH
(7.12)

From Eq. 7.11 a sufficient condition for stability based upon small gain assumptions can
be derived:

|Qz−(N−q){γ − SLzl(1 − DC)}| < 1 (7.13)

for all z with |z| = 1. Since |Q| ≤ 1, the stability criterion (Eq. 7.13) can be reduced to

|γ − SLzl(1 − DC)| < 1 (7.14)

At 0Hz |1 − DC| = 1, for all other frequencies |1 − DC| < 1. So stability is guaranteed
if |γ| = 1 − ǫ and L = S−1. The learning filter L can be designed with the ZPETC
algorithm (Tomizuka, 1987) and the resulting phase delay of l samples is absorbed in
the two delay blocks. Depending upon the characteristics of S, an additional notch-filter
may be required to reduce the DC gain of the L filter in order to maintain DC feedback
in the main system. The notch should not be positioned inside the memory loop since
it does not exhibit a linear phase characteristic like the robustness filter Q. As a result
its delay can not be compensated resulting in a significant reduction of the gain at the
harmonics of the excitation frequency. Since the gain block γ does not exhibit phase
shift, its influence on the memory loop gain is significantly less.
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7.2 Simulation experiment

The effectiveness of both methods is tested with well controlled simulations instead of
measurements on a real system in order to focus on effects truly related to the indi-
vidual methods. The plant under test consists of a single degree of freedom mass M

subjected to friction (Fig. 7.6). The mass is excited with a driving force F and experi-
ences a friction force Ff . Its position x is subtracted from the reference signal r = 0.
The error signal is amplified by the PD controller. With S1 open, the plant operates in
open loop. With S1 closed and S2 open, the plant operates in feedback, with S2 closed the
repetitive control action is added . The actual friction force Ff is calculated with the modi-
fied Leuven model which incorporates Coulomb friction, Stribeck-effect and hysteresis in
the pre-sliding regime (Swevers et al., 2000; Lampaert et al., 2002). The friction model
parameters are chosen such to generate odd (point symmetric) friction behavior. In Ap-
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+
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Ff
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M
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friction model
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controller
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M

r = 0

+
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Figure 7.6 / System under test.

pendix 11.3 the modified Leuven friction model is described in more detail. The excitation
range covers both the pre-sliding and the gross-sliding regime. Since the system has odd
behavior, it will not require feedback to remain at a constant position when being excited
sinusoidally in the gross-sliding regime. This allows the HOSIDF to be determined un-
der open loop conditions. These open loop results will be used as a reference for the
HOSIDF determined under closed loop conditions. All presented HOSIDF give the rela-
tion between force input F and position output x. The time-series F (t) and x(t) are the
simulation results and serve as the input data for the calculations of the HOSIDF. These
time-series have a length of 8 times the period length of the actual excitation frequency
fexc. This results in a frequency resolution ∆f = 1/8fexc. In the first simulation the
odd order SIDF of the plant are determined. These results will serve as a reference for a
second simulation under closed loop conditions and a third simulation under closed loop
conditions with additional repetitive control.
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7.2.1 Open loop simulation

The results of the open loop experiment are presented in Fig. 7.7. The left column shows
themagnitude plots. The right column shows the phase information. For excitation levels
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Figure 7.7 / Odd order SIDFs of the open loop system.

less than 1N, the system is in the pre-sliding regime and the first order SIDF resembles
the frequency response function of a damped second order system. For frequencies be-
low approximately 15Hz the system is dominated by the friction induced stiffness. This
stiffness equals the sum of the stiffnesses ki of the individual Maxwell slip elements used
for modeling the hysteresis (Appendix 11.3). The maximum friction induced stiffness of
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9e4N/m results in a level of −99dB in the magnitude of the first order SIDF. Since the
mass is 10kg this combination yields a friction induced resonance frequency of 15Hz

which is visible in both the magnitude curve and the phase curve of the first order SIDF.
Above 15Hz the mass behavior becomes dominant. For low frequencies the border be-
tween the pre-sliding regime and the gross sliding regime is clearly visible. An excitation
with a magnitude less than 1N and a frequency below 15Hz will not lead to gross sliding.
Excitations above 1N will cause gross sliding and the first order SIDF becomes indepen-
dent of the excitation amplitude. This can mistakenly be interpreted as a linear regime of
this non-linear system. The high values of the third and fifth order SIDF however indicate
non-linear system behavior present also in the gross sliding regime. For increasing exci-
tation levels, the magnitudes of the third and fifth order SIDF decrease which indicates
that the system tends to linear behavior for very high excitation levels. Both the third or-
der and fifth order magnitude plots show a maximum value as function of excitation for
every frequency. Fig. 7.8 displays these amplitude/frequency combinations and shows
that these maxima do not occur at a fixed excitation level.
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Figure 7.8 / Frequency and magnitude dependency of the maximum value of the third
(⋄) and fifth (+) order SIDF.

7.2.2 Numerical compensation validation

In the second simulation the feedback loop is closed (S1 closed, S2 open in Fig. 7.6). The
level of the excitation signal P is changed to equalize the magnitude values of the first
harmonic U1 and the magnitude values of the sinusoidal excitation signal in the open
loop experiment within 0.5%. Fig. 7.9 shows the errors in the closed loop results relative
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to the open loop results. These errors are calculated as:

magnitude error [dB] = 20 log
|HOSIDFcl|
|HOSIDFol|

(7.15)

phase error [rad] = ∠(HOSIDFcl) − ∠(HOSIDFol) (7.16)

with HOSIDFcl, HOSIDFol the HOSIDF measured under closed loop conditions and
open loop conditions respectively. To increase the visibility of the results, the magnitude
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Figure 7.9 / Magnitude and phase errors in odd order HOSIDF measured under closed
loop conditions.
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errors in the left column of Fig. 7.9 are plotted along a reversed z-axis. The closed loop
measurement condition has only little influence on the estimate of the first order SIDF as
can be seen in the first row of Fig. 7.9. The third and fifth order SIDF however show sig-
nificant bias errors, see rows 2 and 3. For the lowest frequency of 0.05Hz the magnitude
errors of the third order SIDF exceed−20dB (so an underestimation of more than 20dB)
and for both the third order and the fifth order the phase errors are nearly π/2 rad. To test
the effectiveness of the numerical compensation techniques presented in Section 7.1.1,
the fifth order SIDF at 0.05Hz and 0.2Hz are recalculated using Eq. 7.5, 7.6. In the first
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Figure 7.10 / Compensation of fifth order SIDF at 0.05Hz (⋄) and 0.25Hz (+).

column of Fig. 7.10 the magnitude errors and phase errors are shown, calculated as the
difference between the fifth order data from the closed loop simulation and the open loop
simulation. The second column shows the correction values derived from the first or-
der SIDF at 0.25Hz respectively 1Hz derived from the closed loop simulation. The third
column shows the remaining errors after compensation. The magnitude residue has ex-
treme values on the steep flanks of the HOSIDF, when the system leaves the pre-sliding
regime and enters the gross sliding regime. Due to this steepness an excitation error of
0.5% will cause a variation of approximately 0.25dB in the magnitude estimates of the
first and fifth order SIDF. The steady error in the excitation range above 100N can not
be explained by this excitation tolerance. Likely causes are non-modeled phenomena like
intermodulation and desensitization. No further research is done into these errors mech-
anisms. The stick/sliding transition is also visible in the residual phase error. Outside
this border region the residual phase error is very small. From the results can be con-
cluded that measuring HOSIDF in a closed loop situation is prone to large errors if the
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influence of the existence of higher harmonic components in the excitation signal is ig-
nored. Applying a compensation method based upon purely linear assumptions reduces
the errors significantly. The main drawback of the compensation method is the require-
ment to do additional measurements at multiples of the frequency of interest thereby
increasing the throughput time of the measurement session.

7.2.3 Repetitive control validation

In the repetitive control simulation the feedback loop is closed and the system is equipped
with an additional repetitive controller (S1 closed, S2 closed in Fig. 7.6). The plant has
odd behavior so it will not drift from its position under sinusoidal excitation. Therefore
no DC feedback is required and the DC reconstruction filter (Fig. 7.4) is omitted for sim-
plicity and speed of simulation. The learning filter L (Fig. 7.4) is designed as the inverse
of the sensitivity function (Eq. 7.12). The plant data are derived from the first order SIDF
data simulated under closed loop conditions. Since the plant data depend strongly upon
the excitation level, both the pre-sliding and the sliding regime require tailored L filters.
In practice this might prove difficult because the design of the L filter is based upon a
linearized model. In those situations the stability of the repetitive control loop has to
be further increased by reducing the learning rate of the memory loop at the expense of
speed of convergence. This is realized by incorporating an additional gain of 1 − ε in
series with the L filter. A well tuned memory loop effectively suppresses the excitation
frequency component ω0 in the controller signal so the input of the plant is equal to the
excitation signal P (ω0). Subsequently no amplitude matching is required to assure equal
excitation levels in both the open loop simulation and the repetitive control simulation.
The magnitude and phase differences between the repetitive control data and the open
loop data are presented in Fig. 7.11. The magnitude errors shown in the first column for
all three HOSIDF are less than 1dB (12%) over the entire excitation/frequency grid. This
is a reduction of up to 20dB in comparison with the results without repetitive control. The
maximum errors are located in the gross sliding regime (excitation force > 1N ) at exci-
tation frequencies around 1Hz. The dominant phase errors of approximately 0.025rad

depicted in the second column are located at the stick to sliding transition. Here the phase
gradient δϕ

δâ
, in the direction of the excitation axis is the steepest (Fig. 7.7). Closer inspec-

tion of the remaining small magnitude errors in the third order SIDF and fifth order SIDF
reveal a correlation between these errors and the excitation frequency/magnitude combi-
nations used in the simulation. The first row in Fig. 7.12 indicates these excitation fre-
quency/magnitude combinations which resulted in magnitude errors exceeding -0.1dB
(1%) in the third order SIDF and fifth order SIDF. The second row shows the excitation
frequency/magnitude grid points in which the excitation signal u(t) still has noticeable
third and fifth harmonic components. In these excitation grid points, the third and fifth
order harmonics are more than 90dB above the noise floor of the excitation signal p(t).



7.2 SIMULATION EXPERIMENT 81

10
0

10
2 10

0 10
3

−1

0

1

exc. [N]

order 1

freq. [Hz]

m
ag

. e
rr

or
 [d

B
]

10
0

10
2 10

0 10
3

−0.05

0

0.05

exc. [N]freq. [Hz]

ph
as

e 
er

ro
r 

[π
 r

ad
]

10
0

10
2 10

0 10
3

−1

0

1

exc. [N]

order 3

freq. [Hz]

m
ag

. e
rr

or
 [d

B
]

10
0

10
2 10

0 10
3

−0.05

0

0.05

exc. [N]freq. [Hz]

ph
as

e 
er

ro
r 

[π
 r

ad
]

10
0

10
2 10

0 10
3

−1

0

1

exc. [N]

order 5

freq. [Hz]

m
ag

. e
rr

or
 [d

B
]

10
0

10
2 10

0 10
3

−0.05

0

0.05

exc. [N]freq. [Hz]

ph
as

e 
er

ro
r 

[π
 r

ad
]

Figure 7.11 /Magnitude and phase errors in odd order HOSIDF measured under closed
loop conditions with additional repetitive control suppressing harmonics in the input
signal.

The similarities between both rows indicate that the small remaining errors depicted in
Fig. 7.11 can be explained by non-perfect suppression of the harmonic components in the
input signal u(t) to the plant. No further research is done into the relation between the
amount of harmonic suppression and the simulation parameters like step size, type of
solver and sampling frequency in the repetitive loop. The results show that the HOSIDF
of a non-linear plant in a closed loop system can be determined reliably if the harmonic
components in the excitation signal are sufficiently suppressed using repetitive control.
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Figure 7.12 / Amplitude/frequency grid point with a HOSIDF magnitude error larger
than −0.1dB (upper row) and grid points with harmonic excitation signal components
more than 90dB above noise level (lower row).

7.3 Discussion

Measuring HOSIDF in a closed loop situation is prone to large errors if the influence of
the existence of higher harmonic components in the input signal to the plant is ignored.
Applying the proposed compensation method based upon purely linear assumptions re-
duces the errors significantly. The main drawback of this compensation method is the
requirement to do additional measurements at multiples of the frequency of interest,
thereby increasing the throughput time of the measurement session. The alternative,
being repetitive control, proves to be a viable technique to suppress the harmonic compo-
nents in the excitation signal. Since this technique influences the stability of the control
loop, a learning filter must be incorporated. Also for this solution additional measure-
ments are required since the characteristics of the learning filter are derived from the
first order SIDF which can be biased. From a theoretical point of view, the repetitive
control technique may be the preferred one because it does right to the assumption of
sinusoidal excitation. In practice however, designing the learning filter, implementing
the repetitive loop and effectively suppressing the harmonic energy in the input signal to
the system may prove difficult.



CHAPTER EIGHT

Applicability in machine condition
monitoring

Abstract / Small changes in the friction behavior of a mechanical system are clearly visible in
its HOSIDF. This fact can be exploited in the application of HOSIDF in machine condition
monitoring.

In many machines, changes in dynamic behavior over time are indicative for wear. De-
tecting these changes is a prerequisite for efficient preventive maintenance. Both linear
(Zattoni, 2005) and nonlinear techniques (Wong and Barhorst, 2006; Neto et al., 2006)
are used for detection. Since the HOSIDF reveal valuable additional information about
non-linear behavior, monitoring HOSIDF can generate additional information about the
wear status of a machine. As presented in Chapter 7, measuring the HOSIDF of a real
machine is viable, also when operating in feedback. The required sinusoidal test sig-
nals are well defined and have a low crest factor which make them suitable for testing
sensitive systems. The increasing flexibility of digital controllers allow repetitive con-
trollers to be implemented as add on devices. Combined with additional self-diagnosis
software, the machine can be programmed to compare its actual HOSIDF data with the
data from its virgin state. For the comparison to be reliable, the test conditions should
be close to the reference situation, both with respect to the operating point chosen and
with respect to the average external disturbances acting on the machine. Establishing the
allowable tolerances on operating conditions might prove difficult in practice. To demon-
strate an application in machine condition monitoring, consider the system presented in
Section 7.2. In the stick phase, the system behavior is dominated by its friction induced
(hysteretic) spring stiffness and its mass. In the simulation, the total spring stiffness
∑

ki = 9e4N/m, (Appendix 11.3). With a mass of 10kg this yields a friction induced
resonance frequency fres of 15Hz. In Fig. 8.1, the HOSIDF are shown for an excitation
amplitude of 0.2N . The first order SIDF clearly reflects the dynamics of a second or-
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Figure 8.1 /Magnitude (left) and phase (right) of HOSIDF 1(∗), 3(⋄) and 5(◦), for a total
friction induced stiffness of 9e4N/m in the stick phase.

der system with a resonance frequency of 15Hz. The HOSIDF of order three and five
indicate non-linear system behavior. The maxima in their magnitude plots are located
at fres/3 and fres/5 respectively. Their phase plots show steep gradients around 15Hz.
These HOSIDF serve as the reference situation in a comparison simulation. In subse-
quent simulations, the spring stiffnesses ki are multiplied with 0.99 and 1.01. Fig. 8.2
shows the HOSIDF relative to the HOSIDF of the reference system for ki multiplied
with 0.99 and 1.01 respectively. Differences between the corresponding HOSIDF indi-
cate changes in the behavior of the system. The magnitude and phase differences of the
first order SIDF are only small which makes it difficult to detect the small changes in sys-
tem behavior from these data. The differences clearly increase as the order of the SIDF
increases. The differences for the fifth order are approximately 20 times larger than the
corresponding data for the first order, which makes them much easier to detect.
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Figure 8.2 /HOSIDF of a systemwith friction induced stiffnesses 0.99ki(◦) and 1.01ki(⋆)
relative to the HOSIDF of the reference system with ki.
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CHAPTER NINE

Higher Order Sinusoidal Output
Describing Functions

Abstract / In Chapter 2 the Virtual Harmonics Expander was defined as a concept to extend
the Sinusoidal Input Describing Function to the Higher Order Sinusoidal Input Functions
(HOSIDF). The dual of this concept is presented as the Virtual Harmonics Compressor. Anal-
ogous to the definition of the HOSIDF, its dual is defined as the Higher Order Sinusoidal
Output Describing Functions (HOSODF). For the identification of the HOSODF of a system
it is necessary to control the state of that system to generate a sinusoidal output as a response
to a harmonic excitation. A feedback loop is presented incorporating a repetitive controller
able to force a sinusoidal output from that system.

In Chapter 2, the HOSIDF concept was presented for the class of causal, stable, time-
invariant, non-linear systems with a harmonic response to a sinusoidal excitation. The
HOSIDF relate the magnitude and phase of individual harmonics in the output signal to
the sinusoidal input signal causing this harmonic response. Without further proof of ex-
istence, let us presume a stable, time-invariant non-linear system which has a sinusoidal
response to a specific harmonic excitation. From these excitation and response signals
higher order describing functions can be calculated. These higher order describing func-
tions differ from the higher order sinusoidal input describing functions in the sense that
they are based on a sinusoidal output situation. Subsequently these describing functions
will be referred to as Higher Order Sinusoidal Output Describing Functions (HOSODF).
In this chapter the concept of the HOSODF will be presented. The sequel of this chap-
ter will have great similarity with Chapter 2 because the HOSODF can be considered
the dual of the HOSIDF. To derive this duality in a consistent way, a Virtual Harmonics
Compressor (VHC) is defined as the dual of the Virtual Harmonics Expander.
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9.1 Definition of the class of systems under consideration

Not all systems belonging to class I will belong to the class we are aiming at. As an
example one can think of a system with output saturation. To define the class of systems
we will discuss, a new class definition is given.

Definition 2. (Class of non-linear systems under consideration): The class O of causal,
stable, time invariant non-linear systems which have a sinusoidal response to a harmonic
excitation.

When we mention non-linear systems in the sequel of this thesis, we assume these sys-
tems to belong to O , unless mentioned otherwise.

9.2 Virtual Harmonics Compressor

In this chapter we will consider the class O of systems which outputs have a sinusoidal
response to a harmonic excitation. Consider a stable, non-linear time invariant system
belonging to class O as defined in Def. 2. Let y(t) = âcos(ω0 + ϕ0) be the output signal.
The system excitation u(t) is considered to consist exclusively of harmonics of the funda-
mental frequency ω0 of the output signal y(t), i.e. we assume that the transient behavior
has vanished. The input signal u(t) can be written as a summation of harmonics of the
output signal y(t), each with an amplitude and phase, which depend on the amplitude â,
phase ϕ0 and frequency ω0 of the output signal (Fig. 9.1). This system can be modeled
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Figure 9.1 / General sinusoidal output-input relation.

as a cascade of a (non)linear system and a harmonics compressor (Fig. 9.2). The Virtual
Harmonics Compressor is defined as a non-linear component which transforms a har-
monic input signal y̆(t) into a sinusoidal output signal y(t) with frequency ω, amplitude â

and phase ϕ, (Eq. 9.1). This input signal y̆(t) consists of an infinite amount of harmonics
of the output signal y(t) with frequency nω, amplitude â and phase nϕ with n ∈ N:

y(t) = â cos(ωt + ϕ) (9.1)

y̆(t) =
∞

∑

n=0

â cos(n(ωt + ϕ)) (9.2)
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Figure 9.2 /Virtual Harmonics Compressor as separate block in themodel of a non-linear
system with sinusoidal response.

By defining a separate block for the compression of harmonics in modeling this class
of non-linear systems, the complexity of the preceding (non)linear block will be signif-
icantly less and linear approaches may become feasible depending upon the remaining
non-linear behavior. The resulting model structure has strong similarities with a Wiener
model. This structure however is not a Wiener model since the first block is not neces-
sarily linear (Narendra and Gallman, 1966).

9.3 Higher Order Sinusoidal Output Describing Functions

Consider a non-linear system belonging to class O as defined in Definition 9.1 with u(t)

the input signal and y(t) the system response after the transient behavior has vanished
(Fig. 9.1). The sinusoidal output describing function R(â, ω) of the system is defined
as the complex ratio of the output sinusoid y(t) and the fundamental component of the
system excitation ũ(t) (Fig. 9.3).
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Figure 9.3 / Sinusoidal output describing function representation.



90 9 HIGHER ORDER SINUSOIDAL OUTPUT DESCRIBING FUNCTIONS

The sinusoidal output describing function R(â, ω) can be calculated as:

R(â, ω) =
âejωt+ϕ

A1(â, ω)ej(ωt+ϕ+ϕ1(â,ω))
=

â

b1(â, ω) + ja1(â, ω)
(9.3)

The Fourier coefficients a1 and b1 are calculated as in Eq.9.4, 9.5 with T = 2π/ω:

a1 =
2

T

t0+T
∫

t0

ũ(t) cos(ωt)dt (9.4)

b1 =
2

T

t0+T
∫

t0

ũ(t) sin(ωt)dt (9.5)

In Fig. 9.4 the block representation of the non-linear system with sinusoidal response is
redrawn by separating the Virtual Harmonics Compressor from the system. The remain-
ing system can be represented as a parallel connection of subsystems, each relating a
harmonic component of the non-linear system input to the corresponding harmonic com-
ponent of the Virtual Harmonics Compressor. The subsystem R1(â, ω) is the sinusoidal
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Figure 9.4 /Higher order sinusoidal output describing function representation.

output describing function of the system. This describing function can be interpreted as
the first element of a set of higher order sinusoidal output describing functions Rn(â, ω).
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These functions can be defined as the complex ratio of the virtual kth harmonic signal de-
rived from the response signal to the kth harmonic component in the input signal. This
virtual harmonic has equal amplitude as the fundamental sinusoid but its starting-phase
is n times the starting phase of the response signal. Like the first order sinusoidal output
describing function (Eq. 9.3), the higher order sinusoidal output describing functions are
calculated from the corresponding Fourier coefficients (Eq. 9.6).

Rk(â, ω) =
âejk(ωt+ϕ)

Ak(â, ω)ej(k(ωt+ϕ)+ϕk(â,ω))

=
â

Ak(â, ω)ej(ϕk(â,ω))
=

â

bk(â, ω) + jak(â, ω)
(9.6)

Rk(â, ω) can be interpreted as a descriptor of the individual harmonic distortion com-
ponents at the input of a time invariant non-linear system required for the system to
generate a sinusoidal response, as function of the amplitude and frequency of that sinu-
soidal response. The functionsRk(â, ω)will be referred to as the Higher Order Sinusoidal
Output Describing Functions (HOSODF).

9.4 Non-parametric identification of HOSODF

The HOSODF describe the system behavior of a non-linear system with a sinusoidal
output due to harmonic excitation. Identification of HOSODF requires control of the
sinusoidal output of the system within its domain of possible sinusoidal output signals.
This specific state of the non-linear system can be reached by incorporating the system
under test in a feedback loop and defining the desired sinusoidal output as the control
objective of a dedicated controller. As in Section 7.1.2 we can make use of the concept
of repetitive control. The positive feedback in the memory loop generates infinite gain at
the harmonics of the operating frequency. The time period of this operating frequency is
equal to the total internal delay in the memory loop. By incorporating the memory loop
in the feedback system, the signal at the input of the memory loop will be free of the
harmonics of its operating frequency. This property is used to suppress the harmonics
of the excitation signal at the input of the non-linear system H (Fig. 7.3). In Fig. 9.5
the control loop is rearranged by positioning the repetitive controller at the output of the
non-linear system H . Again in this configuration the input signal e(t) to the repetitive
controller block M will be free of harmonics of the operating frequency of the memory
loop. If the excitation signal p(t) is chosen a sinusoid with a frequency equal to the
operating frequency of the memory loop, the output signal e(t) of the summing node
will be zero for this frequency and all its harmonics since the loop gain will be infinite at
these frequencies. As a result of this, the output y(t) of the non-linear system must be
equal to the excitation signal p(t). The stability considerations presented in Section 7.1.2
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Figure 9.5 / Layout of the feedback system for the identification of HOSODF.

also hold for this arrangement of feedback system. This means that Eq. 7.9-7.14 also
apply. From these equations the required learning filter can be designed.

9.5 Discussion

From Sections 2.2 and 9.2 it is evident that the Virtual Harmonics Expander and the
Virtual Harmonics Compressor are duals. This is also the case for the HOSIDF and
HOSODF. It is however not evident that a system belonging to class I automatically
belongs to class O . In other words, it is not true that every system belonging to I can
be controlled, even theoretically, in such a way that the conditions required for mea-
suring the HOSODF can be achieved. This subject has interesting parallels with the
mathematics behind the representation of non-linear systems with Volterra functional
series (Brockett, 1976; Lesiak and Krener, 1978; Sandberg, 1982, 1983a,b) or the approx-
imation with (truncated) Volterra series (Rugh, 1981; Boyd and Chua, 1985; Sandberg,
1985, 1992). In this thesis this subject is not further explored.

The method of using repetitive control for the nonparametric identification of HOSODF
as proposed in Section 9.4 possibly has an interesting mechanical application. In particu-
lar mechanical testing situations, like normal mode testing (Gabri and Matthews, 1980),
a sinusoidal excitation force is required. Conventional sine testing instrumentation em-
ploys linear feedback techniques to compensate for the influence of the linear dynamics
of the system under test on the shake system. The actual shaker force signal is fed back
to a controller which is implemented as a linearized, inverse model of the system under
test. This allows themagnitude of the required excitation frequency component to be con-
trolled. However, the true system under test is non-linear, and its non-linear mechanical
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impedance will force the sinusoidal excitation signal to become harmonic. By employing
the HOSODF approach, a data-based inverse representation of the non-linear system H

is incorporated in the control loop. If the shaker force is considered the output y(t) of
a non-linear system H (Fig. 9.5), implementing the repetitive control loop M will result
in a sinusoidal output of the shaker if the non-linear system H belongs to class O . The
data-based inverse representation will not be perfect due to the finite repetitive control
gain and finite sampling frequency. So the suppression of harmonics will be limited and
the required output condition will always be approximated. But the harmonic content
of the excitation force signal will be considerably lower than in the situation with linear
control.
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CHAPTER TEN

Conclusions and recommendations

10.1 Conclusions

In this thesis we presented a new approach towards the analysis of non-linear systems.
The relevance of this new approach is motivated by the increase in positioning accuracy
requirements in motion systems in industry, the need for advanced analysis techniques
in non-linear control system design and the absence of suitable frequency domain based
measurement techniques for non-linear system behavior. The class of systems for which
this new technique applies, consists of causal, stable, time-invariant, non-linear systems
which respond in a harmonic way to a sinusoidal excitation. The approach is frequency
domain based and differs from the existing frequency based techniques in the sense that
it is not a linearisation nor that it requires the system response to be analytic. This new
technique is a generalization of the well established Sinusoidal Input Describing Func-
tion concept towards higher orders. The resulting framework is referred to as Higher Or-

der Sinusoidal Input Describing Functions (HOSIDF). A theoretical basis for the HOSIDF
was established. Hereto the concept of the Virtual Harmonics Expander (VHE) was pre-
sented. This non-linear function describes the transformation of a single sinusoid into
an infinite amount of harmonics (0Hz included), each with equal amplitude as the input
signal and a phase equal to the phase of the input signal times the harmonic number. We
showed that a non-linear system belonging to the class we defined can be modeled as a
parallel connection of an infinite amount of weakly non-linear subsystems in series with
the VHE. The functions describing the weakly non-linear input/output relations of these
subsystems are the HOSIDF with the classical Sinusoidal Input Describing Function be-
ing the first order. Two non-parametric measurement techniques were presented able
to determine the HOSIDF. The first technique is FFT based and relates the phase and
magnitude of the individual harmonic components in the output of the system to its si-
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nusoidal excitation signal. The second technique is based on digital filtering and utilizes
IQ (in-phase/quadrature-phase) demodulation to determine the phase and magnitude of
both the excitation signal and the harmonics in the system response. We showed through
analysis and a verification experiment that by proper selection of the FFT parameters like
block length, sample frequency and applied weighting function, the FFT method has
ideal selectivity and dynamic range. This in contrast with the IQ method, which is ham-
pered by limited selectivity and dynamic range due to the non-ideal characteristics of the
lowpass filters. By neglecting the influence of intermodulation and desensitization an
algorithm was derived to reduce the bias in the estimated HOSIDF caused by harmonic
excitation which results from non-constant amplitude-time profiles. With a real experi-
ment we proved the practical applicability of the method by showing that the transition
from stick phase to sliding phase in a mechanical system can be detected unambiguously
with the third order SIDF. Additionally we demonstrated that combining the information
about the friction induced resonance frequency from the first order SIDF and the pre-
sliding displacement determined from the third order SIDF yields the breakaway force
in a friction contact without the need of a separate force measurement. We expanded
the applicability of the HOSIDF technique towards the analysis of plants operating in
feedback. For this purpose two solutions were presented for dealing with the feedback
of harmonic energy to the input of the controlled plant. The first technique employs a
numerical compensation algorithm which calculates a first order compensation of the
influence of harmonic energy. In this technique, the effects of intermodulation and de-
sensitization on the HOSIDF estimates is neglected. The second technique effectively
suppresses the feedback of harmonic energy by applying a modified repetitive controller
to the feedback loop. The effectiveness of both techniques was proven in a realistic sim-
ulation experiment. We showed that HOSIDF are very sensitive to changes in the fric-
tion characteristics of a mechanical system and as such might serve as an indication of
changes in the friction condition of a mechanical system caused by wear. This fact offers
new opportunities in the field of machine condition monitoring. Finally we presented
the dual of the HOSIDF defined as the Higher Order Sinusoidal Output Describing Func-

tions (HOSODF) for the class of causal, stable, time-invariant non-linear systems with a
harmonic input which results in a sinusoidal response. HOSODF describe the relations
between a sinusoidal system output signal and its cause, a specific harmonic excitation
signal. The theoretical foundation of the HOSODF was presented, based on the dual of
the VHE, the so called Virtual Harmonics Compressor (VHC). Non-parametric identifica-
tion of HOSODF requires a sinusoidal output of the non-linear system under evaluation.
We presented a modified repetitive control scheme for controlling the sinusoidal output
state of a non-linear system belonging to that class.

At the end of this thesis we conclude that our approach to use HOSIDF for the analysis of
non-linear system behavior has resulted in a new and powerful measurement and iden-
tification technique. This technique enables the detection and display of very interesting
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non-linear phenomena from well controllable experiments without the need for model
assumptions. Moreover, this new technique reveals the information in a format which
relates to the background of the professional user in industry.

10.2 Recommendations for future research

In this thesis some key aspects of the new HOSIDF approach have been presented. Ev-
idently, the tools presented are so powerful that it is worth while exploring a number
of additional aspects. These aspects are related to fundamental issues of non-linear sys-
tem identification and non-linear synthesis techniques, technical issues of measurement
technology and issues related to the practical applications of HOSIDF.

• A subject of further research should be to establish theories which describe the con-
ditions under which HOSIDF uniquely describe the dynamic behavior of a specific
class of non-linear systems.

• Non-linear systems with fading memory can be described with Generalized Fre-
quency Response Functions (GFRFs). Additional investigations are necessary to
determine under which condition the intermodulation and desensitization behav-
ior of these systems, as described by the GFRFs, can be estimated from theHOSIDF
results.

• Since an analytic response function is not required for a non-linear system to belong
to the class of systems which can be described by HOSIDF, systems with bifurca-
tions can belong to this class. A comparison should be made between the system
information generated with well established techniques like bifurcation diagrams
and Pointcaré sections and the system information derived from the HOSIDF.

• The concept of the HOSODF offers many opportunities for additional research. To
identify whether a non-linear system belongs to a class of systems which can be
described by HOSODF, selection criteria with regard to system dynamics should
be established. Also, the interrelation between reciprocity as a system aspect and
Volterra functional series as system description should be investigated.

• Present day synthesis techniques for controllers are based upon linear techniques.
Research should establish whether HOSIDF, as extensions of these linear tech-
niques, offer starting points for additional synthesis techniques for non-linear con-
trollers based upon non-linear philosophies.

• The IQ method can be easily implemented in field-programmable gate arrays. This
offers interesting opportunities for very cheap measurement equipment for real-
time, on-line identification of HOSIDF. However the selectivity, dynamic range and
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settling time of the IQ method is dominated by the low-pass filter characteristics.
Additions research is required to optimize the trade-off between these aspects and
the overall real-time performance.

• Alternative amplitude-time relations may have hidden potential with respect to the
relation between harmonic content, susceptibility to noise and overall measuring
time. This research has to be combined with further research into the characteris-
tics of the FFT and IQ method with respect to noise.

• It was demonstrated that the HOSIDF are able to reveal very small changes in fric-
tion characteristics. Likewise, minute changes in the stiffness characteristics of a
system will be detectable using HOSIDF, especially changes in the symmetry of
the stiffness characteristic of a mechanical system. Research is required to deter-
mine the benefits of the HOSIDF technique in machine condition monitoring, for
example for the purpose of crack detection.



CHAPTER ELEVEN

Appendix

11.1 Fourier coefficients of backlash

The Fourier coefficients for backlash as derived in Section 4.1 are presented in Table 11.1.

Table 11.1 / Fourier coefficients of harmonic response of backlash
n an

1 Ca

3 Ca{−8
3
β2 + 8

3
β − 1

3
}

5 Ca{256
15

β4 − 256
15

β3 + 328
15

β2 − 24
5
β + 1

5
}

7 Ca{−1024
7

β6 + 3072
7

β5 − 10496
21

β4 + 5632
21

β3 − 1424
21

β2 + 48
7
β − 1

7
}

n bn

1 A
kπ
{π

2
+ arcsin(1 − 2β) + 2(1 − 2β)

√

β(1 − β)}

3 Cb

5 Cb{−32
5
β2 + 32

5
β − 1}

7 Cb{384
7

β4 − 768
7

β3 + 496
7

β2 − 16β + 1}
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with

an =
2

T

t0+T
∫

t0

y(t) cos(nωt)dt (11.1)

bn =
2

T

t0+T
∫

t0

y(t) sin(nωt)dt (11.2)

β =
b

A
(11.3)

Ca =
4A

πk
β(β − 1) (11.4)

Cb =
4

3
Ca(2β − 1)

√

β(1 − β) (11.5)

11.2 Stick to sliding measurement setup

The applied linear bearings are Schneeberger type 2045. This type of bearing consists of
two V-shaped runways which are separated by cylindrical rolling elements. The axes of
rotation of two neighboring elements are mutually perpendicular. The rolling elements
are separated by a cage. Although kinematically over-constrained, this setup assures low
rolling friction and high stiffness. The bearings are lubricated with Molykote, a lubricant
containing Molybdenum Disulfide (MoS2). The sliding table is the mounting base of a
friction finger which adds dry friction to the system. This finger is a beryllium bronze
cantilever and slides over a very smooth surface (Ra ≤ 25nm) made of silicon carbide
which is mounted to the fixed world. The friction finger is pre-loaded in z-direction due
to its own stiffness. The system is excited with an electro-magnetic shaker type LDS
201 coupled through a stinger. The driving force is measured with a piezo sensor type
B&K8200. The acceleration of the sliding table is measured with a piezo accelerom-
eter type B&K4326. Both charge signals are conditioned with charge amplifiers type
B&K2626. The current through the shaker is measured with a current transducer type
LA25-NP. All three signals are sampled synchronously with a dynamic signal analyzer
type SigLab2024. Its signal generator is used to excite the shaker through a linear voltage
to current converter with adequate dynamic range.
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11.3 Modified Leuven friction model

The Modified Leuven friction model (Lampaert et al., 2002) is an extension of the Leuven
friction model (Swevers et al., 2000). The model accurately describes the Stribeck effect,
hysteretic behavior in the stick phase, friction lag, a varying break-away force and stick-
slip behavior. The model consists of two equations. The first equation describes the
friction force:

Ff = Fh(z) + σ1
dz

dt
+ σ2v (11.6)

with Fh the part of the friction force with hysteretic behavior, σ1 the micro-viscous damp-
ing coefficient, σ2 the viscous damping coefficient and v the relative velocity between
the friction surfaces. The second equation is a non-linear state equation that describes
the state variable z which can be interpreted as the average deflection of the asperities
between the contact surfaces:

dz

dt
= v

(

1 − sgn

(

Fh(z)

s(v)

) ∣

∣

∣

∣

Fh(z)

s(v)

∣

∣

∣

∣

n)

(11.7)

The function s(v) models the constant velocity behavior in the sliding phase near zero
velocity. In this velocity range, the Stribeck effect becomes noticeable and can be modeled
by choosing:

s(v) = sgn(v)(Fc + (Fs − Fc)e
−( v

vs
)δ

) (11.8)

For small velocities s(v) is equal to the static friction Fs, for large velocities s(v) is equal to
Fc, the Coulomb friction. The Stribeck velocity vs and the parameter δ determine the tran-
sition between Fs and Fc. The hysteretic force Fh(z) is modeled using the Maxwell Slip
model, resulting in a piecewise approximation of the hysteresis function. The Maxwell
Slip model consists of N mass-less elastoslide elements in parallel, all linked to a com-
mon displacement input z (Fig. 11.1). Element i has a linear spring-stiffness ki, and starts
to slide when its maximum spring force Wi is reached (Fig. 11.2). The position of each
element is described by the state variable ζi . Because the elastoslide elements are mass-
less, there is a static relation between the individual forces generated by the elements and
their displacement relative to the input displacement z. This relation can be described
by:

if |z − ζi| < Wi

ki
then

{

Fi = ki(z − ζi)
ζi = const.

(stick)

if |z − ζi| ≥ Wi

ki
then

{

Fi = sgn(z − ζi)Wi

ζi = z − sgn(z − ζi)
Wi

ki
.

(slip)
(11.9)

In the initial state all values of ζi are equal to zi, the system is in the stick phase and the
actual stiffness is the sum of all individual stiffnesses

∑

ki. When increasing z, at the
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moment a force generated by one of the element exceeds the accompanying saturation
value Wi, this element slips, its position ζi changes and the total stiffness decreases with
the amount ki. Eventually all elements will slide and the maximum hysteresis force Wi is
reached. The total hysteresis force is:

Fh =
n

∑

i=1

Fi =
n

∑

i=1

(z − ζi)ki ≤
n

∑

i=1

(Wi) (11.10)

W1
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Wn
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k1
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kn

æn
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·

·

·

F1

F2

Fn

Figure 11.1 / Maxwell Slip Model for N
elements
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-Wi

Wi

Fi

-Wi

Wi

ki

z-æi

Figure 11.2 / The characteristics of an
elastoslide element

The parameters of the modified Leuven model used in the simulations are:

Wi = [0.35 0.25 0.15 0.15 0.1] [N]
ki = [10000 10000 20000 40000 10000] [N/m]
n = 1 [-]
Fc = 1 [N]
Fs = 2 [N]
vs = 0.007 [m/s]
δ = 0.5 [-]
σ1 = sqrt(10e5) [Ns/m]
σ2 = 1 [Ns/m]

With these parameters the model describes an odd system with symmetric friction
characteristics in both directions.
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Summary

Higher Order Sinusoidal Input Describing Functions

Extending linear techniques towards non-linear systems analysis

In modern positioning systems, accuracy and speed requirements have increased signif-
icantly. These accuracies can only be realized if account is given to nonlinear system
behavior in both the mechanical and the control design. This requires additional tools for
frequency based identification of nonlinear system behavior since existing tools either
are either too limited to successfully describe nonlinear behavior or the results are very
difficult to interpret and as such do not relate to the background of the intended user.

In this thesis an alternative concept for frequency based nonlinear system analysis is
presented, the required measurement techniques are described and some application ex-
amples are shown. The method is applicable for the class of causal, stable, time-invariant
non-linear systems which have a harmonic response to a sinusoidal excitation. This new
concept is the generalization of the Sinusoidal Input Describing Function to Higher Or-

der Sinusoidal Input Describing Functions (HOSIDF) as it yields the magnitude and phase
relations between the individual higher harmonics in the response signal and the sinu-
soidal excitation signal, both as function of magnitude and frequency of the excitation
signal. An essential element in the HOSIDF theory is the concept of the Virtual Har-

monics Expander (VHE). This nonlinear function describes the transformation of a single
sinusoid into an infinite amount of harmonics, each with equal amplitude as the input
signal and with a phase equal to the phase of the input signal times the harmonic number.
Nonlinear systems belonging to the class can be modeled as a parallel connection of an
(infinite) amount of HOSIDF describing quasi-linear subsystems in series with the VHE.
Two measurement methods for nonparametric identification of HOSIDF are presented.
The Fast Fourier Transform based method on fast fourier transforms shows ideal charac-
teristics due to its perfect selectivity. The IQ (In phase-Quadrature phase) demodulation
method has limited performance due to non perfect selectivity.

The bias in the HOSIDF estimates caused by harmonic components in the input sig-
nal is analyzed and a compensation algorithm is presented to reduce this bias. Accept-
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ing harmonic distortion in the excitation signal allows the application of non-constant
amplitude-time profiles for testing. It is demonstrated that a ramped amplitude-time
signal reduces the required settling time of the digital filters used in the IQ methode.

The capabilities of the HOSIDF technique are demonstrated in a real measurement in
which the stick to gross sliding transition of a mechanical system with dry friction is
captured as function of frequency. The odd HOSIDF clearly reveal this transition which
is not possible with the Frequency Response Function technique. From the HOSIDF
the pre-sliding displacement and the friction-induced stiffness are determined and the
friction force which must be present in the stick-phase is calculated. Validation with
force measurements shows excellent agreement.

Special attention is paid to the determination of the HOSIDF of a nonlinear plant operat-
ing in feedback. In a controlled system the harmonics generated by the non-linear system
will be fed back to the input, changing the sinusoidal excitation into an harmonic excita-
tion. Two different solutions are presented to deal with this problem. The first method
applies a numerical compensatie techniques to compensate the bias caused by the har-
monic components in the excitation signal. The secondmethod uses amodified repetitive
control scheme to suppress the harmonic components in the excitation signal. The ef-
fectiveness of both methods is tested in simulation experiments of a mass operating in
feedback subjected to Coulomb friction, Stribeck-effect and hysteresis in the pre-sliding
regime. The friction forces are modeled with the modified Leuven friction model. The
results are compared with the HOSIDF measured under open loop condition and both
methods yield correct results.

It is shown that by rearranging the repetitive control loop, the output signal of a class of
stable, time-invariant nonlinear systems becomes sinusoidal as response to an harmonic
excitation. For this class of signals Higher Order Sinusoidal Output Describing Functions

(HOSODF) can be defined as the dual of the HOSIDF. The HOSODF describe magni-
tude and phase relations between the individual higher harmonics in the input signal and
the sinusoidal output signal, both as function of magnitude and frequency of the output
signal. The required dual of the Virtual Harmonics Expander is defined as the Virtual Har-

monics Compressor. This nonlinear function describes the transformation of an infinite
amount of harmonics into a single sinusoid.

Finally, an application example shows the extreme sensitivity of the HOSIDF technique
for changes in friction characteristics, indicating interesting opportunities for application
in the field of machine condition monitoring.



Samenvatting

De eisen die gesteld worden aan de snelheid en positioneringsnauwkeurigheid van mo-
derne positioneringssystemen zijn significant toegenomen. Deze nauwkeurigheden kun-
nen alleen maar gerealiseerd worden als met niet-lineair systeemgedrag rekening wordt
gehouden in zowel het mechanische als het regeltechnische ontwerp. In tegenstelling tot
de tijddomein gebaseerde systeemidentificatie is de moderne regeltechniek op frequen-
tiedomein technieken gebaseerd. Maar de transformatie van niet-lineaire tijddomein mo-
dellen naar het frequentiedomein is niet mogelijk met alleen lineaire technieken. Dit ver-
eist extra gereedschappen ten behoeve van de frequentiedomein gebaseerde identificatie
van niet-linear systeemgedrag omdat de bestaande gereedschappen ofwel te beperkt zijn
om met succes niet-linear gedrag te beschrijven ofwel resultaten leveren in een formaat
dat moeilijk te interpreteren is en niet aansluit bij de achtergrond van de gebruiker.

In dit proefschrift wordt een alternatief concept gepresenteerd voor een op frequentiedo-
meintechnieken gebaseerde niet-lineaire systeemanalyse. Eveneens worden de vereiste
meetmethodes beschreven en enkele toepassingsvoorbeelden getoond. De methode is
van toepassing op de klasse I gedefinieerd als de klasse van causale, stabiele, tijdsin-
variante, niet-lineaire systemen welke een harmonische responsie hebben ten gevolge
van een sinusvormige excitatie. Dit nieuwe concept is de generalisatie van de Sinusoi-
dal Input Describing Function tot de Higher Order Sinusoidal Input Describing Functions

(HOSIDF). De HOSIDF beschrijven de magnitude- en faserelaties die bestaan tussen de
afzonderlijke hogere harmonische componenten in het responsiesignaal en de sinusvor-
mige excitatie, allen als functie van amplitude en frequentie van dat excitatiesignaal. In
de HOSIDF theorie wordt een essentiële plaats ingenomen door het begrip Virtual Har-

monics Expander (VHE). Deze niet-lineaire functie beschrijft de transformatie van een
zuiver sinusvormig signaal in een oneindige reeks harmonischen, elk met identieke am-
plitude gelijk aan de amplitude van het ingangssignaal en een fase gelijk aan de fase
van het ingangssignaal maal het rangnummer van de harmonische component. Syste-
men die behoren tot de klasse I kunnen gemodelleerd worden als een parallel schakeling
van een (oneindig) aantal HOSIDF in serie met de VHE. Twee meetmethodes voor de
niet-parametrische identificatie van HOSIDF worden gepresenteerd. De op Fast Fourier
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Transform (FFT) technieken gebaseerde methode blijkt ideale eigenschappen te hebben.
De IQ (in fase - quadratuur fase) demodulatiemethode daarentegen heeft beperkte eigen-
schappen ten gevolge van niet-ideale selectiviteit. De vertekening in de schatting van de
HOSIDF veroorzaakt door harmonische vervorming in het excitatie signaal is geanaly-
seerd en er is een compensatie-algoritme gepresenteerd om deze vertekening te vermin-
deren. Door enige harmonische vervorming in het excitatiesignaal te accepteren is het
mogelijk testsignalen met niet-constante amplitude - tijd relaties toe te passen. Er is aan-
getoond dat een testsignaal met een linear in de tijd toenemende amplitude de benodigde
inslingertijd van de digitale filters, die worden toegepast in de IQ methode, vermindert.

De kwaliteiten van de HOSIDF techniek worden getoond middels metingen waarin voor
een mechanisch systeem met droge wrijving de overgang van de kleeffase naar de glij-
fase frequentie-afhankelijk wordt vastgelegd. In tegenstelling tot klassieke Frequentie
Responsie Functie (FRF) metingen is deze overgang zeer goed zichtbaar in de oneven
HOSIDF. Uit de HOSIDF worden eveneens de elastische verplaatsing in de kleeffase
en de frequentie van de door de wrijving veroorzaakte resonantie bepaald. Met deze ge-
gevens is het mogelijk de wrijvingskracht te berekenen die aanwezig moet zijn in de
kleeffase. Een validatie van de berekeningen middels een meting van deze kracht toont
verregaande overeenkomsten. Speciale aandacht wordt besteed aan het bepalen van de
HOSIDF van een teruggekoppeld niet-lineair systeem. In een teruggekoppeld systeem
zullen de harmonischen die ontstaan ten gevolge van niet-lineair gedrag vanuit de uit-
gang teruggevoerd worden naar de ingang van het systeem. Hierdoor wordt de vereiste
sinusvormige excitatie geweld aangedaan. Twee verschillende oplossingen voor dit pro-
bleem worden gepresenteerd. De eerste oplossing is een numerieke compensatie van
de afwijking ten gevolge van de aanwezige harmonische componenten in het excitatie-
signaal. In de tweede methode wordt gebruik maakt van een aangepaste repeterende
regeling om de harmonische componenten in het excitatiesignaal te onderdrukken. De
effectiviteit van beide methodes is getest middels een simulatie-experiment van een ge-
regelde massa die onderhevig is aan Coulombse wrijving, Stribeckeffect en hysteresis
in de kleeffase. De wrijvingskrachten zijn hierbij gemodelleerd met het gemodificeerde
wijvingsmodel van Leuven. De resultaten van beide methoden zijn vergeleken met de
overeenkomstige resultaten van een niet-geregelde massa en blijken betrouwbaar.

De extreme gevoeligheid van de HOSIDF techniek voor veranderingen in wrijvingsei-
genschappen van een niet-lineair systeem wordt in een voorbeeld getoond, hetgeen een
mogelijk interessante toepassing oplevert in het veld van de machineconditie bewaking.

Tot slot blijkt het mogelijk te zijn een specifieke klasse van causale, stabiele, tijd-
invariante, niet-lineaire systemen met behulp van een repeterende regelaar zodanig te
regelen dat deze systemen een sinusvormig uitgangssignaal tonen ten gevolge van een
harmonische excitatie. Voor deze klasse van systemen kan een duale beschrijving van de
HOSIDF gegeven worden, gedefinieerd als de Higher Order Sinusoidal Output Describing
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Functions (HOSODF). De HOSODF beschrijven de magnitude- en faserelaties die be-
staan tussen de afzonderlijke hogere harmonische componenten in het excitatiesignaal
en het sinusvormige responsiesignaal, allen als functie van amplitude en frequentie van
dat responsiesignaal. De hiervoor benodigde duale beschrijving van de Virtuele Harmoni-

sche Expander is gedefinieerd als de Virtuele Harmonische Compressor. Deze niet-lineaire
functie beschrijft de transformatie van een oneindige reeks harmonischen in een enkel-
voudige sinusoïde.
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