
 

FoolProof : a component toolkit for abstract syntax with
variable bindings
Citation for published version (APA):
Hemerik, C. (2008). FoolProof : a component toolkit for abstract syntax with variable bindings. (Computer
science reports; Vol. 0816). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2008

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/9912d8f8-3b69-4959-80d4-9e20f720ebce


FoolProof: A Component Toolkit for Abstract

Syntax with Variable Bindings

Kees Hemerik
Dept. of Mathematics and Computer Science

Eindhoven University of Technology
Eindhoven, The Netherlands

c.hemerik@tue.nl

June 2, 2008

Abstract

FOOLPROOF is intended as a component toolkit for implementation
of formal languages with binding structures. It provides a coherent col-
lection of components for many common language processing tasks, in
particular those related to binding structures. FOOLPROOF consists of:
a meta-language for specifying signatures with variable bindings; a signa-
ture editor for constructing well-formed signatures; a small collection of
interfaces for manipulating syntax trees and binding structures at various
levels of detail; a set of generic components for processing syntax trees
with binding structures, in particular for: copying, substitution, editing,
matching, unification and rewriting; a generator which maps signature
specifications to signature-specific classes. FOOLPROOF is being imple-
mented in Object Pascal and will eventually take the form of a component
library for the Delphi environment.

Keywords

abstract syntax, variable bindings, signatures, structure editors, API gen-
erators, component library, Delphi.

foolproof (adj): so simple, plain or reliable as to leave
no opportunity for error, misuse, or failure

Webster’s New Collegiate Dictionary

1 Introduction

Many computing systems manipulate syntactic objects like programs, formulas,
types, and proofs. Well-known examples of such systems are compilers, inter-
preters, structure editors, static analyzers, rewriting systems, theorem provers,

1



and proof assistants. A common characteristic of the syntactic objects manipu-
lated by these systems is, that they contain variable bindings like declarations,
definitions, parameters, and quantifications. Usually the syntactic objects are
specified by some kind of signature and represented by some form of abstract
syntax trees (AST). The AST is a central data structure in the system. Usu-
ally it is built up by a parser or structure editor and subsequently traversed,
annotated and transformed by other parts of the system. A large part of the
necessary code can be generated automatically from the signature specification.

The methods for specifying and implementing binding structures are less
developed and standardized, however:

• Context-dependent properties of programs are often expressed by means of
attribute grammars, sometimes extended with extra facilities for express-
ing bindings, such as references to binding positions [15]. This works well
for static syntax trees, but is inadequate for systems involving rewriting,
such as theorem provers.

• In type theory, binding structure is usually handled in combination with
typing and expressed by means of a deduction system (see e.g. [3]). This
is a powerful and general technique, well suited for meta-theoretical work,
but it provides little support for constructing implementations.

• In general, little support (in the form of formalisms and tools) is available
for specifying and implementing binding structures. As a consequence, in
implementations of formal languages with binding structures many essen-
tial but error-prone operations - such as copying, substitution, matching,
unification and rewriting - are still hand-coded.

FOOLPROOF is intended as a component toolkit for implementation of formal
languages with binding structures, in particular small but intricate formalisms
like typed lambda calculi, logics, and languages that integrate specifications
and programs. With FOOLPROOF we aim to facilitate the specification and
implementation of such systems in several ways:

• By extending the notions of signature and abstract syntax tree with facil-
ities for expressing binding structures.

• By designing a meta-language for specifying signatures with binding struc-
tures;

• By providing a signature designer (actually a kind of structure editor for
signatures), which supports the design of well-formed signatures.

• By providing software components that implement the essential opera-
tions involving binding structures, such as copying, substitution, rewriting,
matching, and structure editing. In addition, FOOLPROOF also provides
more traditional components such as various parsers and a formatter. The
components are implemented in Object Pascal and will eventually take the
form of a component library (’package’) for the Delphi environment.

2



In this paper we concentrate on some of the practical aspects of FOOL-
PROOF, such as the ways to specify signatures with variable bindings, the
structure of the resulting class hierarchy, and some of the techniques for han-
dling binding structures at a signature independent level. The underlying theory
will be presented elsewhere.

The structure of this paper is as follows:
We provide a stepwise introduction to FOOLPROOF’s signature notions in
sections 2 and 3.

Section 2 does not deal with binding structures yet, but illustrates FOOL-
PROOF’s approach to handling abstract syntax trees at various levels of ab-
straction.

In section 3 we introduce a new abstraction level, which is geared towards
handling all aspects of binding structures. This level provides items, which cor-
respond to defining occurrences of names and their properties, and references,
which correspond to applied occurrences. We show how operations like substi-
tution and copying can be handled in a uniform and signature independent way.
As a concrete example we present a signature for Pure Type Systems (PTSs),
a family of typed lambda calculi [3, 4].

We conclude by discussing the current status of FOOLPROOF in section 4
and related work in section 5.

2 Abstract Syntax

In this section we first consider signatures without binding structures and the
way they are handled within FOOLPROOF. In particular we show how FOOL-
PROOF deals with syntax trees at two different levels of abstraction: a signa-
ture independent abstract level dealing with general tree properties only, and
a signature dependent level where different node kinds and their structure can
be distinguished. This two-level approach paves the way for the treatment of
binding structures in section 3, which is based on a three-level approach.

The abstract syntax of a programming language or logic language is usually
defined as a term algebra over a signature. A signature consists of a finite set
of sorts and a finite set of operators, each of which has a (possibly empty)
sequence of argument sorts and a result sort. E.g. for a programming language
with while-statements we would have sorts like Expr and Stat and an operator
while : Expr×Stat → Stat. For easier reference to the sub-terms usually labels
are provided, resulting in something like while : [guard : Expr, body : Stat] →
Stat.

It is well-known that a signature of this kind can be mapped to a class hier-
archy in a class-based object-oriented language such as Java or Object Pascal.
Every sort S is mapped to a class CS , and each operator o : [f1 : S1, . . . , fn :
Sn] → S is mapped to a subclass of the class CS , which has members with names
derived from f1, . . . , fn which are references to objects of classes CS1 , . . . , CSn .
Well-known examples of systems employing such a mapping are [1, 2, 13, 16, 18].
Some of these systems make use of an elaborate architecture of traversal routines

3



or visitor classes, which are also generated from the signature.
In FOOLPROOF we take a different approach. We start from an abstract

base class T_Node which just provides some declarations (but no implementa-
tions) of methods for general tree operations, such as giving the number of sons
of a node or getting or setting the i-th son. In a slightly simplified form the
class header for T_Node is as follows:

type

T_Node =

class(TObject)

public

function NodeCount: Integer; virtual; abstract;

function GetNode(I: Integer): T_Node; virtual; abstract;

procedure SetNode(I: Integer; ANode: T_Node); virtual; abstract;

class function SortCode: T_SortCode ; virtual; abstract;

end;

For each sort S of the signature a subclass T_S is constructed. For instance,
for our example sort Stat we have:

type

T_Stat =

class(T_Node)

// fields and methods relevant for all statements

end;

The scheme for an operator o : [f1 : S1, . . . , fn : Sn] → S is somewhat more
involved. It yields a class which descends from the class corresponding to S and
it does provide members for accessing and setting each of the sub-terms. But in
addition it also overrides the methods of the ancestor class T_Node. Thus, the
class is provided with two interfaces, a signature dependent one and a signature
independent one. For instance, for the signature element

while: [guard: Expr, body: Stat] < Stat

the following class header is generated:

type

T_While =

class(T_Stat)

protected

F_guard: T_Expr;

F_body: T_Stat;

procedure Set_guard(A_guard: T_Expr); virtual;

procedure Set_body(A_body: T_Stat); virtual;

public

constructor Create(A_guard: T_Expr; A_body: T_Stat);

function NodeCount: Integer; override;

function GetNode(I: Integer): T_Node; override;

procedure SetNode(I: Integer; ANode: T_Node); override;

4



class function SortCode: T_SortCode ; override;

property _guard: TExpr read F_guard write Set_guard;

property _body : TStat read F_body write Set_Body;

end;

The properties _guard and _body provide access to the sub-terms with types
that are specific to the while-construct. The functions NodeCount, GetNode and
SetNode on the other hand provide uniform access to the sub-terms with types
that are signature independent. The following code is generated for them:

function T_While.NodeCount: Integer;

begin

Result := 2;

end;

function T_While.GetNode(I: Integer): T_Node;

begin

case I of

0: Result := F_guard;

1: Result := F_body

else

raise ENodeException.Create(’T_While.GetNode Index error);

end;

procedure T_While.SetNode(I: Integer; ANode: T_Node);

begin

case I of

0: F_guard := ANode as T_Expr; // ’as’ is a checked downcast

1: F_body := ANode as T_Stat;

else

raise ENodeException.Create(’T_While.SetNode Index error);

end;

The following example shows how the general and language-specific levels
can be used together. It is a simple procedure to traverse an AST in pre-order
and do something for each while node:

procedure PreOrderWhile(ANode: T_Node);

var

I: Integer;

begin

if ANode is T_While then

with ANode as T_While do

// ... do something with _guard and _body ...

for I := 0 to ANode.NodeCount - 1 do

PreorderWhile(ANode.GetNode(I));

end;

5



3 Incorporating Binding Structures

In this section we extend the signatures of section 2 with facilities for variable
bindings. By means of examples we identify various binding structures underly-
ing common constructs in programming languages and logics. We point out the
need for a uniform treatment of binding structures and illustrate the way this is
achieved in FOOLPROOF by the introduction of a new abstraction level. We
illustrate the concepts by means of examples drawn from Pure Type Systems
(PTSs), a family of typed lambda calculi [3, 4].

3.1 Binding structures in programming languages and log-
ics

Most programming languages offer facilities for declaring or defining constants,
variables, procedures, functions, types or classes. Similarly, in many logics one
can introduce constants, hypotheses, theorems, and proofs, and associate names
with them. Although the notations used for these language constructs are often
ad hoc and differ widely from one language to another (and even within one
language), the constructs themselves have much in common, viz. the introduc-
tion of a binder, i.e. a name with certain properties and a certain scope. Within
the scope of the binder it may be referred to by its name. In programming
parlance derived from ALGOL 68 [29] these two different uses of a name are
usually called defining occurrences and applied occurrences respectively. Let us
illustrate the commonalities by considering some familiar notions from program-
ming languages and logics, writing them in a form which stresses the common
elements:

constant definition Associates a name with a manifest value and its type,
e.g.:

• N = 3 : nat

• pair = (3, true) : nat× bool

variable declaration Associates a name with a type of modifiable values, e.g.:

• x : var[real]

type definition Associates a name with a type expression, e.g.:

• gridpoint = nat× nat : type

function definition Associates a name with a function expression and its type,
e.g.:

• idnat = (λx : nat.x) : nat → nat

• polyid = (λα : ∗.(λx : α.x)) : (Πα : ∗.α → α)

named hypothesis Associates a name with an assumed proposition, e.g.:

6



• H : P ⇒ Q

theorem Associates a name with a proposition and a (lambda term) proof of
that proposition, e.g.:

• thm1 = (λP : ∗.(λx : P.x)) : (∀P : ∗.P ⇒ P )

3.2 Extending Signatures with Binding Structures

When implementing a language with variable bindings, a lot of effort goes into
the coding of operations like identification (i.e. relating applied occurrences to
defining occurrences), substitution, copying, α-equivalence, β-reduction, match-
ing, etc. . Section 5 mentions some of the approaches encountered in the liter-
ature.

In FOOLPROOF we take a different and novel approach. We introduce
a new abstraction level, which is still independent of a particular signature,
and which is geared towards handling all aspects of binding structures. This
abstraction level provides terms, which correspond more or less to the usual
notion, items, which correspond to defining occurrences of names and their
properties, and references, which correspond to applied occurrences. This level
is organized in such a way that all operations involving binding structures can
be handled in a uniform and signature independent way. More precisely, we
distinguish the following three levels

Level 0 Like before, this is the level which provides general tree operations by
means of the abstract class T_Node.

Level 1 This level provides the notions of terms, items, and references. It is
realized by means of two mutually recursive abstract classes, viz. T_Term
and T_Item:

• The class T_Term is the abstract base class for terms. It consists of

– A number (possibly 0) of items, which correspond to the binders
of the term

– A number (possibly 0) of terms, which are the subterms of the
term

– A number (possibly 0) of references to items (i.e. pointers from
applied occurrences to defining occurrences)

– A number (possibly 0) of data elements (meant for storing simple
data like the digit sequence of a number)

• The class T_Item is the abstract base class for binders. It consists of

– A name, which is the name of the binder
– A number (possibly 0) of terms, which correspond to the prop-

erties of the binder

Level 2 This level is signature specific. It contains all the classes generated
from a given signature

7



At first sight this three-level organization may seem somewhat strange, but it is
the key to separating the general aspects of binding structures from signature
dependent aspects. All the general aspects can be handled completely with level
1 operations. Also, one might wonder whether the structure for terms is not too
general: most likely, a term node is either an internal node with subterms or a
leaf with no subterms and with a single reference to an item. The answer is,
that this extra generality does no harm, but actually makes algorithms simpler
and more uniform.

Here are the class headers of the abstract classes T_Term and T_Item:

type

T_Term =

class(T_Node)

public

// override inherited T_Node methods

function NodeCount: Integer; override;

function GetNode(I: Integer): T_Node; override;

procedure SetNode(I: Integer; ANode: T_Node); override;

// local items

function ItemCount: Integer; virtual;

function GetItem(I: Integer): T_Item; virtual;

procedure SetItem(I: Integer; AItem: T_Item); virtual;

// subterms

function TermCount: Integer; virtual;

function GetTerm(I: Integer): T_Term; virtual;

procedure SetTerm(I: Integer; ATerm: T_Term); virtual;

// references

function RefCount: Integer; virtual;

function GetRef(I: Integer): T_Item; virtual;

procedure SetRef(I: Integer; ARef: T_Item); virtual;

// data fields

function DataCount: Integer; virtual;

function GetData(I: Integer): String; virtual;

procedure SetData(I: Integer; AData: String); virtual;

end;

T_Item =

class(T_Ctxt)

protected

FAux: T_Item; // scratch field, used for copying, alpha equality, etc.

FName: string; // name of bound variable

procedure SetName(AName: string); virtual;

public

constructor Create(AName: String);

// override inherited T_Node methods

function NodeCount: Integer; override;

function GetNode(I: Integer): T_Node; override;

procedure SetNode(I: Integer; ANode: T_Node); override;

// subterms

function GetTerm(I: Integer): T_Term; virtual;

8



procedure SetTerm(I: Integer; ATerm: T_Term); virtual;

function TermCount: Integer; virtual;

property Name: string read FName write SetName;

end;

To make things more concrete, we show in subsection 3.3 how a particular
language with variable bindings can be encoded in a signature with binding
structures and how this signature can be mapped to language specific classes.
In subsection 3.4 we show as an example how a copy operation can be coded in
terms of level 1 operations exclusively.

3.3 Example: Pure Type Systems (PTSs)

In this subsection we show how a particular language with variable bindings can
be encoded as a signature. The language we consider is that of Pure Type Sys-
tems. Pure Type Systems (PTSs) are a parameterized family of typed lambda
calculi. They provide a common framework which captures the essence of many
notions from both functional programming languages (such as data types, func-
tions, polymorphism, type constructors, inductive types, abstract datatypes,
etc.) and logic (such as propositions, predicates, quantification, hypotheses,
proofs, and theorems). These can all be described in a small kernel. The ex-
pressiveness of a PTS is determined by its parameters. For more information
on PTSs we refer to [3, 4].

In publications from type theory the syntax of PTSs is usually given in the
following style:

T ::= S sorts
V variables
(T T ) application
(λV : T.T ) λ-abstraction
(ΠV : T.T ) Π-abstraction
(δV = T : T.T ) local definition
(T → T ) →− types

where S is a set of sorts and V is a set of variables, disjoint from S.
We will not go into the exact meaning of the syntactic constructions, but

just explain them with reference to the following example term:

(δpolyid = (λα : ∗. (λx : α. x)) : (Πα. α→α).
polyid nat 3)

This term contains a local definition of a name polyid, which is associated
with the term (λα : ∗. (λx : α. x)), and which has type (Πα. α→α). The term
(λα : ∗. (λx : α. x)) is a polymorphic function, which takes a type parameter α
and returns the identity function (λx : α.x) on that type. polyid is first applied
to the type argument nat and subsequently to the term 3. By δ-conversion

9



(”unfolding the definition” of polyid) and β-reduction the application will first
reduce to (λx : nat. x) 3, and by another β-reduction to 3.

In order to encode PTS terms in FOOLPROOF, we first note that both the
λ-term and the Π-term have a binder of the form V : T (a ”declaration”), and
that the δ-term has a binder of the form V = T : T (a ”definition”). Since ap-
plied occurrences of names may refer both to names introduced by declarations
and to names introduced by definitions, we introduce an item subsort Binder
and two subsorts Dec and Def. Dec extends Binder with one term T[ty:Term].
Def extends Binder with two terms T[te:Term, ty:Term]. The λ-term Lambda
extends the term sort Term with a declaration item I[dec:Dec] and a subterm
T[body:Term!]. The exclamation mark indicates that the body is in scope of
the item. The encodings of the Π-term and λ-term are similar. Finally, the ap-
plied occurrence of a name is encoded by the term subsort Var, which extends
the term sort Term with a single reference R[rf:Binder] to a binder.

The complete encoding is shown in the panel on the left in the following
screenshot from the class generator. The panel on the right shows the class
header generated for the Lambda term.

The code generated for the methods ItemCount, GetItem and SetItem is as
follows:

class function TLambda.ItemCount: Integer;

10



begin

Result := 1;

end{ItemCount};

function TLambda.GetItem(

I: Integer): _Item;

begin

case I of

0:

Result := Fdec;

else

raise Exception.Create(’Index error in TLambda.GetItem: ’ + IntToStr(I))

end;

end{GetItem};

procedure TLambda.SetItem(

I: Integer;

AItem: _Item);

begin

case I of

0:

Fdec := AItem as TDec;

else

raise Exception.Create(’Index error in TLambda.SetItem: ’ + IntToStr(I))

end;

end{SetItem};

The code generated for the methods TermCount, GetTerm and SetTerm is
similar.

3.4 Coding operations in a signature independent way

In this section we show by means of an example how operations involving binding
structures can be coded in terms of level 1 operations exclusively, i.e. indepen-
dent of a particular signature. The operation we consider is that of copying a
term. Since the notions of terms and items are defined by mutual recursion, we
construct two functions: CopyTerm and CopyItem. These functions proceed by
recursion on terms and items respectively. Special care has to be taken when
encountering items in the copying process. These have to be copied as well,
but we should remember that references to such items in the original should be
replaced by references to copies of those items in the result. At first it seems
that we have to maintain a list of pairs of (reference to original item, reference
to copy) which has to be searched each time we encounter a reference. By a
small coding trick this list can be avoided. Each item has a scratch reference
field FAux, which is temporarily filled with a reference to a newly created copy
of the item, and which is followed when encountering a reference to the original.
Using this trick, the copying process can be performed in linear time. The code
follows.

function CopyTerm(ATerm: T_Term): T_Term;

var

I: Integer;

11



VOldItem, VNewItem: TItem;

VOldRef, VNewRef: TItem;

begin

// create a result node of the same class as ATerm

Result := ATerm.ClassType.Create; // virtual constructor

// copy the items of ATerm to Result

for I := 0 to ATerm.ItemCount - 1 do

begin

VOldItem := ATerm.GetItem(I);

VNewItem := CopyItem(VOldItem);

Result.SetItem(I, VNewItem);

VOldItem.FAux := VNewItem; // temporarily link VOldItem to its copy VNewItem

end;

// copy the terms of ATerm to Result;

for I := 0 to ATerm.TermCount - 1 do

Result.SetTerm(I, CopyTerm(ATerm.GetTerm(I)));

// copy the data elements of ATerm to Result

for I := 0 to ATerm.DataCount - 1 do

Result.SetData(I, ATerm.GetData(I));

// copy the refs of ATerm to result, adjusting where necessary

for I := 0 to ATerm.RefCount - 1 do

begin

VOldRef := ATerm.GetRef(I);

if VOldRef.FAux <> nil // temporarily link to copy of VOldRef exists

then VNewRef := VOldRef.FAux // use it

else VNewRef := VOldRef;

Result.SetRef(I, VNewRef);

end;

// finally, clear the temporary FAux links in the items of ATerm

for I := 0 to ATerm.ItemCount - 1 do

ATerm.GetItem(I).FAux := nil;

end;

function CopyItem(AItem: T_Item): T_Item;

var

I: Integer;

begin

// create a result node of the same class as AItem

Result := AItem.ClassType.Create; // virtual constructor

// copy the name of AItem to Result

Result.Name := ATerm.Name;

// copy the terms of AItem to Result

for I := 0 to AItem.TermCount - 1 do

Result.SetTerm(I, AItem.GetTerm(I));

end;

12



4 Current Status and Future Work

Phrased in contemporary terms: FOOLPROOF is currently undergoing a com-
plete make-over. Various parts, such as the signature designer, the class gen-
erator, the structure editor and the scanner and parser generators have been
developed as separate applications, which has resulted in several incompatibil-
ities. Currently a redesign is going on, where the aforementioned tools are all
based on a common set of components. Moreover, the tools will take the form
of component library for the Delphi environment. This should make it possible
to compose systems in a RAD (rapid application development) style. In this
development style, applications are constructed in an integrated development
environment (IDE) by dragging components from a palette, dropping them on a
form, and setting their properties using property editors or component editors.
The following example may give an idea of the intended development style.

Example

Assume we want to build a simple structure editor for, say, lambda terms. Given
the FOOLPROOF toolkit and the Delphi IDE, we would take the following
steps:

1. Use the signature designer to create a well-formed signature LamSig for
lambda terms;

2. Use the class generator to generate from LamSig a collection of LamSig-
specific classes and a factory class LamFac;

3. Define a textual representation LamRep for lambda terms;

4. Drop a structure editor component StrEd on a form, and:

• Set its Signature property to LamSig;

• Set its Factory property to LamFac;

5. Drop a structured term view component (e.g. nested text panels) STV on
the form, connect it to the Term property of StrEd, and set its Represen-
tation property to LamRep;

6. Drop a context view component CV on the form, connect it to the Context
property of StrEd, and set its Representation property to LamRep;

5 Related work

The notion of abstract syntax was introduced by McCarthy in the classic paper
[22]. Abstract syntax specifications in the form of a signature are often used in
work on algebraic specifications.

Various systems take some sort of syntax specification (usually a mixture of
abstract and concrete syntax elements) as input and generate a set of type or

13



class definitions for representing abstract syntax trees and elements of syntax-
directed programming environments. Some well-known examples are ASF+SDF
[1], ASDL [7, 30], SableCC [13] and the JJTree component of the JavaCC com-
piler [17]. The problem of implementing both generic and specific syntax tree
operations is handled in different ways, e.g. by generating signature-specific
visitor classes or visitor combinators [18, 2], by using a single visitor and re-
flection [25], or - in a functional setting - by second-order polymorphism [21].
Some systems intended for generation of programming environments also offer
facilities for specifying context dependencies by means of attribute grammars.
A well-known example is the Cornell Synthesizer generator [26]. Another recent
example is the JAstAdd system [16].

Several formal techniques exist for expressing binding structures. In [5] De
Bruijn introduced the technique of nameless dummies, now usually referred to
as De Bruijn indices. This technique is used in many type-theory based proof
assistants, such as Coq [9] and LEGO [20]. A well-known technique for han-
dling abstract syntax with binding operators is Higher-Order Abstract Syntax,
described by Pfenning and Elliott in [24], but in essence already present in the
work of Church [6]. A good description is given by Miller [23]. Gabbay, Pitts
and Shinwell have developed a theory and a metalanguage (FreshML) for pro-
gramming with bound names [14, 12]. In [27, 28] Talcott has developed a formal
framework for formal systems with binding structures and rewriting, based on
syntax trees with back-references from variable uses to their definitions. Back-
references are expressed by means of access paths in the syntax tree. In [19]
Lang et al. propose a different way of handling references in syntax trees and
rewriting. The Cocktail program and proof assistant [10, 11, 8] implements ab-
stract syntax trees with binding structures by means of separate Java classes
for tree nodes, items (binders) and context. Back-references are implemented as
object references to item objects. Generalizations of this technique have been
applied in FOOLPROOF.

References

[1] ASF+SDF, URL: http://www.cwi.nl/htbin/sen1/twiki/bin/view/SEN1/MetaEnvironment

[2] Attali, Isabelle, a.o., SmartTools: a Development Environment Generator
based on XML Technologies, LNCS 2027, p.355.

[3] Barendregt, Henk, Lambda Calculi with Types, In S. Abramsky, Dov M.
Gabbay and T.S.E. Maibaum (eds.), Handbook of Logic in Computer Sci-
ence, Clarendon Press, 1992, pp. 117-309.

[4] Barendregt, Henk, and Kees Hemerik, Types in Lambda Calculi and Pro-
gramming Languages, Proceedings of ESOP’90 (European Symposium on
Programming), Copenhagen, 1990.

14



[5] Bruijn, N.G. de, Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34(5):381-392, 1972.

[6] Church, Alonzo, A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56-68, 1940.

[7] Christ-Neumann, M.-L. and H.-W. Schmidt. ASDL—an object-oriented
specification language for syntax-directed environments. In European Soft-
ware Eng. Conf. (ESEC ’87), pages 77-85. Strasbourg, September 1987.

[8] Cocktail, URL: http://www.win.tue.nl/ michaelf/cocktail.php

[9] Coq, URL: http://coq.inria.fr/

[10] Franssen, M., Cocktail: A Tool for Deriving Correct Programs, Proceedings
of the 6th Workshop on Automated Reasoning, Bridging the Gap between
Theory and Practice 6th-9th April, 1999, Edinburgh College of Art & Di-
vision of Informatics, University of Edinburgh.

[11] Franssen, M.G.J., Cocktail: A Tool for Deriving Correct Programs, Ph.D.
dissertation, Faculty of Mathematics and Computing Science, Eindhoven
University of Technology, Eindhoven, The Netherlands, December 2000.

[12] FreshML, URL: http://www.cl.cam.ac.uk/ amp12/freshml/

[13] Gagnon, Etienne, SableCC, An Object-oriented Compiler Framework,
School of Computer Science, McGill University, Montreal , March 1998.

[14] Gabbay, M. J., and A.M. Pitts, A New Approach to Abstract Syntax with
Variable Binding, Formal Aspects of Computing 13(2002)341-363, special
issue in honour of Rod Burstall.

[15] Hedin, G., Reference attribute grammars. In 2nd International Workshop
on Attribute Grammars and their Applications, 1999.

[16] Hedin, Görel, and Eva Magnusson, JastAdd—a Java-based system for im-
plementing front ends, Electronic Notes in Theoretical Computer Science,
Vol. 44 (2) (2001)

[17] JavaCC compiler, URL: https://javacc.dev.java.net/

[18] Kuipers, Tobias, and Joost M.W. Visser, Object-oriented Tree Traversal
with JJForester, CWI-report SEN-R0041, ISSN 1386-369X.

[19] Lang, Frédéric, a.o., Addressed Term rewriting Systems, res.rapp. RR 1999-
30, INRIA, 1999.

[20] LEGO, URL: http://www.dcs.ed.ac.uk/home/lego/

15



[21] Lämmel, Ralf, and Simon Peyton-Jones, Scrap Your Boilerplate: A Prac-
tical Design Pattern for Generic Programming, Procs. of the 2003 ACM
SIGPLAN International Workshop on Types in Languages Design and Im-
plementation, 2003, pp. 26-37.

[22] McCarthy, J., Towards a Mathematical Science of Computation, Proc. IFIP
Cong. 1962, North Holland Pub. Co., Amsterdam, pp. 21-28.

[23] Miller, Dale, Abstract Syntax for Variable Binders: An overview, Procs. of
the First Intern. Conf. on Computational Logic, pp. 239-253, 2000, ISBN:3-
540-67797-6.

[24] Pfenning, F., and C. Elliott, Higher-order abstract syntax. In Proceedings
of the SIGPLAN ’88 Conference on Programming Language Design and
Implementation, pages 199–208. ACM Press, 1988.

[25] Palsberg, Jens, and C. Barry Jay, The Essense of the Visitor Pattern.
Procs of COMPSAC’98, 22nd Annual International Computer Software
and Applications Conference. Vienna, Austria, August 1998.

[26] Reps, T. and T. Teitelbaum, The Synthesizer Generator, Springer, 1989.

[27] Talcott, C. L., Binding structures. In Vladimir Lifschitz, editor, Artificial
Intelligence and Mathematical Theory of Computation. Academic Press,
1991. 11.

[28] Talcott, C.L., A Theory of Binding Structures and Applications to Rewrit-
ing, TCS 112,1993 (short version in: Second International Conference
on Algebraic Methodology and Software Technology, AMAST91, LNCS,
Springer, 1991).

[29] A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck and C.H.A. Koster (eds.),
Report on the Algorithmic language ALGOL 68, Numerische Mathematik,
14, 79-218 (1969); Springer-Verlag.

[30] Wang, Daniel C. , Andrew W. Appel, Jeff L. Korn, and Chris S. Serra.
The Zephyr Abstract Syntax Description Language, USENIX Conference
on Domain-Specific Languages, Santa Barbara, Oc-tober 15-17, 1997.

16


