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Comparative Study of Software Metrics’ Aggregation Techniques
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Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

Abstract

While software metrics are commonly used to assess software maintainability and study software evolution, they are

usually defined on a micro-level (method, class, package). Metrics should therefore be aggregated in order to provide

insights in the evolution at the macro-level (system). In addition to traditional aggregation techniques such as the

mean, recently econometric aggregation techniques such as the Gini index and the Theil index have been proposed.

Advantages and disadvantages of different aggregation techniques have not been evaluated empirically so far. In this

paper we present the preliminary results of the comparative study of different aggregation techniques.
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1. Introduction

While software metrics are commonly used to assess software maintainability and study software evolution, they

are usually defined on a micro-level (method, class, package). Metrics should therefore be aggregated in order to

provide insights in the evolution at the macro-level (system). Popular aggregation techniques include the mean [14]

and distribution fitting [4, 18]. The main advantage of the mean is its metrics-independence: whatever metrics are

considered, the mean should be calculated in the same way. However, as the distribution of many interesting software

metrics is skewed [22] the mean becomes unreliable. Distribution fitting consists of selecting a known family of distri-

butions (e.g., log-normal, exponential or negative binomial) and fitting its parameters to approximate the metric values

observed. However, the fitting process should be repeated whenever a new metric is being considered. Moreover, it is

still a matter of controversy whether, e.g., software size is distributed log-normally [4] or double Pareto [11].

It is highly desirable, hence, to develop an aggregation approach that would be both reliable and independent of

the metrics being aggregated. Examples of such approaches are the Gini coefficient [10] and the Theil index [20],

both well-known in econometrics [6] and recently applied to software metrics [21, 19]. Comparison of different

aggregation techniques was so far missing, however. In this short paper we present the first preliminary results.

Remainder of this paper is organized as follows. In Section 2 we briefly introduce the aggregation techniques being

compared. Section 3 compares the theoretical properties of different aggregation techniques. Section 4 described the

empirical studies conducted and, finally, Section 5 discusses related work and concludes.

2. Aggregation techniques

In this section we briefly present the mathematical definitions of the aggregation techniques to be evaluated. Let

{x1, . . . , xn} be the set of values to be aggregated. Then, the mean, denoted as x̄, is defined as 1
n
∑n

i=1 xi.
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The Gini index and the Theil index have already been applied to software metrics in [21, 19], respectively. In

addition to these two econometric indices we also study the Kolm index and the Atkinson index:

IGini(x1, . . . , xn) = 1
2nx̄
∑n

i=1

∑n
j=1 |xi − x j| [13] IKolm(x1, . . . , xn) = log

[
1
n
∑n

i=1 ex̄−xi
]

[12]

ITheil(x1, . . . , xn) = 1
n
∑n

i=1

(
xi
x̄ log xi

x̄

)
[20] IAtkinson(x1, . . . , xn) = 1 − 1

x̄

(
1
n
∑n

i=1

√
xi

)2
[2],

where |xi− x j| is the absolute value of xi− x j. In addition to ITheil above, also known as the first Theil index, Theil [20]

has also introduced the second Theil index, known as the mean logarithmic deviation. In this paper we do not consider

the mean logarithmic deviation and whenever “the Theil index” is mentioned, ITheil is meant. IKolm and IAtkinson are the

standard instantiations of the Kolm and Atkinson families of indices, for a parameter values of 1 and 0.5, respectively.

3. Theoretical comparison

In this section we study a number of mathematical properties of the aggregation techniques relevant for their

application to software metrics.

Domain. Domain of the aggregation technique determines applicability of this technique to classes of software met-

rics. Econometric indices are usually applied to income or welfare distributions, i.e., to sets of positive values. Some

software metrics, however, may have negative values, e.g., the maintainability index [15]. Since log z and
√

z are

undefined for z < 0, ITheil and IAtkinson are undefined as well. Unlike these indices, the mean, IGini and IKolm can be

used to aggregate negative values. Moreover, as log 0 is undefined direct application of the Theil index formula from

Section 2 is not possible. However, as shown in [19] ITheil(x1, . . . , xn−1, xn) can be defined for xn = 0 depending on

whether zero denotes emptiness (e.g., SLOC, number of classes in a package) or not. All other aggregation techniques

considered in this paper can be applied to zero values. Finally, formulas for the Gini index, the Theil index and the

Atkinson index involve division by x̄. Hence, these indices are undefined if x̄ = 0. The mean and the Kolm index do

not have additional cases when their values are undefined.

Range. Interpretation of the aggregated value depends on the range of the aggregation technique: e.g., 0.99 indicates

a very high degree of inequality if IGini is considered, while in case of ITheil and IAtkinson the interpretation would

depend on the number of values being aggregated. The values obtained by applying the mean can range from −∞
to +∞. The Gini index is often claimed to range over [0, 1] [21]: this is, however, the case only if all the values

being aggregated are positive. In general, this is not necessarily the case: IGini(1,−1.5) = −2.5. Range of ITheil and

IAtkinson depends on the number of values being aggregated: one can show that 0 ≤ ITheil(x1, . . . , xn) ≤ log n and

0 ≤ IAtkinson(x1, . . . , xn) ≤ 1 − 1
n . The Kolm index ranges over non-negative reals.

Invariance. We say that the aggregation technique is invariant with respect to addition if I(x1, . . . , xn) = I(x1 +

c, . . . , xn + c) for any x1, . . . , xn and c, provided I(x1 + c, . . . , xn + c) exists. Similarly, we say that the aggregation

technique is invariant with respect to multiplication if I(x1, . . . , xn) = I(x1 ∗ c, . . . , xn ∗ c) for any x1, . . . , xn and c,

provided I(x1 ∗ c, . . . , xn ∗ c) exists. Aggregating lines of code measured per file, aggregation-technique-invariant with

respect to addition allows to ignore, e.g., headers containing the licensing information and included in all source files.

Results obtained by applying an aggregation technique that is invariant with respect to multiplication are not affected

if percentages of the total number of lines of code are considered rather than the number of lines of code themselves.

The mean is neither invariant with respect to addition nor to multiplication. It can be shown that IGini, ITheil and IAtkinson

are invariant with respect to multiplication. Unlike these indices, IKolm is invariant with respect to addition.

Decomposability. Decomposability is the key property necessary for explanation of inequality by partitioning the

values to be aggregated into disjoint groups. In econometrics such groups correspond, e.g., to education level, gender

or ethnicity, while in software evolution research, e.g., to package, programming language and maintainer’s name[19].

Formally, I is decomposable if for any given partition {x1,1, . . . , x1,n1
, . . . , xJ,1, . . . , xJ,nJ } of {x1, . . . , xn} it holds that

I(x1, . . . , xn) = I(x̄1, . . . , x̄J) +

J∑

j=1

(wj ∗ I(x j,1, . . . , x j,n j ))
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for some coefficients w1, . . . ,wJ satisfying
∑J

j=1 wj = 1, where x̄ j is the mean of x j,1, . . . , x j,n j . Then the ratio of the

inequality between the groups and the total amount of inequality can be seen as the percentage of inequality that can

be explained by partitioning the population into groups. Both ITheil [6] and IKolm [5] are decomposable, while IGini and

IAtkinson are not [1]. It should be noted that while some authors propose means of decomposing IGini or IAtkinson, they

use a slightly different notion of decomposability [13, 7].

4. Empirical comparison

To perform empirical evaluation of different aggregation techniques we have conducted two series of experiments.

As the case study we have chosen ArgoUML, a popular UML modeling tool written in Java.

In the first set of experiments we have applied correlation analysis to metrics data aggregated at package level using

mean, IGini, ITheil, IKolm and IAtkinson, and defects (bug count per package). In the second set we have investigated the

presence of correlation between the mean and the different indices, as well as between the different indices themselves,

for the same metrics data.

The metric considered in this preliminary study is source lines of code (number of lines of code without comments

and whitespace). The motivation for (S)LOC is twofold. First, previous research has showed that size, in terms of

lines of code, is a strong predictor of defects [9]. Second, the same source mentions that although metrics such as

the Chidamber and Kemerer suite or the Lorenz and Kidd suite were expected to be validated with respect to fault-

proneness of classes (defects), after controlling for size none of the above metrics could be associated with defects

anymore. Hence (S)LOC remains a reliable and easily-measurable predictor for defects.

4.1. Methodology

To study correlation between the aggregated metrics values and the number of bugs we have started by choosing

the ArgoUML version with the highest number of bug fixes. The choice for bug fixes rather than reports, dismissals
etc. is motivated by the fact that commit messages contain (at best) information only about the fixed bugs (typically

indicated by keywords such as “issue” or “fix”). This information is needed in order to associate bugs with Java

classes. Moreover, this follows the approach described in [8]. Since we only analyze a snapshot of the case, the

choice for the faultiest version ensures that the defect population is sufficiently big to be accurate.

From the approximately 150 versions of ArgoUML released throughout its history, the version 0.13.4 has the

highest number of bug fixes associated with it (89). It contains 94 packages and 1230 classes. Next, the source code

of version 0.13.4 of ArgoUML was automatically processed and the list of packages and Java classes contained in each

package was built. Next we have considered packages containing at least 2 classes: aggregation indices for packages

containing one class only are equal to 0, and hence should be excluded. In total, 77 packages were considered.

At the following step we mapped the defects to Java packages by analyzing the commit messages of the version

control system log. Since the same class could have been affected multiple times during the fix of a known bug (e.g.

because of a wrongly-implemented fix the first time), we only recorded it once in order to minimize noise. Out of the

89 issues associated with version 0.13.4 of ArgoUML, there are only 41 mentioned in the commit log (e.g. because

some of the issues required changes to non-Java source files). The cardinality of the defect sets generated a vector

containing an element for each of the packages, and served as our validation metric.

Next we calculated SLOC for each Java class of the selected packages using CCCC1, and aggregated these values

using the mean, IGini, ITheil, IKolm and IAtkinson. Finally, in the first series of experiments we have studied correlation

between the aggregated metrics vectors and the defects, while in the second series of experiments we have studied

correlation between the aggregated metrics vectors themselves. All computations were performed using R [17].

4.2. Results

In the first series of experiments we have studied correlation between the aggregated metrics vectors and the

defects. To study correlation we have a choice between Kendall’s τand the Pearson correlation coefficient r: while the

latter requires normality of both distributions being compared, the former is applicable when the normality hypothesis

1http://cccc.sourceforge.net/
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Table 1: Correlation between results of different aggregation techniques and defects

mean IGini ITheil IKolm IAtkinson defects

mean 0.170 0.192 0.676 0.203 0.0096

IGini 0.170 0.908 0.467 0.903 0.27
ITheil 0.192 0.908 0.488 0.918 0.273
IKolm 0.676 0.467 0.488 0.501 0.119

IAtkinson 0.203 0.903 0.918 0.501 0.229

can be rejected for at least one of the distributions. Thus, we conduct the Shapiro-Wilk normality testto determine the

appropriate correlation statistics: for the defects vector the Shapiro-Wilk normality test allows to reject the normality

hypothesis (the W statistics equals 0.8003 and the p-value is 8.444×10−5). Therefore, the Kendall’s τ should be used.

In the second series of experiments we have studied correlation between the values obtained for different aggregation

techniques. Normality assumption can be rejected for the Theil, Kolm and Atkinson indices (WTheil = 0.8914, pTheil =

7.68 × 10−6; WKolm = 0.6697, pKolm = 7.123 × 10−12; and WAtkinson = 0.9248, pAtkinson = 0.0002154), so again

the Kendall’s τ should be used. Results of both studies are summarized in Table 1, where correlation results with

two-sided p-values not exceeding 0.01 are typeset in boldface and those between 0.01 and 0.05 are typeset in italics.

Experiments seem to suggest that the aggregation techniques fall in two groups: one group consisting of IGini,

ITheil and IAtkinson, another one of the mean and IKolm. There is high and statistically significant correlation between

aggregation techniques of the same group, i.e., aggregation values obtained using these techniques convey the same

information. Correlation between aggregation techniques of different groups ranges from low (0.17) to average (0.501)

and is, in any case, lower than correlation between the results of the aggregation techniques of the same group. Most

important, IGini, ITheil and IAtkinson indicate the strongest (among the techniques considered) and also statistically

significant correlation with the number of defects. Among them, the highest τ value is obtained when the Theil

index is used to aggregate the individual values (τ � 0.273) followed by the Gini index (τ � 0.27) and the Atkinson

index (τ � 0.229). These results are statistically significant with two-sided p-values being 0.0014062, 0.0015996 and

0.0073827, respectively.

Although this evidence is preliminary, it is also important for several reasons. First, it provides an indication that

the choice of aggregation technique leads to different correlation results with a validation set (in this case defects), even

for simple software metrics such as lines of code. This finding prompts the need for additional research to determine

if these relations are consistent both with respect to other software systems, as well as with respect to more complex

metrics. Second, it corroborates the conjecture by which inequality indices such as the ones studied here can serve as

viable alternatives to traditional aggregation methods such as the mean, when applied to software metrics. However,

it is still a topic of research how using different aggregation techniques can affect the interpretation of a metric. For

example, the fact that the inequality indices are equal to zero for packages with only one class seems to suggest that

they shouldn’t entirely replace the traditional aggregation techniques, but rather complement them. Similarly, the fact

that high values for the inequality indices applied to some metrics (e.g. depth of inheritance tree), indicating high

equality, may not always be desirable seems to suggest that special care is needed when using inequality indices in

the evolutionary setting.

4.3. Threats to validity

The results presented above should be considered preliminary and a number of threats to validity should be ad-

dressed in the future. First of all, with respect to construction validity we need to consider a representative set of

benchmarks rather than solely ArgoUML, and a representative set of their versions. Furthermore, our information

about the defects might be incomplete as not all defects might be recorded in the issue tracking system, and our map-

ping of defects to classes might be imperfect due to limited recording of this information in the commit messages.

Finally, we have considered only one metric, namely lines of code, and it is not clear whether the results obtained can

be generalized to additional metrics.
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5. Conclusions

In this paper we have presented preliminary results of a comparative study of different aggregation techniques

for software metrics. We have discussed theoretical aspects of different aggregation techniques and applied them

to aggregate lines of code values in ArgoUML, version 0.13.4. Our results suggest that choice of the aggregation

technique does influence correlation of the aggregated values with the number of defects, and that the Theil index, the

Gini index and the Atkinson index lead to the highest correlation. Moreover, correlation between the values obtained

for these aggregation techniques turned out to be very high.

Popular approach in the econometric literature consists in studying multiple econometric indices rather than fo-

cusing on one of them. For instance, [16] employs six different indices, including the Gini index, the Theil index and

the Atkinson index studied in our paper. Champernowne [3] has indeed observed that different indices exhibit dif-

ferent sensitivity to different “dimensions of inequality”: while 1 − nITheil was most sensitive to inequality associated

with the exceptionally rich, IGini is second-most sensitive to inequality reflecting a wide spread of the less extreme

incomes without much tendency for the majority of them to be bunched within quite a narrow range. As future work

we, therefore, consider identification of the dimensions of inequality most relevant for software metrics, and study of

the most appropriate aggregation techniques. Furthermore, this theoretical investigation will be complemented by a

more profound empirical research, similar to the preliminary study of Section 4, and including additional benchmark

systems, software metrics and validation metrics. Finally, while in the current work only a single snapshot has been

considered, the study of differences between the econometric indices in the evolutionary settings is also considered as

future work.
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