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Abstract

Recently, a number of errors have been found in Process Algebra for
Hybrid Systems, which is a well-known formalism for specification of hy-
brid systems. One of the most basic components of Process Algebra for
Hybrid Systems is called Basic Process Algebra with standard relative tim-
ing (srt) and Non existence (⊥) abbreviated as BPAsrt

⊥ . One of the errors
in Process Algebra for Hybrid Systems can be traced down to this most
basic component BPAsrt

⊥ , therefore we think that fixing BPAsrt
⊥ is es-

sential in rectifying the errors in Process Algebra for Hybrid Systems.
Accordingly, in this report we present two proposals for correcting the
process algebra BPAsrt

⊥ .

Keywords: Non-existence process constant, standard relative timing, time
determinism, transition system, propositions, signals, flows, valuations.

1 Introduction

A hybrid system is one which deals with both discrete as well as continuous
changes in the values of model variables. An embedded system where a digital
micro controller controls a physical environment is a typical example of a hybrid
system. With the advancing use of embedded systems in our daily lives, the
interest in ensuring their correct behaviour and verifying certain properties is
increasing. One way to gain insight and confidence about the behaviour of
such systems is to use formal methods. Many formalisms (automata theory,
process algebra and petri nets) have been extended with features to model
hybrid systems. Examples are Hybrid Automata [17, 18], Process Algebra for
Hybrid Systems ACP srt

hs [1], Hybrid χ [20], HyPA [19] and Hybrid Petri Nets
[23]. The work presented here is related to the Process Algebra for Hybrid
Systems [1], abbreviated as ACP srt

hs .
Recently, we discovered some errors in ACP srt

hs . It turns out that in Process
Algebra for Hybrid Systems, Choice is not associative (Axiom A2), Time de-
terminism (Axiom SRT3) does not hold and a number of other less important
axioms are also not sound.

The equational theory of Process Algebra for Hybrid Systems [1] is a blend
of various process algebraic theories. Figure 1 shows a hierarchical structure of
the theories ACP srt

hs and BPAsrt
hs . BPAsrt

hs is Basic Process Algebra for Hybrid
Systems—i.e. ACP srt

hs without concurrency and communication. The discussion
in this report does not involve concurrency and is therefore confined to Basic
Process Algebra for Hybrid Systems.

BPAsrt
hs is constructed from some basic theories as follows:

Basic Process Algebra with standard relative timing (BPAsrt) [4] is ex-
tended with the Non-existence process from [3]. The resulting theory BPAsrt

⊥
is combined with Basic Process Algebra with propositional signals BPAps [3].
The succeeding algebra BPAsrt

ps is extended with two new operators needed to
specify hybrid behaviour of processes. Then we have built the Basic Process Al-
gebra for Hybrid Systems BPAsrt

hs . Integration and Recursion further increase
the expressiveness of BPAsrt

hs .
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There are two main errors in BPAsrt
hs . One is that the Choice is not as-

sociative. The other is that the axiom of Time Determinism (SRT3) does not
hold. If we look at the hierarchical structure of BPAsrt

hs (see Figure 1), then the
unsoundness of axiom SRT3 already appears in BPAsrt

⊥ , i.e. there is a BPAsrt
⊥

process term violates axiom SRT3. On the other hand, the associativity of
Choice only breaks down at the level of BPAsrt

ps . In the theories below BPAsrt
ps ,

we cannot find an example violating the associativity of Choice. The unsound-
ness of Time Determinism axiom and non-associativity of Choice propagate in
theories above BPAsrt

⊥ and BPAsrt
ps , where we find more erroneous axioms.

The following examples exhibit violation of axiom SRT3 and non-associativity
of choice. An introduction to the semantics of BPAsrt

hs is given in Appendix A.
In the examples below we refer to the transition rules and the definitions of
bisimulation given in this appendix.

Example 1 (Counter-Example to SRT3)

σt
rel(˜̃a) + σt

rel(⊥) 6= σt
rel(˜̃a +⊥)

According to the semantics of BPAsrt
hs (Rule HS-13) the left-hand side of this

inequation can perform a time-step,

〈σt
rel(˜̃a) + σt

rel(⊥), α〉 t,ρ7−−→ 〈˜̃a, α′〉,
because one of the arguments (σt

rel(˜̃a)) can perform that time-step (Rule HS-
6), while the other σt

rel(⊥) is consistent (Rule HS-37) but cannot perform this
time-step (in particular, Rule HS-6 is not applicable because α 6∈ [s(⊥)]. On the
other hand, the right-hand side of this inequation cannot perform a time-step
of duration t, in particular because α′ 6∈ [s(˜̃a + ⊥)], and hence Rule HS − 6
is not applicable. We conclude that the two processes are not ic-bisimilar (nor
bisimilar).

Example 2 (Non-Associativity of Choice)
Let p, q, r be process terms, where,

p = σt
rel((l = 0) ∧N ˜̃a)

q = σt
rel((l = 1) ∧N ˜̃b)

r = σt
rel(˜̃c)

(p + q) + r 6= p + (q + r)

Note, that for each of the three subprocesses, σt
rel((l = 0) ∧N ˜̃a), σt

rel((l = 1) ∧N ˜̃b)
and σt

rel(˜̃c), some time-step of duration t is possible, but the evolutions ρ that are
visible during this time-step will end in different valuations of l for the first two.
This observation shows that Rules HS-12 and HS-13 are not applicable to any
combination of two of these three processes. Hence Rule HS-14 must be applied,
which synchronizes the evolutions of the two alternatives. Applying rule HS-14
to (σt

rel((l = 0) ∧N ˜̃a) + σt
rel((l = 1) ∧N ˜̃b)), which occurs in the left-hand side of our

5



target inequality, is not possible because the end-valuations of the two processes
is different, and hence there is no common ρ on which to synchronize. In other
words, (σt

rel((l = 0) ∧N ˜̃a) + σt
rel((l = 1) ∧N ˜̃b)) cannot delay for a duration t, and

using rule HS-13, we conclude that the left-hand side of the inequality can delay
for a duration t as process term r and become process ˜̃c.

Regarding the right-hand side of the inequality, we find that rule HS-14 can
be applied to q + r, resulting in a time-step with an evolution that ends in the
valuation (l = 1). Subsequently, HS-14 is not applicable to the right-hand side
as a whole, because there is no common ρ on which p and q+r can synchronize,
and rules HS-12 and HS-13 are not applicable because both p and q+r can delay
individually.

Hence, the left-hand side can delay with duration t and become ˜̃c while the
right-hand side cannot.

As a first step towards rectifying the mistakes in ACP srt
hs , we set ourselves to

correcting BPAsrt
⊥ . In this report, two proposals for BPAsrt

⊥ are presented. The
two proposals differ from each other in the sense that in the first proposal, time
determinism holds for the process terms of BPAsrt and not for the non-existence
process. In the second proposal, time determinism holds for all process terms of
BPAsrt

⊥ including the Non-existence process. Both proposals are conservative
extensions of BPAsrt [4] and BPA⊥ [3].

The report is structured as follows: In the preliminaries section, we intro-
duce the reader to Basic Timed Process Algebra with Non-existence (BPAsrt

⊥ ).
In Section 3, we discuss what is wrong with the current presentation of the
algebra BPAsrt

⊥ as it is put forward in [1]. We present our first proposal for a
corrected BPAsrt

⊥ in Section 4. In this proposal, we leave the semantics intact
and change the SRT3 axiom to fit the semantics. Before presenting our second
proposal in Section 5, we discuss a number of possible attempts at preserving
time determinism with all process terms in the theory. In Section 5.1, we review
an instance from literature, where a timed process algebra has been combined
with Non-existence process. In our second proposal of BPAsrt

⊥ , we modify the
semantics so that SRT3 holds for all process terms in the algebra. Section 6
discusses possibilities of extending our proposals for BPAsrt

⊥ to a hybrid process
algebra.

2 Preliminaries

2.1 BPA

BPAsrt
⊥ is a combination of Basic Process Algebra (BPA) [2] extended with

timing and Non-existence.
BPA can express sequential processes, i.e. processes that perform activities

one after another. The set of closed process terms of BPA contains atomic ac-
tions from a set of actions ‘A’ representing independent activities; the deadlock
process constant ‘δ’ representing absence of any activity; a binary operator se-
quential composition ‘.’ to specify a process followed by another process; and
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BPA
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BPAps
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∫
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⊥
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∫
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∫
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∫
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hs
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hs

Non-existence (⊥)Delay Operator (σrel)

Integration (
∫
)

Parallelism ||

Signal emission

Conditional

Signal evolution

Signal Transition

SRT3

Error in

Error in A2

Figure 1: Hierarchical Structure of ACP srt
hs
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a binary operator alternative composition ‘+’ to specify a choice between two
processes.

The set Q of all closed terms of BPA, with q ∈ Q is given in Table 1.

Table 1: BPA-Syntax Summary (a ∈ A)

q ::= a | δ | q · q | q + q

The axioms satisfied by all processes of BPA are given in Table 2.

Table 2: BPA-Axioms

x + y = y + x A1
x + (y + z) = (x + y) + z A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x + δ = x A6
δ · x = δ A7

BPA is not sufficient to specify processes for which time plays an important
role. For example controllers, communication protocols etc. (see [12, 13, 10, 9,
11]). In order to specify time related properties of such processes, BPA must
be extended.

2.2 BPAsrt

There a number of ways in which timing can be added to BPA. The decisions
to be made include whether the time domain is discrete or continuous and
whether the time is recorded beginning at the start of a process or a record of
time elapsed between events is kept.

Basic Process Algebra for Hybrid Systems is an extension of Basic Process
Algebra with standard relative timing BPAsrt [4]. The word standard indi-
cates that the time domain consists of real numbers—i.e. the time domain is
continuous.

In BPAsrt, the actions are replaced by immediate actions. Immediate ac-
tions (˜̃a, ˜̃b) are denoted by an action label a, b ∈ A with a double tilde˜̃on it. An
action ˜̃a performs an action immediately and terminates in the current instance
of time. The deadlock process δ of BPA is replaced by immediate deadlock
process ˜̃δ. The process ˜̃δ cannot perform an action nor can it flow to a later
moment in time. The relative delay operator σrel adds a delay of non-negative
duration before a process. A process σ0

rel(p) behaves the same as process p. The
relative undelayable timeout operator νrel (which we call the now operator),
blocks the delay behaviour of a process. A process νrel(p) performs an action

8



immediately if p can perform an action immediately otherwise νrel(p) behaves
as a deadlock process.

The set P of BPAsrt process terms, with p ∈ P is given in Table 3.

Table 3: BPAsrt- Syntax summary (a ∈ A, r > 0)

p ::= ˜̃a undelayable action
| ˜̃δ undelayable deadlock constant
| σ0

rel(p) relative delay of zero duration
| σr

rel(p) relative delay
| p + p alternative composition
| p · p sequential composition
| νrel(p) relative undelayable timeout operator/Now operator

The axioms of BPAsrt are the axioms of BPA (given in Table 2) extended
with the following axioms (see Table 4):

Table 4: Additional axioms for BPAsrt (a ∈ A, u, v ≥ 0, r > 0)

x + ˜̃δ = x A6SR
˜̃δ · x = ˜̃δ A7SR
σ0

rel(x) = x SRT1
σu

rel(σ
v
rel(x)) = σu+v

rel (x) SRT2
σu

rel(x) + σu
rel(y) = σu

rel(x + y) SRT3
σu

rel(x) · y = σu
rel(x · y) SRT4

νrel(˜̃a) = ˜̃a SRU1
νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3
νrel(x · y) = νrel(x) · y SRU4

Axioms A6 and A7 are replaced by axioms A6SR and A7SR which contain
the immediate deadlock constant ˜̃δ instead of deadlock δ. Axiom SRT1 expresses
that adding a delay of zero time units does not alter the behaviour of a process.
Axiom SRT2 expresses that consecutive delays can be added. Axiom SRT3
which is called the axiom of time factorization, expresses that a delay cannot
make choices. We call it the axiom of Time Determinism, as Time Determinism
is a more well-known term. Since SRT3 is central to this report, we explain it
in more detail in Section 2.4. Axiom SRT4 reflects that time is counted relative
to the last action performed. Axiom SRU1 and SRU2 reflect the fact that
the relative undelayable timeout operator νrel when applied to a process does
not change its action behaviour but blocks its initial delay. The now operator
distributes over choice (SRU3) and it only effects the initial behaviour of a
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process (SRU4).

2.3 BPAsrt
⊥

In Process Algebra with Propositional Signals [3], a Basic Process Algebra with
Non-existence (BPA⊥) is introduced. BPA⊥ is BPA extended with the Non-
existence process (⊥). In [3], the states in a transition system are labelled by
propositions. The propositions labelling a state are supposed to hold in that
state and are called signals emitted by the state. A false proposition can never
hold. Hence a process emitting the false signal cannot exist. Here comes the
need to introduce a process constant called the non-existence process denoting
a process that emits a false signal.

The behaviour of the Non-existence process (⊥) is described by the axioms
given in Table 5.

Table 5: BPA⊥-Additional axioms (a ∈ A)

⊥+ x = ⊥ NE1
⊥ · x = ⊥ NE2
a · ⊥ = δ NE3

The root state of a transition system of a Non-existence process (⊥) is called
an inconsistent state. Axiom NE2 expresses that an inconsistent state can never
be exited and axiom NE3 reflects that it is not possible to enter such a state
from a consistent one.

The signature of BPA⊥ is the signature of BPA extended with the Non-
existence process. The set Q⊥ of BPA⊥ process terms, with q⊥ ∈ Q⊥ is given
in Table 6.

Table 6: BPA⊥- Syntax summary (a ∈ A)

q⊥ ::= a | δ | ⊥ | q⊥ + q⊥ | q⊥ · q⊥

The axioms of BPA⊥ are the axioms of BPA extended with the axioms
NE1, NE2 and NE3 defining the Non-existence process.

Now as depicted in Figure 1, the Basic Timed Process Algebra with Non-
existence BPAsrt

⊥ is a combination of BPAsrt and BPA⊥. The signature of
BPAsrt

⊥ is the signature of BPAsrt ( see Table 3), extended with the Non-
existence process constant.

The set P⊥ of BPAsrt
⊥ process terms, with p⊥ ∈ P⊥ is given in Table 7.

The axioms BPAsrt
⊥ include the axioms for BPAsrt, extended with the ax-

ioms NE1, NE2 and NE3SR. The axiom NE3SR is a modification of axiom
NE3 where an action a is replaced by an undelayable action ˜̃a.

˜̃a · ⊥ = ˜̃δ NE3SR

10



Table 7: BRAsrt
⊥ - Syntax summary (a ∈ A, r > 0)

p⊥ ::= ˜̃a | ˜̃δ | ⊥ | σ0
rel(p⊥) | σr

rel(p⊥) | p⊥ + p⊥ | p⊥ · p⊥ | νrel(p⊥)

The axioms of BPAsrt
⊥ also include a new axiom representing the effect of the

now operator νrel on non-existence.

νrel(⊥) = ⊥ NESRU

A complete set of axioms of BPAsrt
⊥ , taken from [1], is given in Table 8.

Table 8: Axioms of BPAsrt
⊥ as in [1] (a ∈ Aδ, u, v ≥ 0, r > 0)

x + y = y + x A1 σ0
rel(x) = x SRT1

(x + y) + z = x + (y + z) A2 σu
rel(σ

v
rel(x)) = σu+v

rel (x) SRT2
x + x = x A3 σu

rel(x) + σu
rel(y) = σu

rel(x + y) SRT3
(x + y) · z = x · z + y · z A4 σu

rel(x) · y = σu
rel(x · y) SRT4

(x · y) · z = x · (y · z) A5

x + ˜̃δ = x A6SR νrel(˜̃a) = ˜̃a SRU1
˜̃δ · x = ˜̃δ A7SR νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3

x +⊥ = ⊥ NE1 νrel(x · y) = νrel(x) · y SRU4
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR νrel(⊥) = ⊥ NESRU

2.4 Time Determinism

The axiom of time determinism (SRT3) occupies a central place in the motiva-
tion behind this report. Therefore we pay special attention to it.

Time Determinism is an important property of a large class of timed systems.
According to this property, choices between processes cannot be resolved while
waiting.

Consider for example a computer application waiting for a key stroke from
the user or a signal from the network. The behaviour of the application in the
future depends on which action takes place first. No decision can be made while
waiting.

Axiom SRT3 reflects that as long as all operands of a choice can idle, the
decision of proceeding as one operand or the other is postponed.

σu
rel(x) + σu

rel(y) = σu
rel(x + y) u ≥ 0(SRT3)

11



Time Determinism is a widely accepted property of timed systems. In many
timed process algebras, counterparts to axiom SRT3 can be found. See, for
example, “Algebra of Timed Processes” [27], Timed CCS [26] and Timed CSP
[25].

In the field of hybrid systems, an interesting debate surrounding time deter-
minism exists. In a hybrid system, two delay durations may be accompanied
by different evolution of variables during the delay. In such a case, the debate
is whether passage of time must resolve a choice, can resolve a choice or can-
not resolve a choice between processes. To see arguments in favor of different
approaches, see [1], [19] and [20].

In BPAsrt
⊥ as presented in Process Algebra for Hybrid Systems [1], the

axiom of time determinism SRT3 is included in the set of axioms. But as we
have shown in the Section Introduction, SRT3 does not hold in the semantics
of [1]. In our first proposal of BPAsrt

⊥ , (see Section 4), we replace SRT3 by
a conditional axiom that exhibits time determinism in the absence of Non-
existence process. The conditional axiom also holds in the semantics of [1].
Altering the axiomatization of BPAsrt

⊥ to fit the semantics is a straightforward
solution, but due to the importance of SRT3, we also set our selves to the task
of finding a semantics for BPAsrt

⊥ , where axiom SRT3 holds. Our search results
in our second proposal for BPAsrt

⊥ , which is given in Section 5.

3 Violation of Time determinism

When Basic Process Algebra with standard relative timing (BPAsrt) is ex-
tended with Non-existence, one is faced with the issue of how to combine incon-
sistency with time.

The semantics of a timed process algebra allows processes to evolve by per-
forming action steps as well as time steps. In the semantics of BPA⊥, where
only action steps are present, the following axiom holds:

a · ⊥ = δ (NE3)

This axiom reflects that a process cannot enter into an inconsistent state after
performing an action. An inconsistent state is the root state of the Non-existence
process constant.

This view is also adopted by Process Algebra for Hybrid Systems.
In BPAsrt

hs , a timed counterpart of axiom NE3 holds:

˜̃a · ⊥ = ˜̃δ (NE3SR)

An introduction to the semantics of BPAsrt
hs is given in the Appendix A.

In addition to action steps, time steps are also included in the semantics of
BPAsrt

hs . There, as in the case of an action step, a process cannot enter into an
inconsistent state after doing a time step. It is mentioned on Page 222 of [1],
that:

12



The process σr
rel(⊥), (r > 0) is considered to be capable of idling

(waiting), but only till arbitrarily close to the point of time that is
reached after a period of time r. Thus, just like after performing
an action, it is impossible to go on as ⊥ after idling (waiting) for a
period of time.

This characteristic of BPAsrt
hs is reflected in its transition rule HS-6 given below:

Let x be a process term, α, α′ be any variable valuations, r > 0 and ρ be a
state evolution, describing evolution of variables in the interval [0, r].

α′ ∈ [s(x)]

〈σr
rel(x), α〉 r,ρ7−−→ 〈x, α′〉

HS-6

(An Introduction to the semantics of BPAsrt
hs and the complete set of its tran-

sition rules is given in Appendix A.)
The rule states that a process σr

rel(x) can wait for r time units according to
any state evolution ρ and become x. The only condition is that the valuation
at the end of the delay must satisfy the signal emitted by x. The signal emitted
by the Non-existence process (⊥) is false, which cannot be satisfied by any
valuation. Therefore, Rule HS-6 cannot be used to derive a time step of duration
r for process σr

rel(⊥).
Since there are no other rules applicable (see Appendix A), therefore a time

step of duration r for process σr
rel(⊥) cannot be derived. In BPAsrt

hs , the follow-
ing predicate reflects this fact:

For any valuation α,
〈σr

rel(⊥), α〉 6 r7−→
Rather surprisingly, a consequence of this choice in the semantics of BPAsrt

hs

and its interaction with the rules for alternative composition is that the axiom
of Time determinism does not hold. The axiom of time determinism does not
hold when one of the process terms x or y is the Non-existence process or a
process bisimilar to it. In Section 4, we show that SRT3 holds for all BPAsrt

processes in the current semantics of [1].
Process Algebra for Hybrid Systems [1] adopts a uniform approach towards

inconsistent states with regards to action and time steps. In the semantics
of BPAsrt

hs an inconsistent state is unreachable by action or time steps. But a
consequence of this choice together with the design of alternative composition is
that the axiom SRT3 does not hold with the Non-existence process. In Section
4, we present an algebra BPAsrt

⊥ , where we abandon axiom SRT3 for the non-
existence process constant. In Section 5, we argue that in order to preserve
SRT3 with Non-existence, the semantics of BPAsrt

⊥ needs to be modified. In
that section, we also present the possibilities of modifications and our second
proposal for BPAsrt

⊥ . We prove that both our first and second proposals are
conservative extensions of BPAsrt and BPA⊥.
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4 BPAsrt
⊥ with conditional Time Determinism

In this Section, we present a proposal for BPAsrt
⊥ , in which general time deter-

minism (i.e. time determinism in all cases including the Non-existence process)
is replaced by conditional time determinism. The section is outlined as fol-
lows: first we introduce the conditional axiom that replaces the axiom of time
determinism (SRT3) in this proposal. Then we give the semantics of this pro-
posal in Section 4.2. A bisimulation is defined for this semantics and we show
that bisimulation is a congruence relation. We prove that our first proposal
for BPAsrt

⊥ is a conservative extension of BPA⊥ and BPAsrt. In Section 4.3,
the axioms that are sound in this proposal are presented. At the end of this
section, we prove that for all BPAsrt

⊥ processes, the semantics of this proposal
is equivalent to the semantics of BPAsrt

hs .

4.1 Axiom of Conditional Time Determinism

In our first proposal for BPAsrt
⊥ , the axiom of time determinism holds for all

processes that are not bisimilar to ⊥. This includes all BPAsrt processes. The
conditional axiom of time determinism, which we call SRTD, is given below:

σu
rel(x) + σu

rel(y) = σu
rel(x + y)

where u ≥ 0, x, y are BPAsrt
⊥ processes and none of them is bisimilar to ⊥.

Later on in Section 4.2, we introduce a predicate consistent on process
terms which holds for only those processes that are not bisimilar to ⊥.

Then Axiom SRTD can be written as:

σu
rel(x) + σu

rel(y) = σu
rel(x + y) (SRTD)

where 〈consistent x〉 ∧ 〈consistent y〉
The axiom SRTD reflects that a choice between two processes that do not

enter into an inconsistent state at the end of their common delay is postponed
till the end of their common delay.

If either of x or y in SRTD is a non-existence process, then the following
axiom holds:

σu+r
rel (x) + σr

rel(⊥) = σu+r
rel (x) (SRTD⊥)

where r > 0,u ≥ 0 and x is a BPAsrt
⊥ process term.

The axiom SRTD⊥ expresses that a delay resolves a choice between two
delaying processes, when one of them enters into inconsistency earlier than the
other. In that case, the process entering the inconsistency earlier is dropped
from the choice.

Next we introduce the semantics for this proposal of BPAsrt
⊥ .

4.2 Semantics

For BPAsrt
⊥ process terms, the semantics of this proposal is the same as that

of BPAsrt
hs . However, we have simplified it in order not to burden ourselves
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with unnecessary notations. In BPAsrt
⊥ , there are no environment variables

whose values need to be tracked, therefore in the semantics given below, variable
valuations are not included in transitions and time steps do not contain variable
trajectories.

The semantics consists of four relations. They are Action Relations; Time
Relations; Termination Predicates; and Consistency Predicates.

The relations are defined below:

1. Action Relations:

−→⊆ P ×A× P

For (x, a, x′) ∈−→, we write:

〈x〉 a−→ 〈x′〉

2. Time Relations:

7−→⊆ P × R> × P

For (x, r, x′) ∈7−→, we write:

〈x〉 r7−→ 〈x′〉

3. Termination Predicates:

−→√⊆ P ×A

For (x, a) ∈−→√, we write:
〈x〉 a−→ √

4. Consistency:

Consistent ⊆ P

For (x) ∈ Consistent, we write:

〈consistent x〉

A predicate
〈x〉 6 r7−→

stands for the predicate @x′ ∈ P : 〈x〉 r7−→ 〈x′〉.

1. An action step 〈x〉 a−→ 〈x′〉 represents that 〈x〉 can perform action a and
proceed as term x′;

2. A time step 〈x〉 r7−→ 〈x′〉 represents that 〈x〉 can idle for r time units and
proceed as term x′;

3. A termination predicate 〈x〉 a−→ √
represents that 〈x〉 can perform action

a and terminate;
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4. A predicate 〈consistent x〉 indicates that the process term x is con-
sistent. The consistency predicate does not hold for the non-existence
process constant and all process terms bisimilar to it. For example,
⊥, σ0

rel(⊥),⊥ + x,⊥ · x, etc. It holds for all process terms that are not
bisimilar to the non-existence process. For example, ˜̃a, ˜̃δ, etc. This predi-
cate is needed to distinguish between ˜̃δ and ⊥.

A set of transition rules for the signature of BPAsrt
⊥ is given in Table 9.

Next, we define a bisimulation on BPAsrt
⊥ process terms. Later on, in Section

4.3 we use this definition and prove that process terms that are derivably equal
by the axioms are in fact bisimilar.

Definition 1 (Bisimulation)
A relation R ⊆ P × P on pairs of closed process terms of BPAsrt

⊥ is called
a bisimulation relation if and only if the following conditions hold:

For all a ∈ A, r > 0, x, y, z ∈ P ,

1.

((x, y) ∈ R ∧ 〈x〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 a−→ 〈z′〉 and (z, z′) ∈ R

2.

((x, y) ∈ R ∧ 〈y〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 a−→ 〈z′〉 and (z′, z) ∈ R

3.

((x, y) ∈ R ∧ 〈x〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 r7−→ 〈z′〉 and (z, z′) ∈ R

4.

((x, y) ∈ R ∧ 〈y〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 r7−→ 〈z′〉 and (z′, z) ∈ R

5.
(x, y) ∈ R =⇒ (〈x〉 a−→ √ ⇐⇒ 〈y〉 a−→ √

)

6.
(x, y) ∈ R =⇒ (〈consistent x〉 ⇐⇒ 〈consistent y〉)

Two process terms x and y are called bisimilar written 〈x〉↔ 〈y〉 if there exists
a bisimulation relation R such that (x, y) ∈ R.

Theorem 1 Bisimulation is a congruence for the signature of BPAsrt
⊥ .

Proof We use the theorem given in [16], to prove that bisimulation is a con-
gruence for the signature of BPAsrt

⊥ . The theorem used is given below:
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Table 9: Semantics of Proposal 1 for BPAsrt
⊥ (a ∈ A, r, u > 0)

〈consistent ˜̃δ〉
P1-1

〈consistent ˜̃a〉 P1-2 〈˜̃a〉 a−→ √ P1-3

〈consistent x〉
〈consistent σ0

rel(x)〉 P1-4
〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ P1-5

〈x〉 a−→ 〈x′〉
〈σ0

rel(x)〉 a−→ 〈x′〉 P1-6
〈x〉 r7−→ 〈x′〉

〈σ0
rel(x)〉 r7−→ 〈x′〉

P1-7

〈consistent σr
rel(x)〉 P1-8

〈σr+u
rel (x)〉 u7−→ 〈σr

rel(x)〉
P1-9

〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
P1-10

〈x〉 u7−→ 〈x′〉
〈σr

rel(x)〉 r+u7−−−→ 〈x′〉
P1-11

〈consistent x〉
〈consistent x · y〉 P1-12

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 P1-13

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 P1-14
〈x〉 r7−→ 〈x′〉

〈x · y〉 r7−→ 〈x′ · y〉
P1-15

〈consistent x〉, 〈consistent y〉
〈consistent x + y〉 P1-16

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ P1-17

〈y〉 a−→ √
, 〈consistent x〉

〈x + y〉 a−→ √ P1-18
〈x〉 a−→ 〈x′〉, 〈consistent y〉

〈x + y〉 a−→ 〈x′〉 P1-19

〈y〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 P1-20

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
P1-21

〈x〉 r7−→ 〈x′〉, 〈y〉 6 r7−→, 〈consistent y〉
〈x + y〉 r7−→ 〈x′〉

P1-22

〈y〉 r7−→ 〈y′〉, 〈x〉 6 r7−→, 〈consistent x〉
〈x + y〉 r7−→ 〈y′〉

P1-23

〈consistent x〉
〈consistent νrel(x)〉 P1-24

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ P1-25

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 P1-26

17



Let T = (Σ, D) be a well-founded, stratifiable term deduction system
in panth format then strong bisimulation is a congruence for all
function symbols occurring in Σ.

In our case, Σ is the signature of BPAsrt
⊥ and the set of deduction rules D is

the set of rules given in Table 9. It is trivial to show that our term deduction
system is well-founded and in PANTH format.

Below we give a function and that is a strict stratification for our term
deduction system:

The function S when applied to a given transition returns the size of the
source process term and when applied to a predicate returns the size of the
process term on which the predicate is applied. For a process term p, the size
of the process term is denoted by |p|.

For the given semantics, S is defined as follows:

S(〈consistent x〉) = |x|
S(〈x〉 a−→ √

) = |x|
S(〈x〉 a−→ 〈x′〉) = |x|
S(〈x〉 r7−→ 〈x′〉) = |x|

The size of a process term is defined as follows:

|˜̃a| = 1

|˜̃δ| = 1

|⊥| = 1

|σ0
rel(x)| = |x|+ 1

|σr
rel(x)| = |x|+ 1

|x + y| = |x|+ |y|
|x · y| = |x|+ |y|
|νrel(x)| = |x|+ 1

£

4.3 Axioms

Table 10 contains the set of axioms that we present for this proposal.
In Theorem 2, we prove that process terms that are derivably equal by the

axioms given in Table 10 are bisimilar.

Theorem 2 For all closed terms t1, t2 of BPAsrt
⊥ , we have,

Proposal 1 |= t1 = t2 =⇒ t1 ↔ t2
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Table 10: Proposal 1 BPAsrt
⊥ - Axioms (a ∈ Aδ, u, v, v′ ≥ 0, r > 0)

x + y = y + x A1
(x + y) + z = x + (y + z) A2
x + x = x A3
(x + y) · z = x · z + y · z A4
(x · y) · z = x · (y · z) A5
x + ˜̃δ = x A6SR
˜̃δ · x = ˜̃δ A7SR
x +⊥ = ⊥ NE1
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR
σ0

rel(x) = x SRT1
σu

rel(σ
v
rel(x)) = σu+v

rel (x) SRT2
σu

rel(x) + σu
rel(y) = σu

rel(x + y)
if 〈consistent x〉 ∧ 〈consistent y〉 SRTD

σr+u
rel (x) + σr

rel(⊥) = σr+u
rel (x) SRTD⊥

σu
rel(x) · y = σu

rel(x · y) SRT4

νrel(˜̃a) = ˜̃a SRU1
νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3
νrel(x · y) = νrel(x) · y SRU4
νrel(⊥) = ⊥ NESRU
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Proof The soundness proofs of the axioms are given in Appendix G £

BPAsrt
⊥ is a combination of theories BPA⊥ and BPAsrt (see Figure 1). Our

first proposal for BPAsrt
⊥ is a conservative extension of BPA⊥ and BPAsrt. By

this we mean that Proposal 1 for BPAsrt
⊥ can express all process terms that can

be expressed in BPA⊥ or BPAsrt; the axioms of BPA⊥ and that of BPAsrt

are preserved in Proposal 1; and finally, Proposal 1 does not introduce any new
equalities among the process terms of BPA⊥ or those of BPAsrt. Theorem 4
asserts these observations.

Axiom SRTD of Proposal 1 replaces the time determinism axiom SRT3 of
BPAsrt. In Theorem 3, we claim that Axiom SRTD covers all closed instances
of Axiom SRT3 in BPAsrt. The proof of Theorem 4 uses this fact that replac-
ing SRT3 by the conditional axiom SRTD still covers all closed instances of
BPAsrt.

Theorem 3 The conditional Time Determinism axiom SRTD of Table 10 cov-
ers all closed instances of axiom SRT3 for BPAsrt process terms.

Proof The proof consists of the observation that for all BPAsrt process terms,
the predicate 〈consistent 〉 holds. £

Theorem 4 (Conservative Extension)

1. Proposal 1 for BPAsrt
⊥ is a conservative extension of BPA⊥.

2. Proposal 1 for BPAsrt
⊥ is a conservative extension of BPAsrt.

Proof

1. BPA⊥

(a) If a and δ in the signature of BPA⊥ (see Table 6) are mapped on
to ˜̃a and ˜̃δ, then the signature of BPAsrt

⊥ (see Table 7) extends the
signature of BPA⊥ and the axioms of Proposal 1 (see Table 10)
include the axioms of BPA⊥.
Hence, Proposal 1 for BPAsrt

⊥ is an extension of BPA⊥.

(b) All other axioms in Table 10, i.e. Axioms SRT1, SRT2, SRTD,
SRTD⊥, SRT4, SRU1 − SRU4, NESRU , reason about process
terms that are not included in the signature of BPA⊥.
Hence, Proposal 1 for BPAsrt

⊥ is a conservative extension of BPA⊥.

2. BPAsrt

(a) The signature of BPAsrt
⊥ (see Table 7) extends the signature of

BPAsrt (see Table 3).
Axioms of BPAsrt (Table 4) , i.e. A1−A5, A6SR,A7SR, SRT1, SRT2,
SRT4, SRU1−SRU4 are included in the axioms of Proposal 1 (Table
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10). Only Axiom SRT3 of BPAsrt is not present in Table 10. The-
orem 3 proves that all closed instances of SRT3 for BPAsrt process
terms are covered by axiomSRTD.
Hence, Proposal 1 for BPAsrt

⊥ is an extension of BPAsrt.

(b) All other axioms in Table 10, i.e. Axioms NE1, NE2, NE3SR,
SRTD⊥, NESRU , reason about process terms that are not included
in the signature of BPAsrt.
Hence, Proposal 1 for BPAsrt

⊥ is a conservative extension of BPAsrt.

£

4.4 Proposal 1 versus BPAsrt
hs

In this section, we discuss the relationship between the semantics of first pro-
posal and the semantics of Process Algebra for Hybrid Systems [1]. We show
that for all closed process terms of BPAsrt

⊥ , the semantics of the first proposal
is equivalent to the semantics of Basic Process Algebra for Hybrid Systems
(reviewed in Section 5.1).

When two BPAsrt
hs processes x and y are ic-bisimilar, then we denote it by

x↔ y. The definition of IC-bisimulation is given in the Appendix A.

Theorem 5 Let x and y be closed process terms of BPAsrt
⊥ . Then the following

holds:

(Proposal 1 ) x↔ y ⇐⇒ (BPAsrt
hs ) x↔ y

The set of closed process terms of BPAsrt
⊥ are neutral with respect to val-

uations. In a BPAsrt
⊥ process term (see the set of process terms P⊥ in Table

7), there are no conditionals, signal emissions, signal evolutions or signal tran-
sitions. These operators of [1] allow a BPAsrt

hs process to behave differently in
different valuations. If these operators are absent from a BPAsrt

hs process term,
then it cannot differentiate between valuations. Hence, Proposal 1 being equiv-
alent to the semantics of BPAsrt

hs for BPAsrt
⊥ terms means that if two terms x

and y are bisimilar in Proposal 1, then they are bisimilar for all valuations in
BPAsrt

hs . Not only that, but x and y are ic-bisimilar, since the target process
term of a transition is again a BPAsrt

⊥ term–i.e. it is independent of valuations.
We prove the above theorem by proving the following:
Let x be a closed BPAsrt

⊥ process term.

For every action step, time step , termination predicate and consis-
tency predicate that is derivable for x in the semantics of Proposal 1,
there exists a corresponding action step, time step , termination
predicate and signal relation for x that is derivable in the semantics
of BPAsrt

hs , and Vice Versa.
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These conditions are formally stated in Theorem 6:

Theorem 6 Let x, x′ be closed process terms of BPAsrt
⊥ , a be an action, r be

a delay duration (r > 0), then the following holds:

1. (Proposal 1) 〈consistent x〉 ⇐⇒ (BPAsrt
hs ) ∀α : α∈ [s(x)]

2. (Proposal 1) 〈x〉 a−→ √ ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈√, α′〉

3. (Proposal 1) 〈x〉 a−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈x′, α′〉

4. (Proposal 1) 〈x〉 r7−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀ρ : 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
where, for some t > 0, αρ

t denotes a valuation that matches with the values
assigned to variables by state evolution ρ at time t.

A consistency predicate in Proposal 1 is related to the set of signal relations
with all valuations in BPAsrt

hs . An action and a termination step in Proposal 1
are related to the sets of action steps and termination steps in BPAsrt

hs with
all possible pairs of source and target valuations and so on. Note that the
non-derivability of a transition or predicate in Proposal 1 corresponds to non-
derivability of a transition or predicate for all valuations in BPAsrt

hs .
Proof The proof of Theorem 6 is by structural induction on all closed process
terms of BPAsrt

⊥ . It is given in Appendix D. £

Theorem 5 and Theorem 6 show that our Proposal 1 for BPAsrt
⊥ is equivalent

to BPAsrt
⊥ presented in [1]. By Theorem 2, we conclude that BPAsrt

⊥ in [1] will
be sound once the axiom SRT3 is replaced by the axiom SRTD exhibiting
conditional time determinism. The new axiom SRTD⊥ added to the axioms
in [1] would reflect that a passage of time makes choices in the presence of the
non-existence process constant in the semantics of [1].

4.5 Concluding Remarks

We have presented a proposal for BPAsrt
⊥ , where we replace general time deter-

minism by conditional time determinism. The conditional axiom SRTD reflects
that a passage of time does not resolve choices between process terms that are
consistent now and cannot enter into an inconsistent state at the end of the
delay. The behaviour of a choice between processes one of which can enter into
an inconsistent state after a delay is expressed in the new axiom SRTD⊥. In
the latter case, a passage of time makes choices in favor of the process term that
stays consistent over time. The semantics of Proposal 1 coincides with that of
[1] for BPAsrt

⊥ process terms. Removing the details like valuations and variable
trajectories results in a concise and transparent semantics for BPAsrt

⊥ .

22



5 Time Determinism in BPAsrt
⊥

In the previous chapter, we’ve shown that the time determinism problem of
ACP srt

hs can be solved partially, by letting time determinism apply only to con-
sistent target processes. However, we feel there is also a need of a variant of
BPAsrt

⊥ where the axiom of time determinism holds for all process terms in-
cluding the Non-existence process. Following are our motivations for searching
for a time deterministic BPAsrt

⊥ :

1. First, in some schools of process algebra, time determinism is considered
to be an essential property of all timed systems.

2. Secondly, it is clear that time determinism in all cases was the intention
of the authors of Process Algebra for Hybrid Systems. On Page 222 of [1],
the following equation is given as a derivable equation:

σp+r
rel (x) + σr

rel(⊥) = σr
rel(⊥) (1)

where r > 0, p ≥ 0. This equation can only be derived if the time deter-
minism axiom holds for the non-existence process.

3. Thirdly, we found an instance in literature where a timed process algebra
is combined with the non-existence process. It is Discrete Time Process
Algebra, abbreviated as PAdrt

psc defined in [6]. The axiom of time deter-
minism holds in PAdrt

psc for all processes including ⊥.

To achieve this objective, we tried a number of approaches at finding a suitable
semantics for BPAsrt

⊥ before we could reach a relatively satisfactory solution.
The axiom of time determinism SRT3 (repeated below),

σu
rel(x) + σu

rel(y) = σu
rel(x + y) u ≥ 0 (SRT3)

reasons about two operators, the relative time delay operator and the alternative
composition. We try to modify the semantics of these operators so that the
axiom of time determinism holds in all cases.

This section is structured as follows: In Section 5.1, we give a brief account
of choices in PAdrt

psc that enable time determinism to hold. In Sections 5.2, 5.3
and 5.4, three different semantics for BPAsrt

⊥ are given. Each semantics imple-
ments an idea for preserving time determinism with the Non-existence process.
The final attempt namely “Testing for Future Inconsistency ” constitutes the
semantics of our second proposal of BPAsrt

⊥ .

5.1 Time Determinism in PApsc
drt

Discrete Time Process Algebra PApsc
drt is introduced in [6]. It is an extension

of Process Algebra with discrete relative timing (see [5]) and Process Algebra
with Propositional Signals [3]. According to our knowledge, the process algebra
PApsc

drt is the first combination of a timed process algebra with non-existence.
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The time domain in PApsc
drt is discrete i.e. it is divided into slices or units. In

[6], the authors give ample attention to the process σ(⊥), which is non-existence
process with a unit delay operator.

In PApsc
drt , the axiom of time determinism is expressed as follows:

σ(x) + σ(y) = σ(x + y) (DRT1)

where, the operator σ : P → P adds a delay of a unit time to a process.
There are several factors in Discrete Time Process Algebra which ensure

that time determinism holds with Non-existence process. We discuss them one
by one below:

1. In the semantics of PAdrt
psc, a process term with the relative delay operator

σ can unconditionally do a time step. Hence, the process term σ(⊥) can
delay for a unit time and become ⊥. The following transition can be
derived:

σ(⊥) σ−→ ⊥ (2)

(In the semantics of “Discrete Time Process Algebra”, transition labels
contain an extra symbol called valuation. We ignore this symbol in our
discussion.)

2. Another factor contributing towards soundness of Time Determinism ax-
iom is that a time step allows a process term to move into the next time
slice and not further in time. For example,

σ(σ(a)) σ−→ σ(a)

is allowed. But no rule allows a time step to cross over multiple time slices.
Therefore the transition,

σ(σ(a)) σ,σ−−→ a

is not allowed.

This property combined with the semantics of alternative composition
(described next) contributes to time determinism in PAdrt

psc.

3. Finally, the alternative composition is defined as follows:

Consider an alternative composition p + q. It can delay as follows:

If both p and q can do a unit delay to the next time slice, then
p + q can delay for a unit time such that the choice is retained
after the delay.

For example
σ(σ(a)) + σ(⊥) σ−→ σ(a) +⊥

An alternative composition can proceed as one operand only if
the other operand cannot perform the same time step. The root
signal of the passive operand must be satisfied at the start.
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Now the process term σ(a) + ⊥ cannot delay further. Because the root
signal of the right operand ⊥ is false and it cannot be satisfied.

In PApsc
drt , like BPA⊥ (see Section ), it is not possible to reach an inconsistent

state by performing an action. In PApsc
drt , a counterpart of axiom NE3 holds:

a · ⊥ = δ (3)

(An undelayable action a and undelayable deadlock constants are denoted by a
and δ respectively in PApsc

drt .)
In contrast to an action step, a process can delay for a unit time and then

enter into an inconsistent state as shown in Transition 2. Hence, there is non-
uniformity between action steps and time steps with regards to an inconsistent
state. The authors of [6] explain this non-uniformity as follows:

Suppose, σ(⊥) is not allowed to delay and is put equal to deadlock.

σ(⊥) = δ (4)

Then by using axioms of Basic Discrete Timed Process Algebra (given in Ap-
pendix C), Axiom NE1 and Equation 4, the following can be derived:

σ(x) = σ(x) + δ By DRT4A
= σ(x) + σ(⊥) by Equation 4
= σ(x +⊥) By axiom DRT1
= σ(⊥) By Axiom NE1
= δ By Equation 4

Hence, allowing Equation 4 in PApsc
drt , leads to undesirable results.

We see that certain choices in the semantics, help preserve the axiom of time
determinism with the non-existence process in PApsc

drt . Keeping in view this
process algebra, we look for a time deterministic BPAsrt

⊥ . The time domain
in process algebra BPAsrt

⊥ is continuous which offers different challenges than
the discrete time domain present in PApsc

drt . Also, recall from Section 3, that
in the semantics of [1], uniformity between action steps and time steps with
regards to inconsistent states was intended. The combination of two goals,
i.e. preserving axiom SRT3 unconditionally and a uniform approach towards
inconsistency further complicates our task. In the next sections, we describe
the attempts undertaken to construct a desired semantics for BPAsrt

⊥ .

5.2 Modifying Alternative Composition

In this section, we present a semantics for BPAsrt
⊥ where the definition of alter-

native composition is modified so that the axiom of Time Determinism (SRT3)
holds.

The semantics of BPAsrt
⊥ presented here has the same transition relations

as defined for BPAsrt
⊥ with conditional time determinism (See Section 4).

They are: The Action Relation (−→); the Time Relation ( 7−→); the Termina-
tion Predicates (−→√); and the Consistency Predicates (Consistent).
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The transition rules for this semantics are in Table 11.
Important features of this semantics are given below:

1. An inconsistent state cannot be reached after a time step.

Consider Rule AC- 9: 〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
Hence, the following predicate holds:

σr
rel(⊥) 6 r7−→

2. An alternative composition p+q is allowed to delay in one of the following
ways:

(a) If both p and q can delay for a non-zero duration, then they delay to-
gether for a duration less than or equal to their common duration. At
the end of this time step, the choice between operands is unresolved.
For example, a process term σ5

rel(˜̃a) + σ3
rel(˜̃b) can delay as follows:

σ5
rel(˜̃a) + σ3

rel(˜̃b)
37−→ σ2

rel(˜̃a) + ˜̃b (5)

(b) The term p + q can delay as p only if q cannot do a time step of the
same duration as p. The transition system of q has a consistent root.
Also q cannot do time steps of any smaller durations.
Similarly, p+ q can delay as q, if p satisfies the conditions mentioned
above.
For example, a process term σ2

rel(˜̃a) + ˜̃b can delay as follows:

σ2
rel(˜̃a) + ˜̃b 27−→ ˜̃a (6)

(c) A time step for p + q can also be a finite sequence of time steps,
each of which has been obtained from one of the two ways described
above.
Hence, the process term σ5

rel(˜̃a) + σ3
rel(˜̃b) can also delay as follows:

σ5
rel(˜̃a) + σ3

rel(˜̃b)
57−→ ˜̃a (7)

Rules AC-19, AC-20 and AC-21 define the delay behaviour of an alterna-
tive composition.

Rule AC-26 allows a time step that is a sequence of two time steps. Ap-
plying this rule a finite number of times allows one to derive a time step
by appending multiple time steps.
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Table 11: BPAsrt
⊥ -Modifying Choice (a ∈ A, r, u > 0)

〈consistent ˜̃δ〉
AC-1 〈consistent ˜̃a〉 AC-2

〈˜̃a〉 a−→ √ AC-3
〈x〉 a−→ 〈x′〉

〈σ0
rel(x)〉 a−→ 〈x′〉 AC-4

〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ AC-5

〈x〉 r7−→ 〈x′〉
〈σ0

rel(x)〉 r7−→ 〈x′〉
AC-6

〈consistent x〉
〈consistent σ0

rel(x)〉 AC-7
〈σr+u

rel (x)〉 u7−→ 〈σr
rel(x)〉

AC-8

〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
AC-9 〈consistent σr

rel(x)〉 AC-10

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 AC-11

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 AC-12

〈x〉 r7−→ 〈x′〉
〈x · y〉 r7−→ 〈x′ · y〉

AC-13
〈consistent x〉
〈consistent x · y〉 AC-14

〈x〉 a−→ 〈x′〉, 〈consistent y〉
〈x + y〉 a−→ 〈x′〉 AC-15

〈y〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 AC-16

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ AC-17
〈y〉 a−→ √

, 〈consistent x〉
〈x + y〉 a−→ √ AC-18

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
AC-19

〈x〉 r7−→ 〈x′〉, 〈consistent y〉,
〈y〉 6 r7−→, (∀s < r 〈y〉 6 s7−→)

〈x + y〉 r7−→ 〈x′〉
AC-20

〈y〉 r7−→ 〈y′〉, 〈consistent x〉,
〈x〉 6 r7−→, (∀s < r 〈x〉 6 s7−→)

〈x + y〉 r7−→ 〈y′〉
AC-21

〈consistent x〉, 〈consistent y〉
〈consistent x + y〉 AC-22

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 AC-23

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ AC-24

〈consistent x〉
〈consistent νrel(x)〉 AC-25

〈x〉 r7−→ 〈x′〉, 〈x′〉 s7−→ 〈x′′〉
〈x〉 r+s7−−−→ 〈x′′〉

AC-26

27



In the semantics of BPAsrt
⊥ presented in Table 11, the axiom of time deter-

minism holds. In order to prove the soundness of Axiom SRT3, we need a notion
of bisimulation. The semantics in this section uses exactly the same relations as
used in the semantics of first proposal for BPAsrt

⊥ . Therefore, we use Definition
1 of Section 4.

Theorem 7 Axiom SRT3 is sound in the semantics of Table 11.

Proof The proof is given in Appendix E. £

Consider the following equation derivable from Axiom SRT3:

σu+r
rel (x) + σr

rel(⊥) = σr
rel(⊥) (8)

where u ≥ 0, r > 0.
In the semantics of BPAsrt

⊥ presented in this section, Equation 8 holds.
The time steps derivable in this semantics for the left and right hand sides of
Equation 8 are given below:

1. σr
rel(⊥):

An inconsistent state is not reachable by a time step. Rule AC-9 cannot
be applied to σr

rel(⊥). Since no other rules are applicable, hence we infer:

〈σr
rel(⊥)〉 6 r7−→

For all s, t > 0, such that r = s + t, Rule AC-8 can derive the following
time step for σr

rel(⊥) :

〈σs+t
rel (⊥)〉 s7−→ 〈σt

rel(⊥)〉
After each such time step, the resulting process term σt

rel(⊥) is again
delayable. The time domain in BPAsrt

⊥ is dense. I.e. between any two
real numbers, there exists an infinite number of real numbers. Hence, for
any t > 0, there exist infinite numbers that are greater than zero and less
than t. The process σr

rel(⊥) can do infinite time steps getting closer and
closer to σ0

rel(⊥) but not reaching it.

2. σu+r
rel (x) + σr

rel(⊥) :

A time step for process term σu+r
rel (x) + σr

rel(⊥) can be derived by Rule
AC-19 and Rule AC-26. Applying Rule AC-19 on σu+r

rel (x) + σr
rel(⊥), we

can derive the following time steps:

For all s, t > 0, such that r = s + t:

〈σu+s+t
rel (x) + σs+t

rel (⊥)〉 s7−→ 〈σu+t
rel (x) + σt

rel(⊥)〉
Taking closure of successive time steps obtained by Rule AC-19 using Rule
AC-26 results in a time step that has a target process term of the form
σu+t

rel (x) + σt
rel(⊥) for some t > 0.
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Rule AC-20 (similarly Rule AC-21) is not applicable on σu+r
rel (x) + σr

rel(⊥)
as the condition that the right (left) alternative cannot delay at all is not
satisfied. Also Rule AC-20 (similarly Rule AC-21) is not applicable on the
target process terms of any transitions that have been derived by applying
Rule AC-19 and Rule AC-26 on σu+r

rel (x) + σr
rel(⊥).

We conclude that the left hand side and right hand side of Equation 8 are
bisimilar in this semantics.

Contrary to the approach here, in Proposal 1 of BPAsrt
⊥ (see Section 4), a

delay is allowed to resolve a choice between two delaying processes, when one of
them enters into inconsistency earlier than the other. In that case, the process
entering the inconsistency earlier is dropped from the choice. Axiom SRTD⊥
of Proposal 1, which is repeated below, reflects this fact:

σu+r
rel (x) + σr

rel(⊥) = σr+u
rel (x) (SRTD⊥)

Considering the semantics of Table 11 a suitable semantics for a time deter-
ministic BPAsrt

⊥ , we investigate into further extending this semantics with other
operators of BPAsrt

hs [1]. We find a problem in extending it with integration.
Integration represents an alternative composition over an infinite set of al-

ternatives. It is briefly explained in Section 6.1. The set of transition rules for
integration and axioms holding in BPAsrt [4] are given in the Appendix B.

The semantic rules for integration in BPAsrt are defined along the same lines
as alternative composition. Following this approach, in the above semantics of
BPAsrt

⊥ , a rule for deriving a time step for an integral
∫

u∈U
F (u) would allow it

to delay for a duration that is less than or equal to a duration common among
all delaying process terms in the set {F (p) | p ∈ U}. For example, for the
above semantics, the following seems to be a good candidate of a transition rule
allowing a process term

∫
u∈U

F (u) to delay:
We call it Rule AC-27:

{F (q) r7−→ F1(q) | q ∈ U1}
...
{F (q) r7−→ Fn(q) | q ∈ Un}
{F (q) 6 r7−→, 〈consistent F (q)〉,
∀s < r, F (q) 6 s7−→| q ∈ Un+1}∫

u∈U
F (u) r7−→ ∫

u∈U1
F1(u) + . . . +

∫
u∈Un

Fn(u)
{U1, . . . Un} is a partition of
U\Un+1, Un+1 ⊂ U

The above Rule indicates that a process term
∫

u∈U
F (u) can delay for a certain

duration, if for a nonempty subset U ′ of U , all process terms F (q), with q ∈ U ′

can delay for that duration. The set U ′ is partitioned into n sets {U1 . . . Un}.
For each set Ui, F (q) with q ∈ Ui may evolve into a different process term after
the delay. Whereas all process terms F (q), with q ∈ U\U ′ have consistent roots
and cannot perform a delay of that duration or any smaller delay.
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Now consider the process term
∫

u>0
σu

rel(˜̃a). In the set {σu
rel(˜̃a) | u > 0}, all

process terms are delayable, but we cannot determine a delay duration that is
common among all members of the set as there does not exist a smallest real
number greater than zero. Hence, when the semantics of BPAsrt

⊥ under discus-
sion is extended with integration, then a time step for the process

∫
u>0

σu
rel(˜̃x)

cannot be derived. Infact, when we extend this semantics with integration, we
find that the following equation holds:

∫
u>0

σu
rel(x) = ˜̃δ (9)

for any process term x.
By modifying alternative composition as proposed above in BPAsrt

⊥ , we can
save the axiom of time determinism, but then we cannot add integration to this
modified BPAsrt

⊥ as it has been added to BPAsrt.
Hence, we decide to look for other approaches for preserving time determin-

ism with Non-existence process in BPAsrt
⊥ .

5.3 Modifying the Relative Delay Operator σr
rel

Now we focus on changing the semantics of the other operator in the axiom of
time determinism, i.e. the relative delay operator.

In the semantics presented here, we modify the semantics of the delay opera-
tor σr

rel, so that an inconsistent state is reachable by a time step. The semantics
uses the same relations as the semantics for BPAsrt

⊥ with conditional time deter-
minism (see Section 4), i.e. the Action Relation (−→), the Time Relation ( 7−→), the
Termination Predicates (−→√) and the Consistency Predicates (Consistent).

The transition rules for this semantics are given in Table 12.
We discuss the important features of this semantics below:

1. The semantics of the delay operator σr
rel, with r > 0, has been modified.

Now a process term σr
rel(x) can delay unconditionally for r time units.

Hence, the process term σt
rel(⊥) can delay for t seconds and become ⊥.

The following transition is derivable:

σr
rel(⊥) r7−→ ⊥

2. In order to preserve Axiom SRT3, the delay behaviour of an alternative
composition is defined as follows:

Consider an alternative composition, p + q. It can delay in one of the
following ways:

(a) If both p and q can delay for a given duration, then they delay to-
gether and the choice is retained at the end of their common delay.

(b) The term p + q can delay as p only if q cannot do a time step of the
same duration as p; the transition system of q has a consistent root;
also if q can do time steps of a smaller duration then all such time
steps of q must end in processes with consistent states.
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(c) Similarly, p + q can behave also as q if p fulfills the conditions men-
tioned above for q. I.e. p cannot do a time step of the same duration
as q; the transition system of p has a consistent root; also if p can do
time steps of a smaller durations then all such time steps of p must
end in processes with consistent states.

Rules RI-20, RI-21 and RI-22 define the delay behaviour of an alternative
composition.

Table 12: BPAsrt
⊥ -Modifying Relative Delay σr

rel (a ∈ A, r, u > 0)

〈consistent ˜̃δ〉
RI-1 〈consistent ˜̃a〉 RI-2

〈˜̃a〉 a−→ √ RI-3
〈x〉 a−→ 〈x′〉

〈σ0
rel(x)〉 a−→ 〈x′〉 RI-4

〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ RI-5

〈x〉 r7−→ 〈x′〉
〈σ0

rel(x)〉 r7−→ 〈x′〉
RI-6

〈consistent x〉
〈consistent σ0

rel(x)〉 RI-7
〈σr+u

rel (x)〉 u7−→ 〈σr
rel(x)〉

RI-8

〈σr
rel(x)〉 r7−→ 〈x〉

RI-9
〈x〉 u7−→ 〈x′〉

〈σr
rel(x)〉 r+u7−−−→ 〈x′〉

RI-10

〈consistent σr
rel(x)〉 RI-11

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 RI-12

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 RI-13
〈x〉 r7−→ 〈x′〉

〈x · y〉 r7−→ 〈x′ · y〉
RI-14

〈consistent x〉
〈consistent x · y〉 RI-15

〈x〉 a−→ 〈x′〉, 〈consistent y〉
〈x + y〉 a−→ 〈x′〉 RI-16

〈x〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 RI-17

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ RI-18

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ RI-19

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
RI-20

Continued on Next Page. . .
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Table 12 – Continued (a ∈ A, r, u > 0)

〈x〉 r7−→ 〈x′〉, 〈consistent y〉,
〈y〉 6 r7−→, (∀y′,∀s < r 〈y〉 s7−→ 〈y′〉
=⇒ 〈consistent y′〉)

〈x + y〉 r7−→ 〈x′〉
RI-21

〈y〉 r7−→ 〈y′〉, 〈consistent x〉,
〈x〉 6 r7−→, (∀x′, ∀s < r 〈x〉 s7−→ 〈x′〉
=⇒ 〈consistent x′〉)

〈x + y〉 r7−→ 〈y′〉
RI-22

〈consistent x〉, 〈consistent y〉
〈consistent x + y〉 RI-23

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 RI-24

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ RI-25
〈consistent x〉

〈consistent νrel(x)〉 RI-26

The transition rules defining alternative composition have a different format
then the standard tyft format. In Rules RI-21 and RI-22, a universal quan-
tifier on process terms is required to include all possible target terms of time
transitions of all possible smaller durations. The rules come under the Mousavi-
Reniers [14] UNTyft format.

The axiom of time determinism holds in the above semantics. The notion
of bisimulation used here is the same as defined for Proposal 1 for BPAsrt

⊥ in
Section 4.

Theorem 8 Axiom SRT3 holds in the semantics of Table 12.

Proof The proof is given in the Appendix F. £

This appears to be a suitable semantics for a time deterministic BPAsrt
⊥ .

The only hunch is that making an inconsistent state reachable by a time step is
not uniform with the approach adopted for action steps. Compare Rule 13 in
Table 12 with Rule 9. From Rule 13 it is not possible to enter into an inconsistent
state after performing an action. We find an answer to this dilemma in the next
section.

5.4 Testing for Future Inconsistency

In this section, we introduce a semantics for BPAsrt
⊥ , that adds a new predicate

relation to the semantics for BPAsrt
⊥ with conditional time determinism (see
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Section 4). We call this approach Testing for future inconsistency. The new
predicate relation that is added to the semantics checks whether a process term
can enter into an inconsistent state after a delay.

This semantics uses five relations. They are: The Action Relation (−→); the
Time Relation ( 7−→); the Termination Predicate (−→√); the Consistency Predi-
cates (Consistent); and the Future Inconsistency Predicates ( 7−→⊥).

The relation “Future Inconsistency” is defined on pairs of process terms and
durations. It is denoted by 7−→⊥.

7−→⊥⊆ P × R>

For (x, r) ∈7−→⊥, we write:
〈x〉 r7−→⊥

A future inconsistency predicate 〈x〉 r7−→⊥ represents that if allowed to de-
lay, the transition system of 〈x〉 would enter into an inconsistent state after r
seconds.

For example, the following predicate holds:

〈σr
rel(⊥)〉 r7−→⊥

The motivation for adding Future Inconsistency Predicates in the semantics
comes from the previous section. Consider the rules in Table 12. When x is not
bisimilar to the Non-existence process constant, then the transition σr

rel(⊥) r7−→ ⊥
is different from σr

rel(x) r7−→ x. For example, the transition σr
rel(⊥) r7−→ ⊥ has a

different effect on the definition of alternative composition. We might as well
keep an inconsistent state unreachable after a time step and produce the same
effect on alternative composition by adding a new predicate relation in the
semantics. We call this Predicate Relation the Future Inconsistency predicate
relation.

The two semantics of BPAsrt
⊥ , one presented in this section and the other

“Modifying the Relative Delay Operator σrel” (see Section 5.3) are claimed with-
out proof to be isomorphic, with two process terms being bisimilar in one se-
mantics if and only if they are bisimilar in the other.

This is the semantics we adopt for a time deterministic BPAsrt
⊥ . The tran-

sition rules for this semantics are given in Table 13.
Some important features of this semantics regarding the operators of time

determinism axiom are described below:

1. In this approach inconsistent states are unreachable. I.e., the following
predicate holds:

σr
rel(⊥) 6 r7−→

2. The delay behaviour of an alternative composition is defined as follows:
Consider an alternative composition p + q. It can delay as follows:

(a) If both p and q can delay for a given duration, then they delay to-
gether and the choice is retained at the end of their common delay.
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(b) The term p + q can delay as p only if q cannot do a time step of the
same duration as p. The transition system of q has a consistent root.
Also q cannot does not have an inconsistency predicate of duration
less than or equal to that of the delay of p.

(c) Also allow p + q to delay as q, if p satisfies the conditions mentioned
above.

Rules P2- 24, P2-25 and P2-26 of Table 13. define the delay behaviour of
an alternative composition.

As we see furthermore, the axiom of time determinism holds in this semantics.

Table 13: Semantics of Proposal 2 for BPAsrt
⊥ (a ∈ A, r, u > 0)

〈consistent ˜̃δ〉
P2-1

〈consistent ˜̃a〉 P2-2 〈˜̃a〉 a−→ √ P2-3

〈x〉 a−→ 〈x′〉
〈σ0

rel(x)〉 a−→ 〈x′〉 P2-4
〈x〉 a−→ √

〈σ0
rel(x)〉 a−→ √ P2-5

〈x〉 r7−→ 〈x′〉
〈σ0

rel(x)〉 r7−→ 〈x′〉
P2-6

〈consistent x〉
〈consistent σ0

rel(x)〉 P2-7

〈x〉 r7−→⊥
〈σ0

rel(x)〉 r7−→⊥
P2-8

〈σr+u
rel (x)〉 u7−→ 〈σr

rel(x)〉
P2-9

〈consistent x〉
〈σr

rel(x)〉 r7−→ 〈x〉
P2-10

〈x〉 u7−→ 〈x′〉
〈σr

rel(x)〉 r+u7−−−→ 〈x′〉
P2-11 〈consistent σr

rel(x)〉 P2-12

¬〈consistent x〉
〈σr

rel(x)〉 r7−→⊥
P2-13

〈x〉 u7−→⊥

〈σr
rel(x)〉 r+u7−−−→⊥

P2-14

〈x〉 a−→ 〈x′〉
〈x · y〉 a−→ 〈x′ · y〉 P2-15

〈x〉 a−→ √
, 〈consistent y〉

〈x · y〉 a−→ 〈y〉 P2-16

〈x〉 r7−→ 〈x′〉
〈x · y〉 r7−→ 〈x′ · y〉

P2-17
〈consistent x〉
〈consistent x · y〉 P2-18

Continued on Next Page. . .
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Table 13 – Continued (a ∈ A, r, u > 0)

〈x〉 r7−→⊥
〈x · y〉 r7−→⊥

P2-19

〈x〉 a−→ 〈x′〉, 〈consistent y〉
〈x + y〉 a−→ 〈x′〉 P2-20

〈y〉 a−→ 〈y′〉, 〈consistent x〉
〈x + y〉 a−→ 〈y′〉 P2-21

〈x〉 a−→ √
, 〈consistent y〉

〈x + y〉 a−→ √ P2-22
〈y〉 a−→ √

, 〈consistent x〉
〈x + y〉 a−→ √ P2-23

〈x〉 r7−→ 〈x′〉,
〈y〉 r7−→ 〈y′〉

〈x + y〉 r7−→ 〈x′ + y′〉
P2-24

〈x〉 r7−→ 〈x′〉, 〈consistent y〉,
〈y〉 6 r7−→,∀s ≤ r(〈y〉 6 s7−→⊥)

〈x + y〉 r7−→ 〈x′〉
P2-25

〈y〉 r7−→ 〈y′〉, 〈consistent x〉,
〈x〉 6 r7−→, ∀s ≤ r(〈x〉 6 s7−→⊥)

〈x + y〉 r7−→ 〈y′〉
P2-26

〈consistent x〉, 〈consistent y〉
〈consistent x + y〉 P2-27

〈x〉 r7−→⊥, 〈consistent y〉,
∀s < r(〈y〉 6 s7−→⊥)

〈x + y〉 r7−→⊥
P2-28

〈y〉 r7−→⊥, 〈consistent x〉,
∀s < r(〈x〉 6 s7−→⊥)

〈x + y〉 r7−→⊥
P2-29

〈x〉 a−→ 〈x′〉
〈νrel(x)〉 a−→ 〈x′〉 P2-30

〈x〉 a−→ √

〈νrel(x)〉 a−→ √ P2-31

〈consistent x〉
〈consistent νrel(x)〉 P2-32

Next we define a bisimulation on BPAsrt
⊥ process terms that relates two

process terms when they have exactly the same behaviour in the semantics pre-
sented above. Later on, when we present the set of axioms, we use this definition
and prove that process terms that are set equal by the axioms are infact seman-
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tically similar. The definition of bisimulation for the semantics presented in this
section is obtained by adding a comparison of future inconsistency predicates in
the bisimulation definition of BPAsrt

⊥ with conditional time determinism (see
Definition 1).

It is defined as follows:

Definition 2 A relation R ⊆ P ×P is called a bisimulation relation if and only
if the following conditions hold:

For all a ∈ A, r > 0, x, y, z ∈ P ,

1.

((x, y) ∈ R ∧ 〈x〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 a−→ 〈z′〉 and (z, z′) ∈ R

2.

((x, y) ∈ R ∧ 〈y〉 a−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 a−→ 〈z′〉 and (z′, z) ∈ R

3.

((x, y) ∈ R ∧ 〈x〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈y〉 r7−→ 〈z′〉 and (z, z′) ∈ R

4.

((x, y) ∈ R ∧ 〈y〉 r7−→ 〈z〉) =⇒ ∃z′ ∈ P : 〈x〉 r7−→ 〈z′〉 and (z′, z) ∈ R

5.
(x, y) ∈ R =⇒ (〈x〉 a−→ √ ⇐⇒ 〈y〉 a−→ √

)

6.
(x, y) ∈ R =⇒ (〈x〉 r7−→⊥ ⇐⇒ 〈y〉 r7−→⊥)

7.
(x, y) ∈ R =⇒ (〈consistent x〉 ⇐⇒ 〈consistent y〉)

Two process terms x and y are called bisimilar to each other written as 〈x〉↔ 〈y〉
if there exists a bisimulation relation R such that (x, y) ∈ R.

Theorem 9 Bisimulation is a congruence for the signature of BPAsrt
⊥ .

Proof This theorem is proven on the same lines as Theorem 1 using congruence
theorem in [16].

It is trivial to show that the given term deduction system with the set of
deduction rules given in Table 13 is well-founded and all the transition rules are
in PANTH format.

A stratification S which is an extension of the stratification function S given
in the proof of Theorem 1. S is a strict stratification for our term deduction
system.
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The stratification S2 is defined as follows:

S(〈consistent x〉) = S(〈consistent x〉)
S(〈x〉 a−→ √

) = S(〈x〉 a−→ √
)

S(〈x〉 a−→ 〈x′〉) = S(〈x〉 a−→ 〈x′〉)
S(〈x〉 r7−→ 〈x′〉) = S(〈x〉 r7−→ 〈x′〉)
S(〈x〉 r7−→⊥) = |x|

£

Table 14 consists a list of axioms we present for this proposal.

Theorem 10 (Soundness of Proposal 2)
For all closed terms t1, t2 of BPAsrt

⊥ , we have,

Proposal 2 |= t1 = t2 =⇒ t1 ↔ t2

Proof The soundness proofs of the axioms are given in Appendix H £

Table 14: Proposal 2 BPAsrt
⊥ -Axioms ( a ∈ Aδu, v ≥ 0)

x + y = y + x A1 σ0
rel(x) = x SRT1

(x + y) + z = x + (y + z) A2 σu
rel(σ

v
rel(x)) = σu+v

rel (x) SRT2
x + x = x A3 σu

rel(x) + σu
rel(y) = σu

rel(x + y) SRT3
(x + y) · z = x · z + y · z A4 σu

rel(x) · y = σu
rel(x · y) SRT4

(x · y) · z = x · (y · z) A5

x + ˜̃δ = x A6SR νrel(˜̃a) = ˜̃a SRU1
˜̃δ · x = ˜̃δ A7SR νrel(σr

rel(x)) = ˜̃δ SRU2
νrel(x + y) = νrel(x) + νrel(y) SRU3

x +⊥ = ⊥ NE1 νrel(x · y) = νrel(x) · y SRU4
⊥ · x = ⊥ NE2
˜̃a · ⊥ = ˜̃δ NE3SR νrel(⊥) = ⊥ NESRU

Theorem 11 Our Proposal 2 for BPAsrt
⊥ is a conservative extension of BPAsrt

and BPA.

Proof Trivial £

This concludes our research for our possible second proposal for BPAsrt
⊥ ,

where the time determinism axiom SRT3 holds unconditionally.
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5.5 Concluding Remarks

Observing the importance of time determinism for timed systems, we set to
finding a time deterministic proposal of BPAsrt

⊥ . We have presented three
attempts of preserving time determinism axiom in BPAsrt

⊥ . Each attempt pro-
poses a modification or addition to the semantics of BPAsrt

⊥ with conditional
time determinism (see Section 4). The first attempt (Section 5.2) proposing
a modification in alternative composition was given up due to its limitations
regarding extension with integration.

Second attempt (“Modifying Relative Delay Operator σr
rel”, Section 5.3) al-

though suitable for extension with integration was dropped in favor of the third
semantics (“Testing for future Inconsistency”, Section 5.4) which treats both
actions and delays before an inconsistent state uniformly.

Next, we examine the options of extending the time deterministic BPAsrt
⊥

and BPAsrt
⊥ with conditional time determinism with other operators of hybrid

process algebra.

6 Extensions of BPAsrt
⊥

BPAsrt
⊥ can only describe a subset of processes expressible by Process Algebra

for Hybrid Systems. We are naturally interested in analyzing the possibilities of
extensions of BPAsrt

⊥ towards BPAsrt
hs and ACP srt

hs . In this section we throw
some light on our insights regarding this matter. The section is outlined as
follows: We dedicate a separate section to discuss addition of the operator in-
tegration (Section 6.1); afterwards, we discuss extending BPAsrt

⊥ to represent
hybrid processes. This section comprises of ideas and suggestions. The imple-
mentation of these ideas is left as future work.

6.1 Integration

The addition of integration to Basic Timed Process Algebra BPAsrt enables it
to model processes that can perform actions at any instance in a time interval.
Recognizing the importance of integration, we first consider adding integration
to BPAsrt

⊥ .
Integration provides for alternative composition over a set of alternatives

that can be infinite. Let F be a function from non-negative reals to processes in
BPAsrt, then an integral of F (u) over an interval U , represented by

∫
u∈U

F (u),
behaves like one of the process terms in the set {F (p) | p ∈ U}.

The set of transition rules and axioms for integration in BPAsrt [4] are given
in the Appendix B.

The semantics of integration is defined on the same principle as that of
alternative composition. We discuss how our two proposals of BPAsrt

⊥ can be
extended with integration below:

1. In our first proposal of BPAsrt
⊥ , i.e. the proposal with conditional time

determinism, the transition rules for integration are similar to the rules of
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integration given for the process algebra BPAsrt [4]. The only difference
is that here (in integration in BPAsrt

⊥ ), we add consistency checking of all
process terms constituting an integral expression.
Thus adding integration to the first proposal is straightforward. The Rules
for Integration are given in Table 15.

Table 15: Proposal 1 Rules for Integration (a ∈ A, p, q,≥ 0, r > 0)

〈F (p)〉 a−→ 〈x′〉, {〈consistent F (q)〉 | q ∈ U}
〈∫

u∈U
F (u)〉 a−→ 〈x′〉 p ∈ U P1-27

〈F (p)〉 a−→ 〈√〉, {〈consistent F (q)〉 | q ∈ U}
〈∫

u∈U
F (u)〉 a−→ 〈√〉 p ∈ U P1-28

{〈F (q)〉 r7−→ 〈F1(q)〉 | q ∈ U1},
...
{〈F (q)〉 r7−→ 〈Fn(q)〉 | q ∈ Un},
{〈F (q)〉 6 r7−→, 〈consistent F (q)〉
| q ∈ Un+1}

〈∫
u∈U

F (u)〉 r7−→ 〈∫
u∈U1

F1(u) + . . . +
∫

u∈Un
Fn(u)〉

{U1, . . . Un}
partition of U\Un+1,
and Un+1 ⊂ U

P1-29

{〈consistent F (q)〉 | q ∈ U}
〈consistent ∫

u∈U
(F (u))〉 P1-30

With the integration available, we can derive interesting equalities con-
cerning the non-existence process constant and relative delay operator.
In the semantics of our first proposal of BPAsrt

⊥ with integration, the
following equality holds:

σt
rel(⊥) =

∫
u<t

σu
rel(˜̃δ) (10)

Equation 10 states that it is not possible to enter into inconsistency after a
delay. A process term σt

rel(⊥) deadlocks at some time before time instance
t.

2. Adding integration to our second proposal turns out to be more complex.
In the second proposal for BPAsrt

⊥ , a future inconsistency relation has
been added in the semantics. A future inconsistency predicate with du-
ration t for a process x, represents that if allowed to delay x would enter
into inconsistency after time t. A process term σt

rel(⊥) has a future incon-
sistency predicate with duration t. It is written as follows:

σt
rel(⊥) t7−→⊥
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Integration rules can be defined for the second proposal of BPAsrt
⊥ in the

same way as the rules for the alternative composition. Then, in the second
proposal an integral expression

∫
u∈U

F (u) would be allowed to delay for a
duration r only if none of the process terms {F (q) | q ∈ U} have a future
inconsistency predicate of duration shorter than or equal to r (See Rules
P2-25 and Rules P2-26 in Table 13). Similarly, the term

∫
u∈U

F (u) would
have a future inconsistency predicate that has the shortest duration among
future inconsistency predicates for all constituent terms {F (q) | q ∈ U}
(See Rules P2-28 and Rules P2-29 in Table 13). This straightforward
extension of our second proposal for BPAsrt

⊥ does not give a satisfactory
result. We explain it below:

Consider the following equation:
∫

t>0
σt

rel(⊥) = ˜̃δ (11)

Equation 11 holds in the second proposal of BPAsrt
⊥ . Consider the set of

process terms {σt
rel(⊥) | t > 0} that constitute the integral

∫
t>0

σt
rel(⊥).

Since the smallest real number greater than zero does not exist, therefore
a future inconsistency predicate for

∫
t>0

σt
rel(⊥) cannot be derived. This

sets the process term
∫

t>0
σt

rel(⊥) bisimilar to immediate deadlock.

On close investigation of our equational system we find out that this poses
a problem. Equation 11, together with axiom SRT3, NE1 and some stan-
dard axioms of integration allows the following derivation:

∫
t>0

σt
rel(⊥) =

∫
t>0

σt
rel(⊥+ x) By NE1

=
∫

t>0
(σt

rel(⊥) + σt
rel(x)) By SRT3

=
∫

t>0
σt

rel(⊥) +
∫

t>0
σt

rel(x) By INT11
= ˜̃δ +

∫
t>0

σt
rel(x) By Equation 11

=
∫

t>0
σt

rel(x) By A6SR

The process term
∫

t>0
σt

rel(⊥) can be proven equal to
∫

t>0
σt

rel(x), with x
being any process term. So, when the semantics of Section 5.4 is straight-
forwardly extended with integration, the time determinism axiom leads
to unsound derivations once more. This cannot be allowed. Hence, the
semantics must differentiate between

∫
t>0

σt
rel(⊥) and immediate deadlock

˜̃δ. 1

A solution can be to add an extra relation to the semantics once more,
that holds for process term

∫
t>0

σt
rel(⊥). A unary relation ³⊥⊆ P that

includes processes that enter into inconsistency with a delay of shortest
possible duration, i.e. “immediately after now.”

1Note that this problem will also arise in the semantics described in Section 5.3. Adding
the integration on the same lines as the rules for alternative composition, requires that during
a delay for

∫
t>0σt

rel(⊥), none of the members of the set {σt
rel(⊥) | t > 0} become inconsistent.

For this we need to know the smallest number greater than zero.

40



We agree that the resulting semantics will be complex with six relations.
The relations Future inconsistency and Consistency can actually be com-
bined. The Consistency relation can be removed from the semantics. In-
stead, a future inconsistency predicate of duration 0 holds for a process
term x, whenever ¬〈consistent x〉 was holding. I.e.

⊥ 07−→⊥
σ0

rel(⊥) 07−→⊥
⊥ · x 07−→⊥
⊥+ x

07−→⊥

Extending the second proposal of BPAsrt
⊥ with integration in this way is

left as future work.

We extended our first proposal for BPAsrt
⊥ with integration defined by rules

given in Table 15. We expect that the axioms (excluding the time determinism
axiom INT10SR) that hold for BPAsrt with integration (see Appendix B) also
hold for our first proposal of BPAsrt

⊥ . Formulating and proving axioms of
integration is left as future work.

While considering the proposal of Section 5.4 (which constitutes our second
proposal of BPAsrt

⊥ ), we find that extending it with integration is not that
simple. We propose a solution for adding integration to it and leave it as future
work.

6.2 Flow Determinism

A Process Algebra for Hybrid Systems is inherently more complex than a timed
process algebra. Hence an extension of BPAsrt

⊥ to a basic hybrid process algebra
requires a thorough research. Below, we present our views on extending the two
proposals of BPAsrt

⊥ to a hybrid setting:

1. An extension of our first proposal of BPAsrt
⊥ to a hybrid process algebra

is quite obvious. The signature of BPAsrt
⊥ is extended with extra opera-

tors i.e. conditional operator, signal emission operator , signal evolution
operator and signal transition operator defined in [1]. The semantics is
also extended with details like valuations of model variables and their tra-
jectories during delays that are necessary to describe hybrid behaviour of
processes. New rules are added to the semantic to define the behaviour of
new operators.

Here, we need a careful approach, because with the extended signature,
comes a chance of repeating the mistakes of Process Algebra for Hybrid
Systems. As mentioned before, in Process Algebra for Hybrid Systems,
alternative composition is not associative.

This error can be corrected by modifying the semantics of alternative
composition, so that too much emphasis on duration of delays is replaced
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by an equal emphasis on durations and trajectories of model variables
during delays.

The delay bahaviour of alternative composition as it is currently defined
in Process Algebra for Hybrid Systems is narrated below:

Consider an alternative composition p + q.

If p and q can delay together for a given duration of delay with
the same trajectory of variables, then p+q delays so that at the
end of delay, choice is retained.

The process term p + q can also delay for a given duration and
proceed as one of the process terms p or q only if the process
term left behind cannot delay for the same duration with any
trajectory of variables.

The behaviour described latter should be modified as follows:

The process term p + q can also delay for a given duration and
proceed as one of the process terms p or q only if the process
term left behind cannot delay for the same duration with the
same trajectory of variables.

Consider the transition rules HS-12 and HS-13, describing the delay be-
haviour of an alternative composition in Appendix A, Table 16. These
rules will be replaced by the following two rules:

〈x, α〉 r,ρ7−−→ 〈x′, α′〉, 〈y, α〉 6 r,ρ7−−→, α∈ [s(y)]

〈x + y, α〉 r,ρ7−−→ 〈x′, α′〉

〈y, α〉 r,ρ7−−→ 〈y′, α′〉, α∈ [s(x)], 〈x, α〉 6 r,ρ7−−→
〈x + y, α〉 r,ρ7−−→ 〈y′, α′〉

Note that the negative formulaes 〈y, α〉 6 r7−→ and 〈y, α〉 6 r7−→ in rules 12 and
13 have been replaced by 〈y, α〉 6 r,ρ7−−→ and 〈x, α〉 6 r,ρ7−−→ here. A predicate
〈x, α〉 6 r,ρ7−−→ represents that there does not exists a x′, such that

〈x, α〉 r,ρ7−−→ 〈x′, αρ
r〉

is derivable.

With this modification, the alternative composition will remain associative
with the new operators added to BPAsrt

⊥ . We expect that some axioms
that are currently not sound (for example, HSE7, INT11, HSINT7) will
hold with the new definition of alternative composition. On the other
hand some of the unsound axioms (for example HSE13, HSSCRM) will
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be dropped. With regards to time determinism, we expect the following
axiom to hold:

σr
rel(x) + σr

rel(y) = σr
rel(x + y) + σr

rel(¬sρ(y) ∧N x) + σr
rel(¬sρ(x) ∧N y)

where r > 0.

The operator sρ defined in [24] returns the signal emitted by a process.

2. The semantics of the second proposal for BPAsrt
⊥ is more elaborate than

that of the first proposal. Extending it to a hybrid setting also turns out
to be more involved than the first.

In addition to the relations of first proposal, the semantics of second pro-
posal contains a future inconsistency relation. When we extend this pro-
posal with the operators for hybrid processes, then for each operator we
need to define rules for deriving future inconsistency predicates (7−→⊥) and
inconsistency immediately after now predicates (³⊥). This needs further
research. An idea is that inconsistency is absence of a solution to a given
set of constraints on variable trajectories. We cannot say more at this
point.

Studying the possibilities of extensions of BPAsrt
⊥ to a hybrid process al-

gebra, we find that extending BPAsrt
⊥ with conditional time determinism with

operators of BPAsrt
hs is much simpler than the time deterministic BPAsrt

⊥ .

7 Conclusions

This report is related to Process Algebra for Hybrid Systems [1] which is a
well-known formalism for specification of hybrid systems. Recently, a number of
errors have been uncovered in this algebra. This report is an initial development
towards correcting these errors.

Process Algebra for Hybrid Systems, denoted by ACP srt
hs , has a hierarchical

structure. It is built from the most basic algebra BPA [2] in several layers to
a process algebra ACP srt

hs for description of hybrid systems. The hierarchical
structure of ACP srt

hs is shown in the figure 1. We summarize it below:
The algebra Basic Process Algebra BPA is extended with operators and

constants to describe properties of timed systems. This forms Basic Process
Algebra with standard relative timing BPAsrt. The algebra BPAsrt is extended
with the Non-existence process from [3] to form BPAsrt

⊥ . When BPAsrt
⊥ is

combined with operators of Basic Process Algebra with Propositional Signals
BPAps, the resulting theory is BPAsrt

ps . Adding operators for description of
hybrid behaviour of processes gives us BPAsrt

hs . The algebra BPAsrt
hs , called

Basic Process Algebra for Hybrid Systems, is ACP srt
hs without parallelism and

concurrency. ACP srt
hs is obtained from BPAsrt

hs by adding parallelism to it.
This report is confined to the discussion of Process Algebra for Hybrid Sys-

tems without parallelism i.e. BPAsrt
hs .
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As shown in the Figure 1, the errors found in ACP srt
hs appear at two levels.

First at the level of BPAsrt
⊥ and secondly at the level of BPAsrt

ps . The error
in algebra BPAsrt

⊥ is the unsoundness of axiom of Time Determinism (SRT3).
The error in BPAsrt

ps and its derived theories (BPAsrt
hs , ACP srt

hs , etc.) is that
the Choice is non-associative and related to this error, a number of other axioms
turn out to be unsound.

As a first step towards making corrections in BPAsrt
hs , we present in this

report two proposals for correcting the algebra BPAsrt
⊥ .

In our first proposal, we replace axiom of Time Determinism (SRT3) by a
conditional axiom (SRTD). The conditional axiom represents time determinism
in cases when the target process terms are not bisimilar to Non-existence. Also a
new axiom (SRTD⊥) is added to BPAsrt

⊥ [1], that reflects that passage of time
makes choices in the presence of Non-existence process. These axioms (SRTD,
SRTD⊥) also hold in the semantics of [1]. In fact we show that for all BPAsrt

⊥
processes, our first proposal is equivalent to the process algebra BPAsrt

hs .
Due to the importance of Time Determinism, we also search for a variant

of BPAsrt
⊥ , where the axiom SRT3 holds for all process terms including the

Non-existence process. Finding a time deterministic BPAsrt
⊥ turns out to be

non-trivial. To achieve our goal, we try modifying the semantics of the op-
erators reasoned about in SRT3, i.e. alternative composition and the relative
delay operator. Finally, we adopt an approach that we call “Testing for Future
Inconsistency” (Section 5.4) for our second proposal of BPAsrt

⊥ . The axiom of
time determinism SRT3 holds in this proposal.

Both our first and second proposals of BPAsrt
⊥ are conservative extensions

of BPAsrt and BPA.
Lastly, we consider extensions of BPAsrt

⊥ with the operators from [1] to
describe hybrid behaviour of processes.

It appears that extending the first proposal is simple. When extending
the signature of BPAsrt

⊥ with operators of BPAsrt
hs , we need to modify the

alternative composition of [1] so that it is associative.
Extending the second proposal to a hybrid process algebra needs more re-

search. For the second proposal, we need to determine what is the meaning of
“Future Inconsistency” ( 7−→⊥) and “Inconsistency immediately after now” (³⊥)
in a hybrid environment.

In our work on Process Algebra for Hybrid Systems, tracing the error of
time determinism back to BPAsrt

⊥ was a major step. After isolating the er-
ror, the rest of the road map was evident. The reason for presenting both the
conditional time determinism approach and the general time determinism ap-
proach for BPAsrt

⊥ is to clarify the choices available in each case. An interested
researcher can then make his own comparison and decide according to the prob-
lem at hand. The idea of “Testing for Future Inconsistency” which constitutes
our second proposal is new and the research on it is in progress. There exist
better possibilities for the implementation of the idea (one of them proposed
by Jos Baeten) than given in this report. Realizing these suggestions is left as
future work.

Acknowledgements We would like to thank Jos Baeten, Jan Bergstra,

44



Kees Middelburg for their interest, patience and useful discussions. Mohammad
Mousavi and Francien Dechesne are thankfully appreciated for their help in some
tricky proofs.

References

[1] J.A.Bergstra, C.A.Middelburg, “Process Algebra for Hybrid Systems”,
Theoretical Computer Science 335, (2005) 215-280.

[2] J.C.M.Baeten, W.P.Weijland, “Process Algebra”, Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 1990.

[3] J.C.M. Baeten, J.A.Bergstra, “Process Algebra with Propositional Sig-
nals”, Theoretical Computer Science 177, (1997) 381-405.

[4] J.C.M. Baeten, C.A.Middelburg, “Process Algebra with Timing”, Chapter
4 , Continuous Relative Timing, Springer, 2002.

[5] J.C.M. Baeten, C.A.Middelburg, “Process Algebra with Timing”, Chapter
2 , Discrete Relative Timing, Springer, 2002.

[6] J.A. Bergstra, C.A. Middelburg, Y.S. Usenko, “Discrete Time Process Age-
bra and the Semantics of SDL” Handbook of Process Algebra. Jan A.
Bergstra, Alban Ponse, and Scott A. Smolka, Editors. Elsevier, ISBN: 0-
444-82830-3, 2001.

[7] J.C.M. Baeten, J.A.Bergstra, “Global renaming operators in Concrete Pro-
cess Algebra”, Information and Computation 78(3), 1988, pp. 295-245.

[8] J.F. Groote , A. Ponse, Process algebra with guards (combining Hoare logic
with process algebra), Formal Aspects of Computing 6, 1994, pp. 115-164.

[9] J.F.Groote and J.J. van Wamel,“ Analysis of three hybrid systems in timed
µCRL”, Science of Computer Programming, 39(2-3):215-247,2001.

[10] J.A. Hillebrand. “The ABP and CABP-A comparison of performances in
real time process algebra”, In A.Ponse, C. Verhoef and S.F.M. van Vlij-
men, editors, Algebra for Communicating Processes, 1994, pages 124-147.
Workshop in Computing Series, Springer, Berlin, 1995.

[11] “A realtime µCRL specification of a system for traffic regulation at signal-
ized intersections”, In A.Ponse, C. Verhoef and S.F.M. van Vlijmen, editors,
Algebra for Communicating Processes, 1994, pages 252-279. Workshop in
Computing Series, Springer, Berlin, 1995.

[12] J.M.S. van den Meerendonk, “Specification and verification of a circuit
in ACPdrt-ID” M.Sc. Thesis, Department of mathematics and Computing
Science, Eindhoven University of Technology, Eindhoven, October 2001.

45



[13] J.J.Vereijken, “Fischer’s protocol in timed process algebra”, In A.Ponse,
C. Verhoef and S.F.M. van Vlijmen, editors, Algebra for Communicating
Processes, 1995, pages 245-284. Report 95-14, Department of Mathemat-
ics and Computer Science, Eindhoven Univeristy of technology, eindhoven
1995.

[14] M.R. Mousavi and M.A. Reniers, “A Congruence Rule Format with Uni-
versal Quantification”, Proceedings of the 4th Workshop on Structural Op-
erational Semantics (SOS’07), Wroclaw, Poland, volume 192 of Electronic
Notes in Theoretical Computer Science, pages 109–124, Elsevier Science
B.V., July 2007. (*)

[15] Muck van Weerdenburg and Michel Reniers, “Structural Operational Se-
mantics with First-Order Logic‘”, Lecture at Prose, Process Theory Semi-
nar, Faculty of Mathematics and Computer Science, Technical University
Eindhoven.October 25, 2007.

[16] Chris Verhoef, “A congruence theorem for structured operational semantics
with predicates and negative premises.”

[17] T.A. Henzinger, “The theory of hybrid automata”, in LICS’96, IEEE Com-
puter Society Press, Los Altos, CA, 1996, 278-290.

[18] N. Lynch, R. Segala, F.W. Vaandrager, “Hybrid I/O automata”, Inform
Comput. 185 (1)(2003)105-157.

[19] P. Cuijpers, M. Reniers, “ Hybrid process algebra”, Journal of Logic and
Algebraic Programming, 62(2):191-245, Februari 2005.

[20] D.A. van Beek and K.L. Man and M.A. Reniers and J.E. Rooda and R.R.H.
Schiffelers, “ Syntax and Consistent Equation Semantics of Hybrid Chi”,
Journal of Logic and Algebraic Programming, 2006, vol 68, 1-2,129-210.

[21] W. Rounds, H. Song, “The φ-calculus: a language for distributed con-
trol of reconfigurable embedded systems”, in: F. Wiedijk, O. Maler, A.
Pnueli (Eds.), Hybrid Systems: Computation and Control, 6th Interna-
tional Workshop, HSCC 2003, Lecture Notes in Computer Science, vol.
2623, Springer-Verlag, 2003, 435449.

[22] A process algebraic approach to hybrid systems, Brinksma, E., Krilavi-
cius, T., Usenko, Y.S. (2005). Proceedings 16th IFAC World Congress 2005
(Prague, Czech Republic, July 4-8, 2005), Session on Mathematical Struc-
ture of Dynamical Systems, CD-ROM.

[23] A. Di Febbraro, A. Giua, and G. Menga, editors. Special Issue on Hybrid
Petri Nets, volume 11 of Discrete Event Dynamic Systems, 2001.

[24] J.A.Bergstra, C.A.Middelburg, “Process Algebra for Hybrid Systems”, CS
Report 03-06, Eindhoven University of Technology, June,2003.

46



[25] G.M. Reed, A.W. Roscoe,“A timed model for communicating sequential
processes”, Theoret. Comput. Sci. 58 (1988) 249261.

[26] F. Moller, C. Tofts, “A temporal calculus of communicating systems”, in:
J.C.M. Baeten, J.W. Klop (Eds.), Proc. CONCUR90, Lecture Notes in
Computer Science, Vol. 458, Springer, Berlin, 1990, pp. 401415.

[27] X. Nicollin, J. Sifakis, “The algebra of timed processes ATP: theory and
application”, Inform. Comput. 114 (1994) 131178.

A Introduction to BPAsrt
hs Semantics

In this Section, we give a brief introduction to the semantics of Basic Process
Algebra for Hybrid Systems.

To describe the behaviour of a hybrid process, we need to keep account of the
values of model variables. The values of these variables may change gradually
over an interval of time or suddenly when an action is performed. Assume a
set V of model variables and a set A of actions. Let the set V̇ = {v̇ | v ∈ V }
denote the derivatives of all variables v ∈ V . A mapping of variables from the
set V ∪ V̇ to the set of real numbers is called a valuation. We denote the set
of all possible valuations by S, i.e. S = V ∪ V̇ → R. A valuation has been
mentioned as a state in [1].

A function of the type [0, t] → (V → R) gives the evolution of variables in a
duration [0, t], t ∈ R>0.

We define a set D for pairs of time durations and state evolution functions
possible during a delay of that duration.

D = {(t, ρ) | t ∈ R≥0 ∧ ρ ∈ [0, t] 7→ (V 7→ R)}
Let ρ ∈ ([0, t] → (V → R)). We use the notation ρ D r, with 0 < r < t, for the
state evolution ρ shifted to left by r time units. The duration of ρ D r is t− r.

(ρ D r)(0) = ρ(r)
(ρ D r)(s) = ρ(r + s), s > 0
ρ D r ∈ ([0, t− r] → (V → R))

The semantics of BPAsrt
hs uses four different relations. They are:

1. Action step Relation

2. Action termination Relation

3. Time step Relation; and

4. Signal Relation.

As we are dealing with hybrid processes, the sources and targets of tran-
sitions include valuations of variables to reflect how variables vary during an
action or delay.
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The relations are defined below:
( Let P be the set of all closed process terms of BPAsrt

hs , S be the set of all
valuations, A be the set of all actions and D be the set of pairs of all possible
time durations and variable evolutions during them.)

1. Action Step Relation: A process term can perform an action and become
another process term.

The Action Step relation is of type P × S ×A× P × S.

For a tuple (x, α, a, x′, α′) in the Action Step Relation, we write:

〈x, α〉 a−→ 〈x′, α′〉
This transition represents that in valuation α, x performs action a and
then proceeds as process term x′. The new values of variables after the
action are given by valuation α′.

2. Action Termination Relation: A process term can perform an action and
terminate.

The Action Termination Relation is of type P × S ×A× S.

For a tuple (x, α, a, α′) in the Action Termination Relation, we write:

〈x, α〉 a−→ 〈√, α′〉
This transition represents that in valuation α, x performs action a and
terminates. The new values of variables after the action are given by
valuation α′.

3. Time Step Relation: A process term can idle for some time and become
another process term.

The Time Step Relation is of type P × S ×D × P × S.

For a tuple, (x, α, (t, ρ), x′, α′) in the Time Step Relation, we write:

〈x, α〉 t,ρ7−−→ 〈x′, α′〉
The above time step represents that in valuation α, x idles for t time units
and then proceeds as process term x′. The values of variables during idling
evolve according to the trajectory ρ. The values of variables at the end of
delay are given by valuation α′. The valuations α and α′ match with the
values assigned by the trajectory ρ at instance 0 and r.

4. Signal Relation: The signal emitted by a process term holds in a given
valuation.

Signal Relation is of type S×P . For a tuple (α, x) in the Signal Relation,
we write:

α∈ [s(x)]

The above predicate indicates that the signal emitted by process term x
holds in valuation α.
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Some operators (namely signal emission and signal evolution) in Process
Algebra for Hybrid Systems associate propositions with process terms. These
propositions then constitute the signal emitted by that process term. The rules
stating when signal emitted by a process terms holds in a valuation are given in
Table 18.

A predicate 〈x, α〉 6 t7−→ represents the following:

@ρ ∈ [0, t] → (V → R), x′ ∈ P, α′ ∈ S : 〈x, α〉 t,ρ7−−→ 〈x′, α′〉

A.1 Bisimulation

There are two kinds of bisimulation equivalences for defined in [1]. One is called
bisimulation and the other is called Interference Compatible bisimulation or
ic-bisimulation.

The behaviour of a hybrid process is specified in a valuation of model vari-
ables. Each action and time step of a process may modify the valuation.

In bisimulation equivalence, the initial behaviour of two processes is com-
pared in a given valuation and for subsequent steps, the behaviour of two pro-
cesses is compared in the valuation obtained at the end of the previous step.

It is defined as follows:

Definition 3 A bisimulation is a symmetric binary relation B ⊆ (P×S)×(P×
S) on pairs of closed process terms and valuations called configurations. For
all configurations, 〈x, α〉,〈y, α〉 with (〈x, α〉,〈y, α〉) ∈ B the following conditions
hold:

• for all actions a ∈ A, process terms x′ ∈ P , valuations α′ ∈ S, if there is
an action step 〈x, α〉 a−→ 〈x′, α′〉, then there exists a y′ ∈ P and an action
step 〈y, α〉 a−→ 〈y′, α′〉. Also (〈x′, α′〉, 〈y′, α′〉) ∈ B;

• for all actions a ∈ A, valuations α′ ∈ S, if there is a termination step
〈x, α〉 a−→ 〈√, α′〉, then there also exists the termination step 〈y, α〉 a−→
〈√, α′〉 ;

• for all delays (r, ρ) ∈ D, process terms x′ ∈ P , valuations α′ ∈ S, if there
exists a time step 〈x, α〉 r,ρ7−−→ 〈x′, α′〉, then there exists a y′ ∈ P and a time
step 〈y, α〉 r,ρ7−−→ 〈y′, α′〉. Also (〈x′, α′〉, 〈y′, α′〉) ∈ B;

• if the signal relation α∈ [s(x)] holds then the signal relation α∈ [s(y)] also
holds.

Two configurations 〈x, α〉 and 〈y, α〉 are bisimulation equivalent or bisimilar
written as 〈x, α〉 ↔ 〈y, α〉, if there exists a bisimulation relation B such that
(〈x, α〉,〈y, α〉) ∈ B.

Additionally, two process terms x and y are bisimulation equivalent or bisim-
ilar written as x↔ y, if for all valuations α, there exists a bisimulation relation
B such that (〈x, α〉,〈y, α〉) ∈ B.

49



The above definition is sufficient when only sequential processes are considered.
Bisimulation is not a congruence when parallel processes are studied. In case of
parallelism, the valuation can be modified by a third process in parallel.

Consider the following example:

X = = (v• = 1) uH ˜̃a · (v = 1) :→ ˜̃b
Y = = (v• = 1) uH ˜̃a · ˜̃b

The two processes are bisimilar but when they are placed parallel with a process
Z, they behave differently.

Z = (v• = 0) uH ˜̃c

For an equivalence on processes to be a congruence with respect to paral-
lel operator, the equivalence definition must cater for interferences by parallel
processes.

In Ic-bisimulation, the initial behaviour of two processes is compared in all
possible valuations and for subsequent steps, the same policy is adopted. I.e. at
each stage the behaviour of two processes is compared in all possible valuations.

Its is defined as follows:

Definition 4 An ic-bisimulation is a symmetric binary relation B ⊆ P × P
on pairs of closed terms. For all pairs, (x, y) with (x, y) ∈ B the following
conditions hold:

For all valuations α:

• for all actions a ∈ A, process terms x′ ∈ P , valuations α′ ∈ S, if there is
an action step 〈x, α〉 a−→ 〈x′, α′〉, then there exists a y′ ∈ P and an action
step 〈y, α〉 a−→ 〈y′, α′〉. Also (x′, y′) ∈ B;

• for all actions a ∈ A, valuations α′ ∈ S, if there is a termination step
〈x, α〉 a−→ 〈√, α′〉, then there also exists the termination step 〈y, α〉 a−→
〈√, α′〉 ;

• for all delays (r, ρ) ∈ D, process terms x′ ∈ P , valuations α′ ∈ S, if there
exists a time step 〈x, α〉 r,ρ7−−→ 〈x′, α′〉, then there exists a y′ ∈ P and a time
step 〈y, α〉 r,ρ7−−→ 〈y′, α′〉. Also (x′, y′) ∈ B;

• if the signal relation α∈ [s(x)] holds then the signal relation α∈ [s(y)] also
holds.

Two process terms x and y ic- bisimulation equivalent or ic-bisimilar written as
x↔ y, if there exists a bisimulation relation B such that (x, y) ∈ B.

A.2 Transition Rules for BPAsrt
hs

We have for all closed terms x and x′, for all α, α′ : V ∪ V̇ → R, a ∈ A, r, s ∈ R>

and ρ ∈ εr,ρ′ ∈ εr+s the following transition rules:
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Table 16: BPAsrt
hs -Transition Rules (a ∈ A, r, s > 0)

〈˜̃a, α〉 a−→ 〈√, α′〉 HS-1
〈x, α〉 a−→ 〈x′, α′〉

〈σ0
rel(x), α〉 a−→ 〈x′, α′〉 HS-2

〈x, α〉 a−→ 〈√, α′〉
〈σ0

rel(x), α〉 a−→ 〈√, α′〉 HS-3
〈x, α〉 r,ρ7−−→ 〈x′, α′〉

〈σ0
rel(x), α〉 r,ρ7−−→ 〈x′, α′〉

HS-4

〈σr+s
rel (x), α〉 r,ρ7−−→ 〈σr

rel(x), α′〉
HS-5

α′ ∈ [s(x)]

〈σr
rel(x), α〉 r,ρ7−−→ 〈x, α′〉

HS-6

〈x, α′〉 s,ρ′Dr7−−−−→ 〈x′, α′′〉
〈σr

rel(x), α〉 r+s,ρ′7−−−−→ 〈x′, α′′〉
HS-7

〈x, α〉 a−→ 〈x′, α′〉, α∈ [s(y)]
〈x + y, α〉 a−→ 〈x′, α′〉 HS-8

〈y, α〉 a−→ 〈y′, α′〉, α∈ [s(x)]
〈x + y, α〉 a−→ 〈y′, α′〉 HS-9

〈x, α〉 a−→ 〈√, α′〉, α∈ [s(y)]
〈x + y, α〉 a−→ 〈√, α′〉 HS-10

〈y, α〉 a−→ 〈√, α′〉, α∈ [s(x)]
〈x + y, α〉 a−→ 〈√, α′〉 HS-11

〈x, α〉 r,ρ7−−→ 〈x′, α′〉,
〈y, α〉 6 r7−→, α∈ [s(y)]

〈x + y, α〉 r,ρ7−−→ 〈x′, α′〉
HS-12

〈y, α〉 r,ρ7−−→ 〈y′, α′〉,
α∈ [s(x)], 〈x, α〉 6 r7−→
〈x + y, α〉 r,ρ7−−→ 〈y′, α′〉

HS-13

〈x, α〉 r,ρ7−−→ 〈x′, α′〉,
〈y, α〉 r,ρ7−−→ 〈y′, α′〉

〈x + y, α〉, r,ρ7−−→ 〈x′ + y′, α′〉
HS-14

〈x, α〉 a−→ 〈x′, α′〉
〈x · y, α〉 a−→ 〈x′ · y, α′〉 HS-15

〈x, α〉 a−→ 〈√, α′〉, α′ ∈ [s(y)]
〈x · y, α〉 a−→ 〈y, α′〉 HS-16

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈x · y, α〉 r,ρ7−−→ 〈x′ · y, α′〉

HS-17
〈x, α〉 a−→ 〈x′, α′〉

〈ψ :→ x, α〉 a−→ 〈x′, α′〉 α |= ψ HS-18

〈x, α〉 a−→ 〈√, α′〉
〈ψ :→ x, α〉 a−→ 〈√, α′〉 α |= ψ HS-19

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈ψ :→ x, α〉 r,ρ7−−→ 〈x′, α′〉

α |= ψ HS-20

Continued on Next Page. . .
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Table 16 – Continued (a ∈ A, r, s > 0)
〈x, α〉 a−→ 〈x′, α′〉

〈ψ ∧N x, α〉 a−→ 〈x′, α′〉 α |= ψ HS-21
〈x, α〉 a−→ 〈√, α′〉

〈ψ ∧N x, α〉 a−→ 〈√, α′〉 α |= ψ HS-22

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈ψ ∧N x, α〉 r,ρ7−−→ 〈x′, α′〉

α |= ψ HS-23
〈x, α〉 a−→ 〈x′, α′〉

〈φ ∩H
V x, α〉 a−→ 〈x′, α′〉 α |= φ HS-24

〈x, α〉 a−→ 〈√, α′〉
〈φ ∩H

V x, α〉 a−→ 〈√, α′〉 α |= φ HS-25

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈φ ∩H

V x, α〉 r,ρ7−−→ 〈φ ∩H
V x′, α′〉

α
r,ρ7−−→ α′ |=V φ HS-26

〈x, α〉 a−→ 〈x′, α′〉
〈χ uH x, α〉 a−→ 〈x′, α′〉 α → α′ |= χ HS-27

〈x, α〉 a−→ 〈√, α′〉
〈χ uH x, α〉 a−→ 〈√, α′〉 α → α′ |= χ HS-28

〈x, α〉 r,ρ7−−→ 〈x′, α′〉
〈χ uH x, α〉 r,ρ7−−→ 〈x′, α′〉

α |= ◦χ HS-29
〈x, α〉 a−→ 〈x′, α′〉

〈νrel(x), α〉 a−→ 〈x′, α′〉 HS-30

〈x, α〉 a−→ 〈√, α′〉
〈νrel(x), α〉 a−→ 〈√, α′〉 HS-31
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Table 17: BPAsrt
hs -Rules for Integration (a ∈ A, p, q,≥ 0, r > 0)

〈F (p), α〉 a−→ 〈x′, α′〉, {α∈ [s(F (q))] | q ∈ U}
〈∫

u∈U
F (u), α〉 a−→ 〈x′, α′〉 p ∈ U HS-32

〈F (p), α〉 a−→ 〈√, α′〉, {α∈ [s(F (q))] | q ∈ U}
〈∫

u∈U
F (u), α〉 a−→ 〈√, α′〉 p ∈ U HS-33

{〈F (q), α〉 r,ρ7−−→ 〈F1(q), α′〉 | q ∈ U1},
. . .

{〈F (q), α〉 r,ρ7−−→ 〈Fn(q), α′〉 | q ∈ Un},
{〈F (q), α〉 6 r7−→, α∈ [s(F (q))] | q ∈ Un+1}

〈∫
u∈U

F (u), α〉 r,ρ7−−→ 〈∫
u∈U1

F1(u) + . . . +
∫

u∈Un
Fn(u), α′〉

{U1, . . . Un}
partition of U\Un+1, Un+1 ⊂ U

HS-34

Table 18: BPAsrt
hs -Rules for α∈ [s( )] (a ∈ Aδ)

α∈ [s(˜̃a)]
HS-35

α∈ [s(x)]
α∈ [s(σ0

rel(x))]
HS-36

r > 0
α∈ [s(σr

rel(x))]
HS-37

α∈ [s(x)], α∈ [s(y)]
α∈ [s(x + y)]

HS-38
α∈ [s(x)]

α∈ [s(x · y)]
HS-39

α∈ [s(x)]
α∈ [s(ψ :→ x)]

HS-40

α∈ [s(ψ :→ x)]
α 6|= ψ HS-41

α∈ [s(x)]
α∈ [s(ψ ∧N x)]

α |= ψ HS-42

α∈ [s(x)]
α∈ [s(φ ∩H

V x)]
α |= φ HS-43

α∈ [s(x)]
α∈ [s(χ uH x)]

HS-44

α∈ [s(χ uH x)]
α 6|= ◦χ HS-45

α∈ [s(x)]
α∈ [s(νrel(x))]

HS-46

{α∈ [s(F (q))] | q ∈ U}
α∈ [s(

∫
u∈U

F (u))]
HS-47
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B BPAsrt with Integration

Table 19: Rules for Integration for BPAsrt from [4] (a ∈ A, p, q,≥ 0, r > 0)
〈F (p)〉 a−→ 〈x′〉

〈∫
u∈U

F (u)〉 a−→ 〈x′〉 p ∈ U RI-27

〈F (p)〉 a−→ 〈√〉
〈∫

u∈U
F (u)〉 a−→ 〈√〉 p ∈ U RI-28

{〈F (q)〉 r7−→ 〈F1(q)〉 | q ∈ U1},
. . .

{〈F (q)〉 r7−→ 〈Fn(q)〉 | q ∈ Un},
{〈F (q)〉 6 r7−→| q ∈ Un+1}

〈∫
u∈U

F (u)〉 r7−→ 〈∫
u∈U1

F1(u) + . . . +
∫

u∈Un
Fn(u)〉

{U1, . . . Un}
partition of U\Un+1, Un+1 ⊂ U

RI-29

The following axioms have been taken from [1]. Here we only give the ax-
ioms of integration regarding BPAsrt process terms and leave other axioms of
integration dealing with operators of BPAsrt

ps and BPAsrt
hs .
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Table 20: Axioms for Integration in BPAsrt (p ≥ 0)

∫
u∈U

F (u) =
∫

u′∈U
F (w) INT1

∫
u∈∅F (u) = ˜̃δ INT2∫
u∈{p}F (u) = F (p) INT3∫
u∈U∪U ′F (u) =

∫
u∈U

F (u) +
∫

u∈U ′F (u) INT4

U 6= ∅ =⇒ ∫
u∈U

x = x INT5

(∀u ∈ U • F (u) = G(u)) =⇒ ∫
u∈U

F (u) =
∫

u∈U
G(u) INT6

U,U ′ unbounded =⇒ ∫
u∈U

σu
rel(˜̃δ) =

∫
u∈U ′σ

u
rel(˜̃δ) INT8SR

sup U = p, p ∈ U =⇒ ∫
u∈U

σu
rel(˜̃δ) = σp

rel(˜̃δ) INT9SR∫
u∈U

(σp
rel(F (u))) = σp

rel(
∫

u∈U
F (u)) INT10SR∫

u∈U
(F (u) + G(u)) =

∫
u∈U

F (u) +
∫

u∈U
G(u) INT11∫

u∈U
(F (u) · x) = (

∫
u∈U

F (u)) · x INT12∫
u∈U

νrel(F (u)) = νrel(
∫

u∈U
F (u)) INT13
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C Axioms of BPAdrt

The axioms of Basic Process Algebra with discrete relative timing are given
below:

Table 21: Axioms of BPA−drt-ID as in [6] (a ∈ Aδ)

x + y = y + x A1 σ(x) + σ(y) = σ(x + y) DRT1
(x + y) + z = x + (y + z) A2 σ(x) · y = σ(x · y) DRT2
x + x = x A3 δ · x = δ DRT3
(x + y) · z = x · z + y · z A4 x + δ = x DRT4A
(x · y) · z = x · (y · z) A5

νrel(a) = a DCS1
νrel(x + y) = νrel(x) + νrel(y) DCS2
νrel(x · y) = νrel(x) · y DCS3
νrel(σ(x)) = δ DCS4
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D Theorem 6

We prove the four conditions given in Theorem 6 one by one. The proof is by
structural induction on all closed terms of BPAsrt

⊥ .
Let p, p′ be closed process terms of BPAsrt

⊥ , a be an action, r be a delay
duration.
Theorem 6.1

(Proposal 1) 〈consistent p〉 ⇐⇒ (BPAsrt
hs ) ∀α, α∈ [s(p)]

Proof
First we prove the above statement for all constants in BPAsrt

⊥ .

1. p = ˜̃a.

By Rule P1-2:
(Proposal 1) 〈consistent ˜̃a〉

By Rule HS-35, for all α:

(BPAsrt
hs ) ∀α, α∈ [s(˜̃a)]

Hence the left right implication is proved.

2. p = ˜̃δ.

By Rule P1-1:
(Proposal 1) 〈consistent ˜̃δ〉

By Rule HS-35, for all α:

(BPAsrt
hs ) ∀α, α∈ [s(˜̃δ)]

Hence the left right implication is proved.

3. p = ⊥.

BPAsrt
hs : A signal relation for ⊥ cannot be derived.

Proposal 1: A consistency predicate for ⊥ cannot be derived.

Hence the left right implication is proved.

Next, we prove the given statement for operators σ0
rel, σ

r
rel, ·,+, νrel, by struc-

tural induction. We give the complete proof for σ0
rel. For proofs of other opera-

tors we only mention the rules that have been used.
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1. p = σ0
rel(x).

Suppose
(Proposal 1) 〈consistent σ0

rel(x)〉
This can only be derived by Rule P1-4.

Then from the premise of the rule:

(Proposal 1) 〈consistent x〉

By Induction, for all α:

(BPAsrt
hs ) α∈ [s(x)]

Apply Rule HS-36, for all α:

(BPAsrt
hs ) α∈ [s(σ0

rel(x))]

Vice Versa

Suppose, for all α,
(BPAsrt

hs ) α∈ [s(σ0
rel(x))]

This can only be derived by Rule 36.

Then from the premise of the rule:

For all α:
(BPAsrt

hs ) α∈ [s(x)]

By Induction:
(Proposal 1) 〈consistent x〉

Apply Rule P1-4:

(Proposal 1) 〈consistent σ0
rel(x)〉

2. p = σr
rel(x).

By Rule P1-8:

(Proposal 1) 〈consistent σr
rel(x)〉

By Rule HS-37, for all α:

(BPAsrt
hs ) ∀α, α∈ [s(σr

rel(x))]

Hence the left right implication is proved.

3. p = x + y.

The proof is by induction using Rules P1-16 and HS-38.
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4. p = x · y.

The proof is by induction using Rules P1-12 and HS-39.

5. p = νrel(x).

The proof is by induction using Rules P1-24 and HS-46.

£

Theorem 6.2

(Proposal 1) 〈x〉 a−→ √ ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈√, α′〉

Proof First we prove the above statement for all constants in BPAsrt
⊥ .

1. p = ˜̃a

From Rule P1-3:
Proposal 1) 〈˜̃a〉 a−→ √

From Rule HS-1:

For all α, α′

(BPAsrt
hs ) 〈˜̃a, α〉 a−→ 〈√, α′〉

Hence the left right implication is proved.

2. p = ˜̃δ

BPAsrt
hs : A termination step for ˜̃δ cannot be derived.

Proposal 1: A termination step for ˜̃δ cannot be derived.

Hence the left right implication is proved.

3. p = ⊥
BPAsrt

hs : A termination step for ⊥ cannot be derived.

Proposal 1: A termination step for ⊥ cannot be derived.

Hence the left right implication is proved.

Next, we prove the given statement for operators σ0
rel, σ

r
rel, ·,+, νrel, by struc-

tural induction. We give the complete proof for σ0
rel and for other operators only

mention the rules applied.

1. p = σ0
rel(x)

Suppose,
(Proposal 1) 〈σ0

rel(x)〉 a−→ √

This can only be derived from Rule P1-5. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ √
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By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

Apply rule HS-3:

For all α, α′:
(BPAsrt

hs ) 〈σ0
rel(x), α〉 a−→ 〈√, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈σ0

rel(x), α〉 a−→ 〈√, α′〉
This can only be derived from Rule HS-3. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈√, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ √

Apply Rule P1-5, we get:

(Proposal 1) 〈σ0
rel(x)〉 a−→ √

Hence the left right implication is proved.

2. p = σr
rel(x)

BPAsrt
hs : An termination step for σr

rel(x) cannot be derived.

Proposal 1: An termination step for σr
rel(x) cannot be derived.

Hence the left right implication is proved.

3. p = x + y.

Suppose,
(Proposal 1) 〈x + y〉 a−→ √

(12)

The above Transition can be derived from two rules.

• Rule P1-17
Then from the premise of the rule, the following must hold:

(Proposal 1) 〈x〉 a−→ √
Proposal 1 〈consistent y〉

By Induction for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]
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Apply rule HS-10 on the above transitions and relations:
For all α, α′:

(BPAsrt
hs ) 〈x + y, α〉 a−→ 〈√, α′〉

• Rule P1-18
Same as above.

Vice Versa

Suppose, for all α, α′:

(BPAsrt
hs ) 〈x + y, α〉 a−→ 〈√, α′〉 (13)

The above Transition can be derived from two rules. We discuss these
rules one by one:

• Rule HS-10
Then from the premise of the rule, the following must hold:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

(BPAsrt
hs ) α∈ [s(y)]

By Induction:
(Proposal 1) 〈x〉 a−→ √

By Theorem 6.1:

Proposal 1 〈consistent y〉

Apply rule P1-17 on the above transitions and relations:

(Proposal 1) 〈x + y〉 a−→ √

• Rule HS-11
Same as above.

Hence, left right implication is proved.

4. p = x · y
BPAsrt

hs : A termination step for x · y cannot be derived.

Proposal 1: A termination step for x · y cannot be derived.

Hence, left right implication is proved.
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5. p = νrel(x).

Suppose,
(Proposal 1) 〈νrel(x)〉 a−→ √

This can only be derived from Rule P1-25. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ √

By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

Apply rule HS-31:

For all α, α′:
(BPAsrt

hs ) 〈νrel(x), α〉 a−→ 〈√, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈νrel(x), α〉 a−→ 〈√, α′〉

This can only be derived from Rule HS-31. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈√, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ √

Apply Rule P1-25, we get:

(Proposal 1) 〈νrel(x)〉 a−→ √

Hence the left right implication is proved.

£

Theorem 6.3

(Proposal 1) 〈x〉 a−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀α, α′ : 〈x, α〉 a−→ 〈x′, α′〉

Proof First we prove the above statement for all constants in BPAsrt
⊥ .

1. p = ˜̃a

BPAsrt
hs : An action step for ˜̃a cannot be derived.

Proposal 1: An action step for ˜̃a cannot be derived.

Hence, left right implication is proved.

62



2. p = ˜̃δ

BPAsrt
hs : A action step for ˜̃δ cannot be derived.

Proposal 1: A action step for ˜̃δ cannot be derived.

Hence, left right implication is proved.

3. p = ⊥
BPAsrt

hs : A action step for ⊥ cannot be derived.

Proposal 1: A action step for ⊥ cannot be derived.

Hence, left right implication is proved.

Next, we prove the given statement for operators σ0
rel, σ

r
rel, ·,+, νrel, by struc-

tural induction.

1. p = σ0
rel(x)

Suppose,
(Proposal 1) 〈σ0

rel(x)〉 a−→ 〈p′〉
This can only be derived from Rule P1-6. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ 〈p′〉

By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

Apply rule HS-2:

For all α, α′:
(BPAsrt

hs ) 〈σ0
rel(x), α〉 a−→ 〈p′, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈σ0

rel(x), α〉 a−→ 〈p′, α′〉

This can only be derived from Rule HS-2. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈p′, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ 〈p′〉
Apply Rule P1-6, we get:

(Proposal 1) 〈σ0
rel(x)〉 a−→ 〈p′〉

Hence the left right implication is proved.
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2. p = σr
rel(x)

BPAsrt
hs : An action step for σr

rel(x) cannot be derived.

Proposal 1: An action step for σr
rel(x) cannot be derived.

Hence, left right implication is proved.

3. p = x + y.

Suppose,
(Proposal 1) 〈x + y〉 a−→ 〈p′〉 (14)

The above Transition can be derived from two rules.

• Rule P1-19
Then from the premise of the rule, the following must hold:

(Proposal 1) 〈x〉 a−→ 〈p′〉
Proposal 1 〈consistent y〉

By Induction for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-8 on the above transitions and relations:
For all α, α′:

(BPAsrt
hs ) 〈x + y, α〉 a−→ 〈p′, α′〉

• Rule P1-20
Same as above.

Vice Versa

Suppose, for all α, α′:

(BPAsrt
hs ) 〈x + y, α〉 a−→ 〈p′, α′〉 (15)

The above Transition can be derived from two rules. We discuss these
rules one by one:

• Rule HS-8
Then from the premise of the rule, the following must hold:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉

(BPAsrt
hs ) α∈ [s(y)]
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By Induction:
(Proposal 1) 〈x〉 a−→ 〈p′〉

By Theorem 6.1:

Proposal 1 〈consistent y〉

Apply rule P1-19 on the above transitions and relations:

(Proposal 1) 〈x + y〉 a−→ 〈p′〉
• Rule HS-9

Same as above.

4. p = x · y
Suppose,

(Proposal 1) 〈x · y〉 a−→ 〈p′〉 (16)

This can be derived from two rules:

• Rule P1-15
Then, for some process term x′, p′ = x′ · y, and the following must
be derivable:

(Proposal 1) 〈x〉 a−→ 〈x′〉
By Induction, for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈x′, α′〉

Apply rule HS-15 on the above transition:
For all α, α′:

(BPAsrt
hs ) 〈x · y, α〉 a−→ 〈x′ · y, α′〉

• Rule P1-16
If Transition 16 is derived from this rule, then, p′ = y, and the
following must be derivable:

(Proposal 1) 〈x〉 a−→ √
(Proposal 1) 〈consistent x〉

By Theorem 6.2, for all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-16 on the above transition:
For all α, α′:

(BPAsrt
hs ) 〈x · y, α〉 a−→ 〈y, α′〉
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Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈x · y, α〉 a−→ 〈p′, α′〉 (17)

This can be derived from two rules:

• Rule HS-15
If Transition 17 is derived from this rule, then for some process term
x′, p′ = x′ · y, and the following must be derivable:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈x′, α′〉

By Induction:
(Proposal 1) 〈x〉 a−→ 〈x′〉

Apply rule P1-13:

(Proposal 1) 〈x · y〉 a−→ 〈x′ · y〉

• Rule HS-16
If Transition 17 is derived from this rule, then p′ = y, and the fol-
lowing must be derivable:
For all α, α′:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈√, α′〉

(BPAsrt
hs ) α′ ∈ [s(y)]

By Theorem 6.2:
(Proposal 1) 〈x〉 a−→ √

By Theorem 6.1:
(Proposal 1) α∈ [s(y)]

Apply rule P1-14:

(Proposal 1) 〈x · y〉 a−→ 〈y〉

Hence the left right implication is proved.

5. p = νrel(x).

Suppose,
(Proposal 1) 〈νrel(x)〉 a−→ 〈p′〉

This can only be derived from Rule P1-26. Hence the following must hold:

(Proposal 1) 〈x〉 a−→ 〈p′〉

By Induction, for all α, α′, the following holds:

(BPAsrt
hs ) 〈x, α〉 a−→ 〈p′, α′〉
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Apply rule HS-30:

For all α, α′:
(BPAsrt

hs ) 〈νrel(x), α〉 a−→ 〈p′, α′〉

Vice Versa
Suppose, for all α, α′:

(BPAsrt
hs ) 〈νrel(x), α〉 a−→ 〈p′, α′〉

This can only be derived from Rule HS-30. Hence the following must hold:

For all α, α′:
(BPAsrt

hs ) 〈x, α〉 a−→ 〈p′, α′〉
By Induction:

(Proposal 1) 〈x〉 a−→ 〈p′〉
Apply Rule P1-26, we get:

(Proposal 1) 〈νrel(x)〉 a−→ 〈p′〉

Hence the left right implication is proved.

£

Theorem 6.4

(Proposal 1) 〈x〉 r7−→ 〈x′〉 ⇐⇒ (BPAsrt
hs ) ∀ρ, 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
Proof First we prove the above statement for all constants in BPAsrt

⊥ .

1. p = ˜̃a

BPAsrt
hs : A time step for ˜̃a cannot be derived.

Proposal 1: A time step for ˜̃a cannot be derived.

Hence, left right implication is proved.

2. p = ˜̃δ

BPAsrt
hs : A time step for ˜̃δ cannot be derived.

Proposal 1: A time step for ˜̃δ cannot be derived.

Hence, left right implication is proved.

3. p = ⊥
BPAsrt

hs : A time step for ⊥ cannot be derived.

Proposal 1: A time step for ⊥ cannot be derived.

Hence, left right implication is proved.
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Next, we prove the given statement for operators σ0
rel, σ

r
rel, ·,+, νrel, by struc-

tural induction.

1. p = σ0
rel(x)

Suppose, for all ρ:

(BPAsrt
hs ) 〈σ0

rel(x), αρ
0〉

r,ρ7−−→ 〈p′, αρ
r〉

This can only be derived from Rule HS-4. Hence the following must hold:

For all ρ:
(BPAsrt

hs ) 〈x, αρ
0〉

r,ρ7−−→ 〈p′, αρ
r〉

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈p′〉

Apply Rule P1-7, we get:

(Proposal 1) 〈σ0
rel(x)〉 r7−→ 〈p′〉

Vice Versa
Suppose,

(Proposal 1) 〈σ0
rel(x)〉 r7−→ 〈p′〉

This can only be derived from Rule P1-7. Hence the following must hold:

(Proposal 1) 〈x〉 r7−→ 〈p′〉

By Induction, for all ρ, the following holds:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
Apply rule HS-4:

(BPAsrt
hs ) 〈σ0

rel(x), αρ
0〉

r,ρ7−−→ 〈p′, αρ
r〉

Hence the left right implication is proved.

2. p = σr
rel(x)

Suppose, for all ρ:

(BPAsrt
hs ) 〈σr

rel(x), αρ
0〉

t,ρ7−−→ 〈p′, αρ
t 〉 (18)

• Case t < r:
Let r = u + t, for some u > 0. Then Transition 18 must be derived
from Rule HS-5. Then p′ = σu

rel(x). Rule HS-5 can always be applied.
Hence for all ρ:

(BPAsrt
hs ) 〈σu+t

rel (x), αρ
0〉

t,ρ7−−→ 〈σu
rel(x), αρ

t 〉
In Proposal 1, by Rule P1-9, the following is derivable:

Proposal 〈σu+t
rel (x)〉 t7−→ 〈σu

rel(x)〉
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• Case t = r:
This can only be derived from Rule HS- 6. Then p′ = x in Transition
18. Rewriting Transition 18:
For all ρ:

(BPAsrt
hs ) 〈σt

rel(x), αρ
0〉

t,ρ7−−→ 〈x, αρ
t 〉

From the premise of rule HS-6, for all αρ
t :

αρ
t ∈ [s(x)]

Since there is no restriction on ρ and hence on αρ
t , therefore we have:

For all α
(BPAsrt

hs ) α∈ [s(x)]

By Theorem 6.1:

Proposal 1 〈consistent x〉

Then by Rule P1-10, the following is derivable:

Proposal1 〈σt
rel(x)〉 t7−→ 〈x〉

• Case t > r.
Let t = r + r1, for some r1 > 0. Rewriting Transition 18:
For all ρ:

(BPAsrt
hs ) 〈σr

rel(x), αρ
0〉

r+r1,ρ7−−−−→ 〈p′, αρ
t 〉 (19)

This can only be derivable from Rule HS-7. Hence, the premise of
the rule must hold. From Premise of the Rule HS-7, Transition 19
can only be derived if the following holds:

(BPAsrt
hs ) 〈x, αρ

r〉
r1,ρDr7−−−−→ 〈p′, αρ

t 〉

For the definition of symbol ρ D r, see Appendix A. Briefly, ρ D r
denotes the state evolution ρ after r time units have elapsed. If the
time interval of ρ is [0, r+r1], then the time interval of ρ D r is [0, r1].
As there are no restrictions on ρ, therefore there are no restrictions
on ρ D r.
By Structural Induction:

Proposal1 〈x〉 r17−→ 〈p′〉

Apply Rule P1-11, the following holds:

Proposal1 〈σr
rel(x)〉 r+r17−−−→ 〈p′〉
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Vice versa

Suppose,
(Proposal 1) 〈σr

rel(x)〉 t7−→ 〈p′〉 (20)

• Case t < r:
Let r = u + t, for some u > 0. The Transition 20 must have been
derived from Rule P1-9 and p′ = σu

rel(x).

(Proposal 1) 〈σu+t
rel (x)〉 t7−→ 〈σu

rel(x)〉
In BPAsrt

hs , by Rule HS-5, the following can be derived for all ρ:

(BPAsrt
hs ) 〈σu+t

rel (x), αρ
0〉

t,ρ7−−→ 〈σu
rel(x), αρ

t 〉

• Case t = r:
This can only be derived from Rule P1-10. Then p′ = x in Transition
20.

(Proposal 1) 〈σt
rel(x)〉 t7−→ 〈x〉

From the premise of the rule,

〈consistent x〉
By Theorem6.1, for all α:

BPAsrt
hs α∈ [s(x)]

Then by Rule HS-6, the following is derivable:
For all ρ:

(BPAsrt
hs ) 〈σt

rel(x), αρ
0〉

t,ρ7−−→ 〈x, αρ
t 〉

• Case t > r.
Let t = r + r1, for some r1 > 0. Rewriting Transition 20:

(Proposal 1) 〈σr
rel(x)〉 r+r17−−−→ 〈p′〉

This can only be derivable from Rule P1-11. Hence, the premise of
the rule must hold:

(Proposal 1) 〈x〉 r17−→ 〈p′〉

By Structural Induction, for all ρ

(BPAsrt
hs ) 〈x, αρ

0〉
r1,ρ7−−−→ 〈p′, αρ

r1
〉

Apply Rule HS-7, the following holds:

(BPAsrt
hs ) 〈σr

rel(x), αρ′
0 〉

r+r1,ρ′7−−−−−→ 〈p′, αρ′
t 〉

70



where ρ = ρ′ D r. For the definition of the state evolution ρ = ρ′ D r,
see Appendix A. Briefly, ρ′ D r is the state evolution ρ after the
passage of r time units. Since there is no restrictions on ρ, hence
there is no restriction on ρ′. Hence, we can write:
For all ρ′:

(BPAsrt
hs ) 〈σr

rel(x), αρ′
0 〉

r+r1,ρ′7−−−−−→ 〈p′, αρ′
t 〉

Hence, left right implication is proved.

3. p = x + y.

Suppose,
(Proposal 1) 〈x + y〉 r7−→ 〈p′〉 (21)

The above Transition can be derived from three rules. We discuss these
rules one by one:

• Rule P1-21:
Then for some process term x′, y′, p′ in Transition 21 is x′ + y′.
Rewriting Transition 21:

(Proposal 1) 〈x + y〉 r7−→ 〈x′ + y′〉 (22)

From the premise of Rule P1-21:

(Proposal 1) 〈x〉 r7−→ 〈x′〉
(Proposal 1) 〈y〉 r7−→ 〈y′〉

By Induction, for all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉
(BPAsrt

hs ) 〈y, αρ
0〉

r,ρ7−−→ 〈y′, αρ
r〉

Apply rule HS-14 on the above transitions:
For all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉
r,ρ7−−→ 〈x′ + y′, αρ

r〉
• Rule P1-22

Then from the premise of the rule, the following must hold:

(Proposal 1) 〈x〉 r7−→ 〈p′〉
Proposal 1 〈consistent y〉
Proposal 1 〈y〉 6 r7−→

By Induction for all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
(BPAsrt

hs ) 〈y, αρ
0〉 6 r7−→
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By Theorem 6.1, for all α:

(BPAsrt
hs ) α∈ [s(y)]

Apply rule HS-12 on the above transitions and relations:
For all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
• Rule P1-23

Same as above.

Vice Versa

Suppose, for all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉 r7−→ 〈p′, αρ
r〉 (23)

The above Transition can be derived from three rules. We discuss these
rules one by one:

• Rule HS-14:
Then for some process term x′, y′, p′ in Transition 23 is x′ + y′.
Rewriting Transition 23:
For all ρ:

(BPAsrt
hs ) 〈x + y, αρ

0〉 r7−→ 〈x′ + y′, αρ
r〉 (24)

From the premise of Rule HS-14:
For all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉 r7−→ 〈x′, αρ
r〉

(BPAsrt
hs ) 〈y, αρ

0〉 r7−→ 〈y′, αρ
r〉

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈x′〉
(Proposal 1) 〈y, 〉 r7−→ 〈y′〉

Apply rule P1-21 on the above transitions:

(Proposal 1) 〈x + y〉 r7−→ 〈x′ + y′〉

• Rule HS-12
Then from the premise of the rule, the following must hold:
For all ρ

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉
(BPAsrt

hs ) αρ
0 ∈ [s(y)]

(BPAsrt
hs ) 〈y, αρ

0〉 6 r7−→
By Induction:

(Proposal 1) 〈x〉 r7−→ 〈p′〉
Proposal 1 〈y〉 6 r7−→
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By Theorem 6.1:

Proposal 1 〈consistent y〉

Apply rule P1-22 on the above transitions and relations:

(Proposal 1) 〈x + y〉 r7−→ 〈p′〉

• Rule HS-13
Same as above.

Hence, left right implication is proved.

4. p = x · y
Suppose,

(Proposal 1) 〈x · y〉 r7−→ 〈p′〉
This can only be derived from Rule P1-15. Then, for some process term
x′, p′ = x′ · y, and the following must be derivable:

(Proposal 1) 〈x〉 r7−→ 〈x′〉

By Induction, for all ρ:

(BPAsrt
hs ) 〈x, αρ

0〉
r,ρ7−−→ 〈x′, αρ

r〉

Apply rule HS-17 on the above transition:

For all ρ:
(BPAsrt

hs ) 〈x · y, αρ
0〉

r,ρ7−−→ 〈x′ · y, αρ
r〉

Vice Versa
Suppose, for all ρ:

(BPAsrt
hs ) 〈x · y, αρ

0〉
r,ρ7−−→ 〈p′, αρ

r〉

This can only be derived from rule HS-17. Hence for some process term
x′, p′ = x′ · y, and the following must be derivable:

For all ρ:
(BPAsrt

hs ) 〈x, αρ
0〉

r,ρ7−−→ 〈x′, αρ
r〉

By Induction:
(Proposal 1) 〈x〉 r7−→ 〈x′〉

Apply rule P1-15:

(Proposal 1) 〈x · y〉 r7−→ 〈x′ · y〉

Hence, left right implication is proved.
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5. p = νrel(x).

BPAsrt
hs : A time step for νrel(x) cannot be derived.

Proposal 1: A time step for νrel(x) cannot be derived.

Hence, left right implication is proved.

£
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E Theorem 7

Thoerem 7
Axiom SRT3 is sound in the semantics of Section 5.2.

σv
rel(x) + σv

rel(y)↔ σv
rel(x + y) (SRT3)

where v ≥ 0
Proof

We prove the soundness of Axiom SRT3 in two steps.
Case u = 0

From Rules AC-4, AC-5, AC-6 and AC-7, it easy to prove the following holds
in the semantics of BPAsrt

⊥ with modified Alternative Composition (Section
5.2):

For any process term x,
σ0

rel(x)↔ x

Since Bisimulation is a congruence therefore, then it becomes trivial to prove
that:

σ0
rel(x) + σ0

rel(y)↔ σ0
rel(x + y)

Case u > 0

Let I be the following relation:

I = {(p, p) | p ∈ P}
Let R be the following relation:

R = {(σt
rel(x) + σt

rel(y)), σt
rel(x + y) | 0 < t ≤ v, x, y ∈ P}

We prove that R ∪ I is a bisimulation relation:
For all a ∈ A, r > 0, z ∈ P :

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 a−→ 〈z′〉
(z, z′) ∈ R ∪ I

Trivial.

2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z′〉
(z′, z) ∈ R ∪ I

Trivial.

3.
〈σt

rel(x) + σt
rel(y)〉 a−→ √ ⇐⇒ 〈σt

rel(x + y)〉 a−→ √

Trivial.
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4.

〈consistent σt
rel(x) + σt

rel(y)〉 ⇐⇒ 〈consistent σt
rel(x + y)〉

Trivial.

5.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
(z, z′) ∈ R ∪ I

Suppose,
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 (25)

This can be derived from Rules AC-19, AC-20, AC-21 and AC-26.

(a) Rule AC-19

Then z = z1 + z2.
Rewriting Transition 25:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z1 + z2〉 (26)

From premise of the rule, the following holds:

〈σt
rel(x)〉 r7−→ 〈z1〉 (27)

〈σt
rel(y)〉 r7−→ 〈z2〉 (28)

We distinguish between three cases for different values of r:

i. Case r < t

Let for some 0 < r1 < t,

t = r + r1 (29)

Rewriting Transitions 26, 27 and 28:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈z1 + z2〉 (30)

〈σr+r1
rel (x)〉 r7−→ 〈z1〉 (31)

〈σr+r1
rel (y)〉 r7−→ 〈z2〉 (32)

Then Transitions 31 and 32 can be derived from Rules AC-8 and
AC-26.
That gives us four cases:
A. Transitions 31 and 32 are derived from Rule AC-8.
B. Transition 31 is derived from Rule AC-8 and Transition 32

is derived Rule AC-26.
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C. Transition 31 is derived from Rule AC-26 and Transition 32
is derived Rule AC-8.

D. Transitions 31 and 32 are derived from Rule AC-26.
We prove that in all four cases, the target process terms z1 and
z2 are as follows:

z1 = σr1
rel(x) and z2 = σr1

rel(y)

In case Rule AC-8 is used to derive Transition 31 (or Transition
32), it is easy to see that z1 = σr1

rel(x) (z2 = σr1
rel(y)).

Below we argue the cases when Rule AC-26 is used to derive one
or both of the Transitions 31 and 32.
A. Transition 31 by Rule AC-26

Suppose this rule is used to derive Transition 31. By Rule
AC-26, we can combine successive time transitions into a
single time transition. For a derivable time transition, the
process of applying Rule AC-26 must be finite. Hence, we
can say that there exists an n > 1 such that Transition 31
is obtained by combining n successive transitions. Each of
the n transitions has been derived by rules other than Rule
AC-26. Note that n is taken to be greater than 1 because one
application of Rule AC-26 joins two successive transitions.
Let s1, . . . , sn denote the durations of the constituent time
transitions and let p1, . . . , pn−1 denote the intermediate pro-
cess terms.
Splitting Transition 31 into n transitions:

〈σr+r1
rel (x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉 (33)

and

s1 + . . . + sn = r (34)

From 29 and 34 we infer that:

t = s1 + . . . + sn + r1

Rewriting Transition 33 by replacing t by the sum of dura-
tions:

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉

Consider the first transition

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈p1〉 (35)

For a process term σu
rel(x), with u > 0, only two rules (other

than Rule AC- 26) are applicable. A time step of duration
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v < u can only be derived by Rule AC-8 and a time step of
duration u can only be derived from Rule AC-9. Transition
35 can only be derived from Rule AC-8 as s1 < (s1 + . . . +
sn + r1). From the rule we infer that:

p1 = σs2+...+sn+r1
rel (x)

Rewriting Transition 33 by replacing p1 by σs2+...+sn+r1
rel (x):

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈σs2+...+sn+r1

rel (x)〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉
Again the second transition

〈σs2+...+sn+r1
rel (x)〉 s27−→ 〈p2〉

can only be derived from Rule AC-8 as s2 < (s2+. . .+sn+r1).
From the rule we infer that:

p2 = σs3+...+sn+r1
rel (x)

Continuing the same reasoning, we infer that all the n time
steps of Transition 33 have been derived from Rule AC-8
and the target of the (n− 1) time step in Transition 33 is as
follows:

pn−1 = σsn+r1
rel (x)

Rewriting the nth transition of Transition 33:

〈σsn+r1
rel (x)〉 sn7−−→ 〈z1〉

The above transition is derived from Rule AC-8. Then z1

must be of the following form:

z1 = σr1
rel(x) (36)

B. Transition 32 by Rule AC-26
By reasoning given for Transition 31, we can say that there
exists an m > 1 such that Transition 32 is obtained by
combining m successive transitions. Each of the m transi-
tions has been derived by rules other than Rule AC-26. Let
u1, . . . , um denote the durations of the constituent time tran-
sitions and let q1, . . . , qm−1 denote the intermediate process
terms.
Splitting Transition 32 into m transitions:

〈σr+r1
rel (y)〉 u17−−→ 〈q1〉 u27−−→ . . . 〈qm−1〉 um7−−→ 〈z2〉 (37)

and

u1 + . . . um = r (38)
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From 29 and 38, we infer that:

t = u1 + . . . + um + r1

Rewriting Transition 37 by replacing t by the sum of dura-
tions:

〈σu1+...+um+r1
rel (y)〉 u17−−→ 〈q1〉 u27−−→ . . . 〈qm−1〉 um7−−→ 〈z2〉

By the same reasoning as applied for Transition 31, we can
infer the following:
• All the constituent transitions of Transition 37 have been

derived by Rule AC-8.
• The intermediate process terms q1, . . . , qm−1, and the final

process term are as follows:

q1 = σu2+...+um+r1
rel (y) (39)

q2 = σu3+...+um+r1
rel (y) (40)

...
qm−1 = σum+r1

rel (y) (41)
z2 = σr1

rel(y) (42)

Putting the values of z1 and z2 from equations 36 and 42 in
Transition 30, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (43)

Again, Rule 8 can derive the following:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (44)

Consider Transitions 43 and 44. For 0 < r1 < t, the pair
(σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) ∈ R.
ii. Case r = t

Then Transitions 27 and 28 can only be derived from Rules AC-9
and AC-26.
Rewriting Transitions 26, 27 and 28:

〈σr
rel(x) + σr

rel(y)〉 r7−→ 〈z1 + z2〉 (45)

〈σr
rel(x)〉 r7−→ 〈z1〉 (46)

〈σr
rel(y)〉 r7−→ 〈z2〉 (47)

Then Transitions 46 and 47 can be derived from Rules AC-9 and
AC-26.
That again gives us four cases:
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A. Transitions 46 and 47 are derived from Rule AC-9.
B. Transition 46 is derived from Rule AC-9 and Transition 47

is derived Rule AC-26.
C. Transition 46 is derived from Rule AC-26 and Transition 47

is derived Rule AC-9.
D. Transitions 46 and 47 are derived from Rule AC-26.
We prove that in all four cases, the target process terms z1 and
z2 are as follows:

z1 = x and z2 = y

And the following holds:

〈consistent z1〉 and 〈consistent y〉

In case Rule AC-9 is used to derive Transition 46 (or Transition
47), it is easy to see that z1 = x (z2 = y). From the premise of
the rule 〈consistent x〉 (〈consistent y〉) holds.
Below we argue the cases when Rule AC-26 is used to derive one
or both of the Transitions 46 and 47.
A. Transition 46 by Rule AC-26

By reasoning given for Transition 31, we can say that there
exists an n > 1 such that Transition 46 is obtained by com-
bining n successive transitions. Each of the n transitions has
been derived by rules other than Rule AC-26. Let s1, . . . , sn

denote the durations of the constituent time transitions and
let p1, . . . , pn−1 denote the intermediate process terms.
Splitting Transition 46 into n transitions:

〈σr
rel(x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z2〉 (48)

and

s1 + . . . sn = r (49)

From 49 and the fact that we are considering the case for
r = t, we infer that:

t = s1 + . . . + sn

Rewriting Transition 48 by replacing t by the sum of dura-
tions:

〈σs1+...sn

rel (x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z2〉 (50)

Now , for a process term σu
rel(x), with u > 0, only two rules

(other than Rule AC- 26) are applicable. A time step of
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duration v < u can only be derived by Rule AC-8 and a time
step of duration u can only be derived from Rule AC-9.
Consider the first time step of Transition 50:

〈σs1+...+sn

rel (x)〉 s17−→ 〈p1〉 (51)

We know that n > 1, as Rule AC-26 applied once joins two
transitions. For n > 1, s1 < (s1 + . . .+ sn), therefore Transi-
tion 51 can only be derived from Rule AC-8. From the rule
we infer that:

p1 = σs2+...+sn

rel (x)

Rewriting Transition 50 by replacing p1 by σs2+...+sn

rel (x):

〈σs1+...+sn

rel (x)〉 s17−→ 〈σs2+...+sn

rel (x)〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉
The nth transition will be the final one with its target equal
to z1.

〈pn−1〉 sn7−−→ 〈z1〉 (52)

Extending the reasoning given above for process term p1 to
other intermediate process terms, we infer the following:

p2 = σs3+...+sn

rel (x) if n > 2
p3 = σs4+...+sn

rel (x) if n > 3
...
pn−1 = σsn

rel (x)

Putting the value of pn−1 in Transition 52, we get:

〈σsn

rel (x)〉 sn7−−→ 〈z1〉 (53)

As the delay duration is equal to the duration of the relative
delay operator, therefore the above transition can only be
derived from Rule AC-9. Then z1 is equal to x,

z1 = x (54)

And from the premise of Rule AC-9

〈consistent x〉 (55)

B. Transition 47 by Rule AC-26
By similar reasoning as given above for Transition 46, we
infer that the following holds:

z2 = y (56)
〈consistent x〉 (57)
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Putting the values of z1 and z2 from equations 54 and 56 in
Transition 45, we get:

〈σr
rel(x) + σr

rel(y)〉 r7−→ 〈x + y〉 (58)

Again, using Predicates 55 and 57, Rule AC-9 can derive the
following:

〈σr
rel(x + y)〉 r7−→ 〈x + y〉 (59)

Consider Transitions 58 and 59. The pair (x + y, x + y) ∈ I.
iii. Case r > t

If r > t, then Transitions 27 and 28 can only be derived from
Rule AC-26.
A. Transition 27 by Rule AC-26

By reasoning given above for derivation of Transitions 31, 32,
46 and 47 using Rule AC-26, we say that there exists n > 1,
such that Transition 27 is obtained from Rule 26 by combin-
ing n successive transitions. Each of the n transitions has
been derived by rules other than Rule AC-26. Let s1, . . . , sn

denote the durations of the constituent time transitions and
let p1, . . . , pn−1 denote the intermediate process terms.
Splitting Transition 27 into n transitions:

〈σt
rel(x)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉 (60)

and

s1 + . . . + sn = r (61)

From 61 and the fact that we are considering the case with
r > t, we infer that:

s1 + . . . + sn > t (62)

In each of the constituent transitions of Transition 60, a sin-
gle rule other than Rule AC-26 has been applied.
There are only two rules applicable on σt

rel(x), Rule AC-8
and Rule AC-9.
Consider the first time step of Transition 60.

〈σt
rel(x)〉 s17−→ 〈p1〉 (63)

Two cases arise. In Transition 63, s1 < t or s1 = t. The
case s1 > t does not arise because no rule (other than Rule
AC-26) can derive that.
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• Case s1 = t:
Then Rule AC-9 has been applied to derive Transition 63.
Then p1 = x. Rewriting Transition 63, we get:

〈σs1
rel(x)〉 s17−→ 〈x〉 (64)

Note s1 = t.
Putting Transition 64 in Transition 60, we get:

〈σs1
rel(x)〉 s17−→ 〈x〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z1〉 (65)

• Case s1 < t :
Then Rule AC-8 has been applied to derive Transition 63.
Let

t = s1 + u (66)

. Rewriting Transition 63, we get:

〈σs1+u
rel (x)〉 s17−→ 〈σu

rel(x)〉 (67)

Putting Transition 67 in Transition 60, we get:

〈σt
rel(x)〉 s17−→ 〈σu

rel(x)〉 s27−→ 〈p2〉 . . . 〈pn−1〉 sn7−−→ 〈z1〉 (68)

Again there are only two rules applicable on σu
rel(x), Rule

AC-8 and Rule AC-9 and only two cases are possible:

s2 < u or s2 = u

– If s2 = u, then p2 = x. Then from 66,

t = s1 + s2 (69)

Rewriting Transition 68 by putting the value of p2, we
get:

〈σt
rel(x)〉 s17−→ 〈σu

rel(x)〉 s27−→ 〈x〉 . . . 〈pn−1〉 sn7−−→ 〈z1〉 (70)

where t = s1 + s2.
– If s2 < u, then the second time step in 68 is derived by

Rule AC-8. Let u = s2 + v. Rewriting second time step
in Transition 68, we get:

〈σs2+v
rel (x)〉 s27−→ 〈σv

rel(x)〉 (71)

Rewriting Transition 68 by putting the value of p2, we
get:

〈σt
rel(x)〉 s17−→ 〈σu

rel(x)〉 s27−→ 〈σv
rel(x)〉 . . . 〈pn−1〉 sn7−−→ 〈z1〉

(72)

where t = s1 + u = s1 + s2 + v.
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Consider the instantiations 65, 70 and 72 of Transition 60.
We notice a pattern. Till the duration t is covered by the
constituent time steps, no rules other than Rule AC-8 and
Rule AC-9 are applicable. The time step in which the dura-
tion t is covered, is derived from Rule AC-9.
From this observation we infer that there exists a j, such
that the sum of delays of first j transitions of Transition 60
equals t. I.e.,

s1 + . . . + sj = t (73)

From 62, we know that the duration of Transition 60 is
greater than t. The extra duration (s1 + . . . + sn) − t in
Transition 60 must be due to the delay of x as operator σt

rel

in front of x caters for a delay of first j time steps. Then j
must be smaller than n, as at least one transition is required
to cover the delay of x.
Now (s1 + . . . + sn) = r in Transition 60. From 73:

r− t = (s1 + . . .+sn)− (s1 + . . .+sj) = sj+1 + . . .+sn (74)

We partition Transition 60 into time transitions of durations
‘s1 + . . . + sj ’ and ‘sj+1 + . . . + sn’, we get:

〈σs1+...+sj

rel (x)〉 s1+...+sj7−−−−−−→ 〈x〉 (75)

〈x〉 sj+1+...+sn7−−−−−−−−→ 〈z1〉 (76)

The jth transition in Transition 61 is obtained by Rule AC-9.
From the premise of the rule, the following holds:

〈consistent x〉 (77)

B. Transition 28 by Rule AC-26
We can apply the same reasoning for Transition 28 as given
for Transition 27. There exists m > 1, such that Transi-
tion 28 is obtained from Rule 26 by combining m successive
transitions.
Let u1, . . . , um denote the durations of the constituent time
transitions and let q1, . . . , qm−1 denote the intermediate pro-
cess terms.
Splitting Transition 28 into m transitions:

〈σt
rel(y)〉 u17−−→ 〈q1〉 u27−−→ . . . 〈qm−1〉 um7−−→ 〈z2〉 (78)

and

u1 + . . . + um = r (79)
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From 79 and the fact that we are considering the case with
r > t, we infer that:

u1 + . . . + um > t

Now, there are only two rules applicable on σt
rel(y), Rule AC-

8 and Rule AC-9. Together the application of rules Rule AC-
8 and Rule AC-9 can cover a duration t for a process term
σt

rel(y). The extra duration (u1 + . . . + um)− t in Transition
78 is covered by a delay of y.
By reasoning given for Transition 60, there exists a k, with
1 ≤ k < m such that:

u1 + . . . + uk = t (80)

Then from 79 and the fact that k < m, we infer:

uk+1 + . . . + um = r − t (81)

We partition Transition 78 into time transitions of durations
‘u1 + . . . + uk’ and ‘uk+1 + . . . + um’, we get:

〈σu1+...+um

rel (y)〉 u1+...+uk7−−−−−−−→ 〈y〉 (82)

〈y〉 uk+1+...+um7−−−−−−−−−→ 〈z2〉 (83)

The kth transition in Transition 82 is obtained by Rule AC-9.
From the premise of the rule, the following holds:

〈consistent y〉 (84)

From Predicates 77 and 84, we infer that:

〈consistent x + y〉

Then, Rule AC-9 can derive the following transition for the du-
ration s1 + . . . + sj defined in 73.

〈σt
rel(x + y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (85)

From 74 and 81, we infer that:

sj+1 + . . . + sn = uk+1 + . . . + um

Apply Rule 19 on Transitions 76 and 83:

〈x + y〉 sj+1+...+sn7−−−−−−−−→ 〈z1 + z2〉 (86)

Apply Rule AC-26 on Transitions 85 and 86:
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〈σt
rel(x + y)〉 s1+...+sn7−−−−−−→ 〈z1 + z2〉

From 61,
r = s1 + . . . + sn

I.e.,

〈σt
rel(x + y)〉 r7−→ 〈z1 + z2〉 (87)

Consider Transitions 26 and 87. The pair (z1 + z2, z1 + z2) ∈ I.

(b) Rule AC-20

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (25)

If Transition 25, given above, is derived from this rule, then the
following must hold:

〈σt
rel(x)〉 r7−→ 〈z〉 (88)

〈consistent σt
rel(y)〉 (89)

〈σt
rel(y)〉 6 r7−→ (90)

∀s < r, 〈σt
rel(y)〉 6 s7−→ (91)

Consider Predicate 91, for s < t. Let t = s + s1, from some s1 > 0.
Then, the following transition is always derivable from Rule AC-8:

〈σs+s1
rel (y)〉 s7−→ 〈σs1

rel(y)〉

Hence, Predicate Predicate 91 doesn’t hold.
We conclude that Rule AC-20 cannot be used to derive Transition
25.

(c) Rule AC-21

Rule AC-21 is not applicable due to the same reasons as Rule AC-20.

(d) Rule AC-26

Suppose, Transition 25 (repeated below) is derived from this rule:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (25)

By reasoning give above, we can say that there exists an n > 1 such
that Transition 25 is obtained by combining n successive transitions.
Let s1, . . . , sn denote the durations of the constituent time transitions
and let p1, . . . , pn−1 denote the intermediate process terms.
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Splitting Transition 25 into n transitions:

〈σt
rel(x) + σt

rel(y)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z〉 (92)

and

s1 + . . . + sn = r (93)

We distinguish between three cases:

i. Case s1 + . . . + sn < t

Let
t = s1 + . . . + sn + r1 (94)

for some r1, with 0 < r1 < t.
Rewriting Transition 92:

〈σs1+...+sn+r1
rel (x) + σs1+...+sn+r1

rel (y)〉 s17−→ 〈p1〉 . . . 〈pn−1〉 sn7−−→ 〈z〉
(95)

A time step for an alternative composition can be derived from
Rules AC-19, AC-20 and AC-21.
Consider the first constituent time step of Transition 95:

〈σs1+...+sn+r1
rel (x) + σs1+...+sn+r1

rel (y)〉 s17−→ 〈p1〉 (96)

Transition 96 can only be derived from Rule AC-19 as Rules
AC-20 and AC-21 are not applicable. The application of Rule
AC-20 (Rule AC-21) requires that the right (left) alternative is
undelayable.
From the premise of Rule AC-19, for some p′, p′′ ∈ P :

p1 = p′ + p′′

and the following holds:

〈σs1+...+sn+r1
rel (x)〉 s17−→ 〈p′〉 (97)

〈σs1+...+sn+r1
rel (y)〉 s17−→ 〈p′′〉 (98)

Transitions 97 and 98 can only be derived from Rules AC-8.
Then,

p′ = σs2+...+sn+r1
rel (x) and p′′ = σs2+...+sn+r1

rel (y)

By similar reasoning, all n time steps of composite Time Transi-
tion 95 have been derived from Rule AC-19 as Rules AC-20 and
AC-21 are not applicable. The final process term z is as follows:

σr1
rel(x) + σr1

rel(y) (99)
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Rewriting Transition 25:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (100)

From 93 and 94:
t = r + r1

By Rule AC-8, the following is derivable:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (101)

Consider the target terms in Transitions 100 and 101. For 0 <
r1 < t, the pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) is in R.

ii. Case s1 + . . . + sn = t

Replacing the value t in Transition 92 by the sum s1 + . . . + sn :

〈σs1+...+sn

rel (x) + σs1+...+sn

rel (y)〉 s17−→ 〈p1〉 s27−→ . . . 〈pn−1〉 sn7−−→ 〈z〉
(102)

A time step for an alternative composition can be derived from
Rules AC-19, AC-20 and AC-21.
Consider the first constituent time step of Transition 102:

〈σs1+...+sn

rel (x) + σs1+...+sn

rel (y)〉 s17−→ 〈p1〉 (103)

Transition 103 can only be derived from Rule AC-19 as Rules
AC-20 and AC-21 are not applicable. The application of Rule
AC-20 (Rule AC-21) requires that the right (left) alternative is
undelayable.
From the premise of Rule AC-19, for some p′, p′′ ∈ P :

p1 = p′ + p′′

and the following holds:

〈σs1+...+sn

rel (x)〉 s17−→ 〈p′〉 (104)

〈σs1+...+sn

rel (y)〉 s17−→ 〈p′′〉 (105)

Note that n > 1 and for all i, si > 0. Therefore, Transitions 104
and 105 can only be derived from Rules AC-8.
Then,

p′ = σs2+...+sn

rel (x) and p′′ = σs2+...+sn

rel (y)

Rewriting Transition 103 by putting the value of p1:

〈σs1+...+sn

rel (x) + σs1+...+sn

rel (y)〉 s17−→ 〈σs2+...+sn

rel (x) + σs2+...+sn

rel (y)〉(106)
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Now consider the second constituent time step of Transition 102:

〈σs2+...+sn

rel (x) + σs2+...+sn

rel (y)〉 s27−→ 〈p2〉 (107)

Transition 107 is again only be derived from Rule AC-19 as Rules
AC-20 and AC-21 are not applicable on the source of the above
transition.
Till the duration t on process term σt

rel(x)+σt
rel(y) is covered, all

the constituent transitions of Transition 102 are obtained by Rule
AC-19. Other rules for deriving delay of an alternative composi-
tion, Rules AC-20 and AC-21, require that the passive operand
must be undelayable, which is not satisfied till atleast the rela-
tive delay operator disappears from a process term σt

rel(x). We
are considering the case where t = s1 + . . . sn, which is the to-
tal duration of Transition 102. Therefore, the duration t is only
covered in the last time transition.
The last time step is as follows:

〈σsn

rel (x) + σsn

rel (y)〉 sn7−−→ 〈z〉 (108)

From Rule AC-19, for some z1, z2 ∈ P , z = z1 + z2.
From premise of Rule AC-19 the following holds:

〈σsn

rel (x)〉 sn7−−→ 〈z1〉 (109)

〈σsn

rel (y)〉 sn7−−→ 〈z2〉 (110)

Rewriting Transition 25 by replacing z by z1 + z2:

〈σt
rel(x) + σt

rel(y)〉 t7−→ 〈z〉 (111)

Transitions 109 and 110 can only be derived from Rule AC-9.
Then, z1 = x and z2 = y.
Rule AC-9 requires:

〈consistent x〉 and 〈consistent y〉
which implies:

〈consistent x + y〉 (112)

Rewriting Transition 111 by putting in the values of z1 and z2:

〈σt
rel(x) + σt

rel(y)〉 t7−→ 〈x + y〉 (113)

From Predicate 112, Rule AC-9 becomes applicable to derive the
following time step.

〈σs1+...+sn

rel (x + y)〉 s1+...+sn7−−−−−−→ 〈x + y〉 (114)

The pair (x + y, x + y) is in I.
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iii. Case s1 + . . . + sn > t

Repeating Transition 25 with r replaced by the sum of durations
s1 + . . . + sn from 93.

〈σt
rel(x) + σt

rel(y)〉 s1+...+sn7−−−−−−→ 〈z〉 (115)

As explained in the last case for s1 + . . .+sn = t, the first k time
steps of the above composite Transition, such that s1+ . . .+sk ≤
t, can only be derived from Rule AC-19.
We distinguish between two cases: In one case, there exists a j,
with 1 ≤ j < n such that s1 + . . . + sj = t. In the second case,
for all i with 1 ≤ i ≤ n, s1 + . . . + si is either strictly less than t
or s1 + . . . + si is strictly greater than t.
The second case arises due to the following reason:
All transitions in 115 have been derived from rules other than
Rule AC-26. The rules allowing a delay of alternative composi-
tion are Rules AC-19, AC-20 and AC-21. The premise of these
rules contain time transitions which may have been derived by
Rule AC-26. The following is an example exhibiting the second
case:
Consider the process term σ1

rel(σ
1
rel(˜̃a)) + σ2

rel(b). Both process
terms can delay for 2 time units. Hence Rule AC-19 can be
applied to derive the following transition:

〈σ1
rel(σ

1
rel(˜̃a)) + σ2

rel(˜̃b)〉 27−→ 〈˜̃a + ˜̃b〉
But one of the prerequisites of the rule, (Transition 116) is de-
rived from Rule AC-26.

〈σ1
rel(σ

1
rel(˜̃a))〉 1+17−−−→ 〈˜̃a〉 (116)

〈σ2
rel(˜̃b)〉 27−→ 〈˜̃b〉 (117)

In the derivation of time transitions of duration greater than
t with a source process term of the form σt

rel(z) (For example
Transition 60), there always exists a j such that s1 + . . . sj = t.
Because the rules for the process term σt

rel(z) do not contain any
delay transitions in their premises.
A. Case 1

Suppose, there exists a j with 1 ≤ j < n such that

s1 + . . . + sj = t (118)

Rewriting Transition 115:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sn7−−−−−−→ 〈z〉 (119)
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Then the jth time step is as follows:

〈σsj

rel(x) + σ
sj

rel(y)〉 sj7−→ 〈p〉 (120)

for some process term p.
Only Rule AC-19 can derive Transition 120. From the premise
of the rule, p = p′ + p′′ and the following holds:

〈σsj

rel(x)〉 sj7−→ 〈p′〉 (121)

〈σsj

rel(y)〉 sj7−→ 〈p′′〉 (122)

The above transitions can only be derived from Rule AC-9.
Then p = x + y and

〈consistent x〉 and 〈consistent y〉

which implies:

〈consistent x + y〉 (123)

Rewriting Transition 120:

〈σsj

rel(x) + σ
sj

rel(y)〉 sj7−→ 〈x + y〉 (124)

Partitioning Transition 119 into two transitions of durations
s1 + . . . + sj and sj+1 + . . . sn respectively:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (125)

〈x + y〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (126)

From Predicate 123, Rule AC-9 can be applied to derive the
following:

〈σt
rel(x + y)〉 t7−→ 〈x + y〉 (127)

Apply Rule AC-26 on time steps 126 and 127. We get:

〈σt
rel(x + y)〉 t+sj+1+...+sn7−−−−−−−−−−→ 〈z〉 (128)

From 118, t = s1 + . . . + sj .
Consider target terms in Transitions 115 and 128. The pair
(z, z) is in I.

B. Case 2

In the second case, for all i with 1 ≤ i ≤ n, s1 + . . . + si is
either strictly less than t or s1 + . . . + si is strictly greater
than t.
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Let 1 ≤ j ≤ (n− 1), such that:

s1 + . . . + sj < t (129)
s1 + . . . + sj+1 > t (130)

Let

t = s1 + . . . + sj + r1 (131)

Rewriting Transition 115 by writing t as a sum of durations:

〈σs1+...+sj+r1
rel (x) + σ

s1+...+sj+r1
rel (y)〉 s1+...+sn7−−−−−−→ 〈z〉 (132)

Partitioning the above Time transition into two transitions.
One of duration s1+ . . .+sj and the other of duration sj+1+
. . . sn.
Let for some process term p:

〈σs1+...+sj+r1
rel (x) + σ

s1+...+sj+r1
rel (y)〉 s1+...+sj7−−−−−−→ 〈p〉 (133)

〈p〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (134)

It is easy to prove that p = σr1
rel(x) + σr1

rel(y).
The process term p is the source of the Transition j + 1
of Transition 134. Let the target of j + 1 time step be q.
Partitioning Transition 134 into two transitions of durations
sj+1 and sj+2 . . . + sn.

〈σr1
rel(x) + σr1

rel(y)〉 sj+17−−−→ 〈q〉 (135)

〈q〉 sj+2+...+sn7−−−−−−−−→ 〈z〉 (136)

Again on process term σr1
rel(x) + σr1

rel(y), only Rule AC-19 is
applicable.
Then, for some q1, q2 ∈ P , q in Transition 135 is:

q = q1 + q2 (137)

From the premise of the rule, the following holds:

〈σr1
rel(x)〉 sj+17−−−→ 〈q1〉 (138)

〈σr1
rel(y)〉 sj+17−−−→ 〈q2〉 (139)

Rewriting Transitions 133, 135 and 136:

〈σs1+...+sj+r1
rel (x) + σ

s1+...+sj+r1
rel (y)〉 s1+...+sj7−−−−−−→

〈σr1
rel(x) + σr1

rel(y)〉 (140)

〈σr1
rel(x) + σr1

rel(y)〉 sj+17−−−→ 〈q1 + q2〉 (141)

〈q1 + q2〉 sj+2+...+sn7−−−−−−−−→ 〈z〉 (142)
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From 129, 130 and 131, we know that sj+1 > r1. Then
Transitions 138 and 139 can only be derived from Rule AC-
26.
Let for some m > 1:

sj+1 = u1 + . . . + um (143)

Rewriting Transitions 138 and 139:

〈σr1
rel(x)〉 u1+...+um7−−−−−−−→ 〈q1〉 (144)

〈σr1
rel(y)〉 u1+...+um7−−−−−−−→ 〈q2〉 (145)

By applying the same reasoning as applied for Transition 60,
there exists a k, with 1 ≤ k < m, such that:

u1 + . . . + uk = r1 (146)

The following constituents of Transitions 144 and 145 have
been derived by applying Rule AC-9.

〈σuk

rel (x)〉 uk7−−→ 〈x〉 (147)

〈σuk

rel (y)〉 uk7−−→ 〈y〉 (148)

We can infer from above transitions that the following holds:

〈consistent x + y〉 (149)

Transition 144 is obtained by combining m time steps in a
sequence. All intermediate time transitions are derivable,
other wise Rule AC-26 could not be applied.
We partition Transition 144 into time transitions of durations
‘u1 + . . . + uk’ and ‘uk+1 + . . . + um’, we get:

〈σu1+...+uk

rel (x)〉 u1+...+uk7−−−−−−−→ 〈x〉 (150)

〈x〉 uk+1+...+um7−−−−−−−−−→ 〈q1〉 (151)

Similarly, partitioning Transition 145 into time transitions of
durations ‘u1 + . . . + uk’ and ‘uk+1 + . . . + um’, we get:

〈σu1+...+uk

rel (y)〉 u1+...+uk7−−−−−−−→ 〈y〉 (152)

〈y〉 uk+1+...+um7−−−−−−−−−→ 〈q2〉 (153)

Apply Rule AC-19 on Transitions 151 and 153:

〈x + y〉 uk+1+...+um7−−−−−−−−−→ 〈q1 + q2〉 (154)
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Using Predicate 149, Rule AC-9 can derive the following:

〈σr1
rel(x + y)〉 r17−→ 〈x + y〉 (155)

Apply Rule AC-26 on Transitions 155 and 154:

〈σr1
rel(x + y)〉 r1+uk+1+...+um7−−−−−−−−−−−→ 〈q1 + q2〉 (156)

By 143, 146 and the fact that k < m, sj+1 = r1 + uk+1 +
. . . + um.
Rewriting Transition 156:

〈σr1
rel(x + y)〉 sj+17−−−→ 〈q1 + q2〉 (157)

Apply Rule AC-26 on Transitions 142 and 157.

〈σr1
rel(x + y)〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (158)

For the sum of durations s1 + . . .+ sj , (from 129) Rule AC-8
can derive the following:

〈σs1+...+sj+r1
rel (x + y)〉 s1+...+sj7−−−−−−→ 〈σr1

rel(x + y)〉 (159)

Again, Apply Rule AC-26 on Transitions 158 and 159:

〈σs1+...+sj+r1
rel (x + y)〉 s1+...++sn7−−−−−−−−→ 〈z〉 (160)

Consider the target process terms in Transitions 159 and 159.
The pair (z, z) is in R.

6.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
(z′, z) ∈ R

Suppose,
〈σt

rel(x + y)〉 r7−→ 〈z〉 (161)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1, for some r1 with 0 < r1 < t.
Then Transition 161 can only be derived from Rules AC-8 or AC-
26. It is easy to argue that in case of both rules, the process z in
Transition 161 is of the form σr1

rel(x + y).
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From Rule AC-8 the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (162)

〈σr+r1
rel (y)〉 r7−→ 〈σr1

rel(y)〉 (163)

Apply Rule AC-19 on the above transitions:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (164)

Consider the target process terms in Transitions 161 and 164. For
0 < r1 < t, the pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) is in R.

(b) Case r = t

Then Transition 161 can only be derived from Rules AC-9 or AC-26.
It is easy to argue that in case of Rule AC-26 (transitive closure),
the last rule applied is AC-9 and the process z in Transition 161 is
of the form x + y.
From premise of Rule AC-9, the following holds:

〈consistent x + y〉
which can only hold, if:

〈consistent x〉 and 〈consistent y〉
Then Rule AC-9 can also be applied to derive the following transi-
tions:

〈σr
rel(x)〉 r7−→ 〈x〉

〈σr
rel(y)〉 r7−→ 〈y〉

Apply Rule AC-19 on the above transitions:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈x + y〉 (165)

Consider the target process terms in Transitions 161 and 165. The
pair (x + y, x + y) is in R.

(c) Case r > t

Transition 161 for r > t can only be derived from Rule AC-26.
Let for some n > 0,

r = s1 + . . . sn

Rewriting Transition 161:

〈σt
rel(x + y)〉 s1+...+sn7−−−−−−→ 〈z〉 (166)
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Transition 166 has been obtained by applying Rule AC-26 on n time
transitions. The constituent transitions have been each obtained
from application of a single rule other than Rule AC- 26. The dura-
tion s1 + . . . + sn of Transitions 166 is greater than t. Hence, there
exists a j, with 1 ≤ j < n such that:

s1 + . . . + sj = t (167)

Rewriting Transition 166, (replacing t by the sum s1 + . . . + sj):

〈σs1+...+sj

rel (x + y)〉 s1+...+sn7−−−−−−→ 〈z〉 (168)

The jth constituent of Transition 168 has been derived by applying
Rule AC-9.

〈σsj

rel(x) + σ
sj

rel(y)〉 sj7−→ 〈x + y〉 (169)

Rule AC-9 can only be used to derive the above transitions, if 〈consistent x+
y〉, which implies:

〈consistent x〉 (170)
〈consistent y〉 (171)

We partition Transition 168 into time transitions of durations ‘s1 +
. . . + sj ’ and ‘sj+1 + . . . + sn’, we get:

〈σs1+...+sj

rel (x + y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (172)

〈x + y〉 sj+1+...+sn7−−−−−−−−→ 〈z〉 (173)

From Predicates 170 and 171, Rule AC-9 can derive the following:

〈σs1+...+sj

rel (x)〉 s1+...+sj7−−−−−−→ 〈x〉 (174)

〈σs1+...+sj

rel (y)〉 s1+...+sj7−−−−−−→ 〈y〉 (175)

Apply Rule AC-19 on the above transitions:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sj7−−−−−−→ 〈x + y〉 (176)

Apply Rule AC-26 on Transitions 176 and 173:

〈σs1+...+sj

rel (x) + σ
s1+...+sj

rel (y)〉 s1+...+sn7−−−−−−→ 〈z〉 (177)

Consider the target process terms in Transitions 177 and 161. The
pair (z, z) is in R.

£
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F Theorem 8

Thoerem 8
Axiom SRT3 is sound in the semantics of Section 5.3.

σu
rel(x) + σu

rel(y) = σu
rel(x + y) (SRT3)

Proof
We prove the soundness of Axiom SRT3 in two steps.

Case u = 0

From Rules RI-4, RI-5, RI-6 and RI-7, it easy to prove the following holds in
the semantics of BPAsrt

⊥ with modified Relative Delay Operator (Section 5.3):
For any process term x,

σ0
rel(x)↔ x

Since Bisimulation is a congruence therefore, then it becomes trivial to prove
that:

σ0
rel(x) + σ0

rel(y)↔ σ0
rel(x + y)

Case u > 0

Let I be the following relation:

I = {(p, p) | p ∈ P}

Let R be the following relation:

R = {(σt
rel(x) + σt

rel(x)), σt
rel(x + y) | 0 < t ≤ u, x, y ∈ P}

We prove that R ∪ I is a bisimulation relation:
For all a ∈ A, r > 0, z ∈ P :

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 a−→ 〈z′〉
(z, z′) ∈ R

Trivial.

2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z′〉
(z′, z) ∈ R

Trivial.

3.
〈σt

rel(x) + σt
rel(y)〉 a−→ √ ⇐⇒ 〈σt

rel(x + y)〉 a−→ √

Trivial.

97



4.

〈consistent σt
rel(x) + σt

rel(y)〉 ⇐⇒ 〈consistent σt
rel(x + y)〉

Trivial.

5.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
(z, z′) ∈ R

Suppose,
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 (178)

This can be derived from Rules RI-20, RI-21, RI-22.

(a) Rule RI-20

Then z = z1 + z2. Rewriting Transtion 178:

〈σt
rel(x) + σt

rel(x)〉 r7−→ 〈z1 + z2〉 (179)

And the following must hold:

〈σt
rel(x)〉 r7−→ 〈z1〉 (180)

〈σt
rel(y)〉 r7−→ 〈z2〉 (181)

We distinguish between three cases:

i. Case r < t
Let t = r + r1, for some 0 < r1 < t.
Then Transtions 180 and 181 can only be derived from Rule 8.

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉
〈σr+r1

rel (y)〉 r7−→ 〈σr1
rel(y)〉

Rule 8 can derive the following:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (182)

For 0 < r1 < t, the pair (σr1
rel(x) + σr1

rel(y), σr1
rel(x + y)) ∈ R.

ii. Case r = t
Proof is similar to above. Rule 9 is used which has no conditions
like Rule 8.
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iii. Case r > t
Let r = t+ t1, for t1 > 0. Then Transtions 180 and 181 can only
be derived from Rule 10.
From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉
〈y〉 t17−→ 〈z2〉

Apply Rule 20 on above transitions:

〈x + y〉 t17−→ 〈z1 + z2〉

Apply Rule 10 on above transition:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z1 + z2〉

The pair (z1 + z2, z1 + z2) ∈ I.

(b) Rule RI-21

If Transition 178 given below is derived from this rule:

〈σt
rel(x) + σt

rel(x)〉 r7−→ 〈z〉

Then the following must holds:

〈σt
rel(x)〉 r7−→ 〈z〉 (183)

〈consistent σt
rel(y)〉 (184)

〈σt
rel(y)〉 6 r7−→ (185)

∀y′, ∀s < r(〈σt
rel(y)〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉) (186)

We distinguish between three cases:

i. Case r < t
Not Applicable. Transition 185 cannot be derived.

ii. Case r = t
Not Applicable. Transition 185 cannot be derived.

iii. Case r > t
Let r = t + t1, for some t1 > 0.
Then Transition 183 can only be derived from Rule RI-10. From
the premise,

〈x〉 t17−→ 〈z〉 (187)
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Transition 185 implies that Rule RI-10 is not applicable. There-
fore the premise must not hold:

〈y〉 6 t17−→ (188)

In 186, for s = t, a time transition for σt
rel(y) can only be derived

from Rule 9. Then y′ = y and y is consistent.

〈consistent y〉 (189)

In 186, for s > t, a time transition for σt
rel(y) can only be derived

from Rule 10.
Let s = v + t, for 0 < v < t1.
Then, the following must hold:

∀y′, ∀v < t1(〈y〉 v7−→ 〈y′〉 =⇒ 〈consistent y′〉) (190)

Combine Transitions 187,188,189 and 190 and apply Rule RI-21:

〈x + y〉 t17−→ 〈z〉 (191)

Now apply Rule RI-10 on the above trnaistion:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z〉 (192)

Consider Transitions 178 and 192. The pair (z, z) ∈ R.
(c) Rule RI-22

Same as Rule RI-21

6.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
(z′, z) ∈ R

Suppose,
〈σt

rel(x + y)〉 r7−→ 〈z〉 (193)

We distinguish between three cases:

(a) Case r < t

Let t = r + r1, for 0 < r1 < t.
Rule RI-8 can derive the following transitions:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉
〈σr+r1

rel (y)〉 r7−→ 〈σr1
rel(y)〉

Apply Rule RI-20 on above transitions:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉
(194)
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(b) Case r = t

Similar to above. Rule RI-9 is used.

(c) Case r > t

Let r = t + t1, for t1 > 0.
Transition 193 can only be derived from Rule RI-10. Then the fol-
lowing must hold:

〈x + y〉 t17−→ 〈z〉 (195)

The above transition can be derived from three rules:

i. Rule RI-20

If Transition 195 is derived from this rule, then z = z1 + z2.
From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉
〈y〉 t17−→ 〈z2〉

Apply Rule RI-10 on the above transitions:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉

〈σt
rel(y)〉 t+t17−−−→ 〈z2〉

Apply Rule RI-20:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z1 + z2〉
ii. Rule RI-21

If Transition 195 is derived from this rule, then:

〈x〉 t17−→ 〈z〉 (196)
〈consistent y〉 (197)

〈y〉 6 t17−→ (198)

∀y′, ∀s < t1(〈y〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉) (199)

Apply Rule RI-10 on Transition 196:

〈σt
rel(x)〉 t+t17−−−→ 〈z〉 (200)

From Rule RI-11,

〈consistent σt
rel(y)〉 (201)
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From Predicate 198, Rule RI-10 is not applicable. Then,

〈σt
rel(y)〉 6 t+t17−−−→ (202)

We know that y is consistent from Predicate 197.
From Predicate 197, Rules RI-8, RI-11 and RI-9:

∀y′, ∀s ≤ t(〈σt
rel(y)〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉) (203)

By Rule RI-10:

〈y〉 s7−→ 〈y′〉 =⇒ 〈σt
rel(y)〉 t+s7−−→ 〈y′〉

Using 199,

∀y′, ∀s < t1〈σt
rel(y)〉 t+s7−−→ 〈y′〉 =⇒ 〈consistent y′〉 (204)

Join 203 and 204:

∀y′,∀s < t + t1 〈σt
rel(y)〉 s7−→ 〈y′〉 =⇒ 〈consistent y′〉(205)

Join Transitions 200, 201, 202 and 205 and apply Rule RI-21:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z〉 (206)

iii. Rule RI-22

Same as the the Rule RI-21.

£
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G Soundness Proofs for Proposal 1

Let I be a binary relation on process terms defined as follows:

I = {(x, x) | x ∈ P}

It is obvious that I is a bisimulation relation. We will use the relation I fre-
quently in the proofs. We prove that the axioms given in Table 10 hold in the
semantics given in Section 4.

The proofs of the soundness theorem use the following two theorems.

G.1 Theorem : Sources of Transitions are Consistent

Theorem 12 For all closed terms p the following holds:
For all p′, p′′ ∈ P , a, b ∈ A, r, s > 0:

(〈p〉 a−→ 〈p′〉) ∨ (〈p〉 r7−→ 〈p′′〉) ∨ (〈p〉 b−→ √
)

=⇒ 〈consistent p〉

Proof We prove the above theorem by structural induction on a process term
p ∈ P . The base case of the structural induction comprises of constant process
terms, i.e. all undelayable actions in A, the deadlock process term δ and the
inconsistent process ⊥.
Base Case

1. p = ˜̃a.

From Rule P1-2, 〈consistent ˜̃a〉. Hence all conditions of the theorem
are trivially satisfied.

2. p = ˜̃δ

From Rule P1-1, 〈consistent ˜̃̃̃
δδ〉. Hence all conditions of the theorem are

trivially satisfied.

3. p = ⊥
There are no rules for an inconsistent process ⊥ in the semantics of
BPAsrt

⊥ . Hence all conditions of the theorem are trivially satisfied (as
the left hand sides of the implications do not hold.)

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x. We show that if p can perform an action

or a time step or a termination predicate holds for p, then 〈consistent p〉
holds.
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(a) Action Step:

Suppose,

〈σ0
rel(x)〉 a−→ 〈p′〉

It can only be derived from Rule P1-6. From the premise of the rule,

〈x〉 a−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P1-4. We get:

〈consistent σ0
rel(x)〉

Hence proved.
(b) Time Step:

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p′〉

It can only be derived from Rule P1-7. From the premise of the rule,

〈x〉 r7−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P1-4. We get:

〈consistent σ0
rel(x)〉

Hence proved.
(c) Termination Predicate:

Suppose,

〈σ0
rel(x)〉 a−→ √

It can only be derived from Rule P1-5. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P1-4. We get:

〈consistent σ0
rel(x)〉

Hence proved.
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2. p = σt
rel(x) t > 0

From Rule P1-8, for a process term σt
rel(x), with t > 0, the following holds:

〈consistent σt
rel(x)〉

Hence all conditions of the theorem are trivially proved.

3. p = x · y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x · y〉 a−→ 〈p′〉 (207)

It can only be derived from Rule P1-13 or Rule P1-14.

• Rule P1-13
Then for some process term p′′, p′ = p′′ · y. From the premise of
the rule,

〈x〉 a−→ 〈p′′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P1-12. We get:

〈consistent x · y〉

Hence proved.
• Rule P1-14

Then, p′ = y. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉

Apply Rule P1-12. We get:

〈consistent x · y〉

Hence proved.
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(b) Time Step:

Suppose,

〈x · y〉 r7−→ 〈p′〉
It can only be derived from Rule P1-15. From the premise of the
rule,

〈x〉 r7−→ 〈p′〉
By Induction on the above time step, we get:

〈consistent x〉
Apply Rule P1-12. We get:

〈consistent x · y〉
Hence proved.

(c) Termination Predicate:

Suppose,

〈x · y〉 a−→ √

There are no rules to derive a termination predicate for a sequential
composition. Hence the left hand side of the implication does not
hold and the implication is trivially satisfied.

4. p = x + y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x + y〉 a−→ 〈p′〉
It can only be derived from Rule P1-19 or Rule P1-20.
• Rule P1-19

From the premise of the rule,

〈x〉 a−→ 〈p′〉 (208)
〈consistent y〉 (209)

By Induction on Transition 208, we get:

〈consistent x〉 (210)

Apply Rule P1-16 on Predicates 209 and 210. We get:

〈consistent x + y〉
Hence proved.
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• Rule P1-20
From the premise of the rule,

〈y〉 a−→ 〈p′〉 (211)
〈consistent x〉 (212)

By Induction on Transition 211, we get:

〈consistent y〉 (213)

Apply Rule P1-16 on Predicates 212 and 213. We get:

〈consistent x + y〉

Hence proved.

(b) Time Step:

Suppose,

〈x + y〉 r7−→ 〈p′〉

It can only be derived from Rule P1-21 or Rule P1-22 or Rule P1-23.

• Rule P1-21
Then for some process terms x1, y1, p′ = x1 + y1. From the
premise of the rule the following holds:

〈x〉 r7−→ 〈x1〉 (214)

〈y〉 r7−→ 〈y1〉 (215)

By Induction on the above time steps, we get:

〈consistent x〉
〈consistent y〉

Apply Rule P1-16 on the above Predicates. We get:

〈consistent x + y〉

Hence proved.
• Rule P1-22

From the premise of the rule the following holds:

〈x〉 r7−→ 〈p′〉 (216)
〈consistent y〉 (217)

〈y〉 6 r7−→ (218)
(219)
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By Induction on time step 216, we get:

〈consistent x〉 (220)

Apply Rule P1-16 on Predicates 220 and 217. We get:

〈consistent x + y〉

Hence proved.
• Rule P1-23

From the premise of the rule the following holds:

〈y〉 r7−→ 〈p′〉 (221)
〈consistent x〉 (222)

〈x〉 6 r7−→ (223)
(224)

By Induction on time step 221, we get:

〈consistent y〉 (225)

Apply Rule P1-16 on Predicates 225 and 222. We get:

〈consistent x + y〉

Hence proved.

(c) Termination Predicate:

Suppose,

〈x + y〉 a−→ √

It can only be derived from Rule P1-17 or Rule P1-18.

• Rule P1-17
From the premise of the rule,

〈x〉 a−→ √
(226)

〈consistent y〉 (227)

By Induction on Predicate 226, we get:

〈consistent x〉 (228)

Apply Rule P1-16 on Predicates 227 and 228. We get:

〈consistent x + y〉

Hence proved.
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• Rule P1-18
From the premise of the rule,

〈y〉 a−→ √
(229)

〈consistent x〉 (230)

By Induction on Predicate 229, we get:

〈consistent y〉 (231)

Apply Rule P1-16 on Predicates 230 and 231. We get:

〈consistent x + y〉

Hence proved.

5. p = νrel(x)

• Action Step:

Suppose,

〈νrel(x)〉 a−→ 〈p′〉

It can only be derived from Rule P1-26. From the premise of the
rule,

〈x〉 a−→ 〈p′〉

By Induction on the above action step, we get:

〈consistent x〉

Apply Rule P1-24. We get:

〈consistent νrel(x)〉

Hence proved.

• Time Step:

No rule allows a derivation of a time step for the now operator.

• Termination Predicate:

Suppose,

〈νrel(x)〉 a−→ √

It can only be derived from Rule P1-26. From the premise of the
rule,

〈x〉 a−→ √
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By Induction on the above predicate, we get:

〈consistent x〉

Apply Rule P1-24. We get:

〈consistent νrel(x)〉

Hence proved.

£

G.2 Theorem : Time Determinism

Theorem 13 For all closed terms p, durations r > 0 the following holds:

〈p〉 r7−→ 〈p1〉 ∧ 〈p〉 r7−→ 〈p2〉
=⇒ p1 ≡ p2

Proof We prove the above theorem by structural induction on a process term
p ∈ P . The base case of the structural induction comprises of constant process
terms, i.e. all undelayable actions in A, the deadlock process term δ and the
inconsistent process ⊥.
Base Case

1. p = ˜̃a.

There are no rules to derive a time step for an undelayable action.

2. p = ˜̃δ

There are no rules to derive a future Inconsistency predicate for the dead-
lock constant.

3. p = ⊥
There are no rules for an inconsistent process ⊥.

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x.

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p1〉 (232)

〈σ0
rel(x)〉 r7−→ 〈p2〉 (233)

110



Only Rule P1-7 allows derivation of a time step for the operator σ0
rel. From

the premise of the rule,

〈x〉 r7−→ 〈p1〉 (234)

〈x〉 r7−→ 〈p2〉 (235)

By Induction on the above predicate, we get:

p1 ≡ p2

Proved.

2. p = σt
rel(x) t > 0

Suppose,

〈σt
rel(x)〉 r7−→ 〈p1〉 (236)

〈σt
rel(x)〉 r7−→ 〈p2〉 (237)

We distinguish between three cases depending on the duration r.

(a) Case r < t

Let t = r + r1, for some r1 > 0.
Only Rule P1-9 can derive time steps 236 and 237. Then the target
process terms in both time steps is σr1

rel(x). I.e.,

p1 = σr1
rel(x) ∧ p2 = σr1

rel(x)

Hence
p1 ≡ p2

Proved.

(b) Case r = t
Rewriting time steps 236 and 237, we get:

〈σt
rel(x)〉 t7−→ 〈p1〉 (238)

〈σt
rel(x)〉 t7−→ 〈p2〉 (239)

Only Rule P1-10 can derive time steps 238 and 239. Then the target
process terms in both time steps is x. Hence,

p1 ≡ p2

Proved.
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(c) Case r > t
Let r = u + t, for u > 0.
Rewriting time steps 236 and 237, we get:

〈σt
rel(x)〉 t+u7−−−→ 〈p1〉 (240)

〈σt
rel(x)〉 t+u7−−−→ 〈p2〉 (241)

Only Rule P1-11 can derive time steps 240 and 241. From the premise
of the rule, the following must hold:

〈x〉 u7−→ 〈p1〉 (242)

〈x〉 u7−→ 〈p2〉 (243)

By Induction,
p1 ≡ p2

Proved.

3. p = x · y.

Suppose,

〈x · y〉 r7−→ 〈p1〉 (244)

〈x · y〉 r7−→ 〈p2〉 (245)

The above time steps can only be derived from Rule P1-15.

Then for some process term p′1, p1 = p′1 · y.

Rewriting Transition 244:

〈x · y〉 r7−→ 〈p′1 · y〉 (246)

Also for some process term p′2, p2 = p′2 · y.

Rewriting Transition 245:

〈x · y〉 r7−→ 〈p′2 · y〉 (247)

From the premise of Rule P1-15, Transitions 246 and 247 can only be
derived if the following holds:

〈x〉 r7−→ 〈p′1〉 (248)

〈x〉 r7−→ 〈p′2〉 (249)

By Induction

p′1 ≡ p′2

Hence,
p′1 · y ≡ p′2 · y I.e. p1 ≡ p2

Proved.
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4. p = x + y.

Suppose,

〈x + y〉 r7−→ 〈p1〉 (250)

〈x + y〉 r7−→ 〈p2〉 (251)

Rule P1-21, Rule P1-22 or Rule P1-23 can be used to derive the above
time steps. We discuss these rules one by one. We show both transitions
are derived by the same rule and that only one rule is applicable at a time.

(a) Rule P1-21

Suppose Transition 250 is derived from this rule. Then for some
process terms x1, y1,

p1 = x1 + y1 (252)

From the premise of the rule the following holds:

〈x〉 r7−→ 〈x1〉 (253)

〈y〉 r7−→ 〈y1〉 (254)

From Transition 253, (〈x〉 r7−→ 〈x1〉), Rule P1-23 becomes inapplicable
to derive a time step for x + y.
From Transition 254, (〈y〉 r7−→ 〈y1〉), Rule P1-22 becomes inapplicable
to derive a time step for x + y.
Therefore Transition 251 can also be only derived by Rule P1-21.
From the premise of the rule, for some process terms x2, y2,

p2 = x2 + y2 (255)

and the following must hold:

〈x〉 r7−→ 〈x2〉 (256)

〈y〉 r7−→ 〈y2〉 (257)

Apply Induction Hypothesis on Transitions 253 and 256, and on
Transitions 254 and 257. We get:

x1 ≡ x2

y1 ≡ y2

which implies
x1 + y1 ≡ x2 + y2

From Statements 252 and 255,

p1 ≡ p2

Proved.

113



(b) Rule P1-22

Suppose Transition 250 is derived from this rule. From the premise
of the rule the following holds:

〈x〉 r7−→ 〈p1〉 (258)
〈consistent y〉 (259)

〈y〉 6 r7−→ (260)

From Transition 258, (〈x〉 r7−→ 〈p1〉), Rule P1-23 becomes inapplicable
to derive a time step for x + y.
From Transition 260, (〈y〉 6 r7−→), Rule P1-21 becomes inapplicable to
derive a time step for x + y.
Hence Transition 251 can only be derived from Rule P1-22.
From the premise of the rule, in addition to Predicates 259 and 260,
the following holds :

〈x〉 r7−→ 〈p2〉 (261)

Apply Induction Hypothesis on Transition 258 and Transition 261,
we get:

p1 ≡ p2

Proved.

(c) Rule P1-23

Suppose Transition 250 is derived from this rule. From the premise
of the rule the following holds:

〈y〉 r7−→ 〈p1〉 (262)
〈consistent x〉 (263)

〈x〉 6 r7−→ (264)

From Transition 262, (〈y〉 r7−→ 〈p1〉), Rule P1-22 becomes inapplicable
to derive a time step for x + y.
From Transition 264, (〈x〉 6 r7−→), Rule P1-21 becomes inapplicable to
derive a time step for x + y.
Hence Transition 251 can only be derived from Rule P1-23.
From the premise of the rule, in addition to Predicates 263 and 264
the following holds:

〈y〉 r7−→ 〈p2〉 (265)

Apply Induction Hypothesis on Transition 262 and Transition 265,
we get:

p1 ≡ p2

Proved.
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5. p = νrel(x)

There are no rules to derive a time step for the now operator. Hence the
theorem trivially holds.

£

G.3 Axiom A1 (Commutativity)

x + y = y + x

We need to prove, x + y↔ y + x
Let R be a binary relation on process terms defined as follows:

R = {(x + y, y + x) | x, y ∈ P}

The relation R ∪ I is a bisimulation relation.
The proof is trivial and therefore left.

G.4 Axiom A2 (Associativity)

x + (y + z) = (x + y) + z

We need to prove,
x + (y + z)↔ (x + y) + z

Let
R = {((x + y) + z, x + (y + z)) | x, y, z ∈ P}

be a binary relation on process terms.
We prove that the relation R ∪ I is the witness relation for bisimilarity of

x+(y + z) and (x+y)+ z. We show that all pairs in R satisfy the conditions of
bisimulation. For (x, x) ∈ I, it is trivial that all properties of bisimulation are
satisfied.

For all a ∈ A, x, y, z, p ∈ P, r > 0, the following holds:

1. 〈(x+y)+z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x+(y+z)〉 a−→ 〈p′〉 and (p, p′) ∈ R∪I.

Suppose,

〈(x + y) + z〉 a−→ 〈p〉 (266)

The above transition can only be derived using Rules P1-19 or P1 20.
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(a) Rule P1-19
Then we must have:

〈x + y〉 a−→ 〈p〉 (267)
〈consistent z〉 (268)

Again Transition 267 can be obtained using rules P1-19 or P1 20.

i. Rule P1 19

Then in Transition 267, the left most process term must perform
the action and the other process term must be consistent. We
have:

〈x〉 a−→ 〈p〉 (269)
〈consistent y〉 (270)

From Predicates 268 and 270:

〈consistent y〉 ∧ 〈consistent z〉
Hence

〈consistent y + z〉
Using Rule P1-19:

〈x + (y + z)〉 a−→ 〈p〉 (271)

Consider the target process terms in Transitions 266 and 271.
The pair (p, p) is in I.

ii. Rule P1 20

Then in Transition 267, the right most process term must per-
form the action and the other process term must be consistent.
We have:

〈y〉 a−→ 〈p〉, (272)
〈consistent x〉 (273)

Apply Rule P1-19 on Transition 272 using Predicate 268. We
get:

〈y + z〉 a−→ 〈p〉
Taking 〈consistent x〉 from Predicate 273, apply Rule P1-20
on the above transition, we get:

〈x + (y + z)〉 a−→ 〈p〉 (274)

Consider the target process terms in Transitions 266 and 274.
The pair (p, p) is in I.
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(b) Rule P1-20

If transition 266 is derived using rule P1 20, then the process term z
must perform the action, i.e.:

〈z〉 a−→ 〈p〉, (275)
〈consistent x + y〉 (276)

〈consistent x + y〉 only holds if:

〈consistent x〉 (277)
〈consistent y〉 (278)

Apply Rule P1 20 on Transition 275 using Predicate 278:

〈y + z〉 a−→ 〈p〉

Again apply Rule P1 20 on the above transition using Predicate 277:

〈x + (y + z)〉 a−→ 〈p〉 (279)

Consider the target process terms in Transitions 266 and 279. The
pair (p, p) is in I.

2. 〈x+(y+z)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x+y)+z〉 a−→ 〈p′〉 and (p′, p) ∈ R∪I.

Suppose,

〈x + (y + z)〉 a−→ 〈p〉 (280)

The above transition can only be derived from rules P1-19 or P1-20.

(a) Rule P1-19

If Rule P1-19 is used to derive Transition 280, then the left most
process term, i.e. x must perform action a and the other process
term y + z must be consistent. Therefore,

〈x〉 a−→ 〈p〉 (281)
〈consistent y + z〉 (282)

The predicate 〈consistent y + z〉 can only hold if:

〈consistent y〉 (283)
〈consistent z〉 (284)

Apply Rule P1-19 on Transition 281 and Predicate 283:

〈x + y〉 a−→ 〈p〉
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Again apply Rule P1-19 on the above transition with Predicate 284:

〈(x + y) + z〉 a−→ 〈p〉 (285)

Consider the target process terms in Transitions 280 and 285. The
pair (p, p) is in I.

(b) Rule P1-20

If Rule P1-20 is used to derive Transition 280, then the right most
process term, i.e. (y+z) must perform action a and the other process
term x must be consistent. Therefore,

〈y + z〉 a−→ 〈p〉 (286)
〈consistent x〉 (287)

Transition 286 can only be obtained by using rules P1-19 or P1 20.

i. Rule P1 19:

Premise of P1-19:

〈y〉 a−→ 〈p〉 (288)
〈consistent z〉 (289)

Apply rule P1-20 on Transition 288 using Predicate 287::

〈x + y〉 a−→ 〈p〉 (290)

Again applying P1-19 on the above transition using Predicate
289::

〈(x + y) + z〉 a−→ 〈p〉 (291)

Consider the target process terms in Transitions 280 and 291.
The pair (p, p) is in I.

ii. Rule P1 20:

Suppose Transition 286 has been derived from Rule P1-20. Then
from the premise of Rule P1 20:

〈z〉 a−→ 〈p〉 (292)
〈consistent y〉 (293)

Again by Rule P1 20, for any process term q with 〈consistent q〉:
〈p1 + z〉 a−→ 〈p〉 (294)

From Predicates 287 and 293:

〈consistent x〉 ∧ 〈consistent y〉
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which implies:〈consistent x + y〉.
Put q = x + y in Transition 294, we get the desired transition:

〈(x + y) + z〉 a−→ 〈p〉

And (p, p) ∈ I.

3. 〈x + (y + z)〉 a−→ 〈√〉 ⇐⇒ 〈(x + y) + z〉 a−→ 〈√〉.
Reasoning similar to above applies.

4. 〈(x+y)+z〉 r7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x+(y+z)〉 r7−→ 〈p′〉 and (p, p′) ∈ R∪I.

Suppose,

〈(x + y) + z〉 r7−→ 〈p〉 (295)

The above time transition can be derived from rules P1-21, P1-22 or P1-
refprop1rule:alt:delayoneright.

(a) Rule P1-21
Then for some process terms p1, p2, the process term p in transition
295 must be of the following form:

p = p1 + p2

Rewriting Transition 295:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (296)

From the premise of the rule, following must be derivable:

〈x + y〉 r7−→ 〈p1〉 (297)

〈z〉 r7−→ 〈p2〉 (298)

Again Transition 297 can be obtained from rules P1-21, P1-22 or
P1-23.

i. Rule P1-21
Then p1 = q1 + q2, for some q1, q2 ∈ P .
Rewriting Transitions 296 and 297. We get:

〈(x + y) + z〉 r7−→ 〈(q1 + q2) + p2〉 (299)

〈x + y〉 r7−→ 〈q1 + q2〉 (300)

From the premise of the rule, the following is derivable:

〈x〉 r7−→ 〈q1〉 (301)

〈y〉 r7−→ 〈q2〉 (302)
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Apply Rule P1-21 on Transitions 298 and 302, we get:

〈y + z〉 r7−→ 〈q2 + p2〉 (303)

Again apply Rule P1-21 on Transitions 301 and 303, we get:

〈x + (y + z)〉 r7−→ 〈q1 + (q2 + p2)〉 (304)

Consider the target process terms in Transitions 295 and 304.
The pair ((q1 + q2) + p2, q1 + (q2 + p2)) is in R.

ii. Rule P1-22

Transition 297 can also be derived using Rule P1 22. Then the
following must be derivable:

〈x〉 r7−→ 〈p1〉 (305)

〈y〉 6 r7−→ (306)
〈consistent y〉 (307)

Combine Transition 298 and Predicates 306 and 307. Apply Rule
P1-23, we get:

〈y + z〉 r7−→ 〈p2〉 (308)

Now apply Rule P1-21 on Transitions 308 and 305. We get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (309)

Consider the target process terms in Transitions 309 and 296.
The pair (p1 + p2, p1 + p2) is in I.

iii. Rule P1-23
Transition 297 can also be obtained by Rule P1-23. Then:

〈y〉 r7−→ 〈p1〉 (310)

〈x〉 6 r7−→ (311)
〈consistent x〉 (312)

From Transition 298, process term z can delay as follows:

〈z〉 r7−→ 〈p2〉 (298)

Apply Rule P1-21 on Transitions 298 and 310. We get:

〈y + z〉 r7−→ 〈p1 + p2〉 (313)

On Transition 313 and Predicates 311 and 312, apply Rule P1-23:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (314)

Consider the target process terms in Transitions 314 and 296.
The pair (p1 + p2, p1 + p2) is in I.
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(b) Rule P1-22

〈(x + y) + z〉 r7−→ 〈p〉 (295)

Transition 295 can also be obtained by applying Rule P1-22. Then
from the premise of the rule the following must be derivable:

〈x + y〉 r7−→ 〈p〉 (315)

〈z〉 6 r7−→ (316)
〈consistent z〉 (317)

Again Transition 315 can be derived by rules P1-21, P1-22 or P1-23.

i. Rule P1-21

If Transition 315 is derived from Rule P1 21, then for some
p1, p2 ∈ P , p = p1 + p2. Rewriting Transitions 295 and 315,
we get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (318)

〈x + y〉 r7−→ 〈p1 + p2〉 (319)

And the following must be derivable:

〈x〉 r7−→ 〈p1〉 (320)

〈y〉 r7−→ 〈p2〉 (321)

Apply Rule P1-22 on Transition 321 and Predicates 316 and 317.
We get:

〈y + z〉 r7−→ 〈p2〉 (322)

Combine Transition 320 and Transition 322 and apply Rule P1-
21. We get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (323)

Consider the target process terms in Transitions 318 and 323.
The pair (p1 + p2, p1 + p2) is in I.

ii. Rule P1-22
If Transition 315 is derived from Rule P1-22, then the following
must be derivable:

〈x〉 r7−→ 〈p〉 (324)

〈y〉 6 r7−→ (325)
〈consistent y〉 (326)
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Combine Predicates 316 and 325, Predicates 317 and 326. We
can infer:

〈y + z〉 6 r7−→ (327)
〈consistent y + z〉 (328)

Combine Transition 324 and Predicates 327 and 328. Apply Rule
P1-22. We get:

〈x + (y + z)〉 r7−→ 〈p〉 (329)

Consider the target process terms in Transitions 295 and 329.
The pair (p, p) is in I.

iii. Rule P1-23
If Transition 315 is derived from Rule P1 23, then the following
must be derivable:

〈y〉 r7−→ 〈p〉 (330)

〈x〉 6 r7−→ (331)
〈consistent x〉 (332)

Combine Transition 330 and Predicates 316 and 317. Apply Rule
P1-22. We get:

〈y + z〉 r7−→ 〈p〉 (333)

Combine Predicates 331, 332 and Transition 333 and apply Rule
P1-23. We get:

〈x + (y + z)〉 r7−→ 〈p〉 (334)

Consider the target process terms in Transitions 295 and 334.
The pair (p, p) is in I.

(c) Rule P1-23

〈(x + y) + z〉 r7−→ 〈p〉 (295)

Transition 295 can also be obtained by applying Rule P1-23. Then
from the premise of the rule the following must be derivable:

〈z〉 r7−→ 〈p〉 (335)

〈x + y〉 6 r7−→ (336)
〈consistent x + y〉 (337)

Predicate 336 can only hold if none of the process terms x and y can
do a time step with duration r. Therefore the following holds:
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〈x〉 6 r7−→ (338)

〈y〉 6 r7−→ (339)

From predicate 337, we can infer the following:

〈consistent x〉 (340)
〈consistent y〉 (341)

Combine Transition 335 and Predicates 339 and 341 and apply rule
P1-23. We get:

〈y + z〉 r7−→ 〈p〉 (342)

Again combine Transition 342 and Predicates 338 and 340 and apply
rule P1-23. We get:

〈x + (y + z)〉 r7−→ 〈p〉 (343)

Consider the target process terms in Transitions 295 and 343. The pair
(p, p) is in I.

5. 〈x+(y+z)〉 r7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x+y)+z〉 r7−→ 〈p′〉 and (p′, p) ∈ R∪I.

Suppose,

〈x + (y + z)〉 r7−→ 〈p〉 (344)

The above time transition can be derived from rules P1-21, P1-22 or P1-
refprop1rule:alt:delayoneright.

(a) Rule P1-21
Then for some process terms p1, p2, the process term p (in Transition
344) can be written as:

p = p1 + p2 (345)

Rewriting Transition 344:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (346)

From the premise of Rule P1-21, the following is derivable:

〈x〉 r7−→ 〈p1〉 (347)

〈y + z〉 r7−→ 〈p2〉 (348)

Again Transition 348 can be obtained from rules P1-21, P1-22 or
P1-23.
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i. Rule P1-21
Then p2 = q1 + q2, for some q1, q2 ∈ P .
Rewriting Transitions 344 and 348:

〈x + (y + z)〉 r7−→ 〈p1 + (q1 + q2)〉 (349)

〈y + z〉 r7−→ 〈q1 + q2〉 (350)

and the following is derivable:

〈y〉 r7−→ 〈q1〉 (351)

〈z〉 r7−→ 〈q2〉 (352)

Apply Rule P1-21 on Transitions 347 and 351, we get:

〈x + y〉 r7−→ 〈p1 + q1〉 (353)

Again apply Rule P1-21 on Transitions 353 and 352, we get:

〈(x + y) + z〉 r7−→ 〈(p1 + q1) + q2〉 (354)

Consider the target process terms in Transitions 349 and 354.
The pair ((p1 + q1) + q2, p1 + (q1 + q2)) is in R.

ii. Rule P1-22

If Transition 348 is derived using Rule P1 22. Then the following
must be hold:

〈y〉 r7−→ 〈p2〉 (355)

〈z〉 6 r7−→ (356)
〈consistent z〉 (357)

Combine Transitions 347 and 355 and apply Rule P1-21, we get:

〈x + y〉 r7−→ 〈p1 + p2〉 (358)

Now apply Rule P1-22 on Transition 358 and Predicates 356 and
357. We get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (359)

Consider the target process terms in Transitions 346 and 359.
The pair (p1 + p2, p1 + p2) is in I.

iii. Rule P1-23

Transition 348 can also be obtained by Rule P1-23. Then:

〈z〉 r7−→ 〈p2〉 (360)

〈y〉 6 r7−→ (361)
〈consistent y〉 (362)
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From Transition 347, process term x can delay as follows:

〈x〉 r7−→ 〈p1〉 (347)

Apply Rule P1-22 on Transition 347 and Predicates 361 and 362.
We get:

〈x + y〉 r7−→ 〈p1〉 (363)

Joining Transitions 360 and 363 and apply Rule P1-21:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (364)

Consider the target process terms in Transitions 346 and 364.
The pair (p1 + p2, p1 + p2) is in I.

(b) Rule P1-22

Transition 344 can also be derived from rule P1 22. Then from the
premise of the rule:

〈x〉 r7−→ 〈p〉 (365)

〈y + z〉 6 r7−→ (366)
〈consistent y + z〉 (367)

Predicate 367 implies:

〈consistent y〉 (368)
〈consistent z〉 (369)

Predicate 366 can only hold if none of the rules P1-21, P1-22 or
P1-23 can be applied to derive a time transition for 〈y + z〉 with
duration r.
Rule P1-21 cannot be applied only if 〈y〉 and 〈z〉 cannot both do a
time transition with delay r. Suppose one of them can do the time
step and the other cannot. Then if 〈y〉 can delay, then rule P1-22
can be used to derive a time transition for 〈y + z〉. If 〈z〉 can delay,
then rule P1-23 can be used to derive a time transition for 〈y + z〉.
Hence predicate 366 only holds if none of the process term x, y can
do a time transition with delay (r, ).
Therefore,

〈y〉 6 r7−→ (370)

〈z〉 6 r7−→ (371)

Apply Rule P1-22 on Transition 365, Predicate 370 and Predicate
368, we get:

〈x + y〉 r7−→ 〈p〉 (372)
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Again apply Rule P1-22 on Transition 372 and Predicates 371 and
369, we get:

〈(x + y) + z〉 r7−→ 〈p〉 (373)

Consider the target process terms in Transitions 344 and 373. The
pair (p, p) is in I.

(c) Rule P1-23

Transition 344 can also be derived from rule P1 23. Then from the
premise of the rule:

〈y + z〉 r7−→ 〈p〉 (374)

〈x〉 6 r7−→ (375)
〈consistent x〉 (376)

Again Transition 374 can be derived by rules P1-21, P1-22 or P1-23.
i. Rule P1-21

If Transition 374 is derived from Rule P1 21, then for some
p1, p2 ∈ P , p = p1 + p2. Rewriting Transitions 344 and 374

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (377)

〈y + z〉 r7−→ 〈p1 + p2〉 (378)

And the following must be derivable:

〈y〉 r7−→ 〈p1〉 (379)

〈z〉 r7−→ 〈p2〉 (380)

Combine Predicates 375, 376 and Transition 379 and apply Rule
P1-23. We get:

〈x + y〉 r7−→ 〈p1〉 (381)

Combine Transitions 380 and Transitions 381 and apply Rule
P1-21. We get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (382)

Consider the target process terms in Transitions 377 and 382.
The pair (p1 + p2, p1 + p2) is in I.

ii. Rule P1-22
If Transition 374 is derived from Rule P1 22, then the following
must be derivable:

〈y〉 r7−→ 〈p〉 (383)

〈z〉 6 r7−→ (384)
〈consistent z〉 (385)
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Combine Predicates 375 and 376 and Transition 383 and apply
Rule P1-23. We get:

〈x + y〉 r7−→ 〈p〉 (386)

Combine Predicates 384 and 385 and Transition 386 and apply
Rule P1-22. We get:

〈(x + y) + z〉 r7−→ 〈p〉 (387)

Consider the target process terms in Transitions 374 and 387.
The pair (p, p) is in I.

iii. Rule P1-23
If Transition 374 is derived from Rule P1 23, then the following
must be derivable:

〈z〉 r7−→ 〈p〉 (388)

〈y〉 6 r7−→ (389)
〈consistent y〉 (390)

Combine Predicates 375 and 390. None of the rules for delay of
an alternative composition can be applied. Hence the following
predicate holds:

〈x + y〉 6 r7−→ (391)

Combine Predicates 376 and 390. The following predicate holds:

〈consistent x + y〉 (392)

Combine Transition 388, Predicates 391 and 392. Apply Rule
P1-23. We get:

〈(x + y) + z〉 r7−→ 〈p〉 (393)

Consider the target process terms in Transitions 374 and 393.
The pair (p, p) is in I.

6.
〈consistent (x + y) + z〉 ⇐⇒ 〈consistent x + (y + z)〉

Left Implication
Suppose

∈ [s((x + y) + z)]

This can only be derived from Rule P1-16. From the premise of the rule,
the following must hold:

〈consistent (x + y)〉 (394)
〈consistent z〉 (395)

127



Again Predicate 394 can only be derived from Rule P1-16. Then the
following holds:

〈consistent x〉 (396)
〈consistent y〉 (397)

Combine predicates 397 and 395 and apply Rule P1-16:

〈consistent y + z〉 (398)

Again combine Predicate 396 and Predicate 398 apply Rule P1-16. We
get:

〈consistent x + (y + z)〉
Left Implication

Suppose
〈consistent x + (y + z)〉

By similar reasoning, as given above, the following can be derived.

〈consistent (x + y) + z〉

G.5 Axiom A3 (Idempotency)

x + x = x

We need to prove, x + x↔ x.
Let R be a binary relation on process terms defined as follows:

R = {(x + x, x) | x ∈ P}
We prove that the relation R∪I satisfies all conditions of a bisimulation relation.
Below, we only prove that all pairs in R satisfy the conditions of bisimulation
relation.

1.
〈x + x〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈x〉 a−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,
〈x + x〉 a−→ 〈p〉 (399)

The above action step can be derived from either Rule P1-19 or Rule
P1-20. The premise of each rule requires that the following holds:

〈x〉 a−→ 〈p〉
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2.
〈x〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈x + x〉 a−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,
〈x〉 a−→ 〈p〉 (400)

Then from Theorem 12, the following holds:

〈consistent x〉 (401)

Apply Rule P1-19 or Rule P1-20 on 400 and 401. We get:

〈x + x〉 a−→ 〈p〉 (402)

Consider the target process terms in Transitions 402 and 400. The pair
(p, p) is in R.

3.
〈x + x〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈x〉 r7−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,
〈x + x〉 r7−→ 〈p〉 (403)

The premises (namely 〈x〉 r7−→ 〈p〉 and x 6 r7−→) of Rule P1-22 and Rule P1-23
cannot be satisfied. Hence Transition 403 can only be derived from Rule
P1-21.

From Premise of Rule P1-21, for some process terms x1 and y1, p = x1+y1.
Rewriting Transition 400, we get:

〈x + x〉 r7−→ 〈x1 + y1〉 (404)

Also from the premise of Rule P1-21 the following holds:

〈x〉 r7−→ 〈x1〉 (405)

〈x〉 r7−→ 〈y1〉 (406)

By Theorem 13, x1 ≡ y1. Hence rewriting Transition 404, we get:

〈x + x〉 r7−→ 〈x1 + x1〉 (407)

Consider the target process terms in Transitions 405 and 407. The pair
(x1 + x1, x1) is in R.

4.
〈x〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈x + x〉 r7−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,
〈x〉 r7−→ 〈p〉 (408)
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Then by Rule P1-21, the following holds:

〈x + x〉 r7−→ 〈p + p〉 (409)

Consider the target process terms in Transitions 408 and 409. The pair
(p + p, p) is in R.

5.
〈x〉 a−→ √ ⇐⇒ 〈x + x〉 a−→ √

Left Implication
Suppose,

〈x〉 a−→ √
(410)

Then from Theorem 12, the following holds:

〈consistent x〉 (411)

Apply Rule P1-17 or Rule P1-18 on 410 and 411. We get:

〈x + x〉 a−→ √

Right Implication

Suppose,
〈x + x〉 a−→ √

(412)

The above predicate can be derived from either Rule P1-17 or Rule P1-18.
The premise of each rule requires that the following holds:

〈x〉 a−→ √

Proved.

6.
〈consistent x + x〉 ⇐⇒ 〈consistent x〉

Left Implication
Suppose,

〈consistent x + x〉
This predicate can only be derived from Rule P1-16. From the premise of
the rule,

〈consistent x〉
Right Implication
Suppose,

〈consistent x〉
Apply Rule P1-16. We get:

〈consistent x + x〉
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G.6 Axiom A4 (Right Distributivity)

(x + y) · z = x · z + y · z
We need to prove, (x + y) · z↔ x · z + y · z.
Let R be a binary relation on process terms defined as follows:

R = { ((x + y) · z, x · z + y · z) | x, y, z ∈ P}

We show that the relation R ∪ I is a bisimulation relation. Below we prove
that all pairs in R satisfy the conditions of bisimulation.

For all a ∈ A, r ∈ R>0, x, y, z, p ∈ P , the following holds:

1.
〈(x + y) · z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x · z + y · z〉 a−→ 〈p′〉

and (p, p′) ∈ R ∪ I

Suppose,
〈(x + y) · z〉 a−→ 〈p〉 (413)

An action transition for a sequential composition can be derived only from
rules P1- 13 or P1- 14. We discuss them one by one:

(a) Rule P1- 13
Then for some process term p′, p = p′ · z. Rewriting Transition 413,
we get:

〈(x + y) · z〉 a−→ 〈p′ · z〉 (414)

From the premise of Rule P1- 13, the following holds:

〈x + y〉 a−→ 〈p′〉 (415)

The above transition can be derived from Rules P1- 19 or P1- 20.

i. Rule P1- 19
If Transition 415 is derived from this rule, then from the premise
of the rule the following holds:

〈x〉 a−→ 〈p′〉 (416)
〈consistent y〉 (417)

Apply Rule P1- 13 on Transition 416, we get:

〈x · z〉 a−→ 〈p′ · z〉 (418)

From Rule P1- 19, for any term q with 〈consistent q〉, the
following can be derived:

〈x · z + q〉 a−→ 〈p′ · z〉 (419)
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From Predicate 417, we can infer by using Rule P1-12, 〈consistent y·
z〉. Then q in Transition 419 can be y · z. Hence we get:

〈x · z + y · z〉 a−→ 〈p′ · z〉 (420)

Consider the target process terms in Transitions 414 and 420.
The pair (p′ · z, p′ · z) is in I.

ii. Rule P1- 20
If Transition 415 is derived from this rule, then from the premise
of the rule, the following holds:

〈y〉 a−→ 〈p′〉 (421)
〈consistent x〉 (422)

Similar reasoning as given above for Rule 19 applies here too.

(b) Rule P1- 14
If this rule is used to derive transition 413 Then, p = z. Rewriting
Transition 413, we get:

〈(x + y) · z〉 a−→ 〈z〉 (423)

And from the premise of Rule P1- 14, the following holds:

〈x + y〉 a−→ √
(424)

〈consistent z〉 (425)

The Transition 424 can be derived from Rules P1- 17 or P1- 18.

i. Rule P1- 17
If Transition 424 is derived from this rule, then from the premise
of the rule the following holds:

〈x〉 a−→ √
(426)

〈consistent y〉 (427)

From Predicate 425, we have 〈consistent z〉. Apply Rule P1-
14 on Transition 426 using process term z, we get:

〈x · z〉 a−→ 〈z〉 (428)

From Rule P1- 19, for any term q with 〈consistent q〉, the
following can be derived:

〈x · z + q〉 a−→ 〈z〉 (429)

From Predicate 427, we infer 〈consistent y · z〉. Then q in
Transition 429 can be y · z. Hence we get:

〈x · z + y · z〉 a−→ 〈z〉 (430)

Consider the target process terms in Transitions 423 and 430.
The pair (z, z) is in I.
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ii. Rule P1- 18
Similar reasoning as above applies.

2.
〈x · z + y · z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x + y) · z〉 a−→ 〈p′〉

and (p′, p) ∈ R ∪ I

Suppose,
〈x · z + y · z〉 a−→ 〈p〉 (431)

The above transition can be derived from Rules P1- 19 or P1- 20.

(a) Rule P1- 19
If Transition 431 is derived from this rule, then from the premise of
the rule the following holds:

〈x · z〉 a−→ 〈p〉 (432)
〈consistent y · z〉 (433)

Transition 432 can be derived from Rule P1- 13 or Rule P1- 14. We
discuss the two rules one by one.

i. Rule P1- 13
Then for some process term p′, p = p′ · z. Rewriting Transition
431 and 432, we get:

〈x · z + y · z〉 a−→ 〈p′ · z〉 (434)
〈x · z〉 a−→ 〈p′ · z〉 (435)

From premise of the Rule P1- 13, the following holds:

〈x〉 a−→ 〈p′〉
Apply Rule P1- 19 on the above transition. Then for any term
q, with 〈consistent q〉, the following holds:

〈x + q〉 a−→ 〈p′〉 (436)

From Predicate 433, it can be inferred that 〈consistent y〉.
Hence q can be replaced by y in Transition 436.

〈x + y〉 a−→ 〈p′〉 (437)

Apply Rule P1- 13 on the above Transition, we get:

〈(x + y) · z〉 a−→ 〈p′ · z〉 (438)
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ii. Rule P1- 14
If this rule is used to derive Transition 432, then p = z. Rewriting
Transitions 431 and 432:

〈x · z + y · z〉 a−→ 〈z〉 (439)
〈x · z〉 a−→ 〈z〉 (440)

From Premise of Rule P1- 14, the following holds:

〈x〉 a−→ √
(441)

〈consistent z〉 (442)

Let q b a term with 〈consistent q〉. Apply Rule P1- 17 on
Transition 441, we get:

〈x + q〉 a−→ √
(443)

Consider Predicate 433, 〈consistent y ·z〉. From the predicate,
it can be inferred that:

〈consistent y〉
Replace q by y in Transition 443:

〈x + y〉 a−→ √
(444)

From Predicate 442, 〈consistent z〉. Using term z, apply Rule
14 on Transition 444, we get:

〈(x + y) · z〉 a−→ 〈z〉 (445)

Consider the target process terms in Transitions 439 and 445.
The pair (z, z) is in I.

(b) Rule P1- 20
Similar reasoning as given above applies.

3.
〈(x + y) · z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x · z + y · z〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x + y) · z〉 r7−→ 〈p〉 (446)

A time transition for a sequential composition can be derived only from
rule P1- 15. Then, for some p′ ∈ P , p must be equal to p′ · z. Rewriting
Transition 446:

〈(x + y) · z〉 r7−→ 〈p′ · z〉 (447)

And the following must hold from premise of Rule P1- 15:

〈x + y〉 r7−→ 〈p′〉 (448)

The above transition can be derived from Rules P1- 21, P1- 22 or P1- 23.
We discuss them one by one:
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(a) Rule P1- 21
Then for some process term x1, x2, p′ = x1 + x2. Re-writing Transi-
tions 447 and 448:

〈(x + y) · z〉 r7−→ 〈(x1 + x2) · z〉 (449)

〈x + y〉 r7−→ 〈x1 + x2〉 (450)

From premise of Rule P1- 21, the following must hold:

〈x〉 r7−→ 〈x1〉
〈y〉 r7−→ 〈x2〉

Apply Rule P1- 15 on the above transitions, we get:

〈x · z〉 r7−→ 〈x1 · z〉 (451)

〈y · z〉 r7−→ 〈x2 · z〉 (452)

Apply Rule P1- 21 on the above two transitions, we get:

〈x · x + y · z〉 r7−→ 〈x1 · z + x2 · z〉 (453)

Consider Transitions 449 and 453. The pair of their target process
terms ((x1 + x2) · z, x1 · z + x2 · z) is in R.

(b) Rule P1- 22
If Transition 448 is derived from this rule, the from the premise of
the rule, the following must hold:

〈x〉 r7−→ 〈p′〉 (454)
〈consistent y〉 (455)

〈y〉 6 r7−→ (456)

Apply Rule P1- 15 on Transition 454.

〈x · z〉 r7−→ 〈p′ · z〉 (457)

We can infer from Predicate 456 the following:

〈y · z〉 6 r7−→ (458)

We can infer from Predicate 455 by using Rule P1-12:

〈consistent y · z〉 (459)

Join Transitions (Predicates) 457, 458 and 459 and apply Rule P1-22.
We get:

〈x · z + y · z〉 r7−→ 〈p′ · z〉 (460)

Consider Transitions 447 and 460. The pair of their target process
terms (p′ · z, p′ · z) is in I.
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(c) Rule P1- 23
If Transition 448 is derived from this rule, then from the premise of
the rule, the following must hold:

〈y〉 r7−→ 〈p′〉 (461)
〈consistent x〉 (462)

〈x〉 6 r7−→ (463)

Similar reasoning as given above for Rule P1-22 should be applied
here.

4.
〈x · z + y · z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x + y) · z〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈x · z + y · z〉 r7−→ 〈p〉 (464)

The above transition can be derived from Rule P1-21, Rule P1-22 or Rule
P1-23. We discuss them one by one:

(a) Rule P1-21
Then for some process terms x′, y′, p = x′+ y′. Rewriting Transition
464,

〈x · z + y · z〉 r7−→ 〈x′ + y′〉 (465)

And from the premise of Rule P1-21, the following holds:

〈x · z〉 r7−→ 〈x′〉 (466)

〈y · z〉 r7−→ 〈y′〉 (467)

A time step for a sequential composition can only be derived from
Rule P1-15. Then for some process terms x1 and y1, x′ = x1 · z and
y′ = y1 · z. Rewriting Transition 465:

〈x · z + y · z〉 r7−→ 〈x1 · z + y1 · z〉 (468)

From premise of Rule P1-15, the following must hold:

〈x〉 r7−→ 〈x1〉 (469)

〈y〉 r7−→ 〈y1〉 (470)

Apply Rule P1-21 on above transitions, we get:

〈x + y〉 r7−→ 〈x1 + y1〉 (471)

Apply Rule P1-15 on above transition. We get:

〈(x + y) · z〉 r7−→ 〈(x1 + y1) · z〉 (472)

Consider Transitions 468 and 472. The pair of their target process
terms (x1 · z + y1 · z, (x1 + y1) · z) is in R.
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(b) Rule P1-22

If Transition 464 is derived from this rule, the from the premise of
the rule, the following must hold:

〈x · z〉 r7−→ 〈p〉 (473)
〈consistent y · z〉 (474)

〈y · z〉 6 r7−→ (475)

Transition 473 can only be derived from Rule P1- 15. Then for some
process term p′, p = p′ · z. Rewriting Transition 464 and Transition
473, we get:

〈x · z + y · z〉 r7−→ 〈p′ · z〉 (476)

〈x · z〉 r7−→ 〈p′ · z〉 (477)

From the premise of Rule P1-15, the following must hold:

〈x〉 r7−→ 〈p′〉 (478)

Predicate 475 can hold if Rule P1-15 cannot apply. Hence, its premise
must not hold:

〈y〉 6 r7−→ (479)

Predicate 474 can only be derived from Rule P1-12. Hence, its
premise must hold:

〈consistent y〉 (480)

Join Transitions (Predicates) 478, 479 and 480 and apply Rule P1-22.
We get:

〈x + y〉 r7−→ 〈p′〉 (481)

Apply Rule 15 on above transition, we get:

〈(x + y) · z〉 r7−→ 〈p′ · z〉 (482)

Consider Transitions 476 and 482. The pair of their target process
terms (p′ · z, p′ · z) is in I.

(c) Rule P1-23
Same reasoning as given for Rule P1-22 applies here.

5.
〈(x + y) · z〉 a−→ √ ⇐⇒ 〈x · z + y · z〉 a−→ √

Left Implication
Suppose,

〈(x + y) · z〉 a−→ √
(483)
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For a sequential composition, a termination predicate cannot be derived
from any rules. Hence our supposition is wrong and the left implication
trivially holds.

Right Implication

Suppose,

〈x · z + y · z〉 a−→ √
(484)

The above predicate can be derived from Rule P1-17 or Rule P1-18.

(a) Rule P1-17

If Predicate 484 is derived from this rule, then the following must
hold:

〈x · z〉 a−→ √
(485)

〈consistent y · z〉 (486)

Predicate 485 cannot be derived from any rules. Hence Predicate 484
cannot be derived from this rule.

(b) Rule P1-17

If Predicate 484 is derived from this rule, then the following must
hold:

〈y · z〉 a−→ √
(487)

〈consistent x · z〉 (488)

Predicate 487 cannot be derived from any rules. Hence Predicate 484
cannot be derived from this rule.

The Predicate 484 cannot be derived from any rules. Hence the right
implication holds trivially.

6.
〈consistent (x + y) · z〉 ⇐⇒ 〈consistent x · z + y · z〉

Left Implication

Suppose,
〈consistent (x + y) · z〉 (489)

This is only derivable from Rule P1- 12. From the premise of the rule, the
following must hold:

〈consistent x + y〉 (490)

138



This can only be derived from Rule P1- 16. Then from the premise of the
rules, the following hold:

〈consistent x〉 (491)
〈consistent y〉 (492)

Apply Rule P1- 12 on Predicate 491 with process term z. We get:

〈consistent x · z〉 (493)

Apply Rule 12 on Predicate 492 also with process term z. We get:

〈consistent y · z〉 (494)

Apply Rule P1-16 on Predicates 493 and 494, we get:

〈consistent x · z + y · z〉

Hence left implication is proved.

Right Implication
Suppose,

〈consistent x · z + y · z〉
The above predicate can only be derived from Rule P1- 16.

From the premise of the rule, the following must hold:

〈consistent x · z〉 (495)
〈consistent y · z〉 (496)

The above predicates can only be derived from Rule P1- 12. Then the
following must hold:

〈consistent x〉 (497)
〈consistent y〉 (498)

Apply Rule P1- 16 on the above predicates, we get:

〈consistent x + y〉

Apply Rule P1-12 on the above predicate, we get:

〈consistent (x + y) · z〉

Hence right implication is proved.
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G.7 Axiom A5

(x · y) · z = x · (y · z)

We need to prove, (x · y) · z↔ x · (y · z).
Let R be a binary relation on process terms defined as follows:

R = { ((x · y) · z, x · (y · z)) | x, y, z ∈ P}
We prove that the relation R ∪ I is a bisimulation relation. Below we show

that all pairs in R satisfy the conditions of bisimulation.
For all a ∈ A, r ∈ R>0, x, y, z, p ∈ P , the following holds:

1.
〈(x · y) · z〉 a−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x · (y · z)〉 a−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x · y) · z〉 a−→ 〈p〉 (499)

An action transition for a sequential composition can be derived only from
rules P1- 13 or P1- 14. We discuss them one by one:

(a) Rule P1- 13
Then for some process term p′, p = p′ · z. Rewriting Transition 499,
we get:

〈(x · y) · z〉 a−→ 〈p′ · z〉 (500)

From the premise of Rule P1- 13, the following holds:

〈x · y〉 a−→ 〈p′〉 (501)

The above transition can be derived from Rules P1- 13 or P1- 14.
i. Rule P1- 13

If Transition 501 is derived from this rule, then for some process
term p′′, p′ = p′′ · y. Rewriting Transitions 500 and 501, we get:

〈(x · y) · z〉 a−→ 〈(p′′ · y) · z〉 (502)
〈x · y〉 a−→ 〈p′′ · y〉 (503)

From premise of Rule P1- 13 the following holds:

〈x〉 a−→ 〈p′′〉 (504)

Apply Rule P1- 13 on Transition 504. For any process term q we
get:

〈x · q〉 a−→ 〈p′′ · q〉
The term q can be y · z.

〈x · (y · z)〉 a−→ 〈p′′ · (y · z)〉 (505)

Consider the target process terms in Transitions 502 and 505.
The pair ((p′′ · y) · z, p′′ · (y · z)) is in R.
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ii. Rule P1- 14
If Transition 501 is derived from this rule, then for some process
term, p′ = y. Rewriting Transitions 500 and 501, we get:

〈(x · y) · z〉 a−→ 〈y · z〉 (506)
〈x · y〉 a−→ 〈y〉 (507)

From premise of Rule P1- 14 the following holds:

〈x〉 a−→ √
(508)

〈consistent y〉 (509)

From Predicate 509 by Rule P1- 12, the following holds:

〈consistent y · z〉
Apply Rule P1- 14 on Transition 508. For any process term q
with 〈consistent q〉, have:

〈x · q〉 a−→ 〈q〉
The process term q can be y · z.

〈x · (y · z)〉 a−→ 〈y · z〉 (510)

Consider the target process terms in Transitions 506 and 510.
The pair (y · z, y · z) is in I.

(b) Rule P1- 14
If Transition 499 is derived from this rule, then p = z. Rewriting
Transition 499, we get:

〈(x · y) · z〉 a−→ 〈z〉 (511)

From premise of Rule P1- 14 the following holds:

〈x · y〉 a−→ √
(512)

〈consistent z〉 (513)

The transition 512 cannot be derived. (No termination transition for
a sequential composition can be derived.)
Hence Rule P1- 14 cannot be used to derive Transition 499.

2.
〈x · (y · z)〉 a−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x · y) · z〉 a−→ 〈z′〉

and (z′, p) ∈ R ∪ I
Suppose,

〈x · (y · z)〉 a−→ 〈p〉 (514)

An action transition for a sequential composition can be derived only from
rules P1- 13 or P1- 14. We discuss them one by one:
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(a) Rule P1- 13
If this rule is used to derive Transition 514, then for some process
term p′, p = p′ · (y · z) . Rewriting Transition 514, we get:

〈x · (y · z)〉 a−→ 〈p′ · (y · z)〉 (515)

From premise of the rule, the following must hold:

〈x〉 a−→ 〈p′〉 (516)

Apply Rule P1- 13 on the above transitions twice. We get:

〈(x · y) · z〉 a−→ 〈(p′ · y) · z〉 (517)

Consider the target process terms in Transitions 515 and 517. The
pair (p′ · (y · z), (p′ · y) · z) is in R.

(b) Rule P1- 14

If Transition 514 is derived from this rule, then p = y · z. Rewriting
Transition 514, we get:

〈x · (y · z)〉 a−→ 〈y · z〉 (518)

From premise of Rule P1- 14 the following holds:

〈x〉 a−→ √
(519)

〈consistent y · z〉 (520)

A consistency predicate (Predicate 520) for a sequential composition
can only be derived from Rule P1-12. From the premise of the rule,
the following must hold:

〈consistent y〉 (521)

Apply Rule P1- 14 on Transition 519 using Predicate 521, we get:

〈x · y〉 a−→ 〈y〉

Apply Rule P1- 13 on the above transition. We get:

〈(x · y) · z〉 a−→ 〈y · z〉 (522)

Consider the target process terms in Transitions 518 and 522. The
pair (y · z, y · z) is in I.
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3.
〈(x · y) · z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x · (y · z)〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x · y) · z〉 r7−→ 〈p〉 (523)

A time step for a sequential composition can be derived only from rule
P1- 15. Then for some p′, p = p′ · z. Rewriting Transition 523:

〈(x · y) · z〉 r7−→ 〈p′ · z〉 (524)

From the premise of the rule, the following holds:

〈x · y〉 r7−→ 〈p′〉 (525)

Again the above transition can only be derived from Rule P1- 15. Then
for some p′′, p′ = p′′ · y. Rewriting Transition 524 and Transition 525:

〈(x · y) · z〉 r7−→ 〈(p′′ · y) · z〉 (526)

〈x · y〉 r7−→ 〈p′′ · y〉 (527)

From the premise of the rule, the following holds:

〈x〉 r7−→ 〈p′′〉 (528)

Apply Rule P1- 15 on Transition 528. For any process term q we get:

〈x · q〉 r7−→ 〈p′′ · q〉
The term q can be y · z.

〈x · (y · z)〉 r7−→ 〈p′′ · (y · z)〉 (529)

Consider the target process terms in Transitions 526 and 529. The pair
((p′′ · y) · z, p′′ · (y · z)) is in R.

4.
〈x · (y · z)〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x · y) · z〉 r7−→ 〈z′〉

and (z′, p) ∈ R ∪ I
Suppose,

〈x · (y · z)〉 r7−→ 〈p〉 (530)

A time step for a sequential composition can be derived only from rule P1-
15. Then, for some process term p′, p = p′ · (y · z). Rewriting Transition
530, we get:

〈x · (y · z)〉 r7−→ 〈p′ · (y · z)〉 (531)

From the premise of the rule, the following must hold:

〈x〉 r7−→ 〈p′〉 (532)
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Apply Rule P1- 15 on the above time step with process term y , we get:

〈x · y〉 r7−→ 〈p′ · y〉

Again apply Rule P1- 15 on the above time step with process term z , we
get:

〈(x · y) · z〉 r7−→ 〈(p′ · y) · z〉 (533)

Consider the target process terms in Transitions 531 and 533. The pair
(p′ · (y · z), (p′ · y) · z) is in R.

5.
〈(x · y) · z〉 a−→ √ ⇐⇒ 〈x · (y · z)〉 a−→ √

Left Implication
Suppose,

〈(x · y) · z〉 a−→ √
(534)

A termination predicate for a sequential composition cannot be derived
from any rules. Hence the above predicate doesn’t hold.

Right Implication
Suppose,

〈x · (y · z)〉 a−→ √
(535)

A termination predicate for a sequential composition cannot be derived
from any rules. Hence the above predicate doesn’t hold.

6.
〈consistent (x · y) · z〉 ⇐⇒ 〈consistent x · (y · z)〉

Left Implication
Suppose,

〈consistent (x · y) · z〉
The above predicate can only be derived from Rule P1-12. Then from the
premise of the rule,

〈consistent x · y〉
Again, the above predicate can only be derived from Rule P1-12. Hence,

〈consistent x〉

Apply Rule P1-12 on the above predicate. For any process term q, the
following holds:

〈consistent x · q〉
The process term q can be y · z. Hence we have,

〈consistent x · (y · z)〉
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Right Implication
Suppose,

〈consistent x · (y · z)〉
The above predicate can only be derived from Rule P1-12. Then from the
premise of the rule,

〈consistent x〉
Apply Rule P1-12 on the above predicate. For any process term q, the
following holds:

〈consistent x · q〉
The process term q can be y. Hence we have,

〈consistent x · y〉

By repeating the same reasoning,

〈consistent (x · y) · z〉

G.8 Axiom A6SR

x + ˜̃δ = x

We need to prove, x + ˜̃δ↔ x.
Let R be a binary relation on process terms defined as follows:

R = {(x + ˜̃δ, x) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

G.9 Axiom A7SR

˜̃δ · x = ˜̃δ

We need to prove, ˜̃δ · x↔ ˜̃δ.
Let R be a binary relation on process terms defined as follows:

R = {(˜̃δ · x, ˜̃δ) | x ∈ P}

The relation R ∪ I is a bisimulation relation.
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G.10 Axiom NE1

x +⊥ = ⊥

We need to prove, x +⊥↔⊥.
Let R be a binary relation on process terms defined as follows:

R = {(x +⊥,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

G.11 Axiom NE2

⊥ · x = ⊥

We need to prove, ⊥ · x↔⊥.
Let R be a binary relation on process terms defined as follows:

R = {(⊥ · x,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

G.12 Axiom NE3SR

˜̃a · ⊥ = ˜̃δ

We need to prove, ˜̃a · ⊥↔ ˜̃δ.
Let R be a binary relation on process terms defined as follows:

R = {(˜̃a · ⊥, ˜̃δ), (˜̃δ, ˜̃a · ⊥) | a ∈ A}

The relation R ∪ I is a bisimulation relation.

G.13 Axiom SRT1

σ0
rel(x) = x

We need to prove, σ0
rel(x)↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(σ0
rel(x), x) | x ∈ P}

Then R ∪ I is a bisimulation relation that witnesses σ0
rel(x)↔ x.
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G.14 Axiom SRT2

σv
rel(σ

u
rel(x)) = σv+u

rel (x)

where v, u ≥ 0.
We need to prove, σv

rel(σ
u
rel(x))↔ σv+u

rel (x).
We prove this axiom in four steps:

Case v = 0, u = 0
Proof Trivial using Axiom SRT1.
Case v = 0, u > 0
Proof Trivial using Axiom SRT1.
Case v > 0, u = 0
Proof Trivial using Axiom SRT1.
Case v > 0, u > 0

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(σ

u
rel(x)), σt+u

rel (x)), | x ∈ P, 0 < t ≤ v}
We prove that the relation R ∪ I satisfies all conditions of bisimulation.

For all a ∈ A, r > 0, x, y ∈ P , the following holds:

1.
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 a−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉

A process term with relative delay operator with duration greater than 0
cannot perform an action step. Hence our supposition doesn’t hold.

2.
〈σt+u

rel (x)〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 a−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 a−→ 〈y〉
A process term with relative delay operator with duration greater than 0
cannot perform an action step. Hence our supposition doesn’t hold.

3.
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 r7−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 (536)

We distinguish between three cases for different values of r.
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(a) Case r < t

Let t = r + r1 for some r1 with 0 < r1 < t.
Then Transition 536 is derived from Rule P1-9 and y = σr1

rel(σ
u
rel(x)).

Rewriting Transition 536:

〈σr+r1
rel (σu

rel(x))〉 r7−→ 〈σr1
rel(σ

u
rel(x))〉 (537)

By Rule P1-9 the following can be derived:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (538)

Consider the target process terms in Transitions 537 and 538. The
pair (σr1

rel(σ
u
rel(x)), σr1+u

rel (x)), where 0 < r1 < t is in R.
(b) Case r = t

Then Transition 536 is derived from Rule P1-10. Then y = σu
rel(x).

Rewriting Transition 536:

〈σt
rel(σ

u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (539)

By Rule P1-9 the following can be derived:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (540)

Consider the target process terms in Transitions 539 and 540. The
pair (σu

rel(x), σu
rel(x)) is in I.

(c) Case r > t

Let r = t + s, for some s > 0. Rewriting Transition 536,

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈y〉 (541)

The above transition can only be derived from Rule P1-11. From the
premise of the rule, the following holds:

〈σu
rel(x)〉 s7−→ 〈y〉 (542)

We distinguish between three cases depending on different values of
the duration s of the time step.

i. Case s < u

Let u = s + s1, for some s1 with 0 < s1 < s.
Then Transition 542 can only be derived from Rule P1-9. Then
y = σs1

rel(x). Rewriting Transitions 541 and 542, we get:

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈σs1

rel(x)〉 (543)

〈σu
rel(x)〉 s7−→ 〈σs1

rel(x)〉 (544)
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From Rule P1-9, the following can be derived:

〈σt+u
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (545)

Consider the target process terms in Transitions 543 and 545.
The pair (σs1

rel(x), σs1
rel(x)) is in I.

ii. Case s = u
Then Transition 542 can only be derived from Rule P1-10. Then
y = x. Rewriting Transitions 541 and 542, we get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−−→ 〈x〉 (546)

〈σu
rel(x)〉 u7−→ 〈x〉 (547)

From the premise of Rule P1-10, the following must hold:

〈consistent x〉

Applying Rule P1-10 on process term σt+u
rel (x), the following can

be derived:

〈σt+u
rel (x)〉 t+u7−−−→ 〈x〉 (548)

Consider the target process terms in Transitions 546 and 548.
The pair (x, x) is in I.

iii. Case s > u
Let s = u + t1, for some t1 > 0. Rewriting Transitions 541 and
542, we get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (549)

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (550)

Transition 550 can only be derived from Rule P1-11. Then from
the premise of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (551)

Apply Rule P1-11 on the above transition. For any m > 0, the
following is derivable:

〈σm
rel(x)〉 m+t17−−−−→ 〈y〉

In the above transition, m can be t + u. Hence, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (552)

Consider the target process terms in Transition 549 and Transi-
tion 552. The pair (y, y) is in I.
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4.
〈σt+u

rel (x)〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 r7−→ 〈y〉 (553)

We distinguish between three cases for different values of r.

(a) Case r < (t + u)

Again we distinguish between three cases:

i. Case r < t
Let t = r + r1, for some r1 such that, 0 < r1 < t.
Then Transition 553 can only be derived from Rule P1-9. Then
y = σr1+u

rel (x). Rewriting Transition 553, we get:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (554)

Then from Rule P1-9, the following can be derived:

〈σr+r1
rel (σu

rel(x))〉 r7−→ 〈σr1
rel(σ

u
rel(x))〉 (555)

Consider the target process terms in Transitions 554 and 555.
For 0 < r1 < t, the pair (σr1

rel(σ
u
rel(x)), σr1+u

rel (x)) is in R.
ii. Case r = t

Then Transition 553 can only be derived from Rule P1-9. Then
y = σu

rel(x). Rewriting Transition 553, we get:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (556)

From Rule P1-10, the following can be derived:

〈σt
rel(σ

u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (557)

Consider the target process terms in Transitions 556 and 557.
The pair (σu

rel(x), σu
rel(x)) is in I.

iii. Case r > t
Let r = t + s for some s > 0.
Note that s < u because of our assumption that r < (t+u). Let
u = s + s1 for some s1 such that 0 < s1 < u.
Rewriting Transition 553, we get:

〈σt+s+s1
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (558)

By Rule P1-9, the following can be derived:

〈σs+s1
rel (x)〉 s7−→ 〈σs1

rel(x)〉 (559)
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Apply Rule P1-11 on the above transition. We get:

〈σt
rel(σ

s+s1
rel (x))〉 t+s7−−→ 〈σs1

rel(x)〉 (560)

Consider the target process terms in Transitions 558 and 560.
The pair (σs1

rel(x), σs1
rel(x)) is in I.

(b) Case r = (t + u)

Then Transition 553 can only be derived from Rule P1-10 and y = x.
Rewriting Transition 553, we get:

〈σt+u
rel (x)〉 t+u7−−−→ 〈x〉 (561)

From the premise of the rule, the following holds:

〈consistent x〉
Apply Rule P1-10 on the above predicate, we get:

〈σu
rel(x)〉 u7−→ 〈x〉 (562)

Apply Rule P1-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−−→ 〈x〉 (563)

Consider the target process terms in Transitions 561 and 563. The
pair (x, x) is in I.

(c) Case r > (t + u)
Let r = t+u+ t1, for some t1 > 0. Rewriting Transition 553, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (564)

From the premise of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (565)

Apply Rule P1-11 on the above transition. We get:

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (566)

Again apply Rule P1-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (567)

Consider the target process terms in Transitions 564 and 567. The
pair (y, y) is in I.

5.
〈σt

rel(σ
u
rel(x))〉 a−→ √ ⇐⇒ 〈σt+u

rel (x)〉 a−→ √

Trivial. Both process terms cannot perform an action.

6.
〈consistent σt

rel(σ
u
rel(x))〉 ⇐⇒ 〈consistent σt+u

rel (x)〉
Trivial. Both are consistent.
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G.15 Axiom SRTD (Conditional Time Determinism)

σv
rel(x) + σv

rel(y)↔ σv
rel(x + y) (SRT3)

where 〈consistent x〉 ∧ 〈consistent y〉
where v ≥ 0.
Proof

We prove the soundness of Axiom SRTD in two steps.
Case v = 0

By Axiom SRT1, we know that for any process term x,

σ0
rel(x)↔ x

Since Bisimulation is a congruence therefore, then it becomes trivial to prove
that:

σ0
rel(x) + σ0

rel(y)↔ σ0
rel(x + y)

Case v > 0

Let R be the following relation:

R = {(σt
rel(x) + σt

rel(y)), σt
rel(x + y) | 0 < t ≤ v, x, y ∈ P}

We prove that R ∪ I is a bisimulation relation:
For all a ∈ A, r > 0, z ∈ P :

1.
〈σt

rel(x) + σt
rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 a−→ 〈z′〉
(z, z′) ∈ R ∪ I

Trivial.

2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z′〉
(z′, z) ∈ R ∪ I

Trivial.

3.
〈σt

rel(x) + σt
rel(y)〉 a−→ √ ⇐⇒ 〈σt

rel(x + y)〉 a−→ √

Trivial.

4.

〈consistent σt
rel(x) + σt

rel(y)〉 ⇐⇒ 〈consistent σt
rel(x + y)〉

Trivial.

152



5.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
(z, z′) ∈ R ∪ I

Suppose,

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (568)

This can be derived from Rules P1-21, P1-22 and P1-23.

(a) Rule P1-21
If Transition 568 is derived from this rule, then

z = z1 + z2

And the following holds:

〈σt
rel(x)〉 r7−→ 〈z1〉 (569)

〈σt
rel(y)〉 r7−→ 〈z2〉 (570)

We distinguish between three cases:
i. Case r < t

Let t = r + r1. Then both Transitions 569 and 570 are derived
from Rule P1-9. Then

z1 = σr1
rel(x) and z2 = σr1

rel(y)

Rewriting Transition 568:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (571)

By Rule P1-9, the following can be derived:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (572)

ii. Case r = t

Then both Transitions 569 an d570 are derived from Rule P1-10.
Then

z1 = x and z2 = y

From premise of Rule P1-10, the following holds:

〈consistent x〉 and 〈consistent y〉
Apply Rule P1-16 on the above predicates, we get:

〈consistent x + y〉
Then Rule P1-10 becomes applicable to derive the following:

〈σr
rel(x + y)〉 r7−→ 〈x + y〉 (573)
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iii. Case r > t

Let r = t + t1.
Rewriting Transitions 569 and 570:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉 (574)

〈σt
rel(y)〉 t+t17−−−→ 〈z2〉 (575)

The above transitions can only be derived from Rule P1-11.
From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉 (576)

〈y〉 t17−→ 〈z2〉 (577)

Apply Rule P1-21 on the above transitions:

〈x + y〉 t17−→ 〈z1 + z2〉 (578)

Apply Rule P1-11 on the above transitions, we get:

〈σt+t1
rel (x + y)〉 t+t17−−−→ 〈z1 + z2〉 (579)

(b) Rule P1-22
Suppose, Transition 568 ( which is repeated below) is derived from
this rule.

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (568)

Then from the premise of the rule, the following holds:

〈σt
rel(x)〉 r7−→ 〈z〉 (580)

〈consistent σt
rel(y)〉 (581)

〈σt
rel(y)〉 6 r7−→ (582)

Again we distinguish between three cases:
i. Case r < t

For r < t, Predicate 582 can not be derived. We conclude that
Rule P1-22 cannot be used to derive Transition 568 for r < t.

ii. Case r = t

Then Predicate 582can only be derived if y is inconsistent. I.e.

¬〈consistent y〉
The axiom SRTD is conditional and for inconsistent y, we do not
need to derive a corresponding transition of σt

rel(x + y).
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iii. Case r > t

Let r = t + t1. Rewriting Transitions 580, 581 and 582:

〈σt
rel(x)〉 t+t17−−−→ 〈z〉 (583)

〈consistent σt
rel(y)〉 (584)

〈σt
rel(y)〉 6 t+t17−−−→ (585)

Then Transition 583 can only be derived by Rule P1-11. From
the premise of the rule, the following holds:

〈x〉 t17−→ 〈z〉 (586)

Predicate 585 can hold only if Rule P1-11 is not appllicable on
process term σt

rel(y). Hence, the premise of the rule must not
hold. I.e:

〈y〉 6 t17−→ (587)

Since, we are proving the axiom for consistent process terms,
hence:

〈consistent y〉 (588)

Apply Rule P1-22 on Transitions 586,587 and 588, we get:

〈x + y〉 t17−→ 〈z〉 (589)

Apply Rule P1-11 on the above transition, we get:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z〉 (590)

(c) Rule P1-23

Same reasoning as applied for Rule P1-22.

6.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
(z′, z) ∈ R

Suppose,

〈σt
rel(x + y)〉 r7−→ 〈z〉 (591)

We distinguish between three cases for different values of r.
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(a) Case r < t
Let t = r + r1. Then Transition 591 is derived from Rule P1-9. Then

z = σr1
rel(x + y)

Rewriting Transition 591:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (592)

By Rule P1-9, the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (593)

〈σr+r1
rel (y)〉 r7−→ 〈σr1

rel(y)〉 (594)

Apply Rule P1-21 on the above transitions, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (595)

(b) Case r = t
Then Transition 591 is derived from Rule P1-10. Then

z = x

From the premise of the rule, the folllowing holds:

〈consistent x + y〉
which implies

〈consistent x〉 and 〈consistent y〉
Then Rule P1-10 becomes applicable to derive the following:

〈σr
rel(x)〉 r7−→ 〈x〉 (596)

〈σr
rel(y)〉 r7−→ 〈y〉 (597)

Apply Rule P1-21 on the above transitions, we get:

〈σr
rel(x) + σr

rel(y)〉 r7−→ 〈x + y〉 (598)

(c) Case r > t
Let r = t + t1.
Rewriting Transition 591:

〈σt
rel(x + y)〉 t+t17−−−→ 〈z〉 (599)

The above transition can only be derived from Rule P1-11. From the
premise of the rule, the following holds:

〈x + y〉 t17−→ 〈z〉 (600)

Transition 600 can be derived from three rules. Rules P1-21, P1-22
and P1-23.
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i. Rules P1-21
Then z in Transitions 599 and 600 is as follows:

z = z1 + z2

From the premise of the rule, the following holds:

〈x〉 t17−→ 〈z1〉 (601)

〈y〉 t17−→ 〈z2〉 (602)

Apply Rule P1-11 on the above transitions:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉 (603)

〈σt
rel(y)〉 t+t17−−−→ 〈z2〉 (604)

Apply Rule P1-21 on the above transitions:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z1 + z2〉 (605)

ii. Rules P1-22
If Transition 600 is derived from this rule, then from the premise
of the rule, the following holds:

〈x〉 t17−→ 〈z1〉 (606)
〈consistent y〉 (607)

〈y〉 6 t17−→ (608)

Apply Rule P1-11 on Transition 606:

〈σt
rel(x)〉 t+t17−−−→ 〈z1〉 (609)

From Predicate 608, Rule P1-11 cannot be applied on σt
rel(y).

Since, this is the only rule allowing a delay of length greater
than t, hence the following predicate holds:

〈σt
rel(y)〉 6 t+t17−−−→ (610)

From Rule P1-8, the following holds:

〈consistent σt
rel(y)〉 (611)

for t > 0.
Apply Rule P1-22 on transitions 609, 610 and 611. We get:

〈σt
rel(x) + σt

rel(y)〉 t+t17−−−→ 〈z1〉 (612)

iii. Rules P1-23
Same reasoning as given for Rules P1-22 applies.

£
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G.16 Axiom SRTD⊥

σu+r
rel (x) + σr

rel(⊥) = σu+r
rel (x)

where u ≥, r > 0.
We need to prove, σu+r

rel (x) + σr
rel(⊥)↔ σu+r

rel (x).
Let R be a binary relation on process terms defined as follows:

R = { (σu+s
rel (x) + σs

rel(⊥), σu+s
rel (x)) | x,∈ P, 0 < s ≤ r}

We prove that the relation R∪I is a bisimulation relation. Below we prove the
conditions that all pairs in R must satisfy in order for R∪I to be a bisimulation
relation

For all a ∈ A, t ∈ R>,p ∈ P , the following holds:

1.
〈σu+s

rel (x) + σs
rel(⊥)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s

rel (x)〉 a−→ 〈p′〉
and (p, p′) ∈ R ∪ I

Trivial. The left hand side of the implication does not hold.

2.
〈σu+s

rel (x)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s
rel (x) + σs

rel(⊥)〉 a−→ 〈p′〉
and (p′, p) ∈ R ∪ I

Trivial. The left hand side of the implication does not hold.

3.
〈σu+s

rel (x) + σs
rel(⊥)〉 t7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s

rel (x)〉 t7−→ 〈p′〉
and (p, p′) ∈ R ∪ I

Suppose,

〈σu+s
rel (x) + σs

rel(⊥)〉 t7−→ 〈p〉 (613)

This can only be derived from three rules.

(a) Rule P1-21

Then p = p1 + p2.
Rewriting Transition 613:

〈σu+s
rel (x) + σs

rel(⊥)〉 t7−→ 〈p1 + p2〉 (614)

From the premise of the rule, the following must hold:

〈σu+s
rel (x)〉 t7−→ 〈p1〉 (615)

〈σs
rel(⊥)〉 t7−→ 〈p2〉 (616)

We distinguish between three cases for different values of t.
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i. Case t < s

Let s = t + t1, for some 0 < t1 < s.
Then Transitions 615 and 616 are derived from Rule P1-9. And,

p1 = σu+t1
rel (x) and p2 = σt1

rel(⊥)

Rewriting Transition 614:

〈σu+t+t1
rel (x) + σt+t1

rel (⊥)〉 t7−→ 〈σu+t1
rel (x) + σt1

rel(⊥)〉
(617)

From Rule P1-9, the following can be derived:

〈σu+t+t1
rel (x)〉 t7−→ 〈σu+t1

rel (x)〉 (618)

Consider target process terms in Transition 617 and 618. For
t1 > 0, the pair (σu+t1

rel (x) + σt1
rel(⊥), σu+t1

rel (x)) is in R.
ii. Case t = s

Then 616 must be derived from Rule P1-10 And,

p2 = ⊥
which is not possible.
Hence, Rule P1-21 cannot be used to derive Transition 613 when
s = t.

iii. Case t > s
Let t = s + s1.
Then Transition 616 can only be derived from Rule P1-11, which
requires that ⊥ can delay for s1 time units. Again this is impos-
sible. Hence, Rule P1-21 cannot be used to derive Transition 613
when t > s.

(b) Rule P1-22

If Transition 613 is derived from this rule, then the following must
hold:

〈σu+s
rel (x)〉 t7−→ 〈p〉 (619)

〈σs
rel(⊥)〉 6 t7−→ (620)

〈consistent σs
rel(⊥)〉 (621)

We distinguish between three cases for different values of t.

i. Case t < s
Predicate 620 cannot be derived for t < s. Because from Rule P1-
9, a process term σs

rel(z) can always delay for a duration shorter
than s.
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ii. Cases t = s
Rewriting Transitions 619 and 620.

〈σu+s
rel (x)〉 s7−→ 〈p〉 (622)

〈σs
rel(⊥)〉 6 s7−→ (623)

The Transition 622 proves that a transition corresponding to
Transition 613 holds for σu+s

rel (x).
The pair (p, p) is in R ∪ I

iii. Cases t > s

Reasoning is Similar to above case.

(c) Rule P1-23
Then the following must hold:

〈σs
rel(⊥)〉 t7−→ 〈p〉 (624)

〈σu+s
rel (x)〉 6 t7−→ (625)

〈consistent σu+s
rel (x)〉 (626)

We distinguish between three cases for different values of t.

i. Case t < s

Let s = t + t1.
For s > t, the Predicate 625 cannot be derived.

ii. Case s = t
Transition 624 cannot be derived.
If u > 0, then Predicate 625 can also not be derived.

iii. Case t > s

Transition 624 cannot be derived.

Hence, we conclude that Rule P1-23 cannot be used to derive Tran-
sition 613.

4.
〈σu+s

rel (x)〉 t7−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈σu+s
rel (x) + σs

rel(⊥)〉 t7−→ 〈p′〉
and (p′, p) ∈ R ∪ I

Suppose,

〈σu+s
rel (x)〉 t7−→ 〈p〉 (627)

We distinguish between three cases for different values of t.
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(a) Case t < s

Let s = t + t1, for t1 > 0.
Then Transition 627 must be derived from Rule P1-9 and p = σu+t1

rel (x).
Rewriting Transition 627:

〈σu+t+t1
rel (x)〉 t7−→ 〈σu+t1

rel (x)〉 (628)

By Rule P1-9, the following can be derived:

〈σt+t1
rel (⊥)〉 t7−→ 〈σt1

rel(⊥)〉 (629)

Apply Rule P1-21 on the above transitions:

〈σu+t+t1
rel (x) + σt+t1

rel (⊥)〉 t7−→ 〈σu+t1
rel (x) + σt1

rel(⊥)〉 (630)

Consider target process terms in Transition 628 and 630. For t1 > 0,
the pair (σu+t1

rel (x) + σt1
rel(⊥), σu+t1

rel (x)) is in R.

(b) Case t = s

Rewriting Transition 627:

〈σu+s
rel (x)〉 s7−→ 〈p〉 (631)

When s = t, the following predicate holds:

〈σs
rel(⊥)〉 6 s7−→ (632)

And also:

〈consistent σs
rel(⊥)〉 (633)

Apply Rule P1-22 on the above transitions:

〈σu+s
rel (x) + σs

rel(⊥)〉 s7−→ 〈p〉 (634)

Consider target process terms in Transition 627 and 634. The pair
(p, p) is in I.

(c) Case t > s

Let t = s + s1, for some s1 > 0
Rewriting Transition 627:

〈σu+s
rel (x)〉 s+s17−−−→ 〈p〉 (635)

Let us consider σs
rel(⊥). The Transition

〈σs
rel(⊥)〉 s+s17−−−→ 〈p′〉
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cannot be derived for any process term p′.
Hence, the following predicate holds:

〈σs
rel(⊥)〉 6 s+s17−−−→ (636)

Also we know:

〈consistent σs
rel(⊥)〉

Apply Rule P1-22:

〈σu+s
rel (x) + σs

rel(⊥)〉 s+s17−−−→ 〈p〉 (637)

Consider the target process terms in Transitions 627 and 637. The
pair (p, p) is in I.

5.
〈σu+s

rel (x) + σs
rel(⊥)〉 a−→ √ ⇐⇒ 〈σu+s

rel (x)〉 a−→ √

Trivial.

6.
〈consistent σu+s

rel (x) + σs
rel(⊥)〉 ⇐⇒ 〈consistent σu+s

rel (x)〉

Trivial.

G.17 Axiom SRT4

σu
rel(x) · y = σu

rel(x · y)

where u ≥ 0.
We need to prove, σu

rel(x) · y↔ σu
rel(x · y).

We do the proof in two steps.
Case u = 0
Proof Trivial using Axiom SRT1 and the fact that bisimulation is a congruence.
Case u > 0

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(x) · y, σt

rel(x · y)) | x, y ∈ P, 0 < t ≤ u}

For all x, y, p ∈ P , r > 0, a ∈ A, the following holds:

1.
〈σt

rel(x) · y〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 a−→ 〈z〉

and (p, z) ∈ R ∪ I.
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Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (638)

The above action step can only be derived from Rule P1-13 or 14. We
discuss the two cases one by one:

(a) Rule P1-13

If Transition 638 is derived from this rule, then for some process term
p′, p = p′ · y. And from the premise of the rule, the following must
be derivable,

〈σt
rel(x)〉 a−→ 〈p′〉 (639)

An action step for operator σt
rel with t > 0 cannot be derived from

any rules. Hence we conclude that Rule P1-13 cannot be used to
derive Transition 638.

(b) Rule P1-14

If Transition 638 is derived from this rule, then, p = y. And from
the premise of the rule, the following must be derivable,

〈σt
rel(x)〉 a−→ √

(640)

A termination step for operator σt
rel with t > 0 cannot be derived

from any rules. Hence we conclude that Rule P1-14 cannot be used
to derive Transition 638.

Transition 638 cannot be derived from any rules. Since the left hand side
of the implication does not hold, therefore the implication holds.

2.
〈σt

rel(x · y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 a−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (641)

An action step for operator σt
rel with t > 0 cannot be derived from any

rules. Hence our supposition is wrong.

3.
〈σt

rel(x) · y〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 r7−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 r7−→ 〈p〉 (642)
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The above time step can only be derived from Rule P1-15. Then for some
process term p′, p = p′ · y. Rewriting Transition 642:

〈σt
rel(x) · y〉 r7−→ 〈p′ · y〉 (643)

From the premise of the rule the following holds:

〈σt
rel(x)〉 r7−→ 〈p′〉 (644)

We distinguish between three cases for different values of r:

(a) Case r < t

Let t = r + r1, for some r1 > 0.
Then Transition 644 can only be derived from Rule P1-9. From the
rule, we have p′ = σr1

rel(x). Rewriting Transitions 643 and 644:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (645)

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (646)

From Rule P1-9, the following can be

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (647)

Consider the target process terms in Transitions 645 and 647. For
0 < r1 < t, the pair (σr1

rel(x) · y, σr1
rel(x · y)) is in R.

(b) Case r = t
Then Transition 644 can only be derived from Rule P1-10. From the
rule, we have p′ = x. Rewriting Transitions 643 and 644:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (648)

〈σt
rel(x)〉 t7−→ 〈x〉 (649)

From the premise of Rule P1-10, the following must hold:

〈consistent x〉

Apply Rule P1-12 on the above predicate, we get:

〈consistent x · y〉 (650)

Apply Rule P1-10 on process term σt
rel(x · y), we get:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (651)

Consider the target process terms in Transitions 648 and 651. The
pair (x · y, x · y) is in I.
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(c) Case r > t
Let r = t + v, for some v > 0.
Rewriting Transitions 643 and 644:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (652)

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (653)

Transition 653 can only be derived from Rule P1-11. Then from the
premise of the rule the following holds:

〈x〉 v7−→ 〈p′〉 (654)

Apply Rule P1-15 on the above transition, we get:

〈x · y〉 v7−→ 〈p′ · y〉 (655)

Apply Rule P1-11 on the above transition, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (656)

Consider the target process terms in Transitions 652 and 656. The
pair (p′ · y, p′ · y) is in I.

4.
〈σt

rel(x · y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 r7−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x · y)〉 r7−→ 〈p〉 (657)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1, for some r1 < t.
Then Transition 657 can only be derived from Rule P1-9. From the
rule, we have p = σr1

rel(x · y). Rewriting Transition 657:

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (658)

From Rule P1-9, the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉
Apply Rule P1-15 on the above transition. We get:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (659)

Consider the target process terms in Transitions 658 and 659. The
pair (σr1

rel(x) · y), σr1
rel(x · y)) is in R.

165



(b) Case r = t
Then Transition 657 can only be derived from Rule P1-10. From the
rule, we have p = x · y. Rewriting Transition 657:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (660)

The above time step can only be derived from Rule P1-10. From the
premise of the rule,

〈consistent x · y〉
which can only be derived from Rule P1-12. Then the following must
hold:

〈consistent x〉
Apply Rule P1-10 on the above predicate, we get:

〈σt
rel(x)〉 t7−→ 〈x〉 (661)

Apply Rule P1-15, we get:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (662)

Consider the target process terms in Transitions 651 and 662. The
pair (x · y, x · y) is in R.

(c) Case r > t
Let r = v + t, for some v > 0.
Then Transition 657 can only be derived from Rule P1-11. Rewriting
Transition 657:

〈σt
rel(x · y)〉 t+v7−−→ 〈p〉 (663)

From the premise of the rule,

〈x · y〉 v7−→ 〈p〉 (664)

The above transition can only be derived from Rule P1-15. Then for
some process term p′, p = p′ · y. Rewriting Transitions 663 and 664,
we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (665)

〈x · y〉 v7−→ 〈p′ · y〉 (666)

From the the premise of the rule,

〈x〉 v7−→ 〈p′〉 (667)

Apply Rule P1-11 on the above transition, we get:

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (668)
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Apply Rule P1-15 on the above transition, we get:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (669)

Consider the target process terms in Transitions 663 and 669. The
pair (p′ · y, p′ · y) is in R.

5.
〈σt

rel(x · y)〉 a−→ √ ⇐⇒ 〈σt
rel(x) · y〉 a−→ √

6.
〈consistent σt

rel(x · y)〉 ⇐⇒ 〈consistent σt
rel(x) · y〉

From Rule P1-8,
〈consistent σt

rel(x · y)〉

From Rule P1-12 and Rule P1-8, it can be derived that:

〈consistent σt
rel(x) · y〉

G.18 Axiom SRU1

νrel(˜̃a) = ˜̃a

We need to prove, νrel(˜̃a)↔ ˜̃a.
Let R be a binary relation on process terms defined as follows:

R = {(νrel(˜̃a), ˜̃a) | a ∈ A}

The relation R ∪ I is a bisimulation relation.

G.19 Axiom SRU2

νrel(σu
rel(x)) = ˜̃δ

We need to prove, νrel(σu
rel(x))↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(σu
rel(x)) | x ∈ P, u > 0}

The relation R ∪ I is a bisimulation relation.
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G.20 Axiom SRU3

νrel(x + y) = νrel(x) + νrel(y)

We need to prove, νrel(x + y)↔ νrel(x) + νrel(y).
Let R be a binary relation on process terms defined as follows:

R = {(νrel(x + y), νrel(x) + νrel(y)) | x, y ∈ P}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y, p ∈ P , the following holds:

1.
〈νrel(x + y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) + νrel(y)〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x + y)〉 a−→ 〈p〉 (670)

The above transition can only be derived from Rule P1-26. Then from
the premise the following holds:

〈x + y〉 a−→ 〈p〉 (671)

The above action step can be derived from two rules:

(a) Rule P1-19
If Transition 671 is derived from this rule, then from the premise of
the rule, we have:

〈x〉 a−→ 〈p〉 (672)
〈consistent y〉 (673)

Apply Rule P1-26 on Transition 672, we get:

〈νrel(x)〉 a−→ 〈p〉 (674)

Apply Rule P1-24 on Predicate 673, we get:

〈consistent νrel(y)〉 (675)

Apply Rule P1-19 on Transition 674 and Predicate 675. We get:

〈νrel(x) + νrel(y)〉 a−→ 〈p〉 (676)

Consider the target process terms in Transitions 671 and 676. The
pair (p, p) is in R.
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(b) Rule P1-20

If Transition 671 is derived from this rule, then from the premise of
the rule, we have:

〈y〉 a−→ 〈p〉 (677)
〈consistent x〉 (678)

Reasoning similar to that of Rule P1-19 applies here.

2.
〈νrel(x) + νrel(y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x + y)〉 a−→ 〈z〉

and (z, p) ∈ R.

Suppose,
〈νrel(x) + νrel(y)〉 a−→ 〈p〉 (679)

The above transition can be derived from Rule P1-19 or Rule P1-20. We
discuss them one by one:

(a) Rule P1-19
If Transition 679 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(x)〉 a−→ 〈p〉 (680)
〈consistent νrel(y)〉 (681)

Transition 680 can only be derived from Rule P1-26. Predicate 681
can only be derived from Rule P1-24. From their premises, the fol-
lowing holds:

〈x〉 a−→ 〈p〉 (682)
〈consistent y〉 (683)

Apply Rule P1-19 on the above transition and predicate, we get:

〈x + y〉 a−→ 〈p〉 (684)

Apply Rule P1-26 on the above transition, we get:

〈νrel(x + y)〉 a−→ 〈p〉 (685)

Consider the target process terms in Transitions 679 and 685. The
pair (p, p) is in R.

(b) Rule P1-20
If Transition 679 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(y)〉 a−→ 〈p〉 (686)
〈consistent νrel(x)〉 (687)

Reasoning similar to that given for Rule P1-19 applies here.
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3.
〈νrel(x + y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) + νrel(y)〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x + y)〉 r7−→ 〈p〉

A time step for now operator can not be derived from any rules. Hence
our supposition cannot hold and the implication is trivially satisfied.

4.
〈νrel(x) + νrel(y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x + y)〉 r7−→ 〈z〉

and (z, p) ∈ R.

Suppose,
〈νrel(x) + νrel(y)〉 r7−→ 〈p〉 (688)

A time step for an alternative composition can be derived from Rule P1-21,
Rule P1-22 or Rule P1-23. We discuss them one by one:

(a) Rule P1-21
If transition 688 is derived from this rule, Then for some process term
x1, y1, p = x1 + y1 and from the premise of the rule, the following
holds:

〈νrel(x)〉 r7−→ 〈x1〉 (689)

〈νrel(y)〉 r7−→ 〈y1〉 (690)

A time step for now operator can not be derived from any rules.
Hence Transitions 689 and 690 are not derivable. We conclude that
Rule P1-21 cannot be used to derive Transition 688.

(b) Rule P1-22
If transition 688 is derived from this rule, Then the premise of the
rule, the following holds:

〈νrel(x)〉 r7−→ 〈p〉 (691)
〈consistent νrel(y)〉 (692)

〈νrel(y)〉 6 r7−→ (693)

A time step for now operator can not be derived from any rules.
Hence Transition 691 is not derivable. We conclude that Rule P1-22
cannot be used to derive Transition 688.

(c) Rule P1-23
Similarly, if transition 688 is derived from this rule, Then the premise
of the rule, the following holds:

〈νrel(y)〉 r7−→ 〈p〉 (694)
〈consistent νrel(x)〉 (695)

〈νrel(x)〉 6 r7−→ (696)
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A time step for now operator can not be derived from any rules.
Hence Transition 694 is not derivable. We conclude that Rule P1-23
cannot be used to derive Transition 688.

No rules allow derivation of Transition 688. Hence our supposition cannot
hold and the implication is trivially satisfied.

5.
〈νrel(x + y)〉 a−→ √ ⇐⇒ 〈νrel(x) + νrel(y)〉 a−→ √

Left Implication
Suppose,

〈νrel(x + y)〉 a−→ √
(697)

The above predicate can only be derived from Rule P1-25. Then from the
premise the following holds:

〈x + y〉 a−→ √
(698)

The above action step can be derived from two rules:

(a) Rule P1-17
If Predicate 698 is derived from this rule, then from the premise of
the rule, we have:

〈x〉 a−→ √
(699)

〈consistent y〉 (700)

Apply Rule P1-25 on Predicate 699, we get:

〈νrel(x)〉 a−→ √
(701)

Apply Rule P1-24 on Predicate 700, we get:

〈consistent νrel(y)〉 (702)

Apply Rule P1-17 on Predicate 701 and Predicate 702. We get:

〈νrel(x) + νrel(y)〉 a−→ √
(703)

(b) Rule P1-18

If Predicate 698 is derived from this rule, then from the premise of
the rule, we have:

〈y〉 a−→ √
(704)

〈consistent x〉 (705)

Reasoning similar to that of Rule P1-17 applies here.
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Right Implication

Suppose,
〈νrel(x) + νrel(y)〉 a−→ √

(706)

The above predicate can be derived from Rule P1-17 or Rule P1-18. We
discuss them one by one:

(a) Rule P1-17
If Predicate 706 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(x)〉 a−→ √
(707)

〈consistent νrel(y)〉 (708)

Predicate 707 can only be derived from Rule P1-25. Predicate 708 can
only be derived from Rule P1-24. From their premises, the following
holds:

〈x〉 a−→ √
(709)

〈consistent y〉 (710)

Apply Rule P1-17 on the above predicates, we get:

〈x + y〉 a−→ √
(711)

Apply Rule P1-25 on the above predicate, we get:

〈νrel(x + y)〉 a−→ √
(712)

(b) Rule P1-18
If Predicate 706 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(y)〉 a−→ √
(713)

〈consistent νrel(x)〉 (714)

Reasoning similar to that given for Rule P1-17 applies here.

6.
〈consistent νrel(x + y)〉 ⇐⇒ 〈consistent νrel(x) + νrel(y)〉

Left Implication

Suppose

〈consistent νrel(x + y)〉
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The above predicate is only derivable from Rule P1-24. Then from premise
of the rule, the following holds:

〈consistent x + y〉 (715)

which is only derivable from Rule P1-16. Then from the premise the
following holds:

〈consistent x〉 (716)
〈consistent y〉 (717)

Apply Rule P1-24 on the above predicates, we get:

〈consistent νrel(x)〉 (718)
〈consistent νrel(y)〉 (719)

Apply Rule P1-16 on the above predicates, we get the desired predicate:

〈consistent νrel(x) + νrel(y)〉

Right Implication
Suppose,

〈consistent νrel(x) + νrel(y)〉 (720)

which is only derivable from Rule P1-16. Then from the premise the
following holds:

〈consistent νrel(x)〉 (721)
〈consistent νrel(y)〉 (722)

The above predicates are only derivable from Rule P1-24. Then from the
premise the following must hold:

〈consistent x〉 (723)
〈consistent y〉 (724)

Apply Rule P1-16 on the above predicates, we get:

〈consistent x + y〉 (725)

Apply Rule P1-24 on the above predicate, we get:

〈consistent νrel(x + y)〉 (726)
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G.21 Axiom SRU4

νrel(x · y) = νrel(x) · y
We need to prove, νrel(x · y)↔ νrel(x) · y.
Let R be a binary relation on process terms defined as follows:

R = {(νrel(x · y), νrel(x) · y) | x, y ∈ P}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y, p ∈ P , the following holds:

1.
〈νrel(x · y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) · y〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x · y)〉 a−→ 〈p〉 (727)

The above transition can only be derived from Rule P1-26. Then from
the premise the following holds:

〈x · y〉 a−→ 〈p〉 (728)

The above action step can be derived from two rules:

(a) Rule P1-13
If Transition 728 is derived from this rule, then for some process term
p′, p = p′ · y. Rewriting Transition 728:

〈x · y〉 a−→ 〈p′ · y〉 (729)

From the premise of the rule, we have:

〈x〉 a−→ 〈p′〉 (730)

Apply Rule P1-26 on Transition 730, we get:

〈νrel(x)〉 a−→ 〈p′〉 (731)

Apply Rule P1-13 on the above transition. We get:

〈νrel(x) · y〉 a−→ 〈p′ · y〉 (732)

Consider the target process terms in Transitions 729 and 732. The
pair (p′ · y, p′ · y) is in I.
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(b) Rule P1-14

If Transition 728 is derived from this rule, then, p = y. Rewriting
Transition 728:

〈x · y〉 a−→ 〈y〉 (733)

From the premise of the rule, we have:

〈x〉 a−→ √
(734)

〈consistent y〉 (735)

Apply Rule P1-25 on Transition 734, we get:

〈νrel(x)〉 a−→ √
(736)

Apply Rule P1-14 on the above transition making use of predicate
735. We get:

〈νrel(x) · y〉 a−→ 〈y〉 (737)

Consider the target process terms in Transitions 733 and 737. The
pair (y, y) is in I.

2.
〈νrel(x) · y〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x · y)〉 a−→ 〈z〉

and (z, p) ∈ R.

Suppose,
〈νrel(x) · y〉 a−→ 〈p〉 (738)

The above action step can be derived from two rules:

(a) Rule P1-13
If Transition 738 is derived from this rule, then for some process term
p′, p = p′ · y. Rewriting Transition 738:

〈νrel(x) · y〉 a−→ 〈p′ · y〉 (739)

And from the premise of the rule, the following holds:

〈νrel(x)〉 a−→ 〈p′〉 (740)

The above transition can only be derived from Rule P1-26. Then
from the premise the following holds:

〈x〉 a−→ 〈p′〉 (741)

Apply Rule P1-13 on the above transition, we get:

〈x · y〉 a−→ 〈p′ · y〉 (742)

Again apply Rule P1-26 on Transition 742, we get:

〈νrel(x · y)〉 a−→ 〈p′ · y〉 (743)

Consider the target process term in transitions 739 and 743. The
pair (p′ · y, p′ · y) is in I.

175



(b) Rule P1-14
If Transition 738 is derived from this rule, then, p = y. Rewriting
Transition 738:

〈νrel(x) · y〉 a−→ 〈y〉 (744)

And from the premise of the rule, the following holds:

〈νrel(x)〉 a−→ √
(745)

〈consistent y〉 (746)

The Predicate 745 can only be derived from Rule P1-25. Then from
the premise the following holds:

〈x〉 a−→ √
(747)

Apply Rule P1-14 on the above transition using Predicate 746:

〈x · y〉 a−→ 〈y〉 (748)

Apply Rule P1-26 on the above transition, we get:

〈νrel(x · y)〉 a−→ 〈y〉 (749)

Consider the target process term in transitions 739 and 749. The
pair (y, y) is in I.

3.
〈νrel(x · y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) · y〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x · y)〉 r7−→ 〈p〉

A time step for now operator can not be derived from any rules. Hence
our supposition cannot hold and the implication is trivially satisfied.

4.
〈νrel(x) · y〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x · y)〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x) · y〉 r7−→ 〈p〉 (750)

A time step for sequential composition can only be derived from Rule P1-
15. The for some process term p′, p = p′ · y. And from the premise the
following holds:

〈νrel(x)〉 r7−→ 〈p′〉 (751)

The above transition cannot be derived as a time step for now operator
can not be derived from any rules. Hence the Transition 750 cannot hold
and the implication is trivially proved.
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5.
〈νrel(x · y)〉 a−→ √ ⇐⇒ 〈νrel(x) · y〉 a−→ √

Left Implication
Suppose,

〈νrel(x · y)〉 a−→ √
(752)

Predicate 752 can only be derived from Rule P1-25. Then from the premise
of the rule, the following holds:

〈x · y〉 a−→ √
(753)

A termination predicate for a sequential composition cannot be derived
from any rules. Predicate 753 doesn’t hold. hence our assumption predi-
cate 752 doesn’t hold.

Right Implication

Suppose,
〈νrel(x) · y〉 a−→ √

(754)

A termination predicate for a sequential composition cannot be derived
from any rules. Hence our assumption predicate 754 doesn’t hold.

6.
〈consistent νrel(x · y)〉 ⇐⇒ 〈consistent νrel(x) · y〉

Left Implication

Suppose

〈consistent νrel(x · y)〉

Only derivable from Rule P1-24. Then from premise of the rule, the
following holds:

〈consistent x · y〉 (755)

which is only derivable from Rule P1-12. Then from the premise the
following holds:

〈consistent x〉 (756)

Apply Rule P1-24 on Predicate 756:

〈consistent νrel(x)〉 (757)

Again apply Rule P1-12 on Predicate 757, we get the desired predicate:

〈consistent νrel(x) · y〉 (758)
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Right Implication
Suppose,

〈consistent νrel(x) · y〉

which is only derivable from Rule P1-12. Then from the premise the
following must hold:

〈consistent νrel(x)〉 (759)

which is only derivable from Rule P1-24. Then from premise of the rule,
the following holds:

〈consistent x〉

Apply Rule P1-12 on the above predicate, we get:

〈consistent x · y〉 (760)

Apply Rule P1-24 on Predicate 760, we get the desired result:

〈consistent νrel(x · y)〉 (761)

G.22 Axiom NESRU

νrel(⊥) = ⊥
We need to prove, νrel(⊥)↔⊥.
Let R be a binary relation on process terms defined as follows:

R = {(νrel(⊥),⊥), (⊥, νrel(⊥))}

The proof is trivial and therefore left.
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H Soundness Proofs for Proposal 2

Let I be a binary relation on process terms defined as follows:

I = {(x, x) | x ∈ P}

It is obvious that I is a bisimulation relation. We will use the relation I fre-
quently in the proofs. We prove that the axioms given in Table 14 hold in the
semantics given in Section 5.4.

The proofs of the soundness theorem use the following theorems.

H.1 Theorem : Sources of Transitions are consistent

Theorem 14 For all closed terms p the following hold:
For all p′, p′′ ∈ P , a, b ∈ A, r, s > 0:

(〈p〉 a−→ 〈p′〉) ∨ (〈p〉 r7−→ 〈p′′〉) ∨ (〈p〉 b−→ √
) ∨ (〈p〉 s7−→⊥)

=⇒ 〈consistent p〉

Proof We prove the above theorem by structural induction on a process term
p ∈ P . The base case of the structural induction comprises of constant process
terms, i.e. all undelayable actions in A, the deadlock process term δ and the
inconsistent process ⊥.
Base Case

1. p = ˜̃a.

From Rule P2-2, 〈consistent ˜̃a〉. Hence all conditions of the theorem
are trivially satisfied.

2. p = ˜̃δ

From Rule P2-1, 〈consistent ˜̃̃̃
δδ〉. Hence all conditions of the theorem are

trivially satisfied.

3. p = ⊥
There are no rules for an inconsistent process ⊥ in the semantics of
BPAsrt

⊥ . Hence all conditions of the theorem are trivially satisfied (as
the left hand sides of the implications do not hold.)

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x. We show that if p can perform an action

or a time step or a termination or a future inconsistency predicate holds
for p, then 〈consistent p〉 holds.
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(a) Action Step:

Suppose,

〈σ0
rel(x)〉 a−→ 〈p′〉

It can only be derived from Rule P2-4. From the premise of the rule,

〈x〉 a−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.
(b) Time Step:

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p′〉

It can only be derived from Rule P2-6. From the premise of the rule,

〈x〉 r7−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.
(c) Termination Predicate:

Suppose,

〈σ0
rel(x)〉 a−→ √

It can only be derived from Rule P2-5. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.
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(d) A Future Inconsistency Predicate:

Suppose,

〈σ0
rel(x)〉 r7−→⊥

It can only be derived from Rule P2-8. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-7. We get:

〈consistent σ0
rel(x)〉

Hence proved.

2. p = σt
rel(x) t > 0

From Rule P2-12, for a process term σt
rel(x), with t > 0, the following

holds:
〈consistent σt

rel(x)〉
Hence all conditions of the theorem are trivially proved.

3. p = x · y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x · y〉 a−→ 〈p′〉
It can only be derived from Rule P2-15 or Rule P2-16.

• Rule P2-15
Then for some process term p′′, p′ = p′′ · y. From the premise of
the rule,

〈x〉 a−→ 〈p′′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.
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• Rule P2-16
Then, p′ = y. From the premise of the rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

(b) Time Step:

Suppose,

〈x · y〉 r7−→ 〈p′〉
It can only be derived from Rule P2-17. From the premise of the
rule,

〈x〉 r7−→ 〈p′〉
By Induction on the above time step, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

(c) Termination Predicate:

Suppose,

〈x · y〉 a−→ √

There are no rules to derive a termination predicate for a sequential
composition. Hence the left hand side of the implication does not
hold and the implication is trivially satisfied.

(d) A Future Inconsistency Predicate:

Suppose,

〈x · y〉 r7−→⊥

It can only be derived from Rule P2-19. From the premise of the
rule,

〈x〉 r7−→⊥
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By Induction on the above predicate, we get:

〈consistent x〉
Apply Rule P2-18. We get:

〈consistent x · y〉
Hence proved.

4. p = x + y.

We prove the four conditions of the theorem one by one.

(a) Action Step:

Suppose,

〈x + y〉 a−→ 〈p′〉
It can only be derived from Rule P2-20 or Rule P2-21.

• Rule P2-20
From the premise of the rule,

〈x〉 a−→ 〈p′〉 (762)
〈consistent y〉 (763)

By Induction on Transition 762, we get:

〈consistent x〉 (764)

Apply Rule P2-27 on Predicates 763 and 764. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-21
From the premise of the rule,

〈y〉 a−→ 〈p′〉 (765)
〈consistent x〉 (766)

By Induction on Transition 765, we get:

〈consistent y〉 (767)

Apply Rule P2-27 on Predicates 766 and 767. We get:

〈consistent x + y〉
Hence proved.
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(b) Time Step:

Suppose,

〈x + y〉 r7−→ 〈p′〉
It can only be derived from Rule P2-24 or Rule P2-25 or Rule P2-26.

• Rule P2-24
Then for some process terms x1, y1, p′ = x1 + y1. From the
premise of the rule the following holds:

〈x〉 r7−→ 〈x1〉 (768)

〈y〉 r7−→ 〈y1〉 (769)

By Induction on the above time steps, we get:

〈consistent x〉
〈consistent y〉

Apply Rule P2-27 on the above Predicates. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-25
From the premise of the rule the following holds:

〈x〉 r7−→ 〈p′〉 (770)
〈consistent y〉 (771)

〈y〉 6 r7−→ (772)

∀s ≤ r, 〈y〉 6 s7−→⊥ (773)

By Induction on time step 770, we get:

〈consistent x〉 (774)

Apply Rule P2-27 on Predicates 774 and 771. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-26
From the premise of the rule the following holds:

〈y〉 r7−→ 〈p′〉 (775)
〈consistent x〉 (776)

〈x〉 6 r7−→ (777)

∀s ≤ r, 〈x〉 6 s7−→⊥ (778)
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By Induction on time step 775, we get:

〈consistent y〉 (779)

Apply Rule P2-27 on Predicates 779 and 776. We get:

〈consistent x + y〉
Hence proved.

(c) Termination Predicate:

Suppose,

〈x + y〉 a−→ √

It can only be derived from Rule P2-22 or Rule P2-23.
• Rule P2-22

From the premise of the rule,

〈x〉 a−→ √
(780)

〈consistent y〉 (781)

By Induction on Predicate 780, we get:

〈consistent x〉 (782)

Apply Rule P2-27 on Predicates 781 and 782. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-23
From the premise of the rule,

〈y〉 a−→ √
(783)

〈consistent x〉 (784)

By Induction on Predicate 783, we get:

〈consistent y〉 (785)

Apply Rule P2-27 on Predicates 784 and 785. We get:

〈consistent x + y〉
Hence proved.

(d) A Future Inconsistency Predicate:

Suppose,

〈x + y〉 r7−→⊥

It can only be derived from Rule P2-28 or Rule P2-29.
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• Rule P2-28
From the premise of the rule the following holds:

〈x〉 r7−→⊥ (786)
〈consistent y〉 (787)

∀s < r, 〈y〉 6 s7−→⊥ (788)

By Induction on predicate 786, we get:

〈consistent x〉 (789)

Apply Rule P2-27 on Predicates 789 and 787. We get:

〈consistent x + y〉
Hence proved.

• Rule P2-29
From the premise of the rule the following holds:

〈y〉 r7−→⊥ (790)
〈consistent x〉 (791)

∀s < r, 〈x〉 6 s7−→⊥ (792)

By Induction on predicate 790, we get:

〈consistent y〉 (793)

Apply Rule P2-27 on Predicates 793 and 791. We get:

〈consistent x + y〉
Hence proved.

5. p = νrel(x)

(a) Action Step:

Suppose,

〈νrel(x)〉 a−→ 〈p′〉
It can only be derived from Rule P2-30. From the premise of the
rule,

〈x〉 a−→ 〈p′〉
By Induction on the above action step, we get:

〈consistent x〉
Apply Rule P2-32. We get:

〈consistent νrel(x)〉
Hence proved.
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(b) Time Step:

No rule allows a derivation of a time step for the now operator.

(c) Termination Predicate:

Suppose,

〈νrel(x)〉 a−→ √

It can only be derived from Rule P2-30. From the premise of the
rule,

〈x〉 a−→ √

By Induction on the above predicate, we get:

〈consistent x〉

Apply Rule P2-32. We get:

〈consistent νrel(x)〉

Hence proved.

(d) A future Inconsistency predicate:

No rule allows a derivation of a future Inconsistency predicate for the
now operator.

£

H.2 Theorem : Future Inconsistency Predicates have Short-
est Length

Theorem 15 For all closed terms p, durations r > 0 the following holds:

〈p〉 r7−→⊥ =⇒ ∀s < r, 〈p〉 6 s7−→⊥

Proof We prove the above theorem by structural induction on a process term
p ∈ P . The base case of the structural induction comprises of constant process
terms, i.e. all undelayable actions in A, the deadlock process term δ and the
inconsistent process ⊥.
Base Case

1. p = ˜̃a.

There are no rules to derive a future Inconsistency predicate for an un-
delayable action. As the left hand side of the implication does not hold,
therefore, the implication holds.
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2. p = ˜̃δ

There are no rules to derive a future Inconsistency predicate for an unde-
layable action.

3. p = ⊥
There are no rules for an inconsistent process ⊥ in the semantics of
BPAsrt

⊥ .

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x.

Suppose,

〈σ0
rel(x)〉 r7−→⊥

It can only be derived from Rule P2-8. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above predicate, we get:

∀s < r, 〈x〉 6 s7−→⊥

Then for all durations s < r, the premise of Rule P2-8 is not satisfied.
Since this is the only rule allowing a future Inconsistency predicate for the
operator σ0

rel, therefore we conclude:

∀s < r, 〈σ0
rel(x)〉 6 s7−→⊥

Proved.

2. p = σt
rel(x) t > 0

Suppose,

〈σt
rel(x)〉 r7−→⊥ (794)

We distinguish between three cases depending on the duration r.

(a) Case r < t

For a process term σt
rel(x), no future inconsistency predicate of length

less than t can be derived.

(b) Case r = t
Rewriting Predicate 794:

〈σt
rel(x)〉 t7−→⊥
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From the case for r < t, the following always holds:

∀s < t, 〈σt
rel(x)〉 6 s7−→⊥ (795)

As Predicate 795 always holds, hence the theorem is proved for
σt

rel(x).

(c) Case r > t
Let r = u + t, for u > 0.
Than a future Inconsistency predicate can only be derived from Rule
P2-14. From the premise of the rule,

〈x〉 u7−→⊥

By Induction on the above Predicate, we have:

∀s < u, 〈x〉 6 s7−→⊥

Then Rule P2-14 cannot be applied for deriving a future Inconsis-
tency predicate for σt

rel(x) with length t + s. As Rule P2-14 is the
only such rule, therefore, we conclude that:

∀s < u, 〈σt
rel(x)〉 6 t+s7−−→⊥

We can rewrite the above predicate as:

∀s < (t + u), 〈σt
rel(x)〉 6 s7−→⊥

Hence proved.

3. p = x · y.

Suppose,

〈x · y〉 r7−→⊥

It can only be derived from Rule P2-19. From the premise of the rule,

〈x〉 r7−→⊥

By Induction on the above predicate, we get:

∀s < r, 〈x〉 6 s7−→⊥

Then Rule P2-19 cannot be applied for deriving a future Inconsistency
predicate for x · y with length less than r. As Rule P2-19 is the only such
rule, therefore, we conclude that:

∀s < r, 〈x · y〉 6 s7−→⊥

Hence proved.
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4. p = x + y.

Suppose,

〈x + y〉 r7−→⊥ (796)

It can only be derived from Rule P2-28 or Rule P2-29.

• Rule P2-28 If Predicate 796 is derived from this rule, then from the
premise of the rule the following holds:

〈x〉 r7−→⊥ (797)
〈consistent y〉 (798)

∀s < r, 〈y〉 6 s7−→⊥ (799)

By Induction on Predicate 797, we get:

∀s < r, 〈x〉 6 s7−→⊥ (800)

From Predicate 799, Rule P2-29 cannot be applied to derive a future
Inconsistency Predicate for x + y for a duration less than r.
Similarly, from Predicate 800, Rule P2-28 cannot be applied to derive
a Future Inconsistency Predicate for x+ y for a duration less than r.
Since rules 28 and 29 are the only such rules, hence we conclude:

∀s < r, 〈x + y〉 6 s7−→⊥

Hence proved.

• Rule P2-29 If Predicate 796 is derived from this rule, then from the
premise of the rule the following holds:

〈y〉 r7−→⊥ (801)
〈consistent x〉 (802)

∀s < r, 〈x〉 6 s7−→⊥ (803)

By Induction on Predicate 801, we get:

∀s < r, 〈y〉 6 s7−→⊥ (804)

From Predicate 803, Rule P2-28 cannot be applied to derive a future
Inconsistency Predicate for x + y for a duration less than r.
Similarly, from Predicate 804, Rule P2-29 cannot be applied to derive
a Future Inconsistency Predicate for x+ y for a duration less than r.
Since rules 28 and 29 are the only such rules, hence we conclude:

∀s < r, 〈x + y〉 6 s7−→⊥

Hence proved.
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5. p = νrel(x)

There are no rules to derive a Future Inconsistency Predicate for the now
operator. Hence the theorem trivially holds.

£

H.3 Theorem : Time Determinism

Theorem 16 For all closed terms p, durations r > 0 the following holds:

〈p〉 r7−→ 〈p1〉 ∧ 〈p〉 r7−→ 〈p2〉
=⇒ p1 ≡ p2

Proof We prove the above theorem by structural induction on a process term
p ∈ P . The base case of the structural induction comprises of constant process
terms, i.e. all undelayable actions in A, the deadlock process term δ and the
inconsistent process ⊥.
Base Case

1. p = ˜̃a.

There are no rules to derive a time step for an undelayable action.

2. p = ˜̃δ

There are no rules to derive a future Inconsistency predicate for the dead-
lock constant.

3. p = ⊥
There are no rules for an inconsistent process ⊥.

By Induction Hypothesis

1. p = σ0
rel(x), for a closed term x.

Suppose,

〈σ0
rel(x)〉 r7−→ 〈p1〉 (805)

〈σ0
rel(x)〉 r7−→ 〈p2〉 (806)

Only Rule P2-6 allows derivation of a time step for the operator σ0
rel. From

the premise of the rule,

〈x〉 r7−→ 〈p1〉 (807)

〈x〉 r7−→ 〈p2〉 (808)
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By Induction on the above predicate, we get:

p1 ≡ p2

Proved.

2. p = σt
rel(x) t > 0

Suppose,

〈σt
rel(x)〉 r7−→ 〈p1〉 (809)

〈σt
rel(x)〉 r7−→ 〈p2〉 (810)

We distinguish between three cases depending on the duration r.

(a) Case r < t

Only Rule P2-9 can derive time steps 809 and 810. Then the target
process terms in both time steps is σt−r

rel (x). I.e.,

p1 = σt−r
rel (x) ∧ p2 = σt−r

rel (x)

Hence
p1 ≡ p2

Proved.
(b) Case r = t

Rewriting time steps 809 and 810, we get:

〈σt
rel(x)〉 t7−→ 〈p1〉 (811)

〈σt
rel(x)〉 t7−→ 〈p2〉 (812)

Only Rule P2-9 can derive time steps 811 and 812. Then the target
process terms in both time steps is x. Hence,

p1 ≡ p2 ≡ x

Proved.
(c) Case r > t

Let r = u + t, for u > 0.
Rewriting time steps 809 and 810, we get:

〈σt
rel(x)〉 t+u7−−−→ 〈p1〉 (813)

〈σt
rel(x)〉 t+u7−−−→ 〈p2〉 (814)

Only Rule P2-9 can derive time steps 813 and 814. From the premise
of the rule, the following must hold:

〈x〉 u7−→ 〈p1〉 (815)

〈x〉 u7−→ 〈p2〉 (816)
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By Induction,
p1 ≡ p2

Proved.

3. p = x · y.

Suppose,

〈x · y〉 r7−→ 〈p1〉 (817)

〈x · y〉 r7−→ 〈p2〉 (818)

The above time steps can only be derived from Rule P2-17.

Then for some process term p′1, p1 = p′1 · y.

Rewriting Transition 817:

〈x · y〉 r7−→ 〈p′1 · y〉 (819)

Also for some process term p′2, p1 = p′2 · y.

Rewriting Transition 818:

〈x · y〉 r7−→ 〈p′2 · y〉 (820)

From the premise of Rule P2-17 the following must hold:

〈x〉 r7−→ 〈p′1〉 and 〈x〉 r7−→ 〈p′2〉 (821)

By Induction

p′1 ≡ p′2

Hence,
p′1 · y ≡ p′2 · y I.e. p1 ≡ p2

Proved.

4. p = x + y.

Suppose,

〈x + y〉 r7−→ 〈p1〉 (822)

〈x + y〉 r7−→ 〈p2〉 (823)

Rule P2-24, Rule P2-25 or Rule P2-26 can be used to derive the above
time steps. We discuss these rules one by one. We show both transitions
are derived by the same rule and that only one rule is applicable at a time.
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(a) Rule P2-24

Suppose Transition 822 is derived from this rule. Then for some
process terms x1, y1,

p1 = x1 + y1 (824)

From the premise of the rule the following holds:

〈x〉 r7−→ 〈x1〉 (825)

〈y〉 r7−→ 〈y1〉 (826)

From Transition 825, (〈x〉 r7−→ 〈x1〉), Rule P2-26 becomes inapplicable
to derive a time step for x + y.
From Transition 826, (〈y〉 r7−→ 〈y1〉), Rule P2-25 becomes inapplicable
to derive a time step for x + y.
Therefore Transition 823 can also be only derived by Rule P2-24.
From the premise of the rule, for some process terms x2, y2,

p2 = x2 + y2 (827)

and the following must hold:

〈x〉 r7−→ 〈x2〉 (828)

〈y〉 r7−→ 〈y2〉 (829)

Apply Induction Hypothesis on Transitions 825 and 828, and on
Transitions 826 and 829. We get:

x1 ≡ x2

y1 ≡ y2

which implies
x1 + y1 ≡ x2 + y2

From Statements 824 and 827,

p1 ≡ p2

Proved.

(b) Rule P2-25

Suppose Transition 822 is derived from this rule. From the premise
of the rule the following holds:

〈x〉 r7−→ 〈p1〉 (830)
〈consistent y〉 (831)

〈y〉 6 r7−→ (832)

∀s ≤ r, 〈y〉 6 s7−→⊥ (833)
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From Transition 830, (〈x〉 r7−→ 〈p1〉), Rule P2-26 becomes inapplicable
to derive a time step for x + y.
From Transition 826, (〈y〉 6 r7−→), Rule P2-24 becomes inapplicable to
derive a time step for x + y.
Hence Transition 823 can only be derived from Rule P2-25.
From the premise of the rule, in addition to Predicates 831, 832 and
833, the following holds:

〈x〉 r7−→ 〈p2〉 (834)

Apply Induction Hypothesis on Transition 830 and Transition 834,
we get:

p1 ≡ p2

Proved.

(c) Rule P2-26

Suppose Transition 822 is derived from this rule. From the premise
of the rule the following holds:

〈y〉 r7−→ 〈p1〉 (835)
〈consistent x〉 (836)

〈x〉 6 r7−→ (837)

∀s ≤ r, 〈x〉 6 s7−→⊥ (838)

From Transition 835, (〈y〉 r7−→ 〈p1〉), Rule P2-25 becomes inapplicable
to derive a time step for x + y.
From Transition 838, (〈x〉 6 r7−→), Rule P2-24 becomes inapplicable to
derive a time step for x + y.
Hence Transition 823 can only be derived from Rule P2-26.
From the premise of the rule, in addition to Predicates 836, 837 and
838, the following holds:

〈y〉 r7−→ 〈p2〉 (839)

Apply Induction Hypothesis on Transition 835 and Transition 839,
we get:

p1 ≡ p2

Proved.

5. p = νrel(x)

There are no rules to derive a time step for the now operator. Hence the
theorem trivially holds.

£
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H.4 Axiom A1 (Commutativity)

x + y = y + x (Commutativity-A1)
We need to prove, x + y↔ y + x.
Let R be a binary relation on process terms defined as follows:

R = {(x + y, y + x) | x, y ∈ P}
It is trivial to prove that R ∪ I is a bisimulation relation.

H.5 Axiom A2 (Associativity of Choice)

(x + y) + z = x + (y + z) (Associativity of Alternative Composition-A2).
We need to prove, (x + y) + z↔ x + (y + z).
Let R be a binary relation on process terms defined as follows:

R = { ((x + y) + z, x + (y + z)) | x, y, z ∈ P}
We prove that the relation R ∪ I is a bisimulation relation.
For all a ∈ A, r > 0, x, y, z, p ∈ P , the following holds:

1.
〈(x + y) + z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x + (y + z)〉 a−→ 〈p′〉

and (p, p′) ∈ R ∪ I
Suppose,

〈(x + y) + z〉 a−→ 〈p〉 (840)

An action transition for an alternative composition can be derived only
from rules P2 20 or P2 21. We discuss them one by one:

(a) Rule P2 20

If Transition 840 is derived from this rule, then from the premise the
following must hold:

〈x + y〉 a−→ 〈p〉 (841)
〈consistent z〉 (842)

Again Transition 841 can be derived from Rule P2 20 or Rule P2-21.

i. Rule P2 20:
If Transition 841 is derived from this rule, then from the premise
the following must hold:

〈x〉 a−→ 〈p〉 (843)
〈consistent y〉 (844)

Apply Rule P2-27 on predicates 842 and 844, we get:

〈consistent y + z〉 (845)
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By applying Rule 20 on Transition 843, for any process term q
with 〈consistent q〉, the following holds:

〈x + q〉 a−→ 〈p〉

The term q can be y + z. Hence we have,

〈x + (y + z)〉 a−→ 〈p〉 (846)

Consider the target process terms in Transition 840 and 846.
The pair (p, p) is in I.

ii. Rule P2 21:
If Transition 841 is derived from this rule, then from the premise
the following must hold:

〈y〉 a−→ 〈p〉 (847)
〈consistent x〉 (848)

By applying Rule 20 on Transition 847, using Predicate 842, we
can derive the following transition:

〈y + z〉 a−→ 〈p〉 (849)

By applying Rule 21 on above transition, using Predicate 848,
we can derive the following transition:

〈x + (y + z)〉 a−→ 〈p〉 (850)

Consider the target process terms in Transition 840 and 850.
The pair (p, p) is in I.

(b) Rule P2 21

If Transition 840 is derived from this rule, then from the premise the
following must hold:

〈z〉 a−→ 〈p〉 (851)
〈consistent x + y〉 (852)

Predicate 852 can only hold, if

〈consistent x〉 (853)
〈consistent y〉 (854)

By applying Rule 21 on Transition 851, using Predicate 854, we can
derive the following transition:

〈y + z〉 a−→ 〈p〉 (855)
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By applying Rule 21 on above transition, using Predicate 853, we
can derive the following transition:

〈x + (y + z)〉 a−→ 〈p〉 (856)

Consider the target process terms in Transition 840 and 856. The
pair (p, p) is in I.

2.
〈x + (y + z)〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x + y) + z〉 a−→ 〈p′〉

and (p′, p) ∈ R ∪ I
Suppose,

〈x + (y + z)〉 a−→ 〈p〉 (857)

An action transition for an alternative composition can be derived only
from rules P2 20 or P2 21. We discuss them one by one:

(a) Rule P2-20

If Transition 857 is derived from this rule, then from the premise the
following must hold:

〈x〉 a−→ 〈p〉 (858)
〈consistent y + z〉 (859)

Predicate 859 can only hold, if

〈consistent y〉 (860)
〈consistent z〉 (861)

By applying Rule 20 on Transition 858, using Predicate 860, we can
derive the following transition:

〈x + y〉 a−→ 〈p〉 (862)

By again applying Rule 20 on above transition, using Predicate 861,
we can derive the following transition:

〈(x + y) + z〉 a−→ 〈p〉 (863)

Consider the target process terms in Transition 857 and 863. The
pair (p, p) is in I.

(b) Rule P2 21

If Transition 857 is derived from this rule, then from the premise the
following must hold:

〈y + z〉 a−→ 〈p〉 (864)
〈consistent x〉 (865)

Again Transition 864 can be derived from Rule P2 20 or Rule P2-21.

198



i. Rule P2 20:
If Transition 864 is derived from this rule, then from the premise
the following must hold:

〈y〉 a−→ 〈p〉 (866)
〈consistent z〉 (867)

By applying Rule 21 on Transition 866, using Predicate 865, we
can derive the following transition:

〈x + y〉 a−→ 〈p〉 (868)

By applying Rule 20 on above transition, using Predicate 867,
we can derive the following transition:

〈(x + y) + z〉 a−→ 〈p〉 (869)

Consider the target process terms in Transition 857 and 869.
The pair (p, p) is in I.

ii. Rule P2 21:
If Transition 864 is derived from this rule, then from the premise
the following must hold:

〈z〉 a−→ 〈p〉 (870)
〈consistent y〉 (871)

Apply Rule P2-27 on predicates 871 and 865, we get:

〈consistent x + y〉 (872)

By applying Rule 21 on Transition 870, for any process term q
with 〈consistent q〉, the following holds:

〈q + z〉 a−→ 〈p〉
The term q can be x + y. Hence we have,

〈(x + y) + z〉 a−→ 〈p〉 (873)

Consider the target process terms in Transition 857 and 873.
The pair (p, p) is in I.

3.
〈(x + y) + z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x + (y + z)〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x + y) + z〉 r7−→ 〈p〉 (874)

Rules P2 24, Rule P2-25 or Rule P2-26 can be used to derive the above
transition.
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(a) Rule P2-24

If this rule is used to derive Transition 874, then for some process
terms p1, p2, p = p1 + p2. Rewriting Transition 874:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (875)

From premise of the rule,

〈x + y〉 r7−→ 〈p1〉 (876)

〈z〉 r7−→ 〈p2〉 (877)

Again Transition 876 can be derived from one of the three rules: Rule
P2 24, Rule P2-25 or Rule P2-26.

i. Rule P2-24
If Transition 876 is derived from this rule, then for some pro-
cess terms x1, y1, p1 = x1 + y1. Rewriting Transition 875 and
Transition 876, we get:

〈(x + y) + z〉 r7−→ 〈(x1 + y1) + p2〉 (878)

〈x + y〉 r7−→ 〈x1 + y1〉 (879)

From the premise of the rule,

〈x〉 r7−→ 〈x1〉 (880)

〈y〉 r7−→ 〈y1〉 (881)

Apply Rule P2-24 on Transition 877 and 881, we get:

〈y + z〉 r7−→ 〈y1 + p2〉 (882)

Again apply Rule P2-24 on Transition 882 and 880, we get:

〈x + (y + z)〉 r7−→ 〈x1 + (y1 + p2)〉 (883)

Consider the target process terms in transitions 878 and 883.
The pair ((x1 + y1) + p2, x1 + (y1 + p2)) is in R.

ii. Rule P2-25
If Transition 876 is derived from this rule, then from the premise
of the rule,

〈x〉 r7−→ 〈p1〉 (884)
〈consistent y〉 (885)

〈y〉 6 r7−→ (886)

∀s ≤ r 〈y〉 6 s7−→⊥ (887)
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On Transitions (Predicates) 877, 885 , 886 and 887, apply Rule
P2-26, we get:

〈y + z〉 r7−→ 〈p2〉 (888)

On Transitions 884 and 888, apply Rule P2-24, we get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (889)

Consider the target process terms in transitions 875 and 889.
The pair (p1 + p2, p1 + p2) is in I.

iii. Rule P2-26
If Transition 876 is derived from this rule, then from the premise
of the rule,

〈y〉 r7−→ 〈p1〉 (890)
〈consistent x〉 (891)

〈x〉 6 r7−→ (892)

∀s ≤ r 〈x〉 6 s7−→⊥ (893)

On Transitions 890 and 877, apply Rule P2-24, we get:

〈y + z〉 r7−→ 〈p1 + p2〉 (894)

On Transitions (Predicates) 894, 891, 892 and 893, apply Rule
P2-26, we get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (895)

Consider the target process terms in transitions 875 and 895.
The pair (p1 + p2, p1 + p2) is in I.

(b) Rule P2-25
If Transition 874 is derived from this rule, then from the premise:

〈x + y〉 r7−→ 〈p〉 (896)
〈consistent z〉 (897)

〈z〉 6 r7−→ (898)

∀s ≤ r 〈z〉 6 s7−→⊥ (899)

Again Transition 896 can be derived from three rules. They are Rule
P2-24, Rule P2-25 and Rule P2-26. We discuss them one by one.

i. Rule P2-24
If this rule is used to derive Transition 896, then for some pro-
cess terms x1, y1, p = x1 + y1. Rewriting Transitions 874 and
Transition 896, we get:

〈(x + y) + z〉 r7−→ 〈x1 + y1〉 (900)

〈x + y〉 r7−→ 〈x1 + y1〉 (901)
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From the premise of the rule:

〈x〉 r7−→ 〈x1〉 (902)

〈y〉 r7−→ 〈y1〉 (903)

On Transitions (Predicates) 903, 897, 898 and 899, apply Rule
P2-25, we get:

〈y + z〉 r7−→ 〈y1〉 (904)

On Transitions 904, 902, apply Rule P2-24, we get:

〈x + (y + z)〉 r7−→ 〈x1 + y1〉 (905)

Consider target process terms in Transitions 900 and 905. The
pair (x1 + y1, x1 + y1) is in I.

ii. Rule P2-25
If this rule is used to derive Transition 896, then from the premise
of the rule, the following holds:

〈x〉 r7−→ 〈p〉 (906)
〈consistent y〉 (907)

〈y〉 6 r7−→ (908)

∀s ≤ r 〈y〉 6 s7−→⊥ (909)

On Predicates 897 and 907, apply Rule P2-27, we get:

〈consistent y + z〉 (910)

A time transition for y + z with duration r can either be derived
from Rule P2-24, Rule P2-25 or Rule P2-26. From Predicate
908, Rules P2 24 and P2 25 cannot be applied. From Predicate
898, Rule P2 26 cannot be applied. Hence we can conclude,

〈y + z〉 6 r7−→ (911)

A future inconsistency predicate for y+z with duration s ∈ (0, r]
can either be derived from Rule P2-28, or Rule P2-29. From
Predicate 909, Rule P2 28 cannot be applied to derive a fu-
ture inconsistency predicate of length s ∈ (0, r] for y + z. From
Predicate 899, Rule P2 29 cannot be applied to derive a future
inconsistency predicate of length s ∈ (0, r] for y + z. Hence we
can conclude,

∀s ≤ r 〈y + z〉 6 s7−→⊥ (912)

On Transitions (Predicates) 910, 911, 912 and 906, apply Rule
P2 25. We get:

〈x + (y + z)〉 r7−→ 〈p〉 (913)
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Consider target process terms in Transitions 874 and 913. The
pair (p, p) is in I.

iii. Rule P2-26
If this rule is used to derive Transition 896, then from the premise
of the rule, the following holds:

〈y〉 r7−→ 〈p〉 (914)
〈consistent x〉 (915)

〈x〉 6 r7−→ (916)

∀s ≤ r 〈x〉 6 s7−→⊥ (917)

On Transitions (Predicates) 897, 898, 899 and 914, apply Rule
P2-25, we get:

〈y + z〉 r7−→ 〈p〉 (918)

On Transitions (Predicates) 918, 915, 916 and 917, apply Rule
P2-26, we get:

〈x + (y + z)〉 r7−→ 〈p〉 (919)

Consider target process terms in Transitions 874 and 919. The
pair (p, p) is in I.

(c) Rule P2-26
If Transition 874 is derived from this rule, then from the premise of
the rule:

〈z〉 r7−→ 〈p〉 (920)
〈consistent x + y〉 (921)

〈x + y〉 6 r7−→ (922)

∀s ≤ r 〈x + y〉 6 s7−→⊥ (923)

Predicate 921 can only be derived from Rule P2-27. Hence the
premise of the rule must hold:

〈consistent x〉 (924)
〈consistent y〉 (925)

From Predicate 923, we want to prove that the following holds:

∀s ≤ r 〈x〉 6 s7−→⊥
∀s ≤ r 〈y〉 6 s7−→⊥

We prove the above predicates by contradiction.
Suppose,

∃u,u′≤r : 〈x〉 u7−→⊥ ∨ 〈y〉 u′7−→⊥
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The above statement is equivalent to the statement below:

∃u≤r : 〈x〉 u7−→⊥ ∨ 〈y〉 u7−→⊥ (926)

We discuss different cases of the Disjunction Predicate 926 and show
that all cases lead to a contradiction to Predicate 923.

i. Case 〈x〉 u7−→⊥ ∧〈y〉 u7−→⊥
Then by Theorem 15,

∀t1 < u 〈y〉 6 t17−→⊥ (927)

From Predicate 925,

〈consistent y〉 (928)

Using Predicates 926, 928 and the assumption 〈x〉 u7−→⊥, apply
Rule P2-28, we get:

〈x + y〉 u7−→⊥ (929)

which is a contradiction to Predicate 923.
ii. Case 〈x〉 u7−→⊥ ∧〈y〉 6 u7−→⊥ For v < u, one of the two cases must

hold:
• Case 〈y〉 v7−→⊥

Again from Theorem 15 using the assumption (〈x〉 u7−→⊥), the
following holds:

∀t1 < v 〈x〉 6 t17−→⊥ (930)

Using Predicates 930, 924 and the assumption 〈y〉 v7−→⊥, apply
Rule P2-28, we get:

〈x + y〉 v7−→⊥ (931)

which is a contradiction to Predicate 923.
• Case ∀v < u : 〈y〉 6 v7−→⊥

Using Predicate 925 and the assumptions 〈x〉 u7−→⊥ and ∀v <

u : 〈y〉 6 v7−→⊥, apply Rule P2-28, we get:

〈x + y〉 u7−→⊥ (932)

which is again a contradiction to Predicate 923.
iii. Case 〈x〉 6 u7−→⊥ ∧〈y〉 u7−→⊥

Similar to as above.

Hence we conclude:

∀s ≤ r 〈x〉 6 s7−→⊥ (933)

∀s ≤ r 〈y〉 6 s7−→⊥ (934)
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From Predicate 922, we conclude that none of the Rules P2 24, P2
25 and P2 26 are applicable. If Rule P2-24 is inapplicable, then x
and y cannot delay together for r time units. Suppose one of x and
y can delay. Suppose, for some x′,

〈x〉 r7−→ 〈x′〉
〈y〉 6 r7−→

Now from Transitions (Predicates) 934,925 and the time transition
for x′ and impossibility of delay for y given above, Rule P2-25 be-
comes applicable and we can derive,

〈x + y〉 r7−→ 〈x′〉
which is a contradiction to Predicate 922. Similarly, if we suppose y
can delay for r time units, then Rule P2 26 becomes applicable.
Hence we conclude that none of the process terms, x and y can delay.

〈x〉 6 r7−→ (935)

〈y〉 6 r7−→ (936)

On Transitions (Predicates) 920, 925, 934 and 936, apply Rule P2-26,
we get:

〈y + z〉 r7−→ 〈p〉 (937)

Again join Transitions (Predicates) 924, 933, 935 and 937 and apply
Rule P2-26, we get:

〈x + (y + z)〉 r7−→ 〈p〉 (938)

Consider target process terms in transitions 874 and 938. The pair
(p, p) is in I.

4.
〈x + (y + z)〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x + y) + z〉 r7−→ 〈z′〉

and (z′, p) ∈ R ∪ I
Suppose,

〈x + (y + z)〉 r7−→ 〈p〉 (939)

Rules P2 24, Rule P2-25 or Rule P2-26 can be used to derive the above
transition.

(a) Rule P2-24

If this rule is used to derive Transition 939, then for some process
terms p1, p2, p = p1 + p2. Rewriting Transition 939:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (940)
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From premise of the rule,

〈x〉 r7−→ 〈p1〉 (941)

〈y + z〉 r7−→ 〈p2〉 (942)

Again Transition 942 can be derived from one of the three rules: Rule
P2 24, Rule P2-25 or Rule P2-26.

i. Rule P2-24
If Transition 942 is derived from this rule, then for some pro-
cess terms y2, z2, p2 = y2 + z2. Rewriting Transition 940 and
Transition 942, we get:

〈x + (y + z)〉 r7−→ 〈p1 + (y2 + z2)〉 (943)

〈y + z〉 r7−→ 〈y2 + z2〉 (944)

From the premise of the rule,

〈y〉 r7−→ 〈y2〉 (945)

〈z〉 r7−→ 〈z2〉 (946)

Apply Rule P2-24 on Transition 941 and 945, we get:

〈x + y〉 r7−→ 〈p1 + y2〉 (947)

Again apply Rule P2-24 on Transition 947 and 946, we get:

〈(x + y) + z)〉 r7−→ 〈(p1 + y2) + z2)〉 (948)

Consider the target process terms in transitions 943 and 948.
The pair (p1 + (y2 + z2), (p1 + y2) + z2)) is in R.

ii. Rule P2-25
If Transition 942 is derived from this rule, then from the premise
of the rule,

〈y〉 r7−→ 〈p2〉 (949)
〈consistent z〉 (950)

〈z〉 6 r7−→ (951)

∀s ≤ r 〈z〉 6 s7−→⊥ (952)

On Transitions 941 and 949, apply Rule P2-24, we get:

〈x + y〉 r7−→ 〈p1 + p2〉 (953)

On Transitions (Predicates) 953 , 950, 951 and 952, apply Rule
P2-25, we get:

〈(x + y) + z〉 r7−→ 〈p1 + p2〉 (954)

Consider the target process terms in transitions 940 and 954.
The pair (p1 + p2, p1 + p2) is in I.
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iii. Rule P2-26
If Transition 942 is derived from this rule, then from the premise
of the rule,

〈z〉 r7−→ 〈p2〉 (955)
〈consistent y〉 (956)

〈y〉 6 r7−→ (957)

∀s ≤ r 〈y〉 6 s7−→⊥ (958)

On Transitions (Predicates) 956 , 957, 958 and 941 and apply
Rule P2-25, we get:

〈x + y〉 r7−→ 〈p1〉 (959)

On Transitions 955 and 959, and apply Rule P2-24, we get:

〈x + (y + z)〉 r7−→ 〈p1 + p2〉 (960)

Consider the target process terms in transitions 940 and 960.
The pair (p1 + p2, p1 + p2) is in I.

(b) Rule P2-25
If Transition 939 is derived from this rule, then from the premise of
the rule:

〈x〉 r7−→ 〈p〉 (961)
〈consistent y + z〉 (962)

〈y + z〉 6 r7−→ (963)

∀s ≤ r 〈y + z〉 6 s7−→⊥ (964)

Predicate 962 can only be derived from Rule P2-27. Hence the
premise of the rule must hold:

〈consistent y〉 (965)
〈consistent z〉 (966)

From Predicates 964, 965 ,966 and Theorem 15, by employing the
same reasoning as given before we conclude:

∀s ≤ r 〈y〉 6 s7−→⊥ (967)

∀s ≤ r 〈z〉 6 s7−→⊥ (968)

From Predicate 963, we conclude that none of the rules P2 24, P2
25 and P2 26 are applicable. Then y and z cannot both delay for r
time units otherwise Rule P2-24 becomes applicable. Suppose one of
y and z can delay. Suppose, for some y′,

〈y〉 r7−→ 〈y′〉
〈z〉 6 r7−→
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Now from Transitions (Predicates) 968, 966, the time transition for
y and the impossibility of delay predicate for z given above, Rule
P2-25 becomes applicable and we can derive,

〈y + z〉 r7−→ 〈y′〉
which is a contradiction to Predicate 963. Similarly, if we suppose, z
can delay then Rule P2 26 becomes applicable.
Hence we conclude that none of the process terms, y and z can delay.

〈y〉 6 r7−→ (969)

〈z〉 6 r7−→ (970)

On Transitions (Predicates) 961, 965, 967 and 969, apply Rule P2-25,
we get:

〈x + y〉 r7−→ 〈p〉 (971)

Again join Transitions (Predicates) 966, 968, 970 and 971, apply Rule
P2-25, we get:

〈(x + y) + z〉 r7−→ 〈p〉 (972)

Consider target process terms in transitions 939 and 972. The pair
(p, p) is in I.

(c) Rule P2-26
If Transition 939 is derived from this rule, then from the premise:

〈y + z〉 r7−→ 〈p〉 (973)
〈consistent x〉 (974)

〈x〉 6 r7−→ (975)

∀s ≤ r 〈x〉 6 s7−→⊥ (976)

Again Transition 973 can be derived from three rules. They are Rule
P2-24, Rule P2-25 and Rule P2-26. We discuss them one by one.

i. Rule P2-24
If this rule is used to derive Transition 973, then for some pro-
cess terms y1, z1, p = y1 + z1. Rewriting Transitions 939 and
Transition 973, we get:

〈x + (y + z)〉 r7−→ 〈y1 + z1〉 (977)

〈y + z〉 r7−→ 〈y1 + z1〉 (978)

From the premise of the rule:

〈y〉 r7−→ 〈y1〉 (979)

〈z〉 r7−→ 〈z1〉 (980)
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On Transitions (Predicates) 979, 974, 975 and 976, apply Rule
P2-26, we get:

〈x + y〉 r7−→ 〈y1〉 (981)

On Transitions 981, 980, apply Rule P2-24, we get:

〈(x + y) + z〉 r7−→ 〈y1 + z1〉 (982)

Consider target process terms in Transitions 977 and 982. The
pair (y1 + z1, y1 + z1) is in I.

ii. Rule P2-25
If this rule is used to derive Transition 973, then from the premise
of the rule, the following holds:

〈y〉 r7−→ 〈p〉 (983)
〈consistent z〉 (984)

〈z〉 6 r7−→ (985)

∀s ≤ r 〈z〉 6 s7−→⊥ (986)

On Transitions (Predicates) 974, 975, 976 and 983, apply Rule
P2-26, we get:

〈x + y〉 r7−→ 〈p〉 (987)

On Transitions (Predicates) 987, 984, 985 and 986, apply Rule
P2-25, we get:

〈(x + y) + z〉 r7−→ 〈p〉 (988)

Consider target process terms in Transitions 939 and 988. The
pair (p, p) is in I.

iii. Rule P2-26
If this rule is used to derive Transition 973, then from the premise
of the rule, the following holds:

〈z〉 r7−→ 〈p〉 (989)
〈consistent y〉 (990)

〈y〉 6 r7−→ (991)

∀s ≤ r 〈y〉 6 s7−→⊥ (992)

On Predicates 974 and 990, apply Rule P2-27, we get:

〈consistent x + y〉 (993)

A time transition for x+ y with duration r can either be derived
from Rule P2-24, Rule P2-25 or Rule P2-26. From Predicate
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975, Rules P2 24 and P2 25 cannot be applied. From Predicate
991, Rule P2 26 cannot be applied. Hence we can conclude,

〈x + y〉 6 r7−→ (994)

A future inconsistency predicate for x+y with duration s ∈ (0, r]
can either be derived from Rule P2-28, or Rule P2-29. From
Predicate 976, Rule P2 28 cannot be applied to derive a fu-
ture inconsistency predicate of length s ∈ (0, r] for x + y. From
Predicate 992, Rule P2 29 cannot be applied to derive a future
inconsistency predicate of length s ∈ (0, r] for x + y. Hence we
can conclude,

∀s ≤ r 〈x + y〉 6 r7−→⊥ (995)

On Transitions (Predicates) 989, 993, 994 and 995, apply Rule
P2 26. We get:

〈(x + y) + z〉 r7−→ 〈p〉 (996)

Consider target process terms in Transitions 939 and 996. The
pair (p, p) is in I.

5.
〈(x + y) + z〉 a−→ √ ⇐⇒ 〈x + (y + z)〉 a−→ √

Left Implication
Suppose,

〈(x + y) + z〉 a−→ √
(997)

A termination predicate for an alternative composition can be derived
only from rules P2 22 or P2 23. We discuss them one by one:

(a) Rule P2 22

If Predicate 997 is derived from this rule, then from the premise the
following must hold:

〈x + y〉 a−→ √
(998)

〈consistent z〉 (999)

Again Predicate 998 can be derived from Rule P2 22 or Rule P2-23.

i. Rule P2 22:
If Predicate 998 is derived from this rule, then from the premise
the following must hold:

〈x〉 a−→ √
(1000)

〈consistent y〉 (1001)
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Apply Rule P2-27 on predicates 999 and 1001, we get:

〈consistent y + z〉 (1002)

By applying Rule 22 on Predicate 1000, for any process term q
with 〈consistent q〉, the following holds:

〈x + q〉 a−→ √

The term q can be y + z. Hence we have,

〈x + (y + z)〉 a−→ √
(1003)

ii. Rule P2 23:
If Predicate 998 is derived from this rule, then from the premise
the following must hold:

〈y〉 a−→ √
(1004)

〈consistent x〉 (1005)

By applying Rule 22 on Predicate 1004, using Predicate 999, we
can derive the following predicate:

〈y + z〉 a−→ √
(1006)

By applying Rule 23 on above predicate, using Predicate 1005,
we can derive the following predicate:

〈x + (y + z)〉 a−→ √
(1007)

(b) Rule P2 23

If Predicate 997 is derived from this rule, then from the premise the
following must hold:

〈z〉 a−→ √
(1008)

〈consistent x + y〉 (1009)

Predicate 1009 can only hold, if

〈consistent x〉 (1010)
〈consistent y〉 (1011)

By applying Rule 23 on Predicate 1008, using Predicate 1011, we can
derive the following predicate:

〈y + z〉 a−→ √
(1012)

By applying Rule 22 on above predicate, using Predicate 1010, we
can derive the following predicate:

〈x + (y + z)〉 a−→ √
(1013)
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Right Implication

Suppose,
〈x + (y + z)〉 a−→ √

(1014)

A termination predicate for an alternative composition can be derived
only from rules P2 22 or P2 23. We discuss them one by one:

(a) Rule P2-22

If Predicate 1014 is derived from this rule, then from the premise the
following must hold:

〈x〉 a−→ √
(1015)

〈consistent y + z〉 (1016)

Predicate 1016 can only hold, if

〈consistent y〉 (1017)
〈consistent z〉 (1018)

By applying Rule 22 on Predicate 1015, using Predicate 1017, we can
derive the following predicate:

〈x + y〉 a−→ √
(1019)

By again applying Rule 22 on above predicate, using Predicate 1018,
we can derive the following predicate:

〈(x + y) + z〉 a−→ √
(1020)

(b) Rule P2 23

If Predicate 1014 is derived from this rule, then from the premise the
following must hold:

〈y + z〉 a−→ √
(1021)

〈consistent x〉 (1022)

Again Predicate 1021 can be derived from Rule P2 22 or Rule P2-23.

i. Rule P2 22:
If Predicate 1021 is derived from this rule, then from the premise
the following must hold:

〈y〉 a−→ √
(1023)

〈consistent z〉 (1024)
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By applying Rule 23 on Predicate 1023, using Predicate 1022,
we can derive the following predicate:

〈x + y〉 a−→ √
(1025)

By applying Rule 22 on above predicate, using Predicate 1024,
we can derive the following predicate:

〈(x + y) + z〉 a−→ √
(1026)

ii. Rule P2 23:
If Predicate 1021 is derived from this rule, then from the premise
the following must hold:

〈z〉 a−→ √
(1027)

〈consistent y〉 (1028)

Apply Rule P2-27 on predicates 1028 and 1022, we get:

〈consistent x + y〉 (1029)

By applying Rule 23 on Predicate 1027, for any process term q
with 〈consistent q〉, the following holds:

〈q + z〉 a−→ √

The term q can be x + y. Hence we have,

〈(x + y) + z〉 a−→ √
(1030)

6.
〈(x + y) + z〉 r7−→⊥ ⇐⇒ 〈x + (y + z)〉 r7−→⊥

Left Implication

Suppose,
〈(x + y) + z〉 r7−→⊥ (1031)

Rule P2-28 or Rule P2-29 can be used to derive the above transition.

(a) Rule P2-28
If Predicate 1031 is derived from this rule, then from the premise:

〈x + y〉 r7−→⊥ (1032)
〈consistent z〉 (1033)

∀s < r 〈z〉 6 s7−→⊥ (1034)

Again Predicate 1032 can be derived from two rules. They are Rule
P2-28 and Rule P2-29. We discuss them one by one.
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i. Rule P2-28
If this rule is used to derive Predicate 1032, then from the premise
of the rule, the following holds:

〈x〉 r7−→⊥ (1035)
〈consistent y〉 (1036)

∀s < r 〈y〉 6 s7−→⊥ (1037)

On Predicates 1033 and 1036, apply Rule P2-27, we get:

〈consistent y + z〉 (1038)

A future inconsistency predicate for y + z with duration s ∈
(0, r) can either be derived from Rule P2-28, or Rule P2-29.
From Predicates 1037 and 1034, none of the rules can be applied.
Hence we can conclude,

∀s < r 〈y + z〉 6 s7−→⊥ (1039)

On Predicates 1038, 1039 and 1035, apply Rule P2 28. We get:

〈x + (y + z)〉 r7−→⊥ (1040)

ii. Rule P2-29
If this rule is used to derive Predicate 1032, then from the premise
of the rule, the following holds:

〈y〉 r7−→⊥ (1041)
〈consistent x〉 (1042)

∀s < r 〈x〉 6 s7−→⊥ (1043)

On Predicates 1033, 1034 and 1041, apply Rule P2-28, we get:

〈y + z〉 r7−→⊥ (1044)

On Predicates 1044, 1042 and 1043, apply Rule P2-29, we get:

〈x + (y + z)〉 r7−→⊥ (1045)

(b) Rule P2-29
If Predicate 1031 is derived from this rule, then from the premise of
the rule:

〈z〉 r7−→⊥ (1046)
〈consistent x + y〉 (1047)

∀s < r 〈x + y〉 6 s7−→⊥ (1048)
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Predicate 1047 can only be derived from Rule P2-27. Hence the
premise of the rule must hold:

〈consistent x〉 (1049)
〈consistent y〉 (1050)

From Predicates 1048, 1049 and 1050 and Theorem 15, we conclude:

∀s < r 〈x〉 6 s7−→⊥ (1051)

∀s < r 〈y〉 6 s7−→⊥ (1052)

On Predicates 1046, 1050 and 1052, apply Rule P2-29, we get:

〈y + z〉 r7−→⊥ (1053)

Again join Predicates 1049, 1051 and 1053 and apply Rule P2-29, we
get:

〈x + (y + z)〉 r7−→⊥ (1054)

Right Implication

Suppose,
〈x + (y + z)〉 r7−→⊥ (1055)

Rule P2-28 or Rule P2-29 can be used to derive the above predicate.

(a) Rule P2-28
If Predicate 1055 is derived from this rule, then from the premise of
the rule:

〈x〉 r7−→⊥ (1056)
〈consistent y + z〉 (1057)

∀s < r 〈y + z〉 6 s7−→⊥ (1058)

Predicate 1057 can only be derived from Rule P2-27. Hence the
premise of the rule must hold:

〈consistent y〉 (1059)
〈consistent z〉 (1060)

From Predicates 1058, 1059 and 1060 and Theorem 15, we conclude:

∀s < r 〈y〉 6 s7−→⊥ (1061)

∀s < r 〈z〉 6 s7−→⊥ (1062)

On Predicates 1056, 1059, 1061 ,

〈x + y〉 r7−→⊥ (1063)
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Again join Predicates (Predicates) 1060, 1062, and 1063, apply Rule
P2-28, we get:

〈(x + y) + z〉 r7−→⊥

(b) Rule P2-29
If Predicate 1055 is derived from this rule, then from the premise:

〈y + z〉 r7−→⊥ (1064)
〈consistent x〉 (1065)

∀s < r 〈x〉 6 s7−→⊥ (1066)

Again Predicate 1064 can be derived from two rules. They are Rule
P2-28 and Rule P2-29. We discuss them one by one.

i. Rule P2-28
If this rule is used to derive Predicate 1064, then from the premise
of the rule, the following holds:

〈y〉 r7−→⊥ (1067)
〈consistent z〉 (1068)

∀s < r 〈z〉 6 s7−→⊥ (1069)

On Predicates 1065, 1066 and 1067, apply Rule P2-29, we get:

〈x + y〉 r7−→⊥ (1070)

On Predicates 1070, 1068 and 1069, apply Rule P2-28, we get:

〈(x + y) + z〉 r7−→⊥ (1071)

ii. Rule P2-29
If this rule is used to derive Predicate 1064, then from the premise
of the rule, the following holds:

〈z〉 r7−→⊥ (1072)
〈consistent y〉 (1073)

∀s < r 〈y〉 6 s7−→⊥ (1074)

On Predicates 1065 and 1073, apply Rule P2-27, we get:

〈consistent x + y〉 (1075)

A future inconsistency predicate for x+y with duration s ∈ (0, r)
can either be derived from Rule P2-28, or Rule P2-29. From
Predicates 1066 and 1074 none of the rules can be applied. Hence
we can conclude,

∀s < r 〈x + y〉 6 r7−→⊥ (1076)

On Predicates 1072, 1075 and 1076, apply Rule P2 29. We get:

〈(x + y) + z〉 r7−→⊥ (1077)
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7.
〈consistent (x + y) + z〉 ⇐⇒ 〈consistent x + (y + z)〉

Left Implication
Suppose,

〈consistent (x + y) + z〉 (1078)

The above predicate can only be derived from Rule P2-27. From the
premise of the rule, the following holds:

〈consistent x + y〉 (1079)
〈consistent z〉 (1080)

Again Predicate 1080 can only be derived from Rule P2-27. From the
premise of the rule, the following holds:

〈consistent x〉 (1081)
〈consistent y〉 (1082)

Apply Rule P2-27 on Predicates 1082 and 1080, we get:

〈consistent y + z〉 (1083)

Again apply Rule P2-27 on Predicates 1083 and 1081, we get:

〈consistent x + (y + z)〉
Hence the left implication is proved.
Right Implication

Suppose,
〈consistent x + (y + z)〉 (1084)

The above predicate can only be derived from Rule P2-27. From the
premise of the rule, the following holds:

〈consistent x〉 (1085)
〈consistent y + z〉 (1086)

Again Predicate 1086 can only be derived from Rule P2-27. From the
premise of the rule, the following holds:

〈consistent y〉 (1087)
〈consistent z〉 (1088)

Apply Rule P2-27 on Predicates 1087 and 1085, we get:

〈consistent x + y〉 (1089)

Again apply Rule P2-27 on Predicates 1089 and 1088, we get:

〈consistent (x + y) + z〉
Hence the right implication is proved.
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H.6 Axiom A3 (Idempotency)

x + x = x (Idempotency-A3)
We need to prove, x + x↔ x.
Let R be a binary relation on process terms defined as follows:

R = {(x + x, x) | x ∈ P}

We prove that the relation R∪I satisfies all conditions of a bisimulation relation.
Below, we only prove that all pairs in R satisfy the conditions of bisimulation
relation.

1.
〈x + x〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈x〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈x + x〉 a−→ 〈p〉 (1090)

The above action step can be derived from either Rule P2-20 or Rule
P2-21. The premise of each rule requires that the following holds:

〈x〉 a−→ 〈p〉

Consider the target process terms in the transition above and 1090. The
pair (p, p) is in I.

2.
〈x〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈x + x〉 a−→ 〈z〉

and (z, p) ∈ R.

Suppose,
〈x〉 a−→ 〈p〉 (1091)

Then from Theorem 14, the following holds:

〈consistent x〉 (1092)

Apply Rule P2-20 or Rule P2-21 on 1091 and 1092. We get:

〈x + x〉 a−→ 〈p〉 (1093)

Consider the target process terms in Transitions 1093 and 1091. The pair
(p, p) is in I.

3.
〈x + x〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈x〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈x + x〉 r7−→ 〈p〉 (1094)
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The premises (namely x 6 r7−→) of Rule P2-25 and Rule P2-26 are not satis-
fied. Hence Transition 1094 can only be derived from Rule P2-24.

From Premise of Rule P2-24, for some process terms x1 and y1, p = x1+y1.
Rewriting Transition 1091, we get:

〈x + x〉 r7−→ 〈x1 + y1〉 (1095)

Also from the premise of Rule P2-24 the following holds:

〈x〉 r7−→ 〈x1〉 (1096)

〈x〉 r7−→ 〈y1〉 (1097)

By Theorem 16, x1 ≡ y1. Hence rewriting Transition 1095, we get:

〈x + x〉 r7−→ 〈x1 + x1〉 (1098)

Consider the target process terms in Transitions 1096 and 1098. The pair
(x1 + x1, x1) is in R.

4.
〈x〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈x + x〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈x〉 r7−→ 〈p〉 (1099)

Then by Rule P2-24, the following holds:

〈x + x〉 r7−→ 〈p + p〉 (1100)

Consider the target process terms in Transitions 1099 and 1100. The pair
(p + p, p) is in R.

5.
〈x〉 a−→ √ ⇐⇒ 〈x + x〉 a−→ √

Left Implication
Suppose,

〈x〉 a−→ √
(1101)

Then from Theorem 14, the following holds:

〈consistent x〉 (1102)

Apply Rule P2-22 or Rule P2-23 on 1101 and 1102. We get:

〈x + x〉 a−→ √

Right Implication

219



Suppose,
〈x + x〉 a−→ √

The above predicate can be derived from either Rule P2-22 or Rule P2-23.
The premise of each rule requires that the following holds:

〈x〉 a−→ √

Proved.

6.
〈x〉 r7−→⊥ ⇐⇒ 〈x + x〉 r7−→⊥

Left Implication

Suppose,
〈x〉 r7−→⊥ (1103)

Then from Theorem 14, the following holds:

〈consistent x〉 (1104)

Then from Theorem 15, the following holds:

∀s < r, 〈x〉 6 s7−→⊥ (1105)

Apply one of Rule P2-28 or Rule P2-29 on Predicates 1103, 1104 and 1105.
We get:

〈x + x〉 r7−→⊥

Right Implication

Suppose,
〈x + x〉 r7−→⊥

The above predicate can be derived from either Rule P2-28 or Rule P2-29.
The premise of each rule requires that the following holds:

〈x〉 r7−→⊥

Proved.

7.
〈consistent x + x〉 ⇐⇒ 〈consistent x〉

Left Implication
Suppose,

〈consistent x + x〉
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This predicate can only be derived from Rule P2-27. From the premise of
the rule,

〈consistent x〉

Right Implication
Suppose,

〈consistent x〉
Apply Rule P2-27. We get:

〈consistent x + x〉

H.7 Axiom A4 (Right Distributivity)

(x + y) · z = x · z + y · z (Right Distributivity-A4).
We need to prove, (x + y) · z↔ x · z + y · z.
Let R be a binary relation on process terms defined as follows:

R = { ((x + y) · z, x · z + y · z) | x, y, z ∈ P}

We show that the relation R ∪ I is a bisimulation relation. Below we prove
that all pairs in R satisfy the conditions of bisimulation.

For all a ∈ A, r > 0, x, y, z, p ∈ P , the following holds:

1.
〈(x + y) · z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈x · z + y · z〉 a−→ 〈p′〉

and (p, p′) ∈ R ∪ I

Suppose,
〈(x + y) · z〉 a−→ 〈p〉 (1106)

An action transition for a sequential composition can be derived only from
rules P2 15 or P2 16. We discuss them one by one:

(a) Rule P2 15
Then for some process term p′, p = p′ · z. Rewriting Transition 1106,
we get:

〈(x + y) · z〉 a−→ 〈p′ · z〉 (1107)

From the premise of Rule P2 15, the following holds:

〈x + y〉 a−→ 〈p′〉 (1108)

The above transition can be derived from Rules P2 20 or P2 21.
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i. Rule P2 20
If Transition 1108 is derived from this rule, then from the premise
of the rule the following holds:

〈x〉 a−→ 〈p′〉 (1109)
〈consistent y〉 (1110)

Apply Rule P2 15 on Transition 1109, we get:

〈x · z〉 a−→ 〈p′ · z〉 (1111)

From Rule P2 20, for any term q with 〈consistent q〉, the fol-
lowing can be derived:

〈x · z + q〉 a−→ 〈p′ · z〉 (1112)

From Predicate 1110, we can infer by using Rule P2-18, 〈consistent y·
z〉. Then q in Transition 1112 can be y · z. Hence we get:

〈x · z + y · z〉 a−→ 〈p′ · z〉 (1113)

Consider the target process terms in Transitions 1107 and 1113.
The pair (p′ · z, p′ · z) is in I.

ii. Rule P2 21
If Transition 1108 is derived from this rule, then from the premise
of the rule, the following holds:

〈y〉 a−→ 〈p′〉 (1114)
〈consistent x〉 (1115)

Similar reasoning as given above for Rule 20 applies here too.

(b) Rule P2 16
If this rule is used to derive transition 1106 Then, p = z. Rewriting
Transition 1106, we get:

〈(x + y) · z〉 a−→ 〈z〉 (1116)

And from the premise of Rule P2 16, the following holds:

〈x + y〉 a−→ √
(1117)

〈consistent z〉 (1118)

The Transition 1117 can be derived from Rules P2 22 or P2 23.

i. Rule P2 22
If Transition 1117 is derived from this rule, then from the premise
of the rule the following holds:

〈x〉 a−→ √
(1119)

〈consistent y〉 (1120)
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From Predicate 1118, we have 〈consistent z〉. Apply Rule P2
16 on Transition 1119 using process term z, we get:

〈x · z〉 a−→ 〈z〉 (1121)

From Rule P2 20, for any term q with 〈consistent q〉, the fol-
lowing can be derived:

〈x · z + q〉 a−→ 〈z〉 (1122)

From Predicate 1120, we infer 〈consistent y · z〉. Then q in
Transition 1122 can be y · z. Hence we get:

〈x · z + y · z〉 a−→ 〈z〉 (1123)

Consider the target process terms in Transitions 1116 and 1123.
The pair (z, z) is in I.

ii. Rule P2 23
Similar reasoning as above applies.

2.
〈x · z + y · z〉 a−→ 〈p〉 =⇒ ∃p′ ∈ P : 〈(x + y) · z〉 a−→ 〈p′〉

and (p′, p) ∈ R ∪ I
Suppose,

〈x · z + y · z〉 a−→ 〈p〉 (1124)

The above transition can be derived from Rules P2 20 or P2 21.

(a) Rule P2 20
If Transition 1124 is derived from this rule, then from the premise of
the rule the following holds:

〈x · z〉 a−→ 〈p〉 (1125)
〈consistent y · z〉 (1126)

Transition 1125 can be derived from Rule P2 15 or Rule P2 16. We
discuss the two rules one by one.

i. Rule P2 15
Then for some process term p′, p = p′ · z. Rewriting Transition
1124 and 1125, we get:

〈x · z + y · z〉 a−→ 〈p′ · z〉 (1127)
〈x · z〉 a−→ 〈p′ · z〉 (1128)

From premise of the Rule P2 15, the following holds:

〈x〉 a−→ 〈p′〉
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Apply Rule P2 20 on the above transition. Then for any term q,
with 〈consistent q〉, the following holds:

〈x + q〉 a−→ 〈p′〉 (1129)

From Predicate 1126, it can be inferred that 〈consistent y〉.
Hence q can be replaced by y in Transition 1129.

〈x + y〉 a−→ 〈p′〉 (1130)

Apply Rule P2 15 on the above Transition, we get:

〈(x + y) · z〉 a−→ 〈p′ · z〉 (1131)

ii. Rule P2 16
If this rule is used to derive Transition 1125, then p = z. Rewrit-
ing Transitions 1124 and 1125:

〈x · z + y · z〉 a−→ 〈z〉 (1132)
〈x · z〉 a−→ 〈z〉 (1133)

From Premise of Rule P2 16, the following holds:

〈x〉 a−→ √
(1134)

〈consistent z〉 (1135)

Let q b a term with 〈consistent q〉. Apply Rule P2 22 on
Transition 1134, we get:

〈x + q〉 a−→ √
(1136)

Consider Predicate 1126, 〈consistent y·z〉. From the predicate,
it can be inferred that:

〈consistent y〉

Replace q by y in Transition 1136:

〈x + y〉 a−→ √
(1137)

From Predicate 1135, 〈consistent z〉. Using term z, apply Rule
16 on Transition 1137, we get:

〈(x + y) · z〉 a−→ 〈z〉 (1138)

Consider the target process terms in Transitions 1132 and 1138.
The pair (z, z) is in I.

(b) Rule P2 21
Similar reasoning as given above applies.
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3.
〈(x + y) · z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x · z + y · z〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x + y) · z〉 r7−→ 〈p〉 (1139)

A time transition for a sequential composition can be derived only from
rule P2 17. Then, for some p′ ∈ P , p must be equal to p′ · z. Rewriting
Transition 1139:

〈(x + y) · z〉 r7−→ 〈p′ · z〉 (1140)

And the following must hold from premise of Rule P2 17:

〈x + y〉 r7−→ 〈p′〉 (1141)

The above transition can be derived from Rules P2 24, P2 25 or P2 26.
We discuss them one by one:

(a) Rule P2 24
Then for some process term x1, x2, p′ = x1 + x2. Re-writing Transi-
tions 1140 and 1141:

〈(x + y) · z〉 r7−→ 〈(x1 + x2) · z〉 (1142)

〈x + y〉 r7−→ 〈x1 + x2〉 (1143)

From premise of Rule P2 24, the following must hold:

〈x〉 r7−→ 〈x1〉
〈y〉 r7−→ 〈x2〉

Apply Rule P2 17 on the above transitions, we get:

〈x · z〉 r7−→ 〈x1 · z〉 (1144)

〈y · z〉 r7−→ 〈x2 · z〉 (1145)

Apply Rule P2 24 on the above two transitions, we get:

〈x · x + y · z〉 r7−→ 〈x1 · z + x2 · z〉 (1146)

Consider Transitions 1142 and 1146. The pair of their target process
terms ((x1 + x2) · z, x1 · z + x2 · z) is in R.

(b) Rule P2 25
If Transition 1141 is derived from this rule, the from the premise of
the rule, the following must hold:

〈x〉 r7−→ 〈p′〉 (1147)
〈consistent y〉 (1148)

〈y〉 6 r7−→ (1149)

∀s ≤ r, 〈y〉 6 s7−→⊥ (1150)
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Apply Rule P2 17 on Transition 1147.

〈x · z〉 r7−→ 〈p′ · z〉 (1151)

We can infer from Predicate 1149 the following:

〈y · z〉 6 r7−→ (1152)

We can infer from Predicate 1148 by using Rule P2-18:

〈consistent y · z〉 (1153)

We can infer from predicate 1150

∀s ≤ r, 〈y · z〉 6 s7−→⊥ (1154)

Join Transitions (Predicates) 1151, 1152,1153 and 1154 and apply
Rule P2-25. We get:

〈x · z + y · z〉 r7−→ 〈p′ · z〉 (1155)

Consider Transitions 1140 and 1155. The pair of their target process
terms (p′ · z, p′ · z) is in I.

(c) Rule P2 26
If Transition 1141 is derived from this rule, then from the premise of
the rule, the following must hold:

〈y〉 r7−→ 〈p′〉 (1156)
〈consistent x〉 (1157)

〈x〉 6 r7−→ (1158)

∀s ≤ r, 〈x〉 6 s7−→⊥ (1159)

Similar reasoning as given above for Rule P2-25 should be applied
here.

4.
〈x · z + y · z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x + y) · z〉 r7−→ 〈z′〉

and (z′, p) ∈ R ∪ I
Suppose,

〈x · z + y · z〉 r7−→ 〈p〉 (1160)

The above transition can be derived from Rule P2-24, Rule P2-25 or Rule
P2-26. We discuss them one by one:

(a) Rule P2-24
Then for some process terms x′, y′, p = x′+ y′. Rewriting Transition
1160,

〈x · z + y · z〉 r7−→ 〈x′ + y′〉 (1161)
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And from the premise of Rule P2-24, the following holds:

〈x · z〉 r7−→ 〈x′〉 (1162)

〈y · z〉 r7−→ 〈y′〉 (1163)

A time step for a sequential composition can only be derived from
Rule P2-17. Then for some process terms x1 and y1, x′ = x1 · z and
y′ = y1 · z. Rewriting Transition 1161:

〈x · z + y · z〉 r7−→ 〈x1 · z + y1 · z〉 (1164)

From premise of Rule P2-17, the following must hold:

〈x〉 r7−→ 〈x1〉 (1165)

〈y〉 r7−→ 〈y1〉 (1166)

Apply Rule P2-24 on above transitions, we get:

〈x + y〉 r7−→ 〈x1 + y1〉 (1167)

Apply Rule P2-17 on above transition. We get:

〈(x + y) · z〉 r7−→ 〈(x1 + y1) · z〉 (1168)

Consider Transitions 1164 and 1168. The pair of their target process
terms (x1 · z + y1 · z, (x1 + y1) · z) is in R.

(b) Rule P2-25

If Transition 1160 is derived from this rule, the from the premise of
the rule, the following must hold:

〈x · z〉 r7−→ 〈p〉 (1169)
〈consistent y · z〉 (1170)

〈y · z〉 6 r7−→ (1171)

∀s ≤ r, 〈y · z〉 6 s7−→⊥ (1172)

Transition 1169 can only be derived from Rule P2 17. Then for some
process term p′, p = p′ · z. Rewriting Transition 1160 and Transition
1169, we get:

〈x · z + y · z〉 r7−→ 〈p′ · z〉 (1173)

〈x · z〉 r7−→ 〈p′ · z〉 (1174)
(1175)

From the premise of Rule P2-17, the following must hold:

〈x〉 r7−→ 〈p′〉 (1176)
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Predicate 1171 can hold if Rule P2-17 cannot apply. Hence, its
premise must not hold:

〈y〉 6 r7−→ (1177)

Predicate 1170 can only be derived from Rule P2-18. Hence, its
premise must hold:

〈consistent y〉 (1178)

Predicate 1172 can hold if Rule P2-19 cannot apply. Hence, its
premise must not hold:

∀s ≤ r, 〈y〉 6 s7−→⊥ (1179)

Join Transitions (Predicates) 1176, 1177,1178 and 1179 and apply
Rule P2-25. We get:

〈x + y〉 r7−→ 〈p′〉 (1180)

Apply Rule 17 on above transition, we get:

〈(x + y) · z〉 r7−→ 〈p′ · z〉 (1181)

Consider Transitions 1173 and 1181. The pair of their target process
terms (p′ · z, p′ · z) is in I.

(c) Rule P2-26
Same reasoning as given for Rule P2-25 applies here.

5.
〈(x + y) · z〉 a−→ √ ⇐⇒ 〈x · z + y · z〉 a−→ √

Left Implication
Suppose,

〈(x + y) · z〉 a−→ √
(1182)

For a sequential composition, a termination predicate cannot be derived
from any rules. Hence our supposition is wrong and the left implication
trivially holds.

Right Implication

Suppose,

〈x · z + y · z〉 a−→ √
(1183)

The above predicate can be derived from Rule P2-22 or Rule P2-23.
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(a) Rule P2-22

If Predicate 1183 is derived from this rule, then the following must
hold:

〈x · z〉 a−→ √
(1184)

〈consistent y · z〉 (1185)

Predicate 1184 cannot be derived from any rules. Hence Predicate
1183 cannot be derived from this rule.

(b) Rule P2-22

If Predicate 1183 is derived from this rule, then the following must
hold:

〈y · z〉 a−→ √
(1186)

〈consistent x · z〉 (1187)

Predicate 1186 cannot be derived from any rules. Hence Predicate
1183 cannot be derived from this rule.

The Predicate 1183 cannot be derived from any rules. Hence the right
implication holds trivially.

6.
〈(x + y) · z〉 r7−→⊥ ⇐⇒ 〈x · z + y · z〉 r7−→⊥

Left Implication
Suppose,

〈(x + y) · z〉 r7−→⊥ (1188)

A future Inconsistency predicate for a sequential composition can be de-
rived only from rule P2 19. Then, the following must hold from premise
of the rule:

〈x + y〉 r7−→⊥ (1189)

The above transition can be derived from Rules P2 28 or P2 29.

(a) Rule P2 28
If Transition 1189 is derived from this rule, the from the premise of
the rule, the following must hold:

〈x〉 r7−→⊥ (1190)
〈consistent y〉 (1191)

∀s < r, 〈y〉 6 s7−→⊥ (1192)

Apply Rule P2 19 on Predicate 1190.

〈x · z〉 r7−→⊥ (1193)
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We can infer from Predicate 1191 by using Rule P2-18:

〈consistent y · z〉 (1194)

From Predicate 1192, Rule P2 19 cannot be applied. It is the only
rule by which a future Inconsistency predicate for a sequential com-
position can be derived. Hence we can conclude that:

∀s < r, 〈y · z〉 6 s7−→⊥ (1195)

Join Transitions (Predicates) 1193, 1194 and 1195 and apply Rule
P2-28. We get:

〈x · z + y · z〉 r7−→⊥ (1196)

(b) Rule P2 29
Similar reasoning as given above for Rule P2-28 is applied here.

Right Implication
Suppose,

〈x · z + y · z〉 r7−→⊥ (1197)

A future inconsistency predicate for an alternative composition can only
be derived from Rule P2-28 or Rule P2-29. We discuss them one by one:

(a) Rule P2-28

If Predicate 1197 is derived from this rule, then from the premise of
the rule, the following must hold:

〈x · z〉 r7−→⊥ (1198)
〈consistent y · z〉 (1199)

∀s < r, 〈y · z〉 6 s7−→⊥ (1200)

Predicate 1198 can only be derived from Rule P2 19. Then from the
premise of the rule, the following must hold:

〈x〉 r7−→⊥ (1201)

Predicate 1199 can only be derived from Rule P2-18. Hence, its
premise must hold:

〈consistent y〉 (1202)

Predicate 1200 can only hold if Rule P2-19 cannot be applied. Hence,
its premise may not hold, we conclude that:

∀s < r, 〈y〉 6 s7−→⊥ (1203)
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Join Transitions (Predicates) 1201, 1202 and 1203 and apply Rule
P2-28. We get:

〈x + y〉 r7−→⊥ (1204)

Apply Rule 19 on above transition, we get:

〈(x + y) · z〉 r7−→⊥ (1205)

Hence proved.

(b) Rule P2-29
Same reasoning as given for Rule P2-28 applies here.

7.
〈consistent (x + y) · z〉 ⇐⇒ 〈consistent x · z + y · z〉

Left Implication

Suppose,
〈consistent (x + y) · z〉 (1206)

This is only derivable from Rule P2 18. From the premise of the rule, the
following must hold:

〈consistent x + y〉 (1207)

This can only be derived from Rule P2 27. Then from the premise of the
rules, the following hold:

〈consistent x〉 (1208)
〈consistent y〉 (1209)

Apply Rule P2 18 on Predicate 1208 with process term z. We get:

〈consistent x · z〉 (1210)

Apply Rule 18 on Predicate 1209 also with process term z. We get:

〈consistent y · z〉 (1211)

Apply Rule P2-27 on Predicates 1210 and 1211, we get:

〈consistent x · z + y · z〉
Hence left implication is proved.

Right Implication
Suppose,

〈consistent x · z + y · z〉
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The above predicate can only be derived from Rule P2 27.
From the premise of the rule, the following must hold:

〈consistent x · z〉 (1212)
〈consistent y · z〉 (1213)

The above predicates can only be derived from Rule P2 18. Then the
following must hold:

〈consistent x〉 (1214)
〈consistent y〉 (1215)

Apply Rule P2 27 on the above predicates, we get:

〈consistent x + y〉
Apply Rule P2-18 on the above predicate, we get:

〈consistent (x + y) · z〉
Hence right implication is proved.

H.8 Axiom A5

(x · y) · z = x · (y · z) (Associativity of sequential composition-A5).
We need to prove, (x · y) · z↔ x · (y · z).
Let R be a binary relation on process terms defined as follows:

R = { ((x · y) · z, x · (y · z)) | x, y, z ∈ P}
We prove that the relation R ∪ I is a bisimulation relation. Below we show

that all pairs in R satisfy the conditions of bisimulation.
For all a ∈ A, r ∈ R>0, x, y, z, p ∈ P , the following holds:

1.
〈(x · y) · z〉 a−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x · (y · z)〉 a−→ 〈z′〉

and (p, z′) ∈ R ∪ I
Suppose,

〈(x · y) · z〉 a−→ 〈p〉 (1216)

An action transition for a sequential composition can be derived only from
rules P2 15 or P2 16. We discuss them one by one:

(a) Rule P2 15
Then for some process term p′, p = p′ · z. Rewriting Transition 1216,
we get:

〈(x · y) · z〉 a−→ 〈p′ · z〉 (1217)

From the premise of Rule P2 15, the following holds:

〈x · y〉 a−→ 〈p′〉 (1218)

The above transition can be derived from Rules P2 15 or P2 16.
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i. Rule P2 15
If Transition 1218 is derived from this rule, then for some process
term p′′, p′ = p′′ · y. Rewriting Transitions 1217 and 1218, we
get:

〈(x · y) · z〉 a−→ 〈(p′′ · y) · z〉 (1219)
〈x · y〉 a−→ 〈p′′ · y〉 (1220)

From premise of Rule P2 15 the following holds:

〈x〉 a−→ 〈p′′〉 (1221)

Apply Rule P2 15 on Transition 1221. For any process term q
we get:

〈x · q〉 a−→ 〈p′′ · q〉
The term q can be y · z.

〈x · (y · z)〉 a−→ 〈p′′ · (y · z)〉 (1222)

Consider the target process terms in Transitions 1219 and 1222.
The pair ((p′′ · y) · z, p′′ · (y · z)) is in R.

ii. Rule P2 16
If Transition 1218 is derived from this rule, then for some process
term, p′ = y. Rewriting Transitions 1217 and 1218, we get:

〈(x · y) · z〉 a−→ 〈y · z〉 (1223)
〈x · y〉 a−→ 〈y〉 (1224)

From premise of Rule P2 16 the following holds:

〈x〉 a−→ √
(1225)

〈consistent y〉 (1226)

From Predicate 1226 by Rule P2 18, the following holds:

〈consistent y · z〉

Apply Rule P2 16 on Transition 1225. For any process term q
with 〈consistent q〉, have:

〈x · q〉 a−→ 〈q〉

The process term q can be y · z.

〈x · (y · z)〉 a−→ 〈y · z〉 (1227)

Consider the target process terms in Transitions 1223 and 1227.
The pair (y · z, y · z) is in I.
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(b) Rule P2 16
If Transition 1216 is derived from this rule, then p = z. Rewriting
Transition 1216, we get:

〈(x · y) · z〉 a−→ 〈z〉 (1228)

From premise of Rule P2 16 the following holds:

〈x · y〉 a−→ √
(1229)

〈consistent z〉 (1230)

The transition 1229 cannot be derived. (No termination transition
for a sequential composition can be derived.)
Hence Rule P2 16 cannot be used to derive Transition 1216.

2.
〈x · (y · z)〉 a−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x · y) · z〉 a−→ 〈z′〉

and (z′, p) ∈ R ∪ I

Suppose,
〈x · (y · z)〉 a−→ 〈p〉 (1231)

An action transition for a sequential composition can be derived only from
rules P2 15 or P2 16. We discuss them one by one:

(a) Rule P2 15
If this rule is used to derive Transition 1231, then for some process
term p′, p = p′ · (y · z) . Rewriting Transition 1231, we get:

〈x · (y · z)〉 a−→ 〈p′ · (y · z)〉 (1232)

From premise of the rule, the following must hold:

〈x〉 a−→ 〈p′〉 (1233)

Apply Rule P2 15 on the above transitions twice. We get:

〈(x · y) · z〉 a−→ 〈(p′ · y) · z〉 (1234)

Consider the target process terms in Transitions 1232 and 1234. The
pair (p′ · (y · z), (p′ · y) · z) is in R.

(b) Rule P2 16

If Transition 1231 is derived from this rule, then p = y · z. Rewriting
Transition 1231, we get:

〈x · (y · z)〉 a−→ 〈y · z〉 (1235)
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From premise of Rule P2 16 the following holds:

〈x〉 a−→ √
(1236)

〈consistent y · z〉 (1237)

A consistency predicate (Predicate 1237) for a sequential composition
can only be derived from Rule P2-18. From the premise of the rule,
the following must hold:

〈consistent y〉 (1238)

Apply Rule P2 16 on Transition 1236 using Predicate 1238, we get:

〈x · y〉 a−→ 〈y〉

Apply Rule P2 15 on the above transition. We get:

〈(x · y) · z〉 a−→ 〈y · z〉 (1239)

Consider the target process terms in Transitions 1235 and 1239. The
pair (y · z, y · z) is in I.

3.
〈(x · y) · z〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈x · (y · z)〉 r7−→ 〈z′〉

and (p, z′) ∈ R

Suppose,
〈(x · y) · z〉 r7−→ 〈p〉 (1240)

A time step for a sequential composition can be derived only from rule P2
17. Then for some p′, p = p′ · z. Rewriting Transition 1240:

〈(x · y) · z〉 r7−→ 〈p′ · z〉 (1241)

From the premise of the rule, the following holds:

〈x · y〉 r7−→ 〈p′〉 (1242)

Again the above transition can only be derived from Rule P2 17. Then
for some p′′, p′ = p′′ · y. Rewriting Transition 1241 and Transition 1242:

〈(x · y) · z〉 r7−→ 〈(p′′ · y) · z〉 (1243)

〈x · y〉 r7−→ 〈p′′ · y〉 (1244)

From the premise of the rule, the following holds:

〈x〉 r7−→ 〈p′′〉 (1245)
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Apply Rule P2 17 on Transition 1245. For any process term q we get:

〈x · q〉 r7−→ 〈p′′ · q〉

The term q can be y · z.

〈x · (y · z)〉 r7−→ 〈p′′ · (y · z)〉 (1246)

Consider the target process terms in Transitions 1243 and 1246. The pair
((p′′ · y) · z, p′′ · (y · z)) is in R.

4.
〈x · (y · z)〉 r7−→ 〈p〉 =⇒ ∃z′ ∈ P : 〈(x · y) · z〉 r7−→ 〈z′〉

and (z′, p) ∈ R

Suppose,
〈x · (y · z)〉 r7−→ 〈p〉 (1247)

A time step for a sequential composition can be derived only from rule P2
17. Then, for some process term p′, p = p′ · (y · z). Rewriting Transition
1247, we get:

〈x · (y · z)〉 r7−→ 〈p′ · (y · z)〉 (1248)

From the premise of the rule, the following must hold:

〈x〉 r7−→ 〈p′〉 (1249)

Apply Rule P2 17 on the above time step with process term y , we get:

〈x · y〉 r7−→ 〈p′ · y〉

Again apply Rule P2 17 on the above time step with process term z , we
get:

〈(x · y) · z〉 r7−→ 〈(p′ · y) · z〉 (1250)

Consider the target process terms in Transitions 1248 and 1250. The pair
(p′ · (y · z), (p′ · y) · z) is in R.

5.
〈(x · y) · z〉 r7−→⊥ ⇐⇒ 〈x · (y · z)〉 r7−→⊥

Left Implication
Suppose,

〈(x · y) · z〉 r7−→⊥ (1251)

A future inconsistency predicate for a sequential composition can be de-
rived only from rules P2 19.

From the premise the rule, the following holds:

〈x · y〉 r7−→⊥ (1252)
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Again the above transition can only be derived from Rule P2 19. From
the premise of the rule, the following holds:

〈x〉 r7−→⊥ (1253)

Apply Rule P2 19 on Transition 1253. For any process term q we get:

〈x · q〉 r7−→⊥

The term q can be y · z.
〈x · (y · z)〉 r7−→⊥

Right Implication

Suppose,
〈x · (y · z)〉 r7−→⊥ (1254)

A future inconsistency predicate for a sequential composition can be de-
rived only from rule P2 19. Then, from the premise of the rule, the
following must hold:

〈x〉 r7−→⊥ (1255)

Apply Rule P2 19 on the above predicate. We get:

〈x · y〉 r7−→⊥

By applying Rule P2 17 again on the above predicate, we get:

〈(x · y) · z〉 r7−→⊥ (1256)

6.
〈(x · y) · z〉 a−→ √ ⇐⇒ 〈x · (y · z)〉 a−→ √

Left Implication
Suppose,

〈(x · y) · z〉 a−→ √
(1257)

A termination predicate for a sequential composition cannot be derived
from any rules. Hence the above predicate doesn’t hold.

Right Implication
Suppose,

〈x · (y · z)〉 a−→ √
(1258)

A termination predicate for a sequential composition cannot be derived
from any rules. Hence the above predicate doesn’t hold.
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7.
〈consistent (x · y) · z〉 ⇐⇒ 〈consistent x · (y · z)〉

Left Implication
Suppose,

〈consistent (x · y) · z〉
The above predicate can only be derived from Rule P2-18. Then from the
premise of the rule,

〈consistent x · y〉
Again, the above predicate can only be derived from Rule P2-18. Hence,

〈consistent x〉
Apply Rule P2-18 on the above predicate. For any process term q, the
following holds:

〈consistent x · q〉
The process term q can be y · z. Hence we have,

〈consistent x · (y · z)〉

Right Implication
Suppose,

〈consistent x · (y · z)〉
The above predicate can only be derived from Rule P2-18. Then from the
premise of the rule,

〈consistent x〉
Apply Rule P2-18 on the above predicate. For any process term q, the
following holds:

〈consistent x · q〉
The process term q can be y. Hence we have,

〈consistent x · y〉
By repeating the same reasoning,

〈consistent (x · y) · z〉

H.9 Axiom A6SR

x + ˜̃δ = x
We need to prove, x + ˜̃δ↔ x.
Let R be a binary relation on process terms defined as follows:

R = {(x + ˜̃δ, x) | x ∈ P}
The relation R ∪ I is a bisimulation relation.
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H.10 Axiom A7SR

˜̃δ · x = ˜̃δ
We need to prove, ˜̃δ · x↔ ˜̃δ.
Let R be a binary relation on process terms defined as follows:

R = {(˜̃δ · x, ˜̃δ) | x ∈ P}
The relation R ∪ I is a bisimulation relation.

H.11 Axiom NE1

x +⊥ = ⊥ NE1
We need to prove, x +⊥↔⊥.
Let R be a binary relation on process terms defined as follows:

R = {(x +⊥,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

H.12 Axiom NE2

⊥ · x = ⊥ NE2
We need to prove, ⊥ · x↔⊥.
Let R be a binary relation on process terms defined as follows:

R = {(⊥ · x,⊥) | x ∈ P}

The relation R ∪ I is a bisimulation relation.

H.13 Axiom NE3SR

˜̃a · ⊥ = ˜̃δ NE3SR
We need to prove, ˜̃a · ⊥↔ ˜̃δ.
Let R be a binary relation on process terms defined as follows:

R = {(˜̃a · ⊥, ˜̃δ), (˜̃δ, ˜̃a · ⊥) | a ∈ A}
The relation R ∪ I is a bisimulation relation.

H.14 Axiom SRT1

σ0
rel(x) = x. SRT1

We need to prove, σ0
rel(x)↔ x.

Let R be a binary relation on process terms defined as follows:

R = {(σ0
rel(x), x) | x ∈ P}

Then R ∪ I is a bisimulation relation that witnesses σ0
rel(x)↔ x.
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H.15 Axiom SRT2

σv
rel(σ

u
rel(x)) = σv+u

rel (x) v, u ≥ 0(SRT2)
We need to prove, σv

rel(σ
u
rel(x))↔ σv+u

rel (x).
We do the proof in four steps:

Case u = 0, v = 0

The proof is trivial using Axiom SRT1 and the fact that bisimulation is a
congruence.
Case u > 0, v = 0

The proof is trivial using Axiom SRT1 and the fact that bisimulation is a
congruence.
Case u = 0, v > 0

The proof is trivial using Axiom SRT1 and the fact that bisimulation is a
congruence.
Case u > 0, v > 0

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(σ

u
rel(x)), σt+u

rel (x)), | x ∈ P, 0 < t ≤ v}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y ∈ P , the following holds:

1.
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 a−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 a−→ 〈y〉

A process term with relative delay operator with duration greater than 0
cannot perform an action step. Hence our supposition doesn’t hold.

2.
〈σt+u

rel (x)〉 a−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 a−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 a−→ 〈y〉

A process term with relative delay operator with duration greater than 0
cannot perform an action step. Hence our supposition doesn’t hold.
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3.
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt+u

rel (x)〉 r7−→ 〈z′〉
and (p, z′) ∈ R ∪ I.

Suppose,
〈σt

rel(σ
u
rel(x))〉 r7−→ 〈y〉 (1259)

We distinguish between three cases for different values of r.

(a) Case r < t

Let t = r + r1 for some r1 with 0 < r1 < t.
Then Transition 1259 is derived from Rule P2-9 and y = σr1

rel(σ
u
rel(x)).

Rewriting Transition 1259:

〈σr+r1
rel (σu

rel(x))〉 r7−→ 〈σr1
rel(σ

u
rel(x))〉 (1260)

By Rule P2-9 the following can be derived:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (1261)

Consider the target process terms in Transitions 1260 and 1261. The
pair (σr1

rel(σ
u
rel(x)), σr1+u

rel (x)), where 0 < r1 < t is in R.

(b) Case r = t

Then Transition 1259 is derived from Rule P2-10. Then y = σu
rel(x).

Rewriting Transition 1259:

〈σt
rel(σ

u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (1262)

By Rule P2-9 the following can be derived:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (1263)

Consider the target process terms in Transitions 1262 and 1263. The
pair (σu

rel(x), σu
rel(x)) is in I.

(c) Case r > t

Let r = t + s, for some s > 0. Rewriting Transition 1259,

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈y〉 (1264)

The above transition can only be derived from Rule P2-11. From the
premise of the rule, the following holds:

〈σu
rel(x)〉 s7−→ 〈y〉 (1265)

We distinguish between three cases depending on different values of
the duration s of the time step.
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i. Case s < u

Let u = s + s1, for some s1 with 0 < s1 < s.
Then Transition 1265 can only be derived from Rule P2-9. Then
y = σs1

rel(x). Rewriting Transitions 1264 and 1265, we get:

〈σt
rel(σ

u
rel(x))〉 t+s7−−→ 〈σs1

rel(x)〉 (1266)

〈σu
rel(x)〉 s7−→ 〈σs1

rel(x)〉 (1267)

From Rule P2-9, the following can be derived:

〈σt+u
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (1268)

Consider the target process terms in Transitions 1266 and 1268.
The pair (σs1

rel(x), σs1
rel(x)) is in I.

ii. Case s = u
Then Transition 1265 can only be derived from Rule P2-10. Then
y = x. Rewriting Transitions 1264 and 1265, we get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−−→ 〈x〉 (1269)

〈σu
rel(x)〉 u7−→ 〈x〉 (1270)

From the premise of Rule P2-10, the following must hold:

〈consistent x〉
Applying Rule P2-10 on process term σt+u

rel (x), the following can
be derived:

〈σt+u
rel (x)〉 t+u7−−−→ 〈x〉 (1271)

Consider the target process terms in Transitions 1269 and 1271.
The pair (x, x) is in I.

iii. Case s > u
Let s = u + t1, for some t1 > 0. Rewriting Transitions 1264 and
1265, we get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (1272)

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (1273)

Transition 1273 can only be derived from Rule P2-11. Then from
the premise of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (1274)

Apply Rule P2-11 on the above transition. For any m > 0, the
following is derivable:

〈σm
rel(x)〉 m+t17−−−−→ 〈y〉
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In the above transition, m can be t + u. Hence, we get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (1275)

Consider the target process terms in Transition 1272 and Tran-
sition 1275. The pair (y, y) is in I.

4.
〈σt+u

rel (x)〉 r7−→ 〈y〉 =⇒ ∃z′ ∈ P : 〈σt
rel(σ

u
rel(x))〉 r7−→ 〈z′〉

and (p, z′) ∈ R ∪ I.

Suppose,
〈σt+u

rel (x)〉 r7−→ 〈y〉 (1276)

We distinguish between three cases for different values of r.

(a) Case r < (t + u)

Again we distinguish between three cases:

i. Case r < t
Let t = r + r1, for some r1 such that, 0 < r1 < t.
Then Transition 1276 can only be derived from Rule P2-9. Then
y = σr1+u

rel (x). Rewriting Transition 1276, we get:

〈σr+r1+u
rel (x)〉 r7−→ 〈σr1+u

rel (x)〉 (1277)

Then from Rule P2-9, the following can be derived:

〈σr+r1
rel (σu

rel(x))〉 r7−→ 〈σr1
rel(σ

u
rel(x))〉 (1278)

Consider the target process terms in Transitions 1277 and 1278.
For 0 < r1 < t, the pair (σr1

rel(σ
u
rel(x)), σr1+u

rel (x)) is in R.
ii. Case r = t

Then Transition 1276 can only be derived from Rule P2-9. Then
y = σu

rel(x). Rewriting Transition 1276, we get:

〈σt+u
rel (x)〉 t7−→ 〈σu

rel(x)〉 (1279)

From Rule P2-10, the following can be derived:

〈σt
rel(σ

u
rel(x))〉 t7−→ 〈σu

rel(x)〉 (1280)

Consider the target process terms in Transitions 1279 and 1280.
The pair (σu

rel(x), σu
rel(x)) is in I.

iii. Case r > t
Let r = t + s for some s > 0.
Note that s < u because of our assumption that r < (t+u). Let
u = s + s1 for some s1 such that 0 < s1 < u.
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Rewriting Transition 1276, we get:

〈σt+s+s1
rel (x)〉 t+s7−−→ 〈σs1

rel(x)〉 (1281)

By Rule P2-9, the following can be derived:

〈σs+s1
rel (x)〉 s7−→ 〈σs1

rel(x)〉 (1282)

Apply Rule P2-11 on the above transition. We get:

〈σt
rel(σ

s+s1
rel (x))〉 t+s7−−→ 〈σs1

rel(x)〉 (1283)

Consider the target process terms in Transitions 1281 and 1283.
The pair (σs1

rel(x), σs1
rel(x)) is in I.

(b) Case r = (t + u)

Then Transition 1276 can only be derived from Rule P2-10 and y = x.
Rewriting Transition 1276, we get:

〈σt+u
rel (x)〉 t+u7−−−→ 〈x〉 (1284)

From the premise of the rule, the following holds:

〈consistent x〉
Apply Rule P2-10 on the above predicate, we get:

〈σu
rel(x)〉 u7−→ 〈x〉 (1285)

Apply Rule P2-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−−→ 〈x〉 (1286)

Consider the target process terms in Transitions 1284 and 1286. The
pair (x, x) is in I.

(c) Case r > (t + u)
Let r = t + u + t1, for some t1 > 0. Rewriting Transition 1276, we
get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→ 〈y〉 (1287)

From the premise of the rule the following must hold:

〈x〉 t17−→ 〈y〉 (1288)

Apply Rule P2-11 on the above transition. We get:

〈σu
rel(x)〉 u+t17−−−→ 〈y〉 (1289)

Again apply Rule P2-11 on the above transition. We get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→ 〈y〉 (1290)

Consider the target process terms in Transitions 1287 and 1290. The
pair (y, y) is in I.
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5.
〈σt

rel(σ
u
rel(x))〉 r7−→⊥ ⇐⇒ 〈σt+u

rel (x)〉 r7−→⊥

Left Implication

Suppose
〈σt

rel(σ
u
rel(x))〉 r7−→⊥ (1291)

The above predicate can only be derived from Rule P2-13 or Rule P2-14.
We discuss them one by one.

(a) Rule P2-13

If Predicate 1291 is derived from this rule, then r = t. Rewriting
Predicate 1291:

〈σt
rel(σ

u
rel(x))〉 t7−→⊥ (1292)

From the premise of the rule, σu
rel(x) must not be consistent. But

from Rule P2-12, a consistency predicate for process term σu
rel(x),

with u > 0, always holds. We are discussing the case with u > 0.
Hence Predicate 1292 cannot be derived.

(b) Rule P2-14

Then the length r of future inconsistency predicate 1291 is greater
than t. Let r = t + s, for some s > 0. Rewriting Predicate 1291, we
get:

〈σt
rel(σ

u
rel(x))〉 t+s7−−→⊥ (1293)

From the premise of Rule P2-14, the following holds:

〈σu
rel(x)〉 s7−→⊥ (1294)

The above predicate can again only be derived from Rule P2-13 or
Rule P2-14. We discuss them one by one.

i. Rule P2-13

If Predicate 1294 is derived from this rule, then s = u. Rewriting
Predicates 1293 and 1294, we get:

〈σt
rel(σ

u
rel(x))〉 t+u7−−−→⊥ (1295)

〈σu
rel(x)〉 u7−→⊥ (1296)

From the premise of the rule, the following holds:

¬〈consistent x〉 (1297)
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Apply Rule P2-13 on the above predicate. For any m > 0, the
following is derivable:

〈σm
rel(x)〉 m7−→⊥

Then m can be t + u and hence the following is derivable:

〈σt+u
rel (x)〉 t+u7−−−→⊥ (1298)

Consider Predicates 1295 and 1298. The left implication is proved.
ii. Rule P2-14

If Predicate 1294 is derived from this rule, then s > u. Let
s = u+ t1, for some t1 > 0. Rewriting Predicates 1293 and 1294,
we get:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→⊥ (1299)

〈σu
rel(x)〉 u+t17−−−→⊥ (1300)

And from the premise of the rule, the following holds:

〈x〉 t17−→⊥ (1301)

Apply Rule P2-14 on the above predicate. For any m > 0, the
following is derivable:

〈σm
rel(x)〉 m+t17−−−−→⊥ (1302)

Then m can be t + u and the following holds:

〈σt+u
rel (x)〉 t+u+t17−−−−−→⊥ (1303)

Consider Predicates 1299 and 1303. The left implication is proved.
Hence the left implication is proved.

Right Implication

Suppose
〈σt+u

rel (x)〉 r7−→⊥ (1304)

The above predicate can only be derived from Rule P2-13 or Rule P2-14.
We discuss them one by one.

(a) Rule P2-13

If Predicate 1304 is derived from this rule, then r = t + u. Rewriting
Predicate 1304:

〈σt+u
rel (x)〉 t+u7−−−→⊥ (1305)
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From the premise of Rule P2-13, the following holds:

¬〈consistent x〉

Using Rule P2-13 on the above predicate, the following can be de-
rived:

〈σu
rel(x)〉 u7−→⊥ (1306)

Using Rule P2-14 on the above predicate, the following can be de-
rived:

〈σt
rel(σ

u
rel(x))〉 t+u7−−−→⊥ (1307)

Consider Predicates 1304 and 1307. The right implication is proved.

(b) Rule P2-14
If Predicate 1304 is derived from this rule, then r > t + u.
Let r = t + u + t1, for some t1 > 0. Rewriting Predicate 1304, we
get:

〈σt+u
rel (x)〉 t+u+t17−−−−−→⊥ (1308)

From the premise of Rule P2-14, the following holds:

〈x〉 t17−→⊥ (1309)

Apply Rule P2-14 on the above predicate, the following can be de-
rived:

〈σu
rel(x)〉 u+t17−−−→⊥ (1310)

Again apply Rule P2-14 on the above predicate, the following can be
derived:

〈σt
rel(σ

u
rel(x))〉 t+u+t17−−−−−→⊥ (1311)

Hence the right implication is proved.

6.
〈σt

rel(σ
u
rel(x))〉 a−→ √ ⇐⇒ 〈σt+u

rel (x)〉 a−→ √

Trivial. Both process terms cannot perform an action.

7.
〈consistent σt

rel(σ
u
rel(x))〉 ⇐⇒ 〈consistent σt+u

rel (x)〉

Trivial. Both are consistent.
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H.16 Axiom SRT3 (Time Determinism)

σu
rel(x) + σu

rel(y) = σu
rel(x + y) u ≥ 0 (Time determinism-SRT3).

We prove the soundness of the axiom in two steps:
Case u = 0
The proof is trivial using Axiom SRT1.
Case u > 0

We need to prove, σu
rel(x) + σu

rel(y)↔ σu
rel(x + y).

Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(x + y), σt

rel(x) + σt
rel(y)), | x, y ∈ P, 0 < t ≤ u}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y, z ∈ P , the following holds:

1.

〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈〈σt
rel(x + y)〉〉 a−→ 〈z′〉

and (z, z′) ∈ R ∪ I

Suppose,

〈σt
rel(x) + σt

rel(y)〉 a−→ 〈z〉 (1312)

The above transition can be derived from Rules P2-20 or P2-21.

(a) Rule P2-20

From the premise of the rule, the following must hold:

〈σt
rel(x)〉 a−→ 〈z〉 (1313)

〈consistent σt
rel(y)〉 (1314)

Again there are no rules for σt
rel(x), with t > 0 to perform an action.

Hence the transition 1312 cannot be derived from Rule P2-20.
(b) Rule P2-21

For similar reasons as given above for Rule P2-20, the transition 1312
cannot be derived from Rule P2-21.

2.
〈σt

rel(x + y)〉 a−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σu

rel(y)〉 a−→ 〈z′〉
and (z′, z) ∈ R ∪ I

Suppose,
〈σt

rel(x + y)〉 a−→ 〈z〉
There are no rules allowing a process term σr

rel(x), with r > 0 to perform
an action. Hence the above transition with an action step for σt

rel(x + y)
does not exist. Since the left hand side of the implication is impossible,
therefore we do not need to show that the right hand side holds.
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3.
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt

rel(x + y)〉 r7−→ 〈z′〉
and (z, z′) ∈ R ∪ I

Suppose,
〈σt

rel(x) + σt
rel(y)〉 r7−→ 〈z〉 (1315)

A time step for an alternative composition can be derived from one of the
three rules P2 24, P2 25 or P2 26.

(a) Rule P2 24
Then for some process terms x′ and y′, the process term z in Tran-
sition 1315 is x′ + y′.
Rewriting Transition 1315, we get:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈x′ + y′〉 (1316)

From the premise of Rule P2 24 the following must be derivable:

〈σt
rel(x)〉 r7−→ 〈x′〉, (1317)

〈σt
rel(y)〉 r7−→ 〈y′〉 (1318)

We distinguish between three cases for the derivation of above time
steps for different values of duration r.

i. Case r < t:

Let t = r + r1, for some 0 < r1 < t .
Only Rule P2 9 allows to derive a time step of duration less than
t for a process term σt

rel(x). According to the rule, the target
process terms x′ and y′ in Transitions 1317 and 1318 are σr1

rel(x)
and σr1

rel(y) respectively. Rewriting Transition 1316, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (1319)

The following time step can also be derived from Rule P2 9:

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (1320)

Consider the target process terms in Transitions 1319 and 1320.
The pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)), for 0 < r1 < t is in R.
ii. Case r = t:

Then Transitions 1317 and 1318 can only be derived from Rule
P2 10. According to the rule,

x′ = x and y′ = y

Rewriting Transition 1316, we get:

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈x + y〉 (1321)
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From the premise of Rule P2 10, the following must hold:

〈consistent x〉 and 〈consistent y〉
which implies by rule P2 27

〈consistent x + y〉
Consequently, Rule P2 10 becomes applicable on σt

rel(x + y) to
derive the following time step:

〈σt
rel(x + y)〉 r7−→ 〈x + y〉 (1322)

Consider the target process terms in Transitions 1321 and 1322.
The pair (x + y, x + y) is in R.

iii. Case r > t:

Let t = r + t1, for some t1 with 0 < t1 < t.
Then Transitions 1317 and 1318 can only be derived from Rule
P2 11. According to the premise of the rule, the following must
be derivable:

〈x〉 t17−→ 〈x′〉, (1323)

〈y〉 t17−→ 〈y′〉 (1324)

Joining the two transitions and applying Rule P2-24, we get:

〈x + y〉 t17−→ 〈x′ + y′〉 (1325)

Apply Rule P2 11 on the above Transition. We get:

〈σt
rel(x + y)〉 r+t17−−−→ 〈x′ + y′〉 (1326)

Consider the target process terms in Transitions 1316 and 1326.
The pair (x′ + y′, x′ + y′) is in R.

(b) Rule P2 25

We now inspect the case when Transition 1315 has been derived from
Rule P2 25.

〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z〉 (1315)

If Rule P2 25 is used to derive Transition 1315, then according to the
rule σt

rel(x) must do the time step of duration r, σt
rel(y) must be unable

to delay for duration r and σt
rel(y) must remain consistent throughout

the delay. Mathematically, the requirements can be written as:

〈σt
rel(x)〉 r7−→ 〈z〉, (1327)

〈consistent σt
rel(y)〉, (1328)

〈σt
rel(y)〉 6 r7−→, (1329)

(∀s ≤ r, 〈σt
rel(y)〉 6 s7−→⊥) (1330)

Again we distinguish three cases for different values of r.
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i. Case r < t:

Let t = r + r1, for some 0 < r1 < t.
A time step 〈σr+r1

rel (y)〉 r7−→ 〈σr1
rel(y)〉 is always derivable (Rule P2

9). Hence Predicate 1329 does not hold for r < t.
We conclude that Transition 1315 cannot be derived from Rule
P2 25 for r < t.

ii. Case r = t:

Rewriting the requirements for Rule P2 25 for r = t, we get:

〈σt
rel(x)〉 t7−→ 〈z〉, (1331)

〈consistent σt
rel(y)〉, (1332)

〈σt
rel(y)〉 6 t7−→, (1333)

(∀s ≤ t, 〈σt
rel(y)〉 6 s7−→⊥) (1334)

The Predicate 1333 indicates that Rule P2 10 is not applicable.
Therefore y must be inconsistent. I.e.,

¬〈consistent y〉

If that is the case, then Rule P2 13 becomes applicable and the
following can be derived:

〈σt
rel(y)〉 t7−→⊥ (1335)

which contradicts predicate 1334.
We conclude that Transition 1315 cannot be derived from Rule
P2 25 for r = t.

iii. Case r > t:

Let r = t + v, for some v > 0.
If Rule P2 25 is used to derive Transition 1315, then according
to the rule the following must hold:

〈σt
rel(x)〉 t+v7−−→ 〈z〉, (1336)

〈consistent σt
rel(y)〉, (1337)

〈σt
rel(y)〉 6 t+v7−−→, (1338)

(∀s ≤ (t + v), 〈σt
rel(y)〉 6 s7−→⊥) (1339)

Transition 1336 can only be derived from Rule P2- 11. Then
from the premise of the rule the following must be derivable:

〈x〉 v7−→ 〈z〉 (1340)
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From Predicate 1339 we can infer,

〈σt
rel(y)〉 6 t7−→⊥ (1341)

Hence Rule P2 13 must not be applicable. Therefore y must be
consistent. I.e.,

〈consistent y〉 (1342)

Predicate 1338 indicates that Rule P2 11 cannot be applied to
process term σt

rel(y). Hence the premise of the rule doesn’t hold.
I.e.,

〈y〉 6 v7−→ (1343)

Consider Predicate 1339. If we weaken the predicate, we have,

∀s : t < s ≤ (t + v), 〈σt
rel(y)〉 6 s7−→⊥ (1344)

(Note we are considering a future inconsistency predicate over a
reduced range of s).
The above statement indicates that process term σt

rel(y) does
not have a future inconsistency predicate of length greater than
t and less than or equal to t+ v. This means that Rule P2- 14 is
not applicable for any duration in interval (t, t + v]. Hence the
premise of the rule doesn’t hold in the duration (0, v].

∀s ≤ v, 〈y〉 6 s7−→⊥ (1345)

Apply Rule P2-25 to Transitions (Predicates) 1340,1342,1343
and 1345, we get:

〈x + y〉 v7−→ 〈z〉 (1346)

Apply Rule P2 11 to the above transition. We get:

〈σt
rel(x + y)〉 u+v7−−−→ 〈z〉 (1347)

Consider the target process terms in Transitions 1315 and 1347.
The pair (z, z) is in I.

(c) Rule P2 26

Reasoning similar to above applies.

4.
〈σt

rel(x + y)〉 r7−→ 〈z〉 =⇒ ∃z′ ∈ P : 〈σt
rel(x) + σt

rel(y)〉 r7−→ 〈z′〉
and (z′, z) ∈ R ∪ I

Suppose,
〈σt

rel(x + y)〉 r7−→ 〈z〉 (1348)

We distinguish three cases depending on the length of duration r.
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(a) Case r < t:

Let t = r + r1, for some r1 such that 0 < r1 < t.
When r < t, then Transition 1348 can only be derived from Rule
P2-9. This rule has no premise. It can always be applied. Then, z
must be σr1

rel(x + y).

〈σr+r1
rel (x + y)〉 r7−→ 〈σr1

rel(x + y)〉 (1349)

The Rule P2-9 can be used to derive the following time steps:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (1350)

〈σr+r1
rel (y)〉 r7−→ 〈σr1

rel(y)〉 (1351)

Apply Rule P2 24 on the above transitions, we get:

〈σr+r1
rel (x) + σr+r1

rel (y)〉 r7−→ 〈σr1
rel(x) + σr1

rel(y)〉 (1352)

Consider the target process terms in transitions 1349 and 1352. For
r1 < t, the pair (σr1

rel(x) + σr1
rel(y), σr1

rel(x + y)) is in R.

(b) Case r = t:
When r = t, then Transition 1348 can only be derived from Rule P2
10. Then z must be of the form x + y. Rewriting Transition 1348

〈σt
rel(x + y)〉 t7−→ 〈x + y〉 (1353)

And from the premise of the rule, the following must hold:

〈consistent x + y〉 (1354)

The above predicate can only hold when both x and y are consistent.
I.e.,

〈consistent x〉 and 〈consistent y〉 (1355)

Then we can apply rule P2 10 to derive the following transitions for
process terms σr

rel(x) and σr
rel(y):

〈σt
rel(x)〉 t7−→ 〈x〉 (1356)

〈σt
rel(y)〉 t7−→ 〈y〉 (1357)

Apply Rule P2 24 on the above transitions, we get:

〈σt
rel(x) + σt

rel(y)〉 t7−→ 〈x + y〉 (1358)

Consider the target process terms in transitions 1353 and 1358. The
pair (x + y, x + y) is in I.

253



(c) Case r > t:
Let r = t + v, for some v > 0.
When r > t, then Transition 1348 can only be derived from Rule P2
11. From the premise of the rule, the following must hold:

〈x + y〉 v7−→ 〈z〉 (1359)

A time step for an alternative composition can be derived from rules
P2 24, P2 25 and P2 26. We discuss each of the rules one by one:

i. Rule P2 24:
If this rule is used to derive Transition 1359, then both process
terms x and y can do the time step. From the premise of the
rule, for some process terms x′, y′, z must be of the form x′+ y′.
Rewriting Transitions 1348 and 1359:

〈σt
rel(x + y)〉 t+v7−−→ 〈x′ + y′〉 (1360)

〈x + y〉 v7−→ 〈x′ + y′〉 (1361)

And the following must hold:

〈x〉 v7−→ 〈x′〉 (1362)

〈y〉 v7−→ 〈y′〉 (1363)

On each of the above transitions, apply Rule P2 11, we get:

〈σt
rel(x)〉 t+v7−−→ 〈x′〉 (1364)

〈σt
rel(y)〉 t+v7−−→ 〈y′〉 (1365)

Apply Rule P2 24 on the above transitions, we get:

〈σt
rel(x) + σt

rel(y)〉 t+v7−−→ 〈x′ + y′〉 (1366)

Consider the target process terms in transitions 1360 and 1366.
The pair (x′ + y′, x′ + y′) is in I.

ii. Rule P2 25:
If this rule is used to derive Transition 1359, then according to
the rule x must do the time step of duration v, y must be unable
to delay for duration v and y must remain consistent throughout
the delay. Mathematically, the requirements can be written as:

〈x〉 v7−→ 〈z〉, (1367)
〈consistent y〉, (1368)

〈y〉 6 v7−→, (1369)

(∀s ≤ v, 〈y〉 6 s7−→⊥) (1370)
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Apply Rule P2 11 on Transition 1367. We get:

〈σt
rel(x)〉 t+v7−−→ 〈z〉 (1371)

A process term σt
rel(y) may have future inconsistency predicates

with durations greater than or equal to t. For a process term
σt

rel(y), there are no rules allowing a predicate of future inconsis-
tency with a duration s which is strictly less than t. Hence, the
following predicate holds:

∀s < t, 〈σt
rel(y)〉 6 s7−→⊥ (1372)

For σt
rel(y) to have a future inconsistency with duration t, Rule P2

13 must be applicable. The rule has a premise that the predicate
of consistency does not hold for y. But from Predicate 1368, we
have: 〈consistent y〉. Hence Rule P2 13 cannot be applied and
statement 1372 can be made stronger:

∀s ≤ t, 〈σt
rel(y)〉 6 s7−→⊥ (1373)

Rule P2 14 is the only rule by which we can derive a future
inconsistency predicate of length t + s, (where s > 0) for the
process term σt

rel(y). The rule requires that a predicate of future
inconsistency with length s must hold for y, i.e. the predicate,

〈y〉 s7−→⊥ (1374)

must hold.
If there does not hold such a predicate for y, then a future in-
consistency predicate for σt

rel(y) with length t + s cannot hold.
Hence from Predicate 1370, (∀s ≤ v, 〈y〉 6 s7−→⊥)
We have,

∀s ≤ v, 〈σt
rel(y)〉 6 t+s7−−→⊥ (1375)

Combining Predicates 1373 and 1375, we get:

∀s ≤ (t + v), 〈σt
rel(y)〉 6 s7−→⊥ (1376)

From Rule P2-12 the following holds:

〈consistent σt
rel(y)〉 (1377)

Consider a process term σt
rel(z). Rule P2 11 is the only rule that

allows σt
rel(z) to delay for a time duration t + v. The rule has a

premise that z must be delayable for v time units. Hence from
Predicate 1369 (〈y〉 6 v7−→), we can infer the following:

〈σt
rel(y)〉 6 t+v7−−→ (1378)
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Apply Rule P2-25 to Transitions (Predicates) 1371,1376, 1377
and 1378 we get:

〈σt
rel(x) + σt

rel(y)〉 t+v7−−→ 〈z〉 (1379)

Consider the target process terms in Transitions 1348 and 1379.
The pair (z, z) is in R.

iii. Rule P2 26:
If this rule is used to derive Transition 1359, then according to
the rule y must do the time step of duration r, x must be unable
to delay for duration r and x must remain consistent throughout
the delay.
Reasoning similar to the Rule P2 25 applies.

5.
〈σt

rel(x + y)〉 a−→ √ ⇐⇒ 〈σt
rel(x) + σt

rel(y)〉 a−→ √

Left Implication
Suppose,

〈σt
rel(x + y)〉 a−→ √

There are no rules allowing a process term σr
rel(x), with r > 0 to perform

an action. Hence the above transition with an action step for σt
rel(x + y)

does not exist.

Right Implication
Suppose,

〈σt
rel(x) + σt

rel(y)〉 a−→ √
(1380)

The above transition can be derived from Rules P2-22 or P2-23.

(a) Rule P2-22

From the premise of the rule, the following must hold:

〈σt
rel(x)〉 a−→ √

(1381)
〈consistent σt

rel(y)〉 (1382)

Again there are no rules for σt
rel(x), with t > 0 to perform an action.

Hence the transition 1380 cannot be derived from Rule P2-22.

(b) Rule P2-23

For similar reasons as given above for Rule P2-22, the transition 1380
cannot be derived from Rule P2-23.

6.
〈σt

rel(x + y)〉 r7−→⊥ ⇐⇒ 〈σt
rel(x) + σt

rel(y)〉 r7−→⊥
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Left Implication
Suppose,

〈σt
rel(x + y)〉 r7−→⊥ (1383)

We distinguish three cases depending on the length of duration r.

(a) Case r < t:
There are no rules to derive a future inconsistency predicate for a
process term σt

rel(z), with a length r which is less than u. Hence
Predicate 1383 cannot be derived for r < t.

(b) Case r = t:

〈σt
rel(x + y)〉 t7−→⊥ (1384)

Only Rule P2 13 can be used to derive the above predicate. From
the premise of the Rule, the following holds:

¬〈consistent x + y〉 (1385)

A consistency predicate for an alternative composition is derived from
Rule P2-27. From Predicate 1385, the premise of the rule must not
hold. Hence, at least one of the following holds:

¬〈consistent x〉 and ¬〈consistent y〉 (1386)

i. Case ¬〈consistent x〉
If ¬〈consistent x〉, then Rule P2 13 can be applied to derive
the following:

〈σt
rel(x)〉 t7−→⊥ (1387)

There are no rules to derive a predicate of Future Inconsistency
for a process term σt

rel(y), with a length r which is less than u.
Hence the following holds:

∀s < t, 〈σt
rel(y)〉 6 s7−→⊥ (1388)

Also, for u > 0, from Rule P2-12, the following holds:

〈consistent σt
rel(y)〉 (1389)

Apply Rule P2 28 on Predicates 1387, 1388 and 1389. We get:

〈σt
rel(x) + σu

rel(y)〉 t7−→⊥ (1390)

Consider Predicates 1384 and 1390. The Left implication is
proved.
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ii. Case ¬〈consistent y〉
If ¬〈consistent y〉, then by reasoning that is similar to above
and by application of Rule P2 29, we get the following predicate:

〈σt
rel(x) + σt

rel(y)〉 t7−→⊥

(c) Case r > t:
Let r = t + v, where v > 0.
When r > t, then Predicate 1383 can only be derived from Rule P2
14. Rewriting Predicate 1383:

〈σt
rel(x + y)〉 t+v7−−→⊥ (1391)

From the premise of the rule, the following must hold:

〈x + y〉 v7−→⊥ (1392)

A predicate of future inconsistency for an alternative composition
can only be derived from rules P2 28 or P2 29. We discuss each of
the rules one by one:

i. Rule P2 28:
From the premise of the rule the following must hold:

〈x〉 v7−→⊥ (1393)
〈consistent y〉 (1394)

∀s < v, 〈y〉 6 s7−→⊥ (1395)

Apply Rule 14 on Predicate 1393. We get:

〈σt
rel(x)〉 t+v7−−→⊥ (1396)

No rules for deriving a future inconsistency predicate of length
less than r for a process term σr

rel(z). Hence the following predi-
cate holds:

∀s < t, 〈σt
rel(y)〉 6 s7−→⊥ (1397)

From Predicate 1394, Rule P2 13 cannot be applied. Hence:

〈σt
rel(y)〉 6 t7−→⊥ (1398)

Combining Predicates 1397 and 1398, we get:

∀s ≤ t, 〈σt
rel(y)〉 6 s7−→⊥ (1399)

For process term σt
rel(y), a future inconsistency predicate of du-

ration t + s, (where s > 0) can only be derived from Rule P2 14.
From Predicate 1395, Rule P2 14 cannot be applied on process
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term σt
rel(y) for any duration in interval (t, t + v). Hence the

following predicate holds:

∀s < v, 〈σt
rel(y)〉 6 t+s7−−→⊥ (1400)

Combining Predicate 1399 and Predicate 1400, we get:

∀s < t + v, 〈σt
rel(y)〉 6 s7−→⊥ (1401)

Also the following holds:

〈consistent σt
rel(y)〉 (1402)

Apply Rule P2 28 on Transitions (Predicates) 1396, 1402 and
1401. We get:

〈σt
rel(x) + σt

rel(y)〉 t+v7−−→⊥

Hence the left implication is proved.
ii. Rule P2 29:

Reasoning similar to Rule P2 28 applies.

Right Implication
Suppose

〈σt
rel(x) + σt

rel(y)〉 r7−→⊥ (1403)

Rules P2 28 or P2 29 can be applied to derive the above predicate.

(a) Rule P2 28:

If this rule is used to derive Predicate 1403, then according to the
rule the following must hold:

〈σt
rel(x)〉 r7−→⊥, (1404)

〈consistent σt
rel(y)〉, (1405)

(∀s < r, 〈σt
rel(y)〉 6 s7−→⊥) (1406)

We distinguish three cases depending on different values of r:

i. Case r < u
Then it is not possible to derive Predicate 1404. As the premises
of Rule P2 28 are not satisfied, therefore we conclude that Rule
P2 28 cannot be used to derive Predicate 1403 for r < t.

ii. Case r = t:
Rewriting the requirements of Rule P2 28:

〈σt
rel(x)〉 t7−→⊥, (1407)

〈consistent σt
rel(y)〉, (1408)

(∀s < t, 〈σt
rel(y)〉 6 s7−→⊥) (1409)
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Now Predicate 1407 can only be derived from Rule P2 13. Hence
the premise of the rule must hold. I.e.,

¬〈consistent x〉
For an alternative composition, both alternatives must be con-
sistent. Only then a consistency predicate for that alternative
composition can be derived. Hence, from ¬〈consistent x〉, the
following holds:

¬〈consistent x + y〉
Apply Rule P2 13 on the above predicate:

〈σu
rel(x + y)〉 u7−→⊥ (1410)

Hence left implication is proved.
iii. Case r > t:

Let r = t + v, for some v > 0. Rewriting premises of Rule 28:

〈σt
rel(x)〉 t+v7−−→⊥, (1411)

〈consistent σt
rel(y)〉, (1412)

(∀s < (t + v), 〈σt
rel(y)〉 6 s7−→⊥) (1413)

Predicate 1411 can only be derived from Rule P2 14. Hence the
following must hold:

〈x〉 v7−→⊥ (1414)

Now from Predicate 1413, a future inconsistency predicate for
process term σt

rel(y) with length t does not hold. I.e.,

〈σt
rel(y)〉 6 t7−→⊥

That means Rule P2 13 is not applicable. Hence its premise
must not hold. I.e.,

〈consistent y〉 (1415)

By weakening Predicate 1413, the following is inferred:

∀s : t < s < (t + v), 〈σt
rel(y)〉 6 s7−→⊥

Rewriting the above predicate,

∀s : s < v, 〈σt
rel(y)〉 6 t+v7−−→⊥

The above Predicate states that Rule P2 14 is not applicable for
process term, σt

rel(y) for any duration in interval (t, t+v). Hence
the premise of the rule must not hold:

∀s < v, 〈y〉 6 s7−→⊥ (1416)
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Apply Rule P2 14 on Predicates 1414, 1415 and 1416, we get:

〈x + y〉 v7−→⊥ (1417)

Apply Rule P2 14 on the above predicate, we get:

〈σt
rel(x + y)〉 t+v7−−→⊥

(b) Rule P2 29:

If this rule is used to derive Predicate 1403, then according to the
rule the following must hold:

〈σt
rel(y)〉 r7−→⊥, (1418)

〈consistent σt
rel(x)〉, (1419)

(∀s < r, 〈σt
rel(x)〉 6 s7−→⊥) (1420)

Reasoning similar to given above for Rule P2 28 applies.

7.
〈consistent σt

rel(x + y)〉 ⇐⇒ 〈consistent σt
rel(x) + σt

rel(y)〉

Left Implication
Suppose,

〈consistent σt
rel(x + y)〉

Rule P2-12 indicates that a process term with a relative delay of t > 0
time units is always consistent. Hence, the following holds:

〈consistent σt
rel(x)〉

〈consistent σt
rel(y)〉

Apply Rule P2-27 on the above two predicates, we get:

〈consistent σt
rel(x)〉+ 〈consistent σt

rel(y)〉

Right Implication
Suppose,

〈consistent σt
rel(x) + σt

rel(y)〉
From Rule P2-12, a process term with a relative delay of t > 0 time units
is always consistent. Hence, the following holds:

〈consistent σt
rel(x + y)〉
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H.17 Axiom SRT4

σu
rel(x) · y = σu

rel(x · y) u ≥ 0 (SRT4)
We give the proof in two steps:

Case u = 0
The proof is trivial using Axiom SRT1.
Case u > 0

We need to prove, σu
rel(x) · y↔ σu

rel(x · y).
Let R be a binary relation on process terms defined as follows:

R = { (σt
rel(x) · y, σt

rel(x · y)) | x, y ∈ P, 0 < t ≤ u}

For all x, y, p ∈ P , r > 0, a ∈ A, the following holds:

1.
〈σt

rel(x) · y〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 a−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (1421)

The above action step can only be derived from Rule P2-15 or 16. We
discuss the two cases one by one:

(a) Rule P2-15

If Transition 1421 is derived from this rule, then for some process
term p′, p = p′ · y. And from the premise of the rule, the following
must be derivable,

〈σt
rel(x)〉 a−→ 〈p′〉 (1422)

An action step for operator σt
rel with t > 0 cannot be derived from

any rules. Hence we conclude that Rule P2-15 cannot be used to
derive Transition 1421.

(b) Rule P2-16

If Transition 1421 is derived from this rule, then, p = y. And from
the premise of the rule, the following must be derivable,

〈σt
rel(x)〉 a−→ √

(1423)

A termination step for operator σt
rel with t > 0 cannot be derived

from any rules. Hence we conclude that Rule P2-16 cannot be used
to derive Transition 1421.
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Transition 1421 cannot be derived from any rules. Since the left hand side
of the implication does not hold, therefore the implication holds.

2.
〈σt

rel(x · y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 a−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 a−→ 〈p〉 (1424)

An action step for operator σt
rel with t > 0 cannot be derived from any

rules. Hence our supposition is wrong.

3.
〈σt

rel(x) · y〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x · y)〉 r7−→ 〈z〉

and (p, z) ∈ R ∪ I.

Suppose,

〈σt
rel(x) · y〉 r7−→ 〈p〉 (1425)

The above time step can only be derived from Rule P2-17. Then for some
process term p′, p = p′ · y. Rewriting Transition 1425:

〈σt
rel(x) · y〉 r7−→ 〈p′ · y〉 (1426)

From the premise of the rule the following holds:

〈σt
rel(x)〉 r7−→ 〈p′〉 (1427)

We distinguish between three cases for different values of r:

(a) Case r < t

Let t = r + r1, for some r1 > 0.
Then Transition 1427 can only be derived from Rule P2-9. From the
rule, we have p′ = σr1

rel(x). Rewriting Transitions 1426 and 1427:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (1428)

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉 (1429)

From Rule P2-9, the following can be

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (1430)

Consider the target process terms in Transitions 1428 and 1430. For
0 < r1 < t, the pair (σr1

rel(x) · y, σr1
rel(x · y)) is in R.
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(b) Case r = t
Then Transition 1427 can only be derived from Rule P2-10. From
the rule, we have p′ = x. Rewriting Transitions 1426 and 1427:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (1431)

〈σt
rel(x)〉 t7−→ 〈x〉 (1432)

From the premise of Rule P2-10, the following must hold:

〈consistent x〉
Apply Rule P2-18 on the above predicate, we get:

〈consistent x · y〉 (1433)

Apply Rule P2-10 on process term σt
rel(x · y), we get:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (1434)

Consider the target process terms in Transitions 1431 and 1434. The
pair (x · y, x · y) is in I.

(c) Case r > t
Let r = t + v, for some v > 0.
Rewriting Transitions 1426 and 1427:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (1435)

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (1436)

Transition 1436 can only be derived from Rule P2-11. Then from the
premise of the rule the following holds:

〈x〉 v7−→ 〈p′〉 (1437)

Apply Rule P2-17 on the above transition, we get:

〈x · y〉 v7−→ 〈p′ · y〉 (1438)

Apply Rule P2-11 on the above transition, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (1439)

Consider the target process terms in Transitions 1435 and 1439. The
pair (p′ · y, p′ · y) is in I.

4.
〈σt

rel(x · y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈σt
rel(x) · y〉 r7−→ 〈z〉

and (z, p) ∈ R ∪ I.

Suppose,

〈σt
rel(x · y)〉 r7−→ 〈p〉 (1440)

We distinguish between three cases for different values of r.
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(a) Case r < t

Let t = r + r1, for some r1 < t.
Then Transition 1440 can only be derived from Rule P2-9. From the
rule, we have p = σr1

rel(x · y). Rewriting Transition 1440:

〈σr+r1
rel (x · y)〉 r7−→ 〈σr1

rel(x · y)〉 (1441)

From Rule P2-9, the following can be derived:

〈σr+r1
rel (x)〉 r7−→ 〈σr1

rel(x)〉

Apply Rule P2-17 on the above transition. We get:

〈σr+r1
rel (x) · y〉 r7−→ 〈σr1

rel(x) · y〉 (1442)

Consider the target process terms in Transitions 1441 and 1442. The
pair (σr1

rel(x) · y), σr1
rel(x · y)) is in R.

(b) Case r = t
Then Transition 1440 can only be derived from Rule P2-10. From
the rule, we have p = x · y. Rewriting Transition 1440:

〈σt
rel(x · y)〉 t7−→ 〈x · y〉 (1443)

The above time step can only be derived from Rule P2-10. From the
premise of the rule,

〈consistent x · y〉
which can only be derived from Rule P2-18. Then the following must
hold:

〈consistent x〉
Apply Rule P2-10 on the above predicate, we get:

〈σt
rel(x)〉 t7−→ 〈x〉 (1444)

Apply Rule P2-17, we get:

〈σt
rel(x) · y〉 t7−→ 〈x · y〉 (1445)

Consider the target process terms in Transitions 1434 and 1445. The
pair (x · y, x · y) is in R.

(c) Case r > t
Let r = v + t, for some v > 0.
Then Transition 1440 can only be derived from Rule P2-11. Rewrit-
ing Transition 1440:

〈σt
rel(x · y)〉 t+v7−−→ 〈p〉 (1446)
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From the premise of the rule,

〈x · y〉 v7−→ 〈p〉 (1447)

The above transition can only be derived from Rule P2-17. Then
for some process term p′, p = p′ · y. Rewriting Transitions 1446 and
1447, we get:

〈σt
rel(x · y)〉 t+v7−−→ 〈p′ · y〉 (1448)

〈x · y〉 v7−→ 〈p′ · y〉 (1449)

From the premise of the rule,

〈x〉 v7−→ 〈p′〉 (1450)

Apply Rule P2-11 on the above transition, we get:

〈σt
rel(x)〉 t+v7−−→ 〈p′〉 (1451)

Apply Rule P2-17 on the above transition, we get:

〈σt
rel(x) · y〉 t+v7−−→ 〈p′ · y〉 (1452)

Consider the target process terms in Transitions 1446 and 1452. The
pair (p′ · y, p′ · y) is in I.

5.
〈σt

rel(x · y)〉 a−→ √ ⇐⇒ 〈σt
rel(x) · y〉 a−→ √

Trivial therefore left.

6.
〈σt

rel(x) · y〉 r7−→⊥ ⇐⇒ 〈σt
rel(x · y)〉 r7−→⊥

Left Implication

Suppose,
〈σt

rel(x) · y〉 r7−→⊥ (1453)

The above predicate can only be derived from Rule P2-19. From the
premise of the rule, the following holds:

〈σt
rel(x)〉 r7−→⊥ (1454)

We distinguish between three cases for different values of r.

(a) Case r < t

For r < t, Predicate 1454 cannot be derived. We conclude that
Predicate 1453 cannot be derived for r < t.
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(b) Case r = t

Then Predicate 1454 can only be derived from Rule P2-13. Rewriting
Predicate 1454, we get:

〈σt
rel(x)〉 t7−→⊥ (1455)

From the premise of the rule, the following holds:

¬〈consistent x〉
Then the following also holds:

¬〈consistent x · y〉
Apply Rule P2-13 on the process term σt

rel(x · y), we get:

〈σt
rel(x · y)〉 t7−→⊥

(c) Case r > t

Let r = t + v, for some v > 0.
Rewriting Predicate 1454:

〈σt
rel(x)〉 t+v7−−→⊥ (1456)

The above Predicate can only be derived from Rule P2-14. From the
premise of the rule, the following holds:

〈x〉 v7−→⊥ (1457)

Apply Rule P2-19 on the above predicate, we get:

〈x · y〉 v7−→⊥

Apply Rule P2-14 on the above predicate, we get:

〈σt
rel(x · y)〉 t+v7−−→⊥

Right Implication

Suppose,
〈σt

rel(x · y)〉 r7−→⊥ (1458)

We distinguish between three cases for different values of r.

(a) Case r < t
A Future Inconsistency predicate for a process term with operator
σt

rel of duration less than t cannot be derived. Hence, for r < t,
Predicate 1458 cannot hold.

267



(b) Case r = t
Then Predicate 1458 can only be derived from Rule P2-13. From the
premise of the rule, the following holds:

¬〈consistent x · y〉
The above predicate can hold only if, ¬〈consistent x〉 holds.

¬〈consistent x〉 (1459)

Apply Rule P2-13 on the above predicate. We get:

〈σt
rel(x)〉 t7−→⊥ (1460)

Apply Rule P2-19 on the above predicate, we get:

〈σt
rel(x) · y〉 t7−→⊥

(c) Case r > t
Let r = t + v, for some v > 0.
Rewriting Predicate 1458, we get:

〈σt
rel(x · y)〉 t+v7−−→⊥ (1461)

Predicate 1461 can only be derived from Rule P2-14. Then from the
premise of the rule, the following holds:

〈x · y〉 v7−→⊥ (1462)

Predicate 1462 can only be derived from Rule P2-19. Then from the
premise of the rule, the following holds:

〈x〉 v7−→⊥

Apply Rule P2-14 on the above predicate, we get:

〈σt
rel(x)〉 t+v7−−→⊥ (1463)

Apply Rule P2-19 on the above predicate, we get:

〈σt
rel(x) · y〉 t+v7−−→⊥ (1464)

7.
〈consistent σt

rel(x · y)〉 ⇐⇒ 〈consistent σt
rel(x) · y〉

From Rule P2-12,
〈consistent σt

rel(x · y)〉
From Rule P2-18 and Rule P2-12, it can be derived that:

〈consistent σt
rel(x) · y〉
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H.18 Axiom SRU1

νrel(˜̃a) = ˜̃a (SRU1)
We need to prove, νrel(˜̃a)↔ ˜̃a.
Let R be a binary relation on process terms defined as follows:

R = {(νrel(˜̃a), ˜̃a) | a ∈ A}
The proof that R ∪ I is a bisimulation relation is trivial and therefore left out.

H.19 Axiom SRU2

νrel(σr
rel(x)) = ˜̃δ r > 0 (SRU2)

We need to prove, νrel(σu
rel(x))↔ ˜̃δ.

Let R be a binary relation on process terms defined as follows:

R = {(νrel(σu
rel(x)) | x ∈ P, u > 0}

The proof that R ∪ I is a bisimulation relation is trivial and therefore left
out.

H.20 Axiom SRU3

νrel(x + y) = νrel(x) + νrel(y). (SRU3)
We need to prove, νrel(x + y)↔ νrel(x) + νrel(y).
Let R be a binary relation on process terms defined as follows:

R = { (νrel(x + y), νrel(x) + νrel(y)) | x, y ∈ P}
We prove that the relation R ∪ I satisfies all conditions of bisimulation.

For all a ∈ A, r > 0, x, y, p ∈ P , the following holds:

1.
〈νrel(x + y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) + νrel(y)〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x + y)〉 a−→ 〈p〉 (1465)

The above transition can only be derived from Rule P2-30. Then from
the premise the following holds:

〈x + y〉 a−→ 〈p〉 (1466)

The above action step can be derived from two rules:

(a) Rule P2-20
If Transition 1466 is derived from this rule, then from the premise of
the rule, we have:

〈x〉 a−→ 〈p〉 (1467)
〈consistent y〉 (1468)
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Apply Rule P2-30 on Transition 1467, we get:

〈νrel(x)〉 a−→ 〈p〉 (1469)

Apply Rule P2-32 on Predicate 1468, we get:

〈consistent νrel(y)〉 (1470)

Apply Rule P2-20 on Transition 1469 and Predicate 1470. We get:

〈νrel(x) + νrel(y)〉 a−→ 〈p〉 (1471)

Consider the target process terms in Transitions 1466 and 1471. The
pair (p, p) is in I.

(b) Rule P2-21

If Transition 1466 is derived from this rule, then from the premise of
the rule, we have:

〈y〉 a−→ 〈p〉 (1472)
〈consistent x〉 (1473)

Reasoning similar to that of Rule P2-20 applies here.

2.
〈νrel(x) + νrel(y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x + y)〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x) + νrel(y)〉 a−→ 〈p〉 (1474)

The above transition can be derived from Rule P2-20 or Rule P2-21. We
discuss them one by one:

(a) Rule P2-20
If Transition 1474 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(x)〉 a−→ 〈p〉 (1475)
〈consistent νrel(y)〉 (1476)

Transition 1475 can only be derived from Rule P2-30. Predicate
1476 can only be derived from Rule P2-32. From their premises, the
following holds:

〈x〉 a−→ 〈p〉 (1477)
〈consistent y〉 (1478)
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Apply Rule P2-20 on the above transition and predicate, we get:

〈x + y〉 a−→ 〈p〉 (1479)

Apply Rule P2-30 on the above transition, we get:

〈νrel(x + y)〉 a−→ 〈p〉 (1480)

Consider the target process terms in Transitions 1474 and 1480. The
pair (p, p) is in I.

(b) Rule P2-21
If Transition 1474 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(y)〉 a−→ 〈p〉 (1481)
〈consistent νrel(x)〉 (1482)

Reasoning similar to that given for Rule P2-20 applies here.

3.
〈νrel(x + y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) + νrel(y)〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x + y)〉 r7−→ 〈p〉

A time step for now operator can not be derived from any rules. Hence
our supposition cannot hold and the implication is trivially satisfied.

4.
〈νrel(x) + νrel(y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x + y)〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x) + νrel(y)〉 r7−→ 〈p〉 (1483)

A time step for an alternative composition can be derived from Rule P2-24,
Rule P2-25 or Rule P2-26. We discuss them one by one:

(a) Rule P2-24
If transition 1483 is derived from this rule, Then for some process
term x1, y1, p = x1+y1 and from the premise of the rule, the following
holds:

〈νrel(x)〉 r7−→ 〈x1〉 (1484)

〈νrel(y)〉 r7−→ 〈y1〉 (1485)

A time step for now operator can not be derived from any rules.
Hence Transitions 1484 and 1485 are not derivable. We conclude
that Rule P2-24 cannot be used to derive Transition 1483.
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(b) Rule P2-25
If transition 1483 is derived from this rule, Then the premise of the
rule, the following holds:

〈νrel(x)〉 r7−→ 〈p〉 (1486)
〈consistent νrel(y)〉 (1487)

〈νrel(y)〉 6 r7−→ (1488)

∀s ≤ r 〈νrel(y)〉 6 s7−→⊥ (1489)

A time step for now operator can not be derived from any rules.
Hence Transition 1486 is not derivable. We conclude that Rule P2-
25 cannot be used to derive Transition 1483.

(c) Rule P2-26
Similarly, if transition 1483 is derived from this rule, Then the premise
of the rule, the following holds:

〈νrel(y)〉 r7−→ 〈p〉 (1490)
〈consistent νrel(x)〉 (1491)

〈νrel(x)〉 6 r7−→ (1492)

∀s ≤ r 〈νrel(x)〉 6 s7−→⊥ (1493)

A time step for now operator can not be derived from any rules.
Hence Transition 1490 is not derivable. We conclude that Rule P2-
26 cannot be used to derive Transition 1483.

No rules allow derivation of Transition 1483. Hence our supposition cannot
hold and the implication is trivially satisfied.

5.
〈νrel(x + y)〉 r7−→⊥ ⇐⇒ 〈νrel(x) + νrel(y)〉 r7−→⊥

Left Implication
Suppose,

〈νrel(x + y)〉 r7−→⊥

The above predicate can not be derived from any rules. Hence the left
implication is trivially satisfied.

Right Implication

Suppose,
〈νrel(x) + νrel(y)〉 r7−→⊥ (1494)

A future inconsistency predicate for an alternative composition can be
derived from Rule P2-28 or Rule P2-29.

We discuss them one by one:
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(a) Rule P2-28
If predicate 1494 is derived from this rule, Then from the premise of
the rule, the following holds:

〈νrel(x)〉 r7−→⊥ (1495)
〈consistent νrel(y)〉 (1496)

∀s < r 〈νrel(y)〉 6 s7−→ ⊥ (1497)

A future inconsistency predicate for a now operator can not be de-
rived from any rules. Hence Predicate 1495 is not derivable. We
conclude that Rule P2-28 cannot be used to derive Predicate 1494.

(b) Rule P2-29
If predicate 1494 is derived from this rule, Then the premise of the
rule, the following holds:

〈νrel(y)〉 r7−→⊥ (1498)
〈consistent νrel(x)〉 (1499)

∀s < r 〈νrel(x)〉 6 r7−→⊥ (1500)

A future inconsistency predicate for now operator can not be derived
from any rules. Hence Predicate 1498 is not derivable. We conclude
that Rule P2-29 cannot be used to derive Predicate 1494.

No rules allow derivation of Predicate 1494. Hence our supposition cannot
hold and the implication is trivially satisfied.

6.
〈νrel(x + y)〉 a−→ √ ⇐⇒ 〈νrel(x) + νrel(y)〉 a−→ √

Left Implication
Suppose,

〈νrel(x + y)〉 a−→ √
(1501)

The above predicate can only be derived from Rule P2-31. Then from the
premise the following holds:

〈x + y〉 a−→ √
(1502)

The above action step can be derived from two rules:

(a) Rule P2-22
If Predicate 1502 is derived from this rule, then from the premise of
the rule, we have:

〈x〉 a−→ √
(1503)

〈consistent y〉 (1504)
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Apply Rule P2-31 on Predicate 1503, we get:

〈νrel(x)〉 a−→ √
(1505)

Apply Rule P2-32 on Predicate 1504, we get:

〈consistent νrel(y)〉 (1506)

Apply Rule P2-22 on Predicate 1505 and Predicate 1506. We get:

〈νrel(x) + νrel(y)〉 a−→ √
(1507)

(b) Rule P2-23

If Predicate 1502 is derived from this rule, then from the premise of
the rule, we have:

〈y〉 a−→ √
(1508)

〈consistent x〉 (1509)

Reasoning similar to that of Rule P2-22 applies here.

Right Implication

Suppose,
〈νrel(x) + νrel(y)〉 a−→ √

(1510)

The above predicate can be derived from Rule P2-22 or Rule P2-23. We
discuss them one by one:

(a) Rule P2-22
If Predicate 1510 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(x)〉 a−→ √
(1511)

〈consistent νrel(y)〉 (1512)

Predicate 1511 can only be derived from Rule P2-31. Predicate 1512
can only be derived from Rule P2-32. From their premises, the fol-
lowing holds:

〈x〉 a−→ √
(1513)

〈consistent y〉 (1514)

Apply Rule P2-22 on the above predicates, we get:

〈x + y〉 a−→ √
(1515)

Apply Rule P2-31 on the above predicate, we get:

〈νrel(x + y)〉 a−→ √
(1516)
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(b) Rule P2-23
If Predicate 1510 is derived from this rule, then from the premise of
the rule, we have:

〈νrel(y)〉 a−→ √
(1517)

〈consistent νrel(x)〉 (1518)

Reasoning similar to that given for Rule P2-22 applies here.

7.
〈consistent νrel(x + y)〉 ⇐⇒ 〈consistent νrel(x) + νrel(y)〉

Left Implication

Suppose

〈consistent νrel(x + y)〉

The above predicate is only derivable from Rule P2-32. Then from premise
of the rule, the following holds:

〈consistent x + y〉 (1519)

which is only derivable from Rule P2-27. Then from the premise the
following holds:

〈consistent x〉 (1520)
〈consistent y〉 (1521)

Apply Rule P2-32 on the above predicates, we get:

〈consistent νrel(x)〉 (1522)
〈consistent νrel(y)〉 (1523)

Apply Rule P2-27 on the above predicates, we get the desired predicate:

〈consistent νrel(x) + νrel(y)〉

Right Implication
Suppose,

〈consistent νrel(x) + νrel(y)〉 (1524)

which is only derivable from Rule P2-27. Then from the premise the
following holds:

〈consistent νrel(x)〉 (1525)
〈consistent νrel(y)〉 (1526)
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The above predicates are only derivable from Rule P2-32. Then from the
premise the following must hold:

〈consistent x〉 (1527)
〈consistent y〉 (1528)

Apply Rule P2-27 on the above predicates, we get:

〈consistent x + y〉 (1529)

Apply Rule P2-32 on the above predicate, we get:

〈consistent νrel(x + y)〉 (1530)

H.21 Axiom SRU4

νrel(x · y) = νrel(x) · y. (SRU4)
We need to prove, νrel(x · y)↔ νrel(x) · y.
Let R be a binary relation on process terms defined as follows:

R = { (νrel(x · y), νrel(x) · y) | x, y ∈ P}

We prove that the relation R ∪ I satisfies all conditions of bisimulation.
For all a ∈ A, r > 0, x, y, p ∈ P , the following holds:

1.
〈νrel(x · y)〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) · y〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x · y)〉 a−→ 〈p〉 (1531)

The above transition can only be derived from Rule P2-30. Then from
the premise the following holds:

〈x · y〉 a−→ 〈p〉 (1532)

The above action step can be derived from two rules:

(a) Rule P2-15
If Transition 1532 is derived from this rule, then for some process
term p′, p = p′ · y. Rewriting Transition 1532:

〈x · y〉 a−→ 〈p′ · y〉 (1533)

From the premise of the rule, we have:

〈x〉 a−→ 〈p′〉 (1534)
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Apply Rule P2-30 on Transition 1534, we get:

〈νrel(x)〉 a−→ 〈p′〉 (1535)

Apply Rule P2-15 on the above transition. We get:

〈νrel(x) · y〉 a−→ 〈p′ · y〉 (1536)

Consider the target process terms in Transitions 1533 and 1536. The
pair (p′ · y, p′ · y) is in I.

(b) Rule P2-16

If Transition 1532 is derived from this rule, then, p = y. Rewriting
Transition 1532:

〈x · y〉 a−→ 〈y〉 (1537)

From the premise of the rule, we have:

〈x〉 a−→ √
(1538)

〈consistent y〉 (1539)

Apply Rule P2-31 on Transition 1538, we get:

〈νrel(x)〉 a−→ √
(1540)

Apply Rule P2-16 on the above transition making use of predicate
1539. We get:

〈νrel(x) · y〉 a−→ 〈y〉 (1541)

Consider the target process terms in Transitions 1537 and 1541. The
pair (y, y) is in I.

2.
〈νrel(x) · y〉 a−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x · y)〉 a−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x) · y〉 a−→ 〈p〉 (1542)

The above action step can be derived from two rules:

(a) Rule P2-15
If Transition 1542 is derived from this rule, then for some process
term p′, p = p′ · y. Rewriting Transition 1542:

〈νrel(x) · y〉 a−→ 〈p′ · y〉 (1543)

And from the premise of the rule, the following holds:

〈νrel(x)〉 a−→ 〈p′〉 (1544)

277



The above transition can only be derived from Rule P2-30. Then
from the premise the following holds:

〈x〉 a−→ 〈p′〉 (1545)

Apply Rule P2-15 on the above transition, we get:

〈x · y〉 a−→ 〈p′ · y〉 (1546)

Again apply Rule P2-30 on Transition 1546, we get:

〈νrel(x · y)〉 a−→ 〈p′ · y〉 (1547)

Consider the target process term in transitions 1543 and 1547. The
pair (p′ · y, p′ · y) is in I.

(b) Rule P2-16
If Transition 1542 is derived from this rule, then, p = y. Rewriting
Transition 1542:

〈νrel(x) · y〉 a−→ 〈y〉 (1548)

And from the premise of the rule, the following holds:

〈νrel(x)〉 a−→ √
(1549)

〈consistent y〉 (1550)

The Transition 1549 can only be derived from Rule P2-31. Then
from the premise the following holds:

〈νrel(x)〉 a−→ √
(1551)

From Premise of Rule P2-31, the following holds:

〈x〉 a−→ √
(1552)

Apply Rule P2-16 on the above transition using Predicate 1550:

〈x · y〉 a−→ 〈y〉 (1553)

Apply Rule P2-30 on the above transition, we get:

〈νrel(x · y)〉 a−→ 〈y〉 (1554)

Consider the target process term in transitions 1543 and 1554. The
pair (y, y) is in I.

3.
〈νrel(x · y)〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x) · y〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x · y)〉 r7−→ 〈p〉

A time step for now operator can not be derived from any rules. Hence
our supposition cannot hold and the implication is trivially satisfied.
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4.
〈νrel(x) · y〉 r7−→ 〈p〉 =⇒ ∃z ∈ P : 〈νrel(x · y)〉 r7−→ 〈z〉

and (p, z) ∈ R.

Suppose,
〈νrel(x) · y〉 r7−→ 〈p〉 (1555)

A time step for sequential composition can only be derived from Rule P2-
17. The for some process term p′, p = p′ · y. And from the premise the
following holds:

〈νrel(x)〉 r7−→ 〈p′〉 (1556)

The above transition cannot be derived as a time step for now operator
can not be derived from any rules. Hence the Transition 1555 cannot hold
and the implication is trivially proved.

5.
〈νrel(x · y)〉 a−→ √ ⇐⇒ 〈νrel(x) · y〉 a−→ √

Left Implication
Suppose,

〈νrel(x · y)〉 a−→ √
(1557)

Predicate 1557 can only be derived from Rule P2-31. Then from the
premise of the rule, the following holds:

〈x · y〉 a−→ √
(1558)

A termination predicate for a sequential composition cannot be derived
from any rules. Predicate 1558 doesn’t hold. hence our assumption pred-
icate 1557 doesn’t hold.

Right Implication

Suppose,
〈νrel(x) · y〉 a−→ √

(1559)

A termination predicate for a sequential composition cannot be derived
from any rules. Hence our assumption predicate 1559 doesn’t hold.

6.
〈νrel(x · y)〉 r7−→⊥ ⇐⇒ 〈νrel(x) · y〉 r7−→⊥

Left Implication
Suppose,

〈νrel(x · y)〉 r7−→⊥ (1560)

The above predicate can not be derived from any rules. Hence the left
implication is trivially satisfied.

Right Implication
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Suppose,
〈νrel(x) · y〉 r7−→⊥ (1561)

A future inconsistency predicate for sequential composition can only be
derived from Rule P2-19. Then from the premise the following holds:

〈νrel(x)〉 r7−→⊥ (1562)

The above predicate cannot be derived as a future inconsistency predicate
for now operator can not be derived from any rules. Hence the Transition
1561 cannot hold and the implication is trivially proved.

7.
〈consistent νrel(x · y)〉 ⇐⇒ 〈consistent νrel(x) · y〉

Left Implication

Suppose

〈consistent νrel(x · y)〉

Only derivable from Rule P2-32. Then from premise of the rule, the
following holds:

〈consistent x · y〉 (1563)

which is only derivable from Rule P2-18. Then from the premise the
following holds:

〈consistent x〉 (1564)

Apply Rule P2-32 on Predicate 1564:

〈consistent νrel(x)〉 (1565)

Again apply Rule P2-18 on Predicate 1565, we get the desired predicate:

〈consistent νrel(x) · y〉 (1566)

Right Implication
Suppose,

〈consistent νrel(x) · y〉

which is only derivable from Rule P2-18. Then from the premise the
following must hold:

〈consistent νrel(x)〉 (1567)
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which is only derivable from Rule P2-32. Then from premise of the rule,
the following holds:

〈consistent x〉

Apply Rule P2-18 on the above predicate, we get:

〈consistent x · y〉 (1568)

Apply Rule P2-32 on Predicate 1568, we get the desired result:

〈consistent νrel(x · y)〉 (1569)

H.22 Axiom NESRU

νrel(⊥) = ⊥ (NESRU)
We need to prove, νrel(⊥)↔⊥.
Let R be a binary relation on process terms defined as follows:

R = {(νrel(⊥),⊥)}

The proof is trivial and therefore left out.
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