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Dynamics of two identical vortices in linear shear
R. R. Trieling,a� C. E. C. Dam, and G. J. F. van Heijst
Fluid Dynamics Laboratory, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven,
The Netherlands

�Received 10 February 2010; accepted 10 August 2010; published online 11 November 2010�

The dynamics of two identical vortices in linear shear was studied both numerically and
experimentally. Numerical simulations based on the technique of contour dynamics reveal that the
vortex evolution in adverse shear is significantly different from that in cooperative shear. Vortices in
adverse shear predominantly separate, whereas vortices in cooperative shear predominantly merge.
In addition, adverse shear may destruct the vortices much in the same way as a single vortex in
adverse shear, whereas cooperative shear stabilizes the vortices and thus enhances the possibility of
vortex merger. The critical distance for vortex merger depends strongly on both the sign and the
strength of the linear shear and, to a lesser extent, on the initial vorticity distribution. A simple
vortex merger criterion is derived based on the interaction of two point vortices in linear shear. The
different behavior of vortices in adverse and cooperative shear was confirmed by rotating-tank
experiments. © 2010 American Institute of Physics. �doi:10.1063/1.3489358�

I. INTRODUCTION

One of the most striking features of two-dimensional
�2D� turbulence is the development of coherent vortices from
smaller-scale structures, a process generally referred to as
“self-organization” �see, for example, Refs 1 and 2�. Kinetic
energy initially distributed over larger and smaller eddies
eventually concentrates in large-scale structures that domi-
nate the subsequent flow evolution. A solid understanding of
the interactions of these vortices is therefore crucial in order
to gain insight in 2D turbulence itself.

A fundamental process in 2D turbulent flows is the
merger of two nearby like-signed vortices. For this reason, a
number of studies have been devoted to the understanding of
the key mechanisms of this process.3–8 Previous experimen-
tal and numerical studies3,9–15 have shown that two identical
vortices merge if their initial intercentroid distance is smaller
than some critical value, leading to a vortex larger in size
than the original vortices. It was also shown that the interac-
tion of unequal corotating vortices is much richer than that of
equal vortices.16–20 Whereas the merger of two identical vor-
tices produces only a single vortex, the close interaction of
unequal vortices can often produce two vortices, one of
which may be weaker than the original ones.

All these results are based on the interaction of vortices
in isolation. In a turbulent flow, however, vortices are gener-
ally influenced by the shearing of surrounding vortices,
which may significantly affect the onset to the vortex merger.
Indeed, a nonuniform background velocity may push the vor-
tices further apart or bring them closer together, so that it
may either be easier or more difficult for vortices to merge in
a background flow than without it. This situation is espe-
cially relevant for the initial and intermediate stages of de-
caying 2D turbulence in which vortices are relatively closely
separated.

As a first approximation, the effect of neighboring vor-
tices may be represented by linear shear, being the first com-
ponent of a local Taylor series expansion of the complex
velocity field in which each vortex is embedded. Previous
studies21–25 have shown that single vortices embedded in ad-
verse and cooperative shear behave very differently. Vortices
in adverse shear may be torn apart into a long thin filament
due to the joint effect of vortex stripping and horizontal dif-
fusion, whereas vortices in cooperative shear may evolve to
equilibria that are nearly elliptical with their major axis
aligned in the direction of the background shear. The differ-
ent behavior of vortices in adverse and cooperative shear is
also to be expected for the merger of two corotating vortices
and may drastically affect the criteria for vortex merger.

In this paper, the interaction of two equal vortices in a
linear shear flow is studied both numerically and experimen-
tally. As a first approach, the vortices are modeled by point
vortices, whereas the linear shear is imposed analytically.
The point-vortex model enables us to concentrate on the
main dynamical aspects of the evolution and offers the sim-
plest possible configuration to quantify. For identical point
vortices, the problem can be described with only a single
dimensionless parameter. The point-vortex model gives im-
portant insight in the different behavior of vortices in adverse
and cooperative shear. As a second approach, we apply the
technique of contour dynamics,26,27 which is based on the
twin requirement that the vorticity is both materially con-
served and piecewise uniform. This technique allows us to
investigate the effect of distributed vorticity on the interac-
tion of vortices in linear shear.

The experiments are carried out in a rotating tank in
which the flow is quasi-two-dimensional. Similar techniques
are used as in previous studies25,28,29 to generate the vortices
and the linear shear. The vortices are created by locally si-
phoning fluid through perforated tubes for a short time pe-
riod, whereas the linear shear is created by a sudden increase
in the angular velocity of the tank. A number of experimentsa�Electronic mail: r.r.trieling@tue.nl. URL: www.fluid.tue.nl.
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are performed with different values for the shear strength and
the intercentroid distance. The subsequent flow evolution is
visualized by injecting different colors of dye into the cores
of the initial vortices, whereas particle-tracking techniques
provide quantitative information about the horizontal flow
field. Both the numerical and experimental results are sum-
marized in regime diagrams. Special attention is given to the
differences between the evolutions in adverse and coopera-
tive shear.

This paper is organized as follows. Section II gives a
description of the point-vortex model. Next, in Sec. III, the
contour dynamics method is introduced and the results for
two types of vortices with distributed vorticity are discussed.
Section IV discusses the results of the laboratory experi-
ments. Finally, in Sec. V, the results are summarized and the
conclusions are given.

II. POINT-VORTEX MODEL

In order to explain the key dynamical aspects of the flow
evolution, we consider two point vortices, each with strength
�, located an initial distance �0 apart. The point vortices are
initially aligned in the flow direction of a linear shear flow
with strength �, whose velocity components in the x- and
y-directions are given by u=�y and v=0, respectively �see
Fig. 1�. The time evolution of this two-vortex system de-
pends on three parameters: the initial distance between the
point vortices �0, the strength of each point vortex �, and the
strength of the shear flow �. On dimensional grounds, a
single dimensionless parameter can be defined which char-
acterizes the entire flow evolution

� =
��0

2

�
. �1�

When ��0, the shear is referred to as cooperative; when
��0, the shear is called adverse.

The motion of two identical point vortices in a linear
shear flow has been studied before by Kimura and
Hasimoto30 and also by Waugh,31 but with a different orien-
tation of the axes and for adverse shear only. Below we will
closely follow the analysis of Kimura and Hasimoto.

The equations of motion for two point vortices of
strength � in a linear shear flow of strength � are given by

dx1

dt
= −

�

2�

y1 − y2

r2 + �y1, �2�

dy1

dt
=

�

2�

x1 − x2

r2 , �3�

dx2

dt
= −

�

2�

y2 − y1

r2 + �y2, �4�

dy2

dt
=

�

2�

x2 − x1

r2 , �5�

where �xi ,yi� is the position of the ith vortex and
r=��x1−x2�2+ �y1−y2�2 is the distance between the vortices.
This system of two interacting point vortices in linear shear
is a Hamiltonian dynamical system, so that the equations of
motion can be written in the forms

�H

�yi
= �

dxi

dt
, �6�

−
�H

�xi
= �

dyi

dt
, �7�

where

H = −
�2

4�
ln��x1 − x2�2 + �y1 − y2�2� +

��

2
�y1

2 + y2
2� �8�

is the Hamiltonian of the system.
Equations �3� and �5� yield an integral quantity

Y = �y1 + y2�//2, �9�

which is the y-component of the center of vorticity of the
two-vortex system. The corresponding x-component is given
by

X = �x1 + x2�/2. �10�

Using Eqs. �2�–�5�, the time dependence of the center of
vorticity is found to be

X�t� = �Y0t + X0, �11�

Y�t� = Y0, �12�

where X0 and Y0 are the initial values of X and Y. Thus it
follows that the center of vorticity moves along with the
local velocity of the shear flow.

Introducing the relative coordinates

� = x2 − x1, �13�

	 = y2 − y1, �14�

the Hamiltonian can be rewritten as

H = −
�2

4�
ln��2 + 	2� +

��

2

1

2
�	2 + �2Y0�2� . �15�

Noting that the Hamiltonian of the system is a constant of
motion, an analytical expression for the trajectories of the
vortices can be derived, which is given by

0

αy
y

γγ

x
ξ

u =

FIG. 1. Initial configuration of two point vortices, each with circulation �,
located an initial distance �0 apart in linear shear with strength �.
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�2 + 	2 = �0
2 exp	��

�
	2
 , �16�

where �0 is the distance between the point vortices when they
are horizontally aligned �i.e., 	=0�.

Figure 2 shows the trajectories of the point vortices for
several values of �. We have confined ourselves to the solu-
tions of Eq. �16� that have the initial point-vortex positions in
common. The initial point-vortex positions are indicated by
the bullets in Fig. 2. When no external shear is present ��
=0�, the point vortices follow circular orbits due to vortex-
vortex interactions. For cooperative shear ���0�, the point
vortices move along closed orbits and their separation dis-
tance is minimum when the vortices are vertically aligned.
For adverse shear of moderate strength, i.e., 0
���c with
�c=1 /�e a critical value, the motion of the point vortices is
also periodic, but now the separation distance is maximum
when the point vortices are vertically aligned. For strong
adverse shear, i.e., when ���c, the point vortices are sepa-
rated indefinitely. The dotted lines in Fig. 2 represent the
trajectories for the limiting case �↓�c. In fact, when �=�c,
the point vortices acquire a stationary state when they are
vertically aligned. In this case the velocity of the shear ex-
actly balances the velocity that each vortex induces in the
other. Apart from this special case, it may be concluded from
Fig. 2 that interactions between identical point vortices in
linear shear results in either periodic or separative motion.

III. CONTOUR DYNAMICS MODEL

Despite being a helpful tool to model the main dynami-
cal features of two vortices in linear shear, the applicability
of the point-vortex model is limited to cases where the char-
acteristic radii of finite-size vortices are much smaller than
the distance between them. Obviously, this is not the case
when the vortices merge, i.e., when the distance between the
vortices is of the order of the vortex radius. In order to in-
vestigate the effect of distributed vorticity on the interaction
of vortices in linear shear, the technique of contour dynamics
is used.26 This technique allows us to calculate the evolution

of vortices with distributed vorticity. We will focus on two
different types of vortices: �1� the Rankine vortex, which is
characterized by a core of uniform vorticity and zero vortic-
ity in the outer region and which is relevant in 2D turbulent
flows where the interaction with surrounding vortices leads
to sharp-edged vortices, and �2� the Lamb vortex, which is
characterized by a Gaussian vorticity distribution and closely
resembles vortices as observed in the laboratory.

A. Numerical procedure

The two-vortex system in linear shear is governed by the
material conservation of vorticity

D�

Dt
= 0, �17�

where D /Dt is the material derivative for a two-dimensional
scalar field advected by the local velocity v, i.e., D /Dt
=� /�t+v ·�, with � the two-dimensional gradient operator.
The vorticity � and the velocity v are related to the stream
function � by

� = − �2� − � �18�

and

v = − k 
 �� + vs, �19�

respectively, with k as the unit vector perpendicular to the
plane of motion and vs= ��y ,0� as the background shear flow
with strength �. Note that the stream function � is related to
the velocity induced by the vortices only and not to the shear
flow. Equations �17�–�19� are solved using the technique of
contour dynamics.26,27 The essence of contour dynamics is
that the distribution of a piecewise-uniform vorticity field is
completely determined by the instantaneous positions of the
contours separating the different regions of uniform vorticity.
The contours are represented by a finite but adjustable num-
ber of nodes which are advected by the local velocity field
Eq. �19�, induced by the instantaneous vorticity distribution
and the external linear shear. The velocity follows directly
from the inversion of Poisson’s Eq. �18� with the piecewise-
uniform vorticity field as a source. Hence we have a closed
dynamical system for fluid particles that lie on the contours.
The number of nodes is allowed to change in time in re-
sponse to possible deformations of the contours. The nodes
are redistributed along the contours using cubic splines be-
tween the original nodes. In order to reduce the complexity
of the contours and to be able to perform long-term time
integrations, the technique of “contour surgery” is applied
�see Ref. 27 for more details�. Time integration was per-
formed using a fourth-order Runge–Kutta method with a
time step of 0.05��m�−1, with �m as the maximum vorticity
of the vortex. The total area enclosed by the contours was
conserved within 99%.

B. Rankine vortices

The Rankine vortex is characterized by a core of uni-
form vorticity and an outer region of zero vorticity, i.e.,

−1 0 1

−1

0

1

ξ /2

η
/2

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 2. Point-vortex trajectories for two vortices in linear shear: �a� �=
−0.796, �b� �=0, �c� �=0.103, �d� �=0.117, �e� �=0.135, and �f� �
=1.590. The dotted line corresponds to the trajectories with �=�c. The
initial positions of the point vortices are indicated by the bullets.
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� =
�

�Rm
2 for 0 
 r 
 Rm, �20�

� = 0 for r � Rm, �21�

with � as the total circulation and Rm as the vortex core
radius. In general, Rm is defined as the radius at which the
azimuthal velocity is maximum, hence the subscript “m.”
Since there is only a single vorticity jump involved, the

Rankine vortex can be represented by a single contour. The
initial configuration of the two Rankine vortices in linear
shear is shown in Fig. 3. The Rankine vortices are initially
aligned in the shear flow direction and located an intercen-
troid distance d0 apart.

The time evolution of Rankine vortices in linear shear
depends on two dimensionless parameters: � /�m and d0 /Rm.
The first parameter is the ratio of the shear strength � and the
maximum vorticity of the vortex, �m=� / ��Rm

2 �. The second
parameter is the ratio of the initial distance between the vor-
tex centers, d0, and the vortex radius Rm. In what follows, the
parameters � /�m and d0 /Rm will be referred to simply as the
shear strength and the initial separation distance, respec-
tively, without explicit mention of the above normalization.

Figure 4 shows the characteristic flow regimes for fixed
d0 /Rm and different shear strengths � /�m: �i� separative mo-
tion with elongation of the vortices �Fig. 4�a��, �ii� separative
motion without elongation of the vortices �Fig. 4�b��, �iii�
periodic motion �Figs. 4�c�–4�e��, and �iv� merger �Fig. 4�f��.
Many more simulations were performed, also for other val-
ues of d0 /Rm, but no other flow regimes were found �apart
from a hybrid regime to be discussed below�. The results are
summarized in a regime diagram �see Fig. 5�.

x

d

Γ Γ

0

m2R

u = αy
y

FIG. 3. Initial configuration of two Rankine vortices, each with circulation
� and radius Rm, in a linear shear flow with strength �. The vortices are
initially located an intercentroid distance d0 apart.

0.00

(a)

0.03 0.06 0.11 0.25

0.00

(b)

0.06 0.13 0.25 0.38

0.00

(c)

0.15 0.72 1.31 1.46

0.00

(d)

0.13 0.25 0.38 0.50

0.00

(e)

0.11 0.19 0.27 0.38

0.00

(f)

0.08 0.14 0.20 0.26

FIG. 4. Illustration of the different flow scenarios for two interacting Rankine vortices in linear shear. For each case, the initial separation distance d0 /Rm

=6.0, whereas the shear strength � /�m is varied: �a� � /�m=0.20, separative motion with elongation; �b� � /�m=0.05, separative motion without elongation;
�c� � /�m=0.01, periodic motion; �d� � /�m=0, periodic motion; �e� � /�m=−0.01, periodic motion; and �f� � /�m=−0.15, merger. Times are relative to the
orbit period of two point vortices, each with circulation �=��mRm

2 , located an initial distance d0=6.0Rm apart without external shear.
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For the case without shear �� /�m=0�, we may distin-
guish between two regimes. When the initial separation dis-
tance is larger than the critical separation distance, the vortex
centers move along periodic trajectories �see Fig. 4�d��. For
initial separations smaller than the critical separation dis-
tance, the two vortices will merge. The critical separation
distance d0 /Rm is found to be 3.3�0.1, which corresponds
closely to the value stated in the literature.11,31,32

We now consider the effect of shear on the evolution of
the Rankine vortices when the initial separation distance is
relatively large, i.e., d0 /Rm�3.3. It is then found that for
moderate adverse shear, the vortices still orbit periodically
around each other, but now the trajectories are elongated in
the y-direction �see Fig. 4�c��. That is, the separation distance
is effectively larger than that without shear, which was also
the case for point vortices in adverse shear �see Sec. II�. For
larger adverse shear strengths, the trajectories of the vortex
centers are no longer closed and the vortices move away
from each other without being torn apart, as in Fig. 4�b�.
Upon further increasing the strength of the adverse shear, the
vortices become strongly deformed and elongated �see Fig.
4�a��. The centers of the vortices still follow open trajecto-
ries, as described above, but the strain induced by the shear
is strong enough to tear each vortex apart.

When the vortices are exposed to cooperative shear and
the initial separation distance is still relatively large, i.e.,
d0 /Rm�3.3, the periodic motion is preserved for moderate
shear strengths, but the trajectories of the vortex centers are
now flattened in the y-direction �see Fig. 4�e��. That is, the
separation distance is effectively smaller than that without
shear, which was also the case for the point vortices �see Sec.
II�. For even stronger cooperative shear, the minimum sepa-
ration distance is so small that the vortices merge �see Fig.
4�f��.

For relatively small initial separation distances, i.e.,
d0 /Rm�3.3, we observe from Fig. 5 that adverse shear in-

hibits vortex merger when the shear strength is large enough.
In this case, the vortices simply move away from each other
by the action of the shear. When the shear is more adverse,
the vortices are strongly deformed and each vortex is even-
tually torn apart. In contrast, cooperative shear brings the
vortices effectively closer together and therefore promotes
the merger process. It should be noted that for d0 /Rm=2.0,
i.e., when the initial vortex cores touch, the distinction be-
tween the regimes of merger and separative motion with
elongations was difficult to make for relatively large adverse
shear �� /�m�0.1�. In these cases, the initial stage of the
evolution was characterized by the formation of two elon-
gated vortex cores which were intimately linked to one an-
other, forming virtually a single elongated vortex, but later
on, the centers of the original vortex cores drifted apart due
to the action of the adverse shear. Despite the strong ex-
change of vorticity between the vortex cores, this hybrid
evolution was assigned to the regime of separative motion
with elongation.

Despite its simplicity and its possible shortcomings at
relatively small separation distances, it is tempting to inves-
tigate whether the point-vortex model is able to predict some
of the flow regimes for the case of two Rankine vortices in
linear shear. A preliminary study on forced vortex merger by
Waugh31 has shown that such an approach has indeed poten-
tial. Some similarities between the evolution of Rankine vor-
tices and point vortices have already been noted above.
However, only a single parameter ��=��o

2 /�� is involved in
the description of the motion of two point vortices in linear
shear, whereas two parameters �d0 /Rm and � /�m� are re-
quired to parametrize the shear-induced evolution of two
Rankine vortices. When the initial separation distance �0 in
the expression for � �Eq. �1�� is replaced by the initial inter-
centroid distance d0 between two Rankine vortices, and the
circulation � in Eq. �1� is regarded as the circulation of a
single Rankine vortex �=��mRm

2 , the parameter � can be
related to both d0 /Rm and � /�m as

� =
1

�

�

�m
	 d0

Rm

2

. �22�

Using the same procedure, the expression for the point-
vortex trajectories �Eq. �16�� can be written in terms of
d0 /Rm and � /�m, i.e.,

	 �

Rm

2

+ 	 	

Rm

2

= 	 d0

Rm

2

exp� �

�m
	 	

Rm

2� . �23�

For point vortices in linear shear, the boundary between
separative and periodic motion is determined by the critical
parameter �c. For Rankine vortices in linear shear, the same
distinction can be made between separative motion and pe-
riodic motion. The relation between � /�m and d0 /Rm for �
=�c is given by

�

�m
= ��c	 d0

Rm

−2

. �24�

This relation is indicated with the dashed line in the regime
diagram displayed in Fig. 5. If the Rankine vortices would
behave like point vortices, the dashed line would represent

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

α/
ω

m

d
0
/R

m

FIG. 5. Regime diagram for two Rankine vortices in linear shear, with � /�m

as the shear strength and d0 /Rm as the initial separation distance. Separative
motion with elongation is indicated by a plus �+�, separative motion without
elongation by a square ���, periodic motion by a circle ���, and merger by
a bullet ���. The dashed line corresponds to the boundary between separa-
tive and periodic motion based on the point-vortex model.
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the boundary between periodic and separative motion for
Rankine vortices. It is clear that the dashed line in Fig. 5
separates both regimes very well for values of d0 /Rm�3.0.
For smaller separation distances, the dashed line no longer
represents the boundary between separative motion and pe-
riodic motion for Rankine vortices in linear shear. At these
distances the point-vortex model is apparently no longer suit-
able due to the finite radii of the Rankine vortices.

It would be convenient to derive a simple criterion for
the merger of two Rankine vortices in linear shear. When no
shear is applied, the critical separation distance for the Rank-
ine vortices is d0 /Rm=3.3. Although point vortices cannot
merge, our numerical simulations demonstrated that up to the
point of vortex merger, the point-vortex positions are in close
agreement with the centroid positions of well-separated
Rankine vortices. The separation distance between the point
vortices may therefore serve as a good measure to predict
merger. It is expected that Rankine vortices in shear will
merge if the distance between the corresponding point vorti-
ces �which can be determined analytically� is always smaller
than the critical value for merger of two Rankine vortices
without shear. On the other hand, it is expected that the
Rankine vortices will not merge if the distance between the
corresponding point vortices is always larger than this criti-
cal value. Although these criteria are probably too strict, they
may provide a sufficient condition for merger or no merger.

Because in the case of merger the distance between the
centers of vorticity remains bounded, the following discus-
sion focuses on situations with ���c, for which the inter-
action between point vortices results in periodic motion. For
point vortices in adverse shear, the maximum separation dis-
tance is obtained when the point vortices are vertically
aligned, i.e., �=0, whereas the minimum separation distance
is obtained when the point vortices are horizontally aligned,
i.e., 	=0. In contrast, for point vortices in cooperative shear,
the maximum and minimum separation distances correspond
to the horizontal and vertical alignment of the vortices, re-
spectively.

In Fig. 6 we show the same regime diagram as in Fig. 5.
We now introduce two dashed lines. The vertical dashed line
represents the case of two horizontally aligned point vortices
which are located a critical distance 3.3Rm apart, i.e., �
=3.3Rm and 	=0. When the point vortices are embedded in
cooperative shear, their intercentroid distance will never rise
above the critical distance. Likewise, when the point vortices
are embedded in adverse shear, their intercentroid distance
will never fall below the critical distance. The other dashed
line represents the case of two vertically aligned vortices
which are located a critical distance 3.3Rm apart, i.e., �=0
and 	=3.3Rm, where Eq. �23� has been used to derive the
relationship between � /�m and d0 /Rm. This case corre-
sponds to the minimum separation distance when the point
vortices are embedded in cooperative shear and to the maxi-
mum separation distance when the point vortices are embed-
ded in adverse shear.

It is expected that in the region to the left of both lines,
all interactions will result in merger, i.e., the distance be-
tween the vortices is always smaller than the critical value
3.3Rm. Likewise, in the region to the right of both lines, the

distance between the two vortices is always larger than the
critical distance and no merger is expected to occur. Both
regions are highlighted in Fig. 6 with dark and light shading,
respectively. It is clear that the prediction of merger or no
merger is excellent. For the intermediate region, i.e., the un-
shaded regions, the regimes of merger and no merger coexist
for vortices in adverse shear. In contrast, vortices in coopera-
tive shear always merge in the intermediate region. As a
result, the merger criterion for Rankine vortices in coopera-
tive shear can be formulated more precisely by the require-
ment that the minimum separation distance between the vor-
tices as predicted by the point-vortex model should be
smaller than 3.3Rm.

We finally remark that for relatively large initial separa-
tion distances �d0 /Rm�3.0�, the boundary between elonga-
tion and no elongation is given by � /�m=0.156�0.006,
which can be verified from Figs. 5 and 6. This value is in
close agreement with the critical value derived analytically
by Kida,21 who showed that a single Rankine vortex in a
linear shear flow is torn apart when � /�m�0.15. For rela-
tively small initial separation distances �d0 /Rm�3.0� up to
the point of vortex merger, less ambient shear is required to
break up the vortices since each vortex experiences addi-
tional strain induced by the other.

Summarizing, it is found that the evolution of two Rank-
ine vortices in linear shear is much richer than that of two
point vortices. Owing to the finite sizes of the vortices, the
vortices merge when the initial separation distance is smaller
than a critical value. The latter depends on both the sign and
the strength of the linear shear. In addition, each vortex may
be torn apart both by the straining action of the shear and the
strain induced by the other vortex. Based on the point-vortex
model, we derived a sufficient condition for merger and no
merger of two Rankine vortices in linear shear.
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FIG. 6. Regime diagram for two Rankine vortices in linear shear. According
to the point-vortex model, we may distinguish between merger �dark-shaded
region� and no merger �light-shaded region�. See the main text for details.
The symbols have the same meaning as in Fig. 5.

117104-6 Trieling, Dam, and van Heijst Phys. Fluids 22, 117104 �2010�

Downloaded 15 Feb 2011 to 131.155.128.9. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



C. Lamb vortices

In order to verify the above ideas for more realistic vor-
tices, we consider the evolution of two Lamb vortices in
linear shear. The Lamb vortex is characterized by a Gaussian
vorticity distribution, i.e.,

� =
�

�RL
2 exp�− r2/RL

2� , �25�

which is often observed in the laboratory �see Sec. IV�. Here,
RL is a characteristic length scale which is related to the
radius of maximum azimuthal velocity Rm by Rm=1.12RL.
We again apply the technique of contour dynamics to calcu-
late the time evolution of the vortices in linear shear. For
this, the continuous vorticity distribution of the Lamb vortex
is discretized into 16 nested, uniform vorticity regions.
Hence, each vortex is represented by 16 contours. This num-
ber of vortices is sufficient to resolve the “halo” of low-
amplitude vorticity properly �see Ref. 19�. The discretization
is carried out in such a way that the discrete distribution of
vorticity is closest to the continuous distribution in a least-
squares sense, under the constraint that the circulation of the

two distributions is the same.
As for Rankine vortices, the flow is described by two

dimensionless parameters: the initial separation distance
d0 /Rm and the shear strength � /�m, where the maximum
vorticity �m is related to the circulation � by �m=� / ��RL

2�.
The vortices are initially aligned with the shear flow direc-
tion and located a distance d0 apart.

Some characteristic results for various values of d0 /Rm

and � /�m are shown in Fig. 7. Many more simulations were
performed but no other regimes were found. The results are
summarized in the regime diagram displayed in Fig. 8. The
regime diagram for Lamb vortices is similar to that for Rank-
ine vortices. Indeed, we observe the same four basic types of
interaction: separative motion with and without elongation,
periodic motion, and merger. The critical merger distance
d0 /Rm without shear is found to be 4.25�0.25, whose value
corresponds closely to the value 4.15 suggested in earlier
studies.13,15

Following the same procedure as before, we exploit the
point-vortex model to predict some of the flow regimes for
the case of two Lamb vortices in linear shear. Using Eq. �1�
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FIG. 7. Illustration of the different flow scenarios for two interacting Lamb vortices in linear shear. For each case, the initial separation distance d0 /Rm

=5.35, whereas the shear strength � /�m is varied: �a� � /�m=0.20, separative motion with elongation; �b� � /�m=0.05, separative motion without elongation;
�c� � /�m=0.01, periodic motion; �d� � /�m=0, periodic motion; �e� � /�m=−0.01, periodic motion; and �f� � /�m=−0.15, merger. For clarity, only the
evolution of five selected contours is shown for each vortex, viz., at � /�m=0.95, 0.70, 0.47, 0.28, and 0.12, respectively. Times are relative to the orbit period
of two point vortices, each with circulation �=��mRL

2 =��m�Rm /1.12�2, located an initial distance d0=5.35Rm=6.00RL apart without external shear.
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and replacing �0 with d0 and � with �=��mRL
2

=��m�Rm /1.12�2, we obtain similar expressions as for Eqs.
�22�–�24�.

The boundary between separative motion and periodic
motion as derived from the point-vortex model is indicated
in Fig. 8 by the dashed line. The line separates the corre-
sponding flow regimes for Lamb vortices extremely well
within the range of parameters investigated. We did not per-
form numerical simulations for smaller initial separation dis-
tances in order to avoid considerable overlap of the vorticity
of each vortex �a situation not realistic in 2D turbulent
flows�.

We can derive a simple criterion for merger or no merger
based on the point-vortex model as we did before for the
system of two Rankine vortices. The Lamb vortices are ex-
pected to merge when the separation distance between the
corresponding point vortices is always smaller than the criti-
cal merger distance associated with the Lamb vortices with-
out shear �d0 /Rm=4.15�. On the other hand, no merger of the
Lamb vortices is expected when the separation distance be-
tween the corresponding point vortices is always larger than
this critical value. Using the same procedure as before, we
may introduce two lines in the regime diagram, but now
based on the critical merger distance for two Lamb vortices,
which are expected to demarcate the regions of merger and
no merger �see Fig. 9�. To the left of both curves, the Lamb
vortices are expected to merge, i.e., the distance between the
corresponding point vortices never exceeds the critical value.
To the right of both curves, the vortices are expected not to
merge, i.e., the separation distance is never smaller than the
critical value. In the intermediate region, both merger and no
merger may occur. From Fig. 9 it is clear that the criterion
for merger or no merger is very good. Also, for Lamb vorti-
ces in cooperative shear, we can formulate a more precise
criterion for vortex merging by requiring that the minimum
separation distance between the vortices as predicted by the
point-vortex model should be smaller than 4.15Rm.

Concerning the regimes of elongation and no elongation,

we observe from either Figs. 8 and 9 that the corresponding
transition occurs at � /�m=0.131�0.006. This value is in
close agreement with numerical results by Mariotti et al.23

who found a critical value of � /�m=0.134 for a single Lamb
vortex in linear shear.

A comparison between the regime diagrams for Rankine
vortices and Lamb vortices reveals that Lamb vortices be-
have much in the same way as Rankine vortices when linear
shear is applied. In both cases, the same four flow regimes
are identified and the critical merger distances depend on
both the sign and the strength of the shear flow. We also
found a similar critical shear strength at which each vortex is
torn apart. The shapes of the initial continuous vorticity pro-
files only affect the location of the boundaries of the flow
regimes.

IV. LABORATORY EXPERIMENTS

A. Experimental procedure

The laboratory experiments were performed in a rectan-
gular tank with dimensions 200
40
30 cm �length

width
depth�. The tank was mounted on a turntable with
the tank center aligned with the axis of rotation. The tank
was filled with water to a depth of approximately 20 cm and
was set into motion with an angular velocity of �
=0.7 rad s−1 �which corresponds to a rotation period T of 9.0
s�. Before the vortices and the shear were created, the flow
was allowed to adjust to solid-body rotation for at least half
an hour. A schematic view of the experimental setup is de-
picted in Fig. 10. The Cartesian �x ,y� coordinate system is
defined such that the x- and y-axes are directed along the
longer and shorter tank walls, respectively, with the origin
located at the tank center.

Two cyclonic vortices were generated by locally siphon-
ing fluid through two perforated tubes for typically one rota-
tion period �see Fig. 10�a��. The tubes were placed an initial
distance d0 apart on the long symmetry axis of the tank.
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FIG. 8. Regime diagram for two Lamb vortices in linear shear. The dashed
line corresponds to the boundary between separative and periodic motion
based on the point-vortex model. The symbols have the same meaning as in
Fig. 5.
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FIG. 9. Regime diagram for two Rankine vortices in linear shear. According
to the point-vortex model, we may distinguish between merger �dark-shaded
region� and no merger �light-shaded region�. See the main text for details.
The symbols have the same meaning as in Fig. 5.
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�Note that in Fig. 10�a� the distance between the tubes has
been exaggerated for clarity.� During the forcing, a total
amount of 1.0 l of water was withdrawn. Owing to the pres-
ence of the Coriolis force, the radial motion induced by each
sink was deflected in cyclonic direction. After the forcing
was stopped and the tubes were removed from the tank, a
well-defined swirling motion was established within a few
rotation periods. The vortex Reynolds number was approxi-
mately 7500.

The linear shear was created instantaneously afterward
by a sudden change of the angular velocity of the tank ��
�typically �0.1 rad s−1�, which resulted in a starting flow
with uniform nonzero vorticity −2�� �see Fig. 10�b� and
also Ref. 33�. This result can be easily understood from the
conservation of absolute vorticity in a fixed frame of refer-
ence. When the fluid is in solid-body rotation, the absolute
vorticity is given by 2�. After the sudden change of the
angular velocity of the tank, the vorticity associated with the
rotation of the tank is 2�+2�� so that the �relative� vortic-
ity associated with the flow should be equal to −2�� in
order to satisfy conservation of absolute vorticity. Depending
on the sign of ��, the starting flow is either cyclonic �nega-
tive ��� or anticyclonic �positive ���. Since the initial flow
within each vortex is cyclonically azimuthal, the cyclonic
starting flow may be associated with cooperative shear,
whereas the anticyclonic shear may be related to adverse
shear. The initial flow conditions were controlled by varia-
tion of the separation distance of the tubes d0 and the shear
strength �=2��. Both the suction rate and suction period
were kept constant so that the initial vortex characteristics
were the same for each experiment.

The subsequent flow evolution was visualized by inject-
ing different colors of dye into the cores of the vortices just
after the forcing was stopped. One vortex core was injected
with “fluorescein” �green� and the other with “terasil brillant
rosa” �red�. Alternatively, the free surface was seeded with
passive tracers �Optimage� with a mean particle diameter of
250 �m in order to obtain quantitative information about the
horizontal flow field. The flow was recorded from above with
a corotating 12-bit charge-coupled device �CCD� camera
with a resolution of 1024
1024 pixels and a frame rate of
15 Hz. The technique of particle-tracking velocimetry was

used to obtain the velocity of each tracer. In order to calcu-
late the vorticity and the stream function, the measured ve-
locities were interpolated on a rectangular grid of 50
50
mesh points.

B. Experimental results

Before we describe the evolution of the two suction-
induced vortices in linear shear, we discuss the characteris-
tics of the vortices and the linear shear when they are gen-
erated in isolation.

Figure 11 shows the radial distribution of vorticity for a
single vortex generated by the suction technique without am-
bient shear at six rotation periods after the forcing was
stopped. The measured profile �indicated by the bullets�
closely agrees with the Gaussian vorticity profile of the
Lamb vortex. The corresponding vortex core radius Rm and
maximum vorticity �m were taken as the initial conditions
for all experiments. At earlier times these quantities could
not be determined accurately due to transient disturbances
induced by the lifting of the tubes. As for the shear flow,
contour plots of the stream function �not shown� reveal that
the topology of the starting flow �without suction-induced
vortices� is very similar to that shown schematically in Fig.
10�b�. Figure 12 displays three cross-sectional distributions
of the streamwise velocity component at x=− 1

2B, 0, and 1
2B,

with B the width of the tank. The shear is close to linear in
the central part of the flow domain, except near the tank
walls where the velocity is reduced to zero within a thin
boundary layer. Moreover, it is evident from Fig. 12 that the
corresponding shear strengths �, as obtained from the slopes
of the cross-sectional distributions of velocity, are in close
agreement with the theoretical value 2��. The linearity of
the shear flow was preserved for at least 20 rotation periods.
After that, the linear shear was gradually destroyed by flow
separation at the lateral tank walls and the subsequent change
of the topology of the flow into an array of alternately cy-
clonic and anticyclonic cells. These cells are typical for spin
up and spin down in rectangular containers.33 We also note
that both the maximum vorticity of each vortex and the mag-
nitude of the shear strength decrease exponentially in time

(a)

(b)

FIG. 10. Schematic representation of �a� the experimental setup �side view�
and �b� the starting flow �without suction-induced vortices�.
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FIG. 11. Radial cross-sectional distribution of vorticity of a sink-induced
cyclonic vortex �bullets� which is in close agreement with the Gaussian
vorticity profile of a Lamb vortex �dashed line�.
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due to the presence of Ekman boundary layers at the bottom
of the rotating tank. Their ratio, however, remains constant as
long as linear Ekman damping is the only source of decay.

Figure 13 shows an example evolution of two dye-
visualized vortices in cooperative shear for d0 /Rm=8.8 and
� /�m=−0.12. Times are indicated in the lower-right corner
of each panel and are relative to the time at which the linear
shear was applied, i.e., the time at which the rotation speed
of the turntable was suddenly changed. Each panel corre-
sponds to a free-surface area of 40
20 cm2. The white dots,
as visible in each panel, are remnants of passive tracers
which were used to quantify the shear flow characteristics in
a previous experiment. The initial distance between the vor-

tices is significantly larger than the critical separation dis-
tance d0 /Rm=4.15 associated with the merger of two Lamb
vortices without external shear. As we will see, however,
cooperative shear promotes the merger of vortices despite the
fact that their initial separation distance is significantly larger
than d0 /Rm=4.15.

During the initial stage of the evolution, the vortices
orbit around each other in a cyclonic sense. At t=3.0T �first
panel of Fig. 13�, the vortices have already completed half an
orbit period. As is evident from the next panel �t=4.5T�, the
vortices are advected toward each other by the shear and
hence their separation distance decreases considerably. At the
same time, each vortex acquires a pearlike shape and forms
two spiral arms. When the vortices have reached their closest
distance, the vortices start to exchange fluid through one of
their spiral arms �t=6.0T�. The shedding of filaments and the
subsequent exchange of fluid are usually indicative of the
onset of vortex merger. Owing to the action of the shear, the
separation distance between the vortices temporarily in-
creases again until the vortices are aligned with the flow
direction of the shear �t=7.5T�. Note, however, that at this
stage the separation distance is smaller than half an orbit
period before �compare the panels for t=3.0T and t=7.5T�.
From this stage, the evolution as described above repeats
itself, but now the formation of filaments and the exchange
of fluid is more vigorous than before because the vortices are
closer together. At t=12.0T, the vortices are again horizon-
tally aligned, but now their distance has become so small that
in the next stage, the vortices finally merge. The evolution of
the laboratory vortices is in close agreement with the com-
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FIG. 12. Cross-sectional distributions of streamwise shear velocity at x=
− 1

2B, 0, and 1
2B, with B as the width of the tank. The solid line corresponds

to the theoretical velocity profile of the starting flow with ��
=0.05 rad s−1.
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FIG. 13. �Color� Dye visualization of two laboratory vortices in cooperative shear with d0 /Rm=8.8 and � /�m=−0.12 at successive times at which the shear
flow was imposed. Each panel corresponds to a free-surface area of 40
20 cm2. Experimental parameters: d0=30 cm and �=−0.13 s−1.

117104-10 Trieling, Dam, and van Heijst Phys. Fluids 22, 117104 �2010�

Downloaded 15 Feb 2011 to 131.155.128.9. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



puted evolution of two Lamb vortices with d0 /Rm=8.8 and
� /�m=−0.12 �not shown� and qualitatively similar to that
shown in Fig. 7�f�.

In Fig. 14 we show an example evolution of two dye-
visualized vortices in adverse shear for d0 /Rm=4.4 and
� /�m=0.05. Again, each panel corresponds to a free-surface
area of 40
20 cm2. As evident from the subsequent panels,
the vortices quickly move away from each other without
being torn apart. Each vortex acquires an elliptical shape
with its major axis virtually perpendicular to the shear flow
direction. Close inspection of the flow evolution reveals that
each vortex is subjected to small-amplitude shape oscilla-
tions. In addition, one of the vortices demonstrates the for-
mation of dye filaments which are characteristic for the pro-
cess of vortex stripping. �The other vortex does not show dye
filaments because unintentionally a smaller amount of dye
was released by hand�. All these observations are typical for
single vortices in adverse shear21–25 and are in close agree-
ment with the computed evolution shown in Fig. 7�b�. �The
apparent absence of the vortex filaments in Fig. 7�b� is due to
the fact that only five contours are displayed for clarity�.

For each dye-visualized experiment, the flow evolution
was monitored for 20 rotation periods. After that, the inter-
action process was assigned to one of the flow regimes pre-
dicted in Sec. III C, which resulted in the regime diagram
depicted in Fig. 15. Each experiment was performed at least
twice to check whether it would reproduce. Obviously, the
range of experimental parameters was limited owing to the
finite dimensions of the tank. Indeed, for some initial con-
figurations in adverse shear—especially those that were ex-
pected to lead to periodic motion or separative motion with
elongation—the vortices were advected into the boundary
layer along the longer tank walls or were drifted toward the

shorter tank walls where a linear shear was no longer
present. These cases were not assigned to any of the flow
regimes and are indicated by a cross in the regime diagram
of Fig. 15.

The regime diagram in Fig. 15 is very similar to that
derived numerically for Lamb vortices. Also plotted in Fig.
15 is the boundary between separative motion and periodic
motion as predicted by the point-vortex model. As far as can
be judged from the present number of data points, the pre-
dicted boundary agrees well with the laboratory experiments.
Figure 16 shows the same experimental results but now with
the criterion for merger or no merger based on the point-
vortex model and the critical merger distance for two Lamb
vortices without shear. The criterion is generally satisfied,

3.0 T

5.0 T

7.0 T

FIG. 14. �Color online� Dye visualization of two laboratory vortices in
adverse shear with d0 /Rm=4.4 and � /�m=0.05 at successive times at which
the shear flow was imposed. Experimental parameters: d0=15 cm and �
=0.06 s−1.
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FIG. 15. Regime diagram for two laboratory vortices in linear shear. The
dashed line corresponds to the boundary between separative and periodic
motion based on the point-vortex model. Owing to the finite dimensions of
the tank, some flow evolutions could not be assigned to any of the flow
regimes. These cases are indicated with a cross �
�. The other symbols have
the same meaning as in Fig. 5.
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FIG. 16. Regime diagram for two laboratory vortices in linear shear. Ac-
cording to the point-vortex model we may distinguish between merger
�dark-shaded region� and no merger �light-shaded region�. See the main text
for details. Flow evolutions that could not be assigned to any of the flow
regimes are indicated with a cross �
�. The other symbols have the same
meaning as in Fig. 5.
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although for two cases we observe vortex merger where the
point-vortex model predicts no merger. These small differ-
ences may be attributed to the radial expansion of the vorti-
ces owing to horizontal diffusion and nonlinear Ekman ef-
fects, both of which promote vortex merger. Moreover,
vortex merger is promoted by the parabolic free surface of
the fluid, which effectively moves the cyclonic vortices to-
ward the center of the tank due to topography vorticity
production.13 In this respect, the locations of the boundaries
of the observed flow regimes may be sensitive to the time at
which the flow evolution was evaluated. Note, however, that
the initial conditions for the laboratory vortices were taken at
the time at which the Rossby number Ro=�m / �2��=0.8,
whose value decreases close to exponentially, so that the
radial expansion due to nonlinear Ekman effects is only ef-
fective during the initial stage of the evolution. As far as
horizontal diffusion is concerned, one should keep in mind
that vortex merger itself is a nonlinear process which evolves
on a convective time scale �typically one or two orbit peri-
ods�. That is, the motion of the vortex centroids toward each
other is a process which is virtually independent of viscosity
�see, for example, Ref. 4�. Vortex interactions that do not
lead to merger in the inviscid limit may still merge when
viscous dissipation is present. In that case, vortex merger is
preceded by a diffusive stage, typically of the order of the
diffusive time scale, in which the vortex cores grow until the
inviscid critical separation distance is reached at which the
vortices merge. In the current laboratory experiments, the
vortex flow was evaluated within a time period much smaller
than the diffusive time scale. That is, considering the char-
acteristic diffusive time scale with respect to the rotation
period, Td /T
102 with Td=Rm

2 /�, and the fact that the flow
evolution was evaluated at t=20T, the effect of horizontal
diffusion is only of secondary importance. Despite the small
differences, the experimental data convincingly illustrate the
different behavior of vortices in adverse and cooperative
shear.

V. SUMMARY AND CONCLUSIONS

The interaction of two identical vortices in a linear shear
has been investigated both numerically and experimentally.
As a first approach, we considered a system of two interact-
ing point vortices in linear shear in order to understand the
key dynamical aspects of the flow evolution. For this we
closely followed the analysis by Kimura and Hasimoto.30

Essentially, two types of interaction were identified: separa-
tive motion and periodic motion. The flow evolution could
be characterized by a single dimensionless parameter which
is proportional to the shear strength. For cooperative shear,
the point vortices always move along closed orbits which are
elongated in the direction of the shear flow. Likewise, for
adverse shear of moderate strength, the point vortices move
along closed orbits, but the orbits are elongated in the direc-
tion perpendicular to that of the shear flow. For strong ad-
verse shear, the point vortices are separated indefinitely.

As a second approach, we applied the technique of con-
tour dynamics to investigate the effect of distributed vorticity
on the interaction of vortices in linear shear. Two different

types of vortices were considered: �1� the Rankine vortex
with a core of uniform vorticity and zero vorticity in the
outer region and �2� the Lamb vortex with a Gaussian vor-
ticity distribution. Numerical calculations revealed that their
shear-induced evolution is much richer than that of two point
vortices. The following flow regimes were identified: �i�
separative motion with elongation of the vortices, �ii� sepa-
rative motion without elongation of the vortices, �iii� peri-
odic motion, and �iv� merger. Owing to the distribution of
vorticity, the vortices merge when their initial separation dis-
tance is smaller than some critical distance. The critical sepa-
ration distance depends strongly on both the sign and the
strength of the linear shear and, to a lesser extent, on the
initial vorticity distribution. Based on the sign dependence of
the critical merger distance, we conclude that cooperative
shear promotes merger, whereas adverse shear inhibits
merger. At a critical adverse shear strength, whose value de-
pends on the initial vorticity distribution, the vortices are
irreversibly torn apart.

The numerical results for Lamb vortices were in close
agreement with rotating-tank experiments in which the vor-
tices were created by the suction method, whereas the linear
shear was created by a sudden increase in the angular veloc-
ity of the tank. A number of experiments were performed
with different values for the shear strength and the intercen-
troid distance. The subsequent flow evolution was visualized
by injecting different colors of dye into the cores of the ini-
tial vortices, whereas particle-tracking techniques provide
quantitative information about the horizontal flow field.
Small deviations were observed due to horizontal diffusion,
nonlinear Ekman decay and topography induced motion.

Based on the point-vortex model, a sufficient condition
for the merger of two distributed vortices in linear shear was
derived. For distributed vortices in cooperative shear, a
stricter criterion for vortex merging was formulated. More-
over, for relatively well-separated distributed vortices, the
point-vortex model predicts the boundary between separative
and periodic motion remarkably well. In the framework of
freely decaying 2D turbulence, the merger criteria derived in
this study are valuable to improve punctuated Hamiltonian
models.13,34 In these models, spatially extended vortex struc-
tures are represented by point vortices and simple transfor-
mation rules are used to replace two vortices by a single one.
Obviously, in future works, the merger criteria should then
be extended in order to model the interaction of unequal
vortices in linear shear flow correctly.
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