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Martingale ratio convergence in the branching random walk

by

Elie Aı̈dékon and Zhan Shi

Technische Universiteit Eindhoven & Université Paris VI

Summary. We consider the boundary case in a one-dimensional super-
critical branching random walk, and study two of the most important mar-
tingales: the additive martingale (Wn) and the derivative martingale (Dn).
It is known that upon the system’s survival, Dn has a positive almost sure
limit (Biggins and Kyprianou [9]), whereas Wn converges almost surely to 0
(Lyons [22]). Our main result says that after a suitable normalization, the
ratio Wn

Dn
converges in probability, upon the system’s survival, to a positive

constant.

Keywords. Branching random walk, additive martingale, derivative mar-
tingale.
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1 Introduction

We consider a discrete-time one-dimensional branching random walk, whose distribution

is governed by a finite point process Θ on the line. The system starts with an initial particle

at the origin. At time 1, the particle dies, giving birth to a certain number of new particles.

These new particles form the particles at generation 1. They are positioned according to the

distribution of the point process Θ; it is possible that several particles share a same position.

At time 2, each of these particles dies, while giving birth to new particles that are positioned

(with respect to the birth place) according to the distribution of Θ. And the system goes

on according to the same mechanism. At each generation, we assume that particles produce

new particles independently of each other and of everything up to that generation.
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We denote by (V (x), |x| = n) the positions of the particles at the n-th generation; so

(V (x), |x| = 1) is distributed as the point process Θ. The family of random variables (V (x))

is usually referred to as a branching random walk (Biggins [7]). Clearly, the number of

particles in each generation forms a Galton–Watson process. We always assume that this

Galton–Watson process is super-critical, so that the system survives with positive probability.

Throughout the paper, we assume the following condition:

(1.1) E
(∑
|x|=1

e−V (x)
)

= 1, E
(∑
|x|=1

V (x)e−V (x)
)

= 0.

The branching random walk is then said to be in the boundary case (Biggins and Kypri-

anou [10]). We refer to Jaffuel [16] for detailed discussions on the nature of the assumption

(1.1). Loosely speaking, under some mild integrability conditions, an arbitrary branching

random walk can always be made to satisfy (1.1) after a suitable linear transformation, as

long as either the point process Θ is not bounded from below, or if it is, E[
∑
|x|=1 1{V (x)=m}] <

1, where m denotes the essential infimum of Θ.

It is immediately seen that under assumption E[
∑
|x|=1 e−V (x)] = 1,

Wn :=
∑
|x|=n

e−V (x), n ≥ 0,

is a martingale (with respect to its natural filtration). In the literature, (Wn) is referred

to as the additive martingale associated with the branching random walk. Since (Wn)

is non-negative, it converges almost surely to a (finite) limit, which, under assumption

E[
∑
|x|=1 V (x)e−V (x)] = 0, turns out to be 0 (Lyons [22]).

Many of the discussions in this paper make only a trivial sense if the system dies out. So

let us introduce the conditional probability

P∗(•) := P(• | non-extinction).

Under (1.1), since Wn → 0, P∗-almost surely (and P-almost surely), the martingale is

not uniformly integrable. It is natural to ask (Biggins and Kyprianou [10]) at which rate

Wn goes to 0; in the literature, this concerns the Seneta–Heyde norming for Wn, referring to

the pioneer work on Galton–Watson processes by Seneta [29] and Heyde [14]. This question

was studied in [15], under suitable integrability conditions.

Theorem A ([15]). Assume (1.1). If there exists δ > 0 such that E[(
∑
|x|=1 1)1+δ] <∞ and

that E[
∑
|x|=1 e−(1+δ)V (x)] + E[

∑
|x|=1 eδV (x)] <∞, then there exists a deterministic sequence
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(λn) of positive numbers with 0 < lim infn→∞
λn
n1/2 ≤ lim supn→∞

λn
n1/2 < ∞, such that under

P∗,

(1.2) λnWn → W ∗, in distribution,

where W ∗ > 0 is a positive random variable.

Although we do not need to know what W ∗ is in this paper, let us make a brief description

for the sake of completeness. Consider the distributional equation for non-negative random

variable Z (excluding the trivial solution Z = 0):

LZ(t) = E∗
{ ∏
|x|=1

LZ(te−V (x))
}
, ∀t ≥ 0,

where LZ(t) := E∗(e−tZ) denotes the Laplace transform of Z. Under assumption (1.1), it

is known (Liu [21], Biggins and Kyprianou [10]) that the equation has a unique positive

solution (up to multiplication by a constant), denoted by W ∗.

One may wonder whether λn can be taken to be (a constant multiple of) n1/2 in (1.2).

Our main result, Theorem 1.1 below, will tell us that (a) the answer is yes; (b) more is true:

(1.2) can be strengthened into convergence in probability; (c) we can say even (much) more;

(d) assumptions can be weakened.

To describe what we mean by even more, let us define

(1.3) Dn :=
∑
|x|=n

V (x)e−V (x), n ≥ 0.

Since E[
∑
|x|=1 V (x)e−V (x)] = 0, one can easily check that (Dn) is also a martingale, with

E(Dn) = 0; it is referred to in the literature as the derivative martingale associated with

the branching random walk. Convergence of this new martingale was studied by Biggins

and Kyprianou [9]. In order to state their result, we introduce the following integrability

conditions:

E
[ ∑
|x|=1

V (x)2e−V (x)
]

< ∞,(1.4)

E[X log2
+X] < ∞, E[X̃ log+ X̃] <∞,(1.5)

where log+ y := max{0, log y} and log2
+ y := (log+ y)2 for any y ≥ 0, and

X :=
∑
|x|=1

e−V (x), X̃ :=
∑
|x|=1

max{0, V (x)}e−V (x).
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Throughout the paper, we assume (1.1), (1.4) and (1.5). It is our conviction that these

assumptions are optimal for our results.

The following elementary fact will be useful (see Lemma B.1 of [2] for a proof): if (1.5)

holds, then

E
[
X log2

+ X̃
]

+ E
[
X̃ log+X

]
< ∞,(1.6)

lim
z→∞

1

z
E
[
X log2

+(X + X̃) min{log+(X + X̃), z}
]

= 0,(1.7)

lim
z→∞

1

z
E
[
X̃ log+(X + X̃) min{log+(X + X̃), z}

]
= 0.(1.8)

Theorem B (Biggins and Kyprianou [9]). Assuming (1.1), (1.4) and (1.5), we have

(1.9) Dn → W ∗, P∗-a.s.,

the limit W ∗ being the same positive random variable as in (1.2).

[The positiveness of the limit was proved in [9] under slightly stronger assumptions. To

see why it is valid under current assumptions, we refer to Proposition A.1 of [2].]

It is worth mentioning that although each Dn is mean-zero, the limit of Dn is P∗-almost

surely positive.

Since the same random variable W ∗ appears in Theorem B and in a weak sense in

Theorem A, one may wonder whether the two theorems are related. This consideration

has led us to study the ratio Wn

Dn
of the two martingales, which, in view of Theorem B, is

well-defined for P∗-all sufficiently large n.

Theorem 1.1 Assume (1.1), (1.4) and (1.5). Under P∗, we have,

(1.10) lim
n→∞

n1/2 Wn

Dn

=
( 2

πσ2

)1/2

, in probability,

where

σ2 := E
[ ∑
|x|=1

V (x)2 e−V (x)
]
∈ (0, ∞).

The convergence in probability in Theorem 1.1 is optimal: it cannot be strengthened into

almost sure convergence, as is shown in the following theorem.

Theorem 1.2 Assume (1.1), (1.4) and (1.5). We have

lim sup
n→∞

n1/2Wn

Dn

=∞, P∗-a.s.
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Let us say a few words about the proof of Theorems 1.1 and 1.2, and about the organiza-

tion of the rest of the paper. Theorem 1.1, which is the main result of the paper, is proved

in several steps: let α ≥ 0 be a parameter;

• in Section 2, we introduce a one-dimensional random walk (Sn) associated with the

branching random walk, and collect a few elementary properties of (Sn);

• in Section 3, we introduce a new pair of processes D
(α)
n and W

(α)
n . [Roughly speaking,

W
(α)
n

D
(α)
n

will turn out to behave like a constant multiple of Wn

Dn
when n is sufficiently large.] The

study of D
(α)
n and W

(α)
n becomes convenient if we work under a new probability, called Q(α);

• in Section 4, by computing the first two moments of W
(α)
n

D
(α)
n

under the new probability

Q(α), we prove that for any α ≥ 0, W
(α)
n

D
(α)
n

converges in probability to a constant under Q(α);

• in Section 5, we come back to the probability P∗, and prove Theorem 1.1 by “letting

α→∞”.

The proof of Theorem 1.2 is presented in Section 6 by studying the minimal position in

the branching random walk.

Finally, in Section 7, a few questions are raised for further investigations.

Let us mention that our method allows to prove the analogues of Theorems 1.1 and

1.2 for the branching Brownian motion. In fact, the main ingredient in our proof, namely,

Lyons’ spinal decomposition (Fact 6.2), is known in the case of the branching Brownian

motion; see Chauvin and Rouault [12]. We prefer not to give any details on how to make

necessary modifications to obtain the analogues of Theorems 1.1 and 1.2 for the branching

Brownian motion. These modifications are more or less painless; moreover, the situation for

the branching Brownian motion is often neater than for the branching random walk — for

example, the analogue of the h-process whose transition probabilities are given by (3.2), is the

three-dimensional Bessel process, which is a well-studied stochastic process in the literature.

Instead, we close this paragraph with an anecdotic remark: the pioneer work of McKean [25]

gives an important motivation of the study of the branching Brownian motion by connecting

it to the Fisher–Kolmogorov–Petrovsky–Piscounov (F-KPP) differential equation. Taking

the almost sure limit of a positive martingale (which is the analogue of the additive martingale

Wn), McKean claims that its Laplace transform, after a simple scale change, gives a travelling

wave solution to the F-KPP equation. There turns out to be a flaw in the argument,

pointed out by McKean [26]. Later on, Lalley and Sellke show in [20] that the almost

sure limit studied in [25] actually is 0; instead, they use another martingale (the analogue

of the derivative martingale Dn), and prove that its almost sure limit, which is positive,

has the Laplace transform as being a travelling wave solution. Now that we know the

two martingales (with the additive martingale suitably normalised) have similar asymptotic

behaviours in probability, it becomes clear that the martingale limits studied by McKean [25]
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and by Lalley and Sellke [20] are a.s. identical — if the additive martingale in McKean [25]

is suitably normalised.

Throughout the paper, we use an ∼ bn (n → ∞) to denote limn→∞
an
bn

= 1; the letter c

with subscript denotes a finite and positive constant. We also adopt the notation min∅ :=∞,∑
∅ := 0 and

∏
∅ := 1. For x ∈ R ∪ {∞} ∪ {−∞}, we write x+ for max{x, 0}.

2 One-dimensional random walks

This section collects some well-known material. We first introduce a one-dimensional

random walk associated with our branching random walk, and then recall a few ingredients

of fluctuation theory for one-dimensional random walks.

2.1 An associated one-dimensional random walk

Let (V (x)) be a branching random walk satisfying (1.1) and (1.4). For any vertex x, we

denote by [[∅, x]] the unique shortest path relating x to the root ∅, and xi (for 0 ≤ i ≤ |x|)
the vertex on [[∅, x]] such that |xi| = i. Thus, x0 = ∅ and x|x| = x. In words, xi (for i < |x|)
is the ancestor of x at generation i. We also write ]]∅, x]] := [[∅, x]]\{∅}.

The assumption E[
∑
|x|=1 e−V (x)] = 1 guarantees the existence of an i.i.d. sequence of

real-valued random variables S1, S2 − S1, S3 − S2, · · · , such that for any n ≥ 1 and any

measurable function g : Rn → [0, ∞),

(2.1) E
{ ∑
|x|=n

g(V (x1), · · · , V (xn))
}

= E
{

eSng(S1, · · · , Sn)
}
.

The law of S1 is, according to (2.1), given by

E[f(S1)] = E
{∑
|x|=1

e−V (x)f(V (x))
}
,

for any measurable function f : R → [0, ∞). Since E[
∑
|x|=1 V (x)e−V (x)] = 0, we have

E(S1) = 0. Let

(2.2) σ2 := E[S2
1 ] = E

{∑
|x|=1

V (x)2 e−V (x)
}
.

Under (1.1) and (1.4), we have 0 < σ2 <∞.

It is easy to prove (2.1) by induction on n (see, for example, Biggins and Kyprianou [8]).

The presence of the new random walk (Si) is explained via a change-of-probabilities technique

as in Lyons, Pemantle and Peres [23], and Lyons [22]; see Fact 6.2 for more details. In the

literature, the change-of-probabilities technique is used by many authors in various forms,

the idea going back at least to Kahane and Peyrière [17].
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2.2 Elementary properties of one-dimensional random walks

Let S1, S2 − S1, S3 − S2, · · · be an i.i.d. sequence of real-valued random variables with

E(S1) = 0 and σ2 := E[S2
1 ] ∈ (0, ∞). Let τ+ := inf{k ≥ 1 : Sk ≥ 0}, which is well-defined

almost surely (because E(S1) = 0). Let S0 := 0 and

(2.3) h0(u) := E
{ τ+−1∑

j=0

1{Sj≥−u}

}
, u ≥ 0,

which, according to the duality lemma, is the renewal function associated with the entrance

of (−∞, 0) by the walk (Sn). More precisely, the function h0 can be expressed as

(2.4) h0(u) =
∞∑
k=0

P{|Hk| ≤ u}, u ≥ 0,

where H0 > H1 > H2 > · · · are the strict descending ladder heights of (Sn), i.e., Hk := Sτ−k
,

with τ−0 := 0 and τ−k := inf{i > τ−k−1 : Si < min0≤j≤τ−k−1
Sj}, k ≥ 1.

Throughout the paper, we regularly use the following identity:

(2.5) h0(u) = E
{
h0(S1 + u)1{S1≥−u}

}
, ∀u ≥ 0.

Condition E(|S1|) <∞ ensures that h0(u) <∞, ∀u ≥ 0, and that the limit

(2.6) c0 := lim
u→∞

h0(u)

u
,

exists and lies in (0, ∞), see Tanaka [30]. As a consequence, there exist constants c2 ≥ c1 > 0

such that

(2.7) c1(1 + u) ≤ h0(u) ≤ c2(1 + u), u ≥ 0.

See Bertoin and Doney [5] for more details.

The function h0 describes the persistency of (Si). In fact, if we write

Sn := min
1≤i≤n

Si, n ≥ 1,

then there exists a constant 0 < θ <∞ such that

(2.8) P{Sn ≥ 0} ∼ θ

n1/2
, n→∞.

More generally, for any u ≥ 0,

(2.9) P{Sn ≥ −u} ∼
θ h0(u)

n1/2
, n→∞.
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See Kozlov [18], formula (12).

We will need a uniform version of (2.9) for u depending on n. Let (bn) be a sequence

of positive numbers such that limn→∞
bn
n1/2 = 0. Then (see [3]) for any bounded continuous

function f : [0, ∞)→ R, we have, as n→∞,

(2.10) E
{
f
( Sn + u

(nσ2)1/2

)
1{Sn≥−u}

}
=
θ h0(u)

n1/2

(∫ ∞
0

f(t)te−t
2/2 dt+ o(1)

)
,

uniformly in u ∈ [0, bn]. In particular,

(2.11) P{Sn ≥ −u} ∼
θ h0(u)

n1/2
, n→∞,

uniformly in u ∈ [0, bn].

Lemma 2.1 Let c0 and θ be the constants in (2.6) and (2.8), respectively. Then

(2.12) θ c0 =
( 2

πσ2

)1/2

.

Proof. We recall from (2.4) that h0(u) is the mean number of strict descending ladder heights

within [−u, 0]. By the renewal theorem (see Feller [13], Section XI.1), we have c0 = 1
E(|H1|) .

On the other hand (Feller [13], Theorem XII.7.4),∑
n≥1

snP{Sn ≥ 0} = exp
(∑
n≥1

sn

n
P{Sn ≥ 0}

)
.

Since E(S1) = 0 and E(S2
1) < ∞, it follows from Theorem XVIII.5.1 of Feller [13] that

c :=
∑

n≥1
1
n
[P{Sn ≥ 0} − 1

2
] is well-defined, satisfying E(|H1|) = σ

21/2
ec. Accordingly,∑

n≥1

snP{Sn ≥ 0} ∼ ec

(1− s)1/2
, s ↑ 1.

By a Tauberian theorem (Feller [13], Theorem XIII.5.5), this yields that

P{Sn ≥ 0} ∼ ec

(πn)1/2
, n→∞.

Comparing with (2.8), we get θ = ec

π1/2 = ( 2
πσ2 )1/2 E(|H1|) = ( 2

πσ2 )1/2 1
c0

, proving Lemma 2.1.

�

Lemma 2.2 There exists c3 > 0 such that for u > 0, a ≥ 0, b ≥ 0 and n ≥ 1,

P
{
Sn ≥ −a, b− a ≤ Sn ≤ b− a+ u

}
≤ c3

(u+ 1)(a+ 1)(b+ u+ 1)

n3/2
.
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Proof. The inequality is proved in [4] for a certain value of u, say 1; hence, the inequality

holds for u < 1. The case u > 1 boils down to the case u ≤ 1 by splitting the interval

[b− a, b− a+ u] into intervals of lengths ≤ 1, the number of these intervals being less than

(u+ 1). �

Lemma 2.3 There exists c4 > 0 such that for a ≥ 0,

sup
n≥1

E
[
|Sn|1{Sn≥−a}

]
≤ c4 (a+ 1).

Proof. We need to check that for some c5 > 0, E[Sn 1{Sn≥−a}] ≤ c5(a+ 1), ∀a ≥ 0, ∀n ≥ 1.

Let τ−a := inf{i ≥ 1 : Si < −a}. Then {Sn ≥ −a} = {τ−a > n}; thus E[Sn 1{Sn≥−a}] =

−E[Sn 1{τ−a ≤n}], which, by the optional sampling theorem, equals E[(−Sτ−a )1{τ−a ≤n}]. There-

fore, supn≥1 E[Sn 1{Sn≥−a}] = E[(−Sτ−a )].

It remains to check that E[(−Sτ−a ) − a] ≤ c6(a + 1) for some c6 > 0 and all a ≥ 0,

under the assumption E(S2
1) <∞.1 By a known trick (Lai [19]) using the sequence of strict

descending ladder heights, it boils down to proving that E[(−S̃τ̃−a )− a] ≤ c7(a+ 1) for some

c7 > 0 and all a ≥ 0, where S̃1, S̃2 − S̃1, S̃3 − S̃2, · · · , are i.i.d. negative random variables

with E(S̃1) > −∞, and τ̃−a := inf{i ≥ 1 : S̃i < −a}. This, however, is a special case of (2.6)

of Borovkov and Foss [11]. �

Lemma 2.4 Let 0 < λ < 1. There exists c8 > 0 such that for a, b ≥ 0, 0 ≤ u ≤ v and

n ≥ 1,

P
{
Sbλnc ≥ −a, min

i∈[λn, n]∩Z
Si ≥ b− a, Sn ∈ [b− a+ u, b− a+ v]

}
≤ c8

(v + 1)(v − u+ 1)(a+ 1)

n3/2
.(2.13)

Proof. We treat λn as an integer. Let P(2.13) denote the probability expression on the

left-hand side of (2.13). Applying the Markov property at time λn, we see that P(2.13) =

E[1{Sλn≥−a, Sλn≥b−a}f(Sλn)], where f(r) := P{Sn−λn ≥ b− a− r, Sn−λn ∈ [b− a− r+ u, b−
a − r + v]} (for r ≥ b − a). By Lemma 2.2, f(r) ≤ c3

(v+1)(v−u+1)(a+r−b+1)

n3/2 (for r ≥ b − a).

Therefore,

P(2.13) ≤
c3(v + 1)(v − u+ 1)

n3/2
E[(Sλn + a− b+ 1)1{Sλn≥−a, Sλn≥b−a}].

The expectation E[· · · ] on the right-hand side being bounded by E[ |Sλn|1{Sλn≥−a}] + a+ 1,

it suffices to apply Lemma 2.3. �

1Assuming E(|S1|3) <∞, even more is true (Mogulskii [27]): we have supa≥0 E[(−Sτ−
a

)− a] <∞.
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Lemma 2.5 There exists a constant C > 0 such that for any sequence (bn) of non-negative

numbers with lim supn→∞
bn
n1/2 <∞, and any 0 < λ < 1, we have

lim inf
n→∞

n3/2 P
{
Sbλnc ≥ 0, min

bλnc<j≤n
Sj ≥ bn, bn ≤ Sn ≤ bn + C

}
> 0.

Proof. The lemma is proved in [4] in the special case λ = 1
2
; the same proof is valid for the

general case 0 < λ < 1. �

Lemma 2.6 There exists a constant c9 > 0 such that for any y ≥ 0 and z ≥ 0,∑
k≥0

P
{
Sk ≤ y − z, Sk ≥ −z

}
≤ c9 (1 + y)(1 + min{y, z}).

Proof. See Lemma B.2 (i) of [2]. �

3 Change of processes, change of probabilities

Let (V (x)) be a branching random walk. For any vertex x, we define

V (x) := min
y∈ ]]∅, x]]

V (y).

Let α ≥ 0, and let h0(·) be as in (2.3). Let

hα(u) := h0(u+ α), u ≥ −α,

which stands for the renewal function of (Sn) associated with entrance of (−∞, −α).

Having in mind to study the additive martingale (Wn) and the derivative martingale

(Dn), let us introduce a new pair of processes

W (α)
n :=

∑
|x|=n

e−V (x)1{V (x)≥−α},

D(α)
n :=

∑
|x|=n

hα(V (x))e−V (x)1{V (x)≥−α}.

The basic idea is that W
(α)
n

D
(α)
n

behaves like Wn

c0Dn
when n is sufficiently large, where c0 is the

constant in (2.6).

In Section 4, we are going to prove that for any α ≥ 0, as n → ∞, n1/2 W
(α)
n

D
(α)
n

→ θ in

probability (θ being the constant in (2.8)), under a new probability called Q(α). To define

this new probability Q(α), we first prove a simple property of D
(α)
n . For any n, let Fn denote

the sigma-algebra generated by the branching random walk in the first n generations.
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Lemma 3.1 Assume (1.1). For any α ≥ 0, (D
(α)
n , n ≥ 0) is a non-negative martingale with

respect to (Fn), such that E(D
(α)
n ) = hα(0), ∀n.

Proof. Fix n. By (2.1), E(D
(α)
n ) = E{hα(Sn)1{Sn≥−α}} = E{h0(Sn +α)1{Sn≥−α}}, which, by

(2.5), is h0(α). In particular, D
(α)
n is integrable.

Let us check the martingale property now. By the Markov property,2

E(D
(α)
n+1 |Fn) =

∑
|y|=n

E
{ ∑
|x|=n+1, x>y

hα(V (x))e−V (x)1{V (x)≥−α}

∣∣∣Fn

}
=

∑
|y|=n

Φ(V (y))1{V (y)≥−α},

where, for any r ≥ −α,

Φ(r) := E
{∑
|z|=1

hα(V (z) + r)e−V (z)−r1{V (z)+r≥−α}

}
, r ≥ −α.

By (2.1), Φ(r) = E{hα(S1 + r)e−r1{S1+r≥−α}} = e−r E{h0(S1 + r + α)1{S1+r≥−α}}, which,

according to (2.5), is nothing else but e−rh0(α + r) = e−rhα(r). Therefore,

E(D
(α)
n+1 |Fn) =

∑
|y|=n

e−V (y)hα(V (y))1{V (y)≥−α} = D(α)
n ,

proving the lemma. �

Since (D
(α)
n ) is a non-negative martingale with E(D

(α)
n ) = hα(0), there exists a probability

measure Q(α) such that for any n,

Q(α) |Fn :=
D

(α)
n

hα(0)
•P |Fn .

We observe that Q(α)(non-extinction) = 1, and that Q(α)(D
(α)
n > 0) = 1 for any n.

[Strictly speaking, to make our presentation mathematically rigorous, we need to work

on the canonical space of branching random walks (= space of marked trees) and use the

rigorous language of Neveu [28] to describe the probabilities P and Q(α), as well as the

forthcoming spine (w
(α)
n , n ≥ 0). We continue using the informal language, and referring

the interested reader to Lyons [22] or Lyons and Peres [24], for a rigorous treatment. We

mention that in the next paragraph, while introducing the spine (w
(α)
n ), we should, strictly

speaking, enlarge the probability space and work on a product space.]

2For any pair of vertices x and y, we say x ≥ y (or y ≤ x) if either y = x, or y is an ancestor of x; we say
x > y if x ≥ y but x 6= y.
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Recall that the positions of the particles in the first generation, (V (x), |x| = 1), are

distributed under P as the point process Θ. Fix α ≥ 0. For any real number u ≥ −α, let

Θ̂
(α)
u denote a point process whose distribution is the law of (u+V (x), |x| = 1) under Q(u+α).

We now consider the distribution of the branching random walk under Q(α). The system

starts with one particle, denoted by w
(α)
0 , at position V (w

(α)
0 ) = 0. At each step n (for

n ≥ 0), particles of generation n die, while giving birth to point processes independently of

each other: the particle w
(α)
n generates a point process distributed as Θ̂

(α)

V (w
(α)
n )

, whereas any

particle x, with |x| = n and x 6= w
(α)
n , generates a point process distributed as V (x) + Θ.

The particle w
(α)
n+1 is chosen among the children y of w

(α)
n with probability proportional to

hα(V (y))e−V (y)1{V (y)≥−α}. The line of descent w(α) := (w
(α)
n , n ≥ 0) is referred to as the

spine. We denote by B(α) the family of the positions of this system.3

Proposition 3.2 Assume (1.1). Let α ≥ 0. The branching random walk under Q(α), has

the distribution of B(α).

The probabilistic behaviour of the spine is given by the following proposition.

Proposition 3.3 Assume (1.1). Let α ≥ 0.

(i) For any n and any vertex x with |x| = n, we have

(3.1) Q(α){w(α)
n = x |Fn} =

hα(V (x))e−V (x)1{V (x)≥−α}

D
(α)
n

.

(ii) The spine process (V (w
(α)
n ), n ≥ 0) under Q(α), is distributed as the centered random

walk (Sn, n ≥ 0) under P conditioned to stay in [−α, ∞).

Since D
(α)
n > 0, Q(α)-a.s., identity (3.1) makes sense Q(α)-almost surely. In Proposition

3.3 (ii), the centered random walk (Sn) (under P) conditioned to stay in [−α, ∞) is in the

sense of Doob’s h-transform: it is a Markov chain with transition probabilities given by

(3.2) p(α)(u, dv) := 1{v≥−α}
hα(v)

hα(u)
p(u, dv), u ≥ −α,

where p(u, dv) := P(S1 + u ∈ dv) is the transition probability of (Sn). Proposition 3.3 (ii)

tells that for any n ≥ 1 and any measurable function g : Rn+1 → [0, ∞),

(3.3) EQ(α) [g(V (w
(α)
i ), 0 ≤ i ≤ n)] =

1

hα(0)
E
[
g(Si, 0 ≤ i ≤ n)hα(Sn)1{Sn≥−α}

]
.

3The spine process w(α) is, of course, part of the new system. Since working in a product space and
dealing with projections and marginal laws would make the notation complicated, we feel free, by a slight
abuse of notation, to identify B(α) with (B(α), w(α)).
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Propositions 3.2 and 3.3 are reminiscent of Lyons’ spinal decomposition for branching

random walks ([22]). The proof of Propositions 3.2 and 3.3, presented in Appendix A, bears

much resemblance to Lyons’ proof.4

The spine decomposition will allow us, in the next section, to handle the first two moments

of W
(α)
n

D
(α)
n

under Q(α).

4 Convergence in probability of W
(α)
n

D
(α)
n

under Q(α)

The aim of this section is to prove that W
(α)
n

D
(α)
n

converges in probability (under Q(α)). We

do this by estimating EQ(α)(W
(α)
n

D
(α)
n

) and EQ(α) [(W
(α)
n

D
(α)
n

)2] by means of Proposition 3.2 and its

consequence (3.3).

Proposition 4.1 Assume (1.1), (1.4) and (1.5). Let α ≥ 0. We have

EQ(α)

(W (α)
n

D
(α)
n

)
∼ θ

n1/2
,(4.1)

EQ(α)

[(W (α)
n

D
(α)
n

)2 ]
∼ θ2

n
, n→∞,(4.2)

where θ ∈ (0, ∞) is the constant in (2.8). As a consequence, under Q(α),

lim
n→∞

n1/2 W
(α)
n

D
(α)
n

= θ, in probability.

The last part (convergence in probability) of the proposition is obviously a consequence

of (4.1)–(4.2) and Chebyshev’s inequality.

The rest of the section is devoted to the proof of (4.1) and (4.2). The first step is to

represent W
(α)
n

D
(α)
n

as a conditional expectation. Recall that Fn is the sigma-algebra generated

by the first n generations of the branching random walk.

Lemma 4.2 Assume (1.1). Let α ≥ 0. We have, for any n,

W
(α)
n

D
(α)
n

= EQ(α)

( 1

hα(V (w
(α)
n ))

∣∣∣Fn

)
,

where w
(α)
n is as before the element of the spine in the n-th generation.

4Lyons’ spinal decomposition, recalled as Fact 6.2 in Section 6, will be useful in the proof of Theorem 1.2.
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Proof. We have EQ(α)( 1

hα(V (w
(α)
n ))
|Fn) =

∑
|x|=n

Q(α){w(α)
n =x |Fn}

hα(V (x))
, which, according to (3.1),

equals
∑
|x|=n

e−V (x)

D
(α)
n

1{V (x)≥−α} = W
(α)
n

D
(α)
n

. �

We are now able to prove the first part of Proposition 4.1, concerning EQ(α)(W
(α)
n

D
(α)
n

).

Proof of Proposition 4.1: equation (4.1). By Lemma 4.2, EQ(α)(W
(α)
n

D
(α)
n

) = EQ(α)( 1

hα(V (w
(α)
n ))

),

which, by applying (3.3) to g(u0, u1, · · · , un) := 1
hα(un)

, equals
P{Sn≥−α}

hα(0)
. By (2.9), P{Sn ≥

−α} ∼ θ hα(0)

n1/2 (as n→∞), from which (4.1) follows immediately. �

It remains to prove (4.2), which is done in several steps. The first step gives the correct

order of magnitude of EQ(α) [(W
(α)
n

D
(α)
n

)2]:

Lemma 4.3 Assume (1.1) and (1.4). Let α ≥ 0. We have

EQ(α)

[(W (α)
n

D
(α)
n

)2 ]
= O

( 1

n

)
, n→∞.

Proof. By Lemma 4.2 and Jensen’s inequality,

EQ(α)

[(W (α)
n

D
(α)
n

)2 ]
≤ EQ(α)

( 1

[hα(V (w
(α)
n ))]2

)
.

The expression on the right-hand side is, by (3.3),

=
1

hα(0)
E
(1{Sn≥−α}
hα(Sn)

)
=

1

hα(0)
E
( 1{Sn≥−α}

h0(Sn + α)

)
.

Recall from (2.7) that h0(u) ≥ c1(1 + u), ∀u ≥ 0. Therefore,

hα(0) c1 × EQ(α)

[(W (α)
n

D
(α)
n

)2 ]
≤ E

( 1{Sn≥−α}

Sn + α + 1

)
≤

bn1/2c−1∑
i=0

E
(1{−α+i≤Sn<−α+i+1, Sn≥−α}

Sn + α + 1

)
+ E

(1{Sn≥−α+bn1/2c, Sn≥−α}

Sn + α + 1

)
,

which, by Lemma 2.2, is

≤
bn1/2c−1∑
i=0

1

i+ 1
c3

(α + 1)(i+ 1)

n3/2
+

P{Sn ≥ −α}
bn1/2c

=
bn1/2c c3(α + 1)

n3/2
+

P{Sn ≥ −α}
bn1/2c

.
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By (2.9), P{Sn ≥ −α} = O( 1
n1/2 ), n→∞. The lemma follows. �

Lemma 4.3 tells us that VarQ(α)(W
(α)
n

D
(α)
n

) = O( 1
n
), whereas our goal is to replace O( 1

n
) by

o( 1
n
). We need to do some more work.

Let En be an event such that Q(α)(En)→ 1, n→∞. Let

ξn,Ecn := EQ(α)

( 1Ecn

hα(V (w
(α)
n ))

∣∣∣Fn

)
.

Since W
(α)
n

D
(α)
n

= EQ(α)( 1

hα(V (w
(α)
n ))
|Fn) = ξn,Ecn + EQ(α)(

1En

hα(V (w
(α)
n ))
|Fn), we have

EQ(α)

[(W (α)
n

D
(α)
n

)2 ]
= EQ(α)

[W (α)
n

D
(α)
n

ξn,Ecn

]
+ EQ(α)

[W (α)
n

D
(α)
n

1En

hα(V (w
(α)
n ))

]
.

By the Cauchy–Schwarz inequality, we have

EQ(α)

[W (α)
n

D
(α)
n

ξn,Ecn

]
≤

{
EQ(α)

[(W (α)
n

D
(α)
n

)2 ]}1/2

{EQ(α)(ξ2
n,Ecn

)}1/2

= O
( 1

n1/2

)
{EQ(α)(ξ2

n,Ecn
)}1/2,

the last identity being a consequence of Lemma 4.3. So (4.2) will be a straightforward

consequence of the following lemmas.

Lemma 4.4 Assume (1.1) and (1.4). Let α ≥ 0. For any sequence of events (En) such that

Q(α)(En)→ 1, we have

EQ(α)(ξ2
n,Ecn

) = o
( 1

n

)
, n→∞.

Lemma 4.5 Assume (1.1), (1.4) and (1.5). Let α ≥ 0. There exists a sequence of events

(En) such that Q(α)(En)→ 1, and that

EQ(α)

[W (α)
n

D
(α)
n

1En

hα(V (w
(α)
n ))

]
≤ θ2

n
+ o
( 1

n

)
, n→∞.

Proof of Lemma 4.4. By Jensen’s inequality, EQ(α)(ξ2
n,Ecn

) ≤ EQ(α)(
1Ecn

[hα(V (w
(α)
n ))]2

). Conse-

quently, for any ε > 0,

EQ(α)(ξ2
n,Ecn

) ≤ EQ(α)

( 1Ecn

[hα(V (w
(α)
n ))]2

1{V (w
(α)
n )≥εn1/2}

)
+ EQ(α)

(1{V (w
(α)
n )<εn1/2}

[hα(V (w
(α)
n ))]2

)
= EQ(α)

( 1Ecn

[hα(V (w
(α)
n ))]2

1{V (w
(α)
n )≥εn1/2}

)
+ E

( 1{Sn<εn1/2}

hα(Sn)hα(0)
1{Sn≥−α}

)
,
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the last identity being a consequence of (3.3). Recall from (2.7) that hα(u) = h0(u + α) ≥
c1(1 + u+ α), ∀u ≥ −α. Hence

EQ(α)(ξ2
n,Ecn

) ≤ Q(α)(Ec
n)

c2
1(1 + εn1/2 + α)2

+
1

c1 hα(0)
E
(1{Sn<εn1/2, Sn≥−α}

Sn + α + 1

)
= o

( 1

n

)
+

1

c1 hα(0)
E
(1{Sn<εn1/2, Sn≥−α}

Sn + α + 1

)
,

the last line following from the assumption that Q(α)(Ec
n)→ 0. For the expectation term on

the right-hand side, we observe that, by Lemma 2.2,

E
(1{Sn<εn1/2, Sn≥−α}

Sn + α + 1

)
≤

dεn1/2+αe−1∑
i=0

E
(1{−α+i≤Sn<−α+i+1, Sn≥−α}

Sn + α + 1

)

≤
dεn1/2+αe−1∑

i=0

1

i+ 1
c3

(α + 1)(i+ 1)

n3/2

=
dεn1/2 + αe c3(α + 1)

n3/2
.

We have therefore proved that

EQ(α)(ξ2
n,Ecn

) ≤ o
( 1

n

)
+
dεn1/2 + αe c3(α + 1)

n3/2c1 hα(0)
, n→∞.

Since ε can be arbitrarily small (whereas the constants c1 and c3 do not depend on ε), this

yields Lemma 4.4. �

The proof of Lemma 4.5 needs some preparation. Let kn < n be an integer such that

kn →∞ (n→∞). Recall that we defined W
(α)
n =

∑
|x|=n e−V (x)1{V (x)≥−α}. For each vertex

x with |x| = n and x 6= w
(α)
n , there is a unique i with 0 ≤ i < n such that w

(α)
i ≤ x and that

w
(α)
i+1 6≤ x. For any i ≥ 1, let

R
(α)
i :=

{
|x| = i : x > w

(α)
i−1, x 6= w

(α)
i

}
.

[In words, R
(α)
i stands for the set of “brothers” of w

(α)
i .] Accordingly,

W (α)
n = e−V (w

(α)
n )1{V (w

(α)
n )≥−α} +

n−1∑
i=0

∑
y∈R(α)

i+1

∑
|x|=n, x≥y

e−V (x)1{V (x)≥−α}.
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We write

W (α),[0,kn)
n :=

kn−1∑
i=0

∑
y∈R(α)

i+1

∑
|x|=n, x≥y

e−V (x)1{V (x)≥−α},

W (α),[kn,n]
n := e−V (w

(α)
n )1{V (w

(α)
n )≥−α} +

n−1∑
i=kn

∑
y∈R(α)

i+1

∑
|x|=n, x≥y

e−V (x)1{V (x)≥−α},

so that W
(α)
n = W

(α),[0,kn)
n +W

(α),[kn,n]
n . We define D

(α),[0,kn)
n and D

(α),[kn,n]
n similarly. Let

En,1 := {k1/3
n ≤ V (w

(α)
kn

) ≤ kn} ∩
n⋂

i=kn

{V (w
(α)
i ) ≥ k1/6

n },

En,2 :=
n−1⋂
i=kn

{ ∑
y∈R(α)

i+1

[1 + (V (y)− V (w
(α)
i ))+] e−[V (y)−V (w

(α)
i )] ≤ eV (w

(α)
i )/2

}
,

En,3 :=
{
D(α),[kn,n]
n ≤ 1

n2

}
.

We choose

(4.3) En := En,1 ∩ En,2 ∩ En,3.

Lemma 4.6 Assume (1.1), (1.4) and (1.5). Let α ≥ 0. Let kn be such that kn → ∞ and

that kn
n1/2 → 0, n→∞. Let En be as in (4.3). Then

lim
n→∞

Q(α)(En) = 1, lim
n→∞

inf
u∈[k

1/3
n , kn]

Q(α)(En |V (w
(α)
kn

) = u) = 1.

Proof. Write, for i ≥ 0,

E
(i)
2 :=

{ ∑
y∈R(α)

i+1

[1 + (V (y)− V (w
(α)
i ))+] e−[V (y)−V (w

(α)
i )] ≤ eV (w

(α)
i )/2

}
.

[Thus En,2 =
⋂n−1
i=kn

E
(i)
2 .]

For z ≥ −α, let Q
(α)
z be the law of Bα (in Proposition 3.2) when the ancestor particle is

located at position z. [So Q
(α)
0 = Q(α).] We claim that∑
i≥0

Q(α)
z [(E

(i)
2 )c] < ∞, ∀z ≥ −α,(4.4)

lim
z→∞

∑
i≥0

Q(α)
z [(E

(i)
2 )c] = 0.(4.5)
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To check (4.4) and (4.5), we observe that by Proposition 3.2, for any integer i ≥ 0 and

real number u ≥ −α,

Q(α)
z [(E

(i)
2 )c |V (w

(α)
i ) = u] = Q(α)

u

{ ∑
x∈R(α)

1

[1 + (V (x)− u)+]e−[V (x)−u] > eu/2
}

≤ Q(α)
u

{∑
|x|=1

[1 + (V (x)− u)+]e−[V (x)−u] > eu/2
}
,

which, by definition, is (Eu being the expectation with respect to the law of the branching

random walk with the ancestor particle located at u)

= Eu

[∑
|y|=1 hα(V (y))e−V (y) 1{V (y)≥−α}

hα(u) e−u
1{∑|x|=1[1+(V (x)−u)+]e−[V (x)−u]>eu/2}

]
= E

[∑
|y|=1 hα(V (y) + u)e−[V (y)+u] 1{V (y)≥−α−u}

hα(u) e−u
1{∑|x|=1[1+V (x)+]e−V (x)>eu/2}

]
.

By (2.7), there exists a constant c10 > 0 such that hα(V (y)+u)
hα(u)

≤ c10
V (y)++u+α+1

u+α+1
= c10 [1 +

V (y)+

u+α+1
]; thus

Q(α)
z [(E

(i)
2 )c |V (w

(α)
i ) = u] ≤ c10 E

[∑
|y|=1

e−V (y) 1{∑|x|=1[1+V (x)+]e−V (x)>eu/2}

+
1

u+ α + 1

∑
|y|=1

V (y)+e−V (y) 1{∑|x|=1[1+V (x)+]e−V (x)>eu/2}

]

= c10 E
[
X 1{X+X̃>eu/2} +

X̃ 1{X+X̃>eu/2}

u+ α + 1

]
,

where X :=
∑
|y|=1 e−V (y) and X̃ :=

∑
|y|=1 V (y)+e−V (y). Consequently,

Q(α)
z [(E

(i)
2 )c] ≤ c10 (E⊗ E(α)

z )
[
X 1{X+X̃>eSi/2} +

X̃ 1{X+X̃>eSi/2}

Si + α + 1

]
,

where, on the right-hand side, we assume that (X, X̃) and Si are independent, the expec-

tation E being for (X, X̃), while the expectation E
(α)
z for Si. Here, E

(α)
z stands for the

expectation with respect to P
(α)
z , the law of the h-process of (Si) starting from z and con-

ditioned to stay in [−α, ∞); the transition probabilities of this h-process being given in

(3.2).

Let us consider the expression on the right-hand side. We first take the expectation for

Si with respect to E
(α)
z . The event {X + X̃ > eSi/2} can be written as Si < 2 log(X + X̃).
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Therefore, by the definition of E
(α)
z , for any x ≥ 0 and x̃ ≥ 0,

E(α)
z

[
x1{x+x̃>eSi/2} +

x̃1{x+x̃>eSi/2}

Si + α + 1

]
=

1

hα(z)
E
[
hα(Si + z)1{Si≥−z−α}

(
x1{Si+z<2 log(x+x̃)} +

x̃1{Si+z<2 log(x+x̃)}

Si + z + α + 1

)]
,

which, by (2.7), is

≤ c2

hα(z)
E
[
(Si + z + α + 1)1{Si≥−z−α}

(
x1{Si+z<2 log(x+x̃)} +

x̃1{Si+z<2 log(x+x̃)}

Si + z + α + 1

)]
≤

c11[x(1 + log+(x+ x̃)) + x̃]

hα(z)
P
{
Si ≥ −z − α, Si + z < 2 log(x+ x̃)

}
.

Applying Lemma 2.6 yields that∑
i≥0

E(α)
z

[
x1{x+x̃>eSi/2} +

x̃1{x+x̃>eSi/2}

Si + α + 1

]
≤

c12[x(1 + log+(x+ x̃)) + x̃] [1 + log+(x+ x̃)] [1 + min{log+(x+ x̃), z}]
hα(z)

.

Taking expectation for (X, X̃), using (1.6)–(1.8), and recalling from (2.6) that hα(z) grows

linearly when z →∞, we obtain (4.4) and (4.5).

We now prove that Q(α)(En) → 1, n → ∞. Since En = En,1 ∩ En,2 ∩ En,3, let us check

that limn→∞Q(α)(En,`) = 1, for ` = 1 and 2, and that limn→∞Q(α)(Ec
n,3 ∩ En,1 ∩ En,2) = 0.

For En,1: Proposition 3.3 says that (V (w
(α)
n ), n ≥ 0) under Q(α) is the centered random

walk (Sn) conditioned to stay in [−α, ∞); so it is clear that Q(α)(En,1)→ 1, n→∞.

For En,2: this follows from (4.4) (by taking z = 0 there).

For En,3: Let G∞ := σ{V (w
(α)
k ), V (z), z ∈ R(α)

k+1, k ≥ 0} be the sigma-algebra generated

by the positions of the spine and its brothers. We know that the branching random walk

rooted at z ∈ R(α)
i has the same law under P and under Q(α). Therefore,

EQ(α) [D(α),[kn,n]
n | G∞] = hα(V (w(α)

n ))e−V (w
(α)
n ) +

n−1∑
i=kn

∑
z∈R(α)

i+1

hα(V (z))e−V (z).

For z ∈ R(α)
i+1, we have hα(V (z)) ≤ c13 [1 + α + V (w

(α)
i )] [1 + (V (z)− V (w

(α)
i ))+]. Therefore,

(4.6) 1En,1∩En,2 EQ(α) [D(α),[kn,n]
n | G∞] = o

( 1

n2

)
, n→∞,

where the o( 1
n2 ) term on the right-hand side represents a deterministic expression. By the

Markov inequality, we deduce that Q(α)(Ec
n,3 ∩ En,1 ∩ En,2)→ 0, n→∞.
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It remains to check that Q(α)(En |V (w
(α)
kn

) = u)→ 1 uniformly in u ∈ [k
1/3
n , kn].

By (4.5), Qα(Ec
n,2 |V (w

(α)
kn

) = u) → 0 uniformly in u ∈ [k
1/3
n , kn], whereas according to

(4.6), 1En,1∩En,2Q
(α)(Ec

n,3 | G∞) is bounded by a deterministic expression which goes to 0 when

n → ∞. Therefore, we only have to check that Q(α)(En,1 |V (w
(α)
kn

) = u) → 1, uniformly in

u ∈ [k
1/3
n , kn]. By Proposition 3.2 and (3.2),

Q(α)(En,1 |V (w
(α)
kn

) = u) =
1

hα(u)
E[hα(Sn−kn + u)1{Sn−kn≥k

1/6
n −u}].

Let c0 := limt→∞
hα(t)
t

as before, and let η ∈ (0, c0). Let fη(t) := (c0 − η) min{t, 1
η
}. Then

hα(t) ≥ b fη(
t
b
) for all sufficiently large t and uniformly in b > 0. We take b := (n− kn)1/2σ

(with σ2 := E[S2
1 ] as before), to see that for all sufficiently large n and uniformly in u > k

1/6
n ,

Q(α)(En,1 |V (w
(α)
kn

) = u) ≥ (n− kn)1/2σ

hα(u)
E
[
fη

( Sn−kn + u

(n− kn)1/2σ

)
1{Sn−kn≥k

1/6
n −u}

]
≥ (n− kn)1/2σ

hα(u)
E
[
fη

(Sn−kn + u− k1/6
n

(n− kn)1/2σ

)
1{Sn−kn≥k

1/6
n −u}

]
.

Remember that kn
n1/2 → 0. By (2.10), as n→∞,

E
[
fη

(Sn−kn + u− k1/6
n

(n− kn)1/2σ

)
1{Sn−kn≥k

1/6
n −u}

]
∼ θh0(u− k1/6

n )

(n− kn)1/2

∫ ∞
0

te−t
2/2fη(t) dt,

uniformly in u ∈ [k
1/6
n , kn]. Consequently,

lim inf
n→∞

inf
u∈[k

1/3
n , kn]

Q(α)(En,1 |V (w
(α)
kn

) = u) ≥ θσ

∫ ∞
0

te−t
2/2fη(t) dt.

Note that
∫∞

0
te−t

2/2fη(t) dt ≥ (c0 − η)
∫ 1/η

0
t2e−t

2/2 dt. Letting η → 0 gives

lim inf
n→∞

inf
u∈[k

1/3
n , kn]

Q(α)(En,1 |V (w
(α)
kn

) = u) ≥ c0θσ
(π

2

)1/2

= 1,

the last identity following from (2.12). Consequently, Q(α)(En |V (w
(α)
kn

) = u)→ 1 uniformly

in u ∈ [k
1/3
n , kn]. Lemma 4.6 is proved. �

We now proceed to prove Lemma 4.5.

Proof of Lemma 4.5. Let kn be such that kn → ∞ and that kn
n1/2 → 0, n → ∞. Let En be

the event in (4.3). By Lemma 4.6, Q(α)(En)→ 1, n→∞.
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On En, we have D
(α),[kn,n]
n ≤ 1

n2 . In particular, since W
(α),[kn,n]
n ≤ D

(α),[kn,n]
n , we have

W
(α),[kn,n]
n ≤ 1

n2 as well. Since hα(0)hα(V (w
(α)
n )) ≥ 1, this yields

(4.7) EQ(α)

[W (α),[kn,n]
n

D
(α)
n

1En

hα(V (w
(α)
n ))

]
= E

[ W
(α),[kn,n]
n 1En

hα(0)hα(V (w
(α)
n ))

]
= o
( 1

n

)
.

It remains to treat W
(α),[0,kn)
n

D
(α)
n

1En

hα(V (w
(α)
n ))

. SinceD
(α)
n ≥ D

(α),[0,kn)
n , it follows from Proposition

3.2 that

EQ(α)

[W (α),[0,kn)
n

D
(α)
n

1En

hα(V (w
(α)
n ))

]
≤ EQ(α)

[W (α),[0,kn)
n

D
(α),[0,kn)
n

1En

hα(V (w
(α)
n ))

]
≤ EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1{V (w
(α)
kn

)∈[k
1/3
n , kn]}

)
sup

u∈[k
1/3
n , kn]

E(α)
u

( 1

hα(Sn−kn)

)
.(4.8)

[Notation: 0
0

:= 0 for the ratio W
(α),[0,kn)
n

D
(α),[0,kn)
n

.]

For any u ≥ −α and j ≥ 1, we have E
(α)
u ( 1

hα(Sj)
) = 1

hα(u)
P{Sj ≥ −α− u}, which yields,

by (2.11),

sup
u∈[k

1/3
n , kn]

E(α)
u

( 1

hα(Sn−kn)

)
∼ θ

(n− kn)1/2
∼ θ

n1/2
, n→∞.

Going back to (4.8), we obtain:

EQ(α)

[W (α),[0,kn)
n

D
(α)
n

1En

hα(V (w
(α)
n ))

]
≤ θ + o(1)

n1/2
EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1{V (w
(α)
kn

)∈[k
1/3
n , kn]}

)
.

We claim that

(4.9) lim sup
n→∞

n1/2 EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1{V (w
(α)
kn

)∈[k
1/3
n , kn]}

)
≤ θ.

Then we will have

EQ(α)

[W (α),[0,kn)
n

D
(α)
n

1En

hα(V (w
(α)
n ))

]
≤ θ2

n
+ o
( 1

n

)
,

which, together with (4.7) and remembering W
(α)
n = W

(α),[0,kn)
n + W

(α),[kn,n]
n , will complete

the proof of Lemma 4.5.
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It remains to check (4.9). By Proposition 3.2,

EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1En

)
≥ EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1{V (w
(α)
kn

)∈[k
1/3
n , kn]}

)
inf

u∈[k
1/3
n , kn]

Q(α)(En |V (w
(α)
kn

) = u).

By Lemma 4.6, inf
u∈[k

1/3
n , kn]

Q(α)(En |V (w
(α)
kn

) = u)→ 1. Therefore, as n→∞,

EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1{V (w
(α)
kn

)∈[k
1/3
n , kn]}

)
≤ (1 + o(1))EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1En

)
.

Since D
(α),[0,kn)
n ≥ W

(α),[0,kn)
n , we have

EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1En

)
≤ EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1En1{D(α)
n > 1

n
}

)
+ Q(α)

(
D(α)
n ≤

1

n

)
.

Let 0 < η1 < 1. By the Markov inequality, we see that Q(α)(D
(α)
n ≤ 1

n
) ≤ 1

n
EQ(α)( 1

D
(α)
n

) =

1
nhα(0)

. On the other hand, we already noticed that D
(α),[kn,n]
n 1En is bounded by a determin-

istic o( 1
n
). Therefore, for all sufficiently large n, D

(α),[kn,n]
n ≤ η1D

(α)
n on En ∩ {D(α)

n > 1
n
}.

Accordingly, for all sufficiently large n,

EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1En

)
≤ 1

1− η1

EQ(α)

(W (α),[0,kn)
n

D
(α)
n

1
En∩{D(α)

n > 1
n
}

)
+

1

nhα(0)

≤ 1

1− η1

EQ(α)

(W (α)
n

D
(α)
n

)
+

1

nhα(0)
.

On the right-hand side, EQ(α)(W
(α)
n

D
(α)
n

) ∼ θ
n1/2 (see (4.1)). It follows that

lim sup
n→∞

n1/2 EQ(α)

(W (α),[0,kn)
n

D
(α),[0,kn)
n

1{V (w
(α)
kn

)∈[k
1/3
n , kn]}

)
≤ θ

1− η1

.

Sending η1 → 0 gives (4.9), and completes the proof of Lemma 4.5. �

Proof of Proposition 4.1: equation (4.2). Follows from Lemmas 4.4 and 4.5. �

5 Proof of Theorem 1.1

Assume (1.1), (1.4) and (1.5). Let α ≥ 0. By Proposition 4.1, under Q(α), n1/2W
(α)
n

D
(α)
n

converges, as n→∞, in probability to θ. Therefore, for any 0 < ε < 1,

Q(α)
{∣∣∣n1/2W

(α)
n

D
(α)
n

− θ
∣∣∣ > θε

}
→ 0, n→∞,
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that is,

E
[
D(α)
n 1

{|n1/2W
(α)
n

D
(α)
n

−θ|>θε}

]
→ 0, n→∞.

Recall that P∗(•) := P(• | non-extinction). By Biggins [6], condition E(
∑
|x|=1 e−V (x)) =

1 in (1.1) implies that inf |x|=n V (x)→∞ P∗-a.s.; thus inf |x|≥0 V (x) > −∞ P∗-a.s.

Let Ωk := {inf |x|≥0 V (x) ≥ −k} ∩ {non-extinction}. Then (Ωk, k ≥ 1) is a sequence of

non-decreasing events such that P∗(∪k≥1Ωk) = P∗(non-extinction) = 1. Let η > 0. There

exists k0 = k0(η) such that P∗(Ωk0) ≥ 1− η.

Since 1Ωk0
≤ 1, we have

E
[
D(α)
n 1

{|n1/2W
(α)
n

D
(α)
n

−θ|>θε}
1Ωk0

]
→ 0, n→∞.

Because D
(α)
n ≥ 0, this is equivalent to say that, under P,

(5.1) D(α)
n 1

{|n1/2W
(α)
n

D
(α)
n

−θ|>θε}
1Ωk0

→ 0, in L1(P), a fortiori in probability.

On Ωk0 , we have W
(α)
n = Wn for all n and all α ≥ k0. For the behaviour of D

(α)
n , we

observe that according to (2.6), there exists a constant M = M(ε) > 0 sufficiently large such

that

c0(1− ε)u ≤ h0(u) ≤ c0(1 + ε)u, ∀u ≥M.

We fix our choice of α from now on: α := k0 + M . Since hα(u) = h0(u + α), we have, on

Ωk0 , 0 < c0(1− ε)(V (x) + α) ≤ hα(V (x)) ≤ c0(1 + ε)(V (x) + α) (for all vertices x), so that

on Ωk0 ,

0 < c0(1− ε)(Dn + αWn) ≤ D(α)
n ≤ c0(1 + ε)(Dn + αWn), ∀n.

[We insist on the fact that on Ωk0 , Dn + αWn > 0 for all n.]

Recall that Dn → W ∗ > 0, P∗-a.s., and that Wn → 0, P∗-a.s. Therefore, on the one

hand, lim infn→∞D
(α)
n ≥ c0(1− ε)W ∗ > 0, P∗-a.s. on Ωk0 ; on the other hand, on Ωk0 ,

An ⊂
{
|n1/2W

(α)
n

D
(α)
n

− θ| > θε
}
, ∀n,

where

An :=
{
n1/2 Wn

Dn + αWn

> (1 + ε)2c0 θ
}
∪
{
n1/2 Wn

Dn + αWn

< (1− ε)2c0 θ
}
.

In view of (5.1), we obtain that, under P∗,

1An 1Ωk0
→ 0, in probability,
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i.e., P∗(An ∩ Ωk0)→ 0, n→∞. Since P∗(Ωk0) ≥ 1− η, this implies

lim sup
n→∞

P∗(An) ≤ η.

In other words, n1/2Wn

Dn
converges in probability (under P∗) to c0 θ, which is ( 2

πσ2 )1/2 according

to (2.12). �

6 Proof of Theorem 1.2

We first study the minimal displacement in a branching random walk. Recall that

P∗(•) := P(• | non-extinction).

Theorem 6.1 Assume (1.1), (1.4) and (1.5). We have

lim inf
n→∞

(
min
|x|=n

V (x)− 1

2
log n

)
= −∞, P∗-a.s.

Remark. Although we are not going to use it, we mention that min|x|=n V (x) behaves typi-

cally like 3
2

log n: if conditions (1.1), (1.4) and (1.5) hold, then under P∗, 1
logn

min|x|=n V (x)→
3
2

in probability; see [15], [1] or [4] for proofs under some additional assumptions. A proof

assuming only (1.1), (1.4) and (1.5) can be found in [2]. In particular, we cannot replace

“lim inf” in Theorem 6.1 by “lim”. �

By admitting Theorem 6.1 for the time being, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By definition, Wn =
∑
|x|=n e−V (x) ≥ exp[−min|x|=n V (x)]. It follows

from Theorem 6.1 that

(6.1) lim sup
n→∞

n1/2Wn =∞, P∗-a.s.

On the other hand, Dn → W ∗ > 0, P∗-a.s. (see Theorem B in the Introduction). Therefore,

lim supn→∞ n
1/2Wn

Dn
=∞, P∗-a.s. �

The rest of the section is devoted to the proof of Theorem 6.1. We use once again a

change-of-probabilities technique. This time, however, we only need the well-known change-

of-probabilities setting in Lyons [22]: Under (1.1), (Wn) is a non-negative martingale, so we

can define a probability Q such that for any n,

(6.2) Q |Fn := Wn •P |Fn .
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Recall that the positions of the particles in the first generation, (V (x), |x| = 1), are dis-

tributed under P as the point process Θ; let Θ̂ denote a point process whose distribution is

the law of (V (x), |x| = 1) under Q.

Lyons’ spinal decomposition describes the distribution of the branching random walk

under Q; it involves a spine process denoted by (wn, n ≥ 0): We take w0 := ∅, and the

system starts at the initial position V (w0) = 0. At time 1, w0 gives birth to the point process

Θ̂. We choose w1 at step 1 among the offspring x with probability proportional to e−V (x).

The particle w1 gives birth to particles distributed as Θ̂ (with respect to their birth position,

V (w1)), while all other particles in the first generation, {x : |x| = 1, x 6= w1} generate

independent copies of Θ (with respect to their birth positions). The process goes on. The

new system is denoted by B.

Fact 6.2 (Lyons’ spinal decomposition) Assume (1.1). The branching random walk

under Q, has the distribution of B. For any |x| = n, we have

(6.3) Q(wn = x
∣∣Fn) =

e−V (x)

Wn

.

The spine process (V (wn))n≥0 under Q has the distribution of (Sn)n≥0 introduced in Section

2.

Lyons’ spinal decomposition is used to prove the following probabilistic estimate.

Lemma 6.3 Assume (1.1) ,(1.4) and (1.5). Let C > 0 be the constant in Lemma 2.5. There

exists a constant c14 > 0 such that for all sufficiently large n,

P
{
∃x : n ≤ |x| ≤ 2n,

1

2
log n ≤ V (x) ≤ 1

2
log n+ C

}
≥ c14.

Proof of Lemma 6.3. The proof of the lemma borrows an idea from [2] (see (6.6) below). We

fix n and let

ai = ai(n) :=

{
0, if 0 ≤ i ≤ n

2
,

1
2

log n, if n
2
< i ≤ 2n,

and for n < k ≤ 2n,

b
(k)
i = b

(k)
i (n) :=

{
i1/12, if 0 ≤ i ≤ n

2
,

(k − i)1/12, if n
2
< i ≤ k.
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For any vertex y, let as before yi denote its ancestor at generation i (for 0 ≤ i ≤ |y|, with

y|y| := y) and R(y) be the set of brothers of y. We consider

Z(n) :=
2n∑

k=n+1

Z
(n)
k ,

Z
(n)
k := #(Ek ∩ Fk) ,

where

Ek :=
{
y : |y| = k, V (yi) ≥ ai, ∀0 ≤ i ≤ k, V (y) ≤ 1

2
log n+ C

}
,

Fk :=
{
y : |y| = k,

∑
v∈R(yi+1)

[1 + (V (v)− ai)+]e−(V (v)−ai) ≤ c15e−b
(k)
i , ∀0 ≤ i ≤ k − 1

}
.

[So if x ∈ Ek, then 1
2

log n ≤ V (x) ≤ 1
2

log n+C. The set Ek here has nothing to do with the

event En in (4.3).] The constant c15 in the definition of Fk is positive and will be set later

on. We make use of the new probability measure Q introduced in (6.2): for n < k ≤ 2n,

E[Z
(n)
k ] = EQ

[Z(n)
k

Wk

]
= EQ

[ ∑
|x|=k

1{x∈Ek∩Fk}
Wk

]
,

which, by (6.3), is = EQ[
∑
|x|=k 1{x∈Ek∩Fk} eV (x) 1{wk=x}] = EQ[eV (wk) 1{wk∈Ek∩Fk}]. Thus,

(6.4) E[Z
(n)
k ] ≥ n1/2Q

(
wk ∈ Ek ∩ Fk

)
.

We need to estimate Q(wk ∈ Ek ∩ Fk). By Fact 6.2, the process (V (wn))n≥0 has the law of

(Sn)n≥0. Therefore,

(6.5) Q
(
wk ∈ Ek

)
= P

{
Si ≥ ai, ∀ 0 ≤ i ≤ k, Sk ≤

1

2
log n+ C

}
∈
[ c16

n3/2
,
c17

n3/2

]
,

by Lemmas 2.4 and 2.5. We now use Lemma C.1 of [2], stating that for any ε > 0, it is

possible to choose the constant c15 (appearing in the definition of Fk) sufficiently large such

that for all large n,

(6.6) max
k: n<k≤2n

Q
(
wk ∈ Ek, wk /∈ Fk

)
≤ ε

n3/2
.

[The uniformity in k ∈ (n, 2n]∩Z is not stated in [2], but the same proof holds.] In particular,

choosing ε := c16
2

(c16 being in (6.5)) leads to the existence of c15 such that for all large n,

Q
(
wk ∈ Ek, wk ∈ Fk

)
≥ c16

2n3/2
.
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It follows from (6.4) that for all sufficiently large n,

(6.7) E[Z(n)] ≥
2n∑

k=n+1

n1/2 c16

2n3/2
≥ c18.

We now estimate the second moment of Z(n). By definition,

E
[
(Z(n))2

]
=

2n∑
k=n+1

2n∑
`=n+1

E
[
Z

(n)
k Z

(n)
`

]
≤ 2

2n∑
k=n+2

k∑
`=n+1

E
[
Z

(n)
k Z

(n)
`

]
.

Using again the probability Q, we have for n < ` ≤ k ≤ 2n,

E
[
Z

(n)
k Z

(n)
`

]
= EQ

[
Z

(n)
`

Z
(n)
k

Wk

]
= EQ

[
Z

(n)
`

∑
|x|=k

1{x∈Ek∩Fk}
Wk

]
= EQ[Z

(n)
` eV (wk) 1{wk∈Ek∩Fk}]

by (6.3), and thus is bounded by eCn1/2 EQ[Z
(n)
` 1{wk∈Ek∩Fk}]. Therefore,

E
[
(Z(n))2

]
≤ 2eCn1/2

2n∑
k=n+2

k∑
`=n+1

EQ

[
Z

(n)
` 1{wk∈Ek∩Fk}

]
.

We now estimate EQ[Z
(n)
` 1{wk∈Ek∩Fk}] on the right-hand side. It will be more convenient to

work with Y
(n)
` :=

∑
|x|=` 1{x∈E`} which is greater than Z

(n)
` . Decomposing the sum Y

(n)
` (for

n < ` < 2n) along the spine yields that

Y
(n)
` = 1{w`∈E`} +

∑̀
i=1

∑
y∈Ri

Y
(n)
` (y),

where Ri := R(wi) is the set of the brothers of wi, and Y
(n)
` (y) := #{x : |x| = `, x ≥ y, x ∈

E`} the number of descendants x of y at generation ` such that x ∈ E`. By Lyons’ spinal de-

composition (Fact 6.2), the branching random walk emanating from y ∈ Ri has the same law

under Q and under P. Therefore, conditioning on G∞ := σ{V (wj), wj, Rj, (V (y))y∈Rj , j ≥
0}, we have, for y ∈ Ri,

EQ

[
Y

(n)
` |G∞

]
= ϕi,`(V (y)),

where, for r ∈ R,

ϕi,`(r) := E
[ ∑
|x|=`−i

1{r+V (xj)≥aj+i, ∀0≤j≤`−i, r+V (x)≤ 1
2

logn+C}

]
.
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Consequently,

E
[
(Z(n))2

]
≤ 2eCn1/2

2n∑
k=n+2

k∑
`=n+1

Q
{
wk ∈ Ek ∩ Fk, w` ∈ E`

}
+2eCn1/2

2n∑
k=n+2

k∑
`=n+1

∑̀
i=1

EQ

[
1{wk∈Ek∩Fk}

∑
y∈Ri

ϕi,`(V (y))
]
.

Recall from (6.7) that E[Z(n)] ≥ c18. Since P(Z(n) > 0) ≥ {E[Z(n)]}2
E[(Z(n))2]

, the proof of Lemma 6.3

is reduced to showing the following estimates: for some constants c19 > 0 and c20 > 0 and

all sufficiently large n,

2n∑
k=n+2

k∑
`=n+1

Q
{
wk ∈ Ek, w` ∈ E`

}
≤ c19

n1/2
,(6.8)

2n∑
k=n+2

k∑
`=n+1

∑̀
i=1

EQ

[
1{wk∈Ek∩Fk}

∑
y∈Ri

ϕi,`(V (y))
]
≤ c20

n1/2
.(6.9)

Let us first prove (6.8). By Fact 6.2, for n < ` ≤ k ≤ 2n,

Q{wk ∈ Ek, w` ∈ E`} = P
{
Si ≥ ai, ∀0 ≤ i ≤ k, S` ≤

1

2
log n+ C, Sk ≤

1

2
log n+ C

}
= E

{
1{Si≥ai, ∀0≤i≤`, S`≤ 1

2
logn+C} pk,`(S`)

}
,

where5 pk,`(r) := P{r+Sj ≥ 1
2

log n, ∀1 ≤ j ≤ k−`, r+Sk−` ≤ 1
2

log n+C} (for r ≥ 1
2

log n).

Applying Lemma 2.2 to a := r − 1
2

log n and b := 0, we obtain, for r ≥ 1
2

log n,

pk,`(r) ≤ c21

r − 1
2

log n+ 1

(k − `+ 1)3/2
,

which leads to:

Q{wk ∈ Ek, w` ∈ E`} ≤
c21

(k − `+ 1)3/2
E
{
1{Si≥ai, ∀0≤i≤`, S`≤ 1

2
logn+C} (S` −

1

2
log n+ 1)

}
≤ (C + 1) c21

(k − `+ 1)3/2
P
{
Si ≥ ai, ∀0 ≤ i ≤ `, S` ≤

1

2
log n+ C

}
≤ (C + 1) c21

(k − `+ 1)3/2

c22

n3/2
,

the last inequality following from Lemma 2.4. This readily yields (6.8).

5Since ` > n, we have, by definition, ai = 1
2 log n for i ≥ `.
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It remains to check (6.9). By (2.1),

ϕi,`(r) = E
[
eS`−i1{r+Sj≥aj+i, ∀0≤j≤`−i, r+S`−i≤ 1

2
logn+C}

]
≤ n1/2eC−rP

[
r + Sj ≥ aj+i, ∀0 ≤ j ≤ `− i, r + S`−i ≤

1

2
log n+ C

]
.(6.10)

From here, we bound ϕi,`(r) differently depending on whether i ≤ n
2

or i > n
2
.

First case: i ≤ n
2
. By considering the j = 0 term, we get ϕi,`(r) = 0 for r < 0. For

r ≥ 0, we have, by (6.10) and Lemma 2.4,

(6.11) ϕi,`(r) ≤ n1/2eC−r c23
r + 1

n3/2
=

eC c23

n
e−r(r + 1),

so that writing c24 := eC c23 and EQ[k, i, `] := EQ[1{wk∈Ek}
∑

y∈Ri ϕi,`(V (y))] for brevity,

EQ[k, i, `] ≤ c24

n
EQ

[
1{wk∈Ek∩Fk}

∑
y∈Ri

1{V (y)≥0}e
−V (y)(V (y) + 1)

]
≤ c24

n
EQ

[
1{wk∈Ek∩Fk}

∑
y∈Ri

e−V (y)(V (y)+ + 1)
]
.

By definition, we have
∑

y∈Ri e−V (y)(V (y)+ + 1) ≤ c15e−(i−1)1/12 when wk ∈ Fk. It yields that

EQ[k, i, `] ≤ c24c15

n
e−(i−1)1/12Q(wk ∈ Ek) ≤

c24c15c17

n5/2
e−(i−1)1/12

by (6.5). As a consequence,

(6.12)
2n∑

k=n+2

k∑
`=n+1

∑
1≤i≤n

2

EQ

[
1{wk∈Ek}

∑
y∈Ri

ϕi,`(V (y))
]
≤ c25

n1/2
.

Second (and last) case: n
2
< i ≤ `. This time, we bound ϕi,`(r) slightly differently.

Let us go back to (6.10). Since i > n
2
, we have aj+i = 1

2
log n for all 0 ≤ j ≤ ` − i, thus

ϕi,`(r) = 0 for r < 1
2

log n, whereas for r ≥ 1
2

log n, we have, by Lemma 2.2,

ϕi,`(r) ≤ n1/2eC−r
c26

(`− i+ 1)3/2
(r − 1

2
log n+ 1).

This is the analogue of (6.11); noting that the factor 1
n

becomes n1/2

(`−i+1)3/2
now. From here,

we can proceed as in the first case: writing again EQ[k, i, `] := EQ[1{wk∈Ek}
∑

y∈Ri ϕi,`(V (y))]

for brevity, we have

EQ[k, i, `] ≤ c26eC n1/2

(`− i+ 1)3/2
EQ

[
1{wk∈Ek∩Fk}

∑
y∈Ri

e−V (y)[(V (y)− 1

2
log n)+ + 1]

]
≤ c26eCc15 n

1/2

(`− i+ 1)3/2

e−(k−i+1)1/12

n1/2
Q(wk ∈ Ek)

≤ c27

(`− i+ 1)3/2n3/2
e−(k−i+1)1/12 ,
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where the last inequality comes from (6.5). Consequently,

2n∑
k=n+2

k∑
`=n+1

∑
n
2
<i≤`

EQ

[
1{wk∈Ek}

∑
y∈Ri

ϕi,`(V (y))
]
≤ c28

n1/2
.

Together with (6.12), this yields (6.9), and completes the proof of Lemma 6.3. �

We have now all the ingredients for the proof of Theorem 6.1.

Proof of Theorem 6.1. Assume (1.1) ,(1.4) and (1.5). Let K > 0.

Assumption (1.1) ensures P{min|x|=1 V (x) < 0} > 0. Therefore, there exists an integer

L = L(K) ≥ 1 such that

c29 := P
{

min
|x|=L

V (x) ≤ −K
}
> 0.

Let nk := (L+ 2)k, k ≥ 1, so that nk+1 ≥ 2nk + L, ∀k. For any k, let

Tk := inf
{
i ≥ nk : min

|x|=i
V (x) ≤ 1

2
log nk + C

}
,

where C > 0 is the constant in Lemma 6.3. If Tk < ∞, let xk be such that |xk| = Tk and

that V (x) ≤ 1
2

log nk + C. [If there are several such xk, any one of them will do the job, for

example the one with the smallest Harris–Ulam index.] Let

Gk := {Tk ≤ 2nk} ∩
{

min
|y|=L

[V (xky)− V (xk)] ≤ −K
}
,

where xky is the concatenation of the words xk and y. For any pair of positive integers j < `,

(6.13) P
{ ⋃̀
k=j

Gk

}
= P

{ `−1⋃
k=j

Gk

}
+ P

{ `−1⋂
k=j

Gc
k ∩G`

}
.

On {T` <∞}, we have

P{G` |FT`} = 1{T`≤2n`}P
{

min
|x|=L

V (x) ≤ −K
}

= c29 1{T`≤2n`}.

Since ∩`−1
k=jG

c
k is FT`-measurable, we obtain:

P
{ `−1⋂
k=j

Gc
k ∩G`

}
= c29 P

{ `−1⋂
k=j

Gc
k ∩ {T` ≤ 2n`}

}
≥ c29 P{T` ≤ 2n`} − c29 P

{ `−1⋃
k=j

Gk

}
.
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Recall that P{T` ≤ 2n`} ≥ c14 (Lemma 6.3; for large `, say ` ≥ j0). Combining this with

(6.13) yields that

P
{ ⋃̀
k=j

Gk

}
≥ (1− c29)P

{ `−1⋃
k=j

Gk

}
+ c14c29, j0 ≤ j < `.

Iterating the inequality leads to:

P
{ ⋃̀
k=j

Gk

}
≥ (1− c29)`−j P{Gj}+ c14c29

`−j−1∑
i=0

(1− c29)i ≥ c14c29

`−j−1∑
i=0

(1− c29)i.

This yields P{
⋃∞
k=j Gk} ≥ c14, ∀j ≥ j0. As a consequence, P(lim supk→∞Gk) ≥ c14.

On the event lim supk→∞Gk, there are infinitely many vertices x such that V (x) ≤
1
2

log |x|+ C −K. Therefore,

P
{

lim inf
n→∞

(
min
|x|=n

V (x)− 1

2
log n

)
≤ C −K

}
≥ c14.

The constant K > 0 being arbitrary, we obtain:

P
{

lim inf
n→∞

(
min
|x|=n

V (x)− 1

2
log n

)
= −∞

}
≥ c14.

Let 0 < ε < 1. Let J1 ≥ 1 be an integer such that (1 − c14)J1 ≤ ε. Under P∗, the

system survives almost surely; so there exists a positive integer J2 sufficiently large such

that P∗{
∑
|x|=J2 1 ≥ J1} ≥ 1− ε. By applying what we have just proved to the sub-trees of

the vertices at generation J2, we obtain:

P∗
{

lim inf
n→∞

(
min
|x|=n

V (x)− 1

2
log n

)
= −∞

}
≥ 1− (1− c14)J1 − ε ≥ 1− 2ε.

Sending ε to 0 completes the proof of Theorem 6.1. �

Theorem 6.1 leads to the following result for the lower limits of min|x|=n V (x), which was

proved in [15] under stronger assumptions (namely, E[(
∑
|x|=1 1)1+δ]+E[

∑
|x|=1 e−(1+δ)V (x)]+

E[
∑
|x|=1 eδV (x)] <∞ for some δ > 0, and (1.1)). Recall that P∗(•) := P(• | non-extinction).

Theorem 6.4 Assume (1.1), (1.4) and (1.5). We have

lim inf
n→∞

1

log n
min
|x|=n

V (x) =
1

2
, P∗-a.s.
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Proof. In view of Theorem 6.1, we only need to check that lim infn→∞
1

logn
min|x|=n V (x) ≥ 1

2
,

P∗-a.s.

Let k > 0 and a < 1
2
. By formula (2.1) and in its notation,

E
( ∑
|x|=n

1{V (x)>−k} 1{V (x)≤a logn}

)
= E

(
eSn1{Sn>−k} 1{Sn≤a logn}

)
≤ naP

(
Sn > −k, Sn ≤ a log n

)
,

which, according to Lemma 2.2, is bounded by a constant multiple of na (logn)2

n3/2 , and which

is summable in n if a < 1
2
. Therefore, as long as a < 1

2
, we have∑

n≥1

∑
|x|=n

1{V (x)>−k} 1{V (x)≤a logn} <∞, P-a.s.

By Biggins [6], condition E(
∑
|x|=1 e−V (x)) = 1 in (1.1) implies that inf |x|=n V (x) → ∞

P∗-a.s.; thus inf |x|≥0 V (x) > −∞ P∗-a.s. Consequently, lim infn→∞
1

logn
min|x|=n V (x) ≥ a,

P∗-a.s., for any a < 1
2
. �

7 Some questions

Let (V (x)) be a branching random walk satisfying (1.1), (1.4) and (1.5). Let as be-

fore P∗(•) := P(• | non-extinction). Theorem 6.1 tells us that lim infn→∞ [min|x|=n V (x) −
1
2

log n] = −∞, P∗-a.s., but it does not give us any quantitative information about how this

“lim inf” expression goes to −∞. This leads to our first open question.

Question 7.1 Is there a deterministic sequence (an) with limn→∞ an =∞ such that

−∞ < lim inf
n→∞

1

an

(
min
|x|=n

V (x)− 1

2
log n

)
< 0, P∗-a.s.?

Our second question concerns the additive martingale Wn. In (6.1), we have proved

that lim supn→∞ n1/2Wn =∞, P∗-a.s., but the rate at which this “lim sup” goes to infinity

remains unknown.

Question 7.2 Study the rate at which the upper limits of n1/2Wn go to infinity P∗-almost

surely.
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Questions 7.1 and 7.2 are obviously related via the inequality Wn ≥ exp[−min|x|=n V (x)].

It is, however, not clear whether answering one of the questions will necessarily lead to

answering the other.

Theorem 1.2 says lim supn→∞ n1/2Wn

Dn
= ∞, P∗-a.s. What about its lower limits? We

have a conjecture.

Conjecture 7.3 We would have

lim inf
n→∞

n1/2 Wn

Dn

=
( 2

πσ2

)1/2

, P∗-a.s.,

where σ2 := E[
∑
|x|=1 V (x)2e−V (x)].

A Appendix: Proof of Propositions 3.2 and 3.3

We fix α ≥ 0.

Proof of Proposition 3.2. From Neveu [28], we know that we can encode our genealogical

tree T with U := {∅} ∪
⋃∞
n=1(N∗)n. Let (φx, x ∈ U ) be a family of non-negative Borel

functions. If EB(α) stands for the probability associated to the process B(α), we need to show

that for any integer n,

EB(α)
{ ∏
|x|≤n

φx(V (x))
}

= EQ(α)

{ ∏
|x|≤n

φx(V (x))
}
,

or, equivalently (by definition of Q(α)),

(A.1) EB(α)
{ ∏
|x|≤n

φx(V (x))
}

= E
{ D(α)

n

hα(0)

∏
|x|≤n

φx(V (x))
}
.

If we are able to prove that6 for any z ∈ U with |z| = n,

EB(α)
{ ∏
|x|≤n

φx(V (x)); w(α)
n = z

}
= E

{hα(V (z))e−V (z) 1{V (z)≥−α}

hα(0)

∏
|x|≤n

φx(V (x))
}

(A.2)

=: E
{ Fz
hα(0)

∏
|x|≤n

φx(V (x))
}
,

6We write EB(α){ξ; A} for EB(α){ξ 1A}.
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then this will obviously yield (A.1) by summing over |z| = n.

So it remains to check (A.2). For x ∈ U , let Tx be the subtree rooted at x, and R(x) the

set of the brothers of x. A vertex y of Tx corresponds to the vertex xy of T where xy is the

element of U obtained by concatenation of x and y. By construction of B(α), a branching

random walk emanating from a vertex y /∈ (w
(α)
n , n ≥ 0) has the same law as under P. By

decomposing the product inside EB(α){· · · } along the path [[∅, z]], we observe that

EB(α)
{ ∏
|x|≤n

φx(V (x)); w(α)
n = z

}
= EB(α)

{ n∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x)); w(α)
n = z

}
,

where zk is the ancestor of z at generation k (with zn = z), and for any t ∈ R and x ∈ U ,

hx(t) := E{
∏

y∈Tx φxy(t+ V (y))1{|y|≤n−|x|}}. Similarly,

E
{ Fz
hα(0)

∏
|x|≤n

φx(V (x))
}

= E
{ Fz
hα(0)

n∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x))
}
.

Therefore, the proof of (A.2) is reduced to showing the following: for any n and |z| = n, and

any non-negative Borel functions (φzk , hx)k,x,

EB(α)
{ n∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x)); w(α)
n = z

}
= E

{ Fz
hα(0)

n∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x))
}
.(A.3)

We prove (A.3) by induction. For n = 0, (A.3) is trivially true. Assume that the equality

holds for n− 1 and let us prove it for n. By definition of B(α), given that w
(α)
n−1 = zn−1, the

probability to choose w
(α)
n = z among the children of w

(α)
n−1 is proportional to Fz. Therefore,

if we write G (α)
n−1 := σ{w(α)

k , V (w
(α)
k ), R(w

(α)
k ), (V (y))

y∈R(w
(α)
k )
, 0 ≤ k ≤ n− 1}, then

EB(α)
{
φz(V (z))

∏
x∈R(z)

hx(V (x)); w(α)
n = z

∣∣∣G (α)
n−1

}
= 1{w(α)

n−1=zn−1}
EB(α)

{ Fz
Fz +

∑
x∈R(z) Fx

φz(V (z))
∏

x∈R(z)

hx(V (x))
∣∣∣G (α)

n−1

}
= 1{w(α)

n−1=zn−1}
EB(α)

{ Fz
Fz +

∑
x∈R(z) Fx

φz(V (z))
∏

x∈R(z)

hx(V (x))
∣∣∣ (w(α)

n−1, V (w
(α)
n−1))

}
.
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The point process generated by w
(α)
n−1 = zn−1 has Radon–Nikodym derivative

Fz+
∑
x∈R(z) Fx

Fzn−1

with respect to7 the point process generated by zn−1 under P. Thus, on {w(α)
n−1 = zn−1},

EB(α)
{ Fz
Fz +

∑
x∈R(z) Fx

φz(V (z))
∏

x∈R(z)

hx(V (x))
∣∣∣ (w(α)

n−1, V (w
(α)
n−1))

}
= E

{ Fz
Fzn−1

φz(V (z))
∏

x∈R(z)

hx(V (x))
∣∣∣V (zn−1)

}
=: Φ(V (zn−1)).

This implies EB(α){φz(V (z))
∏

x∈R(z) hx(V (x)); w
(α)
n = z |Gn−1} = 1{w(α)

n−1=zn−1}
Φ(V (zn−1)).

As a result,

EB(α)
{ n∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x)); w(α)
n = z

}

= EB(α)
{

Φ(V (zn−1))
n−1∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x)); w
(α)
n−1 = zn−1

}
,

which, by the induction hypothesis, is

= E
{Fzn−1

hα(0)
Φ(V (zn−1))

n−1∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x))
}

= E
{ Fz
hα(0)

n∏
k=0

φzk(V (zk))
∏

x∈R(zk)

hx(V (x))
}
,

the last equality being a consequence of the fact that Φ(V (zn−1)) can also be represented as

E{ Fz
Fzn−1

φz(V (z))
∏

x∈R(z) hx(V (x)) |V (zk), R(zk), (V (x), x ∈ R(zk)), 0 ≤ k ≤ n − 1}. This

yields (A.3). �

Proof of Proposition 3.3. Let (φx, x ∈ U ) be a family of Borel functions and z ∈ U a vertex

with |z| = n. By (A.2) (identifying EB(α) with EQ(α) by Proposition 3.2),

EQ(α)

{
1{w(α)

n =z}

∏
|x|≤n

φx(V (x))
}

= E
{hα(V (z))e−V (z) 1{V (z)≥−α}

hα(0)

∏
|x|≤n

φx(V (x))
}

= EQ(α)

{hα(V (z))e−V (z) 1{V (z)≥−α}

D
(α)
n

∏
|x|≤n

φx(V (x))
}
.

7Both point processes denote the absolute positions (i.e., not with respect to the birth place) of the
particles.
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This shows that

Q(α)(w(α)
n = z |Fn) =

hα(V (z))

D
(α)
n

e−V (z) 1{V (z)≥−α},

which proves part (i) of the proposition.

To prove part (ii), we take n ≥ 1 and a measurable function g : Rn+1 → [0, ∞), and

observe that

EQ(α) [g(V (w
(α)
i ), 0 ≤ i ≤ n)]

= EQ(α)

( ∑
|x|=n

g(V (xi), 0 ≤ i ≤ n)
hα(V (x))

D
(α)
n

e−V (x) 1{V (x)≥−α}

)
=

1

hα(0)
E
( ∑
|x|=n

g(V (xi), 0 ≤ i ≤ n)hα(V (x))e−V (x) 1{V (x)≥−α}

)
,

the last identity following from the definition of Q(α). Applying (2.1), we obtain:

EQ(α) [g(V (w
(α)
i ), 0 ≤ i ≤ n)] =

1

hα(0)
E
[
g(Si, 0 ≤ i ≤ n)hα(Sn)1{Sn≥−α}

]
,

proving Proposition 3.3. �
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[2] Aı̈dékon, E. (2011+). Convergence in law of the minimum of a branching random walk.
ArXiv:1101.1810
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