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The Busy Period of an M/G/1 Queue

with Customer Impatience

Onno Boxma∗, David Perry†, Wolfgang Stadje‡ and Shelley Zacks§

Abstract

We consider an M/G/1 queue in which an arriving customer doesn’t enter the system when-
ever its virtual waiting time, i.e., the amount of work seen upon arrival, is larger than a certain
random patience time. We determine the busy period distribution for various choices of the
patience time distribution. The main cases under consideration are exponential patience and a
discrete patience distribution.

1 Introduction

Impatience is a very natural and important concept in queueing models. There is a wide range

of situations in which customers may become impatient when they do not receive service fast

enough. One may think of customers at call centers, or of customers representing perishable

goods, like blood samples which wait to be tested and become obsolete after a certain due

date.

Most of the attention in the literature on queueing models with impatience has focused

on queue length and waiting time distributions, with relatively little attention for the busy

period distribution. This important performance measure has been studied by Subba Rao

[14] for theM/G/1+M model, where the notation ”+M” indicates exponential patience, and

in [8] for the M/G/1 model with restricted accessibility: a customer is fully (or partially)

rejected if the workload at his arrival is below a certain fixed threshold. See [6] for the

M/M/1 +D case, and [7] for several variants of the M/M/1 +D and M/M/1 +M cases.
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A pioneering paper on queueing models with impatience is [3]; it studies the M/M/s+D

model for the case that impatience refers to the waiting time, and the M/M/1 + D model

for the case that the impatience refers to the sojourn time. In [1, 2] necessary and sufficient

conditions for the existence of the virtual waiting time distribution in the G/G/1 +G were

obtained. The latter distribution is subsequently obtained for M/G/1+M and M/G/1+Ek.

Finch [4] has derived the waiting time distribution in the G/M/1 +D queue. Stanford [11]

relates the waiting time distribution of the (successful) customers and the workload seen by

an arbitrary arrival in G/G/1+G. See Stanford [12] for a brief literature review, and [5] for

an approximation for the waiting time distribution in M/G/N + G and several additional

references on multiserver queues with impatience.

The present paper focuses on the busy period distribution for a single server queue with

impatience. We consider the M/G/1 +G model, in which the patience refers to the waiting

(not sojourn) time of the arriving customer. We first derive an integral equation for the

distribution of the busy period length, conditional on the initial workload in the system

being v. We are able to solve this equation in the case of exponential patience, for a large

class of service time distributions. We thus obtain the Laplace Stieltjes transform (LST) of

the distribution of the length of a busy period that starts with some workload v. Integration

w.r.t. the service time distribution gives the transform of the unconditional busy period

length. In the case of a discrete patience distribution, we follow another approach which is

based on transform methods, the Wald martingale and stopping times. Again the LST of

the busy period distribution is obtained.

The paper is organized as follows. Section 2 contains a model description, and the

derivation of the integral equation for the distribution of the busy period length, conditional

on the initial workload in the system being v. In Section 3 we exploit this integral equation

to obtain the busy period distribution for the case of exponential patience, the service time

being either Hyperexponential or Erlang distributed. Sections 4, 5 and 6 are devoted to

the case of a discrete patience distribution. Section 4 contains the preparations. Section 5
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considers exponential service times, while Section 6 allows generally distributed service times.

2 An integral equation

Model description

Let {V (t), t ≥ 0} denote the virtual waiting time (the load) of an M/G/1 queue with arrival

intensity λ. The nth customer arrives with a vector of two random variables (Xn, Un),

where Xn is the length of service required, and Un is the patience time. We assume that

(X1, X2, . . . ) and (U1, U2, . . . ) are two independent sequences of i.i.d. random variables. The

common distribution function of the Xi (Ui) is called F (G); for simplicity we assume that

they have densities f and g, respectively. Let V (t) be the virtual waiting process. If the nth

customer arrives at time t, he sees the workload V (t−) in front of him and joins the queue

if and only if V (t−) ≤ Un; in this case V (t) = V (t−) + Xn while if V (t−) > Un we have

V (t) = V (t−).

We are interested in the distribution of the length, B, of the busy period in this M/G/1

queue with customer impatience. First we note that P (B <∞) = 1 if E(X1) <∞. To see

this, consider the workload Wn just before the arrival of the nth customer. This embedded

sequence is Markovian and satisfies the recursion

Wn+1 = [Wn +XnI(Un > Wn)− Yn]+,

where Yn denotes the (exp(λ)-distributed) time between the arrivals of the nth and the (n+

1)st customer and I(A) is the indicator function of A. We have, by dominated convergence,

E(Wn+1 −Wn|Wn = w) = E(max[X1I(U1 > w)− Y1,−w]) → −1/λ, as w →∞.

Hence, there is a w0 > 0 such that E(Wn+1 −Wn|Wn = w) ≤ −1/2λ for all w ≥ w0. It

follows that sequence Wn almost surely enters and leaves the interval [0, w0] infinitely often,

and at any of these visits there is a positive probability that the system will get idle before

the workload will again exceed w0. Therefore, P (B <∞) = 1.
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We now derive an integral equation for the distribution of the busy period duration B,

initiated by some workload v. Let

P (t, v) = P (B > t|V (0) = v), t ≥ 0, v > 0.

We follow an approach of Perry et al. [9], starting from the following renewal equation:

P (t, v) = e−λtI(v > t)

+λ

∫ min(t,v)

0

e−λsḠ(v − s)

∫ ∞

0

P (t− s, v − s+ x)f(x) dx ds

+λ

∫ min(t,v)

0

e−λsG(v − s)P (t− s, v − s) ds, (2.1)

where Ḡ = 1 − G. Using Banach’s fixed point theorem one can uniformly approximate the

function (t, v) 7→ P (t, v) on [0, T ]× (0,∞) for arbitrary T > 0. Let BT be the Banach space

of all measurable and bounded real-valued functions on [0, T ] × (0,∞), endowed with the

supremum norm || · ||∞, and define an operator A : BT → BT by

(Ah)(t, v) = e−λtI(v > t)

+λ

∫ min(t,v)

0

e−λsḠ(v − s)

∫ ∞

0

h(t− s, v − s+ x)f(x) dx ds

+λ

∫ min(t,v)

0

e−λsG(v − s)h(t− s, v − s) ds (2.2)

for h ∈ BT and (t, v) ∈ [0, T ] × (0,∞). A simple calculation shows that for any h, h̄ ∈ BT

and (t, v) ∈ [0, T ]× (0,∞),

|(Ah)(t, v)− (Ah̄)(t, v)| ≤ λ

∫ min(t,v)

0

e−λs||h− h̄||∞ ds ≤ (1− e−λT )||h− h̄||∞,

yielding

||Ah−Ah̄||∞ ≤ (1− e−λT )||h− h̄||∞.

Thus A is a contraction on BT whose unique fixed point is the function P (t, v), [0, T ]×(0,∞),

and for every initial function h0 ∈ BT the sequence defined recursively by hn+1 = Ahn, n ≥ 0,

converges uniformly to the fixed point at a geometric rate.
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One can obtain more explicit results in many important special cases by transforming

(2.1) into an integro-differential equation as follows. Introducing the Laplace transform

P ∗(θ, v) =
∫ ∞

0
e−θtP (t, v) dt, it follows after some manipulations that

P ∗(θ, v) =
1

λ+ θ
(1− e−(λ+θ)v) (2.3)

+λe−(λ+θ)v[

∫ v

0

Ḡ(z)e(λ+θ)z

∫ ∞

z

f(y − z)P ∗(θ, y) dy dz

+

∫ v

0

G(z)e(λ+θ)zP ∗(θ, z) dz].

Differentiation with respect to v yields an integro-differential equation for P ∗(θ, ·):

d

dv
P ∗(θ, v) = e−(λ+θ)v − (λ+ θ)[P ∗(θ, v)− 1

λ+ θ
(1− e−(λ+θ)v)]

+λe−(λ+θ)v[Ḡ(v)e(λ+θ)v

∫ ∞

v

f(y − v)P ∗(θ, y) dy

+G(v)e(λ+θ)vP ∗(θ, v)]

= −(λ+ θ)P ∗(θ, v) + 1 + λḠ(v)

∫ ∞

v

f(y − v)P ∗(θ, y) dy

+λG(v)P ∗(θ, v). (2.4)

3 Exponential patience

In this section we exploit the integral equation (2.4) to derive the busy period distribution in

the case of exponential patience. We shall consider the following service time distributions:

Hyperexponential (Case a), Erlang (Case b) and finally exponential (Case c). From the

analysis of Cases a and b, it is not difficult to figure out how more general combinations of

Hyperexponential and Erlang service time distributions can be handled.

If G(v) = 1− e−ξv, v > 0, then Formula (2.4) reduces to:

d

dv
P ∗(θ, v) = −(λe−ξv + θ)P ∗(θ, v) + λe−ξv

∫ ∞

v

f(y − v)P ∗(θ, y) dy, v > 0. (3.1)

Introduce the double Laplace transform

π(θ, α) =

∫ ∞

0

∫ ∞

0

e−θt−αvP (t, v) dt dv =

∫ ∞

0

e−αvP∗(θ, v) dv. (3.2)
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Since P ∗(θ, 0) = 0, we get from (3.1):

απ(θ, α) = −θπ(θ, α)− λπ(θ, α+ ξ) +
1

α
+ λ

∫ ∞

v=0

e−(α+ξ)v

∫ ∞

y=v

f(y − v)P ∗(θ, y) dy. (3.3)

We try to tackle this integral equation via the following observation. The inversion formula

for Laplace transforms (cf. [15]) reads, for some positive a:

P ∗(θ, y) =
1

2πi

∫ a+i∞

a−i∞
eysπ(θ, s) ds. (3.4)

Substitution into (3.3) gives:

(α+ θ)π(θ, α) = −λπ(θ, α+ ξ) +
1

α
+

λ

2πi

∫ a+i∞

a−i∞
π(θ, s)

∫ ∞

v=0

e−(α+ξ)v

∫ ∞

y=v

f(y − v)eys dy dv ds

= −λπ(θ, α+ ξ) +
1

α
+

λ

2πi

∫ a+i∞

a−i∞
π(θ, s)

φ(−s)
α+ ξ − s

ds, (3.5)

where φ(·) denotes the Laplace transform of the service time density. π(θ, s) and φ(−s) are

both well-defined on Re s = 0.

Case a: M/HN/1 +M .

In the case of a hyperexponential service time density,

f(y) =
N∑

i=1

piµie
−µiy, pi > 0 ∀ i,

N∑
i=1

pi = 1,

(3.5) reduces to

(α+ θ)π(θ, α) = −λπ(θ, α+ ξ) +
1

α
+

λ

2πi

∫ a+i∞

a−i∞

π(θ, s)

α+ ξ − s

N∑
i=1

pi
µi

µi − s
ds. (3.6)

The integrand has N+1 poles s0 = α+ξ, si = µi, i = 1, . . . , N , all in the right half plane. So

replace the integral from a− i∞ to a+ i∞ by the integral over the closed contour consisting

of a line through a, parallel to the imaginary axis, and the semi-circle in the right half plane

with origin at a and radius R, and let R → ∞. Use Cauchy’s theorem to conclude that,

following the contour in counter-clockwise direction, the integral equals minus the sum of

the residues. The contribution of the integral along the semi-circle disappears for R → ∞.
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Hence (3.6) reduces to:

(α+θ)π(θ, α) = −λπ(θ, α+ξ)+
1

α
−λ

N∑
i=1

pi
µi

α+ ξ − µi

π(θ, α+ξ)+λ
N∑

i=1

pi
µi

α+ ξ − µi

π(θ, µi),

(3.7)

or

π(θ, α) =
1

α(α+ θ)
− λ

α+ θ
(1+

N∑
i=1

pi
µi

α+ ξ − µi

)π(θ, α+ξ)+
λ

α+ θ

N∑
i=1

pi
µi

α+ ξ − µi

π(θ, µi).

(3.8)

This equation has the form

π(θ, α) = A1(θ, α) + A2(θ, α)π(θ, α+ ξ), (3.9)

where

A1(θ, α) =
1

α(α+ θ)
+

λ

α+ θ

N∑
i=1

pi
µi

α+ ξ − µi

π(θ, µi),

A2(θ, α) = − λ

α+ θ
(1 +

N∑
i=1

pi
µi

α+ ξ − µi

).

Note that for any fixed θ > 0

A1(θ, α) = O(1/α2) and A2(θ, α) = O(1/α) as α→∞. (3.10)

Upon iteration of (3.9) (replacing α by α+ ξ in the left-hand side, etc.) we obtain

π(θ, α) =
∞∑

j=0

A1(θ, α+ jξ)

j−1∏
i=0

A2(θ, α+ iξ). (3.11)

Note that the jth term in the series in (3.11) is bounded by (C1/(1+j)2)
∏j−1

i=0 (C2/(1+ i)) ≤

C1C
j
2/(j + 1)! for certain constants C1 and C2 depending on α and θ. Therefore the conver-

gence of this series of products is ensured. The expression contains N unknowns π(θ, µi).

They can be found by substituting α = µi into (3.11) for i = 1, . . . , N , yielding N linear

equations for these N unknowns.

7



Remark 3.1.

Recall the meaning of the double Laplace transform π(θ, α):

π(θ, α) =

∫ ∞

v=0

e−αv

∫ ∞

t=0

e−θtP (B > t|V (0) = v) dt dv. (3.12)

Thus a weighted sum of the π(θ, µi) yields the LST of the distribution of the length of a

busy period initiated by a customer arriving in an empty system:

N∑
i=1

piµiπ(θ, µi) =

∫ ∞

t=0

e−θtP (B > t) dt =
1− E[e−θB]

θ
. (3.13)

Case b: M/Ek/1 +M .

The case of an Erlang service time density may be treated in a similar way as the Hyperex-

ponential case, starting from (3.5). But since the present paper is methodologically oriented,

aiming to explain various methods to handle the busy period problem, we prefer to show an

alternative method – which we could also have applied in Case a. Substituting the Erlang-k

density in (3.3) and interchanging integrals, it follows that

π(θ, α) = − λ

α+ θ
π(θ, α+ ξ) +

1

α(α+ θ)

+
λ

α+ θ

∫ ∞

v=0

e−(α+ξ)v

∫ ∞

y=v

µk (y − v)k−1

(k − 1)!
e−µ(y−v)P ∗(θ, y)dydv

= − λ

α+ θ
π(θ, α+ ξ) +

1

α(α+ θ)

+
λ

α+ θ
µk (−1)k−1

(k − 1)!

dk−1

dzk−1
[

∫ ∞

v=0

e−(α+ξ)v

∫ ∞

y=v

e−z(y−v)P ∗(θ, y)dydv]|z=µ

= − λ

α+ θ
π(θ, α+ ξ) +

1

α(α+ θ)

+
λ

α+ θ
µk (−1)k−1

(k − 1)!

dk−1

dzk−1
[

1

α+ ξ − z
(π(θ, z)− π(θ, α+ ξ))]|z=µ

= − λ

α+ θ
π(θ, α+ ξ) +

1

α(α+ θ)
(3.14)

+
λ

α+ θ

µk

(µ− ξ − α)k
π(θ, α+ ξ) +

λ

α+ θ
µk (−1)k−1

(k − 1)!

dk−1

dzk−1

π(θ, z)

α+ ξ − z
|z=µ.
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Notice that the structure of the resulting relation is the same as that of (3.11), except that

the π(θ, µi) terms are replaced by terms dj

dzj π(θ, z)|z=µ. To determine π(θ, µ) and those k−1

derivatives, one first has to iterate similarly as in (3.9), and then differentiate the resulting

expression (k − 1) times, finally substituting α = µ.

Case c: M/M/1 +M .

The M/M/1 queue with exponential patience forms a special case of both Cases a and b.

We obtain, from either (3.8) or (3.14), or directly from (3.3):

π(θ, α) =
1

α(α+ θ)
− λ

α+ θ

α+ ξ

α+ ξ − µ
π(θ, α+ ξ) +

λ

α+ θ

µ

α+ ξ − µ
π(θ, µ). (3.15)

Iteration results in (3.11) with simplified iteration functions A1(θ, α) and A2(θ, α). π(θ, µ)

is subsequently obtained by substituting α = µ in the resulting infinite sum of products.

Finally, the LST of the distribution of the busy period length is obtained from π(θ, µ) as

discussed in Remark 3.1.

Remark 3.2

If we do not wish to determine π(θ, α) but are satisfied with the busy period LST, then

the following approach works well in the M/M/1 + M case; see also [7]. We consider a

modification of our model in which every customer does not decide about entering or leaving

the system immediately upon arrival but stays in line for an exp(ξ)-distributed patience time

or until his service begins. This modification does not affect the busy period distribution.

Let τn denote the time it takes to go from n customers present to n− 1 customers present;

so τ1 denotes the length of a busy period. Condition on the time until the first event: either

a service completion, or a customer becoming impatient, or an arrival; in the latter case, the

number of customers becomes n + 1 and it takes τ ′n+1 + τ ′′n to go back to n − 1 customers

present, where τ ′n+1 and τ ′′n have the same distribution as τn+1 and τn, respectively, and are
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independent. Hence, with Γn(θ) denoting the LST of τn,

Γn(θ) =
µ+ (n− 1)ξ + λ

µ+ (n− 1)ξ + λ+ θ
[
µ+ (n− 1)ξ

µ+ (n− 1)ξ + λ
.1 +

λ

µ+ (n− 1)ξ + λ
Γn+1(θ)Γn(θ)]. (3.16)

Hence

Γn(θ) =
µ+ (n− 1)ξ

µ+ (n− 1)ξ + θ + λ(1− Γn+1(θ))
. (3.17)

The busy period Γ1(θ) is thus represented in the form of continued fractions. It is worth

observing that Γn(θ) converges to 1 as n→∞, as is to be expected because the rate going

down behaves like (n− 1)ξ for large n: for real θ,

1− Γn(θ) =
θ + λ(1− Γn+1(θ))

µ+ (n− 1)ξ + θ + λ(1− Γn+1(θ))
≤ θ + λ

µ+ (n− 1)ξ + θ
. (3.18)

So one might approximate Γ1(θ) by iterating (3.17) a finite number of times; cf. also Propo-

sition 4.1 of [7].

Remark 3.3

It easily follows from either (3.16) or (3.17) that

Eτn =
1

µ+ (n− 1)ξ
+

λ

µ+ (n− 1)ξ
Eτn+1, (3.19)

leading to the following expression for the mean busy period:

EB = Eτ1 =
∞∑

k=0

λk

µ(µ+ ξ) . . . (µ+ kξ)
. (3.20)

On the other hand, it follows from (3.11) that

π(0, µ) =
∞∑

j=0

[
1

(µ+ jξ)2
+

λµ

(j + 1)ξ

π(0, µ)

µ+ jξ
]

j−1∏
i=0

A2(0, µ+ iξ). (3.21)

Hence

EB = µπ(0, µ) =
µ

∑∞
j=0

1
(µ+jξ)2

∏j−1
i=0 A2(0, µ+ iξ)

1−
∑∞

j=0
λµ

(j+1)ξ
1

µ+jξ

∏j−1
i=0 A2(0, µ+ iξ)

. (3.22)

Here A2(0, z) = −λ
z

z+ξ
z+ξ−µ

and hence

j−1∏
i=0

A2(0, µ+ iξ) =
(−λ/ξ)j

j!

µ+ jξ

µ
.
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Substitution into (3.22) gives a second explicit series representation of EB:

EB = eλ/ξ

∞∑
j=0

(−λ/ξ)j

j!

1

µ+ jξ
. (3.23)

The expressions in (3.20) and (3.23) agree. It can be shown by complete induction that

λk

µ(µ+ ξ) . . . (µ+ kξ)
=

(λ/ξ)k

k!

k∑
j=0

(
k
j

)
(−1)j

µ+ jξ
.

Summing from k = 0 to ∞ and interchanging the sums in the righthand side indeed confirms

the equivalence of (3.20) and (3.23).

Remark 3.4

Our analysis of the busy period in the M/G/1+M queue differs in several respects from the

analysis of Subba Rao [14]. Subba Rao considers the M/G/1+M queue with the additional

feature of balking with a constant probability. If, upon arrival, a customer finds n customers

present, with n ≥ 1, then it balks (i.e., leaves immediately) with a fixed probability 1 − β.

If it finds an empty system, it always joins the system. β = 1 obviously removes the balking

feature from the model.

Using supplementary variable techniques and complex function theory, Subba Rao [14]

derives an expression for the double transform of the joint distribution of number of cus-

tomers served during a busy period and the length of that period, given that it starts with

i+1 customers in the system. This expression is in the form of a quotient of double sums. Our

analysis does not consider the number of customers served, and starts from a given amount

of work at the beginning of the busy period (instead of a given number of customers). In

[13], Subba Rao considers the combined effects of balking and customer impatience (also

called reneging) for the case that the balking probability is bn if the arriving customer meets

n customers.

Remark 3.5

For the M/G/1 + D system with deterministic impatience times the above techniques can
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also be used for special choices of the service time distribution. However, in the next three

sections we consider another approach which seems better suited to deal with deterministic

patience and can even handle models with several patience levels.

4 A discrete patience distribution

In this section and the next two sections we assume that the patience random variables

U1, U2, . . . have a discrete distribution concentrated on the set {v1, . . . , vK} with probabilities

pi = P{U = vi}, i = 1, . . . , K,
K∑

i=1

pi = 1, where vi−1 < vi, i = 1, . . . , K, v0 ≡ 0, and vK <∞.

Let P (u) be the corresponding c.d.f., i.e.,

P (u) =
∑
vi≤u

pi.

Consider the corresponding partition of the positive orthant {V1,V2, . . . ,VK+1}, where

Vi = {(t, v) : 0 ≤ t <∞, vi−1 ≤ v < vi}, i = 1, . . . , K, (4.1)

and

VK+1 = {(t, v) : 0 ≤ t <∞, vK ≤ v <∞}, (4.2)

where v0 ≡ 0. Accordingly, if V (t) ∈ V1 all customers join the queue. If V (t) ∈ V2 the

probability that a customer will join the queue is Q1 = 1 − p1 = 1 − P (v1). Generally,

if V (t) ∈ Vi (i = 1, . . . , K + 1) the probability that a customer will join the queue is

Qi−1 = 1 − P (vi−1). Notice that Q0 = 1, Qi < Qi−1 for all i = 1, . . . , K and QK = 0.

We observe that an arbitrary patience time distribution may be approximated by the above

discrete distribution, by choosing K and the probabilities pi such that the first moments of

the patience time distribution match.

Customers arrive at the queue according to an ordinary Poisson process (OPP) with

intensity λ. Due to the strong Markov property, customers join the queue according to an

OPP with intensity λi = λQi−1 (i = 1, . . . , K+1) during periods in which the {V (t)} process

is in region Vi. Let {V (i)(t)} designate the V (t) process in the region Vi (i = 1, . . . , K).
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The busy period, with length B, starts with V (i)(0) = X1 and terminates as soon as

V (1)(t) = 0. If V (1)(t) crosses from V1 to V2 before hitting the value zero then a new process,

V (2)(t) say, starts. This process will either return to V1 before hitting the upper boundary

of V2, or will enter V3 first, and so on. Our aim is to derive the Laplace-Stieltjes transform

(LST) of B. In the next section we start with a recursive construction of this LST for an

M/M/1 queue. We then generalize the results.

5 The busy period LST for an M/M/1 queue with discrete patience

5.1 Auxiliary results

TheM/M/1 queue is based on compound Poisson process Y (t) =

N(t)∑
n=0

Xn, where {N(t), t ≥ 0}

is an OPP with intensity λ, 0 < λ <∞, and X0 ≡ 0, X1, X2, . . . are i.i.d. random variables

having an exponential distribution, exp(µ), where E(X1) = 1/µ. For constants 0 < β1,

β2 <∞, we define the stopping variables

TL(β1) = inf{t > 0 : Y (t) = −β1 + t}, (5.1)

and

TU(β2) = inf{t > 0 : Y (t) ≥ β2 + t}. (5.2)

In addition, let

T (β1, β2) = min{TL(β1), TU(β2)}, (5.3)

and observe that

P{T (β1, β2) <∞} ≥ P{TL(β1) <∞} = 1. (5.4)

We need formulae for the transforms

ψ∗
L(ω | β1, β2) = E{e−ωTL(β1)1{TL(β1)<TU (β2)}} (5.5)

and

ψ∗
U(ω | β1, β2) = E{e−ωTu(β2)1{TL(β1)>TU (β2)}}. (5.6)
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In the M/M/1 case, the Wald martingale [10] yields the identity

E{e−θY (T (β1,β2))+λT (β1,β2)θ/(µ+θ)} = 1, (5.7)

for all θ > −µ. From this fundamental identity we get the formulae

ψ∗
L(ω | β1, β2) =

(µ+ θ2(ω))e−β2θ1(ω) − (µ+ θ1(ω))e−β2θ2(ω)

D(ω | β1, β2)
(5.8)

and

ψ∗
U(ω | β1, β2) =

eβ1θ2(ω) − eβ1θ1(ω)

D(ω | β1, β2)
, (5.9)

where

θ1,2(ω) =
1

2
(λ− µ+ ω)± 1

2

√
(λ− µ+ ω)2 + 4ωµ, (5.10)

and

D(ω | β1, β2) = (µ+ θ2(ω))e−β2θ1(ω)+β1θ2(ω) − (µ+ θ1(ω))e−β2θ2(ω)+β1θ1(ω). (5.11)

5.2 The busy period LST when K = 1

The case K = 1 corresponds to an M/M/1 queue with deterministic (v1) patience; see also

[6] for a treatment of this case. In this case, λ1 = λ and λ2 = 0. Let δ1 = v1 and consider

the two cases, Case 1: X1 < v1 and Case 2: X1 ≥ v1.

Case 1: X1 < v1. Since V (1)(0) = X1 < v1, set β1 = X1 and β2 = δ1 −X1. Substituting

these in (5.8) and (5.11) we obtain after some algebraic manipulations

ψ∗
L(ω | X, δ1 −X) = ζ1(ω)e−Xθ2(ω) − ζ2(ω)e−Xθ1(ω), (5.12)

where

ζ1(ω) =
(µ+ θ2(ω))e−δ1θ1(ω)

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)
, (5.13)

ζ2(ω) =
(µ+ θ1(ω))e−δ1θ2(ω)

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)
. (5.14)

Similarly,

ψ∗
U(ω | X, δ1 −X) =

e−Xθ1(ω) − e−Xθ2(ω)

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)
. (5.15)
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Whenever V (t) jumps over the boundary v1, the overshoot R is independent of TU(β2) and

exponentially distributed. The sojourn time of V (t) in V2 is exactly R. The LST of R is

µ

µ+ ω
. The time interval (0, TU(β2) +R) is called an initial phase. At the end of the initial

phase the process V (1)(t) may jump again above v1, or may go down to zero. The times

between consecutive returns to V1 are called renewal cycles. If after an initial or a renewal

cycle V (1)(t) hits zero, then the time interval is called terminal phase. The lengths of renewal

cycles are i.i.d. random variables. Thus, the conditional LST of B given X1 is, in Case 1,

M (1)(ω | X1, δ1) = ψ∗
L(ω | X1, δ1 −X1)

+
µ

µ+ ω
ψ∗

U(ω | X1, δ1 −X1)
ψ∗

L(ω | δ1, 0)

1− µ
µ+ω

ψ∗
U(ω | δ1, 0)

.
(5.16)

Case 2: X1 ≥ v1. Let R1 = X1−v1. The initial phase consists only of R1. R1 is independent

of the following cycles. Thus, the LST when X1 ≥ v1 is

M̃ (1)(ω | δ1) =
µ

µ+ ω
· ψ∗

L(ω | δ1, 0)

1− µ
µ+ω

ψ∗
U(ω | δ1, 0)

. (5.17)

Finally, the LST of B, when K = 1, is

M (1)(ω | δ1) = µ

∫ δ1

0

e−µxM (1)(ω | x, δ1)dx+ e−µv1M̃ (1)(ω | δ1). (5.18)

Notice that

µ

∫ δ1

0

e−µxψ∗
L(ω | x, δ1 − x)dx =

µ

µ+ θ2(ω)
ζ1(ω)(1− e−δ1(µ+θ2(ω)))

− µ

µ+ θ1(ω)
ζ2(ω)(1− e−δ1(µ+θ1(ω))).

(5.19)

Also,

µ

∫ δ1

0

e−µxψ∗
U(ω | x, δ1 − x)dx =

1

(µ+ θ2(ω))e−δ1θ1(ω) − (µ+ θ1(ω))e−δ1θ2(ω)

·
[

µ

µ+ θ1(ω)
(1− e−δ1(µ+θ1(ω)))− µ

µ+ θ2(ω)
(1− e−δ1(µ+θ2(ω)))

]
.

(5.20)

5.3 The busy period LST when K = 2

If K = 2 there are K + 1 = 3 regions, V1, V2 and V3. The instant V (t) enters (V2 ∪ V3) the

process changes the intensity of arrival to λ2 = λQ1 or λ3 = 0. The time until the first return
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to V1 will be called B(2). The LST of B(2) is obtained from eq. (5.18) of M (1)(ω | δ1) by

replacing δ1 by δ2 = v2− v1, λ by λ2 and v1 = δ1 by δ2. We denote this LST by M
(1)
2 (ω | δ2).

Let X1 denote the service requirement of the first customer. Consider first the case where

0 < X1 < v1. In this case either V (t) hits zero before crossing v1 or crosses v1 first. If V (t)

crosses v1 before hitting zero, the “initial phase” is the time interval from zero till the first

entry back to V1. Renewal cycles are between consecutive re-entrances to V1. Thus, the

conditional LST, given X1, for X1 < v1, is

M (2)(ω | X1, δ1) = ψ∗
L(ω | X1, δ1 −X1) + ψ∗

U(ω | X1, δ1 −X1)M
(1)
2 (ω | δ2) ·

· ψ∗
L(ω | δ1, 0)[1− ψ∗

U(0 | δ1, 0)M
(1)
2 (ω | δ2)]−1.

(5.21)

On the other hand, the LST given that {X1 ≥ v1} is

M̃ (2)(ω | δ1) = M
(1)
2 (ω | δ2)ψ∗

L(ω, δ1, 0) · [1− ψ∗
U(ω | δ1, 0)M

(1)
2 (ω | δ2)]−1. (5.22)

Finally, the LST of B for K = 2 is

M (2)(ω | δ1) = µ

∫ δ1

0

e−µxM (2)(ω | x, δ1)dx+ e−µδ1M̃ (2)(ω | δ1). (5.23)

5.4 The busy period LST for general K

We start by computing the LST for the K-th region VK , according to formulae (5.16)-(5.20),

in which we substitute λK = λQK−1, δK = vK − vK−1. We denote this LST as M
(1)
K (ω |

δK , λK). We then proceed to determine the LST for VK−1, namely M
(2)
K−1(ω | δK−1, λK−1),

according to (5.21)-(5.23). Recursively, for j = 2, . . . , K we compute, for X < δK+1−j,

M
(j)
(K+1−j)(ω | X, δK+1−j, λK+1−j) = ψ∗

L(ω | X, δK+1−j −X,λK+1−j)

+ ψ∗
U(ω | X, δK+1−j −X,λK+1−j)M

(j−1)
K+2−j(ω | δK+2−j, λK+2−j) ·

· ψ∗
L(ω | δK+1−j, 0, λK+1−j)[1− ψ∗

U(ω | δK+1−j, 0, λK+1−j) ·

· M (j−1)
K+2−j(ω | δK+2−j, λK+2−j)]

−1,

(5.24)
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and for X ≥ δK+1−j we determine

M̃ (j)(ω | δK+1−j, λK+1−j) = M
(j−1)
K+2−j(ω | δK+2−j, λK+2−j) ·

· ψ∗
L(ω | δK+1−j, 0, λK+1−j)[1− ψ∗

U(ω | δK+1−j, 0, λK+1−j) ·

· M (j−1)
K+2−j(ω | δK+2−j, λK+2−j)]

−1,

(5.25)

and

M
(j)
K+1−j(ω | δK+1−j, λK+1−j)

= µ

∫ δK+1−j

0

e−µxM
(j)
K+1−j(ω | x, δK+1−j − x, λK+1−j)dx

+ e−µδK+1−jM̃ (j)(ω | δK+1−j, λK+1−j).

(5.26)

In the present section we added the variables λK+1−j, j = 1, . . . , K into the LST functional

form, to emphasize the dependence on the different intensities λl, l = 1, . . . , K.

6 The busy period LST for an M/G/1 queue with discrete patience

In this section we no longer assume that service times are exponentially distributed. In

determining the busy period LST, we follow the same approach as in the previous section.

In Subsection 6.1 we again consider the stopping variables introduced in (5.1) and (5.2).

We now also need an expression for the joint distribution of TU(β2) and the overshoot Y2 −

(β2 +TU(β2)), which is no longer exponentially distributed. We subsequently consider K = 1

(deterministic patience), K = 2 and general K, in Subsections 6.2, 6.3 and 6.4.

6.1 Auxiliary results

The arrival of customers at the queue follows a homogeneous Poisson process {N(t), t ≥ 0}

with intensity λ. The required service times of customers are i.i.d. r.v.’s X1, X2, . . . having

a distribution F , with density f . Let Yt =

N(t)∑
n=0

Xn, where X0 ≡ 0. The density of Yt on

(0,∞) is hλ(y; t) =
∞∑

n=1

p(n;λt)f (n)(y), where p(n;λt) is the p.d.f. of Poisson (λt) and f (n)(y)

is the n-th fold convolution of f at y, i.e. f (n)(y) =

∫ y

0

f (n−1)(y − x)f(x)dx, n ≥ 1, where
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f (0)(y) ≡ 1. Let Hλ(y; t) denote the c.d.f. of Yt, i.e. Hλ(y, t) =
∞∑

n=0

p(n;λt)F (n)(y). Notice

that Hλ(y, t) has an atom at y = 0, Hλ(0; t) = e−λt, and Hλ(y, t) is absolutely continuous

on (0,∞). For non-negative constants 0 ≤ β1, β2 <∞ define the stopping variables

TL(β1) = inf{t ≥ 0 : Yt = −β1 + t}, (6.1)

and

TU(β2) = inf{t ≥ 0 : Yt ≥ β2 + t}. (6.2)

Moreover, let T (β1, β2) = min{TL(β1), TU(β2)}. We need explicit equations for the LST’s

ψ∗
L(ω; β1, β2, λ) = Eλ{e−ωTL(β1)I{TL(β1) < TU(β2)}}, (6.3)

and

ψ∗
U(ω; β1, β2, λ) = Eλ{e−ωTU (β2)I{TL(β1) > TU(β2)}}. (6.4)

Moreover, we need a formula for the joint distribution of TU(β2) and the overshoot R =

YTU (β2) − (β2 + TU(β2)). These equations are given below.

Let gβ2(y; t, λ) =
d

dy
Pλ{Yt ≤ y, TU(β2) > t} and gλ(y; t, β1, β2) =

d

dy
Pλ{Yt ≤ y, T (β1, β2) >

t}. As proven by Stadje and Zacks (2003),

g0(y; t, λ) =
(t− y)+

t
hλ(y; t), t > 0. (6.5)

Moreover, for β2 > 0, and 0 < y < t+ β2,

gβ2(y; t, λ) = hλ(y; t)− 1(β2,β2+t)(y)

[
e−λ(t+β2−y) · hλ(y; y − β2)

+

∫ y

β2

hλ(u;u− β2)g0(y − u; t+ β2 − u, λ)du

]
.

(6.6)

The function gλ(y; t, β1, β2) can be written in terms of gβ(y; t, λ). Let δ = β1 + β2 then, for

(t− β1)
+ < y < t+ β2,

gλ(y; t, β1, β2) = gβ2(y; t, λ)− 1(β1,∞)(t) ·
[
e−λβ1gδ(y; t− β1, λ)

+ β1

∫ y

β1

1

s
gβ2(s− β1; s, λ)gδ(y − s+ β1; t− s, λ)ds

]
.

(6.7)
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The joint density of (TU(β2), R) is then

pλ(t, r; β1, β2) = I{t ≤ β1}
[
λe−λtf(t+ β2 + r)

+ λ

∫ t+β2

0

gβ2(y; t, λ)f(t+ β2 + r − y)dy

]
+ I{t > β1}λ

∫ t+β2

t−β1

gλ(y; t, β1, β2)f(t+ β2 + r − y)dy.

(6.8)

In addition, as in Borovkov and Burq (2001),

ψ∗
L(ω; β1, β2, λ) = e−(λ+ω)β1 +

∫ ∞

β1

e−ωt t− β1

t
gβ2(t− β1; t, λ)dt. (6.9)

Similarly,

ψ∗
U(ω; β1, β2, λ) = λ

∫ β1

0

e−(λ+ω)tF̄ (t+ β2)dt

+ λ

∫ β1

0

e−ωt

∫ t+β2

0

gβ2(y; t, λ)F̄ (t+ β2 − y)dydt

+ λ

∫ ∞

β1

e−ωt

∫ t+β2

t−β1

gλ(y; t, β1, β2)F̄ (t+ β2 − y)dydt.

(6.10)

6.2 The busy period LST when K = 1

The case K = 1 corresponds to an M/G/1 queue with deterministic (v1) patience; see also

Model II of [8] for this case.

T
(1)
U = TU(v1 −X1),

T
(2)
U = T

(1)
U +R(1) + TU(0).

In case T
(1)
U < T

(0)
L (X1), and 0 < X1 < v1 we have an initial phase CI consisting of T

(1)
U

and R1. The point T
(1)
U + R1 is a regeneration point, where a new phase starts. We denote

it as CR. If T
(2)
L (v1) < T

(2)
U (0) the busy period ends; otherwise the phase CR consists of

T
(2)
U (0) +R2, etc.

We define, for 0 < X < v1,

ψ∗
UI(ω;X, v1 −X,λ1) =

∫ ∞

0

e−ωt

∫ ∞

0

e−ωrpλ1(t, r;X, v1 −X)drdt. (6.11)
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Similarly, let

ψ∗
UR(ω; v1, λ1) =

∫ ∞

0

e−ωt

∫ ∞

0

e−ωrpλ1(t, r; v1, 0)drdt. (6.12)

The conditional LST of B, when 0 < X1 < v1, is then

M
(1)
I (ω;X1, v1 −X1, λ1) = ψ∗

L(ω;X1, v1 −X1, λ1)

+ ψ∗
UI(ω;X1, v1 −X1, λ1)

ψ∗
L(ω; v1, 0, λ1)

ψ∗
UR(ω; v1, λ1)

.
(6.13)

In case v1 ≤ X1 <∞, the conditional LST of B is

M
(1)
II (ω;X1, λ1) = e−ω(X1−v1)ψ

∗
L(ω; v1, 0, λ1)

ψ∗
UR(ω; v1, λ1)

. (6.14)

Finally, the LST of B is

M (1)(ω; v1, λ1) =

∫ v1

0

f(x)ψ∗
L(ω;x, v1 − x, λ1)dx

+
ψ∗

L(ω; v1, 0, λ1)

ψ∗
UR(ω; v1, λ1)

( ∫ v1

0

f(x)ψ∗
UI(ω;x, v1 − x, λ1)dx

+ eωv1

∫ ∞

v1

f(x)e−ωxdx

)
.

(6.15)

6.3 The busy period LST when K = 2

For 0 < X1 < v1, the conditional LST is, with δ2 = v2 − v1:

M
(2)
I (ω;X1, v1 −X1, λ1) = ψ∗

L(ω;X1, v1 −X1, λ1)

+

[ ∫ ∞

0

e−ωt

∫ δ2

0

M
(1)
I (ω; r, δ2 − r, λ2)pλ1(t, r;X1, v1 −X1)drdt

+

∫ ∞

0

e−ωt

∫ ∞

δ2

M
(1)
II (ω; r, λ2)pλ1(t, r;X1, v1 −X1, λ1)drdt

]
·

·
[ ∫ ∞

0

e−ωt

∫ δ2

0

M
(1)
I (ω; r, δ2 − r, λ2)pλ1(t, r; v1, 0)drdt

+

∫ ∞

0

e−ωt

∫ ∞

δ2

M
(1)
II (ω; r, λ2)pλ1(t, r; v1, 0)drdt

]−1

· ψ∗
L(ω; v1, 0, λ1).

(6.16)
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For X1 ≥ v1, the conditional LST is

M
(2)
II (ω;X1, λ1) = [I(v1 < X1 < v2)M

(1)
I (ω;X1 − v1, v2 −X1, λ2)

+ I(X1 ≥ v2)M
(1)
II (ω;X1 − v2, λ2)] ·

·
[ ∫ ∞

0

e−ωt

∫ δ2

0

M
(1)
I (ω; r, δ2 − r, λ2)pλ1(t, r; v1, 0)drdt

+

∫ ∞

0

e−ωt

∫ ∞

δ2

M
(1)
II (ω, r, λ2)pλ1(t, r; v1, 0)drdt

]−1

· ψ∗
L(ω; v1, 0, λ1).

(6.17)

Finally, the LST of the busy period length when K = 2 is

M (2)(ω; v1, λ1) =

∫ v1

0

f(x)M
(2)
I (ω;x, v1 − x, λ1)dx+

∫ ∞

v1

M
(2)
II (ω;x, λ1)f(x)dx. (6.18)

6.4 The busy period LST for general K

In the general case we have δj = vj − vj−1, j = 1, . . . , K (v0 ≡ 0) and λj = λQj−1,

j = 1, . . . , K. We compute first M
(1)
I (ω;x, δk−x, λK) and M

(1)
II (ω;x, λK) according to (6.13)

and (6.14). Afterwards, for each j = 1, . . . , K, we compute recursively the functions

M
(j)
UI (ω;x, δj, λj) =∫ ∞

0

e−ωt

∫ δj+1

0

M
(j−1)
I (ω; r, δj+1 − r, λj+1)pλj

(t, r;x, δj − x)drdt

+

∫ ∞

0

e−ωt

∫ ∞

δj+1

M
(j−1)
II (ω; r, λj+1)pλj

(t, r;x, δj − x)drdt,

(6.19)

D(j)(ω;λj) =

∫ ∞

0

e−ωt

∫ δj+1

0

M
(j−1)
I (ω; r, δj+1 − r, λj+1)pλj

(t, r; δj, 0)drdt

+

∫ ∞

0

e−ωt

∫ ∞

δj+1

M
(j−1)
II (ω; r, λj+1) · pλj

(t, r; δj, 0)drdt,

(6.20)

and

M
(j)
I (ω;x, δj − x, λj) = ψ∗

L(ω;x, δj − x, λj)

+
M

(j)
UI (ω;x, δj, λj)

D(j)(ω;λj)
ψ∗

L(ω; δj, 0, λ2),

(6.21)

M
(j)
II (ω;x, λj) = [I(vj < x < vj+1)M

(k−1)
I (ω;x− vj, vj+1 − x, λj+1)

+ I(x ≥ vj+1)M
(k−1)
II (ω;x− vj+1, λj+1)]

ψ∗
L(ω; δj, 0, λj)

D(j)(ω;λj)
.

(6.22)
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Finally, the LST of B is

M (K)(ω;λ) =

∫ v1

0

f(x)M
(K)
I (ω;x, v1 − x, λ1)dx+

∫ ∞

v1

f(x)M
(K)
II (ω;x, λ1)dx.

Notice that λ1 ≡ λ.
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