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NONCOMMUTING FILTERS AND DYNAMIC MODELLING

FOR LES OF TURBULENT COMPRESSIBLE FLOW IN 3D
SHEAR LAYERS

B. GEURTS, B. VREMAN, H. KUERTEN AND R. VAN BUUREN
Department of Applied Mathematics, University of Twente
P.O. Boz 217, 7500 AE Enschede, The Netherlands

Abstract. Large-eddy simulation of complex turbulent lows involves the
filtering and modelling of small scale flow structures whose intensity shows
large spatial variations in the flow domain. This suggests the use of fil-
ters with nonuniform filterwidth. Such filters fail to commute with spatial
derivatives and give rise to additional ‘noncommutation’ terms in LES. We
construct higher order filters and show that the subgrid terms and the new
noncommutation terms are a priori of comparable magnitude. We apply
these filters to DNS data of the temporal mixing layer. The magnitude of
the noncommutation terms and their contribution to the kinetic energy dy-
namics is determined. Finally, we show that LES predictions significantly
depend on the specific explicit filter used in dynamic subgrid modelling.

1. Introduction

The numerical simulation of transitional and turbulent flow forms a field of
considerable interest (Kleiser and Zang, 1991). Through continuous ad-
vances in computing capabilities, direct numerical simulation (DNS) of
transitional and low-Reynolds turbulent flow in simple geometries has be-
come feasible. This requires the detailed spatial and temporal resolution of
all relevant scales of motion. Restrictions arising from available computing
capabilities render DNS impossible for practically relevant configurations at
high Reynolds numbers. Thus, modelling of the governing equations, which
reduces the degrees of freedom of the dynamical system, is required. For
this purpose the central first step consists of an averaging of the Navier-
Stokes equations. A detailed modelling is obtained in Large-Eddy Simula-
tion (LES) which can be obtained from the Navier-Stokes equations through
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the application of a spatial filter. In the derivation of the LES equations
one commonly adopts a convolution filter which has the property that filter-
ing and partial differentiation can be interchanged. In that case the effect
of the filtering is restricted to the appearence of so called subgrid scale
terms and the resulting equations can be written in conservative form. A
large drawback of convolution filters, however, is the fact that the filter-
width is constant. This complicates the extension of the LES approach to
complex geometries for which a varying filterwidth is required in view of
the strong spatial variations in the small scale turbulence intensities. How-
ever, a nonuniform filterwidth gives rise to additional ‘noncommutation’

terms in the filtered equations (Geurts et al., 1994; Ghosal and Moin, 1995;
van der Ven, 1995).

The higher order compact support filters developed in this paper are
obtained by requiring invariance of polynomials up to a certain order. The
‘noncommutation’ properties of these filters will be investigated and it will
be shown that the common subgrid-terms and the noncommutation terms
are in general of comparable magnitude. Apart from a varying filterwidth,
these filters are characterized by their ‘skewness’. Through an application
of these filters to DNS-data for the compressible mixing layer a prior: es-
timates are obtained for the different contributions to the LES equations
for varying grid nonuniformity. Whereas the turbulent stress tensor has
a predominant dissipative contribution to the dynamics of the kinetic en-
ergy the noncommutation terms also contribute to backscatter. Finally, we
consider the influence of the specific realization of the explicit filtering in
dynamic subgrid modelling and compare simulation results obtained with
the dynamic eddy viscosity model and the dynamic mixed model.

The organization of this paper is as follows. In section 2 we introduce
higher order compact support filters and study their noncommutation prop-
erties. Section 3 is devoted to @ priori evaluation of the magnitude and
effects of the noncommutation terms compared to the common subgrid
terms for the mixing layer. In section 4 we present LES results for the mix-
ing layer showing the influence of a higher order realization of the explicit

filtering in the dynamic modelling. We summarize our findings in section
5.

2. Higher order non-commuting filters

In this section we introduce higher order filters and study their commu-
tation properties in one spatial dimension. The consequences of the real-
izability conditions on the filters are established and the effects related to
the ‘skewness’ of the filter are illustrated with a Fourier analysis.

We consider a signal f : IR — IR and define the filter operation f — f
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by:

T . T+A+() H(:C; 5)
F@=[ . ap S (1)

in which A, A_ > 0 denote the z-dependent upper- and lower filterwidths
respectively, A = AL +A_ > 0 is the filterwidth and H/A the filter-kernel.
We arrive at a more convenient formulation after a change of coordinates
in which we put y = (£ — z)/A(x). This leads to:

VAR

flz) = J/I H(z,z + A(z)y) f(z + A(z)y)dy (2)

where I; = [(s(z) —1)/2, (s(z) +1)/2]. Here we introduced the ‘normalized
skewness’ s(z) = S(z)/A(z) in terms of the skewness S(z) = A, (z) —
A_(z). We introduce N-th order filters by requiring:

| Mo+ A@pytdy =60 5 k=0,1,.,N 1 (3)
Iz

in which 6;; denotes the Kronecker delta. These filters have the property
that Py_1(z) = Py-1(z) for any polynomial P of order N — 1. Application
of this filter to the M-th order Taylor expansion of f around z yields:

-1

M
F@) =f@)+ Y (A @)Mu(@) fB (@) + AM@)Ru(f) (@)

k=N

where f(*) denotes the k-th derivative of f and we introduced

Mila) = [ Mo+ Aty )

Moreover, Rys(f) denote the rest-term. Hence, if M > N the leading order
term of f — f scales with A" . For notational convenience we will not denote
the explicit z-dependence in the sequel and we ignore the rest-terms.

The effect of the filter-operation on the signal f as expressed in (4) can
straightforwardly be extended to derivatives of f and to nonlinear opera-
tions g on the signal. These expressions can be used in order to derive the
basic noncommutation properties. For N-th order filters the commutator
with differentiation can be written as:

M-1
J— — /
F=T==3 (a%M) f® + . (6)
k=N
in which the dots denote higher order terms in A. This commutator is
written in the usual way in terms of higher order derivatives of f where
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now a factor (A¥My)' appears. In general it is quite complicated to obtain
detailed estimates for this term. Using the definition of the filter (1) and
some partial integration one may distinguish two contributions, one due to
z-dependence of Ay and one from the fact that the filter-kernel is not of
convolution type which results in a contribution containing d;H + 0:H.

Another commutator which is relevant for filtering nonlinear terms
arises when the filter-operation is combined with an algebraic operation
on the signal: (g o f)— (go f). An important example of such a nonlinearity
is g(z) = 22. For this particular example we obtain:

M-—1

P-F =Y @) (A =20 f®) = (F= )+ (D)

k=N

The scaling with AY is readily verified for N > 1. In case N =1 the
lowest order term in the summation equals 0 since (f?)’ = 2ff’ and the
commutator scales with A? with contributions from the term & = 2 in the
summation and an additional contribution from (f — f)2. In the Navier-
Stokes equations the latter commutator arises inside a divergence operator
which gives rise to a term ~ AV~1 i.e. comparable to the commutator with
first order derivatives. Hence, there is a priori no justification to ignore the
latter terms while retaining the common subgrid-terms, which is in contrast
with the findings in (van der Ven, 1995). Of course the actual magnitude
of the noncommutation with differentiation also depends on the spatial
variation of A(z) and s(z) which may reduce the magnitude considerably.
Moreover, the effect on the evolution of the solution arising from the various
noncommutation terms can be quite different.

The construction of specific higher order filters relies on a Taylor ex-
pansion of the filter-function . In the definition of the filter-operation (1)
the filter-function H is required for £ in a neighborhood of z:

agmm( ) ¢

H(z, &) = H(z,x) + Z —z)™+ ... (8)

in which 8(m)H(x,x) denotes the m-th partial derivative of H(z,§) with
respect to 2 evaluated at £ = z. With this filter we arrive at

(AkMk Lzzl Ama( ™) (.CE,:C)

m=0

f " Edy + ... (9)

The definition of N-th order filters as given in (3) can also be expressed
as (AFMy) = 6gg for k = 0,1,..,N — 1. Thus the truncated polynomial
representation of N-th order filter satisfies a linear system of equations
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from which the required Amaém)’hf follow. We can specify the form of the
filter-function conveniently as H(z,&) = G(s,y). In view of the symmetries
it appears that G(—s,y) = G(s, —y) for y € I; and in particular that G(0,y)
is an even function of y. This implies that the (2N — 1)-th and the (2N)-th
order filters coincide if s = 0.

G(0y)
-
4

)

. &> L
Al et 2 AT H
’ Y

£
-2 ]

Figure 1. The filter-kernels Gn for symmetric higher-order filters, i.e. s = 0. The results
for N =1 (solid); N = 3 (dashed); N =5 (dotted) and N =7 (dash—dotted) are shown.
Notice Gony = Gan—1 for symmetric filters.

In figure 1 we plotted the filter-kernels Gy at s = 0. In (Vreman et al.,
1994a) it was shown that the realizability conditions for the turbulent stress
tensor are satisfied if and only if the kernel is positive. The explicit filters
plotted above, however, show filter-kernels which are not strictly positive
in case N > 3. Also, the N = 2 kernel is positive only if |s| < 1/3. Hence,
only first or second order filters are allowed if the turbulent stress tensor
should be realizable and the normalized skewness may not exceed 1/3 for
second order filters.

So far we considered the effect of applying an N-th order filter to a signal
which can be represented by a Taylor-expansion. As long as the higher order
contributions to f — f are small we obtain an accurate representation of 7.
However, for very rapidly fluctuating signals on a scale comparable to A
this approximation is no longer adequate. In order to analyze this we focus
on the filtering of sin(kz) for which

sin(kz) = Fi(s, kA)sin(kz) + Fa(s, kA) cos(kz) (10)
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Figure 2. The numerical approximation to F} of the symmetric top-hat filter (solid) with
the composite trapezoidal rule (dashed) and the composite Simpson rule (dash-dotted)
(left). The turbulent kinetic energy profiles < k > (right) evaluated at ¢ = 100. We used
A =2h, A = 4h and A = 8h marked with '0’, 'x’ and "*’ respectively.

where we introduced the ‘characteristic filter-functions’:

Fl(s’kA):/I G(s,y) cos(kAy)dy ; Fg(s,kA)::/I G(s,y)sin(kAy)dy

(11)
Notice that F5(0,kA) = 0 and the only effect of symmetric filters is an
amplitude change. This also shows that skewness of the filter contributes to
a phase-shift in the filtered signal. Further analysis of F} and F; for different
filters and skewness shows that the higher order filters can even increase
the amplitude of rapidly oscillating signals on a length-scale comparable to
A, and only effectively reduce the signal as kA > 1. An analysis of the
effect of N-th order filters on stochastic signals could be interesting in the
context of LES. Moreover, the influence of the skewness on the models for
the subgrid-terms requires further attention.

3. A priori evaluation of noncommutation terms

In this section we formulate the higher order filters in a numerically con-
sistent way using Newton-Cotes integration and apply these filters to DNS
data obtained for the temporal compressible mixing layer at convective
Mach-number M = 0.2 and Reynolds number Re = 100 based on the
initial vorticity thickness (Vreman et al., 1995).

In order to arrive at a numerically consistent representation of the fil-
ters introduced in the previous section the numerical integration should
be sufficiently accurate in order to maintain the basic invariance prop-
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erties of these filters. The discrete data {f;} are assumed to be repre-
sented on a grid {z;}. In order to define the filter we adopt the following
definition for the filterwidth and the skewness: A(z;) = Zitn, — Ti—n_;
S(zi) = Titn, — 22; + Ti_n_ where ni > 0 specify the upper and lower
filterwidth distributions on the grid. The numerical filtering should be such
that invariance of %, o = 0, .., N — 1 is maintained. Within the framework
of Newton-Cotes integration such integration rules can readily be speci-
fied, also in composite form. If ny. are small the numerical filtering is quite
different from the analytical filtering. Numerical filtering of sin(kz) using
the symmetric top-hat filter and the (composite) trapezoidal and Simpson
rules at different values of n+ is shown in figure 2. As ny = 1, the numerical
filtering of the small scale structures differs considerably from the analytic
filtering. The use of Simpson integration instead of the trapezoidal rule
leads to less reduction of the small scale structures which is also illustrated
in the profiles of the turbulent kinetic energy < k > shown in figure 2 which
are lower in case Simpson integration is adopted.

We proceed with the filtering of the Navier-Stokes equations and use
DNS-data obtained from the temporal compressible mixing layer on a uni-
form grid with 192% grid-cells. The evolution of the flow displays four large
rollers at ¢t = 20 which subsequently interact and give rise to two spanwise
rollers at ¢ = 40 and one large roller with many small-scale structure at
¢t = 80. A mixing transition to turbulence arises in this flow.

.3 -4

x 10 x 10

sipation

ey

sgs and noncommutation dis

Figure 3. Discrete Lg-norm of the subgrid (T: solid, S: dotted) and noncommutation
term (T: dashed, S: dash-dotted) in the z1-momentum equation (left). Contribution to
the kinetic energy dynamics from the turbulent stress tensor (T: solid, S: dotted) and
due to the noncommutation term (T: dashed, S: dash-dotted). The data at ¢t = 100 and
a = 0.2 are shown on the 483 grid after averaging over the homogeneous directions.

In order to evaluate the effects of the filtering the data have been trans-
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ferred to a grid which is nonuniform in the (normal) z9 direction only. For
the nonuniform grid we use the mapping

1 an
= —Lg—onr
279 21+a—77

(12)
to generate the positive zo-nodes and we complete this grid by reflection
in g = 0. Here 5 is in [0, 1], Lo denotes the extent in the x5 direction and
the parameter a controls the grid-nonuniformity. The original data on the
uniform grid have been transferred to the nonuniform grid by using fourth
order accurate interpolation. In the sequel we consider a coarse grid with
483 grid-cells, an intermediate grid with 962 grid-cells and a fine grid with
1923 grid-cells. On the coarse, intermediate and fine grids we use ny = 1,
n+ = 2 and n4 = 4 respectively. For the filtering in 3D we adopt a ‘product-
filter’ in which the filtering is performed independently in each direction
with a 1D filter as described in the previous section.

The effect of the filter is expressed by the following decomposition. Con-
sider a typical convective term in the momentum equations given by:

Oi(puiuj) = 0;(plstiy)
+  [05(B(asuy — 4;G5))] + [0 (puiuy) — Oj(pusy)]  (13)

where 0; denotes the partial derivative with respect to z;, p the density,
u; the velocity in the z; direction and (%) is the Favre filter. The first term
on the right hand side corresponds to the mean term, the second is the
common turbulent stress term and the last denotes the noncommutation
term. Since the grid is nonuniform only in the x5 direction the noncommu-
tation term is nonzero only if derivatives with respect to xo are concerned.
As a typical example we show the subgrid and noncommutation terms for
Oa(puiug) in figure 3. Use was made of the top-hat filter in combination
with trapezoidal (T) and Simpson (S) integration. The noncommutation
term is comparable with the turbulent stress term in large parts of the flow
domain. Moreover, a definite ‘spike’ can be seen near x5 = 0 due to a strong
local variation of A. In order to assess a priori some of the effects of these
terms on the dynamics of the kinetic energy we consider the turbulent stress
contribution given by p7;;0;%; where 73; = w;u; — U;u; and compare this
with the contribution arising from the noncommutation term u;R; where
R; = 0j(puiu;) — 0;(puiu;) (the summation convention is adopted here).
The result is shown in figure 3 from which it becomes clear that the turbu-
lent stress tensor has a dissipative influence. The noncommutation term is
considerably lower and can give rise to backscatter.
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Figure 4. The evolution of the kinetic energy (left): ES (solid); ET (dotted); MS (dashed)

and MT (dash-dotted) and the evolution of the dynamic coefficient Cy for the eddy

viscosity model (right): SS (solid); ST (dashed); TS (dotted) and T'T (dash-dotted). The
markers denote the filtered DNS-data.

4. Higher order explicit filtering and dynamic modelling

The formulation of dynamic subgrid models for the turbulent stress tensor
implies an explicit filtering of a LES solution. In the previous section we
showed that if A/h is relatively small the numerical realization of the filter
differs significantly from the analytic filter. In this section we show that
these differences can contribute also to the simulation results. We concen-
trate on the top-hat filter and for the numerical realization we compare the
use of the trapezoidal rule with Simpson integration using A = 2h in the
simulation with a test filter A = 4h. The LES results were obtained on a
uniform grid with 32% grid-cells adopting the dynamic eddy viscosity model
(Germano et al., 1991) or the dynamic mixed model (Vreman et al., 1994b).
We use the abbreviations E, M for the dynamic eddy viscosity and mixed
models. Combination with trapezoidal or Simpson integration is denoted
with either T or S.

The formulation of the dynamic models is based on the Germano iden-
tity. In this formulation a model coefficient is determined in accordance
with the local flow structure. In figure 4 we compare the predictions for
the kinetic energy. The influence of the explicit filtering is much larger for
the dynamic mixed model compared to the dynamic eddy viscosity model.
This directly corresponds to the occurrence of both filters in the formula-
tion of the dynamic mixed model whereas only the A = 4h filter arises in
the dynamic eddy viscosity model for which the difference between T and
S integration is much smaller. Moreover, in figure 4 the model-coefficient
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arising in the dynamic model is shown. Two simulations have been per-
formed; one in which the model is calculated with the trapezoidal rule and
one with Simpson integration. During each of these runs the coefficient was
also evaluated with the complementary integration rule although this result
was not used in the flux-calculation. In the figure these four combinations
are labeled AB where A denotes the rule used for the flux and B the rule for
the additional evaluation. The result for the model-coefficient Cg shows a
decrease in (s in case Simpson integration is used in the explicit filter. The

evaluation of C; with either the trapezoidal or the Simpson rule is more

uuyux tant than the DlJU\/J..LLb uyuauub maodae: used 1or tine 1iux caiCuiaiion.

5. Concluding remarks

We presented the construction of higher order noncommuting filters in LES
and showed that the contribution of the additional subgrid terms is in
general comparable to that of the common subgrid-terms. A numerically
consistent formulation of the higher order filters was applied to DNS data
of the mixing layer. It was shown that the noncommutation terms can be
comparable to the common subgrid terms and the contribution to e.g. the
kinetic energy evolution is quite small and contributes to backscatter. The
numerical filtering was shown to differ significantly from the analytic filter-
ing in case A = 2h. Moreover, the differences between e.g. the trapezoidal
and Simpson realization of the filtering were found to be considerable at
this A/h ratio. In LES the use of dynamic subgrid models for the turbu-
lent stress tensor has given rise to accurate LES predictions for the mixing
layer. The specific realization of the explicit filtering which is required in
this approach has a large influence on the simulation results for the dynamic
mixed model at A = 2h.
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