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The present thesis deals with aspects of the dynamic behaviour of the 
human knee joint. Emphasis was laid on an experimental strategy to 
try and find the important characteristics and parameters describing 
the behaviour of the joint under dynamic loading in post-mortem ex
periments. A literature review revealed that, although both the 
(quasi-)static and dynamic behaviour of the joint have been focuaed 
on in a number of experimental and theoretical studies, a lack of 
knowledge exists on 3 important subjects: a proper understanding of 
the dynamic behaviour of the joint is not provided, the constitutive 
behaviour of the soft tissues (ligamentous structures, menisci, ar
ticular cartilage) is only known to a limited extent and (estimates 
for) the in vivo loads acting on the joint as a whole or on the 
individual joint elements are only poorly known. Because of the lim
ited possibilities to analyse the behaviour of the joint in in vivo 
and in post-mortem experiments, a mathematical model of the human 
knee joint is indispensable and should be formulated starting from 
basic knowledge in the behaviour of the joint. For this purpose an 
experimental strategy is presented intended to result in guidelines 
(obtained from experiments) for development of such a model. In view 
of the expected non-linearity of the behaviour of the joint, an ap
proach is proposed to eliminate geometrical non-linearities by con
sidering only small deflections with respect to a static equilibrium 
position. This linearization procedure also was expected to reduce 
physical non-linearities. The LLT results in a description of the 
joint by means of a linear system with system parameters dependent on 
the static equilibrium position of the joint, the magnitude of the 
loads exerted on selected muscle tendons to create this equilibrium 
position and the degree to which damage is brought about to individ
ual joint elements. Important conclusions could be drawn from experi
ments with random excitation: creation of a stable, static equilib
rium position of the joint by means of forces on three muscle tendons 
is possible, a description of the dynamic behaviour of the joint by 
means of transfer functions enables to quantify the influence of the 
static equilibrium position, the magnitude of the loads on the muscle 
tendons and damaging of joint elements, but the linearization proce
dure actually fails due to the essential non-linear behaviour of the 
joint. This non-linearity, however, can be taken into account by 
introducing a dependence of the system parameters for the best-fit
ting linear system on the magnitude of the applied load. This strat
egy has been worked out for step excitation. The effect of damaging 
the menisci and the anterior cruciate ligament could well be deter
mined. Interpretation of the results is difficult, however, and makes 
a numerical model of the joint indispensable. 
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Chapter 1 Introduction 

Preliminaries 

"Biomechanics is very difficult mechanics". This maxim also refers 
to the topic of this thesis, as from a mechanical point of view the 
knee joint is a complicated structure. Like in other joints in the 
human musculoskeletal system, the complex geometry of the deformable 
articulating surfaces and the non-linear time-dependent material 
properties of the constituting anatomical elements result in a mech
anical behaviour with physical non-linearities, apart from the geo
metrical non-linearities due to large relative movements of the 
articulating bones. Although a number of experimental and theoretical 
studies have been devoted to the behaviour of the joint under various 
loading conditions. a proper insight into ita mechanical behaviour is 
not available, nor is there clarity as to the role various joint 
elements play herein. This especially applies to the behaviour of the 
joint under dynamic loads, which has been the subject of investi
gation only for the last two decades in a limited number of studies. 
From a medical point of view, the need to come to a more accurate 
insight into the mechanical behaviour of the joint is obvious. A 
better insight into the pathomechanics of injured or diseased joints 
will become possible only if knowledge is available on both the 
anatomy of the joint and the mechanical behaviour of the joint under 
various loads. Also repair or replacement of joint elements requires 
knowledge of the function of these elements in order to judge the 
reliability of surgical procedure& and to avoid unforeseeen post
operative cumulative damage. The contents of this thesis may be seen 
as an attempt to elucidate part of the dynamic behaviour of the 
joint. 

Biomechanical engineering has a strong interaction with other techni
cal disciplines which have a more specific background and can provide 
necessary scientific research tools. For example, developments in the 
field of dynamics and structural analysis find applications in analy
ses of the mechanical behaviour of the human body. Besides, these 
~· fundamental disciplines can obtain a stimulating feedback from 
requirements imposed by biomechanical engineering. Following these 
remarks it is not surprising that the present study must be consid
ered as being part of a larger framework. This framework is given by 
a general view on fundamental and biomechanical engineering in the 
Division of Engineering Fundamentals (WFW) of the Faculty of Mechani
cal Engineering at the Eindhoven University of Technology (EUT). 

It is obvious that this framework provides facilities and boundary 
conditions for a study on the mechanical behaviour of the human knee 
joint, which are relevant in judging the scope and purpose of this 
thesis, as will be depicted in the following sections. 
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1.1 Historical and contemporary perspecttye 

The mechanical behaviour of the human knee joint has been the subject 
of investigation in various studies carried out at EUT, since 1976, 
partly in collaboration with the University of Leiden (RUL), the 
University of Limburg (RL) and the University of Nijmegen. Wismans 
(1980) developed a 3-D statically indeterminate knee joint model 
which allows for numerical simulation of the behaviour of the joint 
under quasi-static loads. It incorporates a description of the rigid 
and perfectly smooth (no friction) contact areas of the femoral and 
tibial articulating surfaces and a representation of ligamentous 
structures (including parts of the posterior capsule) by means of 
non-linear elastic springs. The results obtained with this model, 
probably one of the most advanced models for the human knee joint 
described in literature, agree fairly well with experimental data 
found in literature. Further refinements of the model were incorpo
rated in a more general model developed by Dortmans (1983), although 
these extensions were merely meant to increase the flexibility of the 
model. For an experimental validation of the numerical model, Hamer 
(RL) (1982) developed a 3-D loading apparatus, for the measurement of 
the static kinematics as well as the loads acting on a knee joint 
specimen in vitro. The practical validation and possible further 
refinements of Wismans' model were subsequently agreed to be worked 
out at the University of Nijmegen, using the loading apparatus devel
oped by Hamer. 

One of the essential limitations of Wismans' model is the assumption 
that the contact areas of the tibia and femur can be considered to be 
rigid. When dynamic loads are acting on the joint, deformations of 
the cartilage layers, covering the tibia and the femur, and.the 
menisci may play an important role in the force transmission through 
the joint. If the contact areas are assumed rigid (as in Wismans' 
model) the location of the contact points is known for a given exter
nal load on the articulating bodies. This is not possible when defor
mations of the contact zones are taken into account. In that case a 
coupling exists between the location of the contact zones and the 
kinematics of the bodies which coupling depends on the loads exerted 
on the bodies. Another important phenomenon not considered in 
Wismans' model is the damping effect of the joint due to velocity- or 
time-dependent material properties. In view of these two important 
limitations it was felt that the next stage in continued research 
should be devoted to an analysis of the dynamic behaviour of the 
human knee joint. From a pilot study it was concluded that such an 
investigation should start with an experimental approach. The reas~n 
for this is that in literature only scattered data was found on the 
dynamic behaviour of the joint as a whole, as well as on the dynamic 
properties of individual joint elements such as menisci and ligamen
tous structures. This resulted in the conclusion that development of 
a structural numerical model can not be started before some essential 
characteristics of the knee joint under dynamic loading are obtained 
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from experiments. It was also felt that only after identification of 
the mechanical role several joint elements play in the dynamic force 
transmission through the joint, an appropriate selection can be made 
for the elements to be included in such a model. The need for a 
structural numerical model is obvious. SUch a model allows for manip
ulation of model parameters which can be used to study the importance 
of various joint structures, thus reducing the number of experiments 
to be carried out (which are often laborious and mostly have a lim
ited scope). On the other band a numerical model may provide guide
linea for further experiments to validate the model. 

The research done on the human knee joint is interacting with (and is 
influenced by) other research projects carried out in WFW: 

* research done on the dynamics of multibody systems with non
linear connections (Sol 1983) can provide a theoretical 
framework for numerical modelling of the knee joint. as the 
knee joint is a non-linear connection (although far more 
complicated than those encountered in mechanical structures). 

* random vibrations is an important subject when considering 
the mechanical behaviour of the joint as any axperiment in 
this field is likely to contain stochastic elements, which 
must .be dealt with properly. llandom vibrations also includes 
a theoretical framework for analysis of linear or linearized 
systems by means of transfer function- and modal analysis, 
which has become an important tool to quantify the dynamic 
behaviour of mechanical systems (van Beck 1984). 

* long term research done on aortic valve prostheses (van 
Steenhoven (1979). Sauren (1981), van Renter&hem (IL) (1983), 
B.ouaseau (1985)) bas resulted in both axperimental ancl theo
retical knowledge with respect to the .. ehanlcal behaviour of 
soft tissues. Also the work of Oomens et al. (1987) on the 
mechanical behaviour of the skin is important in this 
context. The behaviour of soft tissues is focused on extan
alvely in research done on the elbow joint. Rodde.an (1988) 
worked on numerical tools (FEM) to be able to deal with 
inhomogeneous, fibre-reinforced tissues wrinkling under 
certain loads. Simultaneously Peters (RL) (1987) developed 
tools for measurement of stress and strain fields in these 
tissues. It is obvious that insights gained in these studies 
are valuable when developing a structural model of the knee 
joint. 

The relationship between research done on the knee joint and other 
(bio)mechanical structures evidently determines the purpose and scope 
of the present study to some extent. With the perspective given in 
this section as a background, the scope and purpose of the present 
study are outlined in section 1.2. 
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1.2 Scope and purpose 

Aa mentioned in section 1.1 the purpose of the present study can 
briefly be formulated as to obtain experimental data on the dynamic 
behaviour of the human knee joint which can be used for formulation 
and validation of a structural numerical model. The te:rms "knee 
joint" and "dynamic behaviour" in this formulation will be elaborated 
in the sequel to indicate more clearly the purpose of this study, 
simultaneously marking the scope of the present investigation. 

The knee joint is defined as the assembly of biological structures 
linking the lower and upper leg, which includes parts of the tibia 
and femur, the patella, the menisci as well as the surrounding cap
sular and non-capsular ligamentous structures. To study the mechani
cal behaviour of this system use must be made of post-mortem experi
ments on joint specimens, as this system can not be isolated in vivo, 
apart from the lack of possibilities to measure loads acting on the 
joint in in vivo situations. The use of post-mortem experiaents also 
eliminates the possibility to include natural muscular activity in 
this investigation. This is a limitation which can not be avoided 
however. On the other hand it is felt that insight in the dynamic 
behaviour of the knee joint is essential, to be able to indicate 
which phenomena should be focused on when analysing the knee joint in 
in vivo experiaents (with muscular activity). Muscle tendons at
taching to. the joint must be taken into consideration, as they are 
interwoven with the complex structure of soft tissues .connecting the 
tibia and the. femur. 

The dynamic behaviour of the joint must in general be expected to 
be subjec~·to both geometrical and physical non-linearities. Geo
metrical non-linearities, due to large relative movements between the 
articulating bones, are relatively easily taken into account in both 
experiments and theoretical models. Consequently, emphasis can be 
laid on the physical non-linearities described by important param
eters as stiffness and damping characteristics for various loading 
configurations of the joint. The loads applied will have a non-static 
component, but at this stage this can not be specified in te:rms of a 
frequency range of interest as inertial effects significantly may 
contribute to a upper relevant frequency which, consequently, must be 
determined experimentally. On the other hand, available literature 
data may provide information on the frequency range of interest for 
in vivo situations, which must be taken into account in the experi
mental strategy to be developed. Because of the expected non-linear 
behaviour of the joint, due to load dependent stiffness- and damping 
characteristics e.g., not only the frequency range of interest must 
be considered. In fact the entire load and deformation history must 
be taken into account in this case, including peak loads, shape of 
the applied loads, initial conditions for kinematical parameters etc. 
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In summary the present investigation focuses on the tt.&-dependent 
behaviour of human knee joint, to gain insight into the physical non
linearities determining the load transmission through the joint. The 
results obtained may provide a starting point for development of a 
structural numerical model of the knee joint. 
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Chapter 2 Mechanical properties and functions of the human knee joint 
and its component structures: a literature review. 

The significance of some of the anatomical structures in the human 
knee joint for the transmission of both static and dynamic loads has 
been the subject of a number of experimental and theoretical investi
gations described in literature. 
In this chapter a brief overview is given of commonly accepted ideas 
about the mechanical characteristics of the human knee joint. First 
the basic anatomy of the human knee joint will be discussed. In 
section 2.2 the mechanical properties and functions of some of the 
basic anatomical structures are summarized. In section 2.3 an over
view is presented of the prime mechanical characteristics of the 
human knee joint as a whole as established from in vivo and in post
mortem experiments. Finally, in section 2.4, certain types of mathe
matical models used for the description of the mechanical behaviour 
of the joint are discussed. 

2.1 Global description of the anatomy of the human knee 1oint 

The human knee joint forms a spatial link between the femur and the 
tibia (Fig. 2.1.1). It is the largest synovial joint in the human 
body, allowing for large relative movements of the articulating femur 
and tibia. In appendix A a glossary is given of terms generally used 
to denote the principal motions of the tibia relative to the femur 
and which will be used throughout the remaining chapters. The anato
mical structures the joint consists of, can be divided into two prime 
groups with respect to their mechanical properties: 

* bony parts 
- the proximal part of the tibia, including the proximal part 

of the fibula 

- the distal part of the femur 

- the patella 

* soft tissues 
- fasciae, capsule and ligamentous structures 

- menisci 

- articular cartilage 

- muscle tendons 
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femur --------t-

patella 

aaqi t tal aection 

c 

Top view of the tibia of a right knee joint 
A medial meniscus, D transverse ligament, 
B lateral meniscus, E anterior cruciate ligament, 
C tibial tuberosity, F posterior cruciate ligament, 

G fibula. 

Fig. 2.1.1 The human knee joint. 
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1 - medial femoral condyle 
2 - outer part of medial 

meniscus attached to the 
inner layer of the 
capsule 

3 fibula 
4 - tendon of biceps femoris 

muscle 
5 - lateral collateral 

ligament 
6 - lateral meniscus 

(posterior part) 
7 - femoral insertion of 

anterior cruciate 
ligament 

Cross-section of the knee joint (frontal plane of 
the tibia with the femur in 90° flexion) 

1 - lateral femoral condyle 
2 - femoral insertion of 

anterior cruciate 
ligament 

3 - patella 
4 - quadriceps tendon 
5 - multi-layered articular 

capsule 
6 - inner layer of fibrous 

articular capsule 
7 - medial collateral 

ligament 
8 - posterior horn of medial 

meniscus 

Fig. 2.1.2b Cross-section of the knee joint (medio-lateral 
plane of the femur) 
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Moreover a small volume of synovial fluid is present in the joint. 
The bony parts, as compared to the soft tissues, are rigid elements 
of which the tibia and the femur, and the patella and the femur are 
articulating in the tibio-femoral and the patello-femoral joint, 
respectively. 
In the joint cavity between the incongruent articulating surfaces of 
femur and tibia the menisci form a set of two intra-articular 
(incomplete) rings. The articulating surfaces of the bony parts are 
covered with a thin layer of articular cartilage which is a soft, 
porous material. In combination with the articular cartilage, the 
synovial fluid ensures proper lubrication of the joint (see section 
2.2.4). 

The bony parts and the menisci are interconnected by a complex struc
ture of soft tissues (Fig. 2.1.2). In anatomical textbooks this 
structure is divided into intra-capsular ligaments, the multiple 
layered joint capsule, the extra-capsular ligaments and muscle ten
dons attaching to the bony parts of the joint. 
The intra-capsular ligaments are the anterior cruciate ligament and 
the posterior cruciate ligament and ligaments connecting the capsule, 
the menisci, the tibia and the femur. 
The joint capsule encloses the joint and consists of 2 layers, the 
membrana synovialis at the inside and the membrana fibrosa at the 
outside. The membrana fibrosa is a fibre-reinforced structure, which 
in itself is a multiple layer with varying thickness, strengthened 
posteriorly by, e.g., the oblique and arcuate popliteal ligaments. 
The prime extra-capsular ligaments are the lateral collateral liga
ment and the patellar ligament, whereas the medial collateral liga
ment can be seen to be part of the joint capsule. The various muscle 
tendons attaching to the bony parts of the joint are schematically 
shown in Fig. 2.1.3. 

medial view 

Fig. 2.1.3 

illil'f-l)>r!<>fi .... 

R:'l!l-;-(luo,;Ji, DL 
~ 

"'t 
Bicep' l•mons m f ~ 

s1h:,~ t~~~ · --:- =M 
Semll andinosu ,' • ·:;, 

I ,. 
Se:atlmembnuosus m · 

Popliteal fosu 

s.rtorius Jfl 

L•'""l h .. d II 
Gutu;;:;,:;-:.:d~ 
Guttoenannu m.-\\ 

Schematic representation of the muscles attaching 
to the human knee joint. 
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2.2 Mechanical properties and functions of basic anatomical 
structures. 

In this section the mechanical properties and possible functions of 
some of the basic anatomical structures mentioned in section 2 . 1 will 
be discussed. The bony parts in the joint, the menisci, the ligamen
tous structures, the articular cartilage and the synovial fluid are 
successively dealt with. 

2.2.1 The bony parts. 

The bone material of the bony parts consists of layers of an inorga
nic phase, mainly calcium and phosphate, and an organic phase, mainly 
collagen (a fibrillar protein). It occurs basically in two forms, a 
more massively built and relatively rigid form, the compact bone and 
a more lightly built and weaker form, the trabecular or spongy bone, 
which mostly has an outer shell (the cortical bone) of compact bone. 
Host of the compact bone consists of osteons or Haversian systems 
(Fig. 2.2.1) which are tubular structures, enclosing a capillary 
(Haversian canal) used for nutrition. Each osteon is made up of 
several bone layers whose collagen fibres run parallel and spiral 
about the axis of the osteon. 

Fig. 2.2.1 

1 - compact bone with 
3 - lamellar outer layer 
4,5 - inner osteonal bone 

2 periost 
7 Haversian canal 
8 trabecular bone 

The »tructure of compact and trabecular bone 
(Krstic 1978). 

As the bony parts in the human skeleton are of eminent importance for 
weight bearing and resisting forces due to muscular activity, the 
behaviour of bone under various mechanical loading and physiological 
conditions has been the subject of a number of experimental investi
gations. From these investigations it follows that compact bone and 
trabecular bone largely differ in apparent stiffness. The apparent 
stiffness can be seen to depend also slightly upon the strain rate 
applied which might be due to time-dependent material properties 
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(Lakes et al. 1979), although Pugh et al.(l973) state that bone can 
be regarded as purely elastic under physiological loads. Also the 
material properties of bone tend to be anisotropic which is not 
surprising in view of its tubular structure (Reilly and Burst,ein 
1975). 
When considering the mechanical function of the bony parts in the 
joint, it will be clear that the tibia and the femur act as load 
bearing elements, transmitting loads via their incongruent articula
ting surfaces. Finite Element calculations have shown that the sur
face load is mainly transmitted by the trabecular bone beneath the 
cortical bone at the loaded surface to the shaft of the bone 
(Burstein et al. 1970, Hayes et al. 1978). Besides the trabecular 
bone may act as an energy absorber as at impulsive loads micro-frac
tures occur (Ducheyne et al. 1977, Simonet al. 1972). 

The patella generally is considered to have the following functions: 
protection of anatomical structures in the joint cavity, transmission 
of loads exerted by the musculus quadriceps femoris to the tibia and 
amplification of the extending moment generated by these loads 
(Dahhan et al. 1981, van Eijden 1985, van Kampen 1987). 

2.2.2 The menisci 

Between the tibia and the femur the menisci form a set of two intra
articular discs, partly filling the space between the incongruent 
contact surfaces of the tibia and femur (Fig. 2.1.1). The medial 
meniscus tends to be a semi-circular ring with both ends attached to 
the intercondylar area. At the medial side of the joint the medial 
meniscus is attached to the deep layer of the medial collateral 
ligament whereas the posterior part is connected to the capsule. 
Furthermore, the ligamentum transversum genus connects the medial and 
the lateral meniscus anteriorly. The lateral meniscus generally has a 
stronger curvature and resembles more a complete ring than the medial 
meniscus. Its ends also attach to the intercondylar area. 

Fig. 2.2.2 The structure of the menisci (Bullough et 
al. 1970). 
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The menisci basically consist of fibrous tissue, with collagen fibres 
embedded in a ground substance of glycosaminoglycans. The collagen 
fibres are mainly oriented in the circumferential direction, thus 
causing an anisotropic mechanical behaviour of the menisci (Fig. 
2.2.2) (Bullough et al. 1970). The presence of the collagen fibres 
also appears in the non-linear stress-strain relationship found for 
menisci specimens under uni-axial tension as shown in Fig. 2.2.3. 

0.4 

0.2 
-el-l 

Fig. 2.2.3 Stress-strain characteristics for menisci speci
mens under uni-axial tension (Uezaki et al. 1979). 

A number of mechanical functions are attributed to the menisci. Three 
of the most important possible functions are: 

* a load bearing function, resulting in a reduction of the 
stresses in the area of direct bone to bone contact between 
the tibia and the femur. This function is derived from the 
observation that the menisci may increase the tibio-femoral 
contact surface (Krause et al. 1976, Jaspers 1982, Sauren et 
al. 1984, Walker and Hajek 1972), resulting in a distribution 
of the loads transmitted. 

* a stabilizing function. A number of post-mortem experimental 
studies (Hsieh and Walker 1976, Markolf et al. 1976, Wang and 
Walker 1974) showed the knee joint to have a much less con
strained kinematic behaviour after meniscectomy resulting in 
larger possible relative motions between the femur and the 
tibia. This also may cause an increased loading of the liga
mentous structures. 

* a function in the lubrication of the joint (see section 
2.2.4) 
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2.2.3 The ligamentous structures 

In biomechanical literature much attention is paid to the mechanical 
function of the ligamentous structures attaching to the bony parts in 
the joint, but only few studies are reported dealing with their 
mechanical properties. The ligamentous structures generally consist 
of collagen and elastin fibres embedded in a glycosaminoglycans rich 
ground substance. The orientation·of the fibres varies from one part 
in the ligamentous structures to another but it is assumed that they 
are mainly oriented in the direction of the transmitted load. The 
ligamentous structures show a typical non-linear stress-strain rela
tionship under uni-axial loading (Kennedy et al. 1976, Trent et al. 
1976). Experiments on (animal) ligaments have also shown their 
strain-rate dependent behaviour which could be due to visco-elastic 
material properties (Woo 1982). 
When considering the mechanical function of the ligamentous struc
tures, it must be noticed that, apart from the cruciate ligaments, 
they can be seen as either separate structures or ligaments (from a 
classical anatomical point of view) or as a set of layers with local 
thickenings that could be interpreted as ligaments in a classical 
sense. In biomechanical literature much attention is paid to the 
function of ligaments in the classical sense, resulting in partly 
opposite conclusions (Butler et al. 1980, Hsieh and Walker 1976, 
Markolf et al. 1976, Markolf et al. 1981, Piziali et al. 1977, 
Piziali et al. 1980, Seering et al. 1980, Shoemaker and Markolf 
1985). This may be caused by rather imperfect ezperimental techni
ques, e.g. techniques that do not allow for a precise definition of 
applied loads and resulting displacements. Also different opinions 
about the anatomical description of the ligamentous structure ana
lysed may contribute to these opposite conclusions. 

Generally accepted primary mechanical functions of some ligamentous 
structures can be summarized as follows. The anterior and posterior 
cruciate are important to resist anterior and posterior displacements 
of the tibia relative to the femur, respectively. The medial and 
lateral collateral ligament on the other hand delimit exo-endorota
tion and ad-abduction. 
In most studies the function of a knee ligament is derived from 
experiments where a comparison is made between the behaviour of the 
joint (under a given external load and relative position and orienta
tion of the femur and tibia) before and after removal or damaging of 
the ligament studied. Due to the complexity of the joint, this compa
rison is not necessarily leading to a direct insight into the func
tion of the structure under investigation. After removal or damaging 
of a particular structure other structures may partly take over its 
function, depending on the applied load and the relative position and 
orientation of femur and tibia. This has led to the introduction of 
secondary and tertiary functions of ligaments, indicating that the 
function of a ligament is controlled directly by other ligamentous 
structures. Moreover, the mechanical behaviour of the joint is 
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strongly influenced by the magnitude of the applied loads, the geo
metry of the articulating femoral and tibial surfaces and the pres
ence of the menisci. These factors may also influence the results of 
experiments and thus lead to different opinions about the function of 
the ligamentous structures considered. 

Apart from a force transmitting function also a neurosensory function 
is proposed for the ligamentous structures (Brand 1986 , Schultz et 
al. 1984), because of the presence of mechanoreceptors. These may 
provide input for the central nervous system and thereby the ligamen
tous structures may act as sensors for muscle control. 

2.2.4 The articular cartilage and synovial fluid 

The human knee joint shows low friction and minimal wear. Two compo
nents important for these features are the synovial fluid and articu
lar cartilage. 
The human knee joint contains a small volume of synovial fluid (0 . 2 
ml (Wright 1981)) , which is dialysed from blood plasma and contains a 
~yaluronic acid-protein complex. These large molecules cause the 
synovial fluid to have a viscosity that decreases with increasing 
shear rate (Radin and Paul 1971). 
Articular cartilage is the thin top-layer of the condyles of the 
femur, the tibia and the patella. For the femoral and tibial condyles 
the thickness of this layer varies between 2 and 3 mm (Walker and 
Hajek 1972) and is up to 5 mm for the patella (Dahhan et al. 1981) . 
Cartilage can be seen as a two-phase material with a solid matrix 
(composed of proteoglycan macromolecules, collagen fibres and bound 
water) and interstitial water (Fig. 2.2.4) (Mow 1984) . 

Fig. 2.2.4 

1 layer of hyaline 
cartilage 

2 collagen fibres 
3 , 4 superficial flattened 

cartilage cells 
5 uncalcified cartilage 
6 tidal mark 
7 calcified cartilage 
8 bone 

The structure of art icular cartilage in the knee 
joint (Krstic 1978) . 
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Upon compressive loading of the cartilage the interstitial water is 
squeezed out of the permeable matrix causing a decrease in volume. 
The volume of the cartilage can attain its normal value after removal 
of the compressive load if enough water is available for resorption. 
The mechanical behaviour of articular cartilage is currently best 
described by means of a biphasic poroviscoelastic model (Kak 1986) 
where the solid matrix is modelled as a viscoelastic continuum. 
Mixture theories are applied to describe the flow of interstitial 
fluid in the matrix. Friction between the two phases is included by 
means of a body force term in the governing equations which depends 
on the relative velocity of the two phases and the permeability of 
the matrix. From these models it can be concluded that both the 
viscoelasticity of the matrix and the interstitial fluid flow are 
important factors for the time-dependent behaviour of articular 
cartilage. The biphasic behaviour of articular cartilage is important 
for two reasons. First the relatively high compliance is of impor
tance for the distribution of joint forces and results in a reduction 
of stress gradients. Secondly it playa an important role 1n the 
lubrication mechanism of the joint. 

To explain the low values of the friction coefficients measured for 
the joint, 0.005-0.02 (Badin and Paul 1972), a number of lubrication 
mechanisms for different loading configurations have been considered 
(Armstrong and Mow 1980, Dawson 1967), which partly are adapted from 
lubrication mechanisms encountered in technical bearings. However, 
none of them has been shown to occur in in vivo situations. 
Boundary- or film lubrication may occur depending on the load exerted 
on and the relative velocity of the articular surfaces. Boundary 
lubrication may occur under large static loads. Film lubrication, for 
example, is likely to occur during the swing phase of the leg during 
walking and may be supported by the menisci as they may prevent the 
lubricating fluid to be squeezed out of the contact surfaces. To 
include the presence of the porous articular cartilage, weeping and 
boosted lubrication have been proposed as specific lubrication 
mechanisms for the knee joint. Under weeping lubrication (McCutchen 
1967, Sokoloff 1978) a fluid film is generated in the hydrostatically 
loaded part of the articular cartilage as fluid is squeezed out of 
the cartilage. This fluid is resorbed in the unloaded part, resulting 
in a self-maintaining hydrostatic lubrication mechanism. Boosted 
lubrication (Walker et al. 1968) may occur if the contact surfaces in 
the joint approach. In this case the large hyaluronic acid-protein 
molecules cannot escape with the bulk synovial fluid, which is partly 
squeezed and captured between the loaded part of the articular carti
lage and partly squeezed out, thus leaving a viscous hyaluronic gel 
between the cartilage surfaces in the contact area. 
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2.3 Hecb&nical characteristics of the humep kpee joipt. 

A number of experimental studies described in literature deal with 
aspects of the mechanical behaviour in vivo and post-mortem of the 
knee joint as a whole. 

2.3.1 Pressure distributions between articulating surfaces. 

To gain insight into the transmission of loads via the articulating 
surfaces of the knee joint several post-mortem studies have been 
carried out to measure static pressure distributions or the area of 
contact between the tibia and femur, the tibia and the menisci or the 
femur and the menisci. Static contact-area measurement bas been done 
using a casting technique (Walker and Hajek 1972), radio-opaque 
fluids (Kettelkamp and Jacobs 1972), plastic micro-indentation trans
ducers (Ahmed and Burke 1983) and color-forming, pressure sensitive, 
photographic films (Fukubayashi and Kurosawa 1980). The latter two 
techniques also allow for the determination of local contact pressure 
patterns after appropriate calibration of the transducer. It must be 
recognized that these transducers do not only reflect normal pressure 
but also are sensitive to shear stresses which influence their re
sponse (Ahmed and Burke 1983). From the before mentioned studies on 
the tibio-femoral joint under static axial compression the following 
common phenomena are observed: 

* increase in flexion angle causes a decrease in contact area 
in both the lateral and medial compartment; 

* increase in flexion angle shifts the contact areas posterior
ly. This effect is more dominant in the lateral compartment; 

* the medial meniscus carries more load, primarily due to its 
larger surface; 

* the menisci are load carrying although their load carrying 
function depends on the relative position of tibia and femur 
as well as on the magnitude of applied loads. Posterior 
displacements of the tibia relative to the femur tend to 
decrease the load carried by the menisci thereas increasing 
compressive loads cause a decrease in the fractional load 
carried by the menisci, possibly caused by increasing bone
to-bone contact; 

* total meniscectomy results in a drastic change in contact 
pressure distribution patterns (increase in peak pressures, 
increase in peak pressure areas, increase in pressure gradi
ents). 
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2.3.2 Deformations of ligaments 

Measurement of deformations of ligamenta in situ is of prime impor
tance to study their behaviour under loading of the knee joint. 
Although a number of qualitative descriptions of ligament behaviour 
can be found (Brantigan and Voshell 1941, Girgis et al. 1975), quan
titative information about ligament deformations is rare, especially 
for in situ situations. 

Direct static ligament-force measurement in post-mortem experiments 
was carried out by Lewis et al. (1982) using a buckle transducer. The 
static ligament forces measured for various joint configurations and 
joint loads typically reached values up to 60 R. This technique 
however only gives information on the forces transmitted by part of 
the ligament considered and consequently the total force transmitted 
is unknown. 
Another technique used to obtain information about static ligament
behaviour in post-mortem experiments is stereorontgenphotogrammetry 
(van Dijk et al. 1979, Huiskes et al. 1984). The 3-D position of 
markers implanted near the insertion areas of ligaments is recon
structed from X-ray's for various loading configurations of the 
joint. These positions are then used to calculate distances between 
the markers, giving an indication for ligament length patterns, and 
to calculate the spatial orientation of ligaments. These data, 
however, do not provide information about the actual deformations in 
ligaments and their relation with transmitted loads, as a consti
tutive relation relating length patterns to transmitted loads is not 
available. Especially this concerns an initial, unloaded, configura
tion of the ligaments. 

2.3.3 In vivo experimental results 

The experimental determination of loads acting on the knee joint in 
vivo is of interest for both mathematical modelling and in post
mortem experiments. Experiments to obtain the 3-D forces and moments 
working on the tibia and the femur at the level of the knee joint in 
vivo are not described in literature. This is not surprising because 
of the ethical problems involved. Indirect measures for these loads 
are found from vibration studies which also result in an indication 
of the attenuation of vibrations through the knee joint. Voloshin and 
Wosk (1983) and Wosk and Voloahin (1981) have carried out a number of 
in vivo experiments in which accelerometers were attached to the skin 
near the tibial tuberosity and the medial femoral condyle by means of 
elastic strips, in an attempt to measure accelerations of the under
lying bone. Although this procedure is sensitive to the dynamic 
behaviour of the skin and underlying soft tissue (Nokes et al. 1984, 
Ziegert and Lewis 1979), use of low mass transducers in combination 
with an adequate pre-load yields a negligible effect of these struc
tures (Cornelissen et al. 1986, Nokes et al. 1984). Voloshin and Wosk 
showed that vibrations, induced upon heel strike during bare-footed 
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walking .and transmitted to the tibia, can be absorbed in the knee 
joint resulting in a decrease in vibration amplitudes at the femur of 
about 30 \ (Fig. 2.3.1). 
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Accelerations aeasured by Voloshin and Wosk 
(1983) during level walking. The upper trace 
results from the medial condyle of the femur, the 
lower trace from the tibial tuberosity (right 
leg). A and B correspond to a heel strike of the 
right and left leg, respectively. 

Meniscectomy leads to a reduction of this shock absorbing capacity by 
20 \ which may lead to the supposition that the menisci are important 
for shock absorption. From the recorded signals it was concluded that 
the accelerations have a major frequency component in the range of 
25*35 Hz. They also remark (without specification) that the measured 
signals reveal changes in the frequency components. Whether this is 
due to non-linearitiea cannot be examined as a change of the frequen
cy contents of the accelerations can also be caused by a change of 
the frequency contents of the load exerted on the foot. Using a 3*D 
force platform these loads can be measured (Antonaaon and Mann 1985, 
Dickinson et al. 1985). A curve for the vertical reaction force on 
the foot during walking is depicted in Fig. 2.3.2, resulting in the 
indication that for this activity the relevant frequency range is 
limited to 100 Hz. It must be emphasized that the shape of the force 
pattern is sensitive to parameters as walking speed, the kind of 
walking surface, the type of shoes worn during experiments and the 
individual walking style. 
Loads acting on the knee joint due to muscular activity cannot be 
measured directly. The importance of these loads is indicated, 
however, by results obtained by Markolf et al. (1978), who observed a 
clear increase of whole joint stiffness in vivo under muscle contrac
tion (up to 400\). Whether this increase !a due to changes in the 
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load dependent stiffness properties of joint elements or to an 
increase of the stiffness of the muscle tendons cannot be assured. 
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Time and frequency domain representation for the 
vertical reaction force measured under the foot 
during the stance phase. A denotes heel strike. 
The picture on the right gives the amplitude of 
the fouriertransform of the picture on the left 
expressed as the percentage of the maximum 
amplitude (Antonsson and Mann 1985). 

In a number of experiments the dynamic behaviour of the leg under 
mechanically exerted dynamic loads is studied and described quantita
tively by means of a one-degree-of-freedom linear mass-spring-damper 
system. Crowninshield et al. (1976b) and Pope et al. (1976) applied 
small sinusoidal loads to the foot and uaed measured data to calcu
late the relationship between the exerted load and the velocity of 
the foot in the frequency range of 0 to 10 Hz. The resulting stiff
ness and damping coefficients for ad-abduction and exo-endorotation 
depend on the static knee joint flexion angle and static medio-late
ral displacements of the foot, thus indicating non-linear dynamic 
behaviour. Resonance frequencies found are typically in the range of 
2 to 7 Hz. A similar strategy was employed by Moffat et al. (1969) to 
study forced flexion-extension movements. Again influence on the 
stiffness and damping coefficients by the static knee joint flexion 
angle was observed. Also an increase of voluntary muscle contraction 
showed to increase the stiffness and damping coefficients found. 

2.3.4 Post-mortem experimental results 

Various post-mortem experimental studies are reported in literature, 
describing aspects of the behaviour of the knee joint under static or 
dynamic loads. Usually these experiments are meant to determine the 
mechanical behaviour of the knee joint as a whole or to determine the 
influence of certain anatomical structures upon this behaviour. 
Static experiments generally lead to a non-linear relation between an 
applied load and a resulting relevant kinematic parameter, e.g. a 
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relation between an exo-endo rotation torque applied to the tibia and 
the resulting exo-endo rotation of the tibia (Fig. 2.3.3). 

Fig. 2.3.3 
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Relation between the exo-endo torque and the exo
endo rotation of the tibia for two flexion angles 
of the joint and an axial load of 0 and 925 R 
(Markolf et al. 1981). 

Apart from biological variability, the results obtained are also 
influenced by exerted loads as well as joint movements in other 
directions. As a consequence the full 3-D static behaviour of the 
joint can only be described by a set of non-linear equations relating 
applied loads and measured kinematical parameters. No experimental 
procedure has been applied so far to determine this relationship 
completely, which is not surprising in view of the experimental 
difficulties involved. 

Some post-mortem experimental studies deal with the behaviour of the 
knee joint under dynamic loads. Radin and Paul (1971) state that the 
subchondral bone is an important structural component for shock 
absorption in the knee joint, whereas articular cartilage and the 
menisci are less important in this context. This last phenomenon is 
also reported by Chu et al. (1986), who found an increase of about 
20\ in the accelerations measured on the tibia under impulsive load
ing after removal of the menisci and abrasion of the articular carti
lage. 

2.4 Hecbanical modellins of the human knee joint 

A number of mechanical models described in literature are employed to 
analyse aspects of the mechanical behaviour of the knee joint. Mathe
matical models that describe the knee joint as an isolated mechanical 
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system are found in different degrees of complexity. Crowninshield et 
al. (1976a) developed a purely kinematic model to calculate ligament 
length patterns during motion of the femur relative to the tibia, 
which subsequently were used to determine the contribution of the 
li&aments to the stiffness properties of the joint. Simplifications 
in modelling can lead to statically determinate models, which can be 
used to calculate forces in joint structures and/or contact forces 
using the equilibrium equations only (Johnson et al. 1981, Morrison 
1968, Wongchaisuwat et al. 1984). To obtain kinematical parameters, 
contact forces and ligament forces for a given external load, stati
cally indeterminate models are employed (Andriachi et al. 1983, 
Koeinxadeh et al. 1983, Wismans et al. 1980). These models include a 
description of the articular surfaces and constitutive relationships 
for non-linear elastic springs representing ligamentous structures 
which are either measured or suitably chosen. 

A number of mathematical models have been developed to describe the 
behaviour of the leg as a whole. Generally, in these models the knee 
joint is reduced to a simple connection between the tibia and the 
femur. Morrison (1968) used a hinge element to model the knee joint, 
although he included forces arising from ligamentous structures. In 
combination with the use of hinge elements for the ankle and the hip 
joint, assumed activity of a number of muscles (based on measured EHG 
signals), measured kinematical data and ground reaction forces 
Morrison arrived at a statically determinate set of equations for 
muscle forces, joint reaction forces and forces in ligamentous struc
tures. For normal walking this resulted in a maximum compressive 
contact force on the tibial-femoral joint of about 4 times body 
weight. 

Using a similar simplification of the joints in the leg, but includ
ing a large number of muscles, Seireg and Arvikar (1975) formulated 
an indeterminate set of equations for muscle forces and joint reac
tion forces, which vas solved by minimizing a weighted sum of the 
forces in the model. From this approach it followed that for normal 
walking the maximum compressive force working on the knee joint is 
about 7 times body weight. 

2.5 summary' 

In this chapter the anatomy and some elementary aspects of the 
mechanical behaviour of the human knee joint have been discussed. 
From literature data it can be concluded that little knowledge is 
available on the dynamic force transmission through the joint, 
neither from experiments nor from experimentally verified mathemati
cal models. Considering the basic joint structures, the bony parts 
(considered as a continuous structure) are best known with respect to 
their mechanical properties, but these are largely unknown for the 
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soft tissues. This especially applies for 2- and 3-dimensional load
ing configurations as both experimental techniques and a theoretical 
framework to analyse the mechanical behaviour of the soft tissues are 
not developed yet, although 2-dimenaional strain field analysis for 
soft tissues comes within reach by developments in the field of 
digital image processing (Peters 1987). The poor knowledge with 
respect to the mechanical properties of the joint elements is also 
reflected in the available mathematical models as the bony parts are 
generally modelled as rigid bodies, whereas soft tissues are usually 
represented as elastic, uni-axial force transmitting elements. 
The dynamic force transmission through the joint has gained some 
attention, resulting in the indication that the joint may act as a 
non-linear shock-absorber or damping-element between the upper- and 
lower leg. However, it is neither experimentally nor theoretically 
investigated in detail how these characteristics are influenced by 
the external loads acting on the joint, the kinematical behaviour of 
the joint and the presence and mechanical properties of individual 
joint elements. 
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Chapter 3 Experimental strategy 

From chapter 2 it was concluded that in literature only little data 
is available on the dynamic force transmission through the human 
knee joint. Therefore it was decided to start an explorative experi
mental investigation into the mechanical characteristics of the knee 
joint under dynamic loading. In this chapter an overview is given of 
the experimental strategy applied. In section 3.1 the methodology 
handled for the experiments is discussed. In section 3.2 some guide
lines for the development of an experimental set-up are derived from 
the methodology discussed in section 3.1, resulting in a basic exper
imental set-up. Section 3.3 deals with a simple dynamic model of the 
knee joint to elucidate the experimental approach and to indicate 
which mechanical parameters should be measured to assess the basic 
dynamic characteristics of the joint. Section 3.4 deals with measure
ment methods applied to obtain analog signals used to quantify the 
dynamic behaviour of the joint. Finally in section 3. 5 a data-acqui
sition system is discussed that allows for digitization of the analog 
signals. 

3.1 MethodoloSY 

Because of the limited amount of experimental data and validated 
models for the dynamic behaviour of the human knee joint it was felt 
that an attempt had to be made to gain more insight into the behav
iour of the joint by means of experiments. From a methodological and 
practical point of view a combined experimental-theoretical approach 
is favourable, as insights gained from experiments may lead to 
refinements in the initial theoretical model, possibly resulting in 
guidelines for further experiments. This iterative process will 
ultimately yield an experimentally validated numerical model. In the 
present study an initial structural theoretical model is not provid
ed. Besides little information on the dynamic behaviour of the joint 
was found in literature which can be used as a guideline for develop
ment of an experimental method to study the behaviour of the joint. 
This causes the need for an experimental approach that is as general 
as possible in order to be able to fulfill demands imposed by a 
theoretical model developed at a later stage. To avoid a waste of 
efforts the experimental set-up must be suitable for a number of 
experiments requiring only minor modifications, irrespective of an 
initially chosen experimental method to quantify the dynamic behav
iour of the joint. 
Bearing in mind these considerations it was decided to start an 
explorative experimental investigation into the mechanical character
istics of the human knee joint under dynamic loading. It should be 
recognized that in general the dynamic behaviour of the joint must be 
described by means of relationships between: 
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* loads exerted on the joint (loads due to muscular activity, 
loads transmitted by the femur and the tibia and loads due to 
gravitational effects); 

* the 3-dimensional position and orientation of the tibia 
relative to the femur; 

* deformations of and stress distributions in the joint ele
ments which are related by their individual constitutive 
behaviour. 

All these quantities will in general be time-dependent and inter
acting non-linearly. In an explorative experimental investigation the 
dynamic behaviour described above is much too complicated to deal 
with due to a lack of experimental techniques to quantify all parame
ters and quantities governing the relationships mentioned. Therefore 
some restrictions will have to be made. 

In post-mortem experiments a choice must be made for loads applied to 
the knee joint specimen. Of course it is advisable to apply loads 
encountered in vivo, but these loads are only known to a limited 
extent. Global information is available for joint loads (e.g. during 
walking) but detailed information on intensity, duration and the 
frequency contents of these loads is not available. In striving at 
the realization of physiological loads, dynamic loads exerted by 
muscles should also be taken into account, which is impossible in 
post-mortem experiments. This lack of knowledge of physiological 
loads is a major disadvantage in such experiments. However, part of 
this disadvantage can be relieved because of the possibilities to 
vary magnitude, direction and shape of the applied loads in a range 
marked by data found in literature for in vivo joint loads. The 
experimental results obtained can be used for formulation and valida
tion of a numerical model describing the dynamic behaviour of the 
joint, which then can be verified using data from in vivo experi
ments. 
From this point of view the necessity for application of physiologi
cal loads vanishes, and loads applied to the knee joint can be chosen 
such that the development of experimental techniques for quantifica
tion of its dynamic behaviour can be given prime attention. Further
more, the applied loads can be chosen such that the experimental 
results can be compressed in a manageable number of parameters. The 
need for such a choice arises from the expectation that the joint 
behaves as a non-linear system with load- and time-dependent stiff
ness and damping characteristics. Applying loads such that, apart 
from physical non-linearities, also geometrical non-linearities are 
involved due to large changes in position and orientation of the 
tibia relative to the femur, will considerably increase the difficul
ties in finding parameters describing the dynamic behaviour. 
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From these considerations it was concluded that a local linearization 
technique (U.T) may yield an appropriate experimental procedure. The 
LLT basically consists of two steps. The first step involves the 
creation of a stable, static equilibrium position of the joint by 
means of a static load ezerted on the joint. To include one important 
effect of muscular activity this static load can also be used to 
generate a compressive pre-load, which may have considerable effect 
on the transmission of dynamic forces through the joint. The second 
step in the U.T is the application of dynamic loads such that only 
relatively small changes in the joint configuration will occur. It is 
assumed that these changes are small enough to obtain a dynamic 
behaviour that corresponds to the behaviour of a linear system with 
constant mass, damping and stiffness characteristics. These charac
teristics may depend on the static equilibrium position and the 
static load ezerted, but it is essential that they are constant for a 
certain range of thlfl magnitude of the applied dynamic loads. which 
must be determined ezperimentally. 

This approach is attractive because an ezperimental tool is available 
for the analysis of linear systems, yielding a limited number of 
parameters for a full description of their dynamic behaviour. 
This so-called modal analysis technique results in a number of vibra
tion modes and corresponding stiffness and damping values, which can 
be determined by a system identification technique either in the 
frequency- or the time-domain (Bendat and Piersol 1980, Ratke 1983). 
As these modal parameters can also be determined for a given numeri
cal model of the joint, they provide an easy means for quantification 
of the ezperimental results and validation of the numerical model. 
These modal parameters may also be used to formulate a numerical 
model of the joint as they give an insight into its essential static 
and dynamic characteristics. The experimental procedure described 
above must be carried out for a number of static load levels and 
different static equilibria of the joint to investigate the influence 
of these parameters. 

It must be realized that this approach may fail for two reasons. 
First it is possible that the behaviour of the joint is essentially 
non-linear such that non-linearities arising from non-linear damping 
or non-linear static load-displacement characteristics cannot be 
linearized. On forehand this is not ezpected to occur as the friction 
in the knee joint is found to be very small (section. 2.2.4) and as a 
LLT has been applied by Crowninshield et al. (1976b), Hoffat et al. 
(1969) and Pope et al. (1976) to describe joint behaviour without 
giving indicationa for possible failure. Also a similar procedure has 
suecesfully been applied by van Heck (1984) to determine the strongly 
non-linear stiffness and damping characteristics of the contact zone 
found between slideways of machine-tools. Secondly, generally handled 
measurement techniques provide a threshold for the minimal magnitude 
of dynamic loads to be applied as below this threshold the signal-to
noise ratio considerably decreases. This finite measurement accuracy 
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may make it impossible to apply the small dynamic loads required to 
allow for the local linearization. Because of the lack of knowledge 
of the dynamic behaviour of the joint, at this juncture it is not 
possible to judge whether these disturbing factors will play a role. 
Consequently it is decided to start with the ezperlmantal procedure 
described above bearing in mind the possible reasons for failure 
mentioned. 

Under the assumption that the LL! provides a means to quantify the 
dynamic behaviour of the intact joint, the next step in the experi
mental strategy can be considered. !he experimental results obtained 
for the intact joint will depend on the loads exerted, the 3-D static 
equilibrium position and on the role of the different joint elements. 
!o obtain an indication of their mechanical function from experi
ments, an experlmantal tool must be found to clarl£y their contribu
tion to the whole joint eynamic behaviour. It is clear that, in the 
ideal case, their role sh~dld be determined by direct measurement of 
the deformations and stress-distributions in the individual joint 
elements, which generally will be of a 3-D nature. If possible at 
all, measurement of these quantities requires complbx experimental 
techniques. As a consequence another method will be employed that is 
expected to give indirect measures for the mechanical function of the 
different joint elements. !he basic idea is that if the joint ele
ments play a role, deliberate damaging of a particular joint element 
in situ must have effect on the dynamic behaviour of the joint as a 
whole as vas indicated in section 2.3. !his effect will result in 
changes in vibration modes and stiffness and damping characteristics 
and thus can be quantified. 

!o elucidate the use of the modal analysis technique in section 3.3 a 
simple, black box, dynamic model of the knee joint is discussed. 
Before doing so some aspects are considered in section 3.2 that allow 
for a simplification of a general model of the joint. 

3.2 Experimental aet-yp 

In thia section a basic experimental set-up will be discussed which 
was developed to do experiments on knee joint speclmans according to 
the methodology discussed in section 3.1. 

3.2.1 Practical considerations 

!he methodology discussed in section 3.1 needs to be considered on 
some important points to obtain guidelines for development of an 
experimental set-up. First a choice IIIUSt be made for a method to 
apply the static load and an indication must be given for the magni
tude and direction of the static load to be applied to the knee joint 
specimen. Secondly the frequency range of interest used for analysis 
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of the dynaaic behaviour of the joint muat be specified, as this 
t.poses demanda on the dynamic behaviour of the expertaental set-up. 

In general some m.echanical device must be attached to the joint to 
exert the static load. In selecting a device tvo boundary conditions 
need to be taken into account: 

* it muat be possible to apply the static load independently of 
the magnitude, direction end shape of the dynamic load; 

* the device used may not impose any constraints on the dynamic 
behaviour of the joint. 

The first condition arises from the consideration that it mnst follow 
from experiments vhicb type of dynamic load is preferable to study 
the dynamic behaviout: rJf the joint. Application of random, sinusoi
dal, step- or im.puls-lil:e dynaaic loads generally will require the 
use of different excitation techniques. For exaeple, random or sinu
soidal loads can be ex&rted by an electromechanical or hydraulical 
excitator, but these devices are not well suited to exert step- or 
1mpuls-like loads, althoush both can be used to exert static loads. 
Use of a different apparatus to apply the dynamic load, therefore 
also may result in the necessity to select a different method to 
apply the static load. Thus it seems not sensible to select a device 
that generates both the static and the dynamic load. The second 
condition is obvious, because imposing constraints will yield an 
artificial dynamic behaviour (e.g. due to a limitation of the number 
of degrees of freedom of the specimen imposed by the dynamic charac
teristics of the load generating device), 
To realize a simple solution for a static load generating device it 
is assumed that a stable static equilibrium position of the joint can 
be created by exerting static forces via a limited number of tendi
nous mnscle attachments on the joint. This assumption follows from 
the observation that in vivo muscle forces play an important role in 
maintaining a stable equilibrium position of the joint. 
At this point it must be emphasized that the method discussed to 
apply the static load is not an attempt to simulate mnscle forces. It 
is merely a technical solution to be able to control the static 
equilibrium position of the joint, in which use is made of some 
elementary biomechanical considerations to assure stability of the 
static equilibrium position. 
When selecting muscle tendons to carry the static load, also the 
necessity for clamping the knee joint specimen at a particular point 
must be considered. Clamping the joint at its femoral or tibial side 
is allowed as only the relative motion of the femnr and the tibia is 
important for the dynamic behaviour of the joint. When the upper part 
of the tibia is clamped, only those muscle tendons that have a con
nection to the femnr can be selected. The insertions of the mnsculus 
gastrocnemius mey be used, but other tendons are not available. 
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Regarding their location with respect to the joint, it is not realis
tic to expect that a stable equilibrium position of the joint can be 
created by exerting static forces via these muscle tendons only. 
Clamping the lower part of the femur seems a better solution, as a 
number of muscle tendons attach to the upper part of the tibia. For a 
start the tendons of the musculus rectus femoris, the musculus biceps 
femoris and the musculus semitendinosus are selected and will be 
loaded with static forces 1r• 1b and 1s, respectively (Fig. 3.2.1). 

Fig. 3.2.1 Forces 1r, 1b and 1s acting on the musculus 
rectus femoris, musculus biceps femoris and 
musculus semitendinosus to create a stable static 
equilibrium position. 

As these static loads will be used to control the static equilibrium 
position of the joint as well as to exert a static compressive pre
load, the direction of the forces 1r• 1b and 1s and their magnitude 
are important parameters. It is assumed that the direction of these 
forces can be chosen to be approximately parallel to the longitudinal 
axis of the femur, irrespective of the static equilibrium position of 
the joint. This assumption is derived from the observation that in 
vivo the muscle tendons show a similar orientation with respect to 
the joint. To obtain an indication for the maximal static load to be 
carried by the individual muscle tendons, values for the compressive 
static load working on the femur given in literature are considered. 
From the biomechanical models discussed in chapter 2 it follows that 
this load depends on the position and orientation of the tibia rela
tive to the femur and on the specific activity being analysed 
(walking, running, jumping etc.). The maximal values reported vary 
from 4 to 8 times bodyweight, which yields an averaged maximal com
pressive load of about 4500 N. This load cannot directly be translat
ed into loads acting on the muscle tendons due to a possible load 
bearing function of the ligamentous structures and menisci e.g .. 
However, a rough measure can be found if it is assumed that the 
compressive load is equal to the sum of the loads carried by the 
muscle tendons. This results in a maximal load of approximately ! 
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1500 R to be carried by each muscle tendon. Whether the individual 
muscle tendons can carry this load must be established in experi
ments. 

As to the frequency range within which the dynamic behaviour of the 
joint has to be analysed, use must be made of data available in 
literature as discussed in chapter 2. Using the data given by 
Voloshin and Wosk (1983), Wosk and Voloshin (1981) and Antonsson and 
Mann (1985), an upper relevant frequency of 100Hz can be assumed. 
This upper frequency limit is important for several experimental 
aspects: 

* first it imposes requirements on the dynamic behaviour of the 
experimental set-up. As the knee joint and the experimental 
set-up are couplsd mechanical systems, the dynamic behaviour 
of the exper~ental set-up may not result in disturbing 
components in the signals measured to quantify the dynamic 
behaviour of the joint. In general this requires an experi
mental set-up that has sufficiently low or high resonance 
frequencies such that it can be considered to be rigid in the 
frequency range of interest. This aspect will be analysed 
further in chapter 4 as the dynamic behaviour of the experi
mental set-up must be compared to the measured dynamic behav
iour of the knee joint to assure that the experimental set-up 
does not play a disturbing role; 

* secondly the upper frequency limit imposes demands on the 
selected transducers. They must have a dynamic behaviour that 
does not result in disturbing components in the signals 
measured (section 3.4); 

* finally the upper frequency limit must be taken into account 
when selecting a data-acquisition system for digitization of 
the analog signals (section 3.5). 

Also the lower frequency limit must be taken into consideration as 
this limit is also of importance for the selection of transducers. 
For example, if the lower frequency limit would turn out to be less 
than 5 Hz, use of piezo-electric transducers is prohibited as charge
leakage will result in poor measurement accuracy. At this juncture 
the lower frequency limit is unknown and consequently must be deter
mined by experiments. 

3.2.2 Basic experimental set-up 

Given the guidelines discussed in the previous section, a basic 
experimental set-up was assembled (Fig. 3.2.2). A rectangular con
crete block A with a steel plate (B) rigidly attached to its upper 
plane constitutes the basis of this set-up. A rectangular steel block 
(C) is welded on the steel plate at one of its short sides and a 
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grate (H) with 8 vertical slots at the other. A clamping flange (E) 
is mounted on a 3-D piezo-electric force platform (G) and this unit 
is attached to block C (Fig. 3.2.3). The purpose of the force plat
form (G) will be elucidated in sections 3.3 and 3.4. 

Fig. 3 . 2.2 

Fig. 3.2 . 3 

Foundation of the experimental set-up (see text). 

A knee joint specimen clamped at the femur (see 
text). 

The combined mass of the set-up discussed so far is approximately 
3500 kg . To avoid disturbance by environmental vibrations the set-up 
is mounted on an isolated floor. This type of foundation is required 
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to assure that resonance phenomena do not disturb the signals mea
sured to study the behaviour of the knee joint specimen. The stiff
ness of the foundation is typicallJ 1011 N/m whereas the force plat
form has a typical stiffness of 10 N/m . As will be illustrated in 
chapter 4 these values are well above the stiffness of the knee joint 
specimen (typically 105 N/m) . A detailed description of the joint 
specimen is given in chapter 4. 
The proximal part of the femur (D) is - with use of a rapidly curing 
polymer (Fastacryl) - fixed in a stainless steel cylinder (F) and 
subsequently mounted into the clamping flange (E). Static forces on 
the musc.le tendons are generated with the use of bracing vires (Fig. 
3.2.4). 

Fig. 3 . 2.4 A muscle tendon a clamped in the tendon clamp H, 
b is the bracing wire connected to clamp H. 

The reasons for this are as follows: 

* use of bracing vires with sufficiently low longitudinal 
stiffness assures the dynamic behaviour of the load generat
ing device to be of little influence on the dynamic behaviour 
of the joint, as in this case no artificial stiffness and 
damping are introduced. Furthermore, the bending and torsion
al stiffness can be neglected compared to the longitudinal 
stiffness; 

* if the stiffness characteristics of the vires should not be 
negligibly small compared to the 3-D stiffness characteris
tics of the joint, they can relatively easily be taken into 
account in a numerical model and hence their influence can be 
incorporated. 

As the stiffness characteristics of the joint are unknown at this 
stage, the bracing vires are initially chosen to have the following 
properties : diameter 1.0 mm,length 1.5 m, elastic modulus 210 GPa and 
yield strength 2 GPa, which yields a longitudinal stiffness k1 of 
approximately 110 Njmm. It is assumed that this stiffness value is 
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sufficiently low, to keep fluctuations in the static load transmitted 
by the wires as small as possible during dynamic loading of the 
joint. 
The bracing wires are attached to the muscle tendons by means of 
self-tightening aluminium clamps (H). Each clamp has a mass of 0.026 
kg and is capable of transmitting loads up to 1500 N. The mass of the 
clamps was minimized to obtain a sufficiently high resonance frequen
cy fr for longitudinal vibrations of the mass-spring system formed by 
the clamp and the bracing wire. The values for the stiffness of the 
bracing wire and the mass of the clamp given above yield a value for 
fr of approximately 229 Hz, which is well beyond the upper frequency 
limit of 100 Hz for analysis of the dynamic behaviour of the joint. 
The bracing wires pass through holes in the clamping flange (E), 
force platform (G) and block C and are connected to a stud-and-nut 
combination (N), placed in one of the slots of grate (H) (Fig. 
3.2.5). 

Fig. 3.2.5 The location of the stud-and-nut combinations N 
in the slots of grate H, b is a bracing wire 
connected to such a stud-and-nut combination. 

The magnitude of the tensile force in the wire is adjusted by turning 
the nut. The direction of the tensile force on a particular muscle 
tendon can be changed within certain limits by changing the place on 
grate H of the corresponding stud-and-nut combination. These changes, 
however, have only little influence on the direction of the wire due 
to its length and are primarily meant to avoid contact between the 
wire and its surroundings, as this contact may disturb the force 
transmission through the wire due to friction. 
The distal part of the tibia is - identical to the proximal part of 
the femur- fixed in a stainless steel cylinder (P). The distal part 
of the fibula is tightly secured to this cylinder using a steel 
strip, as otherwise the connection between the tibia and the fibula 
fails for the magnitude of the force on the tendon of'musculus biceps 
femoris applied in the experiments. The cylinder P is also meant to 
provide a fixed location to apply the dynamic load to the tibia. 
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Finally, two sprinklers (Q) are mounted on top of block C to allow 
of a continuous moistening of the knee joint specimen with Ringer's 
solution. 

3.3 A non-linear black box model of the knee joipt 

The experimental approach discussed in the previous sections can be 
elucidated by means of a simplified, black box, model of the knee 
joint. Especially the use of the LLT and modal analysis for quantifi
cation of the dynamic behaviour of the knee joint specimen in the 
experimental set-up will be illustrated. Of course this model only 
applies if the LLT is valid and will yield a set of coupled linear 
differential equations. The nature of the model is essentially deter
mined by some assumptions concerning the loads exerted on the tibia 
and the femur by the remainder of the joint structures. The resulting 
equations can readily be used to consider some practical consequences 
for the application of modal analysis. Another purpose of the model 
is to indicate which parameters are to be measured to quantify the 
basic dynamic behaviour of the knee joint specimen. 
Subsequent paragraphs in this section are devoted to 

* a descriptive model for the dynamic behaviour of the knee 
joint expressed in parameters to be measured on the tibia 

* a relation between the loads exerted on the tibia, the loads 
transmitted to the femur and the kinematics of the tibia. 

3.3.1 A descriptive model for the dynamic behaviour of the tibial 
component 

To formulate a simple model describing the (expected) behaviour of 
the knee joint in the experimental set-up discussed in section 3.2, 
the configuration given in Fig. 3.3.1 is considered. 
It is assumed that the tibia and the femur behave as rigid bodies, 
while the latter is clamped. In the model the knee joint is seen as a 
massless connection and a tibial and femoral component. This connec
tion represents the remainder of the joint structures (ligamenta, 
menisci, articular cartilage etc,). Due to its presence loads will be 
exerted on the tibia and femur, non-linearly depending on the posi
tion and orientation of the tibia relative to the femur. In general 
these internal loads of the joint~are given by the constitutive 
relation of the connection and are denoted with a vector column lJ • 
[ tj •j ) which contains the force tj and the moment •j with respect 

to a certain reference point on the tibia. The moment .j will consist 
of external moments (torques) and a internal moments due to forces 
exerted by the connection with a finite leverarm with respect to the 
chosen reference point. This constitutive relation can formally be 
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written as Ij • IjC!. t) with! as 6*1 matrix containing the 6 mutu
ally indepenaent kinematic parameters describing the kinematics of 
the tibia with respect to a reference coordinate system (translations 
and rotations). Using a massless connection seems allowed as the mass 
of the ligaments, menisci etc. can be neglected in comparison with 
the mass of the tibia. 

Fig. 3.3.1 

y:Qq 
tibial massless femoral 

component connection component 

The prime elements for the dynamic model of the 
knee joint and the vectors used to describe the 
kinematics of the tibial component (see text). 

In the model external loads can be exerted on the tibia. The presence 
of the bracing vires is taken into account by the assumption that 
the static load exerted on the vires results in a static load exerted 
on the tibia. Besides a dynamic external load can be applied to the 
tibia, which does not influence the static equilibrium posi-
tion, however. 
In the sequel the relations describing the dynamic behaviour of the 
tibia will be formulated and elaborated in case only small deflec
tions from a static equilibrium position occur. 

To describe the kinematics of the tibia two body fixed vector bases 
are introduced as depicted in appendix A. The position and orienta
tion of the tibia with respect to the femur can then be described by 
means of the translation vector 1 and the proper orthogonal rotation 
tensor ll. 
The equations of motion for the tibia are given by the Newton-Euler 
laws 

(3.3.1) 

(3.3.2) 
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Here 1T is the resultant force and ~ the resultant moment with 
respect to OT working on the tibia, whereas p and a are the absolute 
momentum and angular momentum of the tibia with respect to o,. It 
should be noted that relation (3.3.2) represents the equilibrium of 
momenta working on the tibia with respect to point ~· As OT in 
general does not coincide with the center of gravity Z of the tibia 
the second term on the right-hand aide of equation (3.3.2) must be 
included. The reason for this formulation will be made clear later. 
As it is assumed that the LLT applies, initially a static equilibrium 
position is provided characterized by the kinematical parameters 4

0 
and 1.0 • 

To elaborate relations (3.3.1) and (3.3.2) first the momentum vectors 
p and a are considered. In general these can be written as 

. ... ... 
P- 111.r Yz (3.3.3) 

(3.3.4) 

... Yz is the momentary position vector with respect to OF of the center 
of gravity Z of the tibia with reference position vector ~z with 
respect to OT. m.r Is the mass of the tibia and JT the momentary 
symmetric inertia tensor of the tibia with respect to OT. ~ Is the 
axial vector of the skew-symmetric tensor l.ac, which describes the 
angular velocity of the tibia with respect to the femur. As the 
momentary position vector Yp with respect to o1 of an arbitrary point 
P on the tibia with reference position vector ~ with respect to OT 
is given by 

(3.3.5) 

it holds 

(3.3.6) 

(3.3.7) 

In case of small deflections from an initial equilibrium position 
relations (3.3.3) and (3.3.4) can be linearized. In this case a can 
be written as 

(3.3.8) 

From the orthogonality condition ll•llc - I it follows 

(3.3.9) 
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Neglecting the quadratic term dR•dRc in relation (3.3.9) and using 
the identity R0·R~ - I one can readily verify that the tensor dR•R~ 
is skew-symmetric and therefore has an axial vector ; such that 

In this case the axial vector ~ of the tensor l•Rc satisfies 

. 
-+ -+ 
w "' If 

(3.3.10) 

(3.3.11) 

The vector ; characterizes the small changes in the relative orienta
tion of the tibia and the femur. The translation vector • will also 
be subjected to small changes, denoted with c so that 

-+ -+ -+ 
a - a 0 + c 

. . 
-+ -+ a- c 

(3.3.12) 

(3.3.13) 

Vith relations (3.3.6) through (3.3.13) relations (3.3.3) and (3.3.4) 
can be linearized, neglecting non-linear terms containing ;, c and 
their first time derivatives. This yields 

(3.3.14) 

(3.3.15) 

with 

x_ •• - (R .~ >.; -tJ 0 p for all • and p (3.3.16) 

and JTo representing the symmetric inertia tensor of the tibia with 
respect to OT in the static equilibrium position. 

The linearization applied also results in a neglection of the term 

DT jz*i i? rela~ion (3.3.2), as this term only contains non-linear 

terms in c and*· 

To obtain the resultant force 1T and moment ~· loads are introduced 
as schematically given in Fig. 3.3.2. 
The static forces exerted on the bracing wires will result in a 
static force two and a statie moment ~0 with respect to OT (which 
may consist of both external and internal moments). 
A dynamic external load is applied at point E of the tibia with 
reference position vector ~e with respect to o1. It is assumed that 
this load consists of a force 1e and a torque te• resulting in a 
moment ~e with respect to OT acting on the tibia 

(3.3.17) 



Fig. 3.3.2 
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component 

Loads working on the tibial component of the knee 
joint (see text). 

Linearization of relation (3.3.17) yields 

(3.3.18) 

where it is assumed that no static force or torque is exerted in 
point E to create the static equilibrium position. In this lineariza
tion process also terms containing products of le and ; are neglected 
because these terms would result in follower moments and consequently 
to a non-linear model. 

To account for the force lj and moment .j with respect to OT due to 
the massless connection, representing joint elements as ligamentous 
structures, menisci etc., a rigorous assumption is made. It is as
sumed that its presence results in a static force ljo and moment •jo 
with respect to OT and a contribution which depends linearly on the 
changes in the position and orientation of the tibia with respect to 
the femur and their first time derivatives 

(3.3.19) 

(3.3.20) 

K1 through K4 and B1 through B4 can be seen to represent stiffness 
and damping properties respectively. These tensors are not necessari
ly symmetric, but they are independent of time. Also they generally 
will depend on the static equilibrium position and the static force 
lwo and moment -.

0
• In relations (3.3.19) and (3.3.20) inertial 

effects have been neglected which seems valid due to the low mass of 
the joint elements compared to the mass of the tibia. Consequently 
relations (3.3.19) and (3.3.20) may be thought of as the resultant 
force and moment obtained from a massless connection between tibia 
and femur, which may be modelled as a 3-D spring-damper system or by 
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means of a Finite Element model. In the sequel it is assumed that no 
limitation of the number of degrees of freedom of the tibia arises 
from the presence of the joint elements mentioned. This is not essen
tial for coming considerations as a reduced number of degrees of 
freedom can always be taken into account by a suitable transformation 
between dependent and independent kinematic parameters. 

With the use of the loads introduced above, the equations of motion 
for the tibia can now be written as 

(3.3.21) 

(3.3.22) 

To satisfy the static equilibrium the following relations must hold 

(3.3.23) 

.... -+ -+ 
•jo + m,o • 0 (3.3.24) 

After substitution of relations (3.3.23) and (3.3.24) relations 
(3.3.21) and (3.3.22) can be written as a set of 6 coupled linear 
second-order differential equations: 

- . 
-+ -+ -+ Xe (3.3.25) M•» + B•» + K•» - G• - - - -

where the following tensor matrices and vector columns have been 
introduced 

JD.ri -mrz Bl B2 Kl K2 
M• ;B • ;K • 

mrz JTo B3 B4 K3 K4 

I 0 
.... 

te c 
-+ 

le-G• ;y - and (3.3.26) 

xe I -+ .... 
11' te 

Relation ( 3.3.25) gives 6 second-order vector differential equations 
for the unknown components of the column ! in case of a given exter
nal load Xe. However the damping and stiffness coefficients are not 
yet known and must be determined experimentally. A method to obtain 
these characteristics is given by application of modal analysis. To 
illustrate this, equation (3.3.25) is transformed into a matrix 
differential equation by representation of all vector- and tensor 
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quantities with respect to the inertial vector base i which is con
nected to the femur 

(3.3.27) 

1. 1. 1 and ~ are 6*6 scalar matrices, whereas » and le are 6*1 
scalar matrices. The matrices I and I will in general be non-symmet
ric, while 1 is symmetric. In appendix B it is shown that relation 
(3.3.27) can be solved for the Fourier transform »(f) of the column 
»• using the so-called transfer function matrix l(f) and the Fourier 
transform le(f) of the column le 

with 

!(f) - lt. ~ !(t) exp(-~ltl) exp(-2wjft) dt 
a->0 -00 

(3.3.28) 

(3.3.29) 

as the generalised Fourier transform of an arbitrary signal !(t), 
which must be handled to be able to deal with sinusoidal signals 
e.g •• 

The transfer function matrix l(f) can be written as a function of a 
set of modal parameters called poles sk and residues 6.tt (k-L .. 6) 
where each pole s1 and residue matrix 61 correspond to a particular 
vibration mode of the freely vibrating system. Of course the number 
of relevant vibration modes may be taken to be Ra S 6 as the number 
of vibration modes in the frequency interval of interest. 
At this point the choice for the location of OT may be considered. 
The derivation given above results in a set of residues which repre
sent the displacements of the tibia for a particular vibration mode 
with respect to OT. The location of OT influences the numerical 
values of these residues. However, if the residues are known for a 
certain location of OT the residues for another location of OT can 
easily be determined as the tibia is assumed to behave as a rigid 
body. In this case a simple coordinate transformation has to be 
applied to calculate the residues corresponding to the changed loca
tion of ~· This means that the location of OT can be chosen such 
that it is usefull for practical purposes. For example, OT can be 
chosen to coincide with point E. In this case the matrices Xe and Ge 
are reduced to a null- and identity-matrix, respectively, which 
yields a simplification of relation (3.3.28) (this conveniency will 
be used in section 3.3.2) 
The modal parameters are system parameters and do not depend upon the 
loads 1e or the displacements »• which must be verified by experi
ments, although they can be a function of the parameters describing 
the static equilibrium position. For an undercritically damped system 
it holds 
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B(f) (3.3.30) 

The poles sk can be written as a function of the dimensionless 
damping ek and the undamped resonance angular velocity wok 

(3.3.31) 

As for all relevant transfer function matrices introduced in this 
chapter, the characteristic shape of an element of such a matrix will 
be discussed in chapter 4. 

An essential problem is caused by the need of some form of numerical 
postprocessing to extract the relevant parameters from the measured 
signals s and le· Here two basic parameter estimation techniques are 
available, which will be denoted as a time-domain technique and a 
frequency-domain technique, respectively. 
First the time-domain technique will be considered. It is obvious 
that relation (3.3.28) can be transformed to the time-domain using an 
inverse Fourier transformation 

<I) 

S - [ i(t-r) 2 !e(r) dr (3.3.32) 

with B(t) as the inverse Fourier transform of the transfer tunction 
matrix i(f), commonly denoted as the impulse response matrix of the 
system. Using measured columns y and le• the components of the matrix 
B(t) can be obtained from a (non-linear) curve fit. For an arbitrary 
excitation le this yields a cumbersome procedure due to the need to 
evaluate the integral in relation (3.3.32). However, for certain 
types of signals relation (3.3.32) can be solved to obtain an explic
it (non-linear) expression for y as a function of time and the 
unknown parameters describing the matrix B(t). Impulse or sinusoidal 
excitation are examples of signals well suited for this purpose. 
However, such an approach was not taken into consideration as an 
efficient tool is available to determine the transfer function matrix 
B(f) directly. 

The frequency-domain technique considered uses relation (3.3.28) as a 
starting point. The transfer function matrix B(f) can be obtained 
from calculated Fourier transforms y(f) and !_(f). Subsequently a 
(non-linear) curve fit can be applied to extract the unknown system 
parameters describing the matrix i(f) (Mergeay 1980). To reduce the 
influence of measurement errors and errors due to non-linearity, 
usually the matrix B(f) is not determined from the Fourier transforms 
y(f) and le(f) but from estimates for the cross- and autopower 
spectra of the components of the column matrices y and 1e (Bendat and 
Piersol 1980). Spectral analysis has become increasingly important in 
engineering practice since developments in the field of computer 
technology and digital signal processing allow for an efficient 
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determination of these power spectra by means of the Fast Fourier 
Transform algorithm. In section 3.3.2 further attention will be paid 
to how for this case the transfer function matrix l(f) can be obtain
ed. 

3.3.2 Practical considerations 

Relation (3.3.28) shows that the components of y and le must be 
measured to determine the behaviour of the joint. In the sequel it 
will be shown that some simplification can be obtained by a proper 
design of the measurements. Such a strategy is generally applied when 
modal analysis is carried out and results in experiments in which 
only linear displacements and forces are measured, avoiding measure
ment of angular displacements and torques. 
Considering the components of the column i it is seen that these 
consist of the translation vector e and the rotation vector ;, As 
measurement of translations is easier accomplished than measurement 
of rotations, a method can be employed which avoids direct measure
ment of the latter (Angeles 1987, Padgaonkar et al. 1975). Under the 
assumption that the tibia behaves as a rigid body the linearized 
displacement vector of an arbitrary point P on the tibia is found 
from relation (3.3.5) 

(3.3.33) 

Using a uni-axial displacement transducer the component of 8yp along 
a line with momentary unit direction vector R·~ can be measured, 
resulting in a signal sp 

(3.3.34) 

Linearization of relation (3.3.34) yields 

sp • ~·R~·(e - xp•;) (3.3.35) 

Substitution of the identity 

-~·R~·xp·; • np·R~·(**(R0·~)) • (~~)·R~·; (3.3.36) 

in relation (3.3.35) yields 

(3.3.37) 

From relation (3.3.37) it follows that the signal sp results in one 
equation for the unknown vectors e and ;, As depicted in appendix C 
the vectors e and; can be determined from 6 such signals, measured 
on different points and in different directions. 
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Within the possibilities available it vas decided to use 6 piezo
electric accelerometers to measure 6 signals i 1 through s6 which for 
the linearized case considered are related to the vectors e and ~ by 

(3.3.38) 

A disadvantage of the piezo-electric accelerometers used is that 
vibrations below approximately S Hz can not be measured due to 
charge-leakage. As a consequence the relevant frequency range for the 
measurements must be starting above S Hz. In chapters 4 and S 1~ will• 
be shown that this condition is met for the experiments carried out. 
The derivation in appendix C can now identically be used to determine 

. ~ .; 
the vectors c and ~ from the 6 signals measured, provided a suitable 

~ ~ choice is made for the locations ~ and directions ~ of the acceler-
ometers. This results in the following relation derived in appendix C 

B.c.~ - .... 
0 6 sp~ 

A• :E 

B.c.~ 
p-1 

ip~..np 0 

(3.3.39) 

with 

........ 
~(~~) 6 ~~ 

A- :E 
p-1 

(~~)~ c *" )( .... ~) ~ p ~ 

(3.3.40) 

The choice for the locations ~ and directions ~ bas to be such that 
the tensor matrix A is regular. Moreover this choice bas to be made 

in such a way that the signals contain sufficient information to 
determine all relevant vibration modes. This can be achieved by a 
proper alignment of the transducers with respect to the spatial 
orientation of the vibration modes of the tibia. 

The kinematics of the tibia can now be described by means of the 

vectors~ and~ but also by means of the 6 s:gnals_ip. As relation 

(3.3.39) gives a linear set of equations fore and~. in general 
there exists a bijective linear relationship between these two 
descriptions, which can be expressed by 

B.
c .:> 
o""' 

(3.3.41) 
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with 

(3.3.42) 

and las a 6*2 vector matrix (see appendix C). So far it has been 
assumed that the displacements ! can be obtained from the measured 
accelerations. This can either be done using a numerical integration 
in the time-doaain or by integration in the frequency domain as the 
Fourier transform i(f) of the column i is given by 

(3.3.43) 

Hence it follows that integration in the frequency domain easily can 
be carried ont. 

Written in matrix representation with respect to vector base ! equa
tion (3.3.41) yields 

! - :l 1!6 1l (3.3.44) 

with 

... -1~ ~I (3.3.45) 

and :t: as the 6*6 non-singular matrix representation of l. The orthog
onal matrix 1o6 can be used to define a transfer function matrix 
JoCf), which is obtained if all vector and tensor quantities in 
relation (3.3.25) are represented with respect to vector base 1o 
Which is given by ~ - R0 •!T 

(3.3.46) 

The poles of the transfer function matrices Jo(f) and B(f) are iden
tical, but the residues ~ko and ~ are related by 

(3.3.47) 

The residue matrices ~ko represent vibration modes with respect to 
the static equilibrium position and therefore are usefull to visual
ize motions of the tibia and to compare vibrations of the tibia for 
different static equilibria as they represent displacements of the 
tibia with respect to a vector base attached to the tibia. This is 
easily verified by defining a column 1lo as 

(3.3.48) 

and substitution of relation (3.3.48) in relation (3.3.28) 

(3.3.49) 
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with ~ and ~0 as the matrix representations with respect to the 
vector base 1o of the tensor matrix G and the load vector Ie• respec-

tively. 
A further transfer function matrix ~(f) may be defined by 

(3.3.50) 

which relates the displacements 1 to the loads ~ 

£(f) - ~(f) ~(f) (3.3.51) 

with 

( -T 
~f) =l ~!eo (3.3.52) 

By the coordinate transformation with the non-orthogonal matrix t. 
the original degrees of freedom stored in the column ~ are replaced 
with the degrees of freedom stored in the column l• which is allowed 
as this means no loss of information due to the regularity of the 
matrix t. The residues ~k now can be interpreted as being related to 
the modal displacements of the tibia in the measurement direction of 
a particular transducer, located at a particular point of the tibia. 
It applies that 

(3.3.53) 

The load column !~ can easily be determined as 1 follows from the 
position and orientation of the accelerometers with respect to the 
tibia, ~ depends on the location where the external load acts on the 
tibia and leo must be determined by measurement of the external load 
applied. It is obvious that if ~(f) can be determined, the transfer 
function matrix B(f) can be determined according to relation (3.3.50) 
as the matrices 1 and lo are regular. 

component 

Fig. 3.3.3 Application of a force 1eo along a line with unit 
~ ~ direction vector neo• which coincides with ep in 

this configuration. 
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Now suppose that a force !eo· fe Deo is exerted on the tibia such 
that its unit direction Deo coincides with one of the coordinate axes 
of the vector base connected to the tibia (Fig. 3.3.3). 
In this case !eo (the column matrix representing the position of 
point E with respect to the vector base £> can be written as 

leo .. .\e Deo (3.3.54) 

where .\e determines the exact position of point E. It then holds that 

(3.3.55) 

!!a leo • leo (3.3.56) 

or 

(3.3.57) 

With the chosen location and orientation of the accelerometers 
(appendix C) it follows 

!-T - 1 0 0 0 -1/zs 0 (3;3.58) 
0 1 0 l/z5 0 0 
0 0 1 0 0 0 
0 0 0 0 1/zs 1115 
0 0 0 0 0 -1115 
0 0 0 -l/z5 0 0 

where y5 and z5 determine the location of the accelerometers with 
respect toOT (appendix C). Substitution of relation (3.3.58) into 
relation (3.3.57) yields a simple expression for !;(f) 

l;Cf) -
1

De2ol (3.3.59) 

Relation (3.3.59) in combination with relation (3.3.51) yields 

•<•> - u.<•> I :-· •.<•> (3.3.60) 

Relation (3.3.60) reveals that for an experiment in which Deo coin
cides with coordinate axis j (j•l,2 3) of the vector base connected 
to the tibia, a component si(f) (i•l,2,3,4,5,6) of the column matrix 
!(f) is given by 

(j-1,2,3) (3.3.61) 
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If this approach is applied, two points should be considered: 

* it must be assured that this excitation technique shows all 
relevant vibration modes in the frequency range of interest. 
As no torques are taken into consideration vibration modes, 
which only are excited when a torque is exerted, may not have 
a component in the signals measured and therefore may falsely 
be omitted. To verify that this does not occur additional 
experiments are necessary in which a force is exerted that 
does not coincide with one of the coordinate axes. For all 
experiments done on the knee joint specimens described in 
chapters 4 and 5, it turned out that such experiments yielded 
no additional resonance phenomena. 

* care must be taken that no torques or forces with a leverarm 
with respect to OT are exerted on the tibia as otherwise the 
description given above is not valid. This must be taken into 
consideration when selecting a method to apply the dynamic 
force. 

The calculation of the elements H~.ij(f) according to relation 
(3.3.61) can now efficiently be done by means of spectral analysis. 
As this computational process is essentially straightforward, it is 
not discussed in detail. In appendix D an overview is given of the 
essential steps involved, which results in the following expression 

si f (f) 
i e 

sf f (f) 
e e 

1 

4~r2f2 (j-1, 2. 3) (3.3.62) 

Here s8 f (f) is the cross power spectrum of the signals ii and f
8

, 
i e 

and Sf f (f) is the autopower spectrum of the dynamic force fe. These 
e e 

spectra are calculated, in an averaging process to reduce the influ-
ence of measurement errors and errors due to non-linearity, from the 
measured signals by means of a Discrete Fourier Transformation. The 
coherence function ~~.ij(f) (introduced in appendix D) is an impor
tant measure to judge wnether measurement errors or errors due to 
non-linearity play a significant role and is given by 

2 
si f (f) ss f (f) 

( f) i e i e 
~~.ij - s8 8 (f) sf f (f) 

i i e e 
(3.3.63) 

with Si i (f) as the autopower spectrum of the measured acceleration 
i 1 

ii. For an ideal measurement the coherence function is 1 in the 
frequency range of interest. If the coherence function deviates from 
1, measurement errors or errors due to non-linearity play a role 
although no distinction can be made between the influence of the 
separate error sources (of course it is assumed that the magnitude of 
the signals is well above the lower limit below which a particular 
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transducer fails to respond, as otherwise an additional error source 
is introduced). To be able to analyse the influence of non-linearity 
the magnitude of the dynamic force exerted on the tibia must be 
varied. If changes in this magnitude result in significant changes in 
the transfer functions found, non-linearity is likely to play a role. 
In this case the system considered cannot be seen as a linear system 
and application of transfer function analysis is questionable. It is 
hereby assumed that the frequency contents of the dynamic force fe is 
such that its autopover spectrum is not zero in the frequency range 
of interest. For sinusoidal excitation e.g., Sf f (f) is zero except 

e e 
for a particular frequency. In this case only limited information can 
be obtained about the transfer functions ~.ij(f) unless a large 
number of experiments is carried out with varying frequency of the 
sinusoidal force. Such an excitation technique vas not taken into 
consideration. Excitation signals which cover a broader frequency 
range are impact and random excitation, as theoretically their 
autopower spectrum can be adjusted such that it is constant in the 
frequency range of interest. Impact excitation bas the disadvantages 
that the magnitude of the load is difficult to control and that non
linearities are rapidly introduced due to the high peak-load. Random 
excitation is relatively easily applied by means of a shaker and the 
frequency contents can easily be controlled as a random signal can be 
generated digitally. It was therefore decided to use a random signal 
for excitation of the tibia. 

In summary it can be stated that the dynamic behaviour of the tibia 
(considered as a rigid body) can be investigated by varying 

* the static equilibrium position with respect to the femur 

* the static load exerted on the muscle tendons 

* the point of application, direction and magnitude of the 
external loads applied to the tibia 

To quantify the dynamic behaviour of the tibia the following param
eters must be measured 

* the kinematic parameters describing the static equilibrium 
position 

* the forces on the bracing vires 

* the signals from at least 6 accelerometers 

* the dynamic load exerted on the tibia 
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3.3.3 A descriptive model for the load transmission through the joint 

In sections 3.3.1 and 3.3.2 emphasis was laid on how the dynamic 
characteristics of the tibia can be obtained by measurement of loads 
exerted on and accelerations of the tibia. Another important aspect 
of the force transmission through the joint is found in the loads 
transmitted to the femur. To arrive at an expression for these loads 
Fig. 3.3.4 is considered. 

Fig. 3.3.4 

massless 

connection 

@'· 
femoral 

component 

Interactions between the femoral component and 
the massless connection resulting in a transmit
ted force and moment. 

In paragraph 3.3.1 it vas assumed that the load exerted on the tibia 
by the joint elements results in a force lj and a moment ij which 
only depend upon damping and stiffness characteristics and briefly 
can be written as 

. 
T -+ -+ 
~j - ~j·! + !r! (3.3.64) 

In relation (3.3.64) inertial effects are neglected. This also im
plies that the forces and moments exerted on the femur are a function . 
of s and s only. As the femur is considered as a space-fixed, rigid 
body the load exerted on the femur can be measured in terms of a 
force lF and a moment iF with respect to OF. These transmitted loads 
can then be written as 

-+ 
IF (3.3.65) ... 

mF 

where !F and ~F represent stiffness and damping properties. Of course 

!r and ~F are related to the tensor matrices ~j and !j in relation 

(3.3.64) but this relationship is not known yet. 
Relation (3.3.65) results in a transfer function matrix BF(f) if all 
vector- and tensor quantities are represented with respect to the 
fixed vector base ! 
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(3.3.66) 

(3.3.67) 

The elements of the transfer function matrix BF(f) can be determined 
from measured components of the columns IF and !· 

Measurement of the transmitted forces and moments can provide valu
able information as they are related to the kinematical parameters of 
the tibia by stiffness and damping characteristics only and because 
they do not depend upon inertial effects (if the description given 
above is valid). Furthermore, they may give useful information for 
validation of a structural numerical model. 

Using relation (3.3.28) a relation can be laid between the loads 
exerted on the tibia and the loads transmitted to the femur 

(3.3.68) 

with 

(3.3.69) 

Finally, using relations (3.3.55) and (3.3.56) relation (3.3.68) can 
be written as 

(3.3.70) 

with 

(3.3.71) 

3.4 Measurement metbods 

In section 3.3 a number of parameters are indicated that must be 
measured to quantify the dynamic behaviour of the knee joint. In this 
section a number of transducers are discussed which are applied in 
all experiments described in chapters 4 and 5. 

3.4.1 Measurement of the static load on the muscle tendons 

To measure the static load on the bracing wires strain-gauges are 
glued to each stud of the stud-and-nut combinations described in 
section 3.2. Compensation for bending moments and temperature is 
included using 4 strain-gauges in a Wheatstone-bridge. The uni-axial 
force transducers thus obtained were calibrated for axial forces from 
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0 to 1500 N, showing a relative overall accuracy of approximately 1\. 
To monitor the forces during measurements a LED-display is available. 

3 . 4.2 Measurement of accelerations on the tibia 

As depicted in section 3.3.2, 6 accelerometers are applied to deter
mine the kinematical behaviour of the tibia. The accelerometers can 
be mounted on the stainless steel cylinder P which is casted around 
the distal part of the tibia (see section 3.2). Fig. 3.4.1 shows the 
spatial orientation of the accelerometers for a particular joint 
specimen. 

Fig. 3.4.1 Accelerometers mounted on the tibia . 

A tri-axial accelerometer (BrUel & Kjaer type 4321) is mounted in a 
brass housing (R) which is bolted to the bottom plane of the cylinder 
P. Three uni-axial accelerometers S, T and U (BrUel & Kjaer type 
4367) are mounted on the surface of the cylinder P. This set-up 
corresponds to that described in appendix C. The 6 signals from the 
accelerometers are led to charge-amplifiers (Kistler type 5007) 
resulting in 6 analog signals. For the coordinates y5 and z5 describ
ing the location of the accelerometers S, T and U it holds: 
y5 - 0.035 m, ~5 - 0.06 m. 

3.4.3 Measurement of transmitted loads 

To measure the forces and moments transmitted to the femur, a 3-D 
piezo-electric force platform is included in the basic experimental 
set-up discussed in section 3.2. As commercially available platforms 
were not suited due to the need to pass the bracing wires through the 
platform, a force platform was specially developed for this purpose 
with assistance of Kistler A.G., Switzerland. The platform is ~hown 
in detail in Fig. 3.4.2. 
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Fig. 3.4.2 The piezo electric force platform. 

It basically consists of two circular plates with an asymmetric 
opening to pass the bracing wires. Plate v1 is bolted to block C of 
the ezpert.ental set-up, whereas plate v2 acts as a rigid foundation 
for clamping flange E. Between these two plates three 3-D loadcells 
(Kistler type 9251) are mounted under an axial preload of 5000 N. 
Each loadcell k produces signals skx• sky and skz• which represent 
forces along the x-, y- and z-axls of the loadcell, respectively. The 
external force and moment with respect to the center OF of the plat
form can now be obtained from: 

with 

fpx • 8 1x + s2x + 8 3x 

fpy • Sly + s2y + Sly 

~ • rp( <•1z + 8 2z>t - s3z) 

~y • rp( (slz - s2z>~ ) 

~z • rp{ 8 3x - (slx + 8 2x>t + (s2y -sly)~ ) 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

(3.4.5) 

(3.4.6) 

(3.4.7) 

Here rp is the radius of the circle the loadcells are placed on 
(rp-o.o9 m). 



3.30 

The determination of the forces Ip and moments !p according to rela
tions (3.4.2) through (3.4.7) is carried out by analog summing ampli
fiers which are incorporated in the Kistler electronic unit type 
9807. The output of this unit consist of 6 analog signals repre
senting the components of Ip and lp· 
The platform was calibrated by Kistler A.G. for forces skx and 
sky from 0 to 2500 N and a force skz from 0 to 5000 R. The overall 
relative accuracy was found to be better than 1.5\ which includes 
errors due to non-linearity and cross-talk between the different 
signals. 

3.4.4 Measurement of the static equilibrium position 

In section 3.1 it was discussed that the static equilibrium position 
of the joint should be measured as it is expected to determine in a 
non-linear way the dynamic behaviour of the joint. The static equi
librium position must be quantified by means of the 6 mutually inde
pendent kinematic parameters describing the components of the trans
lation vector •o and the rotation tensor R0 with respect to the 
inertial vector base i connected to the femur. Accurate measurement 
of these parameters requires a rather complex measuring system. As 
the present investigation focuses on the dynamic characteristics of 
the knee joint, it was decided to select a simple method to get an 
indication about the static equilibrium position of the joint. 

Making use of a goniometer the orientation of the tibia with respect 
to the femur can be measured, whereas the translations of the tibia 
can be measured by means of a ruler. Of course such a measurement 
technique has only limited accuracy (± 2° for the rotations and ± l 
mm for the translations), but it provides an easy tool for measure
ment of the static equilibrium position. It allows of frequently 
monitoring, with some accuracy, changes in the static equilibrium 
position. Furthermore this technique can provide an indication for 
the required accuracy of a more sophisticated measurement technique. 
For example, if a different dynamic behaviour of the joint is found 
for changes in static equilibrium position which are within the 
accuracy of the method discussed above, it is obvious that another 
measurement technique with a far better accuracy should be selected. 
On the other hand, if drastic changes in the static equilibrium 
position do not result in significant changes in the dynamic behav
iour of the joint the accuracy of another measurement technique does 
not need to e%ceed the values given above. 

3.5 A data-acquisition system 

Using the measurement methods discussed in the previous section, the 
dynamic behaviour of the knee joint is quantified by means of a 
number of analog signals. To allow for digitization of these signals 
and storage of the digitized signals a data-acquisition system (DAS) 
is indispensable. Furthermore, some tool for numerical postprocessing 
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will be necessary, e.g. to calculate the transfer function between 
two signals which subsequently can be used for determination of the 
modal parameters, as was indicated in section 3.3. 

For this purpose a DAS was developed, based on an IBM Personal Compu
ter and a comaercially available laboratory interface (TECHAR 
Labmaster) (Fig. 3.5.1). 

Laboratory lnterfaCI:! 

Personal ~ ~ f-+--- llU'lll!r 

~ MCU 
Computer f-t- 1-+ 

~ ~ 

Fig. 3. 5.1 Hardware for the data-acquisition systam. 

This basic hardware is expanded with a 16 channel measurement control 
unit (MCU) and a software package that allows for software control of 
the laboratory interface and the liCU. Besides the software package 
provides a tool for implementation of postprocessing of the digitized 
signals. To cope with the limited storage capacity of the PC, addi
tionally use is made of a tape-streamer (IRWIR type 310) to back-up 
the measured data. Finally a connection is available to a PRIME 750 
mini-computer for off-line number crunching and extended graphic and 
plotting facilities. 

The following paragraphs in this section are used to discuss the 
prime elements of the DAS mentioned in more detail. 

3.5.1 The personal computer 

The Personal Computer acts as a central controller for measurements 
and allows for storage and postprocessing of the digitized signals. 
It is a standard IBll PC-XT with an INTEL 8088 CPU (4. 77 KHz clock) 
equipped with an INTBL 8087 numerical coprocessor, 640 Kb RAM, an IBM 
Color Graphics Adapter, a 10 lib hard disk and a 360 Kb floppy unit. 
The operating system used is Micro-Soft DOS 3.20. 

3.5.2 The laboratory interface 

The TECHAR Labmaster serving as an interface between PC and experi
mental set-up provides the following standard features: 

* a 12 bit Analog to Digital Converter (ADC) which is installed 
in a 2-complements mode with an input range of -5 to +5 Volt. 
Its maximum conversion rate is 30 KHz; 
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* two 12 bit Digital to Analog Converter's (DAC) which are 
installed in a 2-complements aode with an output range of -10 
to + 10 Volt; 

* a tiaerjcounter chip with 5 individually programmable 16 bit 
counters which can be uaed to count 8%ternal events or to 
generate blockvaves with a specified frequency; 

* an INTEL 8255 Programmable Parallel Port I.e. (PPI) with 24 
I/O linea which can be used for control of external devices; 

* a 16 channel multiplexer enabling to select one of the 16 
single ended analog inputs to be connected to the ADC. 

The laboratory interface is plugged in in one of the available slots 
of the PC and is installed in a meaory-mapped aode, thus allowing for 
software control of the board by means of memory read and write 
commands £rom or to the 16 memory locations (bytes) the board occu
pies. 

3. 5. 3 Tbe measurement control unit 

Although the laboratory interface is suited to be directly uaed for 
digitization of the analog signals, a measurement control unit (MCU) 
vas developed, essentially to allow for improving the accuracy of the 
digitized signals and to include a possibility for simultaneous 
measurement of all signals. The MCU contains 16 channels which each 
are built up as shown in Fig. 3.5.2. 

Analog 
Output 

Fig. 3.5.2 

'-----· ------------

'=' -=r--r Offset Analog 
f- ·~ I 

..._ 0 !Input Dlnfrol(ed I 
byp;nllel . c Gain 
~ I fc Clll'llrolled by timOr on Ll. 

--------------

Elements of each channel of the measurement 
control unit. 

The analog input signal first can be adjusted in magnitude or offset. 
In general this is necessary to assure the signal to meet optimally 
the range of the ADC, as otherwise digitization errors are signifi
cant. Tbis correction can be done manually uaing 2 potentiometers. 

Next the analog signal is filtered by means of a 48 dB/octave low
pass Butterworth filter (National Semiconductor MFlOCN Universal Dual 
Switched Capacitor Filter). The reason for using these filters is 
that in general the analog signal to be digitized with a sampling 
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frequency f
8 

Hz must satisfy Nyquist's criterion. Tbia states that 
the highest frequency component 1n the analog signal must be less 
than 0.5*f8 as otherwise aliasing occurs resulting in erroneous 
measurements. If it cannot be guaranteed that the signal meets this 
criterion, its frequency contents must be limited. Two basic methods 
exist to filter the analog signal. The first method uses a high speed 
ADC 1n combination with a relatively simple analog filter. The sam
pled signal is subsequently filtered digitally and decimated to 
obtain the desired sampling frequency. This approach is favourable 
due to its flexibility, but as the digital filtering asks for a 
hardware implementation to obtain an acceptable throughput rate, the 
complexity of the DAS is considerably increased. For this reason it 
vas decided to use a higher order low-pass analog filter with a 
programmable cut·off frequency. If desired, the digitized signals can 
be filtered further using a software implementation of a digital 
filter. The Butterworth filter mentioned was chosen because the 
magnitude of its transfer function is maximally flat in the pass· 
band, which is theoretically given by 

IB(f)l 
/(1 + (f/fc)**l6) 

(3.5.1) 

The cut-off frequency fc (-3 dB) of these filters is controlled by 
the frequency of a symmetric block wave obtained from one of the 
timers on the laboratory interface. As the timer-chip is programmable 
the cut-off frequency of the filters is under software control. For a 
cut-off frequency f 0 of 100 Hz. Fig. 3.5.3 shows the transfer func
tion of such a filter. 

ur-----
H 
H 
t -
0~0----~----~------~.="·d--~-

Fig. 3.5.) The transfer function B(f) of the Butterworth 
low-pass filters for a cut off frequency fc of 
100 Hz. B(f) is given as the magnitude IBI and 
phase ~ (B(f) - IBiezp(j~)). 

An important characteristic of the filter is the phase shift. Ideally 
the phase shift is linear as a function of the frequency, because 
this results in a constant time-delay between input and output of the 
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filter (apart from a reduction in magnitude of the different frequen
cy components in the signal). As the phase shift of the Butterworth 
filter is almost linear in the pass-band, the small deviations of 
linearity will not cause serious signal distortion. The filtered 
analog signal is next led to a sample-and-hold circuit (SJH). The S/H 
is controlled by one of the I/0 lines of the PPI on the laboratory 
interface and is meant to allow of simultaneous measurement of all 
signals. The S/H are simUltaneously activated, thus freezing all 
signals passed. The frozen signals can subsequently be multiplexed 
and converted to a digital representation. This approach allows of 
simultaneous measurement of all signals although a single ADC is 
used. A disadvantage is that the maximum sampling frequency achiev
able depends on the number of signals to be digitized. As the maximum 
conversion rate of the ADC is 30 KHz, in case of 1 signal theoreti
cally the maximum sampling frequency is 30 1Hz, whereas for 16 sig
nals the maximum sampling frequency will be 30 KHz/16 - 1875 Hz. 
These values are well beyond the upper frequency limit of 100 Hz for 
analysis of the knee joint. 

3.5.4 The software package 

The hardware of the DAS discussed in the previous paragraphs must be 
controlled by software. To obtain sufficient flexibility a software 
package has been developed that basically consists of two parts. The 
first part allows for interactively entering measurement specifica
tions, while the second part takes care of the actual measurements. 
The measurement specifications consist of the channels selected to be 
measured, the desired sampling frequency, the desired cut-off fre
quency of the analog filters, the number of samples to be taken and 
some additional information used in further processing. Besides an 
option is included to define an analog signal to be generated during 
measurements. For this purpose one of the DAC's on the laboratory 
interface is used. This analog signal can be amplified and then be 
used to control the dynamic load on the knee joint specimen e.g •• 
This first part of the software package is written in Fortran (Micro
Soft Fortran-77 V3.20). The second part of the software package uses 
the specifications entered in the first part. The raw data from the 
ADC is stored either in memory or in a set of disk files and then can 
be used for further processing {graphical representation, transfer 
function analysis e.g.). The second part of the software package is 
written in assembly language (Micro-Soft Macro Assembler 4.00) to 
optimize the speed of the digitization process. The maximum sampling 
rate when measuring 16 channels is 900 Hz, which is satisfactory with 
respect to the adapted 100 Hz upper frequency limit for analysis of 
the dynamic behaviour of the knee joint. 



3.35 

3.6 Snppnaey 

In this chapter an overview has been given of an experimental strate
gy. proposed to analyse the dynamic behaviour of the human knee joint 
in post-mortem experiments. To deal with the expected non-linear. 
time-dependent behaviour of the joint a local linearization technique 
(LLT) was assumed to provide a useful tool for both experiments as 
well as parametrization of the experimental results. Modal analysis 
herein plays an essential role. The LLT consists of two steps. First 
a stable static equilibrium position of the joint will be created by 
means of static forces exerted on selected muscle tendons. Secondly 
small dynamic loads will be applied to the tibia. Parameters describ
ing the kinematic behaviour of the tibia and the transmitted loads 
can then be measured and related to the applied load by means of 
transfer functions. These transfer functions can be formulated as a 
function of a set of modal parameters. Variation of the static equi
librium position and the static load on the muscle tendons and delib
erate damaging of selected joint elements are to be included in 
experiments to investigate their influence on the dynamic behaviour 
of the joint. For this purpose various measurement methods and a 
multichannel data-acquisition system have been discussed which can be 
uaed to quantify the behaviour of the joint and which enable to 
extract the modal parameters from measured responses of the joint by 
means of some form of numerical post-processing. 
Chapter 4 focuses on experiments done to see whether the strategy 
proposed is valid. The transfer functions discussed in this chapter 
will be uaed extensively. To give insight in the meaning of a partic
ular transfer function attention will be paid in chapter 4 to how 
changes in stiffness and damping characteristics of a single degree 
of freedom mechanical system influence the transfer functions for 
such a system. 
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Chapter 4 Experiments I: Analysis in the frequency domain 

To clarify to what extent the experimental strategy discussed in 
chapter 3 applies, experiments have been performed on 10 knee joint 
specimens. This chapter gives an overview of the obtained results. To 
judge the validity of the results, it is necessary to have insight 
into factors such as measurement accuracy and the dynamic behaviour 
of the experimental set-up. As these factors must be considered in 
combination with the dynamic behaviour of the joint specimen, this 
chapter is composed as follows. Section 4.1 gives an overview of the 
nature of the experiments. In section 4.2 a brief overview is given 
of the meaning of the transfer functions described in this chapter. 
Besides it is illustrated how these transfer functions for a single 
degree-of-freedom mechanical system are to be interpreted. In section 
4.3 typical results are given, primarily to give an insight into the 
order of magnitude of relevant parameters and to discuss the phenome
na found. Hence this section can be considered to provide a framework 
for discussions in the remainder of this chapter. In section 4.4 
these results are used to consider inaccuracies and disturbing 
factors, introduced in the experimental procedure, and the influence 
of the experimental set-up upon the results obtained. An elaboration 
of section 4.3 can be found in sections 4.5 and 4.6, where a more 
detailed discussion is given on how the results are influenced by the 
static load on the muscle tendons and the dynamic load applied to the 
tibia, respectively. Finally in section 4.7 an assessment is given of 
the validity of the experimental strategy proposed in chapter 3. 

4.1 Description of the experiments 

In chapter 3 several aspects of the experimental design described in 
this chapter have been discussed. This section gives an overview of 
the execution of the experiments. 
Ten knee joint specimens were used which are denoted with KNEEl 
through KNEElO. Some of these specimens have been used in what can be 
considered as preliminary experiments. These experiments were a try
out for the measuring techniques discussed before. Therefore the 
results of these experiments are not taken into consideration in this 
chapter, leaving five specimens (KNEE6 through KNEElO) to be discus
sed in the remainder of this chapter. The experiments on KNEEl 
through KNEE5 also resulted in a standardized experimental procedure 
which will be discussed in this section, focusing on the following 
aspects: 

* preparation of the joint specimen; 

* installation of the joint specimen in the experimental set-up 
and installation of the various transducers; 
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* creation of a static equilibrium position; 

* application of the dynamic load; 

The experiments start with the preparation of the joint specimen the 
day before the actual measurements are done. This preparation takes 
about 4 hours. The description given below is valid for all specimens 
used in the experiments described in chapters 4 and S and results 
from a standard preparation procedure. All knee joint specimens were 
excised from macroscopically intact human cadavera, freshly frozen at 
-80 °C. Each specimen has an overall length of 0.4 m in extension, 
with an equal length of the tibia and the femur of 0.2 m. The day 
prior to the experiments the specimen is thawed in approximately 4 
hours in water of 20 °c. The preparation starts with a removal of the 
skin and subcutis. Subsequently the heads of the muscles are re
moved, such that the relevant muscle tendons are mobilised but left 
intact (the tendons of the musculus rectus femoris, musculus biceps 
femoris, musculus gracilis, musculus sartorius and musculus semi
tendinosus). During preparation care is taken to keep the joint 
capsule and extra-capsular ligamenta intact. To be able to exert the 
static load on the muscle tendons a minimum length of approximately 
0.1 m of the tendons is required. This does not cause problems for 
the tendons of the musculus rectus femoris and the musculus biceps 
femoris. However, the minimum length for the muscle tendons on the 
medial side of the joint can not be obtained for each specimen due to 
biological variability. Therefore for each specimen individually a 
selection has to be made whether to use the musculus sartorius, the 
musculus gracilis or the musculus semitendinosus. This choice is also 
determined by the cross-sectional area of the tendons mentioned. To 
avoid rupture of the tendon when the static load is applied, the 
tendon with the largest cross-sectional area is selected by visual 
inspection. Of course such a criterion is rather arbitrary, as it is 
not assured that a larger cross-sectional area corresponds to a 
larger load carrying capacity. However, it has turned out to be a 
reasonable choice as no rupture of the tendons has occurred during 
the experiments carried out. It is recognized that the use of a 
particular muscle tendon on the medial side of the joint may influ
ence the results. An analysis to which extent such a choice influ
ences the behaviour is beyond the scope of this investigation, and 
was therefore not carried out. It is felt however that, due to the 
location of the attachment areas of the muscle tendons on the medial 
side of the joint, selection of a particular muscle tendon does not 
necessarily lead to marked differences in the behaviour of different 
joint specimens. After preparation of the muscle tendons, the ends of 
the tibia and femur are cleared from muscular tissue and periost over 
a length of approximately 0.07 m to obtain a smooth and clean sur
face. This is necessary as this part of the bones is used for fixa
tion in a cylinder (section 3.2.2). Hereby care is taken that the 
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longitudinal axis of each of the cylinders coincides as well as 
possible with the longitudinal axis of the corresponding bone. This 
is done as these axes are taken as one of the coordinate axes of the 
vector bases connected to the tibia and the femur and therefore must 
have resemblance for the different joint specimens to be able to 
compare the results obtained. After the preparation, the specimen is 
stored overnight at 5 °C in Ringer's solution and used in experiments 
the day after. 

The actual experiments start with clamping the knee joint in the 
experimental set-up described in section 3.2.2. This is a fairly 
simple procedure: by means of three bolts the cylinder F is tightly 
secured in the clamping flange E. While mounting the specimen it is 
assured that 

* the longitudinal axis of the cylinder F coincides with the z
axis of the piezo-electric force platform (G) which is locat
ed between the clamping flange and the steel block c. The z
axis is perpendicular to gravity. The longitudinal axis of 
the femur therefore, in a good approximation, has the same 
direction as the z-axis of the force platform; 

* the x-axis of the force platform lies in the, approximated, 
medio-lateral plane of the femur. 

The y-axis of the force platform lies, due to the selection of the 
direction of the x- and z-axis, in the sagittal plane of the femur. 
With these choices the definition for the inertial vector base ! is 
complete as the centre of the force platform is the origin o1 of this 
vector base. It is noticed that the description given above depends 
on a visual determination of the sagittal plane of the femur and 
therefore is rather subjective. It is felt however that this proce
dure yields an orientation of the femur with respect to the force 
platform which can well be compared for different joint specimens. 
When the joint specimen has been clamped, the next step is to mount 
the accelerometers on the cylinder P attached to the tibia. To assure 
that the accelerometers have the position and orientation assumed in 
chapter 3 and appendix C, the cylinder P has a number of fixed loca
tions where the accelerometers can be mounted. To assure thatthe axes 
of the cylinder correspond to those assumed in appendix A, care must 
be taken when the tibia is cast in this cylinder. The origin OT of 
the vector base £ connected to the tibia coincides with the centre of 
the tri-axial accelerometer mounted in the brass housing R (see 
section 3.4.2). 



4.4 

With the femur clamped and all accelerometers mounted, the experi
ments may be started. First a static equilibrium must be created. To 
do this, the three bracing wires are attached to the muscle tendons 
by means of the tendon clamps H. Subsequently the force acting on the 
bracing wires is increased to obtain the desired configuration of the 
joint specimen. For all ezperiments described in this chapter a joint 
configuration was chosen in which exo-endo rotation and ad-abduction 
can be neglected. Therefore the orientation of the tibia with respect 
to the femur can be described with the flexion angle only which was 
set at values of 20°, 30° and 60° for the results described in this 
chapter. This joint configuration can be obtained by proper selection 
of the magnitude of the forces on the muscle tendons. This procedure 
has to be carried out iteratively, as due to the time-dependent 
behaviour of the joint an initially applied load decreases (usually 
within 15 minutes) to a certain constant value, which can be 50\ 
lower (this applies for all bracing wires). Simultaneously the joint 
configuration alters due to this change of the load acting on the 
bracing wires. Therefore in general the load must be increased after 
its constant value is reached, until the desired joint configuration 
is obtained. 

If the desired static equilibrium position of the joint is obtained, 
the dynamic force can be applied to the tibia. For this purpose an 
electromechanical shaker (Ling Dynamics type 403) is attached to the 
brass housing R. Aa discussed in section 3.3.2 the shaker must exert 
a force along one of the coordinate axes of the vector base £. To be 
able to exert this force without introducing undesired torques or 
bending moments the connection given in Fig. 4.1.1 is used. 
A uni-axial piezo-electric force transducer (a) (Kistler type 9301A) 
is mounted on the brass housing (R) such that its longitudinal axis 
coincides with the desired axis of the vector base £ for a particular 
measurement. To obtain a connection to the head of the shaker (e), a 
series connection of a magnet (d), a flexible hose (c) and a piece of 
wire (b) is used. This connection is axially stiff (to avoid buckling 
under the axial load exerted by the shaker), but has little resis
tance against transverse loads. The magnet (d) is included to assure 
that the contact between the shaker and the joint specimen can easily 
be broken. This is of importance when the static load on the muscle 
tendons must be changed. Leaving the shaker in contact with the joint 
specimen would result in an uncontrolled static load on the joint as 
the shaker itself is a flexible element. The magnet (d) also protects 
the joint against undesired excessive transverse loads or torques as 
the magnet provides a connection which fails under these (high) 
loads. The shaker is suspended in the hook of a remote control trav
elling crane. This system has 6 degrees of freedom and therefore the 
global direction in which the dynamic force is applied can be ch~sen 
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freely. The suspension of the shaker has a resonance frequency of 
approximately 2 Hz, which is well below the lower frequency limit of 
5 Hz, dictated by the use of piezo-electric transducers. 

Fig. 4.1.1 The upper picture shows the electro-mechanical 
shaker (1), suspended in the hook (2) of a trav
elling crane, connected to the tibia by means of 
a flexible connection. This connection is shown 
in detail in the lower picture (see text) 

The load applied to the tibia is derived from a random signal. To 
generate this random signal the data-acquisition system discussed in 
section 3.5 is used. The software package described there allows for 
definition of a band-width limited random signal which is generated 
during measurements by means of the DAC on the laboratory interface. 
This signal (-5 to +5 Volt) is amplified (Ling Dynamics PA300 ampli
fier) and used to control the shaker. The random excitation applied 
to the tibia has the typical shape given in Fig. 4.1 . 2. 
A similar pattern is found for the responses of the joint (accelera
tions and transmitted loads). Bearing in mind the possible non-lin
earity of the joint, the magnitude of the dynamic load applied to the 
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Typical pattern of the force fe applied to the 
tibia 

tibia was taken as small as possible, but such that the signal to 
noise ratio was not endangered. In the experiments on KNEEl through 
KNEES it was experienced that the coherence function (see section 
3.3.2) is a useful tool for this purpose. Values of a coherence 
function below 0.8 (approximately) in the frequency range of interest 
are a strong indication that the dynamic load applied is too small 
(assumed that all charge amplifiers of the piezo-electric transducers 
used are adjusted to obtain a maximal analog signal to be measured). 
The variance a~ of the random excitation force therefore usually 
could not be set to values lower than approximately 1 a2 • In the 
experiments the displacements of the loaded end of the tibia have a 
variance of maximally lo-6 m2 • These displacements are hardly ob
served by eye and are not likely to result in geometrical non-lin
earities (which is essential in the local linearization technique). 

4.2 Recapitulation and itlterpretation of tbe transfer functions 

The experiments 
elements of the 
in chapter 3. 

described in this chapter are represented by means of 
transfer function matrices ~{f) and lrl,o(f) derived 

The transfer function matrix ~(f) relates the displacements of the 
tibia to the applied force. An element &m ij(f) is derived from the 
accelerations of accelerometer i (i•l .•• 6) and the force applied in 
direction j (j•l •.. 3). 
As a reference a simplified representation of the joint is added to 
the figures in section 4.3, which has either of the shapes given in 
Fig. 4.2.l.The picture on the left in Fig. 4.2.1 indicates that the 
transfer function ~. 22 (f) considered relates the displacement of the 
end of the tibia in the P-direction {i•2) to the load applied in the 
same direction (j•2). Similarly the picture on the right indicates 
that the transfer function ~. 11(f) considered relates the displace
ment of the end of the tibia in a-direction (i•l) to the load applied 
in the same direction (j•l). 
The transfer function matrix 1Fl, 0 {f) relates the loads transmitted 
to the femur to the force applied to the tibia. An element HFl,~ij(f) 
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relates the force applied 1n direction j (j•l,2 or 3) to the 
transmitted forces (i-1,2 or 3) or the transmited moments (i-4,5 or 
6). When such a transfer function is considered in section 4.3, a 
simplified representation of the joint to the corresponding figure is 
added as given in Fig. 4.2.2. 

Fig. 4.2.1 

Fig. 4.2.2 

u,fe 

Simplified representation of the joint and 
directions of the displacement and force applied 
for a particular transfer function R;,ij(f) 

Simplified representation of the joint and 
directions of the transmitted load and force 
applied for a particular transfer function 
8Fl,oij(f) 

The picture on the left in Fig. 4.2.2 indicates that the transfer 
function HFl oll(f) considered relates the force transmitted to the 
femur in x-direction (i•l) to the force applied in a-direction (j•l). 
Similarly the picture on the right in Fig. 4.2.2 indicates that the 
transfer function HF1 ,053(f) considered relates the moment about the 
y-axis working on the femur (i•5) to the force applied in ~-direction 
(j-3). 
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To indicate how these transfer functions can be interpreted qualita
tively, a single degree of freedom mechanical system given in Fig. 
4.2.3 is considered. 

Fig. 4.2.3 A single degree of freedom mechanical system 

For this system the transfer function matrix By.(f) has only one 
element lly.(f) given by 

B.~.(f) • Y:Ul • 2 2 l (4.2.1) 
¥ l(f) - m(4~ f ) + 2~jfb + k 

The transfer function matrix BF1 ,0 (f) also contains only one element 
BF1(f) given by 

H_ (f) _ Ck + f~l§b> uCf> _ t t 2w1fb -,.1 ( - m(4• f ) + 2•fjb + k 
(4.2.2) 

I 
as the force fF transmitted to ground is identical to 

fF • k u + b u (4.2.3) 

Using the undamped resonance angular velocity w0 - J(k/m) • 2~f0 and 
the dimensionless damping e - b/(2j(km)) relations (4.2.2) and 
(4.2.3) yield 

lly.(f) - ~ 1 - (f/f0)~ + 2ejf/f
0 

(4.2.4) 

8 
(f) _ 1 + 2eJf/f0 

Fl 1 - (f/f
0

) 2 + 2fjf/f
0 

(4.2.5) 

Figs. 4.2.4 through 4.2.7 show the shape of these transfer functions 
for various values of b and k to indicate the influence of the 
damping and stiffness characteristics (the complex quantity B(f) is 
given in terms of its magnitude IHI and phase angle if., which are 
related by B(f) • IBiezp(j~(f)). 
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Influence of the stiffness k on the transfer 
function ~(f) 

Influence of the damping b on the transfer 
function ~(f) 
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Influence of the stiffness k on the transfer 
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Influence of the damping b on the transfer 
function HFL(f) 
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4.3 Typical results tor random excitation 

The results for the experiments with random excitation on KNE£6 
through KNE£9 will be discussed in this section, to provide a frame
work for the remainder of this chapter. To describe a particular 
experiment a number of parameters are relevant. These are gathered in 
a record of the following form: 

The various symbols in such a record (which is used for annotation of 
figures) represent the following parameters: 

@ 
H 

row and col 

dirf 

represents the number of the knee joint specimen; 
indicates which transfer fUnction is considered 
(~(f) or BF1 ,0 (f); 
determine the row and column number of the transfer 
function matrix a particular transfer function 
corresponds to: 
is the direction along which the dynamic force was 
applied (dirf-a,p or 7) 
is the estimate for the variance of the dynamic 
load applied to the tibia, as determined from the 
sir,al measured with the uni-axial for<:e transducer 
[N ] ; 
is the flexion angle of the joint (degrees) as the 
prime characteristic for the static equilibrium 
position; 
are the magnitude of the forces exerted on the 
muscle tendons [N]. 

First some of the elements of the transfer fUnction matrix ~(f) are 
considered. For a particular experiment on KNEE9 (left knee, male, 36 
years) Figs. 4.3.1 through 4.3.3 give three corresponding diagonal 
elements of the transfer function matrix ~(f). From these figures 
the following phenomena are observed which are common for all mea
surements. The frequency interval of interest is from 5 to 50 Hz. In 
this frequency range two distinct resonance frequencies are observed, 
which correspond to two vibration modes of the tibia. In the sequel 
these modes will be denoted with mode I and mode II, respectively. 
For mode I displacements of the tibia in p- and 7-direction are 
dominant, whereas for mode II the displacements of the tibia are 
mainly in a- and 7- direction. 
Due to the non-linearity of the joint the value of the resonance 
frequencies depends on the static load on the muscle tendons etc. 
However, as a global measure modes I and II can be characterized by 
resonance frequencies of approximately 20 and 28 Hz, respectively. 
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For the frequency interval .from 0 to 5 Hz no information can be 
obtained. To assure that in this frequency range no resonance phenom
ena are falsively omitted, experiments were done with sinusoidal 
excitation in stead of random excitation. No additional resonance 
frequencies could be observed however. Similarly no additional reso
nance frequencies could be found in the frequency range from 50 to 
100 Hz. From Figs. 4.3.1 through 4.3.3 it is seen that the elements 
of Jm(f) have a marked difference in magnitude, depending on the 
particular frequency component considered. This indicates that the 
resistance of the knee joint against forces applied in the mutually 
orthogonal directions differs noticably. For forces applied in the p
direction (flexion-extension) this resistance is least, whereas for 
forces applied in the 7-direction (axial loading) the highest resis
tance is found. From the results obtained it is seen that for mode I 
the kinematical behaviour of the tibia is dominated by displacements 
of the loaded end of the tibia in the P-direction. For mode II on the 
other hand, displacements of the loaded end of the tibia in the a
direction dominate. 

The frequency dependent behaviour of the joint is also found in the 
elements of the transfer function matrix RF1 , 0 {f), as illustrated in 
Figs. 4.3.4 through 4.3.6. 
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It is seen that the force transmission is influenced by the reso
nances of the tibia (as was expected, see section 4.2). 

To indicate the influence of the static equilibrium position, Figs. 
4.3.7 through 4.3.9 are considered, which give the transfer functions 
H;, 11(f), B., 22(f) and H;, 33(f), respectively, for various flexion 

angles of KNEES (left knee, female, 47 years). 
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Fig. 4.3.7 Influence of the flexion angle of the joint upon 
the transfer function~ ll(f) 

__ KNEE8-~[l,l,a,u}-2o,~,Fb•lli,Fr•200,Fa•l33] 

___ KNEE8-~[l,l,a,ul•20,elQ,,Fb-13l,Fr•200,F6•133) 

KNEE8-~[l,l,a,u}-2o,~,Fb•l3l,Fr-200,Fa•l33] 
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Fig. 4.3.8 Influence of the flexion angle of the joint upon 
the transfer function H~ 22(f) 

__ KNEE8-~[2,2,/J,ul=20,~,Fb•Hi,Fr•200,Fa•l33] 

___ KNEE8-~[2,2,p,u}-20,elQ,,Fb-13l,Fr•200,Fa·l33] 

----- KNEE8-~[2,2,/J,ul-20,;=60,Fb•l3l,Fr•200,Fa•l33) 

It is observed that changes in the, static equilibrium position result 
in measurable changes in the transfer functions. For mode I, increase 
of the flexion angle leads to a decrease in the resonance frequency. 
This indicates a reduction of resistance of the joint against forces 
applied in /3-direction (see Fig. 4.2.3). For mode II a similar pat
tern is found, indicating that also resistance of the joint against 
forces applied in a-direction decreases with increasing flexion 
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angle. Simultaneously the axial stiffness of the joint decreases as 
can be seen from Fig. 4.3.9. 
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Fig. 4.3.9 Influence of the flexion angle of the joint upon 
the transfer function R~ 33(£) 

______ KNEE8-~[3,3,~.o?-20,~•20,Fb-13i,Fr-200,Fa•l33] 

___ KNEE8-~[3,3,~,o?-2o,e-30,Fb•l31,Fr•200,Fa•133] 

2 ----- KNEE8-~[3,3,~,o~20,~,Fb•l3l,Fr•200,Fa•l33] 

Another important parameter influencing the results is tRe statie 
load exerted on the muscle tendons. Fig. 4.3.10 gives the transfer 
function ~. 22 (f) for three levels of the static load applied to 
KNEE6 (right knee, male, 36 years). 
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Fig. 4.3.10 Influence of the static load on the muscle tendons 
upon the t!ansfer function ~. 22 (f) 

KNEE6-~[2,2,p,of•2,f•20,Fb-40,Fr·90,Fa•60] 

KNEE6-~[2,2,p,o?-2,f•20,Fb•84,Fr-210,Fa•90) 

KNEE6-~[2,2,p,o?-2,f•20,Fb•224,Fr-396,F1•244] 
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Obviously an increase of the forces on the muscle tendons results in 
an increase of the resistance of the joint against forces applied in 
P-direction, resulting in an increase of the resonance frequency for 
mode I. A similar pattern was found for mode II. 

To see if deliberate damaging of the joint specimen yields a measur
able change in the behaviour of the joint, a preliminary experiment 
was done on KNEE6 in which the anterior horn of the lateral meniscus 
was cut radially. This yields the result for the transfer function 
~. 33 (f) given in Fig. 4.3.11, indicating a decrease of the axial 
stiffness of the joint. 
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Fig. 4.3.11 Influence of cutting the anterior horn of the 
lateral meniscus upon the transfer function 
Hljl,33(f) 

An essential assumption made in chapter 3 is that the joint behaves 
as a linear system for the magnitude of the applied dynamic load. To 
verify this, the magnitude of the dynamic load applied to the tibia 
was varied (indicated by the measurement parameter u~). Figs 4.3.12 
and 4.3.13 give results for such experiments, indicating that this 
assumption does not hold. This phenomenon will be discussed in detail 
in section 4.6. 
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Fig. 4.3.12 Influence of the magnitude of the dynamic load 
applied to the tibia upon the transfer function 
av,,n<f) 

2 KNEE8-~[l,l,a,u~4, ~-20,Fb•l78,Fr•36l,Fa•l77] 

KNEE8-~[l,l,a,u}-2o,~-20,Fb•l78,Fr•361,Fa•l77] 
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Fig. 4.3.13 Influence of the magnitude of the dynamic load 
applied to the tibia upon the transfer function 
H't/1,22(f) 

2 KNEE8-~[2,2,p,uf•7, ~-20,Fb•l3l,Fr=200,Fa•l33] 

KNEE8-~[2,2,p,u}-20,~-20,Fb•l31,Fr=200,Fa•l33] 

A final point of interest is the influence of the stiffness of the 
bracing wires upon the results obtained. In chapter 3 it was assumed 
that their longitudinal stiffness of 110 N/mm is sufficiently low (in 
comparison with the stiffness properties of the joint). Figs. 4.3.14 
and 4.3.15 give results for experiments on KNEES in which the diam
eter of the bracing wires was changed to 0.75 mm (instead of 1 mm). 
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Fig. 4.3.14 Influence of the diameter of the bracing wires 
upon the transfer ~ction ~. 11(f) 

f 0.75 mm ______ KNEE8-~[l,l,a,u~20,~60,Fb•l31.Fr-200,Fa•133] 

2 f 1.00 mm ___ KNEE8-~[l,l,a,uf•20,~60,Fb•l3l,Fr=200,Fa•l33] 
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Fig. 4.3.15 Influence of the diameter of the bracing wires 
upon the transfer ~ction H~. 22 (f) 

f 0.75 mm ______ KNEE8-~[2,2,~,uf=6,;=30,Fb•l20,Fr•210,Fa=l33] 

f 1.00 mm ___ KNEE8-~(2,2,~,u~·6,~·30,Fb=l20,Fr•210,Fa•l33] 

From Fig. 4.3.14 follows that vibration mode II is hardly affected 
by the stiffness of the bracing wires. Fig. 4.3.15 indicates that for 
vibration mode I the stiffness of the bracing wires is of importance. 
In section 4.4 this aspect will be discussed in detail. 

4.4 Inaccuracies and disturbing factors 

With the results given in section 4.3, in this section attention is 
paid to the influence of inaccuracies and disturbing factors in the 
experimental procedure upon the results obtained. The inaccuracies 
and disturbing factors consi.dered are 

* inaccuracies due to autolysis of the knee joint specimen;: 
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* inaccuracies in and disturbance of the results obtained by a 
non-ideal dynamic behaviour of the experimental set-up; 

* inaccuracies due to the use of technical instruments to 
quantify the dynamic behaviour of the joint (measurement 
errors, errors due to the chosen form of digital post
processing). 

4.4.1 Effects of autolysis 

Dealing with a biological structure taken out of its natural sur
Tounding, autolysis is a problem of interest. In the preliminary 
experiments on KNEEl through INEC5 it was observed that after 2 days 
of experiments at room temperatur• (20 °C), autolysis became percep
tible (autolysis results in development of malodorous hydrogen
sulphide). As it is not assured at which point of progress autolysis 
produces notable effects on the mechanical behaviour of the joint, 
the use of knee joint specimens was limited to 2 days. Autolysis may 
be influenced by the static and the dynamic load applied. During the 
experiments the static load on the muscle tendons is maintained for 
several hours. This may cause fluids to be squeezed out of the artic
ular cartilage, e.g., and therefore may stimulate autolysis. Similar
ly the dynamic load applied may damage the joint, as random excita
tion applied for several minutes is not likely to be a physiological 
load. By repetition of some experiments a first check was carried out 
to see if the dynamic properties of the joint change within the time 
interval of the experiments on one day. This yielded no significant 
changes in the transfer. functions however: these changes were well in 
the confidence intervals give in section 4.3.3. As the influence of 
the applied loads on the autolysis of soft tissues is unknown, some 
precaution was taken. The experiments done on one day, were done 
within S or 6 hours to limit the time the static load acts on the 
joint. The maximally possible static load (1500 N per bracing wire) 
was not applied in the experiments, for safety reasons again. Also 
the time the joint was subjected to random excitation was minimized. 
This aspect will be discussed further in section 4.4.3, as this has 
influence on the accuracy of the calculated power spectra. A second 
check to assure that the joint specimen did not suffer from the 
applied loads was carried out after the experiments by visual exami
nation of the cartilage layers. For all specimens used no damage 
could be found. 

4.4.2 Influence of the experimental set-up 

Considering the influence of the experimental set-up upon the results 
obtained, two (potentially) disturbing factors are focused on. First 
attention will be paid to the rigidity of the foundation of the 
experimental set-up and secondly the influence of the bracing wires 
will be dealt with. 
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To discuas the rigidity of the foundation of the experimental set-up, 
Fig. 4.4.1 is considered, which is a simplified representation of the 
experimental set-up given in Fig. 3.2.2. 

u 

1 

a 

Fig. 4.4.1 

b c d e 

A simplified representation of the knee joint 
specimen in the experimental set-up. a-tibia, 
b=knee joint, c•femur and clamping device, d-load 
cells of the force platform, ••foundation 

The assembly of concrete block A, steel plate B, steel block C and 
the bottom plate v2 of the force platform can be considered as a non
rigid foundation, which has its own dynamic behaviour. Also the load 
cells of the force platform are deformable elements (deformations of 
the quartz elements in the load cells result in analog signals rela
ted'to the applied loads). The femur, the clamping flange Band the 
tOp plate v1 of the force platform are considered to constitute a 
rigid element c. For the experiments the knee joint, seen as a flexi
ble connection b between the tibia and the femur, and the tibia are 
the essential parts in Fig. 4.4.1. The dynamic load 1 applied to the 
tibia will result in displacements » of the tibia, »c of the rigid 
element c and »f of the foundation. Using a rigoroua mathematical 
treatment it is possible to derive an expression for the various 
displacements due to the load );, taking into account the dynamic 
properties of the flexible elements. For the sake of brevity such a 
complex mathematical description is omitted here. Instead a more 
physical argumentation will be used to consider the influence of the 
various elements in the experimental set-up. 
As the displacements of the tibia are derived from accelerometers, 
which measure absolute accelerations, it is obvious that the dis
placements »c must be essentially smaller than the displacements » 
(otherwise the centre of the force platform can not be taken as a 
fixed origin). Therefore the combination of the force platform and 
the foundation must have a dynamic stiffness (or impedance, which is 
the inverse of the transfer function matrix relating displacements to 
loads applied) that is far larger (in magnitude) than that of the 
knee joint. This condition is not sufficient,however. As the load 
cells of the force platform respond to relative displacements between 
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the top plate vl and the bottom plate v2, the displacements of the 
foundation must be essentially smaller than those of the top plate 
v1 . If this condition is violated, loads are measured with the force 
platform that are only due to vibrations of the foundation. Therefore 
a second condition is that the dynamic stiffness of the foundation is 
far larger than that of the loadcells of the force platform (as an 
indication: the static stiffness of the loadcells typically has a 
value of 109 B/m). 

To assure that the second condition is met, measurements were carried 
out in which a force was applied directly to the clamping flange E in 
various directions. From these measurements followed that in the 
frequency range of 0 to 100 Hz, the force platform works properly 
(which means that a stiffness of the foundation of typically 1011 N/m 
is sufficiently high). From the results given in section 4.3 follows 
that for the knee joint specimen typical stiffness values of 104 · 
to 106 B/m are obtained. These values are sufficiently low in compar
ison with the stiffness of the load cells of the force platform to 
assure that also the first condition is met. Therefore the foundation 
of the experimental set-up can be considered rigid for the experi
ments on the knee joint specimen. 

The second point of interest regarding the influence of the experi
mental set-up upon the obtained results, is the influence of the 
bracing wires. From Fig. 4.3.14 follows that mode II is unaffected by 
the finite stiffness of the bracing wires. This is to be expected as 
for displacements in the a-direction, the transversal stiffness of 
the bracing wires is important. This stiffness is very small however 
and therefore will not result in artificial joint stiffness. 
Fig. 4.3.15 indicates that this does not hold for mode I. The results 
given in Fig. 4.3.15 can be used in a simple model to indicate to 
which extent the stiffness of the bracing wires contributes to the 
apparent stiffness of the joint. If it is assumed that the transfer 
function ~. 22 (f) corresponds to that of a linear system it can be 
written 

(4.4.1) 

where k22 , b22 and m22 represent mass, damping and stiffness charac
teristics, respectively, determining the displacements of the joint 
in P-direction for loads applied in the P-direction. It is assumed 
that only vibration mode I is relevant, as vibration mode II does not 
significantly contribute to the transfer functions given in Fig. 
4.3.15. As the only difference between the two measurements given in 
Fig. 4.3.15 is the stiffness of the bracing wires, the mass m22 and 
damping b22 will be identical for both situations. Also the static 
load on the muscle tendons, the static equilibrium position and the 
magnitude of the dynamic load applied to the tibia are identical. 
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Therefore the difference between the results for the experiments can 
be considered to be due to the different stiffness of the bracing 
vires only, such that only the stiffness ~2 is influenced. The 
stiffness k22 can be seen as the sum of two stiffness values, ~2 .j 

and ~2 v· ~2 ,j represents the contribution of the joint (which 
should have been determined), whereas ~2 •• is determined by the 
longitudinal stiffness of the bracing vires. For both situations 
k22 ,j will be equal. k22 ,v is proportional to 4!. with dy as the 
diameter of the bracing vires. Nov the following relations hold 

kl.O k + kl.O 
22 • 22,j 22,v (4.4.2) 

k0.75 k + ~2.75 k 
22 • 22,j -~2.v • 22,j (4.4.3) 

(with kl2° as the stiffness k22 for a diameter of 1.0 mm of the 
bracing vires etc. ). 
Using the curve-fit procedure proposed by Mergeay (1980), from the 
transfer functions given in Fig. 4.3.15 the following parameter 
values were obtained 

~2 - 0.9 kg; b22 - 17.5 Bs/m; 

kl2°- 14500 N/m: k~275 - 10470 N/m 

(4.4.4) 

Substitution of these values in relations (4.4.3) and (4.4.4) leads 
to 

k22 ,j - 5300 N/m 

k1 · 0 • 9200 B/m 22,v 

(4.4.5) 

Hence it follows that for this experiment the stiffness of the 
bracing vires yields a contribution to the apparent stiffness k22 of 
the joint which is about a factor 1.8 larger than the stiffness of 
the joint itself. Similar results are obtained for experiments in 
which the flexion angle vas varied. It may therefore be concluded 
that the bracing vires must be included when considering the dynamic 
behaviour of the joint. The stiffness of the bracing vires does not 
dominate the behaviour of the joint. This vas also observed in 
section 4.3 as the magnitude of the load on the muscle tendons and 
the magnitude of the dynamic load applied to the tibia have their 
influence on vibration mode I. In case the stiffness of the bracing 
vires would be dominant, this would not have been found because the 
bracing vires behave as a linear system, independent of the applied 
static and dynamic load. 
To eliminate the influence of the bracing vires their stiffness must 
be decreased considerably. This can not be taken into consideration 
as this either results in excessive long vires or very thin wires 
which can not withstand the loads to be applied. It is recognized 
that in this case their influence must be taken into consideration in 
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a numerical model (to be developed). This is not felt to cause prob
lema as the bracing wires are relatively simple mechanical struc
tures. For the experiments to be discussed in chapter S the diameter 
of the bracing wires was changed to 0.75 mm to reduce their influ
ence. 

4.4.3 Measurement- and postprocessing errors 

To obtain the transfer functiona describing the behaviour of the 
joint, a number of quantities are measured and subsequently used for 
digital postprocessing. In this section attention will be paid to the 
influence of errors introduced in these two steps. 

A first type of measurement errors includes errors in the parameters 
describing the static equilibrium position, the load acting on the 
msucle tendons, the location where and the direction in which the 
dynamic force is exerted on the tibia and the location and the mea
suring direction of the accelerometers. As the dynamic load acts in a 
fixed point on the brass housing (R) connected to the tibia and as 
the geometrical parameters for the accelerometers are fixe~, errors 
in the alignment of the longitudinal axis of the shaker with respect 
to the coordinate axes of the vector base connected to the tibia are 
most significant. However, disconnection of the shaker and proper 
repetition of a particular experiment yields no significant changes 
in the transfer functions (as was checked in the experiments on KNEEl 
through KNEES and therefore omitted in the experiments on KNEE6 
through KNEElO). A more drastic check to study the influence of these 
measurement errors is repetition of a particular experiment, done on 
the first day of the experiments, on the second day of the experi
ments. This involves a complete removal of the joint specimen from 
the experimental set-up, and requires re-installation of all trans
ducers, the static equilibrium position and the load on the bracing 
wires. Such a check was carried out yielding fairly reproducible 
results. A more systematic verification of this procedure will be 
discussed in chapter 5. 

The second type of measurement errors is due to the digitization of 
the analog signals. Proper amplification of the analog signals is 
essential to assure that they cover the range of the ADC in the data 
acquisition system. This was checked for each particular experiment. 
The influence of (random) errors in the digitized signals is readily 
retrieved from the coherence function introduced in section 3.3.2. 

At this point the influence of postprocessing errors must be consid
ered. On forehand it is mentioned that all calculations were done on 
the personal computer included in the data-acquisition system with 
real*4 arithmetic. Errors due to a finite word length in arithmetical 
operations can be neglected compared to other error sources to be 
discussed in this section. This was verified by using real*8 arith-
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metic in stead of real*4, which yielded no differences in the calcu
lated power spectra and corresponding transfer- and coherence func
tions. Therefore real*4 arithmetic was applied as this reduces post
processing ttme and in core storage. The prime potential error 
sources in the computational process to obtain the power spectra are 
signal leakage and random errors in the digitized signals. Signal 
leakage results from the use of non-periodic signals to calculate the 
power spectra by means of a Discrete Fourier Transformation. It 
results in a smearing of frequency components but can largely be 
reduced by the use of a periodic (Banning) window function and a 
sufficiently small frequency resolution~ (see appendix D). To 
reduce the influence of random measurement errors, the power spectra 
are determined in an averaging process (appendix D). Bendat and 
Piersol (1980) derived a formula to calculate the 95\ confidence 
interval for a transfer function Be(f) estimated from these spectra 
with the transfer function H(f) 

JH(f)J (1 - 2e(JH(f)JJ} ~ JHe(f)J ~ JH(f)J (1 + 2e(JH(f)J]} 

~(f) + 2e(JH(f)ll ~ ~8 (f) ~~(f) + 2c[JH(f)J]l (4.4.6) 

Here JH
8

(f)J and ~8 (f) are the magnitude and phase of the exact (or 
unbiased) transfer function He(f), respectively, and c(JH(f)l] is the 
normalized error for JH~f)J ziven by 

{4.4.7) 

Relation (4.4.7) shows that the coherence function ~2 {f) must be 
almost unity to obtain an acceptable estimate for the transfer 
function He(f), as only a ltmited number of averages is used (Na was 
set to 40, based on a measurement time of 137 a and use of a 512-
point FFT). Fiz. 4.4.2 &ives a characteristic picture for the coher
ence functions obtained. 

~ 
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t 

Fig. 4.4.2 
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A typical coherence function ~2(f) 
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Aa the coherence function attains values of at least 0.95 in the 
frequency range of interest, random errors are not likely to play an 
important role (t[(B(f)(] S 0.04). 

4.5 fhe static bebaviour of the 1oint: tnf1uence of the static load 

To be able to discuss the ezperimental results, in this section some 
aspects of the static behaviour of the joint are discussed. In par
ticular, the influence of the static load on the muscle tendons on 
the static equilibrium position and the reproducibility of the 
results will be considered. 

An important step in the LLT is the creation of a stable static 
equilibrium position by means of static forces on three muscle ten
dons. In the experiments on KNEEl through KNEE9 it was observed that 
any desired joint configuration could be obtained and maintained for 
several hours by proper selection of the magnitude of the forces on 
the bracing wires. Simultaneously it was observed that small changes 
in the direction of the bracing wires do not influence the joint 
configuration (within the limits of measurement accuracy). These 
small changes can be brought about by movement of the stud-and-nut 
combinations (R) in the slots of the grate (M), resulting in changes 
in the direction of the bracing wires of maximally 5°. 

An important aspect of the static behaviour of the joint is that a 
clearly non-linear relation governs the interaction between the 
static forces on the muscle tendons and the static equilibrium posi
tion. This statement results from the following observations. For a 
given combination of forces on the bracing wires various joint con
figurations can be obtained. On the other hand a certain joint con
figuration can be installed with various combinations of the forces 
on the bracing wires (within the limits of measurement accuracy of 
course). It was also noticed that, to obtain a certain joint con
figuration, the way in which the forces on the bracing wires are 
subsequently increased plays an important role. For example, if the 
flexion angle of the joint must be decreased (lifting of the tibia), 
an increase of the force on the musculus rectus femoris does not 
always yield the desired result. Frequently situations were encoun
tered in which a kind of locking occurs, such that an increase of the 
force on the musculus rectus femoris does not result in measurable 
changes of the joint configuration. To obtain the desired flexion 
angle, the only solution is to decrease the force on the musculus 
biceps femoris and the muscle on the medial side, followed by an 
increase of the force on the musculus rectus femoris and next an 
increase of the forces on the other two tendons (again). 
This phenomenon clearly indicates the non-linear behaviour of the 
joint. It also complicates the measurements, especially when the 
joint configuration must be altered majorly. The locking phenomenon, 
requiring repeated adaptation of the forces on the bracing wires, in 
combination with the time-dependent behaviour of the joint, resulting 
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in a force reduction and a change of the static equilibrium position 
after a certain loed has initially been applied, may result in exces
sive time needed to generate a certain joint configuration with 
corresponding desired forces on the muscle tendons. The behaviour of 
the joint described above has repercussions on the number of experi
ments that can be carried out on a particular joint specimen, because 
in ultimate cases it may take 1 hour to obtain the desired joint 
configuration. 

4.6 The dynamic behaviour of the 1oint; inf1uence of the dynamic 
1Jw1 

As was shown by Figs. 4.3.12 and 4.3.13, the magnitude of the dynamic 
load has a marked influence on the transfer functions obtained. 
Additional experiments done on KNEE9 for various magnitudes of the 
dynamic load illustrate this phenomenon as is shown in Figs. 4.6.1 
through 4.6.3. 
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Fig. 4.6.1 Influence of the dynamic load applied to the 
tibia upon

2
the transfer function H~. 11(f) 

KNEE9-i;[l,l,a,ut=7.5,;-30,Fb•ll8,Fr•240,Fa-97] 

2 KNEE9-B;[l,l,a,u~l5, ~=30,Fb•ll8,Fr•240,Fa·97] 

KNEE9-B;[l,l,a,u~25, ~30,Fb•ll8,Fr•240,F8•97] 

These experiments were also done for several flexion angles and 
static load levels and in all cases the same typical results were 
obtained. Increase of the magnitude of the dynamic loed leads to a 
decrease of the stiffness of the joint (as can be seen from Fig. 
4.2.4 and 4.2.5) and to an increase of the damping, when the elements 
of Bp(f) are considered. Fig. 4.6.3 shows that this is confirmed by 
the elements of the transfer function matrix BFl,o(f) (see Fig. 4.2.6 
and 4.2.7). As is seen from section 4.3 these changes in the stiff
ness of the joint are of the same order as changes due to changes in 
the static load on the muscle tendons, changes of the static equilib
rium position and damaging of the joint. This observation indicates a 
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failure of the Local Linearization Technique proposed in chapter 3, 
as the modal parameters determined from the transfer functions depend 
on the magnitude of the dynamic load applied to the tibia. This is in 
conflict with the assumed linearity of the joint for the magnitude of 
the dynamic loads applied. One of the possible reasons for failure 
indicated in chapter 3 may play a role, as the magnitude of the 
dynamic load applied can not be decreased substantially, without 
invoking a decrease of the signal to noise ratio (due to the finite 
sensitivity of the piezo-electric transducers). 
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Fig. 4.6.2 Influence of the dynamic load applied to the 
tibia upon

2
the transfer function H •• 22(f) 

INEE9-~[2,2,p,u~7.5,f-30,Fb•ll8,Fr•240,Fa•97] 

KNEE9-i;[2,2,p,ul•l5, ~-30,Fb•ll8,Fr•240,Fa•97] 

2 KNEE9-i;[2,2,p,ug-25, ~-30,Fb•ll8,Fr•240,Fa•97] 
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Fig. 4.6.3 Influence of the dynamic load applied to the 
tibia upon the transfer function Hp1 051(£) 

KHEE9-1Fl,o[5,l,a,u~-7.5,~·30,Fb•ll8,Fr•240,Fa·97] 

KNEE9-1Fl,o[5,l,a,u~l5, f-30,Fb=ll8,Fr=240,Fa•97] 

2 KNEE9-1rl,o[5,l,a,uf•25, ~30,Fb•ll8,Fr•240,Fa-97] 
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Consequently, the magnitude of the forces applied to the tibia may be 
too large to allow for linearization of the dynamic behaviour of the 
joint. A further reduction of the dynamic loads applied may be con
sidered (with a corresponding selection of more sensitive transduc
ers). It is felt however that such a reduction results in loads 
applied to the tibia which are well out of any physiological range, 
such that the practical use of the results obtained becomes question
able. To illustrate this the results from the experiments of Voloshin 
and Wosk (1983) are considered as given in Fig. 2.3.2. From these 
measurements it follows that for level walking, upon heel strike the 
accelerations on the tibia have a typical value of 
20 mts2 , which is in agreement with the acceleration levels given by 
Ginther (1968). To compare these values with the accelerations of the 
tibia in the experiments discussed in section 4.2, the 95\ confidence 
intervals for the accelerations during three particular experiments 
are given in Table 4.6.1. 

KREE9-a.[~,u~l5,~-30,Fb•ll8,Fr-240,Fa•97] :-16 •• +16 m;s2 

KNEE9-B;[~.u~·l5,f-30,Fb•ll8,Fr•240,Fa-97} :-15 •• +15 m;s2 

KNEE9-B;[~.u~15,f-30,Fb-118,Fr•240,Fa•97] :-0.8 .• +0.8 m/s2 

Table 4.6.1 95\ confidence intervals for the accelerations 
corresponding to the transfer functions indicated 
by the records given above 

The transfer functions corresponding to these experiments are given 
in Fig. 4.3.1 through 4.3.3. It is seen that for these experiments 
the accelerations are in the range of those found by Voloshin and 
Wosk (1983). A further reduction of the loads applied to the tibia, 
would result in accelerations that are far below those encountered 
during level walking, reducing the practical use of the results 
obtained. Of course this argumentation contains uncertainties due to 
the limited knowledge about the physiological accelerations. Another 
factor that may influence the validity of the argumentation given 
above is the shape of the accelerations in the experiments (see 
section 4.1) which does not match those measured by Voloshin and Wosk 
(1983). To verify whether the shape of the excitation signal influ
ences the occurrence of non-linear phenomena, another type of excita
tion was applied which results in a more physiological pattern of the 
accelerations. 
Sinusoidal excitation was selected for this purpose. Experiments were 
done on KNEElO (right knee, male, 55 years), in which the magnitude 
and the frequency of the sinusoidal load were varied. The only dif
ference between these experiments and those with random excitation is 
the shape of the dynamic load applied to the tibia. It turned out 
that the accelerations of the tibia are sinusoidal also with no 
additional frequency components (as may occur for non-linear behav
iour due to friction, e.g.). Therefore the amplitude of the measured 
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accelerations and the amplitude of the load applied to the tibia can 
be related directly. Denoting the amplitude of the acceleration si 
(i-1 ••• 6) with liil and the amplitude of the sinusoidal force fe with 
lfel it holds 

(4.6.1) 

if the force is applied along coordinate axis j (j-1,2,3) of the 
vector base connected to the tibia. f 8 in is the frequency of the 
sinusoidal force. Fig. 4.6.4 gives the results for such experiments, 
in which fain was set to 10, 20, 30 and 40 Hz and lfel was varied. 

Fig. 4.6.4 
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The transfer function ~.22 (f) obtained for 
experiments with sinusoidal loading. 
• lfel - 1.8 H; + lfel • 2.4 H; • lfel • 3.0 H 

10 
20 
30 
40 

1.35 
9.95 
4.80 
3.41 

2.4 

1.94 
12.13 

5.97 
3.79 

3.0 

2.84 
14.21 
6.40 
4.17 

Table 4.6.2 Amplitude of the accelerations for the experiments 
given in Fig. 4.6.4 

The results obtained agree both quantitatively and qualitatively with 
those obtained for random excitation. To illustrate this Fig. 4.6.2 
is considered. For random excitation it was found that an increase of 
the magnitude of the applied load leads to a decrease of the stiff
ness of the joint. For frequencies smaller than the resonance fre
quency an increase of the magnitude of the transfer function is found 
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when the magnitude of the dynamic load is increased. For freque~cies 
higher than the resonance frequency the opposite behaviour is found. 
Both these characteristics are also obtained for sinusoidal loading. 
It may therefore be concluded that the non-linearities are not bound 
to a particular excitation signal. 
For the experiments with sinusoidal loading given in Fig. 4.6.4 the 
amplitude of the accelerations [m/s2] attains the values given in 
Table 4.6.2. These values can well be compared with those found by 
Voloshin and Wosk (1983). It is seen that in this range of the 
magnitude of the accelerations on the tibia, the non-linearity of the 
dynamic behaviour of the joint 1a an important phen011enon. A reduc
tion of the magnitude of the dynamic load applied to the tibia to see 
if the LLT applies for these smaller loads, is therefore not taken 
into consideration. The value of the results given in section 4.2 and 
a possible method to deal with the non-linearities found will be 
discussed in section 4.7. 

4.7 Evaluation of the results obtained for random and sinusoidal 
excitation 

In this chapter a number of aspects of the dynamic behaviour of the 
knee joint have been discussed. Using the LLT proposed in chapter 3 
the dynamic behaviour of the joint can be quantified, although it 
turns out that linearization of the behaviour of the joint is not 
allowed for the range of the loads applied to the tibia. The transfer 
functions for various load levels show a marked shift, indicating a 
decrease of the stiffness of the joint with increasing load level. 
The value of the results is that they essentially give a good insight 
in the behaviour of the joint and typical parameter values for stiff
ness and damping can be obtained~ 

An important observation is that the results for various knee joint 
specimens may well be c011pared. Also the results for randOII and 
sinusoidal loading agree fairly well. It must be kept in mind however 
that the obtained results depend on the magnitude of the applied 
dynamic load. 
Due to the use of spectral analysis (which is an averaging process as 
discussed in appendix D) and random excitation, the transfer func
tions must be seen as to give an "average" behaviour of the joint for 
the loads applied. The non-linearities of the behaviour of the joint 
are translated to a kind of effective stiffness and damping. As the 
coherence function for all measurements was almost unity, the trans
fer functions seem to give an acceptable measure for the behaviour of 
the joint, despite the non-linearities involved. This may partly be 
due to the use of random excitation which is considered as a rather 
gentle excitation (compared to impuls- or step-like excitation). A 
description of the behaviour of the joint using the transfer func
tions obtained may therefore be considered. As was done in the work 
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of van Heck (1984), in this case the stiffness and damping character
istics of the joint can be calculated for various levels of the 
dynamic load applied. Such an approach may yield valuable information 
on the degree of non-linearity. It is noticed however that in this 
case no direct insight is given, as the non-linearities may partly be 
smoothed due to the use of spectral analysis and random excitation. 
This disadvantage may partly be eliminated by application of a time
domain analysis technique. Using measured time domain signals, the 
best fitting linear system can be determined to obtain stiffness and 
damping values for various levels of the dynamic load applied. 
Evidently such an approach may result in discrepancies between the 
measured and best fitting signals, Which can only be resolved by use 
of a non-linear dynamic model of the knee joint. Such a model is not 
provided, however, and must be focused on in future research. 
Therefore the use of a best fitting linear model is considered as an 
unavoidable alternative. On the other hand such a model may provide 
valuable information for development of a non-linear dynamic model of 
the knee joint. 
Chapter S focuses on such a best fitting linear model obtained from a 
time-domain analysis technique. 

4.8 Sugary 

An overview of the results for experiments on S knee joint specimens 
has been given in this chapter. It turns out that the behaviour of 
the joint and the influence of various measurement parameters (static 
load on the muscle tendons, static equilibrium position and damaging 
of the joint) can be quantified. Two factors have a significant 
influence: the stiffness of the bracing wires and the magnitude of 
the dynamic load applied to the tibia. As the influence of the magni
tude of the dynamic load is significant it has to be concluded that 
in essence the knee joint has to be regarded as a non-linear system, 
making application of a Local Linearization Technique questionable. 
However, including the magnitude of the dynamic load as an additional 
measurement parameter, an indication can be obtained about the behav
iour of the joint and the degree of non-linearity. It is noticed 
however that these non-linearitiea may partly be smoothed due to the 
use of random excitation and spectral analysis. Therefore a time
domain analysis technique may provide a more suitable tool to analyse 
the behaviour of the joint, as will be discussed in chapter S. 
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Chapter 5 Experiments II: Analysis in the time-domain 

From the experimental results for random and sinusoidal excitation 
given in chapter 4 it was concluded that a time-domain analysis may 
yield a more appropriate method to deal with the non-linearities 
encountered. This chapter gives an overview of the experiments car
ried out for such an analysis. Section 5.1 deals with the selection 
of the excitation technique and of a method to realize the chosen 
excitation. A description of the experiments carried out is given in 
section 5.2. In section 5.3 attention is paid to a method to obtain 
the parameters describing the best-fitting linear system from the 
measured responses of the joint subjected to this excitation. The 
results for these experiments are given in section 5.4, and discussed 
in summary in section 5.5. 

5.1 Selection of an excitation tecbnigue 

With regard to the results discussed in chapter 4 for random excita
tion, it is felt that a description of the knee joint in terms of a 
linear system is acceptable, if the system parameters are considered 
to depend on the magnitude of the applied dynamic load. To investi
gate this dependence a simple excitation technique may be applied 
such that the relevant system parameters may be extracted from mea
sured time-domain signals. The decision to apply step excitation for 
this purpose is motivated as follows: 

* due to the non-linearity of the behaviour of the joint, the 
results obtained from such an analysis are likely to depend 
on the shape of the excitation signal and on the initial 
conditions (displacements and velocities at the start of the 
experiment). These can (fairly) well be controlled for step 
excitation. 

* step excitation yields an excitation signal in which all 
relevant frequency components are excited, such that the 
expected resonance phenomena become observable (in contrast 
to sinusoidal excitation in which only one particular fre
quency component is excited). 

* extraction of the relevant system parameters for the best
fitting linear system can be done efficiently (see section 
5.3). 

* step excitation results in accelerations of the tibia which 
have a more or less physiological pattern (see section 5.4). 
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To analyse the behaviour of the joint under step excitation, experi
ments can be carried out similar to those described in chapters 3 and 
4 (merely the type of the excitation signal is changed). Therefore a 
number of topics discussed in these chapters will also be applied in 
the present chapter. 

Suppose a force fe is applied along one of the coordinate axes of the 
vector base connected to the tibia, which has the pattern given in 
Fig. 5.1.1 

Fig. 5.1.1 

----rfeo 

0 
-t 

Pattern of the force exerted on the tibia for 
step excitation 

An initially applied constant force feo is releaved at t•O. This 
particular form of step excitation can be applied by means of the 
installation shown in Fig. 5.1.2. 

' g 

Fig. 5.1.2 Schematical representation of the installation to 
apply the step excitation (see text) 

A force transducer (a) is connected to the brass housing R. This 
force transducer is connected to a small-sized electromagnet (b), 
which on its turn is connected to a loading weight (e) by means of a 
flexible rope (c) (length approximately 0.5 m). This rope is led over 
a pulley (d) which is flexibly suspended in the hook (f) of the 
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remote control travelling crane already mentioned in section 4.1. 
With this installation the step excitation shown in Fig. 5.1.1 can be 
realized as follows: 

* the electromagnet (b) is activated and a loading weight is 
attached to the rope (c). The pulley (d) is included to 
assure that friction does not significantly influence the 
force acting on the joint, as might occur when the rope (c) 
is led directly over the hook (f); 

* next the orientation of the rope (c) is adjusted, by move
ments of the travelling crane, to meet the desired orienta
tion which is inspected visually. This method provides suffi
cient accuracy, because, as will be shown in section 5.4, 
repeated experiments (requiring a re-installation of a load
ing configuration) yield fairly identical results; 

* after the knee joint and the loading installation have at
tained a static equilibrium position (usually within 30 
seconds), the static force feo acting on the joint can be 
measured with the force transducer. This force can be varied 
by proper selection of the mass of the loading weight (e); 

* next the electromagnet (b) is de-activated. The force feo 
will rapidly decrease as the electromagnet (b) is pulled away 
by the falling weight (e), resulting in a step excitation in 
which the force feo is releaved in approximately 2 ms. This 
finite time needed to apply the step excitation cannot be 
avoided as a pure step excitation is physically impossible. A 
time interval of 2 ms to releave the force feo is sufficient
ly small, however, to be neglected for the experiments car
ried out. This can proven by analyzing the response of a 
linear system, with the system parameters given in section 
5.4, to a ramp-like excitation with a rise-time of approxi
mately 2 ms. 

This particular excitation technique was selected because 

* the electromagnetic shaker used for the random and sinusoidal 
excitation can not exert a static force during a longer 
period of time; 

* for step excitation the dynamic behaviour of a possibly used 
mechanical loading device (a hydraulical shaker e.g.) may 
result in undesired disturbances. In case the force fe should 
suddenly be increased or decreased, the step-response of such 
a loading device is a critical characteristic, as undesired 
force fluctuations can be introduced due to vibrations of the 
loading device connected to the joint. With the excitation 
technique described above such fluctuations are negligible, 
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due to the rapid decoupling of the entire loading installa
tion. 

5.2 Description of the experiments 

Experiments were carried out on 3 knee joint specimens, EREEll, 
KNEE12 and KREE13 (where KNEEll was used in preliminary experiments). 
The experiments discussed here were done with three prime objectives: 

* determination of the behaviour of the joint for various 
values of the force fe0 : 

* determination of the effect of deliberate damaging of select
ed joint elements; 

* to get an indication about the reproducibility of the 
results. 

As a consequence the static equilibrium position and the forces on 
the muscle tendons were not varied in these experiments. This reduc
tion of the number of experiments had to be applied for the following 
reasons: 

* in comparison with the experiments with random excitation, 
the experiments with step excitation are more time consuming. 
This is due to 

- an increased time needed for proper adjustment of all 
charge amplifiers. For random excitation this can easily 
be done as a continuous response can be generated, where
as for step excitation this is not possible: 

- the need for repetition of each experiment to get an 
impression about the reproducibility of the experimental 
results, which requires proper installation of the load
ing mechanism discussed in section 5.1; 

* after change of the static equilibrium position and/or the 
load on the muscle tendons reconstruction of a previously 
used configuration must be done accurately if the effect of 
damaging of joint elements must be determined for various 
equilibrium positions and/or loads on the muscle tendons. 

The static equilibrium position selected for this purpose is charac
terized by a flexion angle of 20°. This configuration was chosen 
because for level walking this flexion angle determines the configu
ration of the lower leg at heel strike, where a "step-like" excita
tion is most likely to occur. 
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A point of interest for the experiments is that the diameter of the 
bracing vires vas reduced from 1 to 0.75 mm. As discussed in section 
4.4. such a reduction, introduced to reduce the contribution of the 
stiffness of the bracing vires, leads to a decrease of the resonance 
frequency for vibration mode I. 

The experiments were done on knee joint specimens prepared as dis
cussed in section 4.1. 
In the experiments a number of measurements were done for different 
values of the force feo to obtain an impression about the behaviour 
of the undamaged joint. Next these measurements were repeated after 
damaging the joint. For this purpose it vas decided to try and deter
mine for KNEE12 the influence of cutting the medial meniscus and the 
anterior cruciate ligament, whereas for KNEE13 additionally the 
lateral meniscus was cut. These operations were done in situ without 
removing the joint specimen from the experimental set-up. 
To be able to reach the anatomical structures mentioned above , an 
incision has to be made along the patellar ligament. When the knee 
joint specimen is mounted in the experimental set-up, areas of the 
capsular fibres can be determined by palpation along the patellar 
ligament which can be considered unloaded (in comparison with the 
patellar ligament itself). It therefore seems reasonable to assume 
that in these areas incisions can be made without disturbing the 
force transmission through the knee joint. The length of these inci
sions is approximately 40 mm. After these incisions are made, a 
window was dissected carefully in the joint capsule on either side of 
the patellar ligament (see Fig. 5.2.1). 

Fig . 5 . 2 . 1 View on the femur through the window on the 
lateral side of a knee joint specimen 
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These windows have a width of approximately 30 mm. Through these 
openings the infrapatellar pad of fat can be removed to obtain an 
empty volume between the patellar ligament and the tibia and the 
femur which is necessary to get a view on the anterior cruciate 
ligament. Next the anterior horn of the medial meniscus is cut first, 
by means of a radial incision (a) as is indicated schematically in 
Fig. 5.2.2. 

Fig. 5.2.2 

A medial meniscus, B - lateral meniscus, 
C anterior cruciate ligament 

Top view on the tibia with incisions made to cut 
the anterior horn of the menisci and the anterior 
cruciate ligament indicated by dashed lines 

After this operation, the anterior cruciate ligament is cut (Fig . 
5.2.2 (c)) which is a more difficult operation due to the limited 
view on this ligament in the joint configuration handled (20° 
flexion). Finally (for KNEE13) the lateral meniscus can be cut in a 
way similar to the medial meniscus (Fig. 5.2 . 2 (b)). To assure that 
the damage intended to be brought about is actually realized, the · 
specimens were inspected visually after the experiments confirming 
the effectiveness of the operations described above. 

For the operations carried out no change in the static load on the 
muscle tendons or the static equilibrium position could be measured. 
Measurements carried out before and after creation of the windows and 
removal of the intrapatellar pad of fat neither showed significant 
changes in the recorded behaviour of the joint. 

5.3 Determination of the best-fitting linear system for step 
excitation 

The response of the joint to the step excitation described in section 
5 .1, will be described in terms of the best-fitting linear system. 
For this purpose the 6*6 transfer function matrix ~(f) introduced in 
chapter 3 will be used, relating the displacements of the tibia to 
the applied dynamic load . 
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These windows have a width of approximately 30 mm. Through these 
openings the infrapatellar pad of fat can be removed to obtain an 
empty volume between the patellar ligament and the tibia and the 
femur which is necessary to get a view on the anterior cruciat• 
ligament. Next the anterior horn of the medial meniscus is cut first, 
by means of a radial incision (a) as is indicated schematically in 
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Fig. 5.2.2 

A - medial meniscus, B - lateral meniscus, 
C - anterior cruciate ligament 

Top view on the tibia with incisions made to cut 
the anterior horn of the menisci and the anterior 
eructate ligament indicated by dashed lines 

After this operation, the anterior cruciate ligament is cut (Fig. 
5.2.2 (c)) which is a more difficult operation due to the limited 
view on this ligament in the joint configuration handled (20° 
flexion). Finally (for KNEE13) the lateral meniscus can be cut in a 
way similar to the medial meniscus (Fig. 5.2.2 (b)). To assure that 
the damage intended to be brought about is actually realized, the~ 
specimens were inspected visually after the experiments confirming 
the effectiveness of the operations described above. 

For the operations carried out no change in the static load on the 
muscle tendons or the static equilibrium position could be measured. 
Measurements carried out before and after creation of the windows and 
removal of the intrapatellar pad of fat neither showed significant 
changes in the recorded behaviour of the joint. 

5.3 Determination of the best-fitting linear system for step 
excitation 

The response of the joint to the step excitation described in section 
5.1, will be described in terms of the best-fitting linear system. 
For this purpose the 6*6 transfer function matrix ~(f) introduced in 
chapter 3 will be used, relating the displacements of the tibia to 
the applied dynamic load. 
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5.3.1 Theoretical concept for a curve-fit procedure 

In chapter 3 it was derived (relations (3.3.43) and 3.3.60) 

(5.3.1) 

for a force fe applied along a line Deo which coincides with one of 
the coordinate axes of the vector base connected to the tibia. The 
transfer function matrix ~(f) can be written as 

~(f)- (5.3.2) 

where ~k and sk are the residue matrix and pole, respectively, for 
each of the ~vibration modes in the frequency range of interest. If 
the step excitation is applied along coordinate axis j (j-1,2,3) it 
holds 

fe(f) - ( t &(f) -~ ) feo (5.3.3) 

~ 
sk exp(skt) ~~ + ik exp(ikt) ~~ i- - :E (5.3.4) 

lt==l 

. Nm 
exp(skt) ~a + exp(ikt) ii ,!- :E (5.3.5) 

k=l 

Nm 
;k exp(skt) ~i + 1 exp(ikt) ii ,!- :E (5.3.6) 

k-1 sk 

Here 6(f) is Dirac's delta function for f-o. The 6*1 complex valued 
matrices ~~ are given by 

(5.3.7) 

As Beo coincides with coordinate axis j, li is identical to column j 
of the residue matrix ~k· In appendix E it is indicated how the 
poles sk and the column matrices ~ can be obtained from the measured 
accelerations for such an experiment by means of a least-squares 
curve-fit procedure which uses relation (5.3.4) as a starting point. 
This curve-fit procedure is similar to the curve fit procedure devel
oped by Hergeay (1980) to determine the modal parameters from measur
ed impulse responses. This particular curve-fit procedure was select
ed because essentially it consists of a double linear regression to 
obtain the poles and residues. This is an advantage over time-consum
ing, general purpose non-linear curve-fit procedures which also 
require an initial guess for the unknown parameters. The former 
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curve-fit procedure mentioned above requires only little computation
al effort and does not require an initial estimate for the unknown 
paremeters. 
To assure that the velocity i at t-o vanishes. the following con
straint equation must be included (see appendix B) 

(.5.3.8) 

yielding with relation (.5.3.7) the requirement 

(.5.3.9) 

The complex column matrices 1i determine the vibration pattern of the 
tibia. It is obvious that these complex quantities cannot be related 
directly to physical displacements. Due to demping the vibration 
pattern depends on the specific load exerted. If demping is neglect
ed. the colomns 1i and the poles sk are purely imaginary and the 
vibration pattern can easily be represented. In this case the imagi
nary part of the columns 1i is proportional to the physical displace
ments measured in case mode k is excited. Representation of the 
vibration pattern for a particular vibration mode k is therefore 
simplified. SUch an approach may also be followed for lightly demped 
systems to get an impression about the characteristics of a vibration 
mode. This will be elucidated in section .5.4 • 

.5.3.2 Application of the curve-fit procedure 

To illustrate how the curve-fit procedure was used for the measured 
signals, a typical experiment is considered, which yielded the accel
erations s1 and s2 as shown in Pig. 5.3.1. 

2.0 
s, 

[mtsZ] 

t 
0*444+4~~~~~~--~--~1.0 

-t:sl 

-4.0 

Fig. 5.3.1 Accelerations s1 and i 2 measured for step 
excitation with a force applied in p-direc
tion 

These signals were obtained using a sampling frequency of 900 Hz. It 
is seen that no step is found for the accelerations at t-o whic~ 

! 
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should occur for a linear system (see Fla. 5.3.3 also). Whether this 
is due to non-linearltiea cannot be gathered from the slcnals, as 
here the step-response of the analog filters 1n the data-acquisition 
system (cut-off frequency 100 Bz) playa a role, resulting in tran
sients in the measured accelerations. Also the finite time in which 
the force feo is releaved may play a role, although this is not 
likely to be important. It is obvious that these transients must be 
dealt with in the curve-fit procedure, which is based on an ideal 
step response. From numerical simulations of theoretical step re
sponses for a linear system (with the characteristic shape given in 
Fig. 5.3.1) it was found that a good approximation for the poles and 
residues can be obtained if in the curve-fit procedure only the data 
for ~.05 a are used. In these simulations the analog filters were 
incorporated using a digital implementation of the Butterworth 
filters in the data-acquisition system (Ahmed and Batarajan 1983). 
Therefore also the experimental results obtained were treated simi
larly. 
The signals 81 and i 2 contain two dominant frequency components. This 
is illustrated by means of the autopower spectrum of these signals, 
given in Fig. 5.3.2. 

-flliol so -f [Hz] 

Fig. 5.3.2 Autopower spectrum of the signals 81 and s2 
given in Fig. 5.3.1 

so 

From these figures it is seen that, like for random excitation, two 
resonance frequencies seem to be present. Therefore the curve-fit 
procedure was used to estimate the system parameters for 2 vibration 

Fig. 5.3.3 Measured ( __ ) and fitted (----) signals s1 
and s2 
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modes (Nm- 2; mode I and mode II as introduced in chapter 4). A 
standard time interval of 0.5 s for the curve-fit procedure is used 
(therefore the system parameters are estimated from the data in the 
time interval 0.05-0.55 s), resulting in the original and fitted 
signals s1 and s2 as given in Fig. 5.3.3. It is seen that a reason
able agreement is obtained, which is representative for all measure
ments carried out. 

5.4 Pre- and post-operative results for step excitation 

In this secti(_ the results for the experiments on KNEE12 and KNEE13 
are summarized. In section 5.4.1 attention is paid to the influence 
of the parameters magnitude of the force feo and damaging of joint 
elements on the resonance frequencies and damping values. Section 
5.4.2 deals with the vibration modes of the tibia, whereas the repro
ducibility of the results is focused on in section 5.4.3. 

The experiments discussed were carried out on KNEE12 (left knee, 
female, 38 years) and KNEE13 (right knee, female, 38 years). These 
knees are a bilateral pair. For both specimens a flexion angle of 20° 
was used, whereas also the forces on the muscle tendons were chosen 
identically (Fa- 120 N, Fr = 150 N, Fb- 110 N). All experiments for 
a particular specimen (except those done to test the reproducibility 
of the results) were carried out within 6 hours on one day. 

5.4.1 Resonance frequencies and damping 

As discussed in section 5.3.2, the measured accelerations were used 
to determine the system parameters (poles and residues) for 2 vibra
tion modes (mode I and mode II). On forehand it is noted that the 
undamped resonance frequencies f 0 I and foii• for mode I and mode II 
respectively, have typical values of 12 and 23 Hz, which may well be 
compared with those found for random excitation in chapter 4 (taken 
into account the reduction of the diameter of the bracing wires to 
0.75 mm). Furthermore the vibration modes agree fairly well with the 
corresponding modes described in chapter 4. Mode I mainly involves 
displacements of the loaded end of the tibia in p-direction (flexion
extension) whereas for mode II displacements of the end of the tibia 
in a-direction dominate. 

Fig. 5.4.1 gives the undamped angular velocity wgi - 2~fgi for KNEE12 
for experiments in which the force feo was applied in P-direction. As 
can be seen wgi decreases with increasing force values, being a clear 
indication for the non-linear behaviour of the joint. After cutting 
the medial meniscus the resonance frequency increases. If the reso
nance frequency is related to the stiffness of the joint this would 
indicate an increase of the stiffness (for this vibration mode) after 
cutting the medial meniscus. After subsequently cutting the anterior 
cruciate ligament wgi decreases, being an indication for a decrease 
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of the stiffness of the joint. After cutting the anterior eructate 
ligament the stiffness of the joint is still larger than for the 

~ 
[r/s) 

teo 

75 

10 20 

Fig. 5.4.1 The undamped angular velocity w
0 

for vibration 
mode I for a force feo applied in P-direction 

• KNIE12, intact 
~KNIE12, medial meniscus cut 
•KNE£12, anterior cruciate ligament cut 

intact joint however. Fig. 5.4.1 also shows that the effect of damag
ing of joint elements is not identical for the various magnitudes of 
the force feo applied. Cutting the medial meniscus yields the most 
pronounced changes for a force of approximately 10 N, whereas subse
quently cutting the anterior cruciate ligament mainly influences the 
results for a force feo of 20 N. 

As can be seen from Fig. 5.4.1 repetition of a particular experiment 
yields almost identical results. Variations in ~I for a repeated 
experiment are far smaller than those due to a change in the applied 
force feo or due to damaging of the joint. This indicates that the 
experimental procedure used to apply the step excitation can be 
carried out with sufficient reproducibility. 

Similar experiments were carried out for KNEEl~ yielding the results 
for wg1 given in Fig. 5.4.2. 
For the undamaged joint a similar behaviour is found as for KNEE12, 
except that the values for ~I are at a higher level. Successive 
cutting of the medial meniscus, the anterior cruciate ligament and 
the lateral meniscus yields a marked reduction of wgi indicating a 
clear decrease of the stiffness of the joint resulting from each of 
these operations. This behaviour might have been expected on fore
hand, if it is assumed that the joint elements mentioned contribute 
to the stiffness of the joint and loss of their function does not 
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influence the behaviour of the remainder of the joint elements. 
Obviously for KNEE12 this assumption does not hold. 
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Fig. 5.4.2 The undamped angular velocity w
0 

for vibration 
mode I for a force feo applied in ~-direction 

• KNEE13, intact 
t:.. KNEE13, medial meniscus cut 
•KNEE13, anterior eructate ligament cut 
VKNEE13, lateral meniscus cut 

The values for the dimensionless damping ~~ corresponding to the 
values for wg1 given above are presented in Fig. 5.4.3 and 5.4.4, 
KNEE12 and KNEE13 respectively. 
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Fig. 5.4.3 The dimensionless damping ~ for vibration mode I 
for a force applied in ~-direction 

• KNEE12, intact 
t:..KNE£12, medial meniscus cut 
•KN!El2, anterior eructate ligament cut 
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Fig. 5.4.4 The dimensionless damping e for vibration mode I 
for a force applied in P-direction 

• KNEE13 , intact 
A KNEE13. medial meniscus cut 
•KNEE13, anterior cruciate ligament cut 
V KNEE13. lateral meniscus cut 

For INEE12, e~ for the intact joint decreases with increasing value 
of feo although these changes are only modest compared to those found 
for KNEE13. CUtting the medial meniscus results in a decrease of the 
damping e~ (except for the highest applied force fe0 ). Subsequently 
cutting the anterior cruciate ligament does not significantly influ
ence the damping values, except for the highest applied force feo· 
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Fig. 5.4.5 The undamped angular velocity w0 for vibration 
mode II for a force feo applied in a-direction 

• KNEE12, intact 
A KNEE12, medial meniscus cut 
•KNEE12, anterior cruciate ligament cut 
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For KNEE13 a rather different pattern is found. For the intact joint 
the damping ef increases with increasing force feo' On cutting the 
medial meniscus a clear decrease of the damping is found. Subsequent
ly cutting the anterior cruciate ligament results in an increase of 
the damping except for the highest applied force feo· Subsequently 
cutting the lateral meniscus does not significantly influence the 
damping value ef. 
For KNEE12 experiments were done in which the force feo was applied 
in a-direction. For the undamped resonance angular velocity w~II this 
yielded the results given in Fig. 5.4.5. 
For the intact joint w~II decreases with increasing force feo· 
Cutting the medial meniscus yields a decrease of w~II' except for the 
smallest force feo applied, while cutting the anterior cruciate 
ligament yields a further decrease. These results indicate a decrease 
of the stiffness of the joint for this vibration mode. Fig. 5.4.6 
gives the corresponding values for the damping eli' indicating an 
increase of the damping with both increasing force feo and subsequent 
damage brought about. Obviously cutting the anterior eructate liga
ment has a more significant influence for this vibration mode 
(unfortunately these experiments could not be carried out for KNEE13 
due to the limited time available after a number of experiments were 
done to be able to get an impression about the reproducibility of the 
results.) 
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Fig. 5.4.6 The dimensionless damping e for vibration mode II 
for a force applied in a-direction 

• KNEE12, intact 
~KNEE12, medial meniscus cut 
•KNEE12, anterior eructate ligament cut 

The results given above confirm the essentially non-linear behaviour 
of the joint, with stiffness and damping properties that depend upon 
the magnitude of the load applied, as found for random and sinusoidal 
excitation. Besides it is shown that damage brought about to some 
selected joint elements yields changes in the stiffness and damping 
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properties that can well be determined. Interpretation of the results 
obtained is complicated however, which emphasizes the need for a 
numerical model to study the behaviour of the joint. 

5.4.2 Vibration modes 

As discussed in section 5.3 the imaginary part of the column matrices !' (which are the columns of the residue matrices ~k) may be used to 
visualize the vibration modes of the tibia. In the sequel these 
imaginary parts are denoted with sa. They represent the modal dis
placements of the particular point and in the direction an accelerom
eter is mounted. 
To describe the movements of the tibia these displacements can be 
used to determine the modal finite helical or instantaneous rotation 
axis (Spoor and Veldpaus 1980, Woltring et al. 1985). In this case 
the movements of the tibia with respect to the static equilibrium 
position (or with respect to the femur) are represented by a rotation 
wh about and a translation ~ along a line with unit direction vector 
~as illustrated in Fig. 5.4.7. 

Fig. 5.4.7 Description of the kinematics of the tibia by 
means of helical parameters 

As depicted in chapter 3 the displacement ~I of an arbitrary point 
on the tibia with respect to the static equi~brium position is given 
by 

(5.4.1) 

where !p is the column matrix describing the position of point P with 
~T ~ ~ ~ 

respect to the vector base 40- [toa 'op 'oa1· ~and !0 describe the 
translations and rotations, respectively, with respect to the static 
equilibrium position and orientation and can be obtained from (rela
tion (3.3.41)). 

(5.4.2) 
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with ! as the 6*1 column matrix containing the displacements obtained 
from the 6 accelerometers on the tibia and !-1 as the 6*6 matrix 
given by relation (3.3.58). Row relation (5.4.1) can also be written 
in terms of the helical axis parameters 

t:.Ipo - th Db + •b Db * <~p - !b) (5.4.3) 

~!!b-1 ~~b-o (5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 

(in this time-domain description only tb and wh are a function of 
time, Db and lb are constants). 
Row relation (5.4.3) can simply be transformed to the modal domain to 
yield the modal helical axis parameters ~k• ~k· •tk and£~ for 
vibration mode k and a force applied in direction j (j•l,2 or 3). 
These are related to the corresponding modal translations and rota
tiona dtt and ~k by (relation (5.4.2)). 

(5.4.8) 

and can be determined from the modal equivalent of relations (5.4.3) 
through (5.4.7). 
To indicate bow the modal helical parameters can be obtained it is 
written 

<d~t> T • [ c~kl 

(~k)T • [w~kl 

(~)T • [4_ ~ ... ui6 

(5.4.9) 

(5.4.10) 

(5.4.11) 

From relations (5.4.8) and (3.3.58) it then easily can be derived 
that 

c~kl • uh c~k2- ~ c~k3 • ul:3 (5.4.12) 

ll'~kl - (~ - ui6>tz5 ·~k2 • <ui4 - ul1>/z5 

""~k3 - <ul4 - ul1>/Y5 (5.4.13) 

Relation (5.4.13) can now easily be used to determine the modal 
rotation ""~kl' ·~k2 and ""~k3 by means of the Reuleaux method. This is 
illustrated for the parameter •~ttl in Fig. 5.4.8. 
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Determination of the modal rotation parameter 
·~kl by means of the Reuleaux method from calcu-
lated modal displacements ui2 and ul6 (see text) 

The modal displacements ~ and ui6 are drawn as vectors in the {J--y 
plane, their endpoints being connected by a straight line lp (note 
that ~ and ji6 are obtained from accelerometers with measurement 
direction in the {J--y plane, such that ~ results from the triaxial 
accelerometer mounted at Or and ui6 from the uni-axial accelerometer 
mounted at point P6 with coordinates ~6 • [0 z5 y5]). The modal 
rotation parameter ~~kl is now obtaine~ from the angle between the 
line lp and the 1:axis. A similar procedure can be applied to deter
mine the parameters ·~k2 and ·~kl' 
Once these parameters have been determined, the parameters ~~. ~. 
~ and ilk can easily be found from the modal equivalent of rela
tions (5.4.4) through (5.4.7). 

rig. 5.4.9 

100 

ISO 

Reconstructions for the modal rotation parameter 
wg12 for IHEE12. The dashed area is the envelope 
of all reconstructions (see text) 
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On forehand it is expected that the modal helical parameters are 
influenced by the magnitude of the load applied and damaging of joint 
elements. For this purpose the Reuleaux plots (as given in Fig. 
5.4.8) were composed for KNEE12 and KNEE13, combining all measure
ments carried out in one picture. This yields the pattern as given in 
Fig. 5.4.9 for KNEE12 to obtain the parameter w€12 . The dashed area 
is the envelope of all reconstructions which vary without any observ
able pattern. 
Whether this is due to errors (measurement errors, curve-fit errors) 
can not be specified. Therefore the average intersection (indicated 
by the dash-line) was taken to compute the averaged modal helical 
axis parameters. This was carried out for KNEE12 for a force applied 
in a- and P- direction and for KNEE13 for a load applied in P-direc
tion, yielding the results in Table 5.4.1. 

Table 5.4.1 Modal helical parameters for KNEE12 and KNEE13 

KNEE12 vibration mode I, force applied in P-direction 

wg1 • -0.037 [rad] 

<ng1>T - [0.97 0.2 0.121 ; <!g1>T - [-0.02 -0.01 0.17] [m] 

KNEE12 vibration mode II, force applied in a-direction 

wh2 - 0.014 [rad] -3.10-4 [m] 

(!h2)T - [+0.01 -0.10 0.14] [m] 

KNEE13 vibration mode I, force applied in P-direction 

wg1 • -0.026 [rad] ~l - -1.10-3 [m] 

(~1)T • [0.92 -0.34 -0.19] 

For an interpretation of these results it is essential to recall that 
KNEE12 and KNEE13 are a bilateral left and right knee joint, respec
tively. The modal helical axis parameters are represented in Fig. 
5.4.10 as their projections on the a-p and a-1 plane. 
A first conclusion is that qualitatively the modal helical axis for 
mode I obtained for KNEE12 and KNEE13 is mirrored with respect to the 
P-l plane, which might be expected for a bilateral pair. 
Possibly mode I is determined by the contact between the tibia and 
the femur in the lateral compartment,whereas mode II (determined for 
KNEE12) seems to be determined by the contact between the tibia and 
the femur in the medial compartment. From the data given for KNEE12 
and KNEE13 in Table 5.4.1 it follows also that mode I mainly involves 
rotations about the a- and p-axis (flexion-extension and exo-endo 
rotation) where for mode II exo-endo rotation and ad-abduction are 
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dominant. These findings clearly demonstrate the three dimensional 
nature of the dynamic behaviour of the joint. 

1.,.4<ra1 

Fig. 5.4.10a 
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Projections of the modal helical axes for INEE12 
and XNEE13 on the a-p plane, according to the 
data given in Table 5.4.1. 
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Fig. 5.4.10b Projections of the modal helical axes for KNEE12 
and KNEE13 on the a-1 plane, according to the 
data given in Table 5.4.1. The tibial plateau is 
located at 1 - 190 mm (approximately) 
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5.4.3 Reproducibility of the results 

As mentioned in chapter 4, for the experiments with random excitation 
removal of the knee joint specimen from the experimental set-up, 
storage overnight and re-installation of the specimen the day after 
did not yield significant changes in the results obtained. This was 
not analysed in detail, however. For the experiments with step exci
tation on KNEE13 this was focused on in more detail. Before pre
senting the results for such repeated experiments on day 1 and day 2 
it is noticed that this procedure may be influenced by 

* differences in the static equilibrium position of the speci
men (which were kept as small as possible by proper measure
ment of the position of a number of fixed points on the tibia 
relative to the foundation of the experimental set-up); 

* differences in the load exerted on the muscle tendons (which 
were kept within 5 N); 

* differences in the behaviour of the joint due to progress of 
autolysis . 
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Fig. 5.4.11 The undamped angular velocity w
0 

and the 
dimensionless damping e for vibration mode I 
for a force applied in ~-direction 

D. J.CNEE13 day 1 
• KNEE13 day 2 

Therefore it is felt that the results for the parameters wgi and e~ 
shown in Fig. 5.4.11 show a good reproducibility, although both the 
resonance angular velocity and the damping attain a somewhat higher 
value on day 2. 
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5.5 Discussion of the results 

In section 5.4 the results from a time-domain analysis for two knee 
joint specimens have been presented in terms of the modal parameters 
describing the best-fitting linear system. From the data given the 
following conclusions can be drawn: 

* the dependence of the stiffness and damping characteristics 
of the joint on the magnitude of the applied force must be 
taken into account as this influence cannot be neglected 
compared to the influence of damaging of the joint. 

* for the intact joint, the resonance frequencies and damping 
values decrease and increase, respectively, with increasing 
force feo· This is in agreement with the results obtained for 
random excitation (see section 4.6) where an increase of the 
variance u: of the excitation signal yielded the same charac
teristics. 

* the spatial orientation of the vibration modes for the un
damped joint shows a scatter which can not be explained at 
this juncture. 

* the influence of damaging of joint elements upon the stiff
ness and damping characteristics can well be determined. 
Although the changes found are well bounded, they are signif
icant as they are far larger than the variances in the 
results obtained for repeated experiments. This also indi
cates that step excitation is a useful tool to analyse the 
behaviour of the joint. 

The results obtained for INEE12 and KNEE13 show a rather distinct 
behaviour for vibration mode I after cutting the medial meniscus and 
the anterior eructate ligament. Further research is necessary to 
establish whether these phenomena are typical or whether this is the 
result of uncontrolled changes in the parameters describing the 
static equilibrium position of the joint. Especially this applies for 
the static equilibrium position of the joint which could only be 
measured with limited accuracy. A numerical model of the knee joint 
is indispensable for such an analysis as this provides a tool for 
systematic analysis of the influence of various measurement param
eters. 

5.6 Srnmnan 

In this chapter a description has been given of the results obtained 
for step excitation of the knee joint using a time-domain analysis 
technique. As was expected from the results in chapter 4, the magni
tude of the dynamic load applied has a marked influence upon the 
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stiffness and damping values for both vibration modes. Deliberate 
damaging of selected joint elements also yields a well observable 
change in the dynamic behaviour of the joint although these changes 
are difficult to interpret. Here the use of a non-linear dynamic 
numerical model of the knee joint seems inevitable. An important 
observation is however, that the experimental method discussed here 
enables to quantify the behaviour of the joint and therefore may 
provide a valuable tool for validation of such a model. 
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Chapter 6 Conclusions and recommendations 

In this chapter a recapitulation is given of the conclusions that can 
be drawn from chapters 2 through S (section 6.1), as well as a number 
of recommendations for further research (section 6.2). 

6.1 Conclusions 

The present thesis deals with aspects of the dynamic behaviour of the 
human knee joint. Emphasis was laid on an experimental strategy to 
try and find the important characteristics and parameters for the 
behaviour of the joint under dynamic loading in post-mortem experi
ments. This approach was adapted to obtain guidelines for development 
of a numerical model describing the dynamic behaviour of the joint. 

Although both the (quasi-)static and dynamic behaviour of the joint 
have been focused on in a number of experimental and theoretical 
studies, a literature review revealed that a lack of knowledge exists 
on 3 important subjects: 

* an understanding of the dynamic behaviour of the joint is not 
provided, neither from experiments nor from theoretical 
studies. This not only refers to the behaviour of the joint 
as a whole, but also to the influence of the individual joint 
elements and the interactions between them; 

* the constitutive behaviour of the soft tissues (ligamentous 
structures, menisci, articular cartilage) is only known to a 
limited extent. Especially for 2 or 3-D loading configura
tions both the experimental tools and numerical models must 
be developed or are to be validated; 

* (estimates for) the in vivo loads acting on the joint as a 
whole or on the individual joint elements are only poorly 
known. 

Due to the complexity of the non-linear, time-dependent behaviour of 
the joint, experiments can only provide part of the knowledge re
quired. Use of a numerical model is unescapable as neither from in 
vivo nor from post-mortem experiments the function of the knee joint 
for the force transmission in the musculoskeletal system can be fully 
understood. This is due to: 

* the limited number of parameters that can be determined from 
in vivo experiments; 
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* the limited number of experiments that can be done in post
III.Ortam experiments on an individual joint specimen due to 
progress of autolysis; 

* the irreversibility of experiments in which some part of the 
joint is damaged to assess its influence, whereas the se
quence in which such operations are carried out may be of 
importance because of the non-linearity of the mechanical 
behaviour of the joint: 

* it difficult to assess what are to be considered as typical 
characteristics of the behaviour of the joint due to biologi
cal variability: 

* robust changes in the material properties of the joint ele
ments can not be introduced, although this might be a useful 
tool to examine the effect of the joint elements upon the 
dynamic characteristics of the joint. 

The use of a numerical model eliminates these handicaps to a large 
extent. Moreover such a model may provide guidelines for experiments 
to validate the model or to come to refinements in both the theoreti
cal concept as well as the experimental techniques required. 

A mathematical model of the human knee joint should be formulated 
starting from basic knowledge of the behaviour of the joint. For this 
purpose in chapter 3 an experimental strategy was presented intended 
to result in guidelines (obtained from experiments) for development 
of such a 111.0del. In view of the expected non-linearity of the behav
iour of the joint, an approach was proposed to eliminate geometrical 
non-linearities by considering only small deflections with respect to 
a static equilibrium position. This linearization procedure (LLT) was 
also expected to reduce physical non-linearities. The LLT results in 
a description of the joint by means of a linear system with system 
parameters (poles and residues) dependent on the static equilibrium 
position of the joint, the magnitude of the loads exerted on selected 
muscle tendons to create this equilibrium position and the degree to 
which damage is brought about to individual joint elements. To obtain 
these system parameters transfer function analysis was selected as an 
efficient tool to relate the measured responses (accelerations and 
transmitted loads) to the dynamic load applied to the tibia. 

In chapter 4 the results for the approach proposed in chapter 3 were 
given as obtained from experiments with random excitation. Four 
important conclusions could be drawn from these experiments: 

* creation of a stable, static equilibrium position of the 
joint by means of forces on the musculus biceps femoris, the 
musculus rectus femoris and a muscle on the medial side of 
the joint is possible, although the non-linear time-dependent 
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behaviour of the joint causes experimental difficulties. A 
non-bijective relationship vas found to exist between the 
loads exerted on the muscle tendons and the spatial position 
and orientation of the tibia relative to the femur. Additi
onally. relaxation phenomena cause a problem for the 
experiments; 

* the dynamic behaviour of the joint has a relevant frequency 
range of 0 to 50 Hz. in which two vibration modes seem to be 
present. The finite stiffness of the bracing vires used to 
apply forces on the muscle tendons must be taken into 
account. 

* a description of the dynamic behaviour of the joint by means 
of transfer functions enables to quantify the influence of 
the static equilibrium position. the magnitude of the loads 
on the muscle tendons and damaging of joint elements; 

* the linearization procedure described in chapter 3 fails due 
to the essential non-linear behaviour of the joint. as the 
stiffness and damping characteristics obtained depend on the 
magnitude of the applied dynamic load. although the coherence 
function for the transfer functions does not indicate this 
(and therefore should be treated with care). A reduction of 
the magnitude of the applied loads vas not taken into consid
eration because of an undesired decrease of the signal to 
noise ratio and the observation that the accelerations of the 
tibia in the experiments would then attain values well out of 
any physiological range. This finding is important for devel
opment of a numerical model as any linear model of the joint 
is to be rejected. 

The non-linearity of the behaviour of the joint can be taken into 
account by introducing a dependence of the system parameters for the 
best-fitting linear system on the magnitude of the applied load. This 
strategy has been worked out in chapter 5 where step-excitation in 
combination with a time-domain analysis technique was applied. In 
these expariments only one static equilibrium position and corre
sponding forces on the muscle tendons were considered. The results of 
these experiments confirm the results described in chapter 4 as to 
the non-linearity of the joint. The effect of damaging the menisci 
and the anterior cruciate ligament could well be determined. Inter
pretation of the results is difficult. especially as the two specimen 
analysed show a different behaviour. This may be due to some un
controlled changes in the static equilibrium position which could 
only be measured with limited accuracy. On the other hand it must be 
recalled that the response of the joint is described by means of the 
best-fitting linear system. which does not necessarily lead to a 
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physically interpretable description of the non-linear system consid
ered. A numerical model of the joint is indispensable at this 
juncture. 
Reviewing the results obtained for the experiments described in 
chapters 4 and 5, it is observed that the non-linear behaviour of the 
joint results in a decrease of the apparent stiffness and an increase 
of the apparent damping if the magnitude of the applied load is 
increased (which is a phenomenon found for random, sinusoidal as well 
as step excitation). As the 3-D static load-displacement characteris
tics of the joint given in literature seem to lend themselves (with
out problems) to local linearization, it is conceivable that the non
linearities found are due to essentially non-linear damping, such 
that an increase of the vibration amplitudes (or velocities) results 
in an increase of the damping (higher order velocity dependent 
damping may be thought of). Such a non-linearity may partly explain 
the results obtained for KNEE13 (chapter 5). Damaging the menisci or 
the anterior cruciate ligament is expected (and found) to yield a 
decrease of the stiffness. This reduction of the stiffness of the 
joint will, for the same magnitude of the load applied, result in 
larger vibration amplitudes as compared to the undamaged joint. If 
the damping depends on the vibration amplitudes as described above, 
damaging of a joint element will result in an increase of the 
damping. On the other hand damaging of a joint element may lead to a 
decrease of the damping due to the loss of its functionality for the 
joint as a whole. The degree to which each of these factors plays a 
role can not be clarified at this stage, but the results for KNEE13 
indicate that by cutting the medial meniscus a substantial loss of 
damping is introduced which is not counterbalanced by an increase of 
the damping due to increased vibration amplitudes. After cutting the 
anterior cruciate ligament a reversed behaviour is found, whereas the 
effect of cutting the lateral meniscus is far less pronounced. 
Whether the phenomena discussed above are of importance can be 
analysed in a numerical model of the joint. In any case it may be 
concluded that the behaviour of the knee joint is not only determined 
by contributions of the different joint elements, but also by the 
interactions between them. Non-linear phenomena result in findings 
that are not in agreement with expectations based on the idea that 
the knee joint is a connection with elements whose function directly 
determines the behaviour of the joint as a whole. It is also 
essential that, if the non-linearities found are due to non-linear 
damping, (quasi)-static joint analysis is likely to provide only 
limited knowledge about the behaviour of the joint. Time-dependent 
phenomena must then be included as they are of eminent importance for 
the force transmission through the joint. 

The experimental methods applied in this thesis allow for determina
tion of the behaviour of the joint as a whole and of the influence of 
various parameters. Therefore it is believed that these methods may 
be used successfully for validation of a numerical model. Another, 
more short-term, application of this research is found in comparative 
studies in which the effects of partial or total knee replacement are 
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examined in post-mortem experiments. From these experiments guide
linea for optimization of existing or development of new prostheses 
or prosthetic elements can be derived such that they, from a mechani
cal point of view, maximally resemble their biological counterparts. 
The methods described in this thesis may provide a contribution to 
this research. 

Some modifications and extensions may increase the value of these 
methods: 

* a more sophisticated measurement method to obtain the param
eters describing the kinematics of the tibia may result in a 
more accurate control of the static equilibrium position. 
Recent developments in the field of digital image processing 
allow for rapid determination of the 3-D kinematics of the 
tibia for both static and dynamic loading configurations; 

* the stiffness and damping values given in chapters 4 and S 
may provide guidelines for development of a device to apply 
the static load to the joint, such that its dynamic behaviour 
does not need to be taken into account in a numerical model 
(as is the case for the bracing wires); 

* use of a control system for adjustment of the forces on the 
bracing wires may be a good solution for the problems in
volved with manual adaptation of these forces. 

6.2 Recommendations 

As mentioned in section 6.1 it is felt that further research should 
focus on a non-linear numerical model of the human knee joint to get 
grip on the results from the experiments and to provide guidelines 
for further experiments. The results presented in this thesis and in 
literature indicate that in such a model all important joint elements 
should be incorporated (ligamentous structures, menisci, articular 
cartilage, bony parts and muscle tendons). It is questionable whether 
such a highly complex model should be focused on from the start as it 
will contain a number of parameters that are only poorly known. A 
step-wise development of such a model seems more appropriate. Such a 
step-wise development might start from the consideration that the 
knee joint may be regarded as a complex connection, in essence made 
up of two interacting subconnections, namely the ligamentous struc
tures and the contact (direct or indirect via the menisci) between 
the articular cartilage layers. Each of these connections can be 
studied in detail before gathering their describing models in a 
complete knee joint model. Focusing on the ligamentous structures 
requires knowledge of their constitutive behaviour for 2 and 3-D 
loading configurations, in which highly anisotropic and time-
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dependent material properties are essential. Ron-linear Finite Ele
ment modelling (Roddeman 1988) and experimental techniques to measure 
stress and strain fields in these structures are inevitable here as 
well as for similar structures in other joints of the human body 
(Peters 1987). The contact phenomenon in the knee joint can also be 
focused on in detail. Again Finite Element modelling seems appro
priate to deal with the non-linear, time-dependent material proper
ties and complex geometries involved. Use of mixture theories (Mak 
1986 and Oomens 1985) to describe the behaviour of the soft articular 
cartilage layers seems essential. To verify a theoretical model for 
such a complex connection use of a physical model (dummy) of the 
joint may be of sreat importance to be able to carry out experiments 
without the disturbins influence of autolysis. Besides such a physi
cal model may be instrumented to obtain characteristics that are 
difficult to measure in post-mortem experiments (pressure distribu
tions in the contact areas e.a.). Such a physical model also allows 
for variation of material properties to study their effect upon the 
force transmission. 

If it is assumed that such a complete numerical model of the human 
knee joint can be formulated, the in vivo loads acting on the joint 
must also be known. Here another serious problem is encountered as 
methods to obtain these loads are to be developed (which is a factor 
common for a number of studies on subsystems or connections of the 
musculoskeletal system). 

In the development of a theoretical model of the knee joint, experi
mental work as described in this thesis still is of importance. 
Validation of such a model requires a number of experiments not yet 
carried out (paying attention to the influence of exo-endo rotation, 
the flexion angle of the joint and the masnitude of the static load 
applied e.g.). An analysis of the influence of these measurement 
parameters may result in a well documented set of characteristics of 
what might be called an "averase knee joint" (preferably as an inter
nationally exchangable data-base), in which non-typical experimental 
results have been eliminated. These characteristics can be used for 
validation of a numerical model and for development of a physical 
model of the knee. 
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Appendix A: 

Coordinate systems and relatiye motions of the knee joint 

In literature motions of the tibia relative to the femur (transla
tions and rotations) are commonly specified with terms referring to a 
fixed coordinate system attached to the femur and which is defined by 
directions in anatomical planes as shown in Fig. A.l. 

Fig. A.l 

-/ 

loterol 

The tibia of a left knee joint with anatomical 
directions 

Hotions of the tibia relative to the femur are generally denoted with 
terms as flexion-extension, exo-endorotation, ad-abduction or varus
valgus, anterior~posterior displacements etc. Use of these terms 
provides an easy means for communication but may also result in 
confusion as the same expressions are used if motions of the femur 
relative to the tibia are meant, although it is not explicitly stated 
which bone should be taken as a reference. Throughout this thesis the 
motions in the joint are meant to be motiona of the tibia relative to 
the femur. To give a more precise description for joint motions use 
must be made of two coordinate systems rigidly attached to the tibia 
and the femur at a particular point. Here a problem is faced as these 
origins can not be located uniquely due to the absence of landmarks 
common for all knee joints. Use of the principal (orthogonal) iner
tial axes and the center of gravity of a bone may be considered, but 
due to biological variability these parameters do not provide a 
unique reference. Use of Euler-parameters for the description of 
joint movements does neither remove this handicap, although screw
axes can be a useful tool to visualize relative rotations in the 
joint (Woltring et al. 1985). It is felt however that some coordinate 
axes can be defined that resemble for different joint specimens. To 
describe these aies Fig. A.2 is considered. 
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Imaginary cylinders CT and c, are placed around the distal 
the tibia and the proximal part of the femur respectively, 
the longitudinal axis of each cylinder coincides with the 
nal axis of the particular bone. 

'\ 

part of 
such that 
longitudi-

Left knee joint aight knee joint 

Fig. A.2 Definition of vector bases connected to the femur 
and the tibia 

Now two coordinate systems can be introduced. An orthogonal coordi-
.... .... d .... nate system (x,y,z) with base vectors ex• ey an ez is rigidly 

attached to the femur with its origin 0, in the centre of the bottom 
plane of the cylinder c,. This coordinate system can be regarded as 
an inertial reference frame. An orthogonal coordinate system (a,p,T) 

.... .... -+ with base vectors £a• £B and £T is rigidly attached to the tibia 
with its origin Or in the centre of the bottom plane of the cylinder 
CT. The z- and 7-axis coincide with the longitudinal axis of the 
cylinders whereas the x- and a-axis are chosen to be located in the 
medio-lateral plane of the femur and the tibia, respectively. To 
provide a reference configuration it is assumed that in extension the 

-+T _, -+ _, ->T [-+ -+ -+ vectorbases ! - [ex ey ez] and £ - £a £p e7] are identical. 
Translations of the tibia relative to the femur can now be described 

.... by means of the translation vector a, pointing from OF to OT• or its 
matrix representation !T - [ax ay azl with respect to vector base i 
(a- !T i>· Rotations of the tibia relative to the femur can be 

described by means of the rotation tensor a, relating the orientation 
of the vector bases ! and i. or its matrix representation i with 
respect to vectorbase i (a- iT i • iT i i>· As the rotationtensor R 
is orthogonal (Rc•R - R•Rc • I) it can be written as a function of 
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three independent kinematical parameters, rotation angles e.g •• The 
spatial orientation of vector base 1 can now be thought of as the 
result of successive rotations about fixed or floating axes (Andrews 
1984, Wittenburg 1977) which results in a description by means of 
Euler, Cardan or Bryant angles e.g .. Here the description by means of 
the 3 successive rotations~. 9 and was shown in Fig. A.3 will be 
used. Similarly the frequently applied medical terminology for rota
tions can be interpreted. However, this interpretation does not cover 
the entire contents of these terms. In fact it is more appropriate to 
describe these motions as being a combination of translations and 
rotations, resulting from a specific external load, having one major 
component due to the mechanical behaviour of the loaded joint. 

y y• '=B --
Y~'\' •'q~,"'.'=z''& x'.~z" f 

y• ....--- ........... .........._ w x•• 

' ' y x" "-. 

LEFT mEE JOINT "' 

\f /:. ··\: /:,. 
~ ~x" 

t x•=x x' 

z'~'f •a 

w 

x" 
....... 

.......... 
RIGHT !<NEE JOINT 

Fig. A.3 Definition of rotation parameters 

Flexion-extension e.g. can be seen as the motion of the tibia due to 
a pure (follower) moment about the a-axis, resulting in a major 
rotation about the x-axis, smaller rotations about the y- and z-axis 
and additionally some small translational movements. As one major 
motion component can be distinguished, this medical terminology can 
be used to describe joint motions, but obviously lacks precision. In 
Table A.l an overview is given of medical terminology for joint 
movements and their major components expressed in terms of the trans
lations ax• ay and az and the rotations ;, 6 and w for a left knee 
joint. 
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Table A.l Terminology for joint movements expressed in 
kinematical parameters for a right knee joint 

translations 
•x > 0 lateral translationl 
~ < 0 medial translation 
~ > 0 anterior translation 
ay < 0 posterior translation 
az > 0 proximal translation 
az < 0 distal translation 

1 - also indicated by displacement 

rotations 
~ < 0 extension 
~ > 0 flexion 
8 < 0 exorotation 

endorotation 
adduction 
abduction 
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Appendix 8: 

Derivation of the transfer funCtion matrix for a linear 
mechanical system with non-symmetric system matrices 

In this appendix a description is given of the most essential steps, 
involved with the derivation of the transfer function matrix B(f) for 
a second-order linear mechanical system with constant, non-symmetric 
system matrices. For a detailed discussion of this subject see Natke 
(1983). 
As a starting point consider the second-order set of N coupled linear 
differential equations relating a N*l displacement matrix » and the 
N*l load matrix ! 

(8.1) 

It is assumed that J, I and 1 are constant, non-symmetric, N*N real 
matrices representing mass, damping and stiffness characteristics, 
respectively. I and 1 are assumed to be positive definite. 
To solve relation (8.1) for » in case 1 is given, use can be made of 
forward and backward Laplace transform (or Fourier transform if 
desired). Without loss of generality it can be assumed that» and i 
vanish for t•O, which yields 

(B.2) 

where !(s) is the Laplace transform of ! 

... 
J(s) • 6 J(t) exp(-st) dt (8.3) 

with s as the Laplace variable. 
The transfer function matrix B(f) is now defined by 

g(f) • B(f) !Cf) (B.4) 

with s - 2~jf to switch from the Laplace to the Fourier (frequency) 
domain. According to relation (B.2) B(f) formally can be written as 

(B.S) 

Although relation (8.5) can be used to determine B(f), a transforma
tion can be applied which yields a more tractable description of B(f) 
in the so-called modal domain. 
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For a start relation (8.1) is rewritten as a set of 2N first-order 
differential equations 

(8.6) 

where the trivial equation II i • II i has been added. Q and 2 re
present a N*N and a N*l null matrix, respectively. Introduction of 
the 2~N matrices 

andR-~K 21 
Q -II 

(8.7) 

and the 2N*l matrices 

(8.8) 

yields the so-called state description for the system 

(8.9) 

Relation (8.9) can be transformed to the Laplace domain 

(sQ + R>z<s> - s<s> (8.10) 

To solve relation (8.10) for the column z(s) first the (right) eigen
•problem 

(sQ + D>x - 2 (8.11) 

and the associated transposed (left) eigenproblem 

(8.12) 

are considered. For a system with symmetric system matrices 
relations (8.11) and (8.12) are identical, yielding only one set of 
eigenvalues and eigenvectors. These eigenvectors can then be used to 
decouple relation (8.10) by means of a coordinate transformation. For 
a system with non-symmetric system matrices a similar decoupling of 
relation (8.10) will be applied which requires the use of the eigen
vectors of the right and the left eigenproblem. 
Solving relations (8.11) and (8.12) 2N eigenvalues sk (k-1 .•. 2N) and 
corresponding eigenvectors Ik and Ek are obtained. For real matrices 
Q and n the eigenvalues and eigenvectors are either real or occur in 
complex conjugate pairs. The eigenvectors can be partitioned 
according to 
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(B.l3) 

Here Ik is a solution of the original second-order eigenproblem, 
emanating from (B.l) 

(s2x + s). + K)I • 2 (B.l4) 

and sk of the associated transposed eigenproblem 

(8.15) 

The eigenvalues sk and eigenvectors Ik and Sk are generally referred 
to as the modal parameters of the linear system. For symmetric system 
matrices Ik and Sk are identical. It must be noted that the 4N eigen
vectors must be scaled. Norm conditions often applied are 

(k-1 .•• 2N) (8.16) 

and 

(8.17) 

which yield 4N norm equations. 
All eigenvalues sk and eigenvectors Ik and Sk are now stored in the 
matrices 

~d- sl (B.l8) 

s2 

s2N 

R• I1 I2 I2N (8.19) 

I• S1 S2 12N (8.20) 

where ~d is a 2N*2N matrix and R and I are N*2N matrices. In a simi
lar way the eigenvectors ~k and ~k are stored in 2N*2N matrices ! and 
1l respectively 

(8.21) 

With the use of relations (8.18) through (B.2l) the eigenproblems 
(8.11), (8.12), (8.14) and (B.l5) can now briefly be written as 

& Y: ~d + 12!- Q (8.22) 

(B.23) 
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II I id !d + I I id + I I • .R 

HT I id !d + IT I !d + IT I • .R 

(B.24) 

(B.25) 

Using relations (8.16~ and (8.22) it can easily be shown that the 
matrices iT Q! and i D ! are diagonal matrices. With relation 
(8.16) follows 

iT Q! • .l 

iT ll! • -id 

(8.26) 

(B.27) 

Relation (B.27) states that the eigenvalue problems can be decoupled 
using the eigenvectors introduced. To solve relation (B.lO) for the 
column x(s) this decoupling property is usefull. Introduction of the 
so-called modal displacements ! with 

(8.28) 

and pre-multiplication of relation (B.lO) with the matrix iT yields 

(B.29) 

where relations (B.26) and (B.27) have been used. The diagonal matrix 
s.I - §.d can easily be inverted and thus x<•> is obtained 

(B.30) 

From relation (8.8) it is seen that the columns y(s) and g(s) can be 

partitioned according to 

x<s> - I »<•> I and a<•> - I !(s) I 
S)!(S) 2 

(B.31) 

Substitution of the partitioned matrices ! and i according to rela
tion (B.21) and relation (B.31) in relation (B.30) yields the rela
tion between »<•> and !(s) 

»(•) • U(s) !(s) (B.32) 

U(s) - B (s.l - !d)-1 IT (8.33) 

From relation (8.33) the transfer function matrix U(f) expressed in 
the modal parameters is easily found by substitution of s·2~jf 

U(f) • B (2~jf.l - id)-l IT 

2N I~i 
- I: -

k-1 2~jf - sk 

(8.34) 

(8.35) 
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The 2N non-symmetric matrices £ksi are generally called the modal 

residual matrices or residues Ak' whereas the eigenvalues sk are 
often referred to as poles. For a real pole sk the corresponding 
residue ~ is real too, whereas complex conjugate poles result in 
complex conjugate residues. 
The residues ~ are not independent. To prove this the matrix ». is 
considered. Use of relation (8.27) gives 

(8.36) 

whereas from relation (8.7) ».-1 is found to be 

(8.37) 

Elaboration of relation (8.36) with the partition of matrices ~and! 
given in relation (8.21) results in the following equalities 

~-1 _ -I (id)-1 %T 

1-1 • I id %T 

Relation (8.40) reveals the dependency of the residues Ak 

T 2N T 2N 
I l - k:l £kl:k - .;1 ~ - 2 

(8.38) 

(8.49) 

(8.40) 

(8.41) 

The relations discussed so far can be used to determine the transfer 
function matrix li(f) in terms of the modal parameters. One particular 
case must be mentioned as this is frequently encountered when dealing 
with mechanical systems. Up to nov real poles have been included but 
these will not occur for a lightly or undercritically damped system. 
In this case all poles and residues are complex quantities. This 
results in the following expression for li(f) 

(8.42) 

Stability of the system also assures that the poles have a negative 
real part. Consequently sk can be written as 

(8.43) 

where Ek is the dimensionless damping (0<ek<l) and wOk the undamped 
resonance angular velocity of mode k. 
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Appendix C: 

Determination of ag.~ and ag.~ from measured uni-axial 
displacements of the tibia 

Suppose H signals (~6) sp (p-l .. H) are measured using a uni-axial 
displacement transducer such that 

(C.l) 

where ep is introduced to account for measurement errors. For the 
sake of simplicity R~·~ and R~·~ are replaced with the symbols t and 
.. .. .. d .... r, respectively, whereas ~*rip is denote with Pp 

_,. ... .... .... 
s - n_·t + p •r + e p p p p (C.2) 

To arrive at an expression for estimates fort and~. a least squares 
method will be employed to minimize the functional 

H 
F( .. t, .... r) .., ~ ( -+ ~ -+ -+)2 u s - n_•t - Pp•r p-1 p p 

(C.3) 

Requiring F to be stationary for infinitesimal small and mutually 
independent variations 6t and 6~ of t and~. respectively, the fol
lowing set of equations is obtained 

H ..,. H..,. ... ..,. H..,.-+ .... 
l: spn_ - l: n_n_•t + l: n_pp•r 

p-1 p p-1 p p p-1 p 

H .... H .... ..., -+ H-+ ........ 
l: SpPp • l: Ppn_•t + l: PpPp•r 

p-1 p-1 p p-1 

(C.4) 

(C.5) 

It must be noted that no additional index is included to emphasize 
that the vectors t and ~ in relations (C.4) and (C.5) are estimates 
in a least squares sense. Introduction of the tensors 

H,..,.. 
P • ~1PpPp 

and the vectors 

... H ... ... H ..., 
s * ~1spnp and q • ~1sppp 

H,....,. 
H .., l: n_pp 

p=l 1' 

yields a simplified notation of relations (C.4) and (C.5) 

(C.6) 

(C.7) 

(C.B) 
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kelation (C.8) represents 6 simultaneous equations for the components 
of the unknown vectors t and r and can be solved if the left-hand 
tensor matrix is regular. Whether it is regular or not depends on the ... ... 
choice of the vectors ~ and Pp· 

~PP!!2!t!~_t2_t~!-t!~!!!_~~~U!Ut 

To apply the method discussed above for the determination of the 
kinematics of the tibia, Fig. C.l. is considered 

It 

6 

;z 

Fig. C.l Displacements measured on the tibial component 
with 6 uni-axial displacement transducers mounted 
on a cylinder 

is assumed that 6 displacements are measured such that 

.... .... ... ... ... ... (C.9) :a:l- 0 nl • •:a: Pt • o 

... ... ... ... ... ... 
:1:2-0 n2- •y P2 • o 

x3 - a ... .... ... .... 
n3 • ez P3- o 

... .... .... .... ... .... .... 
:1:4 - :a:4e:a: + zsez n4 • 8 x P4 - zsey 

.... .. .... .... .... .... .... .... 
Xs - Ys y + zs•z ns - •x Ps • zsey - Ys•z: 

.... .... .... .... .... .... .... 
x6 - Ys8y + 2158 z n6 - •y P6 • -zsex 

with Ys and Zs ~ o. 
A lenghty but straightforward derivation yields the following e:a:pres
sions for the estimates t and r 

t • s16x+ s26y+ s3'6z (C.lO) 

.... (s2-s6)..,. (s4-sl)..,. 
r - zs ex + zs •y + (C.ll) 
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It is noticed that the coordinate x4 cancels out and therefore can be 
chosen arbitrarily. 
Relations (C.lO) and (C.ll) can be written more conveniently as 

with 

1 .... -- e zs y 

Relations (C.l2) can also be inverted 

with the vectormatrix f given by 

....... 
0 0 

1 .... 
-- e Ys z 

(C.l2) 

(C.l3) 

(C.l4) 

(C.lS) 

(C.l6) 

(C.l7) 



D.l 

Appendix D: 

A brief oyerview of spectral analysis 

To describe the essential steps involved with the determination of 
the transfer function H(f) of a linear system, Fig. D.l is consid
ered. 

X .. 

Fig. D.l 

.___H_(f) __,, ~ je y .. 

Input x and output y of a linear system with 
transfer function H(f), subjected to noise £ 

The signals y and x are simultaneously measured with a constant 
sampling frequency fs • 1/Ats Hz, where the measured response y is 
considered to be the sum of the response z of the system to an exci
tation x and a signal e which represents an error signal and which is 
assumed to be statistically independent of the signal x. 
Suppose H measurements are done such that each measurement results in 
a set or record xm and ,m (m-O ... H-1) of R samples for the signals x 
and y, respectively. Consequently each measurement represents a 
measurement time of Tr • R At8 s. A sample n (n•O •.. R-1), taken at 
time t•(n-l)Ats• in measurement m of the signals x and y is denoted 
with X: and J: , respectively. For the sake of simplicity it is 
assumed that R is a power of 2 (512,1024 or 2048 e.g.). By means of a 
Fast Fourier Transform (F.F.T.) algorithm, the Discrete Fourier 
Transform (D.F.T.) xm(f) and ym(f) of the records xm and ym, respect
ively, is calculated 

(k ... Q ••• R-1) (D.l) 

(k-0 ... R-1) (D.2) 

with 

(D.3) 

as the frequency resolution of the D.F.T. An essential property of 
the D.F.T. is that for real signals x andy only the first R/2 fre
quency points (spectral lines) are relevant which represent the 
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frequency interval from 0 to f 8 /2 Hz (folding property of the 
D.F.T.). The K Fourier transforms are related by 

ym(f) - H(f) X8(f) + £m(f) (D.4) 

For stationary signals x and y an estimate for H(f) can be obtained 
from (Bendat and Piersol 1980) 

with 

s (f) 
H(f) • Ciij 

XX 
(D.5) 

(D.6) 

(D.7) 

Here Syx(f) is an estimate for the crosspower spectrum of the signals 
y and x, whereas Sxx(f) is an estimate for the autopower spectrum of 
the signal x. An estimate for the autopower spectrum of the signal £ 

is given by 

(D.8) 

with 

L __ K-1 
Byy(f) - JrT: }: YD<f) fD(f) 

r m•O 
(D.9) 

2 Svx(f) S (f) 
7yx(f) • ~(£) syx(f) 

yy XX 
(D.lO) 

s (f) and 7~(f) are estimates for the autopower spectrum of the 
s!Inal y and the coherence function, respectively. The coherence 
function is a real number between 0 and 1 and is a measure for the 
influence of errors. For an ideal measurement the coherence function 
is 1 in the frequency range of interest, whereas the coherence func
tion attains values of approximately 0 for signals y and x which are 
virtually uncorrelated. 

When using the computational scheme given above, two important error 
sources must be considered: 

*aliasing 
If the signals x and y are sampled without satisfying 
Ryquist's criterion (see section 3.5) the frequency compo
nents with a frequency > fs/2 Hz are falsively measured. They 
will appear in the frequency interval from 0 to f 8 /2 Hz when 
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the D.F.T. is applied. This error source can be eliminated by 
proper filtering of the signals before they are digitized 
(see section 3.5). 

* signal-leakage 
As the D.F.T. is an approximation for the Fourier transforma
tion, an error is introduced if the signals are non-periodic 
within the ttme interval Tr. This results in a smearing of 
frequency components over the discrete frequencies (spectral 
lines) handled in the D.F.T. To reduce this error use can be 
made of a periodic window function w. The sampled signals are 
multiplied with this function to obtain periodic signals. For 
random signals e.g., the Banning window is often used 

w(t) • 0.5*(1 - cos(2wt/Tr)) (D.ll) 

With this window the records xm and ym are modified to 
records ~ and ~ given by 

!: • X: w(t•(n-l)Ats) (n•O ... N-1) (D.l2) 

J:- Y:: w(t•(n-l)At8 ) (n-o ••. N-1) (D.l3) 

The recorda ~ and ~ are subsequently used in stead of the 
original recorda zm and ym. In general such a correction 
suffices to reduce signal-leakage for random signals, 
although for lightly damped systems with a clear resonance 
frequency additionally Af must be chosen sufficiently small 
to yield the correct result (Dortmans and de Kraker 1987). 
This can be obtained by selection of a sufficiently high 
number of samples N (at the coat of increasing time to cal
culate the D.F.T.'s) or by application of zoom-spectral 
analysis (Bendat and Piersol 1980). 



E.l 

Append:lx E 

A mpdal parameter estimation tecbnigue usin& time domain 4ata 
fqr step excitation 

In this append:lx an outline is given of a numerical aethod for 
extraction of the JaOdal paraaeters from aeasured accelerations of a 
linear system subjected to step excitation (see section 5.1). The 
DlOdal paraaeters to be determined are the poles and modal displace
ments corresponding to the vibration modes in the frequency range of 
interest. The aethod considered has been deduced from the method 
proposed by Hergeay (1980), to calculate modal parameters from mea
sured impulse responses. An extension brought in here is the inclu
sion of a constraint equation to assure that the impulse response at 
t•O vanishes. 

Suppose N components ii (i•l •.. N) of the 111*1 matr:lx i have been 
measured, which represent the accelerations of an N degree of freedom 
undercritically damped linear system subjected to step excitation. It 
is assuaed that in the frequency range of interest R. vibration modes 
have to be determined. If the signals are sampled with a constant 
sampling frequency fs•l/Ats Bz, a sample m (m-O ••• H-1) taken at time 
t~~ts is given by (relation 5.3.4) 

Nm 
j(t-~) - i.m • - ~1 sk erp('kmt.ts) ik + 

Nm 
~l ik erp(ikmt.ts> ik + Lm (E.l) 

after scaling with the applied force feo· Here sk is the pole corre
sponding to vibration mode k (k-1. .. R.> . !)c (k-1. .• Nm) is the column 
matrix containing the modal displacements for mode k for a particular 
experiment. La- £(t-tm) is included to account for measurement 
errors. Relation (E.l) can be written more conveniently as 

with 

Pk- Pk+Ra- exp(s~ts) (k•l ..... ) 

ik - ik+Ra (k-1 .•• a.> 

(E.2) 

(E.3) 

The factors Pk can be seen as the roots of the polynomial of order 
2Ra 
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(E.4) 

or 

(E.5) 

where the coefficients ~ are real numbers. Obviously the factors Pk 
can be determined from relation (E.S) if the coefficients ak are 
known. With known Pk the poles sk can be determined according to 

(E.6) 

To obtain an expression for the 2~ unknown coefficients ak relation 
(E.2) is used 

(E.7) 

With the use of relation (E.5) it is seen that the first term on the 
right hand side of relation (E.7) vanishes, which yields 

As a2~- l it holds 

2~·1 

i2~ • · ~ lm~ + £2~ 

(E.8) 

(E.9) 

Relation (E.9) states that for an ideal measurement 2~ successive 
samples are sufficient to determine £2~. Similarly it can be deduced 

that a shift of m
0 

samples in relation (E.7) yields 

2~·1 

lm0+2~ • - ~ lm
0

+mam + im0+2~ (E.lO) 

with 

o s mo s M-2~ (E.ll) 

Relation (E.lO) can now be used to determine the 2Nm coefficients ~ 
from R (~2~) successive samples, using the abridged equation 

(!.12) 



with 

and 

T ( -T ap • !mo+21\a 

T T 
~- [ ~0+21\a 

~ • lm
0 

lm
0

+1 

imo+l 

i 
"''llo+l.-1 

1!:.3 

·T ] 
1m0+ll-1+21\a 

T 
~0+ll-1+21\a l 

lm0 +21\a-l 

(!.13) 

(E.14) 

(Bp, 4p• 2 and~ are (N*R)*l, (N*ll)*l, 2Nm*l and (N*ll)*2Nm matrices, 
respectively). 
From relation (E.l2) a least squares estimate for the columns can be 
obtained (which will not be provided with an additional index) by 
requiring the functional F(2) 

(E.l5) 

to attain a stationary value, yielding 

(E.l6) 

Vith known coefficients 2 the poles sk (k-1 ... -_) can be determined 
from relations (E.5) and (!.6) (which requires extraction of the 
roots of the polynomial equation (E.5)). 

Once the poles sk have been determined the column matrices !k in 
relation (E.2) can be calculated. The column matrices !k are not 
independent however, as from relation (B.41) follows 

21\a 21\a 
:E A. f' ff • l: a._ • 0 

k-l ==Jt =eO' eo k-l '"'lt -
(!.17) 

The column matrices !k are complex quantities which can be written in 
terms of their real and imaginary part 

(k-1. .... ) 

A similar separation is handled for the complex quantities 
m0 +m 

sk(Pk) 

(!.18) 
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(E.l9) 

Taking into account the occurrence of complex conjugate pairs of 
poles sk and columns Ak• relation (!.2) can be written as 

Nm 
im

0
+m - - ~1 (b~,m + j ~.m><a~ + j !~) + 

1\t 
~ <~,m - j b~,m><!~ - j !~) + ~m +m 

k-1 0 

Nm 
- -2 ~ 

k-1 + ~ +m 
0 

For the constraint equation (E.l7) holds with relation (E.LS) 

(E.20) 

(E.21) 

The N*l matrices !~ and ~~ (k-1. ·1\t> each contain N unknown param
eters. From ~2N successive samples it follows in abridged notation 

(E.22) 

with 

~- [ 1m im0 +1.-1 
0 

(E.23) 

IT - [ ai 1
r 

1
1 

Nm 1 !i J 1\t 

IT - [ ~ ~ +1.-1 J 
0 0 

j - -2bi -2, 
i i 

-r ,o ... ,o 2bl,o ... 2bl\t,O 

-2bi,l 

r r i 1 
- 2bl,R-1 ··· -2bNm,R-l 2bl,R-1 ··· 2~,R-1 

The constraint equation (E.21) can be written as 

(E.24) 

with 

T DC-£ 1 ... 1 o ... o l (E.25) 
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Relations (E.22) and (E.24) must now be solved simultaneously. For 
the column kt (i•l •.. N) of the matrix I and the corresponding columns 
&i and li of the matrices !lr and ~r• respectively, it holds 

&i • 1.-r ki + li (i•l. .. N) 

D~ kt • 0 (1-l ••. N) 

(E.26) 

(E.27) 

Relations (E.26) and (E.27) can be solved using a least squares 
method in which the constraint equation (E.27) is taken into account 
by means of a Lagrange multiplier ~i• to minimize the functional 
F(ki•~i) 

F(2i•~i) • <&t- lr 2t)T(&i- lr kt> + 2~i ~ 2t (E.28) 

Requiring F(k1 .~1) to be stationary for infinitesimal small varia
tions 62i and 6~i of 2i and ~1 • respectively, yields the following 
equations for estimates of the unknowns ki and li (which are not 
indexed additionally to indicate that they must be considered as 
estimates) 

(~ lr) kt • lr It-AiDe (i•l ••. N) 

~ ki • 0 (1•1 ... N) 

Assuming that the matrix ~ lr is regular it follows 

With relation (E.30) >.i can be determined 

n! (.TTl ) -1 "' 
, -c ~ r •i 
"'i-

~ (l~lr>-l De 
(i•l. .. N) 

(E.29) 

(E.30) 

(E.31) 

(E.32) 

Relation (E.32) results in the Lagrange multiplier l 1 , which subse
quently can be substituted in relation (E.31) to determine the column 
matrix 21 (and thus the modal displacements lk). 
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SAH!NVATIING 

Het in dit proefschrift beachreven onderzoek heeft tot doel bet in
zicht te vergroten in bet dynamisch gedrag van bet menselijk kniege
wricht. De nadruk ligt hierbij op ontwikkeling en toepassing van een 
experimentele methode ter bepaling van de relevante karakteristieken 
en parameters voor de beschrijving van bet gedrag van bet gewricht 
onder dynamische belasting in post-mortem experimenten. Een samenvat
ting van beschikbare literatuur leert dat zowel via experimenten ala 
theoretische modellen bet gedrag van bet gewricht onder (quasi-)sta
tische en dynamische belastingen geanalyseerd is. Desondanks is er 
een gebrek aan kennis op 3 belangrijke punten: feitelijk inzicht in 
bet dynamisch gedrag van bet gewricht ontbreekt, bet constitutief 
gedrag van weke delen in bet gewricht is slechts in beperkte mate 
bekend en evenzo is welnig informatie beschikbaar over de belastingen 
die in vivo op bet gewricht ala geheel of de gewrichtselementen af
zonderlijk uitgeoefend worden~ Omdat een analyse van bet gedrag van 
bet gewricht door middel van in vivo of post-mortem experimenten 
slechts beperkte mogelijkheden biedt, is een mathematisch model van 
bet gewricht onontbeerlijk. De ontwikkeling van zo'n model moet geba
seerd zijn op enige basiskennis omtrent bet gedrag van bet gewricht. 
Om deze reden wordt een experimentele methode besproken die moet lei
den tot richtlijnen voor bet ontwikkelen van een theoretisch model. 
Gezien bet verwachte niet-lineaire gedrag van bet gewricht, is een 
methode gekozen waarbij geometrische niet-lineariteiten geen rol van 
betekenis spelen. Het gedrag van bet gewricht wordt hierbij geanaly
seerd voor kleine trillingen rond een statische evenwichtsstand. 
Hierbij wordt er vanuit gegaan dat deze linearisatie-procedure ook 
leidt tot linearisatie van de fysische niet-lineariteiten. De linea
risatie-procedure leidt tot een beschrijving van bet gewricht door 
een lineair systeem met systeemparameters die afhangen van een geko
zen statische evenwichtsstand, de grootte van de krachten die uitge
oefend worden op spierpezen om deze statische evenwichtsstand te 
creeren en de mate waarin gewrichtselementen beschadigd zijn. Op ba
sis van experimenten met random excitatie konden enige belangrijke 
conclusies getrokken worden: bet creiren van een stabiele, statische 
evenwichtsstand van bet gewricht door bet uitoefenen van krachten op 
een drietal spierpezen is mogelijk, terwijl beschrijving van bet dy
namisch gedrag van bet gewricht met behulp van transfer-functies de 
mogelijkheid geeft om de invloed van de statische evenwichtaatand, de 
grootte van de krachten op de apierpezen en bet beachadigen van ge
wrichtaelementen vast te leggen. De linearisatie-procedure blijkt 
strikt genomen niet toepaabaar te zijn vanwege bet eaaentieel niet
linealre gedrag van bet gewricht. Deze niet-lineariteit kan echter in 
rekenlng gebracht worden door de syateemparametera voor bet beat-pas
aende lineaire aysteem afhankelijk te maken van de grootte van de 
aangebrachte belaating. Daze methode is toegepaat voor stapvormige 
excitatie. Het effect van bet beachadisen van de menisci en de voor
ate kruisband kan goed worden vaatgelegd. Interpretatie van de resul
taten wordt vooreerst bemoeilijkt door bet ontbreken van een adequaat 
numeriek model van bet gewricht. 
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stellingen 

1 Lineaire modellen voor het beschrijven van het dynamisch 
gedrag van het menselijk kniegewricht zijn een foutieve 
simplificatie van de werkelijkheid. 

- Dit proefschrift, hoofdstukken 4 en 5. 

2 De door Mergeay voorgestelde methode voor het bepalen van 
modale parameters uit gemeten impulsresponsies houdt geen 
rekening met de afhankelijkheid van de residuematrices en 
kan daarom leiden tot foutieve resultaten. 

- Mergeay,M. (1980): 
Theoretical background of curve-fitting methods 
used by modal analysis, Seminar on modal anal¥sis, 
Universiteit van Leuven (Belgie). 

- Dit proefschrift: 
hoofdstukken 4 en 5. 

3 Het ontwikkelen van gereedschap om op systematische Wl.JZ~ de 
aard van geconstateerde niet-lineariteiten in ~echanische 
systemen te bepalen is van belang bij verder onderzoek naar 
het dynamisch gedrag van het kniegewricht en van 
werktuigkundige verbindingen. 

-Heck, J.G.A.M. van (1984): 
On the dynamic characteristics of slideways, 
Dissertatie Technische Universiteit Eindhoven. 

- Dit proefschrift: 
hoofdstukken 4 en 5. 

4 Bij de toepassing van geavanceerde computertechnologie is de 
letterlijke betekenis van "Schnittstelle" helaas vaak beter 
dan die van "interface". 

- Handbuch Klein-computer und Microprozessoren in der 
Mess- und Versuchstechnik, VDI/VDE-Gesellschaft Mess
und Regelungstechnik, VDI-Bildungswerk, Dusseldorf 
(BRD). 

5 Autolyse is een onvermijdelijk probleem bij post-mortem 
onderzoek naar het mechan!sch gedrag van het kniegewricht. 
De ontwikkeling van een algemeen aanvaard (fysisch) model 
van het kniegewricht moet daarom meer aandacht krijgen. 

6 Gezien de beschikbare middelen is concentratie van het 
onderzoek op het gebied van de toepassing van technische 
keramiek in Nederland essentieel. 

-With, G. de (1986): 
"Een nieuw stenen tijdperk ?", Intreerede 
Technische Universiteit Eindhoven. 



7 In het basis-curriculum voor werktuigkundig ingenieur moet 
veel meer aandacht besteed worden aan het mechanisch gedrag 
van niet~metallische materialen. 

8 

- Nota materialenbeleid van de Ministeries van 
Onderwijs en Wetenschappen en Economische .Zaken. 
Werkgroep Materialennota (1986). 

Als het niet lukt om het ontwerpen met "nieuwe ma1~erialen" systematisch te ontwikkelen (inclusief de bepaling van 
relevante eigenschappen en de ontwikkeling van het 
noodzakelijke analyse-gereedschap ) zal in 1998 
geconstateerd worden dat de "nieuwe materialen" de 
verwachtingen van 1988 in het geheel niet waargemaakt 

·hebben. 

- "Wissel tussen kennis en markt", Rapport van de 
adviescommissie voor de uitbouw van het 
technologiebeleid, 's Gravenhage 1987. 

- PTIWerktuigbouw 42 (1987), no. 2. 

9 De werktuigkunde en de werktuigbouwkunde kunnen heel veel 
leren van de wijze van functioneren van het spier• 
skeletsysteem. Daarom zou functionele anatomie een baaisvak 
voor de opleiding tot werktuigkundig ingenieur kunnen zijn. 

10 Beter een gezond gebrek aan organisatie dan een gebrek aan 
gezcnde organisatie. 

- Deelder, J. (1987): "Boulevardeel". 


