
 

Job shop scheduling by local search

Citation for published version (APA):
Aarts, E. H. L., Lenstra, J. K., Laarhoven, van, P. J. M., & Ulder, N. L. J. (1992). Job shop scheduling by local
search. (Memorandum COSOR; Vol. 9229). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/2416370c-f1ea-47d0-a86c-05780ecf192d


EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mathematics and Computing Science

Memorandum COSOR 92-29

Job Shop Scheduling by
Local Search

E.1-1.L. Aarts
P..J.Ivl. van Laarhoven

J.K. Lenstra
N.L.J. Ulder

Eindhov('n . .J Illy 1992
'1'11(' Netherlands



Eindhoven University of Technology
Department of Mathematics and Computing Science
Probability theory, statistics, opera.tions research and systems theory
P.O. Box 513
5600 MB Eindhoven - The Netherla.nds

Secretariate:
Telephone:

])olllmelbuilding O.O:~

040-47 :31:30

ISSN 0926 4493



Job Shop Scheduling by Local Search

E.H.L. Aarts1•2 , P.J.M. van Laarhoven3, J.K. Lenstra2•4 and N.L.J. Ulder5

1 Philips Research Laboratories, P.O. Box 80000, NL-5600 JA Eindhoven, The Netherlands
2 Eindhoven University of Technology, Box 513, NL-5600 MB Eindhoven, The Netherlands

3 McKinsey & Company, Amstel 344, NL-1017 AS Amsterdam, The Netherlands
4 CWI, P.O. Box 4079, NL-1009 AB Amsterdam, The Netherlands

6 Oce-Nederland B.V., P.O. Box 101, NL-5900 MA Venlo, The Netherlands

Abstract

We present a computational performance analysis of local search algorithms for job shop schedul­
ing. The algorithms under investigation are iterative improvement, simulated annealing, thresh­
old accepting and genetic local search. Our study shows that simulated annealing performs best
in the sense that it finds better solutions than the other algorithms within the same amount of
running time. Compared to more tailored algorithms, simulated annealing still finds the best
results but only under the assumption that running time is of no concern.

Key words: Local search, iterative improvement, threshold accepting, genetic algorithms, simu­
lated annealing, job shop scheduling.

1 Introduction

Combinatorial optimization problems arise in such diverse areas as computer and VLSI design,
facilities layout, production scheduling, and distribution planning. Many of these problems have
been proved NP-hard [Garey & Johnson, 1979], and it is consequently believed that they cannot be
solved in polynomial time. In practice this means that solving large instances of such problems to
optimality requires impracticable running times. To avoid this, one often resorts to approximation
algorithms that try to find near-optimal solutions within acceptable running times.

There is a second justification for the use of approximation algorithms. Many practical problems are
generalizations of well-known combinatorial optimization problems, but the generalization involves
complicated side constraints that cannot be readily incorporated into optimization algorithms for
the underlying standard problem. Thus, even if an optimization algorithm were available for the
underlying problem, it might not be applicable to the problem at hand.

From an application point of view, approximation algorithms range from tailored algorithms, de­
signed for a specific problem type, to general algorithms, which can be applied to a broad range
of problem types. For the latter, it is often more appropriate to speak of algorithmic templates
since in many cases the problem specific details still need to be filled in to obtain an operational
algorithm. Local search is an example of such an algorithmic template for combinatorial optimiza­
tion [Papadimitriou & Steiglitz, 1982; Yannakakis, 1991]. Traditionally, local search stands for
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iterative improvement with the notable exception of the variable-depth search algorithms proposed
by Kernighan & Lin [Kernighan & Lin, 1971; Lin & Kernighan, 1973]. The introduction of simu­
lated annealing, a randomized approach to local search [Kirkpatrick, Gelatt & Vecchi, 1983; Cerny,
1985], and its successful application to problems in many different areas [Aarts & Korst, 1989; Van
Laarhoven & Aarts, 1987], has broadened the scope of local search and has led to new algorithmic
templates such as threshold accepting [Dueck & Scheuer, 1988], tabu search [Glover, 1989] and to
variants of genetic algorithms [Goldberg, 1989]. Also certain classes of neural networks exhibit a
strong relation with local search [Baum, 1986]. For a detailed overview the reader is referred to
Aarts, Korst & Zwietering [1991].

For a number of these approaches theoretical results are available regarding the asymptotic conver­
gence to global minima. However, only little is known about the theoretical finite-time performance
of local search. Therefore, many authors have been carrying out computational studies in which
the various approaches are applied to specific combinatorial optimization problems, trying to reveal
their real strength, for instance in comparison with tailored optimization and approximation algo­
rithms. For example, Johnson et 801. [1989; 1991] compared simulated annealing with several other
algorithms for the traveling salesman, graph coloring, graph partitioning and number partitioning
problems. The general conclusion from these studies seems to be that the new approaches are em­
inently suitable to be applied to large instances of problems that are hard to model and for which
no satisfactory tailored algorithms are available. Evidently, this area provides ample opportunity
for a general approach whose implementation requires only a modicum of sophistication.

The present paper belongs to a series of papers in which we report on the computational perfor­
mance of local search algorithms when applied to specific combinatorial optimization problems; in a
previous paper [Dlder et aI., 1990]' we presented results for the traveling salesman problem [Lawler
et aI., 1985]. Here, we consider the job shop scheduling problem, one of the computationally more
difficult combinatorial optimization problems [French, 1982; Lawler et aI., 1992]. In addition to a
mutual comparison, we also compared various local search approaches with a number of job shop
scheduling heuristics known from the literature.

The organization of this paper is as follows. In Section 2 we define the job shop scheduling problem
and describe the various neighborhoods used by the local search algorithms under investigation.
Section 3 presents the algorithms compared in this paper and Section 4 contains the numerical
results. The paper ends with some conclusions and final remarks.

2 Job shop scheduling

The job shop scheduling problem is defined as follows. Given are n jobs and m machines. Each
job consists of a sequence of operations, which must be executed in a given order. Each operation
has to be executed on a given machine for a given period of time. A machine can perform at most
one operation at a time. The problem is to find a schedule, i.e., an assignment of the operations
to time intervals, such that the makespan, given by the total length of the schedule, is minimal.

To apply local search, one has to define a set of feasible solutions, a cost function and a neighborhood
structure. Here, we use the formulation of Roy & Sussmann [1964], who represent an instance of
job shop scheduling by a disjunctive graph G = (V, A, E), where the vertex set V corresponds to
the set of operations, the arc set A consists of arcs connecting consecutive operations of the same
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Figure 1. An example of a 3-job, 3-machine instance. Node Vi; corresponds to an
operation of job i processed on machine j.

job, and the edge set E consists of edges connecting operations that must be executed on the same
machine. Figure 1 gives an example for a 3-job 3-machine instance in which each job consists of
three operations. The first job is to be carried out on machines 1, 2 and 3 (in that order); the
second job on machines 2, 1 and 3, and the third one on machines 3, 2 and 1. Solid lines denote
arcs and dotted lines denote edges. The weight of a vertex is given by the processing time of the
corresponding operation. A feasible solution i can be defined as a set of orientations for the edges
in E, such that the resulting digraph Di is acyclic; the cost of a solution is then given by the length
of the longest path in Di. Figure 2 shows a solution for the instance of given in Figure 1. In this
paper we consider the following two neighborhood structures.

(NI) Given a solution i characterized by a digraph Di, a neighboring solution is obtained by
choosing two operations V and w that are immediate successors on some machine k and for
which the arc (v, w) is on a longest path in Di, and reversing (v, w) or, in other words, reversing
the order in which v and ware processed on machine k. For this neighborhood the following
results are of interest [Van Laarhoven, Aarts & Lenstra, 1992].

(i) The reversal of (v,w) results in an acyclic digraph D;, corresponding again to a feasible
solution j.

(ii) Reversals of arcs on the longest path are the only arc reversals that can (but need not)
result in a digraph with a shorter longest path than the original digraph.

(iii) For any digraph Di, corresponding to an arbitrary solution i, it is possible to construct
a sequence of arc reversals leading from Di to a digraph corresponding to a globally
minimal solution. This is a necessary and sufficient condition for asymptotic convergence
of simulated annealing.

(N2) Given a solution i and its digraph Di , a neighboring solution is obtained by chosing again
two vertices v and w satisfying the conditions mentioned under (1), but restricting the choice
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Figure 2. A solution to the instance of Figure 1.

to vertices for which at least one of the arcs (p(v), v) and (w, s(w)) is not on a longest path,
where p(v) and s(w) are the predecessor of v and the successor of w on machine k, respectively.
This restriction is motivated by the fact that if both (p(v), v) and (w, s(w)) are on a longest
path, then the reversal of (v, w) cannot lead to a shorter longest path [Matsuo, Suh & Sullivan,
1988]. In addition to reversing (v,w), also (p(u),u) and (x,s(x)) are reversed, where u is the
immediate predecessor of w in the job sequence of wand x is the immediate successor of v in
the job sequence of v. A detailed description of this neighborhood is given by Matsuo, Suh &
Sullivan [1988]. Note that in this case the neighboring solutions of a solution i are obtained by
reversing three arcs in Di • Thus, this neighborhood is more intricate than the one given under
(1). Finally we remark that (i) does not hold for this neighborhood since not all reversals
pertain to arcs on a longest path. (ii) does not apply here and (iii) is open.

3 The algorithms

We now describe the algorithms used in the computational comparison. The multi-start iterative
improvement and simulated annealing algorithms are only briefly mentioned; threshold accepting
and genetic local search are presented in more detail.

3.1 Multi-start iterative improvement

Our multi-start iterative improvement algorithm consists of a number of cycles. Each cycle is
started with a randomly generated solution and subsequently the neighborhood is searched for a
better solution. If such a solution is found, it replaces the current one and the search continues in
the neighborhood of the new solution. A cycle is terminated when a local minimum is reached, i.e.
a solution whose cost is at least as good as that of all of its neighbors. After termination of a cycle
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a new one is started. This process continues until some specified limit on the running time (or a
specified number of cycles) is reached. The best solution found in all cycles is returned as the final
solution obtained by the algorithm.

3.2 Simulated annealing

Simulated annealing is a randomized version of local search. In addition to cost improving neigh­
bors, which are always accepted, also cost deteriorating neighbors are accepted with a positive
probability that gradually decreases in the course of the algorithm's execution. The lowering of
the acceptance probability is controlled by a parameter, whose values are determined by a cooling
schedule. Simulated annealing has been widely applied and in many cases it finds good quality
solutions. For more details, the reader is referred to Aarts & Korst [1989] or Van Laarhoven &
Aarts [19871. A detailed study of simulated annealing for job shop scheduling is reported by Van
Laarhoven, Aarts & Lenstra [1992].

Our simulated annealing algorithm uses the cooling schedule described by Van Laarhoven & Aarts
[19871. This is a three-parameter schedule, where the parameters XO and e, determine the initial
and final values of the control parameter, respectively, and the third parameter 6 determines the
decrement of the control parameter.

3.3 Threshold accepting

Threshold accepting, proposed by Dueck & Scheuer [1988], is a deterministic version of simulated
annealing. A neighbor is accepted if the difference in cost between the neighbor and the current
solution is smaller than a nonnegative threshold. The threshold values vary in the course of the
algorithm's execution. Initially they are large and subsequently they are gradually decreased to
become zero in the end. So far, no general rules are known that determine appropriate threshold

J.t I J.t I J.t I J.t I ll- I ll- I
1 1182.2 6 1002.6 11 1011.2 16 1005.8 21 1049.6 26 1034.8
2 1124.8 7 1007.8 12 987.4 17 1030.8 22 1032.0 27 1045.4
3 1047.0 8 1013.8 13 1023.6 18 1010.8 23 1022.4 28 1039.4
4 1124.8 9 1002.2 14 1012.0 19 1014.4 24 1048.0 29 1042.0
5 1022.2 10 990.6 15 1021.8 20 1044.8 25 1022.2 30 1040.6

Table 1. Average makespan 7 from 5 runs of threshold accepting [or a 10-job,
lO-machine job shop scheduling instance with 20 different sets of thresholds, each
corresponding to a different value of the scaling parameter J.t.

values for an arbitrary optimization problem. This is in contrast to the many results on cooling
schedules for simulated annealing. What is available though is the set of 30 threshold values that
where successfully applied by Dueck & Scheuer to find solutions for a 442-city instance of the
traveling salesman problem. Here we used the following empirical argument to find appropriate
threshold values for job shop scheduling. Table 1 contains the average values of the makespans
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obtained from five runs of threshold accepting for a lO-job 10-machine instance obtained with
30 different sets of thresholds. At each threshold value, 2000 trials are allowed. The sets of
threshold values are obtained by multiplying the values of Dueck &: Scheuer by a factor /-L' "'1, where
/-L = 1, 2, ... , 30 and '1 is the average difference in cost of the cost increasing trials in a random walk
of length 10,000 through the set of feasible solutions. Based on the results in Table 1 and similar
results obtained for other instances, we decided to use /-L = 12 in our study. We do not rule out the
possibility that fine tuning of the threshold values for job shop scheduling may yield better results.

3.4 Genetic algorithms

The effectiveness of multi-start iterative improvement may be improved by using the information
available from the solutions obtained in the indivudual cycles. Several authors have proposed vari­
ants of local search algorithms, using ideas from population genetics; see for example, Miihlenbein,
Gorges-Schleuter & Kramer [1987], Jog, Suh & Van Gucht [1989], and [Ulder et al., 1990]. We
propose a genetic local search algorithm consisting of the following steps.

Step 1. Initialize: construct an initial population of P solutions.

Step 2. Improve: use local search to replace each solution by a locally optimal one; thus, a popu­
lation of P local minima is obtained.

Step 3. Recombine: expand the current population by adding P offspring solutions obtained by
recombining P pairs of solutions in the current population.

Step 4. Improve: use local search to replace each offspring solution by a locally optimal one; thus,
a population of 2P local minima is obtained.

Step 5. Select: reduce the extended population to its original size by selecting the best P solutions.

Step 6. Iterate: repeat Steps 3 to 5 until a stopping criterion is satisfied.

We now discuss some of these steps in more detail.

Step 1. Initialization is done by randomly generating P solutions.

Steps 2&4. We use local search algorithms based on one of the neighborhood structures mentioned
in Section 2.

Step 3. The candidate solutions for recombination are chosen randomly from the current pop­
ulation. The recombination of a pair of solutions i and j is based on the observation
that the cost of a solution is given by the length of its longest path. Recombination is
done by reversing some arcs on the longest path of j such that the resulting arcs are
identical to those in i. More specifically, we choose, at random, an arc (v, w) in Di. If
the arc (w, v) occurs in Di and belongs to a longest path in Di' it is reversed. Next
the longest path in the resulting digraph Di' is computed, and Di is replaced by Di"
Choosing an arc in Di and reversing a corresponding arc in Di is repeated k times. The
net result is an offspring solution obtained from j by implanting a subset of arcs from
Di into Di' In our implementation, k is set to In· m/2J. Extensive experimentation
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reveals that the precise value of k is not very critical with respect to the effectiveness
of the algorithms [Ulder, 1990].

Step 6. The algorithm terminates when either all solutions in the population have equal cost,
or the best makespan in the population has not changed for K subsequent generations
(Le., repetitions of Steps 3 to 5). In our implementation we used K = 10.

4 Computational results

4.1 Comparison of local search algorithms

We compared the performance of the following seven algorithms: multi-start iterative improvement
with neighborhoods NI and N2 (MSIIl and MSII2, respectively), threshold accepting (TA), sim­
ulated annealing with N I and N2 (SAl and SA2, respectively), and genetic local search with N I

and N2 (GLSI and GLS2, respectively). The comparison is carried out for a set of 43 instances.
The first 40 instances are due to Lawrence [1984]; the remaining three to Fisher & Thompson
[1963]. The last three include the notorious 10-job 10-machine instance that has defied solution
to optimality for more than twenty years. For all instances, the number of operations of each job
equals the number of machines and each job has precisely one operation on each machine.

The algorithms were programmed in PASCAL and care was taken to have identical data structures
and subroutines wherever possible. For each instance, the algorithms were allowed about equal
amounts of running time; differences of at most 2% occur, with the exception of the easy D, G
and H instances. The reference point for each instance was given by the time taken by the SA-

,algorithm described in Section 3.2, with the N l neighborhood and with the parameters values
XO = 0.95, S = 1, and C6 = 10-5 , respectively (SAl). The multi-start algorithms were terminated
when their running times exceeded those of SAl. For threshold accepting we tuned the number of
trials per threshold and for genetic algorithms the population size to have about the same running
times as SAl; the precise values of these parameters are given in Table 2. Finally, for SA2, we used
S = l.15 to equalize running times. The results of the comparison are displayed in Table 3. The

Al-A5 Bl-B5 Cl-C5 Dl-D5 Fl-F5 GI-G5 Hl-H5 11-15 FISH06 FISHI0 FISH20
T 2100 3600 5000 6750 700 800 900 6250 500 2100 1600
Pl 55 45 33 33 25 30 25 60 45 35 20
P2 40 35 25 25 20 25 20 45 35 25 13

Table 2. Number of trials per threshold T for threshold accepting, and population
sizes PI and P2 for genetic local search with NI and N2 neighborhoods.

entries in the table are average makespans, computed from the solutions obtained by running each
algorithm five times for each instance. From Table 3 we can make the following observations.

(i) Using a more intricate neighborhood structure pays off: MSII2 finds better solutions than
MSII1 and GLS2 finds better ones than GLSl. For simulated annealing, however, the difference
between SAl and SA2 is not significant.
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Instance n m f t
MSII1 MSII2 TA SAl SA2 GLS1 GLS2

Al 10 10 1029.6 1019.0 977.8 976.8 969.0 976.8 976.8 88.2
A2 10 10 858.4 829.2 829.8 787.2 785.6 791.2 791.6 91.4
A3 10 10 930.2 894.0 901.2 859.8 856.0 856.6 858.4 96.8
A4 10 10 922.6 899.6 925.8 855.0 854.6 863.6 859.0 93.8
A5 10 10 963.6 959.8 974.0 911.4 911.4 913.2 916.2 107.6
Bl 15 10 1226.8 1181.2 1104.2 1083.6 1078.0 1084.4 1085.2 243.4
B2 15 10 1127.2 1099.2 979.6 950.2 950.2 954.0 944.0 254.2
B3 15 10 1164.8 1142.0 1033.7 1032.0 1032.0 1032.0 1032.0 242.2
B4 15 10 1111.8 1076.0 1014.6 962.0 960.4 970.0 981.2 234.8
B5 15 10 1167.8 1126.4 1075.4 1003.0 1019.6 1016.4 1010.0 254.8
01 20 10 1473.2 1389.6 1227.0 1225.2 1221.2 1240.2 1236.2 469.6
02 20 10 1502.4 1447.6 1289.8 1282.0 1275.6 1303.6 1300.8 492.0
03 20 10 1486.4 1424.0 1286.4 1249.2 1242.8 1281.0 1264.8 455.6
04 20 10 1485.2 1426.4 1262.4 1233.4 1225.8 1290.2 1260.0 471.0
05 20 10 1619.2 1546.6 1366.6 1355.0 1355.0 1402.2 1386.0 441.4
D1 30 10 2013.0 1946.8 1784.0 1784.0 1784.0 1784.0 1784.0 879.8
D2 30 10 2119.4 2009.6 1850.0 1850.0 1850.0 1850.0 1850.0 909.0
D3 30 10 1958.4 1879.0 1719.0 1719.0 1719.0 1719.0 1719.0 1045.6
D4 30 10 2021.4 1937.8 1721.0 1721.0 1721.0 1737.0 1730.2 1055.4
D5 30 10 2158.4 2123.4 1888.0 1888.0 1888.0 1894.2 1890.2 1004.4
F1 10 5 670.4 666.0 682.4 666.0 666.0 666.0 666.0 17.2
F2 10 5 700.8 688.0 693.8 669.2 658.6 668.0 659.0 18.6
F3 10 5 645.0 633.2 628.2 617.6 616.6 613.2 609.2 21.0
F4 10 5 620.6 614.8 632.0 598.8 590.6 599.6 594.0 16.8
F5 10 5 593.0 593.0 593.0 593.0 593.0 593.0 593.0 13.6
G1 15 5 926.0 926.0 926.0 926.0 926.0 926.0 926.0 25.4
G2 15 5 923.0 915.0 894.0 890.0 919.8 890.0 890.0 42.2
G3 15 5 884.0 865.6 863.0 863.0 863.0 863.0 863.0 39.8
G4 15 5 952.6 951.0 951.0 951.0 951.0 951.0 951.0 35.6
G5 15 5 958.0 958.0 958.0 958.0 958.0 958.0 958.0 17.0
HI 20 5 1227.0 1222.4 1222.0 1222.0 1222.0 1222.0 1222.0 59.6
H2 20 5 1046.8 1039.0 1039.0 1039.0 1039.0 1039.0 1039.0 50.4
H3 20 5 1160.8 1151.6 1150.0 1150.0 1150.0 1150.0 1150.0 50.4
H4 20 5 1292.0 1292.0 1292.0 1292.0 1292.0 1292.0 1292~0 21.2
H5 20 5 1312.6 1284.4 1207.0 1207.0 1207.0 1207.0 1207.0 76.6
I1 15 15 1523.8 1456.6 1385.8 1307.8 1308.0 1324.8 1310.6 602.2
12 15 15 1640.2 1598.8 1469.2 1440.8 1451.4 1449.4 1450.0 636.2
13 15 15 1481.8 1421.8 1323.0 1235.4 1243.0 1285.2 1283.0 635.6
14 15 15 1478.8 1445.4 1305.8 1258.2 1263.8 1279.0 1279.2 592.2
15 15 15 1488.0 1439.0 1295.0 1256.4 1254.8 1273.2 1260.4 596.8
FISH06 6 6 56.2 55.0 60.4 55.0 55.0 55.0 55.0 9.4
FISH10 10 10 1055.8 1056.6 1003.8 969.2 977.8 978.2 982.2 99.4
FISH20 20 5 1356.0 1329.2 1228.6 1216.2 1245.0 1295.0 1294.2 88.4

Table 3. Average makespan 7 and running time t for multi-start iterative improve-
ment (MSII), threshold accepting (TA), simulated annealing (SA), and genetic local
search (GLS). The additions 1 and 2 correspond to the use of neighborhood Nt or
N2, respectivelYi nand m denote the number of jobs and machines, respectively.
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(ii) The multi-start algorithms are clearly inferior to the other algorithms. The difference becomes
quite pronounced for the larger problem instances. For the D instances, for example, SAl finds
makespans that are on the average 12.8% shorter than those found by MSIII.

(iii) For those instances for which SAl finds globally minimal solutions, i.e., the D, G, and H
instances [Adams, Balas & Zawack, 1988], TA can compete with SAL For the remaining,
more interesting, instances, TA is clearly outperformed by SAL The difference becomes again
quite pronounced for the largest instances. For the I instances, SAl finds makespans that are
on the average 4.2% shorter than those found by TA.

(iv) The performance of SAl and GLS2 is about equal, although for the largest instances SAl
consistently finds slightly better makespans. For the C instances, for example, SAl is on the
average 1.6% better and for the I instances 1.3%.

4.2 When time is of no concern

It is often argued that randomized variants of local search, such as simulated annealing and genetic
local search, show their real strength when running times are of no concern. To verify this, we ran
the algorithms SAl and GLS2 for the ten tough instances identified by Applegate & Cook [1991].
Three of these instances are due to Adams, Balas & Zawack [1988]; the others are due to Lawrence
[1984] and belong to the 43 instances considered in the previous section. For each instance, SAl
was run with parameter values XO =0.95,6 = 10-4, and ell = 10-5 ; a single run took between two
and 15 hours. GLS2 was given the same amount of time by tuning the population size. Table 4

Instance n m f LB status
SAl GLS2 A&O B&O

ABZ7 20 15 668· 680 668· 680 654 open
ABZ8 20 15 670· 698 687 701 635 open
ABZ9 20 15 691· 708 707 717 656 open
B1 15 10 1053· 1055 1053· 1071 1040 open
B4 15 10 935· 938 935· 953 935 solved
B5 15 10 983 985 977· 988 977 solved
02 20 10 1249· 1265 1269 1256 1235 open
04 20 10 1185· 1217 1195 1205 1120 open
13 15 15 1208· 1248 1209 1226 1184 open
15 15 15 1225 1233 1222" 1246 1222 solved

Table 4. Average makespan 7 when time is of no concern for simulated annealing
(SAl), and genetic local search (GLS2) with the Nt and N2 neighborhoods, respec-
tively, the shuffle algorithm of Applegate & Cook (A&C), the tabu search algorithm
of Barnes & Chambers (B&C), the lower bounds from Applegate & Cook (LB), and
the current status; a U*" indicates the best known result.

shows the results we obtained. For purposes of reference the table also includes the values found by
Applegate & Cook's [1991] shuffle algorithm and by Barnes & Chambers' [1991] implementation of
tabu search, as well as the lower bounds on the optimum found by Applegate & Cook's [1991] edge
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finder algorithm. Edge finder is a branch and bound algorithm, inspired by the work of Carlier &
Pinson [1984], and shuffle is a heuristic variant of edge finder. For details we refer to the paper by
Applegate & Cook.

It appears that, when time is of no concern, substantially improved results are obtained; c.f. Table 3.
Furthermore, SAl outperforms GLS2 even more clearly than before. SAl also obtains generally
better solutions than the approximation algorithms of Applegate & Cook and Barnes & Chambers,
especially for the open problems. It should be taken into account, however, that their methods are
much faster, but also much more tailored towards the specific structure of the job shop scheduling
problem. In any case, SAl has found better solutions than were previously known for five of the
ten tough instances.

5 Discussion

We have compared a number of local search approaches by applying them to the job shop scheduling
problem. From the computational results it can be concluded that the effectiveness of a standard
iterative improvement algorithm can be improved either by relaxing the rigid concept of accepting
cost improving solutions only, leading to threshold accepting and simulated annealing, or by using
concepts from population genetics. This conclusion is in accordance with those drawn by Ulder
et al. [1990] from a similar comparison for the traveling salesman problem, with the small but
intriguing difference that, for job shop scheduling, threshold accepting is clearly outperformed by
both simulated annealing and genetic local search, whereas for the traveling salesman problem
threshold accepting and simulated annealing are about equally effective.

Finally., our experiments confirm that simulated annealing, when it is given enough time, can find
better solutions than a number of faster and more tailored heuristics.
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