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Abstract

Model versioning occupies a central position in model configuration
management systems, which are considered integral ingredients in every
large model driven engineering project. There are two major approaches
in describing versions of models: the state-based approach and the change
(operation) based approach. In both cases, the differences between two
different versions of a model are called model differences. We focus on
the state-based approach to versioning and show that in this case the
model differences require a locally unique labeling for all model elements.
Next, we specify a generic method for assigning unique labels to all model
elements in versioned models. We also show that the described labeling
method is also applicable to ambiguous models, i.e. models which contain
structurally identical elements having the same parent element.

The main application area of the presented method is the process of
calculating model differences in case that modeling tools do not assign
unique identifiers to all model elements.

1 Introduction

Model versioning occupies a central position in model configuration management
systems. Two major approaches in describing versions of models are the state
based and the change (operation) based approach [5]. In a change (operation)
based approach, the version (of a model) is defined as a set of changes (oper-
ations) which, when applied to some initial (baseline) model (possibly empty),
produces the required model. On the other hand, in a state-based approach, the
version is defined as a set of objects that, when used together with a baseline
model in a model transformation, results in the required model. In both cases,
the differences between the two different versions of the model are called model
differences. In this report we will consider the model differences between the
two successive versions of one model.
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We focus only on a state-based approach to model versioning. We choose
the state-based approach because it is more generic than the operation based
approach. This is the case because in state-based approaches explicit support by
the modeling tools is not required, while this support is an absolute necessity in
operation-based approaches. This limits the use of operation-based versioning.

As our first result, in Section 2, we show that, in state-based approaches,
model differences require a locally unique labeling of all model elements. Next,
we discuss the problem of presenting and calculating differences between am-
biguous models (models that contain structurally identical elements), and show
that our labeling technique, in combination with the appropriate differences
metamodel, solves that problem. In Section 3 we specify a generic (i.e. tool-
independent) method for assigning unique labels to model elements in versioned
models. It is important to note that this technique is not suited for assigning
universally unique labels to model elements (UUIDs), but is nevertheless crucial
from the perspective of model differences.

2 State-based model versioning and differences

In this section we support our claim that, in state-based model versioning, it
is necessary to have a method for assigning unique labels to all elements of a
versioned model, for example named A, in order to be able to obtain the model
differences between model A and another model. We will use the term model
element identifiers or just identifiers instead of model element labels in the rest
of the text. Also, we discuss why some traditional approaches to the calculation
of differences have problems in dealing with ambiguous models, and show that
our approach solves these problems.

First, we give a set of requirements that model differences must fulfill in
order to be used seamlessly in model configuration management systems. The
differences should be:

e Model based: The differences should be represented by a formal differences
model.

e Minimalistic: The differences should contain a minimal number of objects.

e Self-contained: The differences model must contain all the information
autonomously without relying on data contained in the compared models.

e Transformative: It should be possible to transform one model into another
model using their differences model.

e Invertible: It should be possible to revert back to the initial model using
the transformed model and the differences model.

e Compositional: The result of subsequent or parallel modifications is a
differences model whose definition depends only on difference models being
composed and is compatible with the induced transformations.

e Metamodel independent: The differences metamodel should be indepen-
dent of a particular metamodel (e.g. UML).
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Figure 1: Enhanced metametamodel - EMMM

e Layout independent: The differences metamodel must be agnostic of the
presentation issues.

The specified requirements were introduced in [3], and the reader is asked to
consult the referenced source for the details on these requirements.

There are several approaches for representing and calculating model differ-
ences that treat the differences in accordance with some, but not all, of the
specified requirements [4, 8, 7]. However, our research presented in [9], offers
a treatment of model differences that satisfies all of the specified requirements.
Thus, we use a generic metametamodel defined in [9] and depicted in Figure 1
to convey our ideas. This is a metametamodel expressive enough to represent
all graph-based models, but it is specifically tailored to allow for the efficient
representation of model differences.

The most important fact to notice is that each model element that is ref-
erenced by another element should have a locally unique identifier. This stems
from the fact that in case the model is persisted from short-term memory to
long-term memory (e.g. hard disk), in order to correctly restore the relation-
ships between model elements after the model is loaded back into short-term
memory, those relationships must also be represented in some way and per-
sisted together with the model. The representation of references by using local
unique identifiers is not the only possible solution, the references could also be
represented by using a relative or absolute path from the initial model element
to the referenced model element. However, representing references by paths
cannot deal with ambiguous models directly, and thus is less preferred than
representing references by using locally unique identifiers. Notice that this fact
is valid in all metametamodels that use references or associations as parts of
their metamodels (e.g. MOF [2] or Ecore [1]).

The introduced metametamodel allows a metamodel-independent represen-
tation of model differences. In this report we will assume that model differences
conform to the metamodel-independent differences metamodel defined in [9], de-
picted in Figure 2. The differences model represent the differences between two



TU/e CS Report 10/06 4

Ses— 0.,
MAttribute oldValue AttributeDifference

newValue 0 0..*%
0.1 AddedReference
L 1

MReference !
1ADeletedReference ‘ [\} ReferenceDifference ‘
oldReference () ‘ | “i 0.* |
1] 0.* 1 ChangedReference -
]

newReference ()

reference changes
ttribute changes

1
——>{ value:String
[Pt B

‘ ChangedElement‘ ‘ DeletedElement ‘ ‘ AddedElement ‘
\ | \ | |
* | Al
0. ‘ subelement changes
—4@ MElement
1
K

0*

subelements () |* |

initial

11 0.1 1.*
Model DifferencesModel
name:String ]
version:String 0..1
H
final

Figure 2: Differences metamodel

models and can be calculated by using a difference calculation algorithm [6, 9].
Observe that, as specified by the introduced differences metamodel, the in-
stances of differences model elements reference the instances of model elements.
In fact, it is possible that each model element is referenced by a differences
model element.

Based on these two observations - that referenced model elements must have
locally unique identifiers and that model elements of differences models reference
(possibly all) model elements we conclude that all model elements must have
locally unique identifiers. However, since modeling tools do not have to persist
locally unique identifiers of all model elements, but only of the referenced model
elements, some model elements might not have been assigned locally unique
identifiers. This is a problem since state-based model differences require all
model elements to be assigned locally unique identifiers. Thus, there should be
another mechanism that ensures the assignment of locally unique identifiers to
all model elements, regardless of a tool used to create (or edit) models. This
mechanism should ensure that the assigned identifier is identical for each model
element every time this mechanism is used on the same model. This mechanism
is presented in the form of a labeling algorithm in the next section of this report.
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Figure 3: Example metamodel and two representations of the same model

3 Labeling model elements with generated lo-
cally unique identifiers

In this section, we present an algorithm that can be used to assign locally unique
identifiers to model elements that are part of models which are instances of the
metametamodel depicted in Figure 1. Before we define the algorithm itself, we
give some preliminaries.

First, we require that, without loss of generality, models are available in their
persisted form (i.e. the models are available as files). In this case we ensure a
truly tool-independent approach.

Next, we repeat the claim that all the referenced model elements must have
been assigned locally unique identifiers by tools. We will call these identifiers
assigned local unique identifiers - ALUID. We will treat ALUIDs as strings
in the rest of the text. An example metamodel and two representations of a
model conforming to that metamodel are depicted in Figure 3. Since classes
are referenced by transitions, the two classes in the example model have been
assigned ALUIDs, but since the transitions are not referenced, ALUID is not
assigned to the transition in the example model.

As aresult of this algorithm, all model elements will be labeled by a generated
local unique identifier - GLUID. Note that the algorithm generates identifiers
that are identical for a specific model element in a versioned model, each time
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the algorithm is invoked, up to the level of structurally identical model ele-
ments. Notice that, in another version of a model, GLUIDs might not be the
same for the same model elements, and thus GLUIDs cannot be used as uni-
versally unique identifiers (UUIDs). For a set of identical (ambiguous) model
elements in one model, the identifiers are selected from a fixed set of identi-
fiers. However, since these elements are not semantically distinguishable from
differences models, this labeling is sufficient.

Since the introduced metametamodel declares that models are hierarchical
(tree) structures, we will call the structure of a model - a model tree.

3.1 Labeling algorithm

The labeling algorithm has two phases. In the first phase a bottom-up traversal
of the model tree is used to assign temporar local unique identifiers or TLUID
to all model elements. In the second phase, based on the assigned values in the
first step, the model tree is traversed top-down and the GLUIDs of the model
elements are calculated.

3.1.1 First phase

In the first phase, each model element M is labeled with the TLUID. If a
model element has been assigned ALUID, then the hash code of this ALUID
will be used as TLUID of this element. Otherwise, the TLUID is calculated
in the following manner: We will label the attributes (instances of M Attribute
element) of a model element as A;, ¢ = 1..N. We will label the references
(instances of M Reference element) of a model element as R;, i = 1.K. We
will label the subelements of (elements contained in) a model element as O;,
1=1.M.

The labeling of attributes is done by sorting all attributes by the string which
is a combination of their value and type. Next, each attribute gets enumerated
by the position of the string representing that attribute in the sorted list of all
attributes. The labeling of references will be done by sorting all references by the
string which is a combination of the ALUID of their referenced elements and the
name of the reference. Next, each reference gets enumerated by the position of
the string representing that reference in the sorted list of all references. Notice
that since in the preliminaries we required that all referenced elements have
been assigned ALUIDs, this unique representation is possible. The labeling of
subelements will be done by sorting all subelements by the string obtaining by
combining their TLUID and the ID of a metamodel element that the selected
subelement conforms to. Next, each subelement gets enumerated by the position
of the string representing this subelement in the list of strings of all subelements.
Since in this phase the tree traversal is done bottom-up, the TLUIDs of all the
children elements of elements on the higher level in the tree have been calculated
already, thus this labeling is possible.

Next, in order to increase the speed of the algorithm, we use a hash function
and calculate the TLUID of the current element as: TLUID (M) = hash(value(A1)+
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Figure 4: Example model after the first phase of the algorithm

value(Asg) + .. +value(An) + ALUID(Ry)+...+ ALUID(RN)+TLUID(O1) +
..+ TLUID(Oy)). Notice that the TLUID of a model element would be valid
even without the use of a hash function, but in order to have a faster algorithm
a hash-function should be used.

For example, after the first phase, a model depicted in Figure 3 will be
changed such that all its elements will be assigned TLUIDs as depicted in Fig-
ure 4.

3.1.2 Second phase

In the second phase, a top down traversal of the model tree is performed. For
all model elements that are children of the instance of the Model element,
the GLUID is calculated by sorting the TLUIDs of those model elements, and
enumerating the model elements by the position of that model element TLUID
in the list of all model elements TLUIDs, appended to a ”.” (for example,
GLUIDs for these model elements might be: 7.17, 7.2” etc.).

For each of those model elements, the following recursive algorithm is ap-
plied: For each model element, all subelements are sorted by their TLUID, and
each subelement is labeled by a concatenation of a GLUID of a parent model
element plus ”.” and plus the string value of the position of the TLUID of this
subelement in the sorted list. The recursion continues for all subelements of a
model element, until there are no more subelements to process.

It might be the case that two or more subelements have the same TLUID,
and in that case the model is ambiguous - it contains two or more model elements
which have identical structure. If the model elements with the same TLUID are
subelements of different model elements, then the generated GLUID will be
different for all of them. Thus, in this case, the fact that model is ambiguous
poses no problems. In other case, when at least two model elements with the
same TLUID are subelements of the same model element the assigned GLUIDs
might be different for those model elements each time the labeling algorithm is
invoked. However, since these elements have identical structure, and do not have



TU/e CS Report 10/06 8

SM::StateMachine

TLUID=985
GLUID="1"
::Transition A::Class B::Class
TLUID=184
=184 ALUID=1 ALUID=2
GLUID="1.1 TLUID=784 TLUID=556
GLUID="1.3" GLUID=".1.2"

i)

Figure 5: Example model after the second phase of the algorithm

tool assigned identifiers, it is not possible to distinguish them from the outside of
model. Since, by construction of the labeling algorithm, all of the subelements
of the model element are sorted in the same way, then each time the labeling
algorithm is invoked, the elements having the same TLUID will be mapped
to the same range of natural numbers. Even though a subelement having the
same TLUID as another subelement might have different enumeration, it will
always be from the same range of the natural numbers. Since it is not possible
to distinguish between elements that have the same TLUID, the fact that the
model element as entity will obtain a different GLUID each time, does not pose
a problem, since all elements having the same TLUID are anyway considered
the same entity from outside of the model.

After the second phase, a model depicted in Figure 3 will be changed such
that all its elements will be assigned GLUIDs as depicted in Figure 5.

3.2 Discussion

In this section we discuss the correctness of the algorithm. We discuss three
questions: are all elements in a model labeled, are those labels the same each
time, and are those labels unique?

We will first prove that all elements in the model are assigned a label. As-
sume that there is an element that has not been assigned a label. This is
impossible if this element is a top-level element, because of the construction of
the algorithm. Then, because in the second step of the algorithm all elements
that have a parent are assigned a label, this element does not have a parent.
However, that would mean that this element is a top level element, and this is
impossible because in the second step of the algorithm all top level elements are
assigned a label.

In order to answer the second question, remember that this algorithm should
be used only with versioned models. Thus, each time the algorithm is run,
the model has absolutely identical structure (including the unique identifiers
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assigned by the modeling tool to the referenced elements, i.e. ALUIDs). Then,
by using the same sorting algorithm each time, the attributes, the references,
and the subelements of a model element will always be sorted in the same way.
So, by construction of the algorithm, it is clear that the model elements that
are leaves of the model tree will have the same TLUIDs. Thus, since the model
elements higher in the hierarchy will sort the subelements TLUIDs in the same
way, model elements higher in the model tree will also have the same TLUIDs
assigned each time. Next, since in the second step of the algorithm all elements
with the same TLUID have the same GLUID assigned, all elements in the first
level of the tree will have the same GLUIDs, and by recursion it is clear that
all elements deeper in the tree will have the same GLUIDs assigned, based on
their position in the tree and their TLUID (which is always the same for the
same model).

The third question, or the uniqueness of the labels, is correct by construction
of the second step of the algorithm.

4 Conclusions and Future Work

In this report we show that it is required to assign labels to all model elements
in order to use those models in a state-based model comparison. Furthermore
we show that this technique is also applicable to ambiguous models - models
that contain structurally identical elements having the same parent. Next, we
define a labeling algorithm which assigns locally unique labels to all elements
of one version of the model. The labeling algorithm has been described on
models conforming to our own metametamodel, but is also applicable to tradi-
tional metametamodels such as MOF or Ecore. The optimization (increasing
the speed) of the labeling algorithm is the main direction for future work.
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