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Chapter 1

Introduction

Secure multiparty computation is a well-known problem in modern cryptography. A set
of mutually distrusting parties need to perform a joint computation, where each party
contributes some private information as input, and these inputs should remain hidden as
much as possible throughout the computation. This should be valid even in the presence
of an adversary who may corrupt some of the parties, meaning that the adversary sees all
their internal data and may make them behave arbitrarily. A large body of research initi-
ated in the early 1980s has shown that secure multiparty computation is feasible for any
computable function [Yao82, Yao86, GMW87, BGW88, CCD88]. Lots of improvements
have been achieved since.

The design of secure multiparty protocols is very complex, since many aspects must
be taken into account. One can have protocols withstanding adversaries with different
capabilities. A passive adversary follows the protocol specification but records all infor-
mation it has collected during the run of a protocol. In contrast, an active adversary
behaves arbitrarily, possibly aborting the protocol prematurely. An adversary is static if
the set of corrupted parties is decided at the onset and fixed throughout the protocol ex-
ecution, or the adversary is adaptive if parties are corrupted on the fly as the computation
proceeds.

Another distinction between multiparty protocols is the model for communication.
In the cryptographic model, the adversary may see all the information exchanged by the
parties. Security in this case can be only guaranteed under a computational assumption.
The information-theoretic model assumes a private channel between every pair of parties.
Security is possible in an unconditional manner, without assuming any bound on the
computational power of the adversary. Another important aspect is the environment in
which a protocol is executed. A protocol may be analyzed in a stand-alone setting, or in
a more general setting, allowing for concurrent and possibly interleaved executions; see,
e.g., [Can01, PS04, Can05, Küs06, CDPW07].

Efficiency is an important aspect of the design of secure multiparty protocols. There
are three widely accepted performance measures for protocols, usually analyzed as a
function of the size of the inputs. The computational complexity is the number of ele-
mentary computing steps needed to execute the protocol. The communication complexity
gives the number of bits transmitted between the parties. The round complexity mea-
sures the number of messages exchanged by the parties running the protocol. Often,
there are trade-offs between these complexity measures, which can be used to achieve a
good balance in practical situations.

This thesis focuses on designing efficient protocols for two particular cryptographic
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Chapter 1. Introduction

primitives. The first primitive concerns generalizations of verifiable shuffles, allowing for
ways to restrict the permutations applied to a special subset of permutations. The sec-
ond primitive is integer comparison. Both of these primitives are of general importance in
the design of protocols for secure multiparty computation. For our purposes it suffices
to consider the basic setting of a static, active, computationally-bounded adversary in a
stand-alone setting. The basic setting allows for a relatively simple and concise presenta-
tion, capturing the essence of the novel techniques and approaches used in our solutions.
Using by-now standard techniques and set-up assumptions our solutions should carry
over to stronger security models.

In the following, we give a brief description of the two primitives studied in the thesis.
We include some of the main applications, describe relations to other problems and give
further motivation for studying these primitives.

1.1 Special Shuffles of Homomorphic Encryptions

A shuffle is a rearrangement of a list of encrypted messages which produces a fresh list
of encrypted messages such that the multiset of plaintexts of both lists is identical. Put in
other words, there exists a permutation linking the plaintexts of both lists of encryptions.
The crucial requirement to apply shuffles in cryptographic protocols is that the applied
permutation is kept secret.

Shuffles of homomorphic encryptions is a simple but very powerful primitive. This
is accomplished by permuting and “re-blinding” the list of encryptions. Verifiability of
a shuffle is achieved via a zero-knowledge proof of knowledge. One of the main ap-
plication areas of shuffles is the construction of mix-networks. A mix-network [Cha81]
consists of a cascade of shufflers which one after the other randomly shuffle the list of
encryptions received from the previous shuffler. The result is that the input-output lists
of plaintexts are permuted and if at least one of the shufflers is honest, the end-to-end
permutation is random and unknown.

In this thesis we study a related primitive. Namely, we describe zero-knowledge
proofs of shuffles where a cyclic rotation is applied instead of an arbitrary permuta-
tion. This kind of shuffles were first introduced by Reiter and Wang [RW04] together
with applications in the context of mix-networks. They argued that a shuffler is deterred
from revealing information if there is only a limited number of allowed permutations
for a shuffle. In the case of rotations, revealing any input-output correspondence of the
permutation applied completely reveals the permutation used in the shuffle.

We point out many other applications of rotations in cryptographic protocols. In fact,
we note that rotations are a fundamental primitive for the design of secure protocols. For
instance, rotations are used to conceal sensitive information in voting protocols, integer
comparison solutions, and in some general approaches to secure function evaluation.
Concretely, in scrambled circuit approaches, like that of Yao [Yao86] or Jakobsson and
Juels [JJ00], the active row of the truth table selected during the evaluation of a scrambled
gate must be hidden. This may be achieved by applying a rotation of the rows of the
scrambled gate.

We use two interesting approaches to rotation. On the one hand, using properties of
the Discrete Fourier Transform (DFT) we give a Σ-protocol for showing correctness of
a rotation. The use of the DFT imposes some mild restrictions on the system parame-
ters. We believe that this is the first time that the DFT is used as the core tool of a zero-
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1.2. Integer comparison

knowledge protocol. On the other hand, we use a completely different approach to prove
a rotation. We present a zero-knowledge proof for which we show the witness-extended
emulation property. This protocol works with virtually any homomorphic cryptosystem
and does not put any constraints in the parameters. Our zero-knowledge protocols have
roughly the same complexity as the most efficient ones for general shuffles (e.g., [Gro03])
while the only previously existing solution by Reiter and Wang [RW04] uses four invoca-
tions of a general shuffle.

Reiter and Wang [RW04] also introduced the more general notion of a k-fragile set
of permutations where revealing any k input-output correspondences of a permutation
identifies the permutation completely within the k-fragile set. That way, a shuffler who
applied a k-fragile permutation may reveal up to k − 1 input-output mappings of the
permutation before the permutation itself gets completely exposed. A rotation is clearly
1-fragile.

In this thesis, we present the first zero-knowledge proofs of knowledge for particu-
lar cases of k-fragile permutations, with k > 1. We show how to prove that a shuffler
applied an affine transformation (2-fragile) and a Möbius transformation (3-fragile). We
complement this study by pointing out the equivalence with the well-known concept
of k-transitive sets of permutations. In fact, this enables us to give an overview of the
(non-)existence results for multiply fragile permutations.

1.2 Integer comparison

The basic instance of integer comparison was introduced by Yao [Yao82] as the million-
aires’ problem: two millionaires want to compare their net worths and know who is richer
without revealing anything else. Secure integer comparison refers to any problem in
which two integers must be compared. The essential requirement is that no information
is leaked about the two integers and possibly the result of the comparison.

These problems represent a fundamental primitive in secure computation protocols
and thereby they have received much attention in the literature. Applications that are
based on this primitive include electronic auctions [NPS99], secure data mining [LP00]
and secure linear optimization [Tof09c] among many other problems.

In this thesis, we present integer comparison protocols within the framework for se-
cure multiparty computation based on threshold homomorphic cryptosystems byCramer
et al. [CDN01]. Our solutions assume that the inputs x and y are given as encrypted bits
of their binary representation and the output is an encryption of the bit deciding whether
x > y. The generality of our solutions enable the use of our protocols in numerous appli-
cations.

The first type of solutions involves the evaluation of an arithmetic circuit composed of
elementary gates as in [CDN01]. Since the intermediate multiplications of the circuit are
performed on encrypted bits, one can apply conditional gates from [ST04] and thus it can
be based on threshold homomorphic ElGamal encryptions. Furthermore, we note that
the circuit can be used to get unconditional security if encryptions are replaced by shar-
ings as in [DFK+06]. The main achievements of this circuit are both low computational
complexity and low round complexity.

The second type of solutions uses a more intricate approach. We present protocols
that only require a constant number of rounds assuming a fixed number of parties. The
computational complexity compares favorably with other existing solutions. In fact, our

11



Chapter 1. Introduction

solutions outperform any other protocol in a two-party setting in all the complexity mea-
sures. The proof of security of these protocols is also interesting in its own right. Namely,
we follow ideas from [ST06] in which a successful attacker of the protocol is converted
into an attacker of the semantic security of the underlying cryptosystem. In this way,
we show the integration of our solution in the general frameworks of [CDN01, ST04]
mentioned above. We give a complete description for the two-party setting.

We discuss different variations of integer comparison which may be useful in certain
applications. For instance, we analyze how to get public output (instead of encrypted
output) and how this affects the performance. We also describe the connection of integer
comparison with other related problems. For example, one can show an equivalence be-
tween greater-than comparison and computing the least-significant bit of an integer. We
believe that shedding light on these connections may be of help in finding more efficient
solutions.

1.3 Roadmap of this Thesis

Below we give an overview of the structure and results of the thesis.

Chapter 2: Preliminaries

This chapter describes basic cryptographic primitives and building blocks. At the same
time, we present the notation that will be used throughout the rest of the thesis.

Chapter 3: Verifiable Rotations using the Discrete Fourier Transform

In this chapter, we present a protocol for rotation using the Discrete Fourier Transform
(DFT). The obtained zero-knowledge protocol is a Σ-protocol and is as efficient as the
most efficient protocol for general shuffles. The application of the DFT and its inverse us-
ing encrypted values represents a bottleneck in the computation. We note, however, that
the computation can be reduced with the use of the Fast Fourier Transform (FFT). In par-
ticular, we have adapted Cooley-Tukey FFT and Bluestein’s FFT to work with encrypted
values.

Parts of this chapter are based on joint work with Sebastiaan de Hoogh, Berry Schoen-
makers and Boris Škorić [dHSŠV09].

Chapter 4: General Verifiable Rotations

We present a completely new approach to get a zero-knowledge proof of rotation. This
solution is general, applies to any homomorphic cryptosystem, and avoids any con-
straints that the DFT-based approach puts on parameters. We show that the protocol
satisfies witness-extended emulation, using a detailed analysis that may be of indepen-
dent interest.

The solution presented in this chapter improves upon the joint work with Sebasti-
aan de Hoogh, Berry Schoenmakers and Boris Škorić [dHSŠV09], following a different
approach.

12
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Chapter 5: Verifiable Multiply Fragile Shuffles

We consider zero-knowledge proofs for k-fragile permutations as defined by Reiter and
Wang [RW04]. In fact, we present the first zero-knowledge proofs of knowledge to show
that a shuffler used a k-fragile permutation, with k = 2, 3. Namely, we show how to
shuffle according to an affine transformation (2-fragile) and a Möbius transformation (3-
fragile). The chapter is complemented with an overview of (non-)existence results for
multiply fragile sets of permutations. We do this by noting the link between fragility and
the well-studied concept of set transitivity.

Parts of this chapter are included in the joint work with Sebastiaan de Hoogh and
Berry Schoenmakers [dHSV10].

Chapter 6: Integer Comparison

Two types of protocols for integer comparison are presented. Our first solution is an
arithmetic circuit yielding a protocol of O(logm) rounds where m is the bit-size of the
inputs. The computational complexity is low, as the work is only about 50% more than
the most efficient known solution of [ST04], which requires O(m) rounds. Our second
solution is based on a different approach that achieves constant rounds assuming a fixed
number of parties, while minimizing the computational work. The resulting protocol im-
proves substantially over the constant rounds protocol of [GSV07]. The chapter endswith
an overview of different variants of integer comparison protocols and related problems.

Parts of this chapter are based on joint work with Juan A. Garay and Berry Schoen-
makers [GSV07].
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Chapter 2

Preliminaries

In this chapter we review several basic cryptographic concepts and primitives which
play an important role throughout the thesis. The presentation is informal and mainly
serves to introduce the notation and terminology that we need in later chapters. For
concreteness and simplicity, we use a generic discrete log setting, involving a cyclic group
of prime order, as the main setting for our cryptographic constructions. Many of the
results are however more generally applicable, e.g., using an RSA-based setting, and
where appropriate we will discuss such generalizations.

We will pay special attention to honest verifier zero-knowledge protocols, which play
a central role in the thesis. The restriction to honest verifier zero-knowledge allows for
relatively simple and efficient protocols, capturing the essence of our constructions. Us-
ing the Fiat-Shamir heuristic, these protocols can be converted –without loss of efficiency–
into publicly-verifiable non-interactive proofs, for which the security can be proved in the
random oracle model. We will use the notion of witness-extended emulation as the main
security property, which captures both soundness and zero-knowledgeness. Σ-protocols
satisfy the witness-extended emulation property. We include a direct proof of this known
fact to illustrate the typical structure of the witness-extended emulators for our protocols
in later chapters.

We review shuffles of homomorphic encryptions and applications, introducing some
basic notation. Finally, we briefly present the frameworks put forth by Cramer et al.
[CDN01], and Schoenmakers and Tuyls [ST04] which enable general secure multiparty
computation from the evaluation of arithmetic circuits. The notion of security within the
framework is discussed as well.

2.1 Basic Primitives

In this section we introduce some well-known cryptographic primitives for a standard,
generic discrete log setting.

Discrete Log Setting

Let Gq = 〈g〉 be a (multiplicative) cyclic group of order q. Typical examples are prime
order subgroups of the multiplicative group of a finite field, or prime order subgroups of
the points of an ordinary elliptic curve over a finite field.

For our applications we assume that the decision Diffie-Hellman (DDH) problem to be
infeasible. Namely, given random gx, gy and gz in Gq it is infeasible to decide whether

15



Chapter 2. Preliminaries

z = xy mod q.
The DDH assumption implies that the computational Diffie-Hellman (CDH) problem is

infeasible as well. Namely, it is infeasible to compute gxy given gx and gy. In turn, the
discrete log (DL) problem, which is to compute x from gx, is infeasible too.

2.1.1 Pedersen Commitment

Consider a discrete log setting over the group Gq = 〈g〉. Let h ∈ Gq\{1} be chosen
at random, such that logg h is not known. In a Pedersen commitment, two parties, a

committer C and a receiver R run a protocol in the following two phases. During the
commit phase, the committer C commits to a private value m ∈ Zq by computing c =
C(m, r) = grhm for random r ∈ Zq and sending c to R. In the reveal phase, the committer
C opens the commitment c by revealing the values m and r to R who then checks that
c = C(m, r) = grhm.

Pedersen commitment has two properties, hiding and binding. Hiding property says
that from c alone, R cannot get any information aboutm. Binding guarantees that C is not
able to open c to a different value other thanm after c has been fixed. More concretely, the
scheme is statistically hiding since the distribution of grhm is statistically independent of
the value of m. The scheme is computationally binding under the discrete log assumption

on Gq since if two openings for a commitment c would exist, that is c = grhm = gr
′
hm
′

with m 6= m′, then h = g(r−r′)/(m′−m).
The notation c = C(m, r) is used throughout this thesis to indicate the commitment

function of a general commitment scheme where c is a commitment to m ∈ M using
randomness r ∈ R. We assume that C satisfies the properties of hiding and binding.

2.1.2 Threshold Homomorphic ElGamal Encryption

Consider a discrete log setting over the group Gq = 〈g〉. The secret key x is selected
at random from Zq and the public key is h = gx. We present a variation of ElGamal
cryptosystem [ElG85] that is additively homomorphic.

Upon message m ∈ Zq, a random r ∈ Zq is chosen to produce the ciphertext (a, b) =
E(m, r) = (gr, gmhr). Decryption of the ciphertext (a, b) is done by retrieving m from
gm = b/ax .

A drawback, though, is that the set of possible plaintexts M ⊂ Zq to be decrypted
should be small otherwise the discrete log problem must be solved. Often |M| = 2. The
encryption scheme is semantically secure under the DDH assumption on Gq.

Most results presented in this thesis are general and work for any homomorphic cryp-
tosystem. Hence, E denotes the encryption algorithm of a semantically secure homomor-
phic public key cryptosystem with message spaceM and randomness space R. In the
case of homomorphic ElGamal,M = R = Zq. Other cryptosystems may be instanti-
ated as well. For instance, Goldwasser-Micali cryptosystem [GM84] whereM = {0, 1},
R = Z∗N, and Paillier cryptosystem [Pai99] whereM = ZN and R = Z∗N for an RSA
modulus N.

We use different notations for encryptions, with different meanings. Given m ∈ M
and r ∈ R, the full notation e = E(m, r) is used for the encryption of the message m using
randomness r. The bracketed notation [[m]] is a shorthand notation of E(m, r) where the
randomization is left implicit. In algorithms, [[m]] is used to denote an encrypted variable
m whose actual value may not be known. The notation e = E(m) means a deterministic
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encryption of the message m. That is, the randomness used is a predefined and public
value.

ElGamal cryptosystem is homomorphic. Given (a1, b1) = E(m1, r1) and (a2, b2) =
E(m2, r2) two ElGamal encryptions as defined above. Then, (a1a2, b1b2) = E(m1 +m2, r1 +
r2) = (gr1+r2, gm1+m2hr1+r2) is an encryption of m1 + m2. Furthermore, given constant

m′ ∈ Zq, it holds that (am
′

1 , bm
′

1 ) = E(m1m
′, r1m

′) = (gr1m
′
, gm1m

′
hr1m

′
) is an encryption of

m1m
′.

These homomorphic properties are described in a general cryptosystem assuming
that the message space (M,+, ·) is a ring. Then, given encryptions [[m1]] and [[m2]], a
multiplicative operation for the ciphertexts corresponds to an additive transformation of

the plaintexts. That is, [[m1]][[m2]] = [[m1 +m2]]. Also, for a constant m′, e = [[m]]m
′
denotes

the deterministic transformation such that e = [[m ·m′]].

A particularly useful property of homomorphic cryptosystems is the re-randomization.
Given a ciphertext [[m]] it can be ‘randomized’ by multiplying it with a random encryp-
tion of 0. Clearly, if [[y]] = [[x]]E(0, s) for random s ∈ R then it holds that x = y.

Threshold Decryption

For n > 1 and 1 ≤ t ≤ n, in a (t, n)-threshold cryptosystem public key encryption scheme
the secret key is shared among a set of n parties P1, . . . , Pn. Each party holds a share of the
secret key in such a way that if at least t of the parties collaborate, they are able to decrypt
messages. Less than t parties, however, get no clue about the plaintext of a ciphertext.

Homomorphic ElGamal cryptosystem admits a threshold version. Firstly, parties in-
volve in a distributed key generation protocol that allows the generation of a shared secret
key along with the corresponding public key. An efficient distributed key generation
protocol is presented in [Ped91, GJKR99]. The underlying idea is to share a the secret key
x using a secret sharing scheme.

For instance, using Shamir’s secret sharing [Sha79], the secret key may be shared as
follows. Let f be a polynomial of degree t− 1 over Zq such that xi = f (i) for i = 1, . . . , n
where xi is the share of the secret key of Pi. Party Pi outputs hi = gxi . The secret key
is defined as x = f (0). The public key is obtained by Lagrange interpolation in the

exponents: given hi for 1 ≤ i ≤ t (or any other subset of t hi’s) one can obtain h = g f (0) =
gx.

For threshold decryption of ciphertext e = (a, b), party Pi produces si = axi for i =
1, . . . , n. If at least t of these shares are correct the value of ax = R(si1 , . . . , sit) can be
reconstructed via Lagrange interpolation in the exponents and thus the message can be
recovered by solving gm = b/ax .

The notation m← DECR([[m]]) is used to denote a run of the threshold decryption
protocol. The parties involved in this protocol aswell as the keys involved are left implicit
in the notation. However, all set up parameters should be understood from the context.

Other cryptosystems also admit a threshold variant, such as the case of Paillier and its
generalization in [DJ01]. It should be noted that the distributed key generation of Paillier
(or any other cryptosystem where the secret key is the factorization of an RSA modulus)
is a computational intensive task [ACS02]. In contrast, threshold ElGamal requires a
simple protocol [Ped91, GJKR99, ST04].
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2.2 Honest-Verifier Zero-Knowledge Proofs of Knowledge

Zero-knowledge proofs are a general class of protocols between two parties, a prover
P and a verifier V, modeled as interactive probabilistic machines. By means of a zero-
knowledge proof, the prover convinces the verifier of the validity of a given statement
without revealing any information beyond the truth of the statement.

Let the pair (P,V) denote the interaction between those parties, which we call an
interactive system. We write tr← 〈P(x),V(y)〉 to denote the messages exchanged by P
and V on inputs x and y respectively. At the end of the interaction V either accepts or
rejects, denoted by 〈P(x),V(y)〉 = b or 〈tr, y〉 = b with b = 1 or b = 0, respectively.

Definition 2.1 (NP-Relation) AnNP-relation is a binary relation R = {(x;w)} ⊂ {0, 1}∗×
{0, 1}∗ that can be evaluated efficiently and for which there exists a polynomial p such that |w| ≤
p(|x|). The language induced by R is defined as LR = {x : ∃w s.t. (x;w) ∈ R}.

The pair (x;w) can be thought of as an instance of a computational problem where w is
the solution to that instance.

Consider a discrete log setting over a cyclic group Gq = 〈g〉 of prime order q. Then
the discrete log relation is defined as

RDL = {(g, h;w) : h = gw},

where w ∈ Zq. The language induced is LRDL
= {(g, h) : g, h ∈ Gq}.

2.2.1 Σ-Protocols

Wenow consider a class of 3-move interactive systems between P andV where P acts first
and V provides randomly chosen challenges. Let (a, c, t) denote the messages exchanged
between P and V. Based on the transcript (a, c, t) the verifier V either accepts or rejects.
The structure of a Σ-protocol is given in Fig. 2.1.

Definition 2.2 (Σ-protocol) A 3-move protocol between interactive machines P and V where P
acts first is a Σ-protocol for relation R if the following holds.

• Completeness. For all (x;w) ∈ R, 〈P(x,w),V(x)〉 = 1.

• Special Soundness. There exists an efficient extractor E such that on any pair of con-
versations (a, c, t) and (a, c′, t′) on common input x ∈ LR such that 〈(a, c, t), x〉 = 1,
〈(a, c′ , t′), x〉 = 1, and c 6= c′, E computes w← E(x, a, c, t, c′, t′) such that (x;w) ∈ R.

• Special Honest-Verifier Zero-Knowledge. There exists an efficient algorithm S that
on input (x, c) with x ∈ LR, S outputs a transcript (a, c, t) with the same probability
distribution as the transcripts between honest P and V with common input x and challenge
c where P uses any witness w such that (x;w) ∈ R.

In a Σ-protocol the honest verifier is limited to provide random coin tosses indepen-
dently of the inputs it has received. This kind of protocols is more generally referred to
as public coin.

Special soundness indicates that if P is able to reply to two different challenges on a
fixed first message then it P actually knows the witness. It can be proved that a cheating
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Prover P Verifier V

a← A(x,w, u)

−−−
a
−−−→

c ∈R {0, 1}
k

←−−−
c
−−−

t← T(x,w, c, u)

−−−
t
−−−→

〈(a, c, t), x〉
?
= 1

Figure 2.1: Structure of a Σ-protocol.

prover P∗ that does not know a witness has probability 1/2k of letting an honest verifier
V accept. In other words, special soundness implies the standard notion of knowledge
soundness [BG92] of proof systems. A proof of this fact can be found in [Dam08].

Σ-protocols are proof systems with zero-knowledge property withstanding honest
verifiers only. This means that an honest verifier gets no information whatsoever about
the witness that the prover is using. Despite withstanding only honest verifiers, Σ-
protocols are very useful and powerful building blocks. For technical reasons, Σ-protocol
are required to be special honest verifier zero-knowledge which means that the simulator
S produces conversations for a specified challenge.

A classic example of a Σ-protocol is Schnorr’s protocol [Sch91] to show the knowledge
of a witness for relation RDL. Other examples include Okamoto’s protocol [Oka93] to
prove the knowledge of the opening of a Pedersen commitment.

Verifiable Non-Interactive Proofs

Σ-protocols can be made non-interactive using a cryptographic hash function. The Fiat-
Shamir heuristic [FS87] makes this conversion by replacing the random coin tosses from
the verifier with calls to a cryptographic hash function. The conversion does not affect
the efficiency of the protocols. The security of the resulting protocols can be shown in
the random oracle model [BR93]. This is a property that holds for any public coin proof
systems in general.

In the random oracle model, this technique not only makes public-coin zero-knowl-
edge protocol non-interactive, but it forces honest behavior. Another distinctive feature
of the application of the Fiat-Shamir heuristic, is that any entity may play the role of
the verifier and check whether a proof is valid or not. This property is known as public
verifiability.

Composition Properties

Σ-protocols have some easily verified properties which we review in the following. For
more insightful details we refer the reader to [CDS94, Cra97].

The class of Σ-protocols is closed under parallel composition. Namely, if two instances
of a Σ-protocol with challenge length k are run in parallel, then the overall resulting
protocol is a Σ-protocol with challenge length 2k. This result can be used to prove that if
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a Σ-protocol exists for relation R then there is a Σ-protocol for relation R for any challenge
length k.

AND-Composition. Suppose that we have two Σ-protocols with challenge length k,
one for relation R0 and the other for relation R1. Suppose that a prover P knowswitnesses
w0 and w1 such that (x0;w0) ∈ R0 and (x1;w1) ∈ R1. If both Σ-protocols are run in
parallel using a common challenge for both instances, then the result is a Σ-protocol for
relation R0 ∧ R1, where R0 ∧ R1 is defined as

R0 ∧ R1 = {(x0, x1;w0,w1) : (x0;w0) ∈ R0 ∧ (x1;w1) ∈ R1}.

This construction, referred to as the AND-composition, can be naturally generalized
to prove the knowledge of various witnesses simultaneously.

OR-Composition. Now, let two relations R0 and R1 be given and a common input
(x0, x1) such that x0 ∈ LR0

and x1 ∈ LR1
. The prover P wants to prove the knowl-

edge of a witness w such that (x0;w) ∈ R0 or (x1,w) ∈ R1 without indicating anything
else. In particular, P does not want to disclose which case holds, if either (x0;w) ∈ R0 or
(x1,w) ∈ R1 holds, or both. Namely, the prover P wants to prove it knows a witness for
relation R0 ∨ R1, where

R0 ∨ R1 = {(x0, x1;w) : (x0;w) ∈ R0 ∨ (x1;w) ∈ R1}.

If P knows the witness for xb for a unique b ∈ {0, 1} then P is able to give an accepting
proof for that instance. However, P may not be able to do the same for x1−b since it may
simply not know a witness for it. Note that P may run the simulator for R1−b on input
x1−b.

A Σ-protocol for R0 ∨ R1 is constructed by giving some freedom to the prover in
choosing the challenges in order to compute the final answer. Fig. 2.2 gives a descrip-
tion of the resulting protocol. It is easy to verify that it is a Σ-protocol for R0 ∨ R1 and
that no information is leaked about the witness that is used.

This construction is usually referred to as the OR-composition, or proof of partial
knowledge, as first introduced in [CDS94]. Analogously to the AND-composition, one
can proof the knowledge of at least one witness for various relations, and of course,
combine AND and OR compositions in order to prove more elaborated statements.

2.2.2 Witness-Extended Emulation

Some of the honest verifier zero-knowledge protocols presented in this thesis are not
Σ-protocols. Moreover, it is not easy and simple to prove that they satisfy knowledge
soundness as defined in [BG92]. We are able to prove that they satisfy a weaker property.
Namely, they have a witness-extended emulator, a concept introduced by Lindell [Lin03],
slightly redefined by Groth [Gro04].

Roughly speaking, an honest verifier zero-knowledge proof (P,V) has witness-ex-
tended emulation w.r.t. an NP-relation R if given an adversarial prover P∗ that produces
accepting conversations with probability p, there exists an extractor that produces ac-
cepting transcripts and at the same time gives a witness for R with roughly probability
p.

Before going into the formal definition of witness-extended emulation, we define
some basic concepts.
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Prover P Verifier V
(knows xb)

ab← Ab(xb,w, u)
(a1−b, c1−b, t1−b)←S1−b(x1−b)

−−
a0, a1
−−−−−→

c ∈R {0, 1}
k

←−−−−
c
−−−−

cb = c⊕ c1−b
tb← Tb(xb,w, cb, u)

−
c0, c1, t0, t1
−−−−−−−−→ c

?
= c0 ⊕ c1

〈(a0, c0, t0), x〉
?
= 1

〈(a1, c1, t1), x〉
?
= 1

Figure 2.2: OR-composition of Σ-protocols for relations R0 and R1.

Definition 2.3 (Negligible Function) A non-negative function δ : N → R is said to be neg-
ligible if for all c > 0, there exists k0 > 0 such that for any k > k0 it holds that δ(k) < k−c.

Definition 2.4 Two functions f , g : N → R are essentially the same if | f (k) − g(k)| is a
negligible function.

We write f ∼= g if f and g are essentially the same.

Definition 2.5 (Witness-extended Emulation) An interactive system (P,V) has witness-
extended emulation for relation R if for every deterministic polynomial-time machine P∗ there
exists an expected polynomial-time emulatorW such that for all computationally bounded adver-
saries A we have,

P[(x, s)←A(1k); tr←〈P∗(x, s),V(x)〉 : A(tr) = 1] ∼=

P[(x, s)←A(1k); (tr,w)←WP∗(x,s)(x) : A(tr) = 1∧ (〈tr, x〉 = 1⇒ (x;w) ∈ R)],

where k is a security parameter.

Any adversarial strategy is divided into two machines, P∗ and A. Intuitively, A pro-
grams P∗ to perform an attack by handing over (x, s) where s can be thought as the ran-
domness used in the attack. The emulator W has rewindable oracle access to P∗ and it
produces a pair (tr,w) in which the value trmust be indistinguishable from a transcript
in which P∗ interacts with V. Moreover, if tr happens to be an accepting conversation
then w must be a witness of R. These two events must happen with essentially the same
probability as P∗ interacting with V would succeed in producing an accepting transcript.

The technical advantages of this definition are two-fold. In the first place, we have
the original motivation of this definition given by Lindell [Lin03]. He observed that in
the proof of security of a protocol, where proofs of knowledge are used as subroutines,
the simulator needs both a transcript and a witness for those proofs. This may be ob-
tained by first running the zero-knowledge simulator of each proof and later, in a sep-
arate stage, use rewinding techniques to extract a correct witness. A witness-extended
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emulator obtains both in one go, simplifying the analysis considerably. Lindell [Lin03]
formally proved the so-called witness-extended emulation lemma stating that any proof of
knowledge as defined by Bellare and Goldreich [BG92] has a witness-extended emulator,
and therefore it can be used in the proof of security of higher-level protocols.

In the second place, Groth [Gro04] showed that witness-extended emulation implies
the concept of knowledge soundness of a computationally convincing proof of knowledge
as defined by Damgård and Fujisaki [DF02]. Even though it is a weaker definition com-
pared to conventional knowledge soundness [BG92], it is a widely accepted definition
for protocols where a public key has been set up showing that, for example, trapdoor
information of the keys gives no extra advantage to cheating provers.

Useful Results

The following lemma gives sufficient conditions to prove that a proof system haswitness-
extended emulation.

Lemma 2.6 Let (P,V) be an interactive system, R an NP-relation and P∗ a deterministic pol-
ynomial-time machine. An algorithm W with black-box access to P∗ is a witness-extended
emulator for R if for all computationally bounded adversaries A such that (x, s)←A(1k) the

following holds: for (tr,w)←WP∗(x,s),

(i) EmulatorW runs in expected polynomial-time;

(ii) The set of all transcripts tr produced byW have the same probability distribution as those
produced by the real interaction 〈P∗(x, s),V(x)〉;

(iii) If (x;w) ∈ R then 〈tr, x〉 = 1;

(iv) P[(x;w) ∈ R] ∼= P[〈tr, x〉 = 1].

The lemma suggests that given a machine that uses black-box access to P∗, runs in ex-
pected polynomial-time, outputs transcripts that are indistinguishable from the real tran-
scripts in the protocol, if whenever it gives a valid witness in R it gives an accepting con-
versation, and it provides a valid witness in R with essentially the same probability as
accepting transcripts are produced, then we have a witness-extended emulator.

Before proving Lemma 2.6, we first sketch two useful properties.

Claim 2.7 Let A and B be two events, then the following holds.

(1) If B⇒ A and P[A] ∼= P[B] then P[A⇒ B] ∼= 1.

(2) If P[B] ∼= 1 then P[A ∧ B] ∼= P[A].

Proof. To prove implication (1) we use basic properties of probabilities.

P[A⇒ B] = P[A ∨ B]

= 1−P[A ∧ B]

= 1−P[A]−P[B] + P[A ∨ B]

= P[B]−P[A] + P[A ∨ B]
∼= P[A ∨ B]

= P[B⇒ A]

= 1.
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For (2) suppose P[B] = 1− δ for negligible δ. Then,

P[A ∧ B] = P[A] + P[B]−P[A ∨ B]

= P[A] + 1− δ−P[A ∨ B]

= P[A]− δ + P[A ∧ B]

≥ P[A]− δ.

Since P[A ∧ B] ≤ P[A], we have that P[A] − δ ≤ P[A ∧ B] ≤ P[A], showing that
P[A] ∼= P[A ∧ B].

Proof of Lemma 2.6. Let (tr,w)←W(x). First, we show that

P[〈tr, x〉 = 1⇒ (x;w) ∈ R] ∼= 1. (2.1)

We define the event A as 〈tr, x〉 = 1 and the event B as (x;w) ∈ R. Then we have
that hypothesis (iii) says B ⇒ A and hypothesis (iv) states that P[A] ∼= P[B]. Thus, by
Claim 2.7 (1) we have that Eq. (2.1) holds.

Now, we define the events A and B as follows. Let A be the eventA(tr) = 1 and B be
〈tr, x〉 = 1 ⇒ (x;w) ∈ R. By Claim 2.7 (2) and since P[B] ∼= 1 due to Eq. (2.1) it follows
that

P[A(tr) = 1∧ 〈tr, x〉 = 1⇒ (x;w) ∈ R] ∼= P[A(tr) = 1]. (2.2)

We now show that the definition of witness-extended emulator holds.

P[(x, s)←A(1k); (tr,w)←WP∗(x,s)(x) : A(tr) = 1∧ (〈tr, x〉 = 1⇒ (x;w) ∈ R)]
∼= P[(x, s)←A(1k); (tr,w)←WP∗(x,s)(x) : A(tr) = 1] (by Eq. (2.2))

= P[(x, s)←A(1k); tr← 〈P∗(x, s),V(x)〉 : A(tr) = 1] (hypothesis (ii)).

Finally, using (i) we conclude thatW runs in expected polynomial-time which means
thatW is a witness-extended emulator for relation R.

Σ-protocols have the witness-extended emulatability property. This can be proved
using known results. Namely, Damgård [Dam08] proves that special soundness im-
plies knowledge soundness which, in turn, implies witness-extended emulation using
the witness-extended emulation lemma of Lindell [Lin03]. In the following, however,
we present a direct proof which may be of independent interest. It follows the typical
structure of a proof of witness-extended emulation in general.

Theorem 2.8 Let (P,V) be a Σ-protocol for relation R. Then (P,V) has witness-extended emu-
lation.

Proof. W.l.o.g. assume that the challenge set is {0, 1}k for security parameter k. Let P∗

be a deterministic polynomial-time machine and (x, s)←A(1k). Algorithm 2.1 describes
the emulatorW .

Note that once (x, s) is fixed, the fact that P∗ produces an accepting transcript or not
when it is challenged can be represented by a {0, 1}-vector v of length 2k. The vector
v is such that vc = 1 if and only if P∗ produces an accepting transcript when chal-
lenge c ∈ {0, 1}k is given. We define ǫ as the proportion of 1’s in v. Clearly, ǫ =
P[〈P∗(x, s),V(x)〉 = 1] for an honest verifier V.
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Algorithm 2.1 (W) Witness-extended emulator for a Σ-protocol for relation R.

pick c ∈R {0, 1}
k

run (a, c, t)←〈P∗(x, s), Ṽ(c)〉  Ṽ(c) is an interactive machine that gives c to P∗.
if 〈(a, c, t), x〉 = 1 then
repeat
pick c′ ∈R {0, 1}

k

run (a, c′, t′)← 〈P∗(x, s), Ṽ(c′)〉
until 〈(a, c′ , t′), x〉 = 1
if c 6= c′ then
run w← E(x, a, c, t, c′, t′)
return ((a, c, t),w)

else
return ((a, c, t),⊥)

end if
else
return ((a, c, t),⊥)

end if

We show that all conditions of Lemma 2.6 are met. To show (ii), one can easily see that
the distribution of the transcripts tr thatW outputs is identically distributed as that of
the real execution of the Σ-protocol. As for (iii), observe that whenever a valid witness is
produced, it comes with an accepting transcript tr. Conditions (i) and (iv) will be shown
respectively in the two following claims.

Claim 2.9 EmulatorW runs in expected polynomial-time.

Proof. The running time ofW is governed by the number of invocations of P∗. Let T be
the random variable counting the number of invocations of P∗. We calculate E[T]. The
running time ofW is clearly determined by the condition that 〈(a, c, t), x〉 = 1. Therefore
we have that

E[T] = P[〈(a, c, t), x〉 = 1]E[T | 〈(a, c, t), x〉 = 1] +

P[〈(a, c, t), x〉 = 0]E[T | 〈(a, c, t), x〉 = 0]

= ǫ(1 + 1/ǫ) + (1− ǫ)

= 2.

Thus,W needs 2 expected runs of P∗ which itself runs in strict polynomial time. This
means thatW runs in expected polynomial-time.

Claim 2.10 Given (tr,w)←WP∗(x,s)(x), then P[(x;w) ∈ R] ∼= P[〈tr, x〉 = 1].

Proof. We know that ǫ = P[〈P∗(x, s),V(x)〉 = 1]. Note that since the transcript tr given
byW is generated in the same way as when an instance of the protocol (P,V) is run with
an honest verifier, we have that ǫ = P[〈tr, x〉 = 1].

Consider the event that w is a valid witness, that is, (x;w) ∈ R. This only happens
when the first transcript (a, c, t) is accepting (with probability ǫ) and the second transcript
(a, c′, t′) hits a c′ 6= c. We analyze the probability that c′ 6= c in terms of vector v.
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Vector v has 2kǫ 1’s. The first accepting transcript (a, c, t) hits one of the 1’s. We are
interested to know if the second accepting transcript used c′ 6= c, i.e., it hits a different 1.
This yields the probability (2kǫ− 1)/(2kǫ) = 1− 1/2kǫ that W gets to run extractor E.
We therefore get P[(x;w) ∈ R] = ǫ(1− 1/2kǫ) = ǫ− 1/2k ∼= ǫ.

We meet all conditions of Lemma 2.6. Thus, W is a witness-extended emulator for a Σ-
protocol.

2.2.3 Some Useful Relations

We now describe some useful NP-relations that will be used throughout this thesis. We
assume that an homomorphic cryptosystem is set up in advance. If we consider a discrete
log setting, the protocols for these relations are based on standard protocols like Schnorr’s
proof of knowledge of discrete logs [Sch91], and Okamoto’s proof of knowledge of two
exponents [Oka93] and suitable compositions thereof.

As a notational remark that will be used later the thesis, we use SDL to denote the sim-
ulator, andWDL denotes the witness-extended emulator of the corresponding Σ-protocol
for relation RDL.

Known Plaintext. A prover wants to show that a given ciphertext c encrypts a public
plaintext x. That is, if c = E(x, s) for some random s, the prover wants to prove the
knowledge of s without giving it away.

Since the cryptosystem is homomorphic, the problem can be rephrased to prove that
cE(−x) = E(0, s) where E(−x) is a deterministic encryption of −x. With d defined by
d = cE(−x) the prover shows the knowledge of a witness for the following relation:

RZERO = {(d; s) : d = E(0, s)}.

With RKNOWN defined by

RKNOWN = {(c, x; s) : c = E(x, s)},

we conclude that (d; s) ∈ RZERO if and only if (dE(x), x; s) ∈ RKNOWN.

Secret Plaintext. A prover wants to prove knowledge of both the plaintext and random-
ness of a given encryption. That is, given c = E(x, s) no information on both x and s is
disclosed. This is captured by the following relation:

RSECRET = {(c; x, s) : c = E(x, s)}.

1-out-of-2 Plaintexts. A prover wants to show that c = E(x, s) with x ∈ {a, b} without
revealing neither x nor the value s. That is, a proof is given for the following relation:

R
(21)KNW

= {(c, a, b; x, s) : c = E(x, s) ∧ x ∈ {a, b}}.

This can be done via anOR-composition of two instances of RKNOWN. That is, (c, a, b; x, s) ∈
R

(21)KNW
if and only if (c, a; s) ∈ RKNOWN ∨ (c, b; s) ∈ RKNOWN.
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The relation can be used to prove for instance that the plaintext of an encryption is
a bit, or the plaintext is in the set {−1, 1}. We can generalize the relation to a prove
that the plaintext is one of out of a finite number of possible plaintexts in a reasonably
straightforward way [CDS94].

Non-zero Secret Plaintext. We have ciphertext c = E(x, s) and want to prove that the
we know a plaintext and it is different from 0. We have the following relation:

RNO-ZERO = {(c; x, s) : c = E(x, s) ∧ x 6= 0}.

Correct Re-randomization. In an homomorphic cryptosystem it is possible to re-ran-
domize a given encryption into another one such that both decrypt to the same plaintext.
This is done by multiplying an encryption by a random encryption of 0. That is, given
c, it follows that if d = cE(0, s) then x = y where c = [[x]] and d = [[y]]. However, as a
consequence of the semantic security of the cryptosystem, given c and d it is impossible
for an outsider to verify whether they have the same plaintext.

We want a protocol for the following relation:

RBLIND = {(c, d; s) : d = cE(0, s)}.

This relation can be put in terms of RZERO. Observe that d = cE(0, s) if and only if
dc−1 = E(0, s) which means that (dc−1; s) ∈ RZERO.

Multiplicative Relations. The prover shows knowledge of secret plaintexts in encryp-
tions c1 = E(x1, s1), c2 = E(x2, s2) and d = E(y, t) satisfying y = x1x2. Put in other terms,
a prover wants to show that the plaintexts in the encryptions satisfy a multiplicative re-
lation [CD98]. The relation is defined as follows:

RMULT = {(c1, c2, d; x1, x2, s1, s2, t) : c1 = E(x1, s1) ∧ c2 = E(x2, s2) ∧ d = E(x1x2, t)}.

Private Multiplier. Using homomorphic properties of the cryptosystem one can multi-
ply the plaintext of an encryption c = [[x]] with a publicly known constant y, by simply
performing cy. Sometimes, however, the constant y has to be kept secret. This is easily
achieved by blinding cy with a random encryption of 0. That is, define d = cyE(0, s) for a
random s.

For showing that encryption d is well-formed, we consider the following relation:

RPRV-MLT = {(c, d, e; y, s, t) : d = cyE(0, s) ∧ e = E(y, t)}.

Here, the auxiliary encryption e = [[y]] is published. If (c, d, e; y, s, t) ∈ RPRV-MLT and
c = [[x]] then it holds that d = [[xy]].

Note that if the plaintext of c is known then the relation RMULT defined above can be
used instead. In case of ElGamal encryptions, encryption emay be replaced by a Pedersen
commitment to y. This results in a slightly optimized protocol for private multiplier,
see [ST04].
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Relation
Computation

Communication
Prove Verify

RKNOWN

2 3 2RZERO

RBLIND

RSECRET 1 3 2
R

(21)KNW
4 5 4

RNO-ZERO 3 5 3
RMULT 5 4 4
RPRV-MLT 5 6 4

Table 2.1: Complexity figures for Σ-protocols for basic relations based on homomorphic
ElGamal. Computation is given by the number of modular exponentiations while com-
munication expresses the number of group elements exchanged.

Performance Considerations

For the case in which homomorphic ElGamal is used as underlying cryptosystem, the
complexity figures of the Σ-protocols for the above relations are given in Table 2.1. An
estimation of the communication is given by the number of group elements that need to
be exchanged. For the number of computations, we estimate the modular exponentia-
tions needed. For the count of modular exponentiations, we assume that the product of
two (resp. three) exponentiations cost 1.25 and (resp. 1.5) single exponentiations. This
can be done using “Shamir’s trick” described in [ElG85] which is a special case of Straus’
algorithm [Str64]. For the total number of exponentiations we round to the closest inte-
ger.

Later in this thesis, we count the product of n exponentiations simply as n single ex-
ponentiations, even though there are many ways to speed up such multiexponentiations.
We highlight that defining the “right” criteria to benchmark protocols depends in many
factors, such as the platform where the protocols are executed, storage considerations,
etc. It is difficult therefore to decide what is the most efficient protocol just based in the
convention for the estimation of the computational complexity that we use in this thesis.

2.3 Verifiable Shuffles of Homomorphic Encryptions

A shuffle of a list of n ciphertexts is another list of n ciphertexts such that the multiset
of plaintexts of both lists of ciphertexts is the same. Put in other words, there exists a
permutation linking the plaintexts of the first list of encryptions with the plaintexts of
the second list of encryptions. If the permutation does not need to be hidden, a shuffle
is obtained easily: a permutation of the ciphertexts is performed in the clear. For crypto-
graphic applications, though, it is required that such permutation is kept secret.

Shuffles of homomorphic encryptions have become popular since they are a powerful
building block, applicable in many contexts. They are conceptually simple and easy to

obtain. Given a list of n homomorphic encryptions {[[xk]]}
n−1
k=0 , we select a permutation

π of the set {0, . . . , n− 1} and compute the list of encryptions {[[yk]]}
n−1
k=0 by performing

[[yπ(k)]] = [[xk]]E(0, sk) for random sk ∈ R, for all 0 ≤ k < n. Clearly, secrecy of π
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follows from the indistinguishability of the encryptions (i.e., the semantic security of the
cryptosystem).

Due to the semantic security as well, an outsider cannot verify that the shuffle was
performed correctly. If, say, [[y0]] is a random encryption of an arbitrary message then no

one can decide on its own that {[[xk]]}
n−1
k=0 and {[[yk ]]}

n−1
k=0 are a shuffle of each other. There-

fore, there must be a mechanism to verify a shuffle of the two sequences of homomorphic
encryptions yet keeping the permutation secret.

We define the relation RSHUFFLE, that captures a shuffle of homomorphic encryptions.

RSHUFFLE = {({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ;π, {sk}

n−1
k=0 ) : [[yπ(k)]] = [[xk]]E(0, sk)}.

Giving a zero-knowledge proof of knowledge for this relation guarantees both goals of
keeping the permutation secret and assuring that both lists of encryptions are indeed a
shuffle of each other. If the proof is public coin one obtains a verifiable non-interactive
proof of shuffle, referred to as verifiable shuffle.

In the literature there have been many attempts to get the complexity of these proofs
of knowledge to practical levels. In fact, it is possible to get O(n) computation and com-
munication, where n is the number of encryptions being shuffled, see e.g. [Nef01, FS01,
Gro03, Fur05, GL07].

2.3.1 Applications

The idea of shuffles of encryptions was first introduced by Chaum [Cha81] alongwith ap-
plications in anonymous email and voting. The most common use of verifiable shuffles
is in the construction of verifiable mix-networks [SK95]. In a mix-network or a cascade of
shuffles there are, say, m authorities each performing a verifiable shuffle. These authori-
ties take a list of n homomorphic encryptions which they verifiably shuffle one after the
other. Overall, if all shufflers performed the shuffle correctly, the output list of the cas-
cade is a shuffle of the input list. Moreover, if at least one of the shufflers does not reveal
the permutation it used during its turn, the permutation in the entire cascade is secret.

Mix-networks are a fundamental primitive for electronic voting protocols as a way of
anonymizing encrypted votes [SK95, Abe99, FS01, Nef01, FMM+03]. They have been ap-
plied to solutions for secure integer comparison as a way to destroy leaking information
[BK04, ABFL06, DGK07, GSV07].

2.3.2 Public Shuffle

We present basic solutions to a related problem of shuffles of homomorphic encryptions.
Namely, we describe some relations to prove that a shuffler applies a public permutation.
This particular problem is used in Chapter 5.

We should not get confused with a general shuffle where, as explained before, the
permutation used does not have to be released. Here, we instead consider problem in
which the permutation is public but the blinding randomizers used must be kept secret.
Namely, we consider the relation RPERM defined as follows:

RPERM = {({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ,π; {sk}

n−1
k=0 ) : [[yπ(k)]] = [[xk]]E(0, sk)}.

A zero-knowledge proof of knowledge for this relation is given using a composition of

basic proofs. The fact that ({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ,π; {sk}

n−1
k=0 ) ∈ RPERM is equivalent to
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saying that ([[xπ(k)]], [[yk]]; sk) ∈ RBLIND for all 0 ≤ k < n. This can be accomplished by an

n-way AND-composition thus giving an O(n) complexity protocol.
Define now the relation ROR-PERM in which 1-out-of-2 known permutations is applied.

Here, the permutation used is not revealed.

ROR-PERM = {({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ,π1,π2;π, {sk}

n−1
k=0 ) :

[[yπ(k)]] = [[xk]]E(0, sk), π ∈ {π1,π2}}.

A solution is obtained by an OR-composition of RPERM.
This suggests a way to get to a solution for RSHUFFLE via an n!-way OR-composition

of RPERM. Certainly, this yields an O(n!) complexity protocol which is no practical at all.
Note that in some applications, n may be around one million.

2.4 Secure Computation from Threshold Homomorphic

Cryptosystems

Cramer, Damgård and Nielsen [CDN01] put forth an approach to achieve multiparty
computation based on threshold homomorphic cryptosystems. Namely, a set of n parties
set up a (t, n)-threshold homomorphic cryptosystem with plaintext space being the ring
M. A function f is represented as an arithmetic circuit over the ringM. Each gate of
the circuit is evaluated in such a way that no information about input/output wires is
revealed.

More concretely, the approach is as follows. An m-input function f is represented as
a circuit over the ringM. Given the encryptions [[x1]], . . . , [[xm]], parties get involved in
a protocol to produce an encryption [[ f (x1, . . . , xm)]] as a result. Every gate of the circuit
is evaluated in a similar fashion: an encryption of the gate’s output wire is produced
starting from the encryptions of its input wires. This gate-by-gate evaluation is done
such that no information about the actual values of manipulated wires is ever leaked.

Addition and multiplication by a public constants are gates that can be publicly eval-
uated in a deterministic way using homomorphic properties, without any interaction
among the parties. Multiplication gates, however, require the execution of a protocol. A
multiplication protocol takes two encryptions [[x]] and [[y]] as input and produces a random
encryption [[z]] such that z = xywithout leaking any information about x, y or xy. We de-
note a run of the multiplication protocol with [[z]]←MULT([[x]], [[y]]). Note that the actual
plaintexts x and y need not be known to any party.

2.4.1 Efficiency of Arithmetic Circuits

Since multiplication gates represent the most expensive part of the execution of an arith-
metic circuit, they usually give an indication of the round, broadcast and computational
complexities of a protocol that evaluates the circuit. The usual measures for an arithmetic
circuit are its size, defined as the total number of multiplication gates, and the depth given
by the length of the critical path of multiplication gates. The size of a circuit is associated
with the computational and broadcast complexities of the secure evaluation of a circuit.
The depth gives an indication of the round complexity.

Addition and multiplication by public constants are assumed to be costless. No inter-
action is needed, parties evaluate them locally and, although some computation may be
still required, multiplication protocols require higher order computations overall.
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2.4.2 Concrete Instantiations

Multiplication gates are obtained differently depending on the underlying cryptosystem.
In [CDN01] it is shown how to build multiplication gates for cryptosystems such as Pail-
lier [Pai99] or its generalization [DJ01].

Schoenmakers and Tuyls [ST04] proved the impossibility of general multiplication
gates under threshold homomorphic ElGamal. They showed, though, that a limited
multiplication gate is realizable, the so-called conditional gate. This multiplication pro-
tocol only works when one of the multiplicands is in a two-valued domain, e.g. when
one of the multiplicands is a bit.

2.4.3 Secure Gates

As mentioned earlier, any function represented as an arithmetic circuit composed of ad-
ditions and multiplications can be evaluated securely within the framework by Cramer
et al. [CDN01]. For certain functions, however, one may be able to provide protocols that
evaluate them securely. Namely, there is a protocol that computes [[ f (x1, . . . , xm)]] from
[[x1]], . . . , [[xm]], and it is not the direct evaluation of a circuit. If this protocol is proved to
be secure, then it can be used as new gate within the framework of [CDN01].

Informally speaking, a protocol is secure if the view of corrupted parties can be simu-
lated efficiently. More concretely, there is a simulator that on any sets of input and output
of the protocol is able to reproduce the view created by the honest parties only having
access to the information that corrupted parties are entitled to know.

As an example of the simulation of a protocol, we present a simplified version of
the multiplication protocol given by Schoenmakers and Tuyls [ST04], the so-called con-
ditional gate. We assume that 2 parties have set up a (2,2)-threshold homomorphic El-
Gamal. Protocol 2.1 gives the description of the two-party conditional gate. Correct-
ness of the protocol follows from observing that the output is an encryption of x2y2 =
s1s2xs1s2y = xy since s21 = s22 = 1.

The security of this protocol in the semi-honest case follows intuitively from the obser-
vation that apart from randomized encryptions, parties only see the decrypted value x2
which gives no info on the inputs or the output. In fact, x2 hides statistically the original
value of x which is multiplied by a random and unknown value in {−1, 1}.

In order to withstand malicious behavior each step of the protocol is accompanied
with zero-knowledge proofs of knowledge. In fact, parties use a private multiplier re-
lation RPRV-MLT and a proof that the private multiplier is either −1 or 1, using relation
R

(21)KNW
. Threshold decryption, denoted as DECR, is a protocol run by the two parties

(see Section 2.1.2).
Algorithm 2.2 describes a simulation of Protocol 2.1 assuming that party P1 is cor-

rupted. The simulator runs witness-extended emulators and simulators for the proofs of
zero-knowledge for the needed relations. Also, as a technical remark, it is assumed that
for x← DECR([[x]]) there is a simulator SDECR. This simulator gets [[x]] (the ciphertext to
decrypt) and x (the plaintext of the ciphertext) and gives a statistically indistinguishable
view of that obtained during a run of x← DECR([[x]]).

An explanation of Algorithm 2.2 follows. First, the simulator waits for the encryp-
tions that Party P1 is supposed to give. Then, witness-extended emulators for the corre-
sponding proofs are run in order to both get a transcript and extract the witnesses. The
transcripts are printed by the simulator. Extracted witnesses are used to check that P1 is
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Protocol 2.1 Multiplication gate

Input: [[x]], [[y]], x ∈ {−1, 1}
Output: [[xy]]

Party P1 Party P2

pick s1 ∈R {−1, 1}
pick t1, t2, t3 ∈R R
[[x1]] = [[x]]s1E(0, t1)
[[y1]] = [[y]]s1E(0, t2)
[[s1]] = E(s1, t3)
zk-proof [
([[x]], [[x1]], [[s1]]; s1, t1, t3) ∈ RPRV-MLT

([[x]], [[y1]], [[s1]]; s1, t2, t3) ∈ RPRV-MLT

([[s1]],−1, 1; s1, t3) ∈ R
(21)KNW

]

−−−
[[x1]], [[y1]], [[s1]]
−−−−−−−−−−−−−→

pick s2 ∈R {−1, 1}
pick u1, u2, u3 ∈R R
[[x2]] = [[x1]]

s2E(0, u1)
[[y2]] = [[y1]]

s2E(0, u2)
[[s2]] = E(s2, u3)
zk-proof [
([[x1]], [[x2]], [[s2]]; s2, u1, u3) ∈ RPRV-MLT

([[y1]], [[y2]], [[s2]]; s2, u2, u3) ∈ RPRV-MLT

([[s2]],−1, 1; s2, u3) ∈ R
(21)KNW

]

←−−−
[[x2]], [[y2]], [[s2]]
−−−−−−−−−−−−−

run x2← DECR([[x2]])
return [[y2]]

x2

executing the protocol correctly. If this is not the case, the simulator aborts. In the second
part, the simulator emulates the view of Party P2. The first detail to notice is that the pro-
tocol for threshold decryption on [[x2]] has to be simulated. Hence, the simulator must
provide [[x2]] and the plaintext x2 to SDECR. Since this cannot be done by the simulator on
the “actual” [[x2]], it will generate a random x′2 ∈ {−1, 1} instead. The rest of simulation
is completed thanks to the simulators for private multiplier.

In the following, we note that all is done in a consistent way meaning that the val-
ues of the manipulated plaintexts follow the same probability distribution as in the real
protocol. For instance, the simulator SPRV-MLT is run with input ([[x1]], [[x2]], [[s2]]) which
means that the plaintexts should satisfy that x2 = s2x1. This is indeed the case, because
s2 is defined as x′2(s1x) = x′2x1 where, by definition, x′2 = x2 and x1 = s1x ∈ {−1, 1}. Fi-
nally, we have that s2 = x2x1 which is equivalent to x2 = s2x1, exactly as in the definition
of s2 in the simulation.

The same check can be done to the other simulation for SPRV-MLT with inputs [[y1]],
[[y2]], and [[s2]]. We have see that y2 = y1s2 = s1xx2x1 = s1xx2s1y = x2xy as defined in the
protocol with the encrypted values.

In the last step, the simulator of the threshold decryption is invoked which we as-
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Algorithm 2.2 Simulator for Protocol 2.1

Input: [[x]], [[y]], [[xy]]
Party P1 gives [[x1]], [[y1]], [[s1]]
run (tr1, (s1, t1, t3))←WPRV-MLT([[x]], [[x1]], [[s1]])
run (tr2, (s1, t2, t3))←WPRV-MLT([[y]], [[y1]], [[s1]])
run (tr3, (s1, t3))←W(21)KNW

([[s1]],−1, 1)

print tr1, tr2, tr3
if s1 6∈ {−1, 1} or any of transcript is non-accepting then
abort

end if

pick x′2 ∈R {−1, 1}

[[s2]] = [[x]]x
′
2s1

[[x2]] = [[x′2]]

[[y2]] = [[xy]]x
′
2

print [[x2]], [[y2]], [[s2]]
print SPRV-MLT([[x1]], [[x2]], [[s2]])
print SPRV-MLT([[y1]], [[y2]], [[s2]])
print S

(21)KNW
([[s2]],−1, 1)

print SDECR([[x2]], x2)

sumed it gives a indistinguishable view given [[x2]] and x2. All the encryptions produced
by the simulation have plaintexts that are consistent with the distribution of the protocol.
The simulators produce statistically indistinguishable views, and so does the simulator
for Protocol 2.1.
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Verifiable Rotations using the
Discrete Fourier Transform

In this chapter, we present the first protocols for special verifiable shuffles. Namely, we
give a zero-knowledge proof of knowledge to show that a shuffle is performed on a cyclic
rotation instead of a general permutation. We present the problem of verifiable rotation
including an overview of some applications. Later on, we focus our attention on the
Discrete Fourier Transform (DFT) and show how it can be used to express conveniently
a rotation of homomorphic encryptions. In the end, we give an overview on the Fast
Fourier Transform and show how it can be used to optimize the application of the rotation
protocol based on the DFT.

3.1 Verifiable Rotation

A rotation of a list of n encryptions is a new list of n encryptions in which the multisets
of plaintexts of both lists of encryptions are a cyclic rotation of each other. This can be
seen as a special shuffle of encryptions where instead of a general permutation π ∈ Sn

linking the plaintexts of the two lists of encryptions, the permutation π is of the form
π(k) = k + r mod n for some 0 ≤ r < n. Similar to shuffles, we require that the rotation
offset is kept secret.

When we consider a homomorphic cryptosystem, a rotation of a list of n encryptions

{[[xk]]}
n−1
k=0 can be achieved by rotating the encryptions and re-randomizing them like in

most shuffling schemes based on homomorphic encryptions. The list {[[yk]]}
n−1
k=0 defined

then as [[yk+r]] = [[xk]]E(0, sk), for random sk ∈ R for all 0 ≤ k < n where r, with
0 ≤ r < n, is the rotation offset applied.

Secrecy of the rotation offset r between the two lists of encryptions comes from the se-
mantic security of the cryptosystem. Verifying that the rotation was correctly performed
without disclosing the rotation offset is guaranteed via a zero-knowledge proof for rela-
tion RROT defined as follows:

RROT = {({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ; r, {sk}

n−1
k=0 ) : [[yk+r]] = [[xk]]E(0, sk)}.

The prover giving a proof for this relation is referred to as a rotator.
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3.1.1 Cascade of Rotators

Similarly to a cascade of shuffles (a.k.a. mix-network), a cascade of verifiable rotations
yields a verifiable rotation of the input/output of the cascade which, unless all rotators
collude, the overall rotation offset is not known to any of the parties. In a cascade of
verifiable rotations, a group of rotators sequentially take turns, one after the other, in
rotating and re-randomizing the list of homomorphic encryptions obtained from the pre-
vious rotator. Each rotator proves in zero-knowledge that it knows witnesses for relation
RROT.

It is easy to verify that if all these proofs are accepting then the initial and final lists
of encryptions in the cascade are a rotation of each other. Moreover, if at least one of
the rotators in the cascade chooses a random rotation offset and keeps it secret then the
overall rotation offset is random and remains unknown.

3.1.2 Applications

Verifiable rotation has actually been introduced by Reiter and Wang [RW04] in the con-
text of mix-networks. Under the name of “loop permutation”, they define the more gen-
eral concept of ‘fragile mixing’ as a form of shuffling that deters leakage of information.
Namely, when a single input-output correspondence of the permutation used in the frag-
ile mix is revealed, then the permutation is completely revealed. A fragile mix may there-
fore be restricted to the use of rotations. The protocol for rotations by Reiter and Wang
uses four invocations of a verifiable shuffle protocol (and some further work) to perform
a verifiable rotation. In contrast, the solutions in this thesis reduce this to the work of
about one verifiable shuffle, by following completely different, more direct approaches
to the problem.

Apart from fragile mixing, however, there are many more applications of rotations of
homomorphic encryptions. An important application arises in the context of secure inte-
ger comparisons, as first noted in [RT09]. A common step in many integer comparison
protocols [BK04, ABFL06, GSV07, DGK07, RT09], requires parties to find out whether
a special value occurs in a given list of encryptions. For example, whether there is a 0
among otherwise random values. The position of the special value should remain hid-
den. To this end, the list will be randomly permuted before decrypting the encryptions.
However, rather than using a fully random permutation, as commonly proposed, a ran-
dom rotation suffices to hide the position of the special value.

Similarly, it is easily seen that for protocols such as Mix & Match [JJ00], which in-
volve mixing of truth tables of Boolean gates, it suffices to apply a random rotation to
the rows of a truth table, rather than a fully random permutation. The reason is that in
the matching stage exactly one row will match, and a random rotation fully hides the
corresponding row of the original truth table. The same observation applies to other
forms of ‘garbled circuit evaluation’, which can be seen as variations of Yao’s original
method [Yao86]. Likewise, in protocols for secure linear programming [LA06] the po-
sition of the pivot in each iteration of the simplex algorithm must be hidden to avoid
leakage of information. Again, we note that the use of a rotation instead of a general
permutation suffices.

Finally, we note that further applications exist in the context of electronic voting,
where randomly rotated lists of encryptions are used in the construction of encrypted
ballot forms (see, e.g., Prêt-à-Voter voting systems by Ryan and Schneider [RS06, Rya06]
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and references therein): voters get a receipt in which one out of n positions is marked;
due to a random rotation, the marked position does not reveal the identity of the candi-
date chosen. Wen and Buckland [WB09] present a secure protocol for determining the
winner of an election in a preferential electoral system which uses rotations as a method
to conceal sensitive information when scrutinizing an election.

3.2 DFT-based Solution

The key mathematical tool the solution presented in this chapter is the Discrete Fourier
Transform (DFT). Using the DFT one can express conveniently that two lists of encryp-
tions are rotated versions of each other. This allows for an efficient Σ-protocol to make a
rotation verifiable.

3.2.1 Introduction

Roughly speaking, the Fourier Transform converts a function into another. Both func-
tions are usually defined over different domains. Some manipulation of data in the
transformed domain may represent a certain kind of manipulation of data in the orig-
inal domain, and vice versa. The Fourier transform is invertible and consequently after
some processing has been applied in one domain, the transform (or its inverse) is applied
to execute some dual processing in the other domain.

In signal processing, functions defined on the complex plane are usually considered.
The domain in which the original data live is usually referred to as the time domain, while
the data after the transform is applied is said to be in the frequency domain. For instance,
a chord of music which is a combination of notes per unit of time, can be described as a
number of oscillatory functions per frequency. The DFT realizes this conversion between
domains in a very simple way.

The DFT can be adapted to any finite field. Although it lacks any physical interpre-
tation, it is still attractive due to its interesting properties. In this thesis, we focus on the
Discrete Fourier Transform over a finite field and exploit its properties to conveniently
derive some rules for manipulating lists of finite field elements. Concretely, one can ex-
press, in an easy manner, a rotation over a list of finite field elements, on which the DFT
is well-defined.

3.2.2 Discrete Fourier Transform

Consider the field of integers reducedmodulo a prime q. Let n be a divisor of q− 1. There
exists an element α ∈ Zq of order n, meaning that αn = 1 mod q and αj 6= 1 mod q for all
1 ≤ j < n. We say that α is a primitive n-th root of unity and assume it to be fixed in the
sequel.

Definition 3.1 (Discrete Fourier Transform) Given a list {xk}
n−1
k=0 of n elements of Zq its

Discrete Fourier Transform with respect to α is the list {x′k}
n−1
k=0 defined by

x′k =
n−1

∑
j=0

xjα
kj mod q. (3.1)
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We write {x′k}
n−1
k=0 = DFT({xk}

n−1
k=0 ) to denote the application of the DFT.

This is an invertible transformation. The inverse DFT is presented in the next propo-
sition together with a proof that it indeed is the inverse.

Proposition 3.2 Let {x′k}
n−1
k=0 = DFT({xk}

n−1
k=0 ), we define the list {x̃k}

n−1
k=0 as follows:

x̃k = n−1
n−1

∑
i=0

x′iα
−ik mod q. (3.2)

Then it holds that xk = x̃k for all 0 ≤ k < n.

Proof.

x̃k = n−1
n−1

∑
i=0

x′iα
−ik mod q

= n−1
n−1

∑
i=0

(
n−1

∑
j=0

xjα
ij)α−ik mod q

=
n−1

∑
j=0

xj
(
n−1

n−1

∑
i=0

αi(j−k)
)
mod q

=
n−1

∑
j=0

xjδk,j mod q

= xk.

Note that δk,j = n−1 ∑
n−1
j=0 αi(j−k) mod q is the Kronecker delta, defined by δk,j = 0 if k 6= j

and δk,j = 1 if k = j.

We denote the application of the inverse DFT by {xk}
n−1
k=0 = DFT−1({x′k}

n−1
k=0 ).

Viewing this from a different perspective, the DFT is a linear transformation whose
associated matrix is Aij = αij mod q. Since α is a primitive n-root of unity it turns out
that A is a Vandermonde matrix and therefore we can find the respective inverse matrix,
showing that the DFT is an invertible transformation.

From this point on, we work with elements in the finite field Zq in which an α is a
primitive root of n-th root of unity, so n | q− 1.

3.2.3 Properties of the DFT

There are various useful properties of the DFT. As mentioned earlier some processing on
the transformed domain produces some effect in the original domain. In the following
we state and prove some of these properties. The DFT is attractive because most of these
properties have as common feature that performing an operation in the transformed do-
main realizes a desired processing in the original domain in a more convenient way than
performing the processing directly over the original data domain.

In the following, we review some of the basic properties of the DFT.

Proposition 3.3 (Periodicity) For every integer ℓ it holds that x′k+ℓn = x′k, for all 0 ≤ k < n.
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This property suggest that we can evaluate the transform for all the integers k instead of
only for 0 ≤ k < n. Its validity follows from the definition of the DFT and the periodicity
property of the root of unity α.

x′k+ℓn =
n−1

∑
j=0

xjα
(k+ℓn)j =

n−1

∑
j=0

xjα
kj αℓnj
︸︷︷︸
=1

= x′k.

In other words, the DFT w.r.t. an n-th root of unity has period n. An interpretation of this
property is that the indices can be reduced modulo n.

Proposition 3.4 Let {xk}
n−1
k=0 and {yk}

n−1
k=0 be two lists of n elements in Zq. Let r be an integer

0 ≤ r < n. Then yk+r = xk if and only if y′k = αrkx′k mod q.

Proof. We verify this property using the definitions.

y′k =
n−1

∑
j=0

yjα
kj

=
n−1

∑
j=0

xj−rα
kj

=
n−1

∑
j=0

xjα
k(j+r)

= αrkx′k = βkx′k,

where β = αr.

This says that two lists of values are a rotation of the other in the time domain if
and only if there is an element-wise rescaling in the frequency domain. The element-
wise rescaling factors are well defined and uniquely determined by the rotation offset r
applied.

Hence, first apply DFT to a list {xk}
n−1
k=0 yielding {x′k}

n−1
k=0 , then compute {y′k}

n−1
k=0 by

setting

y′k = βkx′k = αrkx′k, (3.3)

for 0 ≤ k < n, and finally apply inverse DFT to obtain the list {yk}
n−1
k=0 . Then, it follows

that yk+r = xk and thus, the two lists are a rotation of each other.
We use this observation to efficiently achieve rotations of lists of homomorphic en-

cryptions. It allows us to perform both a rotation and prove in zero-knowledge that this
is the case, as we see later in this chapter.

We continue describing some properties of the DFT. The following one applies to finite
convolutions, used later on in this chapter.

Definition 3.5 (Circular Convolution) The convolution of two lists {xk}
m−1
k=0 and {yk}

m−1
k=0

of m elements in Zq is a new list {zk}
m−1
k=0 such that

zk =
m−1

∑
j=0

xjyk−j,

where the indices wrap-around cyclically.
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We denote the circular convolution with {zk}
m−1
k=0 = CONV({xk}

m−1
k=0 , {yk}

m−1
k=0 ).

The DFT allows the computation of convolutions by going to the transformed domain
and multiplying the the lists element-wise as stated in the following proposition.

Proposition 3.6 Given two lists {xk}
n−1
k=0 and {yk}

n−1
k=0 . Let {x′k}

n−1
k=0 = DFT({xk}

n−1
k=0 ) and

{y′k}
n−1
k=0 = DFT({y′k}

n−1
k=0 ). Then,

CONV({xk}
n−1
k=0 , {yk}

n−1
k=0 ) = DFT

−1({x′ky
′
k}

n−1
k=0 ).

Proof. The proof follows from the definitions. Let {zk}
n−1
k=0 = DFT−1({x′ky

′
k}

n−1
k=0 ). Then,

zk = n−1
n−1

∑
i=0

x′iy
′
iα
−ik

= n−1
n−1

∑
i=0

(
n−1

∑
j1=0

xj1α
ij1)(

n−1

∑
j2=0

yj2α
ij2)α−ik

=
n−1

∑
j1=0

xj1

n−1

∑
j2=0

yj2
(
n−1

n−1

∑
i=0

αi(j1+j2−k)
)

=
n−1

∑
j1=0

xj1

n−1

∑
j2=0

yj2δj2,k−j1

=
n−1

∑
j1=0

xj1yk−j1 .

The value δi,j denotes the Kronecker delta.

3.2.4 Rotation of Homomorphic Encryptions using DFT

We show in the following how to perform DFT of encrypted values and how to use the
properties of DFT to rotate homomorphic encryptions. Since we will use the DFT of
encrypted values, we demand a homomorphic cryptosystem that has Zq, with q prime
as the message space. Moreover, we consider lists of n elements with n | q− 1 such that
a primitive n-th root of unity exists.

Algorithm 3.1 describes how to rotate a list of encryptions n by an offset r using a
DFT w.r.t. an n-th root of unity α. The DFT and inverse DFT can be performed by just
using homomorphic properties, since both transformations are a linear combination of
the encrypted values on known coefficients. This is done in Steps 1 and 3 which can be
performed by anyone publicly.

Note that the actual plaintexts need not be known, but it follows from Proposition 3.4
that there is a rotation of the plaintexts of the input and output encrypted lists. This is
done in Step 2, by using the property that rescaling in the transformed domain translates
into a rotation in the original domain. The rescaling can also be done using homomorphic
properties only. However, since our goal is to hide the rotation offset used, a random
encryption of 0 is used as a blinding factor.

Therefore, the lists of plaintexts of the input and output ciphertexts are a rotation of
each other by an offset of r positions. In Algorithm 3.1, moreover, this offset is kept secret.
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Algorithm 3.1 Rotating Homomorphic Encryptions using DFT

Input: {[[xk]]}
n−1
k=0 , rotation offset r

Output: {[[yk]]}
n−1
k=0 such that yk+r = xk.

Step 1 (Apply DFT). Using homomorphic properties compute:

for k = 0 to n− 1 do
[[x′k]] = ∏

n−1
j=0 [[xj]]

αkj

end for

Step 2 (Rotation).

for k = 0 to n− 1 do
pick sk ∈R R

[[y′k]] = [[x′k]]
αrkE(0, sk)

end for

Step 3 (Apply inverse DFT). Using homomorphic properties compute

for k = 0 to n− 1 do

[[yk]] =
(

∏
n−1
i=0 [[y′i ]]

α−ik
)n−1

end for
return {[[yk]]}

n−1
k=0

3.2.5 Proof of Rotation using DFT

The method to rotate lists of encryptions given in Algorithm 3.1 is fine if we consider an
honest rotator who wants to hide the rotation offset used. To be covered against a possi-
bly malicious rotator we must provide a zero-knowledge proof of knowledge that Phase
2 of the algorithm is performed properly. In other words, we want a zero-knowledge
proof of knowledge for the following relation:

RDFT = {({[[x′k ]]}
n−1
k=0 , {[[y

′
k]]}

n−1
k=0 ; r, {sk}

n−1
k=0 ) : [[y

′
k]] = [[x′k]]

αrk
E(0, sk), for 0 ≤ k < n}.

Defining β = αr we get that [[y′k]] = [[x′k]]
βk

E(0, sk) and thus, we redefine RDFT as follows.

RDFT = {({[[x′k ]]}
n−1
k=0 , {[[y

′
k]]}

n−1
k=0 ; β, {sk}

n−1
k=0 ) : [[y

′
k]] = [[x′k]]

βk
E(0, sk), for 0 ≤ k < n, βn = 1}.

Observe that βn = 1 if and only if there exists r, 0 ≤ r < n such that αr = β because α is
an element of order n.

We sketch in the following how to get a Σ-protocol to prove in zero-knowledge the
relation RDFT. We decompose the relation into simpler relations for which we know that

there is an efficient Σ-protocol. Note that proving that [[y′k]] = [[x′k]]
βk

E(0, sk) means that

the scalar βk is multiplied into the plaintext of [[x′k]] like in the private multiplier relation

RPRV-MLT (see Section 2.2.3). Auxiliary encryptions of βk may be required.
In fact, we decompose the zero-knowledge proof of relation RDFT into two parts. First,

the rotator generates auxiliary encryptions to all powers of some β. With these, the rotator
proves that they are all powers of some β and also proves that βn = 1. Secondly, those
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auxiliary encryptions are employed to prove that [[y′k]] = [[x′k]]
βk

E(0, sk) using the private
multiplier relation RPRV-MLT.

For the first part, the rotator gives the encryption c1 = E(β, t1) and defines ck+1 =

c
β
kE(0, tk+1) for all 1 ≤ k < n. By construction it follows that ck = [[βk ]]. This way of
generating random encryptions of the powers of β can be proved to be correct using a
private multiplier relation since for all 1 ≤ k < n it holds that (ck, ck+1, c1; β, tk+1, t1) ∈
RPRV-MLT. Moreover, using a relation of known plaintext, RKNOWN, it can be shown that
cn = E(1, t∗n) where t∗n = ∑

n
j=0 βn−jtj. This shows that βn = 1.

In the second part, a proof that [[y′k]] = [[x′k]]
βk

E(0, sk) is given using a private multi-

plier. With the encryptions ck = E(βk, t∗k), the rotator gives a proof that the powers of β

are used correctly, since ([[x′k]], [[y
′
k]], ck; βk, sk, t

∗
k) ∈ RPRV-MLT. It can be easily checked that

t∗k = ∑
k
j=0 βk−jtj.

Overall, using the appropriate compositions of Σ-protocols, we can construct a Σ-
protocol for the relation RDFT.

3.2.6 Proof of Rotation of ElGamal Encryptions

In this section we present a Σ-protocol for the relation RDFT using homomorphic ElGamal,
including some optimizations. More concretely, given [[x′k]] = (ak , bk) and [[y′k]] = (dk, ek),
for 0 ≤ k < n, the rotator has to prove that it knows β ∈ Zq, such that βn = 1, and
randomizers sk ∈ Zq, such that

dk = a
βk

k gsk , ek = b
βk

k hsk ,

for all 0 ≤ k < n.
We basically follow the decomposition given in the previous section of two private

multipliers. One particular optimization is applied in the private multipliers of homo-
morphic ElGamal. Namely, we use Pedersen commitments for the private multiplier
instead of an encryption, see Section 2.2.3.

Accordingly, the prover produces auxiliary Pedersen commitments to all n powers

of β by defining c1 = C(β) = gβh̃t1 , and then ck+1 = c
β
k h̃

tk+1 = C(βk+1) for all 1 ≤
k < n. Clearly, two successive commitments satisfy a multiplicative relation, since
(c1, ck, ck+1; β, βk, t1, t

∗
k , t
∗
k+1) ∈ RMULT. To prove that βn = 1 holds, observe that cn =

C(1, t∗n) as well, then (cn, 1; t∗n) ∈ RKNOWN. As before, t∗k = ∑
k
j=0 βk−jtj. Finally, a relation

of private multiplier is satisfied between [[x′k]], [[y
′
k]] and ck, since ([[x′k ]], [[y

′
k]], ck; βk, sk, t

∗
k ) ∈

RPRV-MLT.
1

Protocol 3.1 is the Σ-protocol resulting from the composition of all relations described
above.

3.2.7 Cascade of Rotators

As depicted in Algorithm 3.1, a verifiable rotation using DFT takes input list {[[xk]]}
n−1
k=0

and converts it to the transformed domain (Step 1). The rotation is executed in the trans-

1We note an abuse of notation with respect to the definitions of relations RMULT, RKNOWN and RPRV-MLT

given in Section 2.2.3. Those relations were introduced over encryptions and not over commitments as
done in this section. However, we note that realizing such proofs over commitments in a discrete log
setting is quite straightforward.
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Protocol 3.1 Honest verifier zero-knowledge proof of knowledge for relation RDFT for
homomorphic ElGamal cryptosystem

Common Input : {(ak , bk)}
n−1
k=0 , {(dk, ek)}

n−1
k=0

Prover’s Private Input : β, {sk}
n−1
k=0

Prover Verifier
m̃, b ∈R Zq

C̃ = h̃m̃

mk, tk, uk, vk, m̃k ∈R Zq

ck+1 = c
β
k h̃

tk

Ck+1 = cbk h̃
mk

C̃k = guk h̃m̃k

Dk = a
uk
k gvk

Ek = b
uk
k hvk

−
C̃, {ck+1,Ck+1,Dk, Ek, C̃k}

n−1
k=0

−−−−−−−−−−−−−−−−−−−−−→

t∗−1 = 0 ←−−−−−−−−−−
λ
−−−−−−−−−−− λ ∈R {0, 1}

k

t∗k = ∑
k
j=0 βk−jtj

σ = b + λβ,
η = m̃ + λt∗n−1
ψk = mk + λtk
µk = uk + λβk

νk = vk + λsk
ρk = m̃k + λt∗k−1

−−−
σ, η, {ψk, µk, νk, ρk}

n−1
k=0

−−−−−−−−−−−−−−−−−−→ h̃η ?
= C̃(cn/g)λ

cσ
k h̃

ψk
?
= Ck+1c

λ
k+1

gµk h̃ρk
?
= C̃kc

λ
k

a
µk

k gνk
?
= Dkd

λ
k

b
µk

k hνk
?
= Eke

λ
k

formed domain (Step 2). Finally the encryptions are brought back to the original domain
using inverse DFT (Step 3). Note that Step 1 must also be executed for the verifiers of the
proof given by a rotator. Step 3, on the other hand, has to be performed by the intended
receivers of the rotated list. Even though Steps 1 and 3 consist of public homomorphic
properties, they represent a computational bottleneck O(n2) computation is needed to
complete those steps. Verifiability of the whole rotation process relies on the proof of
knowledge for relation RDFT after Step 2 is performed.

In the context of a cascade of rotators, it naively means that every time a rotation
needs to be performed, these steps must be executed in sequence. That is, Steps 1, 2 and
3 for one rotation, and again Steps 1, 2 and 3 for the next rotation, and so on. However,
note that once the input list of encryptions to the cascade is converted to the transformed
domain (Step 1), all rotations can be performed in sequence without need of switching
domains. After all rotators do their job (in the transformed domain), the transformed is
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Protocol 3.2 Cascade of Rotators using DFT

Input: {[[xk]]}
n−1
k=0

Output: {[[yk]]}
n−1
k=0 such that yk+r = xk.

Step 1 (Apply DFT). Convert input encrypted list using the DFT.

for k = 0 to n− 1 do
[[x′k

(0)]] = ∏
n−1
j=0 [[xj]]

αkj

end for

Step 2 (Cascade of Rotations). Rotators take turns to rotate.

rename {[[x
(0)
k ]]}n−1k=0 = {[[xk]]}

n−1
k=0

for i = 1 to m do
i-th rotator does the following:
pick ri ∈R {0, . . . , n− 1}
for k = 0 to m− 1 do

pick s
(i)
k ∈R R

[[x′k
(i)]] = [[x′k

(i−1)]]α
rik

E(0, s
(i)
k )

end for
end for

Step 3 (Apply inverse DFT). Convert final list of encryptions using the inverse DFT.

for k = 0 to n− 1 do

[[yk]] =
(

∏
n−1
i=0 [[x′i

(m)]]α
−ik
)n−1

end for
return {[[yk]]}

n−1
k=0

inverted only once at the end of the cascade (Step 3) to get the encryptions back to the
original domain.

A rotation of a list of encryptions through a cascade of rotators is described in Proto-
col 3.2. It is assumed that a set of m rotators take turns to rotate a list of homomorphic
encryptions. Steps 1 and 3 are identical to Steps 1 and 3 of Algorithm 3.1 for a single ro-
tation. In Step 2 of Protocol 3.2, rotations are performed one after another in the cascade
keeping the data in the transformed domain.

It is easy to see that the cascade works. Consider a list of encryptions {[[x′k]]}
n−1
k=0 =

DFT({[[xk]]}
n−1
k=0 ) applying Step 1 of Algorithm 3.1. A rotator gives list {[[y′k]]}

n−1
k=0 by per-

forming [[y′k]] = [[x′k]]
αr1kE(0, sk) for randomizers sk and rotation offset r1. Next rotator in

the cascade takes as input the list {[[y′k]]}
n−1
k=0 and produces the list {[[z′k ]]}

n−1
k=0 defined as

[[z′k]] = [[y′k]]
αr2k

E(0, tk) for randomizers tk and rotation offset r2.

Let {[[zk ]]}
n−1
k=0 = DFT−1({[[z′k ]]}

n−1
k=0 ). Then zk+r1+r2 = xk for all 0 ≤ k < n. By construc-
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tion, for all 0 ≤ k < n,

[[z′k ]] = [[y′k]]
αr2k

E(0, tk)

= ([[x′k]]
αr1k

E(0, sk))
αr2k

E(0, tk)

= [[x′k]]
α(r1+r2)k

E(0, αr2ksk + tk),

which by Algorithm 3.1 means that zk+r1+r2 = xk.

3.2.8 Performance Analysis

It can be checked that Protocol 3.1 requires O(n) exponentiations, with small constants.
However, in view of Algorithm 3.1, this proof of knowledge requires precomputations
and postcomputations (i.e., Steps 1 and 3). Even though these steps can be done publicly,
we note that they require O(n2) exponentiations in the case of homomorphic ElGamal.
This is because computing the DFT and the inverse DFT of encrypted values requires the
computation of n times n-way exponentiations which involve O(n2) exponentiations.

In Section 3.3 we show that under certain conditions one can take advantage of partic-
ular algorithms to compute the DFT efficiently, known as Fast Fourier Transforms (FFT
for short). These algorithms allow a reduction of the computation of the DFT and the
inverse DFT of encrypted values to O(n log n) exponentiations. This means an overall
O(n log n) computation to carry out a rotation using Algorithm 3.1.

We observe that in a cascade of rotators we can amortize the computation per rotator.
Assuming that an efficient FFT algorithm is possible, one can average the computational
work of the whole cascade. As the FFT needs to be applied in the beginning and possibly
at the end of the cascade, then when the length of the cascade is Ω(log n) the overall
average work per rotator is reduced to O(n).

3.3 Fast Fourier Transform

An issue in the efficiency of the approach for rotation based on DFT is the computation
of the DFT and the inverse DFT of encrypted values. Although they can be applied just
using homomorphic operations on the ciphertexts, these steps may be a computational
bottleneck as they involve the computation of n times n-way exponentiations for the case
of ElGamal encryptions. This costs O(n2) computations.

This is an issue inherent to the DFT in general. There are several approaches to re-
duce the computational cost depending on the parameters of the DFT. These techniques,
referred to as the Fast Fourier Transform (FFT), are algorithms that take advantage of the
symmetry and periodicity of roots of unity. Although all these algorithms were devel-
oped for Fourier transforms with data on the complex field, they all only rely on basic
properties of the root of unity.

FFT algorithms seem to be transferable to transforms over finite fields but this is not
always the case. Basically, FFT algorithms over the field of the complex numbers rely on
the fact that n-th roots of unity for every integer n exist. In the field Zq, however, n-th
roots of unity only exist for the case in that n | q− 1. In particular, if α is a n-th root of
unity, αd is an n/d-th root of unity modulo q, for every integer d such that d | n.

Most FFT algorithms decompose the computation of the DFT by making use of the
factorization of n. They use the roots of unity for different divisors of n. Asymptotically
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speaking, they reduce the computation of the DFT from O(n2) operations to O(n log n)
operations.

3.3.1 Cooley-Tukey FFT Algorithm

The most popular and easy to understand FFT algorithm is the radix-2 Cooley-Tukey al-
gorithm [CT65] applicable for the case that n is even. Below, we show how this algorithm
reduces the computation of the DFT of encrypted values from n2 to 2(n/2)2 exponenti-
ations, saving a factor 2 in the number of operations. If n is an integral power of 2, the
algorithm can be applied recursively reducing the overall computation to proportional
to n log n.

Case n is Even

Algorithm 3.2 illustrates the application of the radix-2 Cooley-Tukey FFT algorithm. In
the following we explain how it works. Suppose that α is an n-th root of unity modulo q
with n even. Then the DFT of encrypted values can be splitted in the following way:

[[x′k]] =
n−1

∏
j=0

[[xj]]
αkj

=
n/2−1

∏
j=0

[[x2j]]
αk2j

[[x2j+1]]
αk(2j+1)

=
n/2−1

∏
j=0

[[x2j]]
(α2)kj

(
n/2−1

∏
j=0

[[x2j+1]]
(α2)kj

)αk

.

We define [[e′k]] = ∏
n/2−1
j=0 [[ej]]

α2kj and [[o′k]] = ∏
n/2−1
j=0 [[oj]]

α2kj , where [[ek]] = [[x2k]] and

[[ok]] = [[x2k+1]] for 0 ≤ k < n/2. The lists {[[e′k]]}
n/2
k=0 and {[[o

′
k]]}

n/2
k=0 are both valid DFTs of

encrypted values w.r.t. α2 of the lists {[[ek]]}
n/2
k=0 and {[[ok]]}

n/2
k=0, respectively. Note that α2

is an n/2-th root of unity.

Since lists {[[e′k]]}
n/2
k=0 and {[[o′k]]}

n/2
k=0 are DFTs w.r.t. an n/2-th root of unity, they have

period n/2 and thus,

[[x′k]] = [[e′k]][[o
′
k ]]

αk
for 0 ≤ k < n/2,

[[x′k+n/2]] = [[e′k]][[o
′
k ]]
−αk

for 0 ≤ k < n/2.

This way, we have reduced the problem of the computation of a DFT on a list of length n
to solving two DFTs of lists of half the length plus one extra exponentiation.2 Wenote that
the two half-length DFTs can be computed in parallel because they are independent of
each other. Therefore, the total number of exponentiations has been reduced from about
n2 to about 2(n/2)2 + n/2 which asymptotically means an improvement by a factor of 2.

When n is an integral power of 2, we can apply this method in a recursive manner,
splitting the list in even and odd elements. We get that the number of exponentiations
is log n for half of the elements in the transformed list, yielding a total of (n/2) log n
exponentiations overall.

2More precisely, once [[ok]]
αk has been computed, [[ok]]

−αk may be obtained by computing some modular
inversions.
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Algorithm 3.2 DFT of encrypted values using Cooley-Tukey FFT for n even

Input: {[[xk]]}
n−1
k=0 , n = 2ℓ

Output: {[[x′k]]}
n−1
k=0 such that {[[x′k]]}

n−1
k=0 = {[[xk]]}

n−1
k=0

for k = 0 to n/2− 1 do
[[ek]] = [[x2k]]
[[ok]] = [[x2k+1]]

end for
compute

{[[e′k]]}
n/2−1
k=0 = DFT({[[ek]]}

n/2−1
k=0 )

{[[o′k]]}
n/2−1
k=0 = DFT({[[ok ]]}

n/2−1
k=0 )

for k = 0 to n/2− 1 do
[[x′k]] = [[e′k]][[o

′
k ]]

αk

[[x′k+n/2]] = [[e′k]][[o
′
k ]]
−αk

end for
return {[[x′k]]}

n−1
k=0

General Composite n

The general Cooley-Tukey decomposition of the computation, for n = n1n2 with n1, n2 >

1, uses k = n2k1 + k2 and j = n1 j2 + j1 for indices 0 ≤ k1, j1 < n1 and 0 ≤ k2, j2 < n2

[[x′n2k1+k2
]] =

n1−1

∏
j1=0

n2−1

∏
j2=0

[[xn1 j2+j1]]
α(n2k1+k2)(n1 j2+j1)

=
n1−1

∏
j1=0



(

n2−1

∏
j2=0

[[xn1 j2+j1]]
αn1 j2k2

)αj1k2



αn2 j1k1

.

As α is an n-th root of unity modulo q, and n = n1n2, it follows that αn1 is an n2-th root
of unity. Therefore, all interior products (indexed by j2) are DFTs of lists of n2 elements.
There are n1 in total. These intermediate transforms are later raised to some constants
known as twiddle factors. The new list is combined with the outer product which rep-
resents n2 DFTs of length n1. Hence, we have reduced the problem of a DFT of length
n = n1n2 into a problem of n1 DFTs of length n2 and n2 DFTs of length n1 plus n expo-
nentiations. All this roughly amounts to n1n2

2 + n1
2n2 + n exponentiations, meaning a

reduction from n21n
2
2 to n1n2

2 + n1
2n2 exponentiations. Algorithm 3.3 summarizes this

method.

3.3.2 Bluestein’s FFT Algorithm

Unfortunately, Cooley-Tukey’s technique does not consider the case when n is prime. For
the complex field there exist other FFT algorithms that reduce the computation of a DFT
of prime length n to the computation of other DFTs of composite length, allowing the
application of, for example, the above mentioned FFT algorithms. In the following, we
sketch Bluestein’s FFT algorithm [Blu70] that works in the case that n is odd.
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Algorithm 3.3 DFT of encrypted values using General Cooley-Tukey FFT

Input: {[[xk]]}
n−1
k=0 , n = n1n2

Output: {[[x′k]]}
n−1
k=0 such that {[[x′k]]}

n−1
k=0 = {[[xk]]}

n−1
k=0

for j1 = 0 to n1 − 1 do
for j2 = 0 to n2 − 1 do

[[yj1,j2]] = [[xn1 j2+j1]]
end for
compute {[[y′j1,j2 ]]}

n2−1
j2=0 = DFT({[[yj1 ,j2]]}

n2−1
j2=0 )

end for
for k2 = 0 to n2 − 1 do
for j1 = 0 to n2 − 1 do

[[ŷj1,k2 ]] = [[yj1,k2 ]]
αj1k2

 These are the twiddle factors.
end for
compute {[[x̂j1,k2 ]]}

n1−1
j1=0 = DFT({[[ŷj1 ,k2 ]]}

n1−1
j1=0 )

end for
for k1 = 0 to n1 − 1 do
for k2 = 0 to n2 − 1 do

[[x′n2k1+k2
]] = [[x̂k1,k2 ]]

end for
end for
return {[[x′k]]}

n−1
k=0

Convolutions of Homomorphic Encryptions

For later use in the exposition of Bluestein’s algorithm for FFT adapted to the case of
homomorphic encryptions, we explain how to compute convolutions of encrypted values
using properties of the DFT.

Suppose we have a list of homomorphic encryptions {[[xk]]}
n−1
k=0 and a list of known

values {ak}
n−1
k=0 all in Zq. Encryptions of the convolution of the lists {xk}

n−1
k=0 and {ak}

n−1
k=0

can be computed using homomorphic properties as follows:

[[zk]] =
n−1

∏
j=0

[[xj]]
ak−j , (3.4)

where k ranges from 0 to n − 1. The straightforward way of computing a convolution
clearly requires O(n2) exponentiations.

Algorithm 3.4 gives a more efficient way of computing convolutions of encrypted
values. Its correctness is based on Prop. 3.6. The overall number of exponentiations
reduces to the work required for the two DFTs under encryptions and n exponentiations
for the intermediate point-wise multiplication. If n is (highly) composite we can take
advantage of the Cooley-Tukey FFT of the two DFTs needed. In particular, if n is an
integral power of two, get that the number of exponentiations is proportional to n log n.

Parameter Requirements

At a high-level, Bluestein’s FFT algorithm reduces the computation of the DFT of a list
of odd length n to the computation of two DFTs of length m ≥ 2n − 1. Obviously, the
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Algorithm 3.4 Computing convolutions of encrypted values

Input: {[[xk]]}
n−1
k=0 , {ak}

n−1
k=0

Output: {[[zk]]}
n−1
k=0 such that {[[zk ]]}

n−1
k=0 = CONV({[[xk ]]}

n−1
k=0 , {ak}

n−1
k=0 )

compute
{[[x′k]]}

n−1
k=0 = DFT({[[xk ]]}

n−1
k=0 )

{a′k}
n−1
k=0 = DFT({ak}

n−1
k=0 )

for k = 0 to n− 1 do
[[z′k]] = [[x′k]]

a′k

end for
compute {[[zk ]]}

n−1
k=0 = DFT−1({[[z′k ]]}

n−1
k=0 )

return {[[zk]]}
n−1
k=0

computation of the DFT on lists of length m requires that an m-th root of unity exists,
yielding the condition that m | q− 1. Furthermore, m is required to be highly composite
so that Cooley-Tukey’s method gives us some computational savings. In particular, it is
highly desired that m is an integral power of 2.

Hence, q, n and m should be such that n is odd, n | q− 1, m ≥ 2n− 1 and m | q− 1.
Thus, it should hold that q = lcm(m, n)ℓ + 1 for some integer ℓ. Since we compute two
DFTs of length m, we may want to ensure that m = 2k in which case we request that
q = 2knℓ + 1, for an integer k such that 2k ≥ 2n− 1. For a discussion on the feasibility of
these parameters, see [BA01] and references therein.

The Algorithm

Let {[[xk]]}
n−1
k=0 be the list of encryptions for which we have to compute the DFT on. Con-

sider the case that n is odd (in particular that n is prime). Then we have the following.

[[x′k]] =
n−1

∏
j=0

[[xj]]
αkj

=
n−1

∏
j=0

[[xj]]
α−(k−j)2/2+k2/2+j2/2

(3.5)

=

(
n−1

∏
j=0

([[xj]]
α−j

2/2
)α(k−j)2/2

)α−k
2/2

. (3.6)

We start by expanding the expression of the DFT of encrypted values. Then, in Eq. (3.5)
the product kj can be written as kj = −(k− j)2/2+ k2/2 + j2/2 which Eq. (3.6) yields by
associating the exponents accordingly.

Defining [[yj]] = [[xj]]
α−j

2/2
and aj = αj2/2 we take {[[zk]]}

n−1
k=0 = CONV({[[yk ]]}

n−1
k=0 ,

{ak}
n−1
k=0 ) as in Eq. (3.4). This merely says that Eq. (3.6) can be rewritten as follows

[[x′k]] = [[zk ]]
α−k

2/2
. (3.7)

Therefore, we have to compute the convolution of encrypted values between {[[yk]]}
n−1
k=0

and {ak}
n−1
k=0 . It is worth noticing that α1/2 exists only if α has odd order.
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Algorithm 3.5 DFT of encrypted values using Bluestein’s FFT

Input: {[[xk]]}
n−1
k=0 , n is odd, m ≥ 2n− 1 with m | q− 1.

Output: {[[x′k]]}
n−1
k=0 such that {[[x′k]]}

n−1
k=0 = DFT({[[xk ]]}

n−1
k=0 )

for k = 0 to n− 1 do
[[ŷk]] = [[xk]]

−α2/2

âk = αj2/2

end for
for k = n to m− n− 1 do

[[ŷk]] = E(0)
âk = 0

end for
for k = m− n to m− 1 do

[[ŷk]] = E(0)

âk = α(m−k)2/2

end for
compute {[[zk ]]}

m−1
k=0 = CONV({[[ŷk]]}

m−1
k=0 , {âk}

m−1
k=0 )

for k = 0 to n− 1 do

[[x′k]] = [[zk]]
α−k

2/2

end for
return {[[x′k]]}

n−1
k=0

If we apply Algorithm 3.4 at this stage, we would have traded the problem of com-
puting the DFT of length n (our ultimate goal) to that of computing two DFTs of the
same length which makes no sense. Instead, we trade the problem for that of computing
a convolution on lists of length m for which a much more efficient FFT algorithm may

be achieved. In order to do this, the lists {[[yk]]}
n−1
k=0 and {ak}

n−1
k=0 are zero-padded in a

special way such that we can compute the original convolution of length n via the new
convolution of length m, where we additionally require that m ≥ 2n− 1.

The list {[[yk]]}
n−1
k=0 is zero-padded into {[[ŷk]]}

m−1
k=0 in the usual way. Namely,

[[ŷk]] =

{
[[yk]], if 0 ≤ k < n,
E(0), if n ≤ k < m.

Recall that E(0) is a deterministic encryption of 0.

On the other hand, the list {ak}
n−1
k=0 is padded into {âk}

m−1
k=0 differently.

âk =





ak, if 0 ≤ k < n,
am−k, if m− n ≤ k < m,
0, if n ≤ k < m− n.

The list {âk}
m−1
k=0 consists of a copy of the list {ak}

m−1
k=0 at the beginning and in reversed

order from the end. Clearly, the list â is well-defined if m ≥ 2n− 1.

Algorithm 3.4 can be used to efficiently compute {[[ẑk ]]}
m−1
k=0 = CONV({[[ŷk]]}

m−1
k=0 ,

{âk}
m−1
k=0 ). The correctness of Bluestein’s algorithm is based on the following fact.

48



3.3. Fast Fourier Transform

It is easy to see that {[[ẑk]]}
n−1
k=0 = {[[zk ]]}

n−1
k=0 . For all 0 ≤ k < n, we have:

[[ẑk]] =
m−1

∏
j=0

[[ŷj]]
âk−j

=
n−1

∏
j=0

[[ŷj]]
âk−j (3.8)

=
k

∏
j=0

[[yj]]
âk−j

n−1

∏
j=k+1

[[yj]]
âm−(j−k) (3.9)

=
k

∏
j=0

[[yj]]
ak−j

n−1

∏
j=k+1

[[yj]]
aj−k (3.10)

=
n−1

∏
j=0

[[yj]]
ak−j (3.11)

= [[zk ]].

In Eq. (3.8) we “throw away” the tail of the product since [[ŷj]] = E(0) for k + 1 ≤ j < m.
For Eq. (3.9) note that k + 1 ≤ j < m implies that k− j ≤ 0 and since j− k ≤ m it holds
that âk−j = âm−(j−k). In Eq. (3.10) we use the definition of â observing that m − n ≤

m− (j− k) < m. Finally, Eq. (3.11) follows from the fact that by definition ak = a−k.
Following this reasoning, we have that we can compute Eq. (3.7) efficiently if m is

highly composite. All these steps are summarized in Algorithm 3.5. This way, one is
able to compute efficiently a DFT efficiently for odd list lengths n, in particular when n is
prime.
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Chapter 4

General Verifiable Rotations

The DFT-based protocol presented in the previous chapter puts some constraints on the
parameters involved. This is a consequence of the requirement of the existence of a root
of unity. As a result, this limits the applicability of the approach. For example, if an
adequate cryptosystem is already set up with message space Zq for prime q, the length
of the list of homomorphic encryptions to be rotated is restricted to all n for which an n-
th root of unity modulo q exists. Of course, depending on the application some padding
techniques or other tricks may be applied to the list that is going to be rotated. In some
settings, if n is fixed, we have to set up a cryptosystem such that the plaintext is Zq with q
prime such that n is a divisor of q− 1. Besides these two limitations, another drawback is
that the application of the DFT using homomorphic properties requires some additional
computations before and after the rotation takes place.

In this chapter we present a solution that does not put restrictions on the length n
of the list to be rotated, once the cryptosystem is set up. In fact, this result applies to
any homomorphic cryptosystem. We use a completely different approach which yields
overall O(n) computational complexity. Though the solution presented is not a standard
Σ-protocol, we are able to show that the protocols are honest verifier zero-knowledge
with witness-extended emulation.

4.1 Background

We start presenting the Schwartz-Zippel lemma as the core tool for the soundness of our
protocols. This lemma is commonly used to test equality of polynomials probabilistically.

Lemma 4.1 (Schwartz-Zippel) Let p ∈ F[x1, . . . , xm] be a non-zero multivariate polynomial
of degree d over a field F and let S be a finite, non-empty subset of F of at least d elements. Then
P[p(z1, . . . , zm) = 0] ≤ d/|S|, where all zi, for 1 ≤ i ≤ m, are randomly chosen from S.

In other words, if a polynomial p evaluated at a random point from a finite set gives
zero, it means that p is the zero polynomial except with some error probability. Clearly,
checking equality of two polynomials s and t over a field F is equivalent to decide if the
difference polynomial p = s− t is the zero-polynomial.

The zero-polynomial test is formalized in the following proposition.

Proposition 4.2 Let p ∈ F[x1, . . . , xm] be a polynomial over F of degree at most d. Given S a
finite non-empty subset of F with at least d elements, and β1, . . . , βm randomly selected from S.
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1. If p = 0 then P[p(β1, . . . , βm) = 0] = 1;

2. If p 6= 0 then P[p(β1 . . . , βm) = 0] ≤ d/|S|.

Proof. (1) holds trivially. For (2) the Schwartz-Zippel lemma is applied to p since it has
degree k ≤ d. Hence P[p(β1 , . . . , βm) = 0] ≤ k/|S| ≤ d/|S|.

The test gives a false positive (i.e., p(β) = 0 but p 6= 0) with probability at most d/|S|.
To make the test accurate enough we either take S ⊂ F to be large enough or, when this
is not possible, we repeat the test independently as many times as necessary to make the
probability of failure very small.

Applications

As an application of this probabilistic test consider the problem of checking if a list of

field elements consists of all zero elements. More specifically, given a list {zk}
n−1
k=0 of n

elements in the field F, we want to check that zk = 0 for all 0 ≤ k < n. For the Schwartz-
Zippel test, let S be a finite subset of F.

We define the polynomial p(x0, x1, . . . , xn−1) = ∑
n−1
j=0 zjxj. Clearly, p = 0 if and only

if zk = 0 for all 0 ≤ k < n. Using the probabilistic test given by Prop. 4.2 we get that the
failure probability of the test is upper-bounded by 1/|S| since p has degree 1.

Note that the polynomial may be defined differently. For example, consider the uni-

variate polynomial p(x) = ∑
n−1
j=0 zjx

j. Once more, zk = 0 for all 0 ≤ k < n if and only

if p is the zero-polynomial. Since p has degree at most n − 1, the failure probability is
bounded above by (n− 1)/|S|.

The all-zero list test can be used to check whether two lists {xk}
n−1
k=1 and {yk}

n−1
k=1 of n

field elements are identical. It suffices to define zk = xk − yk for all 0 ≤ k < n− 1.
For the rest of this chapter, we use the all-zero test on the finite field Zq with q prime.

The set S will be chosen to be the whole space Zq.

4.2 Proof of Multiple Encryptions of 0

In this section we study a very related problem to the all-zero list test given above.
Namely, we describe a protocol to prove in zero-knowledge that a list of homomor-
phic ciphertexts all are encryptions of 0. The soundness of this protocol is based on the
Schwartz-Zippel lemma, and formally proved by showing a witness-extender emulator.
This protocol and the ideas used in the witness-extended emulation are a stepping stone
for the proof of rotation presented later in this chapter.

More concretely, this section treats an efficient proof of knowledge for the following
relation:

RB-ZERO = {({[[zk ]]}
n−1
k=0 ; {sk}

n−1
k=0 ) : [[zk]] = E(0, sk) for all 0 ≤ k < n}.

A proof of knowledge for such a relation can be obtained by a Σ-protocol resulting of
an AND-composition of Σ-protocols for RZERO. Namely, showing that ([[zk ]]; sk) ∈ RZERO

for all 0 ≤ k < n, suffices to show that ({[[zk ]]}
n−1
k=0 ; {sk}

n−1
k=0 ) ∈ RB-ZERO.

Such an approach requires 3 rounds of interaction and the computational work is n
times that of a Σ-protocol for RZERO. That is, O(n) computations.
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Protocol 4.1 Honest verifier zero-knowledge proof of knowledge for relation RB-ZERO

Common Input : {[[zk ]]}
n−1
k=0

Prover’s Private Input : {sk}
n−1
k=0

Prover Verifier
β ∈R Zq

←−−−−−−−
β
−−−−−−−

t = ∑
n−1
j=0 βjsj Everyone computes:

[[z]] = ∏
n−1
j=0 [[zj]]

βj

Run Σ-protocol for

RZERO([[z]]; t)

Protocol 4.1 gives a solution approaching the problem differently. It requires 4 rounds
but the computational work of a single invocation of a Σ-protocol for RZERO. Soundness
of this protocol relies on Prop. 4.2: it is like doing an all-zero list test under encrypted
values.

Theorem 4.3 Protocol 4.1 is a complete, honest verifier zero-knowledge proof of knowledge with
witness-extended emulation for relation RB-ZERO.

Proof. We have to show that the protocol is complete, honest verifier zero-knowledge
and it has witness-extended emulation. Completeness follows immediately by simple
inspection. The remaining two properties are proved in the following.

Honest Verifier Zero-Knowledge. Algorithm 4.1 describes a simulator SB-ZERO for Proto-
col 4.1 that produces conversation transcripts that are indistinguishable from the ones in
an execution of the protocol assuming an honest verifier.

The simulator SZERO of the Σ-protocol for relation RZERO is used as a subroutine. Re-
call that as it is honest verifier zero-knowledge, the simulator SZERO produces a tuple
trZERO = (a, λ, u) statistically indistinguishable from a tuple representing a real world
transcript. Using this fact, it is easy to conclude that (β, trZERO) is indistinguishable from
a conversation transcript of Protocol 4.1.

Witness-Extended Emulation. Algorithm 4.2, denoted asWB-ZERO, is a witness-extended
emulator for Protocol 4.1. It follows the structure of a generic witness-extended emula-
tion. The prover is first run on random challenges and then the emulator attempts to
extract a witness only if the first conversation is accepting.

For the extraction process, the emulation makes use of extractor EB-ZERO described
in Algorithm 4.3. This extractor needs n witnesses of RZERO which are obtained by the
special soundness extractor EZERO of its Σ-protocol. We note that extractor EB-ZERO only
works under the condition that all βi’s are different.

We show that WB-ZERO satisfies the sufficient conditions given in Lemma 2.6 for a
witness-extended emulator. In fact, Lemma 2.6(ii) is satisfied straightforwardly since
the algorithm always copies the result of the interaction with P∗. We now prove that
WB-ZERO outputs either ⊥ or a valid witness. This enables us to validate Lemma 2.6(iii).

53



Chapter 4. General Verifiable Rotations

Algorithm 4.1 (SB-ZERO) Simulator for Protocol 4.1

Input: {[[zk ]]}
n−1
k=0

pick β ∈ Zq

[[z]] = ∏
n−1
j=0 [[zj]]

βj

run trZERO←SZERO([[z]])
return (β, trZERO)

Lemma 2.6(i) and (iv) are proved in Lemmas 4.5 and 4.6 respectively.

Before going into further details we define some notation and establish some con-
ventions. Since P∗ is a deterministic algorithm, we define ǫ to be the probability that
P∗(x, s) gives an accepting conversation when it runs the protocol on randomly chosen
challenges (β, λ). This way, we can define a q× 2k {0, 1}-matrix S such that Sβ,λ = 1 if
and only if P∗ gives an accepting conversation when executed on challenges β and λ. We
denote with ǫβ the probability that P∗ gives an accepting proof on random λ, given that
it has received β as initial challenge. By definition, ǫ is the proportion of 1’s in S whereas
ǫβ is the proportion of 1’s in Sβ, the β-th row of S.

The specification of WB-ZERO can be expressed in terms of matrix S. In the first steps
(line 1 through 4), matrix S is probed at a random position (β0, λ0). If a 0 is hit, the
algorithm halts copying the transcript of the protocol and there is no witness. If a 1 is hit
then it will do the following. Row Sβ0

is probed until a 1 is hit (lines 5 through 8). After
this, the following is repeated n − 1 times. The matrix is probed on random positions
until a 1 is hit. This is done in the first repeat loop (lines 10 through 14). Then, row Sβi

is
probed until a 1 is hit (lines 15 through 18).

Extractor WB-ZERO knows positions (βi, λi) and (βi, λ
′
i) for which Sβi ,λi

= Sβi ,λ
′
i
= 1,

for 0 ≤ i < n. Note that some 1’smight have hit the same row, and some rowsmight have
been overlapped. Note that the order in which these random queries are executed does
not matter as every time independently random challenges are drawn. The emulator is
able to extract a witness when λi 6= λ′i for all 0 ≤ i < n (i.e. there is no collusion in the
same row), and if βi 6= β j for i 6= j (i.e. there is no row overlapping).

For later use in Lemma 4.6, we now argue that Algorithm 4.3 always gives a valid
witness whenever it outputs a witness.

Lemma 4.4 Let {sk}
n−1
k=0 be the output of Algorithm 4.3 on inputs {βi}

n−1
i=0 , {ti}

n−1
i=0 such that

βi 6= β j for all i 6= j and ∏
n−1
j=0 [[zj]]

β
j
i = E(0, ti) for all 0 ≤ i < n. Then, [[zk]] = E(0, sk), for all

0 ≤ k < n.

Proof. The core of Algorithm 4.3 is explained in the following. Consider the matrix B

defined by Bij = β
j
i, for 0 ≤ i, j < n. By construction, B is a Vandermonde matrix since

βi 6= β j for all i 6= j. As B is an invertible matrix, so is its transpose BT. Hence, there exist

vectors dk such that BTdk is the (k + 1)-th unit vector, for 0 ≤ k < n − 1. This actually

means that ∑
n−1
i=0 BT

jidk,i = ∑
n−1
i=0 Bijdk,i = 1 only when j = k and it is 0 otherwise. Vectors

dk can be computed using basic linear algebra.
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Algorithm 4.2 (WB-ZERO) Witness-extended emulator for Protocol 4.1

Input: x = {[[zk]]}
n−1
k=0

pick β0 ∈R Zq

pick λ0 ∈R {0, 1}
k

run (β0, a0, λ0, u0)← 〈P
∗(x, s), Ṽ(β0, λ0)〉

if 〈(β0, a0, λ0, u0), x〉 = 1 then
5: repeat

pick λ′0 ∈R {0, 1}
k

run (β0, a0, λ
′
0, u
′
0)← 〈P

∗(x, s), Ṽ(β0, λ
′
0)〉

until 〈(β0, a0, λ
′
0, u
′
0), x〉 = 1

for i = 1 to n− 1 do
10: repeat

pick βi ∈R Zq

pick λi ∈R {0, 1}
k

run (βi , ai, λi, ui)←〈P
∗(x, s), Ṽ(βi, λi)〉

until 〈(βi , ai, λi, ui), x〉 = 1
15: repeat

pick λ′i ∈R {0, 1}
k

run (βi , ai, λ
′
i, u
′
i)← 〈P

∗(x, s), Ṽ(βi , λ
′
i)〉

until 〈(βi , ai, λ
′
i, u
′
i), x〉 = 1

end for
20: if λi 6= λ′i for all i and βi 6= β j for i 6= j then

for i = 0 to n− 1 do

[[z(i)]] = ∏
n−1
j=0 [[zj]]

β
j
i

run ti← EZERO([[z(i) ]], ai, λi, ui, λ
′
i, u
′
i)

end for
25: run {sk}

n−1
k=0 ← EB-ZERO({βi}

n−1
i=0 , {ti}

n−1
i=0 )

return ((β0, a0, λ0, u0), {sk}
n−1
k=0 )

else
return ((β0, a0, λ0, u0),⊥)

end if
30: else

return ((β0, a0, λ0, u0),⊥)
end if

Algorithm 4.3 (EB-ZERO) Extractor for Protocol 4.1

Input: {βi}
n−1
i=0 , {ti}

n−1
i=0 where βi 6= β j for i 6= j.

Output: {sk}
n−1
k=0 .

find dk ∈ Z
n
q such that ∑

n−1
i=0 β

j
idk,i = 1 if j = k and ∑

n−1
i=0 β

j
idk,i = 0 otherwise

sk = ∑
n−1
j=0 tjdk,j for 0 ≤ k < n

return {sk}
n−1
k=0
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Now,

[[zk]] =
n−1

∏
i=0

(
n−1

∏
j=0

[[zj]]
Bij

)dk,i

=
n−1

∏
i=0

(
n−1

∏
j=0

[[zj]]
β
j
i

)dk,i

=
n−1

∏
i=0

(E(0, ti))
dk,i

= E(0,
n−1

∑
i=0

tidk,i) (using homomorphic properties).

From this equality, we can see that [[zk ]] = E(0,∑n−1
j=0 tjdk,j) for 0 ≤ k < n. The output of

Algorithm 4.3 is sk = ∑
n−1
j=0 tjdk,j.

The proof that Algorithm 4.3 gives a valid witness follows by analyzing the context in

which the algorithm is executed. Observe that for all 0 ≤ i < n, ([[z(i)]]; ti) ∈ RZERO, and
thus,

[[z(i)]] = E(0, ti), for 0 ≤ i < n, (4.1)

because they are extracted using the special soundness extractor EZERO of a Σ-protocol for
relation RZERO.

Moreover, we have that

[[z(i)]] =
n−1

∏
j=0

[[zj]]
β
j
i for 0 ≤ i < n. (4.2)

Combining Eq. (4.1) and Eq. (4.2) yields

n−1

∏
j=0

[[zj]]
β
j
i = E(0, ti).

Thus, Lemma 4.4 tells us that the output of extractor EB-ZERO defined in Algorithm 4.3
produces a valid witness for relation RB-ZERO.

Lemma 4.5 EmulatorWB-ZERO runs in expected polynomial-time.

Proof. Before going into the computation of the overall running time, we focus our at-
tention to the for loop of lines 9 through 19 of Algorithm 4.2. Algorithm 4.4 represents a
single iteration of that loop. Let T′ denote the random variable that counts the number
of queries to P∗ in Algorithm 4.4. We calculate E[T′].

In Algorithm 4.4, there are two repeat loops. The expected number of queries to P∗

in the first loop is 1/ǫ since it is like sampling the matrix S until a 1 is hit. In the second
loop the expected time is 1/ǫβ given that the 1 found in the first loop hits row β of matrix
S.

In this way,
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4.2. Proof of Multiple Encryptions of 0

E[T′] =
q−1

∑
v=0

P[β = v]E[T′ | β = v]

=
q−1

∑
v=0

ǫv
qǫ

(
1

ǫ
+

1

ǫv
)

=
1

ǫ
+

q−1

∑
v=0

1

qǫ

=
2

ǫ
.

Note that in this context P[β = v] is the probability that after probing random posi-
tions in S until hitting a 1, that 1 belongs to row v. This probability can be calculated
using matrix S. That is, in row v there are 2kǫv 1’s out of a total of 2kqǫ in the whole
matrix. Thus, P[βi = v] = ǫv/qǫ.

The expected number of invocations to P∗ the for loop of lines 9 through 19 ofWB-ZERO

is 2(n− 1)/ǫ. This is because Algorithm 4.4 is executed n− 1 independent times.
We now calculate E[T] where T is the random variable counting the number of calls

to P∗ made by WB-ZERO. In order to shorten the notation, tri will denote the transcript
(vi, ai, λi, ti)← 〈P

∗(x, s), Ṽ(vi, λi)〉.

E[T] =
q−1

∑
v0=0

P[β0 = v0]E[T | β0 = v0]

=
1

q

q−1

∑
v0=0

(P[〈tr0, x〉 = 1 | β0 = v0]E[T | β0 = v0 ∧ 〈tr0, x〉 = 1]

+P[〈tr0, x〉 = 0 | β0 = v0]E[T | β0 = v0 ∧ 〈tr0, x〉 = 0])

=
1

q

q−1

∑
v0=0

(ǫv0(1 +
1

ǫv0
+ (n− 1)

2

ǫ
) + (1− ǫv0))

= 2+ 2(n− 1)
q−1

∑
v0=0

ǫv0
qǫ

= 2n.

Here P[β0 = v0] = 1/q as β0 is picked at random from Zq. Overall, an average of 2n
invocations of P∗ are required. Since P∗ runs in strict polynomial-time, the running time
ofWB-ZERO is thus expected polynomial.

Lemma 4.6 Let P∗(x, s) be given and let (tr,w)←WB-ZERO(P∗(x, s), x). Then
P[(x;w) ∈ RB-ZERO] ∼= ǫ.

Proof. This lemma shows that WB-ZERO gives a valid witness with essentially the same
probability as P∗ would when running the protocol. Basically, we have to compute the
probability of success of the emulator where ‘success’ means that WB-ZERO manages to
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Algorithm 4.4 Auxiliary Subroutine ofWB-ZERO

repeat
pick β ∈R Zq

pick λ ∈R {0, 1}
k

run (β, a, λ, u)←〈P∗(x, s), Ṽ(β, λ)〉
until 〈(β, a, λ, u), x〉 = 1
repeat
pick λ′ ∈R {0, 1}

k

run (β, a, λ′ , u′)←〈P∗(x, s), Ṽ(β, λ′)〉
until 〈(β, a, λ′ , u′), x〉 = 1

extract a witness for x. This happens when the conditions of line 16 are true. That is,
λi 6= λ′i and βi 6= β j for all i 6= j, 1 ≤ i, j ≤ n. We denote this event with succ. By
construction, it immediately follows that P[succ] ≤ ǫ.

If ǫ happens to be negligible then the lemma trivially holds. In the following, we
argue that the lemma also holds when ǫ is not negligible.

We observe that the event succ can be explained in terms of matrix S. We probe matrix
S until we hit 2n 1’s. Then the probability of succ is the probability that there is no
collision within rows βi’s (i.e., γi 6= γ′i), and that all βi’s are different. We separate our
analysis of the event succ in these two events.

First, let Cv be the event that there is no collision in row v. More specifically, looking
at Algorithm 4.4 we want to know what is the probability that given that β = v in the
first repeat loop, it holds that λ 6= λ′. Since 1 out of 2kǫv 1’s gives a collision in row Sv,
we conclude that P[Cv] = 1− 1/2kǫv.

Secondly, for the probability of different βi’s we consider the Algorithm 4.5 which is
a subroutine ofWB-ZERO. It comprises all statements where different βi’s are probed until
a total of n 1’s are hit in matrix S.

Let D denote the event that the βi’s selected in Algorithm 4.5 are all different. Then,

P[D] = ∑
v0

P[β0 = v0]P[D | β0 = v0]

= ∑
v0

ǫv0
qǫ

(
∑

v1 6∈{v0}

P[β1 = v1]P[D | β0 = v0 ∧ β1 = v1 ∧ v1 6= v0]
)

...

= ∑
v0

ǫv0
qǫ

(
∑

v1 6∈{v0}

ǫv1
qǫ

(
∑

v2 6∈{v0,v1}

ǫv2
qǫ

(· · · ( ∑
vn−1 6∈{vi}

n−2
i=0

ǫvn−1
qǫ

) · · · )
))

.

This probability is computed by conditioning on the different rows vi of S that are being
hit pondered with the probability that row vi is selected. This long expression for this
probability is left as is. Below, we use it to compute the probability of the event succ.

Below, we analyze the probability of the event succ, combining the two parts dis-
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4.2. Proof of Multiple Encryptions of 0

Algorithm 4.5 Auxiliary Subroutine ofWB-ZERO

for i = 0 to n− 1 do
repeat
pick βi ∈R Zq

pick λi ∈R {0, 1}
k

run (βi , ai, λi, ui)←〈P
∗(x, s), Ṽ(βi, λi)〉

until 〈(βi , ai, λi, ui), x〉 = 1
end for
return {βi}

n−1
i=0

cussed above.

P[succ] = P[〈tr0, x〉 = 1]P[succ | 〈tr0, x〉 = 1] + P[〈tr0, x〉 = 0]P[succ | 〈tr0, x〉 = 0])

= ǫ ∑
v0

P[β0 = v0 | 〈tr0, x〉 = 1]P[succ | 〈tr0, x〉 = 1∧ β0 = v0]

= ǫ ∑
v0

P[β0 = v0]P[succ | 〈tr0, x〉 = 1∧ β0 = v0]

= ǫ ∑
v0

ǫv0
qǫ

P[succ | 〈tr0, x〉 = 1 ∧ β0 = v0]

= ǫ ∑
v0

ǫv0
qǫ

P[Cv0 | 〈tr0, x〉 = 1∧ β0 = v0]P[succ | 〈tr0, x〉 = 1∧ β0 = v0 ∧ Cv0 ]

= ǫ ∑
v0

ǫv0
qǫ

P[Cv0 ]( ∑
v1 6∈{v0}

P[β1 = v1] ·

P[succ | 〈tr0, x〉 = 1∧ β0 = v0 ∧ Cv0 ∧ β1 = v1])

= ǫ ∑
v0

ǫv0
qǫ

(1−
1

2kǫv0
)( ∑

v1 6∈{v0}

ǫv1
qǫ
·

P[Cv1 ]P[succ | 〈tr0, x〉 = 1∧ β0 = v0 ∧ Cv0 ∧ β1 = v1 ∧ Cv1 ])

= ǫ ∑
v0

ǫv0
qǫ

(1−
1

2kǫv0
)

(

∑
v1 6∈{v0}

ǫv1
qǫ

(1−
1

2kǫv1
)
(
· · ·

(
∑

vn−2 6∈{vi}
n−3
i=0

ǫvn−2
qǫ

(1−
1

2kǫvn−2
)( ∑

vn−1 6∈{vi}
n−2
i=0

ǫvn−1
qǫ

(1−
1

2kǫvn−1
))
)
· · ·
))

To evaluate this formula we define the following sequence:

fm = ∑
vn−m 6∈{vi}

n−m−1
i=0

ǫvn−m
qǫ

(1−
1

2kǫvn−m
) fm−1.

where f0 = 1, and fm is a function of v0, . . . , vn−m−1. By construction, P[succ] = ǫ fn.

Claim 4.7 If ǫ is not negligible, then fm ≥ Bm for 0 ≤ m ≤ n, where

Bm = 1−m
n−m−1

∑
i=0

ǫvi
qǫ
−

m(m− 1)

2qǫ
−

m

2kǫ
.

with Bm > 0.
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Note that Bm is also a function of v0, . . . , vn−m−1.
Proof. Let us first argue that Bm > 0. Assume the opposite, then

1−m
n−m−1

∑
i=0

ǫvi
qǫ
−

m(m− 1)

2qǫ
−

m

2kǫ
≤ 0

1 ≤ m
n−m−1

∑
i=0

ǫvi
qǫ

+
m(m− 1)

2qǫ
+

m

2kǫ

ǫ ≤ m
n−m−1

∑
i=0

ǫvi
q

+
m(m− 1)

2q
+

m

2k
.

This says that ǫ is bounded above by a negligible number which contradicts the assump-
tion that ǫ is not negligible. Hence Bm must be positive.

We prove that fm ≥ Bm by induction on m. The bound clearly holds for m = 0.
For any m, 0 ≤ m < n we have:

fm+1 = ∑
vn−m−1 6∈{vi}

n−m−2
i=0

ǫvn−m−1
qǫ

(1−
1

2kǫvn−m−1
) fm

≥ ∑
vn−m−1 6∈{vi}

n−m−2
i=0

ǫvn−m−1
qǫ

(1−
1

2kǫvn−m−1
)(1−m

n−m−1

∑
i=0

ǫvi
qǫ
−

m(m− 1)

2qǫ
−

m

2kǫ
)(4.3)

≥ ∑
vn−m−1 6∈{vi}

n−m−2
i=0

ǫvn−m−1
qǫ

(1−m
n−m−1

∑
i=0

ǫvi
qǫ
−

m(m− 1)

2qǫ
−

m

2kǫ
−

1

2kǫvn−m−1
) (4.4)

=
(

∑
vn−m−1 6∈{vi}

n−m−2
i=0

ǫvn−m−1
qǫ

)
(1−m

n−m−2

∑
i=0

ǫvi
qǫ
−

m(m− 1)

2qǫ
−

m

2kǫ
)−

−m ∑
vn−m−1 6∈{vi}

n−m−2
i=0

(
ǫvn−m−1

qǫ

)2

− ∑
vn−m−1 6∈{vi}

n−m−2
i=0

1

2kqǫ

≥ (1−
n−m−2

∑
i=0

ǫvi
qǫ

)(1−m
n−m−2

∑
i=0

ǫvi
qǫ
−

m(m− 1)

2qǫ
−

m

2kǫ
−

m

qǫ
)−

1

2kǫ
(4.5)

≥ 1− (m + 1)
n−(m+1)−1

∑
i=0

ǫvi
qǫ
−

(m + 1)m

2qǫ
−

m + 1

2kǫ
. (4.6)

Eq. (4.3) follows from the induction hypothesis and because Bm is positive. To get Eq. (4.4)
and (4.5) we discard all positive terms after distributing the multiplication. Moreover, in
Eq. (4.5) we note that ǫ2v ≤ ǫv because ǫv ≤ 1, and therefore ∑v ǫ2v ≤ ∑v ǫv. Discarding all
positive terms once more yields Eq. (4.6).

This finishes the proof of Claim 4.7.

Under the condition that ǫ is not negligible we see that fn ≥ Bn where Bn = 1−
n(n− 1)/2qǫ− n/2kǫ with Bn > 0. This added to the fact that P[succ] = ǫ fn allows us to
conclude that

P[succ] ≥ ǫ(1−
n(n− 1)

2qǫ
−

n

2kǫ
) = ǫ−

n(n− 1)

2q
−

n

2k
.
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4.3. General Proof of Rotation

Protocol 4.2 Honest verifier zero-knowledge proof of knowledge for relation RROT

Common Input : {[[xk]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 .

Prover’s Private Input : {sk}
n−1
k=0 , rotation offset r with 0 ≤ r < n.

Prover Verifier
β ∈R Zq

←−−−−−−−−−−−−
β
−−−−−−−−−−−−

Everyone computes:

t = ∑
n−1
j=0 βjsj, {[[zk ]] = ∏

n−1
j=0 ([[yj+k]]/[[xj ]])

βj
}n−1k=0

Run Σ-protocol for

ROR-ZERO({[[zk ]]}
n−1
k=0 ; r, t)

On the other hand, we know that P[succ] ≤ ǫ and thus ǫ − n(n − 1)/2q − n/2k ≤
P[succ] ≤ ǫ meaning that P[succ] ∼= ǫ for non-negligible ǫ.

Once the event succ happens, it follows from Lemma 4.4 that the extractor EB-ZERO of
Algorithm 4.3 gives a valid witness. Thus, P[(x;w) ∈ RB-ZERO] ∼= ǫ which finishes the
proof of Lemma 4.6.

4.3 General Proof of Rotation

Protocol 4.2 gives a solution for the relation of rotation of homomorphic encryptions
RROT. The structure is similar to that of Protocol 4.1: the first message is a challenge and
the validity of the proof is tested via a Σ-protocol.

The intuition of the approach is as follows. First note that if the two lists of ho-

momorphic encryptions {[[xk]]}
n−1
k=0 and {[[yk ]]}

n−1
k=0 are a rotation by r positions and re-

randomization of each other then for all 0 ≤ k < n it holds that [[yk+r]] = [[xk]]E(0, sk)
for randomizers sk. This means that [[yk+r]]/[[xk ]] = E(0, sk) for all 0 ≤ k < n. This
can be proved using the proof of multiple encryptions of 0 given by Protocol 4.1 since

({[[yk+r ]]/[[xk ]]}
n−1
k=0 ; {sk}

n−1
k=0 ) ∈ RB-ZERO. Doing this requires to compute publicly the

encryption [[zr ]] = ∏
n−1
j=0 ([[yj+r]]/[[xj]])

βj
where the respective secret for the prover is

t = ∑
n−1
j=0 βjsj (see Protocol 4.1).

Unfortunately, the rotation offset r is exposed since [[zr ]] must be publicly computed.
Protocol 4.2 avoids that by computing all [[zk ]] for 0 ≤ k < n for each possible rotation
offset. By means of an OR-composition of Σ-protocols it can be proved that one of the n
possible rotation offsets is used while keeping the actual rotation offset in secret. Hence,
we have the proof for rotation.
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Algorithm 4.6 (ZLIST) Computing list {[[zk ]]}
n−1
k=0 of Protocol 4.2 efficiently

Input: β, {[[xk]]}
n−1
k=0 , {[[yk ]]}

n−1
k=0 .

Output: {[[zk]]}
n−1
k=0 such that [[zk]] = ∏

n−1
j=0 ([[yj+r]]/[[xj]])

βj
.

[[G]] = ∏
n−1
j=0 [[xj]]

βj

[[H0]] = ∏
n−1
j=0 [[yj]]

βj

[[z0]] = [[H0]]/[[G]]
for i = 1 to n− 1 do

[[Hi]] = ([[Hi−1]][[yi−1]]
βn−1)β−1

[[zi ]] = [[Hi]]/[[G]]
end for
return {[[zk]]}

n−1
k=0

4.3.1 Performance Analysis

Protocol 4.2 requires 4 rounds of interaction. As for the computational complexity, taking
into account only the Σ-protocol, the solution requiresO(n) computation as it is an n-way
OR-composition of Σ-protocols that require O(1) computation each.

Before the Σ-protocol for ROR-ZERO is performed both the prover and potential veri-

fiers must compute the list of encryptions {[[zk ]]}
n−1
k=0 . Note that it naively requires the

computation of n times n-way exponentiations, yielding a total of O(n2) computation.
Fortunately, due to the special form of the exponents we can reduce the number of expo-
nentiations to proportional to n using the observation below. The overall computational
complexity of Protocol 4.2 now becomes O(n).

Proposition 4.8 Let {[[yk]]}
n−1
k=0 be a list of n homomorphic encryptions and let β ∈ Zq. Then

the lists of encryptions {[[Hk]]}
n−1
k=0 and {[[H̃k]]}

n−1
k=0 are identical, where

[[Hi]] =
n−1

∏
j=0

[[yj+i]]
βj
, for 0 ≤ i < n, (4.7)

[[H̃0]] = [[H0]]; [[H̃i]] = ([[H̃i−1]][[yi−1]]
βn−1)β−1 , for 1 ≤ i < n. (4.8)

Proof. By induction on i. [[H0]] = [[H̃0]], so we only need to prove the induction step.
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Assume that [[Hi]] = [[H̃i]] for 0 ≤ i < n. Then,

[[Hi+1]] =
n−1

∏
j=0

[[yj+i+1]]
βj

= [[yi]]
βn−1

n−2

∏
j=0

[[yj+i+1]]
βj

= (
n−2

∏
j=0

[[yj+i+1]]
βj+1

)β−1 [[yi]]
βn−1

= (
n−1

∏
j=1

[[yj+i]]
βj

)β−1 [[yi ]]
βn−1

= ([[Hi]]/[[yi ]])
β−1 [[yi]]

βn−1

= ([[H̃i]]/[[yi ]])
β−1 [[yi]]

βn−1

= ([[H̃i]][[yi ]]
βn−1)β−1

= [[H̃i+1]].

Computing list {[[Hk]]}
n−1
k=0 via {[[H̃k]]}

n−1
k=0 as in Eq. (4.8) requires only O(n) exponentia-

tions. This fact can be used in Protocol 4.2 to compute the list {[[zk ]]}
n−1
k=0 using a linear

number of exponentiations. Algorithm 4.6 shows an efficient way to do this.

Proposition 4.9 Algorithm 4.6 needs O(n) exponentiations to compute the list {[[zk ]]}
n−1
k=0 of

Protocol 4.2.

The result follows by observing that [[Hk]] = ∏
n−1
j=0 [[yj+k]]

βj
, for 0 ≤ k < n using Prop. 4.8.

4.3.2 Security Analysis

Theorem 4.10 Protocol 4.2 is a complete, honest verifier zero-knowledge proof of knowledge with
witness-extended emulation for relation RROT.

Proof. Weproceed in a similar fashion as in Theorem 4.3. Indeed, completeness and zero-
knowledgeness follow in the same way. We now address witness-extended emulation.

Algorithm 4.7 gives a full description ofWROT, a witness-extended emulator for Pro-
tocol 4.2. Roughly speaking, it follows the same strategy of Algorithm 4.2 with a few
particular features that we describe below.

We first argue that WROT extracts a witness for RROT on encryptions {[[xk]]}
n−1
k=0 and

{[[yk]]}
n−1
k=0 as inputs. It needs n witnesses for ROR-ZERO obtained on different challenges

βi’s. These witnesses are obtained using the special soundness property of the Σ-protocol
for relation ROR-ZERO by means of its extractor EOR-ZERO. Since we are dealing with an
OR-composition of Σ-protocols, its extractor delivers a witness for (one of) the valid in-
stance(s) of the composition.

In order to conclude a successful extraction of the witness for the relation RROT, we
need nwitnesses of ROR-ZERO where the same rotation offset r is obtained. We note that P∗
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may give valid proofs for ROR-ZERO using different offsets each time. Think of the list of

encryptions {[[xk]]}
n−1
k=0 having all equal plaintexts for which the new list of encryptions

{[[yk]]}
n−1
k=0 is computed. Any rotation offset can be used to prove a rotation between the

two lists of encryptions.

Algorithm 4.7 (WROT) Witness-extended emulator for Protocol 4.2

Input: x = ({[[xk]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 )

pick β0 ∈R Zq

pick λ0 ∈R {0, 1}
k

run (β0, a0, λ0, u0)← 〈P
∗(x, s), Ṽ(β0, λ0)〉

if 〈(β0, a0, λ0, u0), x〉 = 1 then
for i = 1 to n(n− 1) do
repeat
pick βi ∈R Zq

pick λi ∈R {0, 1}
k

run (βi, ai, λi, ui)← 〈P
∗(x, s), Ṽ(βi , λi)〉

until 〈(βi , ai, λi, ui), x〉 = 1
end for
for i = 0 to n(n− 1) do
repeat
pick λ′i ∈R {0, 1}

k

run (βi, ai, λ
′
i, u
′
i)← 〈P

∗(x, s), Ṽ(βi , λ
′
i)〉

until 〈(βi , ai, λ
′
i, u
′
i), x〉 = 1

end for
if λi 6= λ′i for all i and βi 6= β j for i 6= j then

A = ∅

for i = 0 to n(n− 1) do

{[[z
(i)
k ]]}n−1k=0 = ZLIST(βi, {[[xk]]}

n−1
k=0 , {[[yk]]}

n−1
k=0 )

run (ri, ti)← EOR-ZERO({[[z
(i)
k ]]}n−1k=0 , ai, λi, ui, λ

′
i, u
′
i)

A← A ∪ {(ri , ti)}
end for
Let ik be such that {(rik , tik)}

n−1
k=0 ⊂ A with r = rik for 0 ≤ k < n.

run {sk}
n−1
k=0 ← EB-ZERO({βik}

n−1
k=0 , {tik}

n−1
k=0 )

return ((β0, a0, λ0, u0), (r, {sk}
n−1
k=0 ))

else
return ((β0, a0, λ0, u0),⊥)

end if
else
return ((β0, a0, λ0, u0),⊥)

end if

To cover the possibility of having different rotation offsets extracted, emulatorWROT

collects a total of n(n − 1) + 1 valid witnesses for ROR-ZERO. After this many steps it is
guaranteed that there exists an offset r such that there are n witnesses for that particular
offset r.

Let the nwitnesses of ROR-ZERO be {(r, tij)}
n−1
j=0 with their respective challenges {βij}

n−1
j=0 .
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Then

[[z
(ij)
r ]] = E(0, tij), (4.9)

where by definition

[[z
(ij)
r ]] =

n−1

∏
l=0

(
[[yl+r]]

[[xl ]]

)βl
ij
. (4.10)

Algorithm 4.3 is applied to inputs {βij}
n−1
j=0 and {tij}

n−1
j=0 which satisfy Eqs. (4.9) and

(4.10). Therefore, the output {sk}
n−1
k=0 satisfies

[[yk+r]]

[[xk]]
= E(0, sk),

meaning that the list {[[yk]]}
n−1
k=0 is a rotation and re-randomization of the list {[[xk]]}

n−1
k=0

by r positions with {sk}
n−1
k=0 as the used randomizers.

We show that the hypotheses of Lemma 2.6 are satisfied by WROT following similar
arguments as in Theorem 4.3. Indistinguishability of transcripts (Lemma 2.6(ii)) and that
WROT outputs accepting transcripts when it gives valid witnesses (Lemma 2.6(iii)) are
straightforward to check. In the following two claims we analyze Lemma 2.6(i) and (iv)
respectively.

Claim 4.11 EmulatorWROT runs in expected polynomial-time.

In fact, as in Lemma 4.5 it can be shown that the number of invocations of P∗ is 2(n(n −
1) + 1), thus yielding overall expected polynomial-time.

Claim 4.12 If (tr,w)←WROT(x), then P[(x;w) ∈ RROT] ∼= ǫ.

Here ǫ is defined as before, being the probability that P∗ gives an accepting proof on
randomly selected challenges. In line with the reasoning used in Lemma 4.6 it is now
easy to show that if ǫ is not negligible then

ǫ−
n4/2− n3 + n2 − n/2

q
−

n(n− 1) + 1

2k
≤ P[(x;w) ∈ RROT] ≤ ǫ,

whereas for negligible ǫ it is true that 0 ≤ P[(x;w) ∈ RROT] ≤ ǫ. In both cases we can
conclude that P[(x;w) ∈ RROT] ∼= ǫ.

Thus,WROT has witness-extended emulation.

There are various ways in which the performance ofWROT can be optimized without
spoiling its properties. For instance, emulatorWROT could keep track of all extracted ro-
tation offsets in the witnesses for ROR-ZERO, and as soon as it gets nwith the same rotation
offset proceed to extract the witness for RROT. In the worst case, emulatorWROT will run
loops of n(n− 1) + 1 iterations.

4.3.3 Rotation of ElGamal Encryptions

Protocol 4.3 presents the complete proof for the case of ElGamal encryptions. Protocol
OR-ZERO is the Σ-protocol of the OR-composition of relation RZERO.

The full description of the protocol shows that the Σ-protocol OR-ZERO requires a
handful of exponentiations. Also, the use of Algorithm 4.6 helps to keep the computation

of the list {[[zk ]]}
n−1
k=0 low as well.
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Chapter 4. General Verifiable Rotations

Protocol 4.3Honest verifier zero-knowledge proof of knowledge for RROT for homomor-
phic ElGamal cryptosystem

Common Input : {(ak , bk) = [[xk]]}
n−1
k=0 , {(dk, ek) = [[yk]]}

n−1
k=0 .

Prover’s Private Input : {sk}
n−1
k=0 , offset r with 0 ≤ r < n.

Prover Verifier
β ∈R Zq

←−−−−−−−−−−−−−−
β
−−−−−−−−−−−−−−

Everyone computes:

t = ∑
n−1
j=0 βjsj,

{
(∏

n−1
j=0 (dj+r/aj)

βj

,∏n−1
j=0 (ej+r/bj)

βj

) =

for 0 ≤ k < n (zk1, zk2) = [[zk]]
}n−1
k=0

OR-ZERO({[[zk ]]}
n−1
k=0 ; t)

u, {ρj, λj}j 6=r ∈R Zq

{Aj = gρjz
λj

j1}j 6=r

{Bj = hρjz
λj

j2}j 6=r

Ar = gu, Br = hu −−−−
{Ak, Bk}

n−1
k=0

−−−−−−−−−−−−→

←−−−−−−−−
λ
−−−−−−−−− λ ∈R Zq

λr = λ−∑j 6=r λj

ρr = u− λrt −−−−
{λk, ρk}

n−1
k=0

−−−−−−−−−−−−→ λ
?
= ∑

n−1
j=0 λj

Ak
?
= gρkz

λk
k1

Bk
?
= hρkz

λk
k2

4.4 Related Work and Efficiency Comparison

There exist techniques in the literature to show that a rotation has been applied. Reiter
and Wang [RW04] present the first protocol for shuffles restricted to a rotation. Their
approach is rather inefficient as they need four sequential invocations to a protocol for
general shuffling. De Hoog et al. [dHSŠV09] present a general protocol following a “two-
stage paradigm”, analogous to that for general shuffling in [Nef01, Gro03, GI08]. The
high-level idea of all these shuffling protocols is to first give a protocol to show that a list
of known values is committed in a shuffled (or, rotated) manner and use it as a stepping-
stone to present the general solution.

Recently, Terelius and Wikström [TW10] have proposed a completely different and
interesting approach to prove that a shuffle uses a permutation in a restricted set. The
restricted set is the automorphism group of a partially oriented hypergraph. The ap-
proach works by first letting the shuffler commit to its permutation and then prove both
that the permutation belongs to the automorphism group of a hypergraph and that the
shuffle was done according the committed permutation. The idea of committing to a

66



4.4. Related Work and Efficiency Comparison

Protocol Prove Verify Rounds

Loop permutations [RW04] 30n 28n 28
DFT-based (Protocol 3.1) 5n 4n 3
General (Protocol 4.3) 9n 9n 4

General [dHSŠV09] 9n 9n 6
Graph automorphism [TW10] 11n 9n 5

Table 4.1: Computational and round complexities for different protocols for rotation.

permutation, first introduced in [Wik09], allows us to move the commitment stage to a
pre-computation phase, while checking that the shuffle is done according to the commit-
ted matrix requires few computations in the on-line phase. In the particular case that
the (hyper)graph has as automorphism group the set of all rotations, provides a proto-
col that is overall slightly less efficient than our solutions. The technique is attractive,
though, since it allows to prove a shuffle using a permutation from many interesting
families of permutations.

The solutions presented in this thesis are very efficient and the performance figures
are comparable to those for proving a general shuffle. In fact, the DFT-based solution
(Protocol 3.1) is slightly more efficient than Groth’s shuffling protocol [Gro03]. The pro-
tocol for rotation presented in this chapter is as efficient as the general protocol for ro-
tations in [dHSŠV09]. Our protocol, however, proves a rotation in one go, without any
auxiliary protocols, which results in a protocol with 4 rounds instead of 6 rounds.

Table 4.1 presents a comparison of the computational complexities for various proto-
cols for rotation. In all cases, we assume that the protocols are based on homomorphic
ElGamal and Pedersen commitments. Additionally, for the protocol in [RW04] we as-
sume that they use the proof of shuffle by Groth [Gro03] which is the computationally
most efficient to the best of our knowledge.
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Chapter 5

Verifiable Multiply Fragile Shuffles

We consider a generalization of the problem of rotation in a shuffle of encryptions. Name-
ly, we look at zero-knowledge protocols to show that the shuffle applied belongs to a
multiply fragile set of permutations. A set of permutations is k-fragile, as defined by Re-
iter andWang [RW04], if any k input-output correspondences of a permutation uniquely
identifies a permutation within the set. Shuffles showing that a permutation is k-fragile
may be applied to construct fragile mixes.

In this chapter we present the first protocols for proving in zero-knowledge that a 2-
fragile and 3-fragile permutation is applied in a shuffle. Concretely, we give protocols for
the affine transformation and the Möbius transformation on a projective field. Interest-
ingly, the two main proofs presented in this chapter can be expressed in terms of proofs
of rotations.

Note that since the set of affine transformations and the set of Möbius transforma-
tions are both subgroups of the symmetric group, one can think of a cascade of these
sets of permutations. In this chapter we analyze how such cascades can be constructed.
In particular, we see how the DFT-based solution can be based such that the average
computation per shuffler is amortized over the cascade length.

Besides of the protocol development, we point out the link between the definitions of
fragile and transitive set of permutations. In fact, we show that under some conditions
both definitions are equivalent. The idea of a transitive set of permutations is a very
well studied problem in combinatorics. In fact, we review some (non-)existence results
regarding multiply transitive set of permutations.

5.1 Fragile Permutations

Consider the following threat in the context of cascades of shufflers (a.k.a. mix-networks).
After a cascade has been executed and successfully verified, no one can prevent any of the
shufflers from disclosing partial information about the permutation they have used. For
instance, all shufflers may disclose input-output correspondences throughout the cascade
in order to track where a certain input element ends after the cascade of shuffles. This
passive attack seriously compromises the secrecy that a cascade is supposed to provide,
and is clearly undetectable by the users of the cascade.

With this attack inmind, Reiter andWang [RW04] defined the concept of fragile mixing
as a way to discourage shufflers from revealing any information about the permutation
used in a shuffle. In a fragile mix, some of the shufflers are required to shuffle using a
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α β δ γ

π1

π2

π3

π4

β α γ δ

δ β α γ

α γ δ β

γ δ β α

Figure 5.1: A Latin square on alphabet A = {α, β, δ,γ}.

permutation belonging to a restricted set. The distinguishing feature of a k-fragile per-
mutation set is that revealing k correspondences between input and output messages
suffices to reveal the permutation that has been used. A shuffler using such a fragile
permutation is able to disclose limited information about the permutation before the per-
mutation is fully revealed. In fact, once the permutation is revealed its reputation as
shuffler may be affected and therefore, the shuffler will be deterred from revealing “too
much” information about the permutation used in a fragile-mix.

Before going into the formal definitions, we give some common notation used through-
out this chapter. The set Sn denotes the symmetric group on a set X of n elements. With
SX we denote the symmetric group of permutations on the set X where the set X is ex-
plicitly indicated.

Definition 5.1 The subset F of Sn is k-fragile if for any set D ⊂ X of k elements, and π, π′ ∈ F
it holds that π(x) = π′(x) for all x ∈ D only when π = π′.

The definition says that any element of the k-fragile set F is uniquely identified by a
collection of k input-to-output mappings.

A trivial example of a 1-fragile set of permutations is a singleton set. We present in
the following some other more elaborated examples of 1-fragile sets of permutations.

• Rotation. The set of the n cyclic shifts of SZn , FROT = {πr ∈ SZn : πr(x) = x +
r mod n, r ∈ Zn}.

• Latin square. A Latin square is a n × n array which contains elements from an al-
phabet of n symbols in such a way that each symbol occurs exactly once in each
row and exactly once in each column. If each column is associated with a unique
symbol of the alphabet then the set of rows of that table are seen as the images of
the permutations on the alphabet (see Fig. 5.1). That set of permutations is fragile.
Also, multiplication tables of a group operation can be seen as a Latin squares.

• Scaling. This set comprises all permutations on Z∗n that rescale the positions by an
element in Z∗n. More specifically, FSCL = {πa ∈ SZ∗n

: πa(x) = ax mod n, a ∈ Z∗n}.

• One-time pad. Consider X = {0, 1}ℓ. A permutation is obtained by bit-wise XOR-
ing every element in X w.r.t. an ℓ-bit key. FOTP = {πK ∈ SX : πK(x) = x⊕ K,K ∈
X}.

Proposition 5.2 Let F ⊂ Sn be a k-fragile set of permutations. Then |F| ≤ n!/(n − k)!.
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Proof. From the definition of fragility we can uniquely identify every permutation of F
with a subset of k elements in X. We can associate π ∈ F with (π(x1), . . . ,π(xk)) for
a fixed tuple (x1, . . . , xk) of elements in X. Since F is k-fragile, any other permutation
π′ ∈ F cannot be such that π′(xj) = π(xj). This upper-bounds the size of F by the num-
ber of ordered subsets of k elements from X, so by n!/(n − k)!.

Observe moreover that if F is k-fragile, then so is F′ with F′ ⊂ F. A way to check
whether a given set of permutations F ⊂ Sn is k-fragile is as follows. Clearly, if |F| >

n!/(n − k)! then F is not k-fragile. Otherwise, we take any subset D ⊂ X of k elements
and map it using each permutation in F. The k-fragility means that all images must be
different.

Proposition 5.3 A subset F ∈ Sn is k-fragile if and only if for every k distinct elements x0, . . . ,
xk−1 ∈ X and y0, . . . , yk−1 ∈ X there exist at most one permutation π ∈ F such that π(xj) = yj
for all 0 ≤ j < k.

Proof. Let x0, . . . , xk−1 ∈ X and y0, . . . , yk−1 ∈ X be two lists of non-repeating elements
such that there are at least two permutations π and π′ in F such that π(xj) = π′(xj) = yj.
Then, F is not k-fragile.

If F is not k-fragile, then there exists a set D ⊂ F of k elements for which there are
two permutations π and π′ with π(x) = π′(x) for all x ∈ D, yet π 6= π′. Define
{x0, . . . , xk−1} = D. Taking yj = π(xj) for all 0 ≤ j < k, we have that π and π′ are
two different permutations satisfying π(xj) = yj, which yields a contradiction.

5.1.1 Transitive Sets of Permutations

The problem of identifying permutations in a set given k input-output correspondences
has been extensively studied in combinatorics. A set of permutations is k-transitive if at
least one permutation is identified when any k input-output correspondences is fixed.

Definition 5.4 A subset H of Sn is called k-transitive if for every k distinct elements x0, . . . , xk−1
and non-repeating y0, . . . , yk−1 of X there exists a permutation π ∈ H such that π(xj) = yj for
all 0 ≤ j < k. If H is k-transitive and is a subgroup of Sn then H is called a k-transitive group.

We note that the definition can be applied to any group action. Instead of Sn we
could consider a group G acting on the set X. Then a set H ⊂ G is k-transitive if for any
non-repeating elements x0, . . . , xk−1 and y0, . . . , yk−1 of X there exists h ∈ H such that
h · xj = yj for all 0 ≤ j < k, where · denotes the group action of G on X. In our definition
we use group G = Sn acting on X which defines the set of all permutations on the set X.

From Prop. 5.3 we see the connection of the definitions of k-transitive set and k-fragile
set. Given k input-output correspondences we have that a k-transitive set has at least
one permutation that passes through all k correspondences whereas a k-fragile set has at
most one permutation matching these k correspondences. In fact, we see in the following
that all properties of k-transitivity are symmetric to those of k-fragility. We also point out
under which conditions transitivity and fragility are equivalent definitions.

Proposition 5.5 Let H ⊂ Sn is a k-transitive set of permutations. Then |H| ≥ n!/(n − k)!.

71



Chapter 5. Verifiable Multiply Fragile Shuffles

Proof. Let k non-repeating and fixed elements x0, . . . , xk−1 ∈ X be given. Since H is k-
transitive, for every k-tuple (y0, . . . , yk−1) of non-repeating elements of X there must exist
at least one permutation π ∈ H such that π(xj) = yj, for all 0 ≤ j < k. Clearly, each of
such permutations is different, and hence |H| ≥ n!/(n − k)!.

Definition 5.6 A subset H of SX is called sharply k-transitive if H is k-transitive and for every
subset D ⊂ X of k-elements, if there exist permutations π,π′ ∈ H such that π(x) = π′(x), for
all x ∈ D, then π = π′.

It follows in a straightforward way that a sharply k-transitive set is k-fragile. More pre-
cisely, a sharply k-transitive set is a k-transitive set and a k-fragile set at the same time.

The concepts of k-fragility and k-transitivity are not equivalent. In fact, there exist
k-fragile sets of permutation that are not k-transitive. It suffices to consider a singleton
set F = {π} for some π ∈ Sn. The set F is k-fragile, although it is not k-transitive. On
the other hand, there exist k-transitive sets that are not k-fragile. As a counterexample,
consider the a k-sharply transitive set F ⊂ Sn of size n!/(n − k)!. By definition, F is k-
transitive and k-fragile. Define the set F′ by F′ = F ∪ {π} where π ∈ Sn\F. This set F′ is
k-transitive, however, since the size of F′ is larger that the maximal possible for k-fragility
it clearly cannot be k-fragile.

In the following proposition, we discuss the equivalence between k-fragility and k-
transitivity.

Proposition 5.7 Let H be a subset of Sn that has n!/(n− k)! elements. H is k-fragile if and only
if H is k-transitive.

Proof. Let x0, . . . , xk−1 and y0, . . . , yk−1 be two sets of k different elements of X. On
one hand, observe that y0, . . . , yk−1 is one of the n!/(n − k)! ordered combinations of
k distinct elements chosen from the set X. On the other hand, since there are n!/(n −
k)! permutations in F there are n!/(n − k)! possible different mappings of x0, . . . , xk−1,
otherwise k-fragility and themaximal size of F cannot happen simultaneously. Therefore,
there exists a permutation π ∈ F such that π(xj) = yj for all 0 ≤ j < n.

Suppose that D is a subset of X with k elements on which the k-fragility condition
fails. That is, there are two different permutations π and π′ that coincide in D. Since H
is k-transitive a counting argument implies that |H| > n!/(n − k)! which yields a contra-
diction.

Corollary 5.8 H is a sharply k-transitive set if and only if H has n!/(n − k)! elements and is
k-fragile.

5.1.2 Basic Sharply Transitive Permutation Sets

We consider trivial examples of sharply transitive sets.

Proposition 5.9 The set Sn of all permutations on X is sharply n-transitive and sharply (n− 1)-
transitive.
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Proof. A permutation in Sn becomes uniquely defined when n− 1 or n input-output cor-
respondences are given, which proves that it is n and (n− 1)-fragile. The set Sn is sharply
(n− 1)-transitive and sharply n-transitive since it is of maximal size n!.

Proposition 5.10 The alternating group An ⊂ Sn is a sharply (n− 2)-transitive set.

Proof. First, note that An is (n− 2)-fragile. Given n− 2 input-to-output correspondences,
the two remaining ones are already determined in order to get even parity. Moreover,
|An| = n!/2 which is the maximal size for an (n− 2)-fragile set of permutations. Thus,
An is sharply (n− 2)-transitive.

A simple example of a sharply 1-transitive set is the set of all rotations of n elements, the
set FROT defined above. The set FSCL of scaling is another example of sharply 1-transitive
set. They are both 1-fragile and of maximal size.

Proposition 5.11 All sharply 1-transitive sets are Latin squares, and vice versa.

On the one hand, the set permutations induced by a Latin square is fragile and of maxi-
mal size. On the other hand, any sharply 1-transitive set of permutations can be seen as
a Latin square.

5.1.3 Affine Transformation

The affine transformation over Zn is a function f : Zn → Zn parametrized by a ∈ Z∗n
and b ∈ Zn defined as

f (x) = ax + b mod n.

Clearly, affine transformations are invertible, the inverse function is given by f−1(x) =
(x− b)a−1 mod n. Notice that since f is invertible, it follows that f ∈ Sn.

Consider the set of affine transformations on Zn denoted as FAFF(n) = {πa,b ∈ Sn :
πa,b(x) = ax + b mod n, a ∈ Z∗n, b ∈ Zn}.

Proposition 5.12 If n is prime, the set FAFF(n) ⊂ Sn is sharply 2-transitive.

Proof. We show that set FAFF(n) is 2-fragile using Proposition 5.3. Let x0, x1 and y0, y1
be two pairs of different elements in Zn. We have to see that there exists at most one
permutation in FAFF linking them. This is, find a ∈ Z∗n and b ∈ Zn such that

{
ax0 + b = y0
ax1 + b = y1

The unique solution for this system of equations is a = (y0 − y1)(x0 − x1)
−1 mod n and

b = y0 − (y0 − y1)(x0 − x1)
−1x0 mod n which always exist if n is prime.

Also, note that |FAFF(n)| = n(n− 1) which is the maximal size of a 2-fragile set. There-
fore, FAFF(n) for prime n is sharply 2-transitive.
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5.1.4 Möbius Transformation

Consider the projective line of a finite field Fq denoted with Fq. The set Fq is the set Fq

augmented with the point at infinity. For simplicity of exposition, we work in the field
Zn, n prime.

The Möbius transformation over Zn, with n prime, is a function f : Zn → Zn param-
etrized by a, b, c, d ∈ Zn such that

f (x) =
ax + b

cx + d
,

where ad− bc 6= 0. The fraction is understood as operations over the projective line Zn.
Namely, when c 6= 0 the function is defined such that f (∞) = a/c and f (−d/c) = ∞. On
the other hand, if c = 0 then f (∞) = ∞.

We normalize the representation of a Möbius transformation. Given f (x) = (ax +
b)/(cx + d), if c 6= 0 we divide c out, getting

f (x) =
a
c x + b

c

x + c
d

.

In case c = 0, we divide by d, to get f (x) = (a/d)x + b/d which is an affine map over
Zn. Therefore, from now on we only consider Möbius transformations parametrized by
a, b, c, d ∈ Zn such that ad− bc 6= 0, c ∈ {0, 1}, and if c = 0 then d = 1.

The Möbius map f with normalized parameters a, b, c, d ∈ Zn with c = 1 can be
decomposed in simpler, elementary functions. Namely, consider the functions f1, f2, f3, f4
defined as follows.

• f1(x) = x + d (cyclic rotation by d positions),

• f2(x) = 1/x (inversion),

• f3(x) = −(ad− b)x (scaling by non-zero factor −(ad− b)),

• f4(x) = x + a (cyclic rotation by a positions).

It can be easily checked that f = f4 ◦ f3 ◦ f2 ◦ f1. Since we have an affine mapping when
c = 0, it follows that Möbius transformations are invertible, and thus they are a subset of
Sn+1.

Furthermore, note that if f is a Möbius transformation with parameters a, b, c, d ∈ Zn,
then f−1 is a Möbius transformation as well. In fact, if c = 0 then f−1(x) = a−1x− a−1b
and if c = 1, then f−1(x) = (−dx + b)/(x − a).

Consider the set FMÖB(n), for n prime, defined as follows:

FMÖB(n) = {π ∈ S
Zn

: π(x) = ax+b
cx+d , a, b, c, d ∈ Zn, ad− bc 6= 0,

c ∈ {0, 1}, if c = 1 then d = 0}.

Proposition 5.13 If n is prime, the set FMÖB(n) ⊂ Sn+1 is sharply 3-transitive.

To prove this property, we need the following lemma.

Lemma 5.14 Given non-repeating elements x0, x1, x2 ∈ Zn, there exists a Möbius transforma-
tion f such that f (x0) = 0, f (x1) = 1, and f (x2) = ∞.
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a b c d
xi ∈ Zn x1 − x2 x0(x2 − x1) x1 − x0 x2(x0 − x1)

x0 = ∞, x1, x2 ∈ Zn 0 x2 − x1 −1 x2
x1 = ∞, x0, x2 ∈ Zn 1 −x0 1 −x2
x2 = ∞, x0, x1 ∈ Zn −1 x0 0 x2 − x1

Table 5.1: Values of parameters a, b, c, d for the Möbius transformation f (x) = (ax +
d)/(cx + d) that passes through the points (x0, 0), (x1, 1), and (x2,∞).

Proof. We consider the following 4 cases: x0, x1, x2 are all in Zn, or one of them is
∞. Parameters a, b, c, d up to normalization of the Möbius transformation f satisfying
f (x0) = 0, f (x1) = 1, and f (x2) = ∞ are depicted in Table 5.1.

It can be checked that a, b, c, d stated in the table are such that ad− bc 6= 0. The way to
deduce those values is by noting that f (x) = (x− x0)(x1 − x2)/(x − x2)(x1 − x0) is the
function fulfilling the requirement that f (x0) = 0, f (x1) = 1, and f (x2) = ∞ which is a
Möbius transformation in all cases.

Proof of Prop. 5.13. We show that FMÖB(n) is a 3-fragile set of maximal size.
We first establish the size of the set FMÖB(n). Namely, we have to count the number

of normalized Möbius transformations in Zn. If c = 0 then d = 1, so we have to see all
possible combinations of a, b ∈ Zn with a 6= 0. This gives n(n− 1) possible permutations.
When c = 1, we have to count how many a, b, d ∈ Zn satisfy ad− b 6= 0. There are, say, n
possible values for each b and d. There is only one value of a that makes ad− b = 0, thus
there are n2(n − 1) possible permutations in this case. Summing up both cases of c, we
have n(n− 1) + n2(n− 1) = (n + 1)n(n − 1) different permutations in FMÖB(n) which is
the maximal allowed size for a 3-fragile set.

Secondly, we prove that FMÖB(n) is 3-fragile by means of Prop. 5.3. Let x0, x1, x2
and y0, y1, y2 be two triples of non-repeating elements from Zn. Then, according to
Lemma 5.14 there exist Möbius transformations fx and fy such that fx({x0, x1, x2}) =
{0, 1,∞} and fy({y0, y1, y2}) = {0, 1,∞}. Now note that, the Möbius transformation

g = f−1y ◦ fx satisfies g(xi) = yi for i = 0, 1, 2.

5.1.5 Multiply Sharply Transitive Sets

In the previous sections, we have given examples of sharply 1, 2 and 3-transitive sets of
permutations. The natural question that arises is if we can find sharply transitive sets
of higher degree, beyond the trivial examples of An and Sn. Some existence results are
known in the literature. They are included for completeness of the discussion on fragility.

The first distinction that is commonly made has to do with whether the sets of permu-
tations are subgroups of the symmetric group or not. In fact, the set of all rotations, all
scalings, all affine transformations, and all Möbius transformations are sharply transitive
groups. Latin squares are not necessarily groups.

Sharply multiply transitive groups are fully classified. Sharply 1-transitive groups
are the groups in which the only permutation fixing points is the identity [Rob95]. A
comprehensive classification of all sharply 2-transitive and sharply 3-transitive groups
has been made by Zassenhaus. Roughly speaking, all sharply 2-transitive groups are
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Group Order Transitivity

M11 7920 = 24 · 32 · 5 · 11 sharply 4-transitive
M12 95040 = 26 · 33 · 5 · 11 sharply 5-transitive
M22 443520 = 27 · 32 · 5 · 7 · 11 3-transitive
M23 10200960 = 27 · 32 · 5 · 7 · 11 · 23 4-transitive
M24 244823040 = 210 · 33 · 5 · 7 · 11 · 23 5-transitive

Table 5.2: Mathieu Groups with order and transitivity.

related to the group of affine transformations, and sharply 3-transitivity relates to the
Möbius transformations. For more details, we refer to the reader to [Ker74, Rob95, DM96]
and references therein.

Interestingly, Jordan [Jor72] proved that there are no sharply k-transitive groups, for
k ≥ 4, other than the alternating and symmetric groups, with the exception of two spo-
radic groups, the Mathieu groups M11 and M12.

Theorem 5.15 ([Jor72]) Suppose that k ≥ 4 and let G be a sharply k-transitive group of Sn

which is neither Sn nor An. Then either k = 4, n = 11, and G is the Mathieu group M11, or
k = 5, n = 12, and G is the Mathieu group M12.

The groups M11 ⊂ S11 and M12 ⊂ S12 were discovered by Mathieu in 1861. This
French mathematician was interested in finding multiply transitive groups. For illustra-
tion purposes, Table 5.2 gives some information about some transitive groups of permu-
tations found by Mathieu.

A classification of all sharply k-transitive groups is summarized in the following the-
orem included in [Pas92].

Theorem 5.16 ([Pas92]) The following list classifies all sharply k-transitive groups, k ≥ 2:

• The symmetric group Sn is sharply n and (n− 1)-transitive.

• The alternating group An ⊂ Sn is sharply (n− 2)-transitive.

• Affine groups of fields or near fields are sharply 2-transitive.

• PGL(2, n) ⊂ Sn+1 is sharply 3-transitive.

• The subgroup G = 〈PSL(2, n2), σ〉 of PΓL(2, n2) ⊂ Sn2+1 with n odd and σ defined on

PG(2, n2) as σ(x, y) = (xn, yn) is sharply 3-transitive.

• The Mathieu group M11 ⊂ S11 is sharply 4-transitive.

• The Mathieu group M12 ⊂ S12 is sharply 5-transitive.

For a detailed definition of these groups, including notation, we refer the reader
to [DM96].

For sharply multiply transitive sets the picture is not as complete as for groups, but
there are some results as well. For instance, Bonisoli and Quattrocchi [BQ00] present the
following results. Here, an invertible set of permutations contains the inverses of all its
elements.
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Theorem 5.17 ([BQ00]) The following statements hold.

• If G is a sharply 4-transitive set with the identity, then G = M11.

• If G is a sharply 5-transitive set with the identity, then G = M12.

• If G is a sharply k-transitive with k ≥ 4 and G is an invertible set, then G is a group.

• There is no sharply 6-transitive set in S13.

In particular, for k ≥ 4, all sharply k-transitive invertible sets of permutations are Sn, An

or the sporadic Mathieu groups M11 for k = 4 and M12 for k = 5.
Quistorff [Qui04] shows the following non-existence result for sharply k-transitivity

for large k.

Theorem 5.18 ([Qui04]) If 4 ≤ n− k ≤ k then there is no sharply k-transitive set of permuta-
tion in Sn.

This states that for k ≥ 4 and n/2 ≤ k ≤ n− 4 there is no sharply k-transitive set. A nice
compilation and detail treatment of the classification of fragile sets, we refer the reader
to [Rob95, DM96].

5.2 Shuffling according to an Affine Transformation

In the previous section we showed the connection between the definition of fragile sets of
permutations and sharply transitive sets of permutations. In this section, we design pro-
tocols to show that an affine transformation is applied as a permutation in the application
of a shuffle. This way, we achieve a 2-fragile shuffle.

As a stepping stone, we first describe how to prove that a scaling is performed in a
shuffle, using our solutions for rotations. It uses a generic conversion which requires no
extra cost at all. With this proof as a building block, we later show how to prove an affine
transformation in a shuffle.

5.2.1 Scaling Homomorphic Encryptions

We show how to construct a proof for the relation of scaling. That is, a zero-knowledge
protocol for the relation RSCL defined as follows:

RSCL = {({[[xk ]]}k∈Z∗n
, {[[yk]]}k∈Z∗n

; a, {sk}k∈Z∗n
) : [[yak]] = [[xk]]E(0, sk), for k ∈ Z

∗
n, a ∈ Z

∗
n}.

The zero-knowledge proof of knowledge for this relation may be expressed in terms of
a proof of rotation for some values of n, using the following well-known result from
number theory.

Theorem 5.19 The multiplicative group Z∗n is cyclic if and only if n = 2, 4, pℓ, or 2pℓ for an odd
prime p and non-negative integer ℓ.

In particular, this enables us to say that themultiplicative cyclic group Z∗n and the additive
group Zφ(n) are isomorphic where the isomorphism is given by the map f : Zφ(n) → Z∗n

defined by f (k) = gk mod n where g is a generator of Z∗n. Here, φ denotes the Euler-φ
function.
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Algorithm 5.1 Scaling of Homomorphic Encryptions using Rotations

Input: {[[xk]]}k∈Z∗n
, a ∈ Z∗n, generator g of Z∗n.

Output: {[[yk]]}k∈Z∗n
such that yk = xak.

Phase 1. The following re-ordering is applied to the inputs.

for k = 0 to φ(n)− 1 do
[[zk]] = [[xgk ]]

end for

Phase 2 (Rotation). The rotation offset logg a is applied to the list {[[zk ]]}
φ(n)−1
k=0 .

for k = 0 to φ(n)− 1 do
pick sk ∈R R
[[wk+logg a

]] = [[zk]]E(0, sk)

end for

Phase 3. Revert re-ordering of Step 1.

for k = 0 to φ(n)− 1 do
[[ygk ]] = [[wk]]

end for
return {[[yk]]}k∈Z∗n

For the rest of this section we work with n such that Z∗n is cyclic. Given a list of φ(n)
homomorphic encryptions, the scaling is done as in Algorithm 5.1. In particular, when n
is a prime number, we perform a scaling on a list of homomorphic encryptions of n− 1
elements.

Proposition 5.20 Algorithm 5.1 performs a scaling of ciphertexts.

Proof. This can be verified in a straightforward way as follows. Consider k ∈ Z∗n we
have,

xk = zlogg k = wlogg k+logg a
= y

g
logg k+logg a = yak.

We explain below how Algorithm 5.1 can be used to prove in zero-knowledge that a
list of homomorphic encryptions {[[xk]]}k∈Z∗n

is rescaled into a list {[[yk]]}k∈Z∗n
. A shuffler

executes Algorithm 5.1 on {[[xk]]}k∈Z∗n
, and outputs {[[yk]]}k∈Z∗n

. Since Phases 1 and 3
only re-order of lists of encryptions according to an agreed upon generator g of Z∗n, these

steps can be done publicly. In fact, the lists {[[zk ]]}
φ(n)−1
k=0 and {[[wk]]}

φ(n)−1
k=0 are obtained

by respectively renaming [[zk]] = [[xgk ]] and [[ygk ]] = [[wk]] for all 0 ≤ k < φ(n). Therefore,

verifiability of the scaling is obtained by giving a zero-knowledge proof of knowledge
that

({[[zk ]]}
φ(n)−1
k=0 , {[[wk]]}

φ(n)−1
k=0 ; logg a, {sk}

φ(n)−1
k=0 ) ∈ RROT.

This way, it follows that ({[[xk]]}k∈Z∗n
, {[[yk]]}k∈Z∗n

; a, {tk}k∈Z∗n
) ∈ RSCL , where tgk = sk for

0 ≤ k < φ(n). In other words, we have traded the proof of scaling in Z∗n with a proof of
rotation of a list in Zφ(n).
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Algorithm 5.2 Shuffling Encryptions using an affine transformation

Input: {[[xk]]}
n−1
k=0 , a ∈ Z∗n, b ∈ Zn, n prime.

Output: {[[yk]]}
n−1
k=0 such that yk = xak+b.

pick {{s
(i)
k }

n−1
k=0}

2
i=1 at random from R

Phase 1 (Scaling). Applying scaling on input list.

for k = 1 to n− 1 do

[[zak ]] = [[xk]]E(0, s
(1)
k )

end for
[[z0]] = [[x0]]

Phase 2 (Rotation). A rotation is applied to resulting list.

for k = 0 to n− 1 do

[[yk+b]] = [[zk ]]E(0, s
(2)
k )

end for
return {[[yk]]}

n−1
k=0

Remark 5.21 Scaling can be performed directly by adopting an approach along the lines of the
general protocol for rotation (Protocol 4.2).

Thus, scaling can be performed on lists of any length φ(n) indexed by Z∗n, not only for
those where n = 2, 4, pℓ, 2pℓ. However, later in this chapter we will only need to apply
scaling on lists of encryptions indexed by Z∗n with n prime.

Remark 5.22 Phase 2 of Algorithm 5.1 can be proved correct in zero-knowledge using the ap-
proach based on DFT (Algorithm 3.1) if some mild conditions on the system parameters are satis-
fied.

In fact, let Zq with q prime be the plaintext of the underlying homomorphic cryptosys-
tem. Then it must hold that φ(n) | q − 1 so that a rotation of φ(n) elements can be
performed using DFT. In the particular case that n is prime, an (n − 1)-st root of unity
modulo q must exist.

5.2.2 Shuffles using an Affine Transformation

We focus our attention on how to prove that a list of n encryptions has been shuffled
using an affine transformation. More specifically, we provide a protocol for the following
relation.

RAFF = {({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ; a, b, {sk}

n−1
k=0 ) :

[[yak+b]] = [[xk]]E(0, sk), for all 0 ≤ k < n, a ∈ Z
∗
n}.

We assume that n is prime since affine transformations over Zn form a sharply 2-transitive
group. Algorithm 5.2 presents an approach to shuffle a list of encryptions of length n,
with n prime, according to an affine map. The approach is based on the decomposition
of an affine transformation into a rotation and scaling. It is straightforward to see that
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Figure 5.2: Applying an affine transformation using the DFT-based approach.

the algorithm shuffles the list of encryptions according to an affine transformation since
xk = zak = yak+b, for 0 ≤ k < n.

If a shuffler executes Algorithm 5.2 on a input list of encryptions {[[xk]]}
n−1
k=0 and

produces {[[yk ]]}
n−1
k=0 , then a shuffle according to an affine transformation has been per-

formed. Due to the blinding process in both the scaling and the rotation phases, the
applied affine transformation is hidden. The shuffler proves that an affine transforma-

tion is linking input and output ciphertexts by releasing the lists of ciphertexts {[[zk ]]}
n−1
k=0

and {[[yk]]}
n−1
k=1 , and giving zero-knowledge proofs for RSCL and RROT such that:

({[[xk ]]}
n−1
k=1 , {[[zk]]}

n−1
k=1 ; a, {s

(1)
k }

n−1
k=1 ) ∈ RSCL and({[[zk ]]}

n−1
k=0 , {[[yk]]}

n−1
k=0 ; b, {s

(2)
k }

n−1
k=0 ) ∈ RROT.

Therefore, ({[[xk ]]}
n−1
k=0 , {[[yk]]}

n−1
k=0 ; a, b, {uk}

n−1
k=0 ) ∈ RAFF, where u0 = s

(2)
0 and uk = s

(1)
k +

s
(2)
ak for 1 ≤ k < n.

5.2.3 Performance Analysis

The zero-knowledge proof for RSCL is reduced to prove two rotations, one rotation of a
list of n− 1 encryptions and the other of a list of n elements. Thus the overall complexity
is that of these two rotations.

If the approach for rotation based on DFT (Algorithm 3.1) is used for both rotations,
some constraints are imposed on the parameters. Namely, if Zq for prime q is the message
space of the cryptosystem, we require prime numbers n, q be such that n | q− 1 and n− 1 |
q− 1 so that the corresponding roots of unity exist. Performing a parallel composition of
both Σ-protocols, the resulting protocol for affine transformation is a Σ-protocol as well.
Fig. 5.2 sketches the order in which DFT and inverse DFT must be performed where α is
an (n− 1)-st root of unity and β is an n-th root of unity.

Since one of the rotations is over n elements, FFT for n prime may be applicable. To
scale n− 1 elements, a rotation of n− 1 is required. If n− 1 is highly composite then an
efficient FFT algorithm is possible as well.

Protocol 4.2 (or Protocol 4.3, for ElGamal encryptions) can be freely used, putting no
constraints in the system parameters. Furthermore, we have that the resulting proto-
col for affine transformation is very efficient since O(n) computation is required as two
proofs of rotation on n encryptions are needed.
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5.3 Shuffling according to a Möbius Transformation

In this section we focus our attention on a proof of a shuffle in which a Möbius transfor-
mation is applied. Suppose n is prime and that we work on the projective line Zn.

RMÖB = {({[[xk ]]}k∈Zn
, {[[yk]]}k∈Zn

; a, b, c, d, {sk}
n−1
k=0 ) :

[[y ak+b
ck+d

]] = [[xk]]E(0, sk), for all k ∈ Zn, ad− bc 6= 0, c ∈ {0, 1}, c = 0⇒ d = 1}.

Algorithm 5.3 transforms a list of n + 1 homomorphic encryptions {[[xk]]}k∈Zn
into

a list {[[yk]]}k∈Zn
using a Möbius transform. It is based on the property that Möbius

transformations can be splitted into elementary, simpler functions (see Section 5.1.4). The
algorithm takes as input two rotation offsets r1 and r2, a scaling factor s and a bit e.

Proposition 5.23 Algorithm 5.3 shuffles the input list of encryptions {[[xk]]}k∈Zn
according to

a Möbius transformation.

Proof. We show that the resulting re-ordering is indeed a Möbius transformation. Let
r1, r2 ∈ Zn, s ∈ Z∗n and e ∈ {0, 1}. If e = 0 then the shuffling map applied to the list
of encryptions is an affine transformation over Zn defined by f (x) = sx + sr1 + r2. In
particular, x∞ = t∞ = v∞ = u∞ = y∞.

If e = 1, the Möbius transformation that is applied is given by f (x) = (r2x + r1r2 +
s)/(x + r1). This mapping represents a valid Möbius transformation since r2r1 − r1r2 −
s 6= 0 as the scaling factor s is not allowed to be 0.

We observe that any Möbius transformation can be ‘reached’ in the shuffle produced
by Algorithm 5.3. In fact, if an affine transformation is applied such that f (x) = ax + b,
then r1 = 0, e = 0, s = a and r2 = b. If, on the other hand, a Möbius transformation
f (x) = (ax + b)/(x + d) with normalized parameters a, b, d is applied, then r1 = d, e =
1, s = −(ad − b) and r2 = a. This is obtained from the decomposition of Möbius trans-
formations discussed in Section 5.1.4.

5.3.1 Proof of Shuffle using a Möbius Transformation

In order to construct a proof for relation RMÖB on lists of homomorphic encryptions
{[[xk]]}k∈Zn

and {[[yk]]}k∈Zn
, it suffices to verify each of the phases of Algorithm 5.3.

Namely, for the auxiliary lists of encryptions {[[tk ]]}
n−1
k=0 , {[[vk]]}k∈Zn

and {[[uk ]]}
n−1
k=1 , the

following relations are proved.

• ({xk}
n−1
k=0 , {[[tk]]}

n−1
k=0 ; r1, {s

(1)
k }

n−1
k=0 ) ∈ RROT,

• ({[[tk ]]}k∈Zn
, {[[vk]]}k∈Zn

, id, inv;π, {s
(2)
k }k∈Zn

) ∈ ROR-PERM (see Section 2.3.2),

• ({[[vk ]]}
n−1
k=1 , {[[uk]]}

n−1
k=1 ; s, {s

(3)
k }

n−1
k=1 ) ∈ RSCL

• ({uk}
n−1
k=0 , {[[yk]]}

n−1
k=0 ; r2, {s

(4)
k }

n−1
k=0 ) ∈ RROT,
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where id denotes the identity permutation and inv denotes the inverse permutation.

Therefore, we have that ({[[xk]]}k∈Zn
, {[[yk]]}k∈Zn

; a, b, c, d, {sk}k∈Zn
) ∈ RMÖB where the

following holds. If ({[[tk ]]}k∈Zn
, {[[vk]]}k∈Zn

, inv; {s
(2)
k }k∈Zn

) ∈ RPERM, then a = r2, b =

r1r2 + s, c = 1, and d = r1. Moreover, s∞ = s
(2)
∞ + s

(4)
0 , s−r1 = s

(2)
0 + s

(1)
−r1

, and sk =

s
(1)
k + s

(2)
k+r1

+ s
(3)

1
k+r1

+ s
(4)

s
k+r1

.

If ({[[tk ]]}k∈Zn
, {[[vk]]}k∈Zn

, id; {s
(2)
k }k∈Zn

) ∈ RPERM, then we have that a = s, b = sr1 +

r2, c = 0 and d = 1, with s∞ = s
(2)
∞ , s−r1 = s

(1)
−r1

+ s
(2)
0 + s

(4)
0 and for all other cases

sk = s
(1)
k + s

(2)
k+r1

+ s
(3)
k+r1

+ s
(4)
sk+sr1

.

Algorithm 5.3 Shuffling Permutations according to the Möbius Transformation

Input: {[[xk]]}k∈Zn
, r1, r2 ∈ Zn, s ∈ Z∗n, e ∈ {0, 1}

Output: {[[yk]]}k∈Zn
such that y f (k) = xk for Möbius transformation f .

pick {{s
(i)
k }

n−1
k=0}i=1,2,4, s

(2)
∞ , {s

(3)
k }

n−1
k=1 at random from R

Phase 1 (Rotation)

for k = 0 to n− 1 do

[[tk+r1 ]] = [[xk]]E(0, s
(1)
k )

end for
[[t∞]] = [[x∞]]

Phase 2 (Conditional Inversion)

Case e = 0: Case e = 1:

for k = 0 to n− 1 do

[[vk]] = [[tk ]]E(0, s
(2)
k )

end for
[[v∞]] = [[t∞]]E(0, s

(2)
∞ )

for k = 1 to n− 1 do

[[v1/k]] = [[tk]]E(0, s
(2)
k )

end for
[[v0]] = [[t∞]]E(0, s

(2)
∞ )

[[v∞]] = [[t0]]E(0, s
(2)
0 )

Phase 3 (Scaling)

for k = 1 to n− 1 do

[[usk ]] = [[vk]]E(0, s
(3)
k )

end for
[[u0]] = [[v0]]
[[u∞]] = [[v∞]]

Phase 4 (Rotation)

for k = 0 to n− 1 do

[[yk+r2 ]] = [[uk ]]E(0, s
(4)
k )

end for
[[y∞]] = [[u∞]]
return {[[yk]]}k∈Zn
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5.3.2 Selecting a Random Möbius Transformation

So far we have seen that Algorithm 5.3 gives a procedure to shuffle a list of homomor-
phic encryptions according to a Möbius transformation. Proving that this is the case is
not an issue, we basically use previously presented proofs to verify that all steps in Al-
gorithm 5.3 are followed correctly.

We describe now how a shuffler can select a random Möbius transformation using
Algorithm 5.3. Naturally, the shuffler can simply enumerate all (n + 1)n(n − 1) possible
Möbius maps and pick a random number between 1 and (n + 1)n(n− 1) to select one of
the transformations. Then the parameters a, b, c, d ∈ Zn of the picked transformation are
translated into r1, r2 ∈ Zn, s ∈ Z∗n and e ∈ {0, 1} for Algorithm 5.3.

Note that the alternative of selecting r1, r2 ∈ Zn, s ∈ Z∗n and e ∈ {0, 1} independently
and uniformly at random does not necessarily yield a Möbius transformation selected
uniformly at random among all possible transformations. Indeed, if e is uniformly se-
lected at random, then it is assigning affine and non-affine transformations with 50%
probability. However, there are n(n − 1) affine transformations versus n2(n − 1) non-
affine ones.

The following selection of r1, r2, s, and e does yield a random Möbius map. Draw the
offsets r1, r2 independently at random from Zn, select scaling factor s independently at
random from Z

∗
n, and let bit e be 0 with probability 1/(n + 1) and 1 with probability

n/(n + 1).
The intuition of the correctness of the argument is as follows. If e = 0 then the Möbius

map applied with Algorithm 5.3 is the affine transformation f0(x) = sx + (sr1 + r2)
whose parameters are random since a = s is a random non-zero scaling factor and
b = sr1 + r2 is a random offset. In the case e = 1, the Möbius transformation ap-
plied is f1(x) = (r2x + r1r2 + s)/(x + r1) which is a non-affine map, all its parameters
a = r2, b = r1r2 + s, and d = r1 are randomly chosen. Therefore, the biased election of bit
e balances the choices among all possible Möbius transformations.

As a little optimization of the method to select a uniformly random Möbius transfor-
mation described above, note that in case e = 0 then the choice of r1 does not influence
the distribution of the affine map. Thus, r2 and s are selected independently and uni-
formly at random, e is selected independently to be 0 with probability 1/(n + 1) and 1
with probability n/(n + 1). If e = 1 then r1 is drawn uniformly, else r1 may equal any
constant (no further randomness is needed).

5.4 Multiply Fragile Cascades

Since affine andMöbius transformations are closed under composition, they can be com-
posed in a cascade to produce a 2-fragile cascade and a 3-fragile cascade, respectively.
The result is that the input and output ciphertexts of the cascade are shuffled according
to an affine or Möbius transformation respectively. If all shufflers in the cascade prove
that they use a fragile permutation and at least one of them keeps its permutation hid-
den, the permutation linking input and output ciphertexts is kept secret, and it retains
the fragility.

We have seen that in the approaches for affine transformation (Algorithm 5.2) and
Möbius transformation (Algorithm 5.3) all intermediate operations can be carried out by
means of rotations. More concretely, proving an affine shuffle requires 2 rotations, while
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Figure 5.3: A cascade applying an affine transformation.

a Möbius transformation needs 3 rotations. In a cascade, this is repeated by each of the
shufflers in the cascade.

In both cases, if the approach for general rotation as described in Chapter 4 is ap-
plied the computation per shuffler is O(n). In the case of the approach based on DFT of
Chapter 3 the average computation per shuffler isO(n log n) due to the fact that DFT and
inverse DFT must be applied before and after each rotation. Here we assume that FFT is
possible for both n-th and (n− 1)-th root of unity.

In the following, we show how the computation in a cascade can be organized dif-
ferently. In the case that the DFT approach is used, the computation per shuffler may be
amortized over the length of the cascade so that the average work per rotator becomes
linear.

5.4.1 Efficient Affine Cascade using DFT

Suppose that in a cascade withm shufflers an affine transformation is applied at any node
in the cascade. Since any affine transformation can be splitted in a scaling phase and a
rotation phase, the same can be done in the cascade. Namely, in the first stage, there is a
sub-cascade of scalings, and in the second phase, there is a sub-cascade of rotators.

This gives some advantages in the DFT-based approach. Applying one affine transfor-
mation after the other means that each shuffler must perform two rotations on different
roots of unity. Thus, a total of 4 DFTs under the encryptions must be performed per
shuffler, meaning a total of 4m DFTs for the whole cascade.

By performing a sub-cascade of scalings followed by a sub-cascade of rotators, DFT
and inverse DFT only need to be applied at the beginning and at the end of the sub-
cascades respectively. Scaling and rotations within every sub-cascade are performed in
the transformed domain. This is depicted in Fig. 5.3.

The computational complexity of each shuffler may be amortized over the length of
the cascade assuming that FFT of both length n and n − 1 is possible. There is only
4 FFTs required in total. The cost of proving relation RDFT within the cascade requires
O(n) computation. We get an average computational work per shuffler proportional to
(2nm + 4n log n)/m. In particular, if the number of shufflers is Ω(log n) we have that the
average computational work per shuffler is O(n).

An evident drawback of this approach is that every shuffler must act at two differ-
ent points in time. The secrecy of the end-to-end affine permutation of the full cascade
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Figure 5.4: A cascade applying a Möbius transformation.

remains 2-fragile assuming that at least one shuffler keeps both its scaling factor and its
rotation offset secret during the execution of the cascade.

Furthermore, this construction preserves a nice property of cascades. Namely, if at
least one of the shufflers picks both its scaling factor and rotation offset at random, then
the overall end-to-end affine transformation that links input and output ciphertexts of
the cascade is random.

5.4.2 Efficient Möbius Cascade using DFT

The same idea as with affine cascades can be applied to a cascade of Möbius transforma-
tions. Following the idea of Algorithm 5.3, a cascade of shuffles using a Möbius transfor-
mation can be divided in 4 sub-cascades that proceed as in each phase of Algorithm 5.3.

As in the case of affine cascade, we observe that the overall Möbius transform can be
decomposed in sub-cascades of rotations, conditional inversion, scalings and rotations.
In the case that the DFT approach is applied, the sub-cascades using rotations and scal-
ings need to perform DFT and inverse DFT at the beginning and at the end of the sub-
cascades, respectively. Thus, only 6 DFTs under the encryptions for the entire Möbius
cascade which may amortize the computation per shuffler over the number of shufflers.

As before, the drawback is that every shuffler must be active at four different points
in time. Yet, the end-to-end Möbius transformation remains hidden as long as at least
one shuffler does not disclose any information about its applied transformations.
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RandomMöbius transformation

Another drawback of this 4-way cascade is that it may be difficult to get a uniformly ran-
dom Möbius transformation after the cascade. This is a consequence of the discussion
in Section 5.3.2: even though the two rotation offsets and the scaling factor can be uni-
form assuming at least a honest shuffler throughout the sub-cascades, the distribution
of the overall inversion/no-inversion bit is not biased towards the correct distribution in
general.

If we assume that all the shufflers are honest, they can all agree to pick each particular
bit e following a specific distribution that aggregated yields the desired 1/(n+ 1), n/(n+
1) distribution (see Section 5.3.2). If no such an assumption is made, the cascade as is does
not withstand malicious shufflers who may choose the bit e from any distribution and
thus affecting the distribution of the end-to-end Möbius transformation of the cascade.

This can be amended with the use of secure multiparty computation. An encrypted
bit [[e]] can be jointly computed in such a way that that e is randomly chosen from the
1/(n + 1), n/(n + 1) distribution [SS07, Sid07]. Then, the selection between the identity
and inverse permutation is done using a multiplication gate per element of the list of
encryptions (see Section 6.3.3 for a similar technique). This protocol requires interaction
between the parties. However, it just produces an overhead of O(n) computations.

Still, using a cascade of shufflers applying a full and random Möbius transformation
at a time will give rise to an unknown and uniformly at random end-to-endMöbius trans-
formation. In fact, the uniformity of the end-to-end transformation follows by assuming
that one of the shufflers is honest. When we use DFT for the rotations at each step, the
average computational cost is O(n log n) per shuffler.
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Integer Comparison

Yao’s millionaires’ problem [Yao82] is nowadays a classic problem in secure computation:
Two millionaires want to compare their wealth and decide who is richer without giving
away any other information, in particular, they do not want to disclose to each other
howmuch their assets are worth. Solutions to this problem, usually referred to as integer
comparison, are provided by the secure evaluation of the function GT(x, y) = [x > y].
The bracket notation [B], for a condition B, is defined by [B] = 1 if B holds and [B] = 0
otherwise (this is called Iverson’s convention; see [Knu97]).

In this chapter we discuss integer comparison protocols within the framework for se-
cure multiparty computation based on threshold homomorphic cryptosystems put forth
by Cramer et al. [CDN01]. We focus on the setting in which the inputs x and y are given
as encrypted bits of their binary representation, [[xm−1]], . . . , [[x0]] and [[ym−1]], . . . , [[y0]],

with x = ∑
m−1
i=0 xi2

i, y = ∑
m−1
i=0 yi2

i. The output is [[[x > y]]]. Both inputs and output are
available in encrypted form only, the actual values of x and y need not be known to any
party. Furthermore, the setting is not limited to two parties.

Our solutions can be classified in two types. First, we present solutions that involve
the evaluation of an arithmetic circuit composed of elementary gates as in [CDN01]. The
intermediate multiplications of the circuit are performed on encrypted bits which allows
us to apply conditional gates from [ST04]. We note that these circuits can be used to get
unconditional security if encryptions are replaced by sharings as in [DFK+06].

Secondly, wemake use of a more intricate approach. The protocols given here achieve
constant rounds assuming that a fixed number of parties execute it. We give a complete
description for the two-party setting, although the solutions generalize easily to a setting
with more parties. The proofs of security use ideas from [ST06] in which a successful at-
tacker to the protocol is reduced to an attacker of the semantic security of the underlying
cryptosystem.

Furthermore, we present further investigations regarding integer comparison and the
relation to other problems. Even though these interrelations are part of the folklore of
integer comparison, we describe and point out some of them since they may help to
achieve more efficient solutions.

6.1 Integer Comparison Circuits

We first recall the linear-depth circuit of [ST04] for computing [x > y], using arithmetic
gates only (addition, subtraction, multiplication). The circuit (or, oblivious program) is
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fully described by the following recurrence:

t0 = 0, ti+1 = (1− (xi − yi)
2)ti + xi(1− yi),

where tm is the output bit (hence tm = [x > y]). Rather than starting from the most
significant bit as one may intuitively do, this circuit computes [x > y] starting from the
least significant bit. The advantage of this approach is that the circuit comprises 2m− 1
multiplication gates only (compared to about 3mmultiplication gates when starting from
the most significant bit, see [ST04]).

A disadvantage is that the depth of the circuit ism, hence inducing a critical path of m
sequential secure multiplications. Clearly, the terms x0y0, . . . , xm−1ym−1 can be computed
in parallel, but the computation of t1, . . . , tm must be done sequentially.

6.1.1 Our Solution

We show how to reduce the depth of the circuit to roughly logm at the cost of a slight
increase of the circuit size. The idea relies on the following simple but crucial property
of integer comparison. Write x = X1X0 and y = Y1Y0 as bit strings, where 0 ≤ |X1| =
|Y1| ≤ m and 0 ≤ |X0| = |Y0| ≤ m. Then,

[x > y] =

{
[X1 > Y1], X1 6= Y1
[X0 > Y0], X1 = Y1,

which may be “arithmetized” as

[x > y] = [X1 > Y1] + [X1 = Y1][X0 > Y0]. (6.1)

This property suggests a circuit that would first split the bit strings x and y in about
equally long parts, compare these parts recursively and combine them to produce the
final output. Note that in order to achieve this, we need to decide whether the most-
significant parts of x and y are equal or not. Following the same recursive divide and
conquer reasoning, the equality of bit-strings can be evaluated by first obtaining the result
of the equality for the sub-strings. That is,

[x = y] = [X1 = Y1][X0 = Y0]. (6.2)

Greater-than and equality comparisons on single bit strings are computed as follows.
Given |x| = |y| = 1 we have that

[x > y] = x(1− y) = x− xy,

[x = y] = 1− (x− y)2 = 1− x + 2xy− y.

Both comparisons are computed using a single multiplication, xy, combined with linear
operations.

Given a bit-string s = sm−1 . . . s0, we let si,j denote the substring of s of length j com-
posed of the bits si+j−1 . . . si+1si. Let ti,j and zi,j stand for the value of [xi,j > yi,j] and
[xi,j = yi,j], respectively. Expressed explicitly in terms of the bits of x and y, a full solu-
tion for [x > y] is obtained by evaluating t0,m from the following recurrence relation.

ti,j =

{
xi − xiyi, j = 1,
ti+ℓ,j−ℓ + zi+ℓ,j−ℓti,ℓ, j > 1,

zi,j =

{
1− xi + 2xiyi − yi, j = 1,
zi+ℓ,j−ℓzi,ℓ, j > 1,

(6.3)
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t0,m

tm−1,1
zm−1,1

t0,m−1

tm−2,1
zm−2,1

t0,m−2

tm−2,1
zm−2,1

. . .

t2,1
z2,1

t0,2

t1,1
z1,1

t0,1

Figure 6.1: This is the diagram of recursion when ℓ = j− 1. The resulting circuit has size
2m− 1 and depth m.

where 1 ≤ ℓ ≤ j− 1.

Correctness of the computation is immediate from the recursion. The security follows
assuming secure arithmetic gates as in the setting of Cramer et al. [CDN01]. Since multi-
plication gates work on bits, conditional gates of [ST04] can be used assuming threshold
homomorphic ElGamal.

6.1.2 Performance Analysis

The performance parameters of an arithmetic circuit are the size, measured as the num-
ber of multiplication gates, and the depth which is associated with the critical path of
multiplication gates (see Section 2.4.1).

We first focus on the depth of these circuits. From Eq. (6.3) it can be seen that taking
ℓ ≈ j/2 at each recursive invocation, the depth of the resulting circuits is reduced to
⌈logm⌉+ 1. In contrast, taking either ℓ = j− 1 or ℓ = 1, the depth of the circuits stretches
to m. We note that these are respectively the msb-to-lsb and lsb-to-msb circuits of [ST04].

We turn our attention on the number of multiplication gates. Note that independently
of how the recurrence relation is structured (i.e., which ℓ is chosen at each splitting step)
the number of recursive steps is always the same. In fact, there are j− 1 recurrent calls to
evaluate ti,j (resp. zi,j). Also, the recurrence relation of ti,j (resp. zi,j) will always evaluate
the elements ti′,1 (resp. zi′,1), for all i ≤ i′ < i + j.

For computing equality ofm-bit inputs, the value z0,m usesm− 1 recursive steps, each
requiring one multiplication gate. Additionally, one multiplication is required for zi,1, for
all 0 ≤ i < m. Together this adds up to 2m− 1 multiplication gates.

For greater-than comparison, the evaluation of ti,j requires two multiplications per
recursive call. Each leaf ti,1 requires one multiplication which can be “recycled” from the
computation of zk,1. Thus, the number of multiplication gates for t0,m is 3m− 2.
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Trade-offs between Size and Depth

The computation of the greater-than function using Eq. (6.1) tells us that equality of the
least-significant part of the inputs is not necessary. This is easy to see in the recurrence
relation of Eq. (6.3): the computation of t0,j, for any 0 ≤ j < m, does not require the
values z0,j′ with j′ < j. Hence, some multiplications can be avoided. The extreme case is
taking ℓ = j− 1 at each recursion step, getting a total of 2m− 1 multiplication gates for
the evaluation of t0,m. The recurrence relation of this case is depicted in Fig. 6.1.

Therefore, the more recursive calls to t0,j for j > 1 the less invocations to z0,j′ are
needed which means less multiplication gates. However, we note that the more multipli-
cation gates are avoided this way, the bigger the depth of the circuit is. In the case that
ℓ = j− 1 at each recursion step (Fig. 6.1) we have that the depth of the circuit is m. This
clearly leads to a trade-off.

In the following we find an explicit formula for the size of the circuit based on the
number of appearances of t0,j in the recurrence of Eq. (6.3). Also, we give a lower bound
for the depth of the same circuit.

Proposition 6.1 Consider a particular recurrence relation of the greater-than circuit of Eq.(6.1).
Let d denote the depth and let r be the number of values of the form t0,∗ of the resulting circuit.
Then r ≤ d and the size of the circuit is exactly 3m− 2− r.

Proof sketch. The bound r ≤ d follows from the fact that all t0,∗ must be evaluated
sequentially. The size of the circuit is analyzed by observing that m multiplication are
needed for t∗,1 (which can be used to compute z∗,1 eventually), and then 2(m − 1) for
all the recursive splitting. Since all values of z0,∗ are not needed, we have a total of
2(m− 1) + m− r = 3m− 2− r multiplication gates.

This means that increasing the number r reduces the size of the circuit while it may in-
crease the depth of the circuit. In particular, when d = r depth and size are optimized.
If d = r, saving one multiplication (i.e., increasing r) would inevitably increase the depth
of the circuit.

This observation is useful in the following scenario. Suppose that the depth of the cir-
cuit does not need to be optimized. That is, the depth of the circuit is allowed to be larger
than ⌈logm⌉+ 1. This situation may occur when parties have to run certain tasks in par-
allel to the comparison protocol that require more rounds of interaction than the ones
needed for the evaluation of the comparison circuit. Thus, the circuit for integer compar-
ison can be ‘stretched’ so that the size of the circuit is reduced (i.e., less computation), by
increasing the value of r as much as needed, so that the overall round complexity is not
increased.

Comparison to Related Work

We compare our arithmetic circuit for bit-wise greater-than with themost efficient greater-
than circuits in the literature. This is summarized in Table 6.1.

It can be seen clearly that going from linear to logarithmic depth, means an approx-
imated increase of 50% in the multiplication gates. However, going from logarithmic to
constant depth means a penalty of about 6 times more multiplication gates. On the other
hand, note that the break-even point of the depth of the circuit happens when logm = 8,
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Size Depth

Logarithmic depth (Eq. (6.3)) 3m− logm logm
Linear depth [ST04] 2m− 1 m
Constant depth [DFK+06, NO07] 19m 8

Table 6.1: Performance of the circuits of bit-wise greater-than arithmetic circuits.

meaning that the bit-length of integers must be at least m = 256, which means compar-
ing integers larger than 2256. In practical situations one may need to compare integers
of m = 64 bits for which our logarithmic circuit outperforms the constant depth circuit,
especially if we consider the computation.

6.2 Constant Round 2-Party Protocol

In this section we seek to reduce the round complexity to a constant, adopting an ap-
proach quite different from the logarithmic depth circuit. We consider the problem of
computing [[[x > y]]] in the two-party case given encryptions of the bit representation of
x and y which may be unknown to both parties.

Themain idea is to calculate the first position k̂where the bits of x and y differ, starting

from the most-significant bit. The position k̂ indicates whether x > y or not, since xk̂ −

yk̂ = 1 if and only if x > y. Position k̂ will be determined as the unique index in a list of

integers {γk}
m−1
k=0 satisfying γk̂ = 0 and γk is random for k 6= k̂. Of course, position k̂ leaks

information and must be hidden. This is achieved by letting the parties randomly rotate
the relevant lists. The output is obtained in encrypted form by using a kind of blinding
of the shuffled lists at the end of the protocol.

6.2.1 Our Protocol

Protocol 6.1 presents our solution. We use boxes to depict the actual steps in the protocol
of parties A and B, on the left hand side and right hand side respectively. The arrows
indicate the messages that are sent over and give an indication of the sequence in which
the steps must be performed. Steps that are not in boxes are either operations that can be
done based on known values or subroutine calls to other protocols.

In the following we explain the role of each phase in the protocol. Phase 1 determines

the position, k̂, where the bits of x and y first differ starting from the most-significant bit.

List {γk}
m−1
k=0 is such that γk̂ = 0 and γk 6= 0 for all k 6= k̂.

In Phase 2, unknown random numbers are assigned to uk for k 6= k̂, uk̂ is set equal
to xk̂ − yk̂. Clearly, uk̂ = 1 if x > y, and uk̂ = −1 otherwise. Thus, the result of the

comparison is actually stored in uk̂. Note that giving away k̂ leaks information on the
inputs.

Phase 3 hides position k̂. This is achieved by randomly rotating the list {uk}
m−1
k=0 . Note

that since all other positions encrypt random numbers, this suffices to conceal position

k̂. The list {vk}
m−1
k=0 has a position k∗ such that vk∗ ∈ {−1, 1} contains the answer to the

comparison, and vk is random for all k 6= k∗.
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Protocol 6.1 Two-Party Greater-Than Comparison

Input: {[[xk]]}
m−1
k=0 , {[[yk]]}

m−1
k=0 , xk, yk ∈ {0, 1}.

Output: [[[x > y]]] where x = ∑
m−1
i=0 2ixi and y = ∑

m−1
i=0 2iyi.

Party A Party B

pick {{sAj,k}
m−1
k=0 }

4
j=2: s

A
j,k ∈R R

pick {tA2,k}
m−1
k=0 , t

A
4 : tA2,k, t

A
4 ∈R R

pick {rAk }
m−1
k=0 , r

A
k ∈RM

pick 0 ≤ rA < m at random
pick sA ∈R {−1, 1}

pick {{sBj,k}
m−1
k=0 }

4
j=2: s

B
j,k ∈R R

pick {tB2,k}
m−1
k=0 , t

B
4 : tB2,k, t

B
4 ∈R R

pick {rBk }
m−1
k=0 , r

B
k ∈RM

pick 0 ≤ rB < m at random
pick sB ∈R {−1, 1}

Phase 1 (Identify interesting position) Parties A and B do the following.

for k = m− 1 down-to 0 do
run [[xkyk]]←MULT([[xk]], [[yk ]])
[[ fk ]] = [[[xk 6= yk]]] = [[(xk − yk)

2]] = [[xk + yk − 2xkyk]]
[[γk]] = [[1 + (∑

m−1
i=k+1 fi)− fk]]

end for

Phase 2 (Blind all but interesting position)

for k = 0 to m− 1 do
[[rAk ]] = E(rAk , t

A
2,k)

[[uA
k ]] = [[γk]]

rAk E(0, sA2,k)
zk-proof [
([[γk]], [[u

A
k ]], [[rAk ]]; rAk , s

A
2,k, t

A
2,k) ∈ RMULT]

end for

{[[rAk ]]}m−1k=0 ,

−
{[[uA

k ]]}m−1k=0
−−−−−−−−→

{[[rBk ]]}m−1k=0 ,

←−
{[[uBk ]]}m−1k=0
−−−−−−−−

for k = 0 to m− 1 do
[[rBk ]] = E(rBk , t

B
2,k)

[[uBk ]] = [[γk]]
rBk E(0, sB2,k)

zk-proof [
([[γk]], [[u

B
k ]], [[rBk ]]; rBk , s

B
2,k, t

B
2,k) ∈ RMULT]

end for

Party A and B do the following:

for k = 0 to m− 1 do
[[uk ]] = [[uA

k ]][[uBk ]][[xk − yk]] = [[uA
k + uBk + (xk − yk)]]

end for

Phase 3 (Rotation) Parties A and B in sequence rotate the list {[[uk]]}
m−1
k=0 into

{[[vk ]]}
m−1
k=0 .

for k = 0 to m− 1 do
[[u′k+rA

]] = [[uk]]E(0, sA3,k)

end for
zk-proof [
({[[uk]]}

m−1
k=0 , {[[u

′
k]]}

m−1
k=0 ; rA , {s

A
3,k}

m−1
k=0 ) ∈ RROT]

−
{[[u′k ]]}

m−1
k=0

−−−−−−−−→

←−
{[[vk ]]}

m−1
k=0

−−−−−−−−

for k = 0 to m− 1 do
[[vk+rB ]] = [[u′k]]E(0, sB3,k)

end for
zk-proof [
({[[u′k]]}

m−1
k=0 , {[[vk]]}

m−1
k=0 ; rB, {s

B
3,k}

m−1
k=0 ) ∈ RROT]
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Protocol 6.1 (continued)

Phase 4 (Hiding Comparison Output)

[[sA]] = E(sA, t
A
4 )

for k = 0 to m− 1 do
[[v′k]] = [[vk]]

sAE(0, sA4,k)
zk-proof [
([[vk]], [[v

′
k]], [[sA]]; sA, s

A
4,k, t

A
4 ) ∈ RPRV-MLT]

end for
zk-proof [([[sA]],−1, 1; sA, t

A
4 ) ∈ R

(21)KNW
]

[[sA]],

−
{[[v′k]]}

m−1
k=0

−−−−−−−−→

[[sB]],

←−
{[[wk]]}

m−1
k=0

−−−−−−−−

[[sB]] = E(sB, t
B
4 )

for k = 0 to m− 1 do
[[wk]] = [[v′k]]

sBE(0, sB4,k)
zk-proof [
([[v′k]], [[wk]], [[sB]]; sB, s

B
4,k, t

B
4 ) ∈ RPRV-MLT]

end for
zk-proof [([[sB]],−1, 1; sB, tB4 ) ∈ R

(21)KNW
]

Phase 5 (Decryption) Party A and B do the following:

for k = 0 to m− 1 do
run wk← DECR([[wk ]])

end for
find k∗ such that wk∗ ∈ {−1, 1}
return [[(vk∗ + 1)/2]]

In order to achieve encrypted output, in Phase 4 every member of list {vk}
m−1
k=0 is

multiplied by an unknown random element s ∈ {−1, 1} yielding list {wk}
m−1
k=0 . This

is achieved by letting each party multiply, one after the other, list {vk}
m−1
k=0 by random

elements sA, sB ∈ {−1, 1}. That way wk∗ conceals vk∗ .

Finally, index k∗ is determined in Phase 5 by revealing the values {wk}
m−1
k=0 . The output

of the protocol is essentially vk∗ which is blinded in wk∗ . The value vk∗ is either −1 or 1,
hence (vk∗ + 1)/2 is either 0 or 1, and gives the bit of information about x > y. This linear
transformation can be done for free using homomorphic properties.

Note that the position k̂ such that γk̂ = 0 is guaranteed to exist only if x and y are
different. We add some ‘sentinels’ to deal with the case that x = y. In fact, we define
f−1 = 1 and [[u−1]] = [[uA

−1 + uB−1 − 1]]. The rest of the protocol is adapted accordingly.

Related Work

The approach of used in Protocol 6.1 resembles the protocol for conditional oblivious
transfer of Blake and Kolesnikov [BK04]. Ever since, some protocols for integer com-
parison have been presented following more or less the same idea (e.g., [DGK07, RT09,
GSV07]).

The differences of our solution with [BK04] include the fact that we allow for en-
crypted inputs, rather than private inputs. Accordingly, we use a (2,2)-threshold homo-
morphic cryptosystem instead of just a homomorphic cryptosystem, and multiplications
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gates are used. Furthermore, the specific kind of blinding at the end of the protocol al-
lows the extraction of the outcome of the integer comparison in encrypted form. As a
further important difference, we can actually use homomorphic cryptosystems such as
ElGamal since the multiplication gates work on bits (that is, conditional gates of [ST04]
can be used) and decryption checks if encrypted values are in a two-value domain or not.
In contrast, [BK04] makes essential use of Paillier.

Damgård et al. [DGK07] present protocol following a similar approach as ours but the
main difference is the setting: one of the inputs is known to one of the parties, and the

output of the comparison is delivered in the clear. The definition of the list {γk}
m−1
k=0 of

Phase 1 is due to Damgård et al. [DGK07]. In fact, the list {γk}
m−1
k=0 grows linearly in m

unlike exponential growth in [BK04, GSV07]. The advantage is that the protocol can be
based on a cryptosystem with relatively small plaintext space.

Phase 3 is a common step in secure protocols for comparison following this approach
(e.g., [BK04, ABFL06, DGK07, GSV07, RT09]) inwhich an unknown permutation of the el-

ements of the list {uk}
m−1
k=0 is applied. This is achieved in [BK04, ABFL06, DGK07, GSV07]

by letting the parties sequentially apply verifiable shuffles. Note, however, that apply-
ing an unknown rotation produces the same effect as a general permutation. In the list

{uk}
m−1
k=0 all but one position are random numbers, the rotation suffices to achieve the goal

of hiding position k̂. This was first noted by Reistad and Toft [RT09], although their so-
lution works in a complete different context than ours. Note that in general any 1-fragile

permutation may be applied in order to get the effect of hiding position k̂.

The protocol in the semi-honest case only needs multiplication gates in Phase 1. The
rest of the protocol involves arithmetic operations over encryptions and randomized en-
cryptions. At the decryption step in Phase 5, only random numbers are disclosed with
the additional notice that the position where −1 or 1 leaks no information (due to rota-
tion of Phase 3, and hiding in Phase 4). In order to withstand active adversaries, (non-
interactive) proofs of knowledge are attached to each action performed by the parties.

6.2.2 Security Analysis

For the proof of security, we want to be able to simulate this protocol assuming that one

of the participants is corrupted. The idea is to give the simulator the inputs {[[xk]]}
m−1
k=0

and {[[yk]]}
m−1
k=0 in such a way that a consistent view of the protocol can be constructed

without making use of the private information of the honest party.

Simulation of Building Blocks

We review the simulation requirements for the building blocks, as discussed in Sec-
tion 2.4.3. The simulator SMULT needs encryptions [[x]] and [[y]] and [[xy]] in order to
simulate a multiplication gate. The same holds for the simulator of the threshold de-
cryption protocol. Given encryption [[x]] and plaintext x, simulator SDECR([[x]], x) gives a
statistically indistinguishable transcript.

We use zero-knowledge proofs of knowledge for relations RPRV-MLT, RROT, and R
(21)KNW

.

We use their simulators to generate an indistinguishable view. The witness-extended
emulator for each of these proofs gives both an identical transcript and the witnesses for
such relations.
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Simulation of Protocol 6.1

We now turn our attention to the overall simulation strategy. We note that a problem
arises when trying to simulate the multiplication gates in the first phase of the protocol.
In order to simulate the multiplication gates, the simulator has to produce [[xkyk]] only
given [[xk]] and [[yk]], which is impossible. We circumvent such problems by adopting the
approach introduced in [ST06], in which a simulation for input/output of a special form
(see Theorem 6.2 below) suffices to ensure integration with the framework of [CDN01].
This is a consequence of the fact that the security proof in this framework centers around
the construction of a so-called YADb distribution, which is defined as a function of an
encrypted bit [[b]].

The structure of the security proof in [CDN01] follows an ideal-model/real-model
approach. The YAD0 distribution is identical to the distribution of the ideal case, whereas
the YAD1 distribution is statistically indistinguishable from the distribution in the real
case. Therefore, if an adversary can distinguish between the ideal/real cases, it implies
that the adversary can distinguish the YAD0 distribution from the YAD1 distribution. But
the choice between these two distributions is determined by the value of an encrypted
bit b. It follows that the distinguisher for the ideal/real cases is a distinguisher for the
underlying encryption scheme. This is done in a tight way, i.e., without loss in the success
probability for the distinguisher. See [CDN01, Full version] for more details.

It is sufficient to show a simulation for inputs of a special form, namely, [[x̃]] = [[(1−

b)x(0) + bx(1)]], where x(0) and x(1) are given in the clear to the simulator, but b is only

given in encrypted form [[b]]. The values x(0) and x(1) correspond to the values arising in
the YAD0 and YAD1 cases, respectively.

Theorem 6.2 Given input values {x
(0)
k }

m−1
k=0 , {y

(0)
k }

m−1
k=0 , {x

(1)
k }

m−1
k=0 and {y

(1)
k }

m−1
k=0 and an en-

cryption [[b]] with b ∈ {0, 1} Protocol 6.1 can be simulated statistically for inputs {[[x̃k]]}
m−1
k=0

and {[[ỹk ]]}
m−1
k=0 where [[x̃k]] = [[(1− b)x

(0)
k + bx

(1)
k ]] and [[ỹk]] = [[(1− b)y

(0)
k + by

(1)
k ]].

Proof. Let {x
(0)
k }

m−1
k=0 , {y

(0)
k }

m−1
k=0 , {x

(1)
k }

m−1
k=0 and {y

(1)
k }

m−1
k=0 be binary representations of

x(0), y(0), x(1), y(1) respectively, and let the encryption [[b]] with b ∈ {0, 1} be given. The
simulation is given in Algorithm 6.1 where party A∗ is assumed to be corrupted.

The description of Algorithm 6.1 does not include some checks that are done during
the execution, just as an honest party will always do in Protocol 6.1. That is, the simulator
must check that the zero-knowledge proofs of knowledge are accepting. Otherwise, it
means that the other party is corrupted and it is deviating from the protocol description.
In fact, Algorithm 6.1 aborts if after running the witness-extended emulator of certain
proof it got an invalid witness. For simplicity of presentation, these checks are left out.

We now briefly explain each step of the simulation.

1. The simulation for Phase 1 relies on the simulator for multiplication gates. Lists f
and γ are prepared for the two sets of inputs, and the multiplication gate is sim-
ulated depending on the value of the bit b. This simulation gives a statistically
indistinguishable transcript of the protocol.

2. In phase 2, party A∗ gives list ũA for which the blinding factors are extracted using
the witness-extended emulator of the proof for relation RPRV-MLT. A transcript of this
conversation is also provided by the emulator. Note that, because of the properties
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Algorithm 6.1 Simulator for Protocol 6.1

Input: {x
(0)
k }

m−1
k=0 , {y

(0)
k }

m−1
k=0 , [[b]]

for k = 0 to m− 1 do

[[x̃k]] = [[(1− b)x
(0)
k + bx

(1)
k ]]

[[ỹk]] = [[(1− b)y
(0)
k + by

(1)
k ]]

end for

5: Phase 1.

for k = m− 1 down-to 0 do
print SMULT([[x̃k ]], [[ỹk]], [[(1− b)x(0)y(0) + bx(1)y(1)]])

end for
for j = 0, 1 do

10: for k = m− 1 down-to 0 do

f
(j)
k = [x

(j)
k 6= y

(j)
k ]

γ
(j)
k = 1+ (∑

m−1
i=k+1 f

(j)
i )− f

(j)
k

end for
let kj s.t. γ

(j)
kj

= 0

15: end for
θ = k1 − k0
for k = 0 to m− 1 do

[[γ̃k]] = [[(1− b)γ
(0)
k + bγ

(1)
k ]]

end for

20: Phase 2.

Party A∗ gives {[[r̃Ak ]]}m−1k=0 , {[[ũ
A
k ]]}m−1k=0

for k = 0 to m− 1 do
run (tr, (r̃Ak , s

A
2,k, t

A
2,k))←WPRV-MLT([[γ̃k]], [[ũ

A
k ]], [[r̃Ak ]])

print tr
25: end for

pick s
(0)
B ∈R {−1, 1}

s
(1)
B = (−1)[[x(0)>y(0)] 6=[x(1)>y(1)]]s

(0)
B

for k = 0 to m− 1 do

pick r
B(0)
k ∈RM

30: find r
B(1)
k s.t. s

(0)
B

(
(r̃Ak + r

B(0)
k )γ

(0)
k + (x

(0)
k − y

(0)
k )
)
=s

(1)
B

(
(r̃Ak+θ+r

B(1)
k+θ )γ

(1)
k+θ + (x

(1)
k+θ −

y
(1)
k+θ)

)

for j = 0, 1 do

u
B(j)
k = r

B(j)
k γ

(j)
k

end for
[[r̃Bk ]] = [[(1− b)r

B(0)
k + br

B(1)
k ]]

35: [[ũBk ]] = [[(1− b)u
B(0)
k + bu

B(1)
k ]]

print [[r̃Bk ]], [[ũBk ]],SPRV-MLT([[γ̃k]], [[ũ
B
k ]], [[r̃Bk ]])

[[ũk]] = [[ũA
k + ũBk + (x̃k − ỹk)]]

end for
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Algorithm 6.1 (continued)

Phase 3.
Party A∗ gives {[[ũ′k ]]}

m−1
k=0

run (tr, (r̃A, {s
A
3,k}

m−1
k=0 ))←WROT({[[ũk ]]}

m−1
k=0 , {[[ũ

′
k ]]}

m−1
k=0 )

print tr
45: pick k̃∗ ∈R {0, . . . ,m− 1}

find r
(0)
B , r

(1)
B s.t. k̃∗ = k0 + r̃A + r

(0)
B = k1 + r̃A + r

(1)
B

for j = 0, 1 do
for k = 0 to m− 1 do

v
(j)

k+r̃A+r
(j)
B

= u
(j)
k

50: end for
end for
for k = 0 to m− 1 do
pick sB3,k ∈R R

[[ṽk]] = [[(1− b)v
(0)
k + bv

(1)
k ]]E(0, sB3,k)

55: end for
print {[[ṽk]]}

m−1
k=0 ,SROT({[[ũ′k ]]}

m−1
k=0 , {[[ṽk]]}

m−1
k=0 )

Phase 4.

Party A∗ gives [[s̃A]], {[[ṽ′k]]}
m−1
k=0

run (tr, (s̃A, t
A
4 ))←W

(21)KNW
([[s̃A]],−1, 1)

60: print tr
for k = 0 to m− 1 do
run (tr, (s̃A, s

A
4,k, t

A
4,k))←WPRV-MLT([[ṽk]], [[ṽ

′
k]], [[s̃A]])

print tr
end for

65: [[s̃B]] = [[(1− b)s
(0)
B + bs

(1)
B ]]

print [[s̃B]], S
(21)KNW

([[s̃B]],−1, 1)

for k = 0 to m− 1 do

w̃k = s̃As
(0)
B v

(0)
k

pick sB4,k ∈R R

70: [[w̃k]] = E(w̃k, s
B
4,k)

print [[w̃k]], SPRV-MLT([[ṽ′k ]], [[w̃k]], [[s̃B]])
end for

Phase 5.

for k = 0 to m− 1 do
75: print SDECR([[w̃k]], w̃k)

end for
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of the witness-extended emulator, the witness is given with the same probability
as A∗ would succeed in a real execution of the protocol. That is, if no witness is
extracted, the simulation simply aborts (as honest party B would do in a real exe-
cution of the protocol). Although is not stated in the description of the simulation,
this check is done at every witness-extended emulation call.

Also, Algorithm 6.1 is accommodating the values within the simulation. Since the
last step require some decryptions, the simulator needs to know the plaintexts of

the corresponding ciphertexts. Notice that after Phase 2 is finished, the lists u(0)

and u(1) contain the same values up to a rotation with offset θ. The values in the
list ũ depend on the encrypted bit b, but independently of it, the distribution of
the values is exactly the same as the distribution of the values of the list u in the
protocol. The simulator for RPRV-MLT is invoked to simulate the computation of list
ũB.

3. Next, party A∗ gives a list of encryptions that is rotated if the witness-extended em-
ulator gives a valid witness. Also, the rotation step of honest party B is simulated.
Here, the rotation offsets are chosen especially to let the list ṽ have the same values
no matter what the value of the encrypted bit b is.

4. As for phase 4, the blinding factor s̃A is extracted with the witness-extended emu-
lator. The simulator also checks that s̃A is either −1 or 1. At the end, the blinding
step is simulated accordingly. Additionally, a simulation for R

(21)KNW
is given for the

fact that s̃B is either −1 or 1.

5. In phase 5 threshold decryption is simulated. This is possible due to the fact that
the simulator knows the value w̃k of the corresponding ciphertext [[w̃k]].

The values generated in this way by the simulator follow the same distribution as the
values in the real protocol execution. Hence, an adversary cannot statistically distin-
guish them from the ones resulting in a real execution. This completes the proof of the
theorem.

6.2.3 Variations

In this section we analyze different modifications of Protocol 6.1. In particular, we see
how to adapt it to provide equality test and public output.

Equality Test

Protocol 6.1 assumes that x 6= y, so that the position k̂ such that xk̂ 6= yk̂ starting from
the most significant bit is well-defined. We have discussed earlier how to modify the
protocol to handle a possible equality of the inputs by using some sentinels. The same
idea is applied to compute the bit saying whether x = y.

Wemodify Protocol 6.1 as follows. In Phase 1, we define f−1 = 1, while in Phase 2, we

redefine {uk}
m−1
k=−1 such that uk = uA

k + uBk − 1 for 0 ≤ k < m, and u−1 = uA
−1 + uB−1 + 1.

The rest of the protocol is adapted in accordance with these modifications.
We argue that the resulting protocol outputs [[[x = y]]]. If x = y then γk = 1 for

0 ≤ k < m and γ−1 = 0. This means that uk is random for all 0 ≤ k < n and u−1 = 1. In
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case x 6= y, there exists k̂ with 0 ≤ k̂ < m such that γk̂ = 0 and γk 6= 0 for k 6= k̂. Hence,

uk̂ = −1 while uk is random for all k 6= k̂. Whether the list {uk}
m−1
k=−1 has a 1 or −1 among

otherwise random values tells if x = y or not, respectively. Phases 3 and 4 of Protocol 6.1
hide any other information about this fact.

One Input is Public

Suppose now that, say, x is an integer that is known and wants to be compared with

y which is given in bit-wise encrypted form, i.e., we are given encryptions {[[yk]]}
m−1
k=0 .

Some multiplication gates can be avoided with this configuration. Namely, the m multi-
plications for xkyk of Phase 1 do not need to be computed with a multiplication protocol.
Private multiplication can be used instead.

Note that the same observation applies to the circuit of Eq. (6.3) where all multiplica-
tions xkyk can be replaced by private multiplications where the party knowing its local
inputs computes these multiplications.

Public Output

In some applications, parties comparing two encrypted numbers want to know the result
of the comparison right away after the computation. In that situation, Protocol 6.1 can be
adapted to deliver the result of the comparison in the clear.

This is done by omitting Phase 4, and the parties directly decrypt the list of encryption

{[[vk]]}
m−1
k=0 in order to find the unique position k̂ such that vk̂ ∈ {−1, 1}. vk̂ = −1 means

that x ≤ y, while and vk̂ = 1 means that x > y.

6.2.4 Optimized Protocols

We now look at different optimizations of Protocol 6.1. Note that we can optimize the
round complexity by simply changing the order in which the different steps are executed.
For instance, Phase 3 and 4 can be overlapped in one phase in which each party applies
rotation (Phase 3) and the blinding factors (Phase 4). Table 6.2 uses this observation to
compute the round complexity.

Public Output

We analyze other alternatives but the core idea of the protocols is the same. We first
present Protocol 6.2 that performs a comparison with public output. Differences with
Protocol 6.1 include the order in which the different phases are executed and the way
that the list f is computed. Interestingly, no multiplication gates are needed, yielding a
3-round protocol.

Protocol 6.2 identifies position k̂ in the first round in which γk̂ = 0 if and only if x > y.
Party A applies a non-zero blinding factor and rotates the list of encrypted γ’s. Party B
reblinds and rotates the same list of γ’s. If in the decryption step a unique zero is found,
it means that x > y, otherwise x ≤ y.

The protocol requires a cryptosystem with exponentially large plaintext to avoid a

possible wrap-around of the list {γk}
m−1
k=0 . Since the reblinding factors rAk and rBk are

used in a multiplicative way, they must be non-zero. In addition, no full decryption is
needed, but just zero/non-zero plaintext checking. Hence, homomorphic ElGamal is an
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Protocol 6.2 Two-Party Greater-Than Comparison with Public Output

Input: {[[xk]]}
m−1
k=0 , {[[yk]]}

m−1
k=0 , xk, yk ∈ {0, 1}.

Output: [x > y].

Party A Party B

pick {{sAj,k}
m−1
k=0 }

2
j=1 : s

A
j,k ∈R R

pick {tAk }
m−1
k=0 : tAk ∈R R

pick {rAk }
m−1
k=0 : rAk ∈RM\{0}

pick rA ∈R {0, . . . ,m− 1}

pick {{sBj,k}
m−1
k=0 }

2
j=1 : s

B
j,k ∈R R

pick {tBk }
m−1
k=0 : tBk ∈R R

pick {rBk }
m−1
k=0 , r

B
k ∈RM\{0}

pick rB ∈R {0, . . . ,m− 1}

δm = 0
for k = m− 1 down-to 0 do

[[δk]] = [[3δk+1 + (xk − yk)]]
[[γk]] = [[δk − 1]]

end for

for k = m− 1 down-to 0 do
[[rAk ]] = E(rAk , t

A
k )

[[uk ]] = [[γk]]
rAk E(0, sA1,k)

zk-proof [
([[rAk ]]; rAk , t

A
k ) ∈ RNO-ZERO

([[γk]], [[uk]], [[r
A
k ]]; rAk , s

A
1,k, t

A
k ) ∈ RPRV-MLT]

[[vAk+rA
]] = [[uk ]]E(0, sA2,k)

end for
zk-proof [
({[[uk]]}

m−1
k=0 , {[[v

A
k ]]}m−1k=0 ; rA , {s

A
2,k}

m−1
k=0 ) ∈ RROT]

{[[rAk ]]}m−1k=0

−
{[[vAk ]]}m−1k=0
−−−−−−−−→

{[[rBk ]]}m−1k=0

←−
{[[wk]]}

m−1
k=0

−−−−−−−−

for k = 0 to m− 1 do
[[rBk ]] = E(rBk , t

B
k )

[[vBk ]] = [[vAk ]]r
B
k E(0, sB1,k)

zk-proof [
([[rBk ]]; rBk , t

B
k ) ∈ RNO-ZERO

([[vAk ]], [[vBk ]], [[rBk ]]; rAk , s
B
1,k, t

B
k ) ∈ RPRV-MLT]

[[wk+rB ]] = [[vBk ]]E(0, sB2,k)
end for
zk-proof [
({[[vBk ]]}

m−1
k=0 , {[[wk]]}

m−1
k=0 ; rB, {s

B
2,k}

m−1
k=0 ) ∈ RROT]

for k = 0 to m− 1 do
run wk← DECR([[wk ]])

end for
return [∃k∗ : wk∗ = 0]
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applicable cryptosystem. Protocol 6.2 can be readily extended to the multiparty case,
but since rotations must be applied sequentially, the number of rounds grows with the
number of parties.

Encrypted Output

We observe that using the special blinding technique used in Phase 4 of Protocol 6.1, we
can adapt Protocol 6.2 to deliver encrypted output. Protocol 6.3 depicts these changes.
It adds a round at the beginning with a kind of blinding that produces a swap of the
inputs. In fact, s is a randomly generated value from the two-value set {−1, 1}. If s = 1
then the order of the inputs is not changed, while s = −1 means that the input’s order is
swapped. Since parties generate s at random and they do not know what its actual value
is, the result of the comparison that is stored in the bit b does not say anything about
the result of the original comparison. The actual comparison result is corrected using b
and [[s]]. This trick, due to Toft [Tof09b], works in general in any greater-than comparison
protocol (see Section 6.3.3). The resulting protocol has 4 rounds. In addition, no explicit
multiplication gates are required.

Protocol 6.3 can also be extended to handle comparison in a multiparty setting. How-
ever, due to the sequential nature of both the blinding in the first round, and the rotations,
the round complexity will grow linearly with the number of parties.

We give now a simulation of Protocol 6.3. Similarly as with Protocol 6.1 we give a
simulation whose inputs depend on an encrypted bit [[b]]. The simulation follows the
same ideas and principles.

Theorem 6.3 Given input values {x
(0)
k }

m−1
k=0 , {y

(0)
k }

m−1
k=0 , {x

(1)
k }

m−1
k=0 and {y

(1)
k }

m−1
k=0 and an en-

cryption [[b]] with b ∈ {0, 1} Protocol 6.3 can be simulated statistically for inputs {[[x̃k]]}
m−1
k=0

and {[[ỹk ]]}
m−1
k=0 where [[x̃k]] = [[(1− b)x

(0)
k + bx

(1)
k ]] and [[ỹk]] = [[(1− b)y

(0)
k + by

(1)
k ]].

Proof sketch. Algorithm 6.2 presents a simulator for Protocol 6.3 assuming that Party A∗

is corrupted. It follows the same structure of Algorithm 6.1 and the same results follow.

In fact, it works running the protocol for both sets of inputs {x
(0)
k }

m−1
k=0 , {y

(0)
k }

m−1
k=0 . The ac-

tual selection between one problem or the another is done by the selection with b given in
encrypted form. One of the main goals is to be able to run the simulation of the threshold
decryption which, as we know, requires ciphertexts and the plaintext encrypted in them.
Thus, the simulator accommodates all internal values in such a way that eventually the
two problems are equal at the decryption step, independently of bit b.

6.2.5 Performance Evaluation

We now present the performance figures of the protocol in this section. Furthermore, we
put next to each other the arithmetic circuit with log-depth and Protocols 6.1 and 6.3. We
add the linear depth circuit of [ST04] to complete the picture. In order to compare them,
we assume that the 2-party setting where (2,2)-threshold homomorphic ElGamal is set
up. We consider the number of rounds, the computational cost measured in exponenti-
ations and the communication complexity calculated as the number of group elements
exchanged among the parties. The resulting complexities figures are presented in Ta-
ble 6.2.

101



Chapter 6. Integer Comparison

Protocol 6.3 Improved Two-Party Greater-Than Comparison

Input: {[[xk]]}
m−1
k=0 , {[[yk]]}

m−1
k=0 , xk, yk ∈ {0, 1}.

Output: [[[x > y]]].
Party A Party B

pick {{sAj,k}
m−1
k=0 }

3
j=1 : s

A
j,k ∈R R

pick {tAk }
m−1
k=0 : tAk ∈R R

pick uA
1 , u

A
2 ∈R R

pick {rAk }
m−1
k=0 , r

A
k ∈RM\{0}

pick rA ∈R {0, . . . ,m− 1}
pick sA ∈R {−1, 1}

pick {{sBj,k}
m−1
k=0 }

3
j=1 : s

B
j,k ∈R R

pick {tBk }
m−1
k=0 : tBk ∈R R

pick uB1 ∈R R

pick {rBk }
m−1
k=0 : rBk ∈RM\{0}

pick rB ∈R {0, . . . ,m− 1}
pick sB ∈R {−1, 1}

←−
[[sB]], {[[gBk ]]}m−1k=0
−−−−−−−−−−−−

[[sB]] = E(sB, u
B
1 )

zk-proof [([[sB]],−1, 1; uB
1 ) ∈ R

(21)KNW
]

for k = 0 to m− 1 do
[[gBk ]] = [[xk − yk]]

sBE(0, sB3,k)
zk-proof [
([[xk − yk ]], [[g

B
k ]], [[sB]]; sB, s

B
3,k, u

B
1 ) ∈ RPRV-MLT]

end for
[[sA]] = E(sA, u

A
1 )

[[s]] = [[sB]]sAE(0, uA
2 )

zk-proof [
([[sA]],−1, 1; uA

1 ) ∈ R
(21)KNW

([[sB]], [[s]], [[sA]]; sA, u
A
2 , u

A
1 ) ∈ RPRV-MLT]

for k = 0 to m− 1 do
[[gk]] = [[gBk ]]sAE(0, sA3,k)
zk-proof [
([[gBk ]], [[gk ]], [[sA]]; sA , s

A
3,k, u

A
1 ) ∈ RPRV-MLT]

end for
δm = 0
for k = m− 1 down-to 0 do

[[δk]] = [[3δk+1 + gk]]
[[γk]] = [[δk − 1]]
[[rAk ]] = E(rAk , t

A
k )

[[uk]] = [[γk]]
rAk E(0, sA1,k)

zk-proof [
([[rAk ]]; rAk , t

A
k ) ∈ RNO-ZERO

([[γk]], [[uk]], [[r
A
k ]]; rAk , s

A
1,k, t

A
k ) ∈ RPRV-MLT]

[[vAk+rA
]] = [[uk ]]E(0, sA2,k)

end for
zk-proof [
({[[uk]]}

m−1
k=0 , {[[v

A
k ]]}m−1k=0 ; rA , {s

A
2,k}

m−1
k=0 ) ∈ RROT]

[[sA]], {[[gk ]]}
m−1
k=0 ,

{[[rAk ]]}m−1k=0 ,

{[[uk ]]}
m−1
k=0 ,

−
[[s]], {[[vAk ]]}m−1k=0
−−−−−−−−−−−→
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Protocol 6.3 (continued)

{[[rBk ]]}m−1k=0 ,

{[[vBk ]]}m−1k=0 ,

←−
{[[wk]]}

m−1
k=0

−−−−−−−−

for k = 0 to m− 1 do
[[rBk ]] = E(rBk , t

B
k )

[[vBk ]] = [[vAk ]]r
B
k E(0, sB1,k)

zk-proof [
([[rBk ]]; rBk , t

B
k ) ∈ RNO-ZERO

([[vAk ]], [[vBk ]], [[rBk ]]; rAk , s
B
1,k, t

B
k ) ∈ RPRV-MLT]

[[wk+rB ]] = [[vBk ]]E(0, sB2,k)
end for
zk-proof [
({[[vBk ]]}

m−1
k=0 , {[[wk]]}

m−1
k=0 ; rB, {s

B
2,k}

m−1
k=0 ) ∈ RROT]

for k = 0 to m− 1 do
run wk← DECR([[wk ]])

end for
b = [∃k∗ : wk∗ = 0]
return [[1−s2 b + 1+s

2 (1− b)]]

Clearly, Protocol 6.3 outperforms all the others in this particular setting. However, as
said before, the number of rounds starts growing when considering a setting in which
more parties are involved in the execution of the protocol.

Table 6.3 shows the performance of protocol from a more general point of view. We
assume an n-party setting in which integers of bit-length m are compared. A generic
multiplication gate costs c computations (e.g., modular exponentiations), b units of com-
munication (e.g., groups elements) and r rounds of interaction. We see now that one of
the protocols may be the best in a performance parameter under certain circumstances.
For example, if the setting considers a large number of parties and a somewhat short
input length, we see that Protocol 6.3 may involve many more rounds than Protocol 6.1
and the arithmetic circuits. If multiplication gates are very efficient (that is, c and b are
rather low), then the arithmetic circuits will become more efficient than the other two
solutions. Protocol 6.3 will not take any advantage of the fact that multiplications are
cheap. This scenario of cheap multiplication gates happens when, for instance, the mul-
tiplication gates can be replaced by private multiplier. This is the case when one of the
inputs is public.

6.2.6 Yao’s Garbled Circuit Approach

There are other approaches to solve secure comparison, and more generally any secure
multiparty computation, that are outside the scope of this thesis. These approaches may
be advantageous under different circumstances and thus can be applied in practice. The
garbled circuit approach was introduced by Yao [Yao82] where it is shown how any func-
tion can be evaluated securely by two parties in the semi-honest model. Later, the ap-
proach has been extended to the malicious case [Lin03, Pin03, MNPS04, MF06, KS06b,
LP07] and multiparty case [BMR90]. Yao’s protocol requires oblivious transfer and se-
cure pseudorandom generators as building blocks.

Roughly speaking, Yao’s protocol works as follows. Assume two parties, A and B
willing to securely evaluate f (x, y) which is represented as a binary circuit. Party A has
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Algorithm 6.2 Simulator for Protocol 6.3

Input: {x
(0)
k }

m−1
k=0 , {y

(0)
k }

m−1
k=0 , [[b]]

for k = 0 to m− 1 do

[[x̃k]] = [[(1− b)x
(0)
k + bx

(1)
k ]]

[[ỹk]] = [[(1− b)y
(0)
k + by

(1)
k ]]

end for

5: pick s
(0)
B ∈R {−1, 1}

s
(1)
B = (−1)[[x(0)>y(0)] 6=[x(1)>y(1)]]s

(0)
B

[[s̃B]] = [[(1− b)s
(0)
B + bs

(1)
B ]]

print [[s̃B]],S
(21)KNW

([[s̃B]],−1, 1)

for k = 0 to m− 1 do

10: [[g̃Bk ]] = [[(1− b)(x
(0)
k − y

(0)
k )s

(0)
B + b(x

(1)
k − y

(1)
k )s

(1)
B ]]

print [[g̃Bk ]],SPRV-MLT([[x̃k − ỹk]], [[g̃
B
k ]], [[s̃B]])

end for

Party A∗ gives [[s̃A]], {[[g̃k ]]}
m−1
k=0 , {[[r̃

A
k ]]}m−1k=0 , {[[ũk ]]}

m−1
k=0 , [[s̃]], {[[ṽ

A
k ]]}m−1k=0

run (tr1, (s̃A, u
A
1 ))←W

(21)KNW
([[s̃A]],−1, 1)

15: run (tr2, (s̃A, u
A
2 , u

A
1 ))←WPRV-MLT([[s̃B]], [[s̃]], [[s̃A]])

for k = 0 to m− 1 do
run (tr3,k, (s̃A, s

A
3,k, u

A
1 ))←WPRV-MLT([[g̃Bk ]], [[g̃k]], [[s̃A]])

end for
for j = 0, 1 do

20: δm = 0
for k = m− 1 down-to 0 do

δk = 3δk+1 + s̃As
(j)
B (x

(j)
k − y

(j)
k )

γ
(j)
k = δk − 1

end for
25: if s

(0)
B = 1 xor x(0) > y(0) then
pick kj ∈R {0, . . . ,m− 1}

else
let kj s.t. γ

(j)
kj

= 0

end if
30: end for

θ = k1 − k0
for k = m− 1 down-to 0 do

[[γ̃k]] = [[(1− b)γ
(0)
k + bγ

(1)
k ]]

run (tr4,k, (r̃
A
k , t

A
k ))←WNO-ZERO([[r̃Ak ]])

35: run (tr5,k, (r̃
A
k , s

A
1,k, t

A
k ))←WPRV-MLT([[γ̃k]], [[ũk ]], [[r̃

A
k ]])

end for
run (tr6, (r̃A, {s

A
2,k}

m−1
k=0 ))←WROT({[[ũk ]]}

m−1
k=0 , {[[ṽ

A
k ]]}m−1k=0 )

print tr1, tr2, {{trj,k}
m−1
k=0 }

5
j=3, tr6
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Algorithm 6.2 (continued)

for k = 0 to m− 1 do

pick r
B(0)
k ∈RM\{0}

find r
B(1)
k s.t. r

B(0)
k γ

(0)
k r̃Ak = r

B(1)
k+θ γ

(1)
k+θ r̃

A
k+θ

40: for j = 0, 1 do
for k = 0 to m− 1 do

v
B(j)
k = r

B(j)
k γ

(j)
k r̃Ak

end for
end for

45: [[r̃Bk ]] = [[(1− b)r
B(0)
k + br

B(1)
k ]]

[[ṽBk ]] = [[(1− b)v
B(0)
k + bv

B(1)
k ]]

print [[r̃Bk ]], [[ṽBk ]],SNO-ZERO([[r̃Bk ]]),SPRV-MLT([[ṽAk ]], [[ṽBk ]], [[r̃Bk ]])

pick r
(0)
B ∈R {0, . . . ,m− 1}

r
(1)
B = r

(0)
B − θ

50: w̃
k+r

(0)
B

= v
B(0)
k

end for
print {[[w̃k]]}

m−1
k=0 ,SROT({[[ṽ

B
k ]]}m−1k=0 , {[[w̃k]]}

m−1
k=0 )

for k = 0 to m− 1 do
print SDECR([[w̃k]], w̃k)

55: end for

input x and party B has input y. The circuit for f is “encrypted” by one of the parties,
say B, in which the input y is hard-coded. The encrypted circuit is sent to party A who
will “decrypt” it after getting the keys corresponding to the input x. These keys are ob-
tained via a secure 1-out-of-2 oblivious transfer. This way, party A is only able to get
the value f (x, y) and nothing else since the evaluation of the internal encrypted gates
does not reveal any information. This enables constant round secure function evaluation
independent of the circuit size. This contrast with the approach using threshold homo-
morphic cryptosystems where the parties must interact in a gate-by-gate fashion.

The performance of Yao’s protocol is determined by the number of oblivious trans-
fer and the encryption and decryption of the circuit. If the circuit to be evaluated has
small fan-in and the number of gates is relatively small, Yao’s protocol becomes efficient.
However, if the circuit fan-in is large (which means many oblivious transfers) or the cir-
cuit is significantly large (which means large computations encrypting and decrypting
the circuit), Yao’s may not be as attractive as using an arithmetic circuit, or any other
approach.

In order to withstand malicious parties, additional commitments, proof of knowl-
edge and a stronger oblivious transfer protocol are needed. Oblivious transfer protocols
should work on committed values to prevent malicious parties from cheating. An obliv-
ious transfer working on committed values is thus needed. Examples are protocols for
committed oblivious transfer [Cré90, CvdGT95, CD97, GMY04, KSV07] or variations of it
such as verifiable oblivious transfer [CC00, JS07] and committing OT [KS06a, KS08]. The
protocols for these variants of oblivious transfer using commitments of [KSV07] need a
similar set up as the protocols presented in this thesis. That is, parties set up a threshold
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Computation Communication Rounds

Linear depth circuit [ST04] 168m 84m 2m
Log-depth circuit 252m− 84 logm 126m− 42 logm 2 logm
Protocol 6.1 192m 84m 6
Protocol 6.3 124m 48m 4

Table 6.2: Performance of protocols for greater-than comparison assuming that two par-
ties use threshold homomorphic ElGamal. Computations are measured as the number
of exponentiations and communication is estimated with the number of group elements
exchanged.

homomorphic cryptosystem and run Yao’s protocol based on it.
Integer comparison of m-bit integers is thus solved by applying Yao’s protocol on a

boolean circuit for comparison. The depth of those circuits does not affect the compu-
tation of the protocol. Thus, the (boolean version of the) linear depth circuit of [ST04]
is enough. The computational complexity is dominated by that of the computation of
m committed oblivious transfer, since the circuit is relatively small in size. In fact, espe-
cially in the semi-honest case, Yao’s protocol is efficient. For example, Yao’s protocol is
used to perform secure integer comparison in a protocol for face recognition by Sadeghi
et al. [SSW09]. Note that Yao’s protocol requires that each party knows the integer to be
compared, and hence it is less general than the approach considered in the thesis.

6.3 Problems Related to Integer Comparison

In this section, we overview various related problems to integer comparison. We also
discuss different variations of integer comparison.

6.3.1 Signum

The signum function is the three-valued function sgn : Z → {−1, 0, 1} defined by
sgn(z) = −1 if z < 0, sgn(z) = 0 if z = 0, and sgn(z) = 1 if z > 0. Given two non-
negative integers x and y, the following relation holds.

sgn(x− y) = 2[x > y]− 1+ [x = y].

This suggests that having greater-than and equality comparisons of x and y, one obtains
the signum of x− y for free.

Using the log-depth arithmetic circuit one can compute greater-than and equality at
once and hence the computation of the signum of x− y comes at virtually no extra cost.
A more direct approach can be obtained by observing the following recursive formula.
Splitting the inputs x and y in two chunks such that x = X1X0 and y = Y1Y0 of respec-
tively the same size, we get that

sgn(x− y) = sgn(X1 −Y1) + [X1 = Y1] sgn(X0 − Y0).

The computation of the signum is then possible through a recurrence formula for both
signum and equality. Splitting the strings x and y in about equally long chunks one
obtains a logarithmic depth circuit.
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Computation Communication Rounds

Linear depth circuit [ST04] 2mc 2mb rm
Log-depth circuit 3mc 3mb r logm
Protocol 6.1 54mn + mc 21mn + mb 2+ r + n
Protocol 6.3 62mn 24mn 2n

Table 6.3: Performance of protocols for greater-than comparison assuming n parties using
a threshold cryptosystem. Every multiplication induces a cost of c computations, b units
of communication, and r rounds of interaction.

Analogously to the circuit for greater-than comparison, similar trade-offs between
size and depth appear here. If the recurrence structure is set up in such a way that the
length the most significant part is always a bit, then the equality term requires a total
of m − 1 multiplication gates only. Additionally, m − 1 multiplications are needed for
computing the recurrence, yielding a circuit of size 2m− 2 with depth m. On the other
hand, if the least significant bits in the recurrence have always length 1, we need 2m− 2
multiplications for the equality computation and m− 1 multiplications for the recursive
merging, yielding 3m− 3multiplication in depthm. Note that in any case, the multiplica-
tion x0y0 is not needed at all. These particular cases are the solutions presented in [ST04].
In the case of equally long chunks at each recursive step, the depth of the circuit is logm
while the size of the circuit is 3m− logm− 2.

6.3.2 Addition Circuits

Given two m-bit non-negative integers x and y, the bits zk of the sum z = x + y are
determined by the carries ck and the bits xk and yk. More concretely, bit zk is computed as
zk = xk + yk + ck−1 − 2ck, where ck is the k-th carry bit. A carry ck is set to 1 if either it is
generated by the bits xk and yk, or the previous carry ck−1 is propagated. This is written
as follows:

ck = gk + ck−1pk,

where gk indicates if a carry is generated while pk tells if a carry is propagated. A carry
generation is given by gk = xkyk, while a propagation is pk = xk + yk − 2xkyk. Note that
once xkyk is computed, gk, pk, and zk are obtained using linear operations.

Similarly as with the circuit for comparison, the following is noted. If x = X1X0 and
y = Y1Y0 where |X0| = |Y0| and |X1| = |Y1| the sum x + y produces a carry c if either
X1 + Y1 gives a carry C1, or X0 + Y0 gives a carry C0 and it propagates through X1 + Y1.
Note that x + y propagates a carry only if both X0 + Y0 and X1 + Y1 propagate a carry.
This induces the following recurrence formula

c = C1 + P1C0 (6.4)

p = P1P0,

which yields an arithmetic circuit with similar features as that of greater-than compari-
son.

Note that a carry is propagated through x+ y exactly when x = y, where y denotes the
bit-complement of y, i.e., y = 2m − 1− y. Otherwise, a propagated carry is “absorbed”
by x + y.
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Protocol 6.4 Greater-than comparison

Input: [[x]], [[y]]
Output: [[[x = y]]]

Generate [[b]] such that b ∈R {0, 1}
Compute:
[[x̃]] = [[(1− b)x + by]]
[[ỹ]] = [[(1− b)y + bx]]

run c← GT([[x̃]], [[ỹ]])
return [[(1− b)c + b(1− c)]]

Interestingly, we can show an equivalence between computing the carry of x + y and
greater-than comparison. In fact, we can check that x + y gives a carry exactly when
x > y.

Proposition 6.4 Let x and y be m-bit integers. x > y if and only if x + y ≥ 2m.

Proof. x > y⇔ x + 2m − 1− y ≥ 2m ⇔ x− 1 ≥ y⇔ x > y

The proposition states that the computation of a greater-than comparison of twom-bit in-
tegers immediately gives the carry of the sum of twom-bit integers. In fact, the recurrence
given in Eq. (6.4) represents the same formula of Eq. (6.3) by replacing Ci = [Xi > Yi] and
Pi = [Xi = Yi].

The consequence is that it suffices to solve one of the problems to have a solution to
the other problem. This equivalence may be useful to use intrinsic properties of one of
the problems to solve the other, say, more efficiently.

6.3.3 Comparisons with Public Output

Consider a protocol for any of the integer comparison on encrypted inputs that gives
the result in encrypted form. The comparison with public output is easily achieved by
adding a threshold decryption step. The other way around, computing the result of the
comparison in encrypted form given a protocol for computing comparison in the clear is
much trickier. In this section, we consider some issues appearing when comparison with
public output is used to provide a solution with encrypted output.

Greater-Than Comparison

In the case of the greater-than comparison going from public output to encrypted output
requires little overhead by the following observation made by Toft [Tof09b].

The construction described in Protocol 6.4 allows the computation of greater-than
with encrypted output using any protocol for greater-than comparison with public out-
puts. The intuition is that inputs can be swapped according to an unknown and random
bit b, given in encrypted form. This swap is performed by using a multiplication gate
[[(x − y)b]]← MULT([[x − y]], [[b]]). Then, using linear operations on the encryptions we
get [[x̃]] = [[x− (x− y)b]] and [[ỹ]] = [[y + (x− y)b]].

Clearly, if b = 0, then x̃ = x and ỹ = y or, vice versa, if b = 1 we have x̃ = y and ỹ = x.
Since the bit b is unknown and random, the result of the comparison on x̃ and ỹ gives no
clue about the comparison between x and y. The inputs are flipped with 50% probability.
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Protocol 6.5 Equality test with encrypted inputs and public output

Input: [[x]], [[y]]
Output: [x = y]

Generate [[r]] such that r ∈RM
run [[z]]← MULT([[x − y]], [[r]])
Decrypt [[z]]
return [z = 0]

At the end, the actual comparison is computed by flipping the disclosed comparison
according to the encrypted bit b. In fact, this step requires only linear properties, thus it
needs no interaction for homomorphic encryptions.

Therefore, we get greater-than comparison with encrypted output from greater-than
comparison with public output at the cost of the generation of an encrypted unknown
and random bit plus one multiplication gate. This says that greater-than comparison
with encrypted output has almost the same complexity as a greater-than comparison on
public outputs.

Note that for a greater-than comparisonwith bit-wise encrypted inputs, we can achieve
a similar equivalence. The difference is that all encrypted inputs must be swapped at the
same time. Thus, a multiple swap must be performed on the inputs, costing n extra
multiplication gates at the beginning.

For the sake of completeness, we mention that a protocol for generating an encryption
of a random bit can be obtained following the approach given in [DFK+06, Section 4].
However, this requires a cryptosystem or a linear secret sharing with full decryption and
message space of prime order. This may also be achieved using some multiplication
gates as well as explained in [ST06, Section 2.3]. Observe, however, that the generation
of a random and unknown encrypted bit can be moved completely to an off-line phase,
since it does not depend on the inputs at all.

Equality Test

In the case of an equality test, solutions providing encrypted output require a lot more
work compared to those that deliver public output. In order to illustrate this fact, we
consider the equality test given by Protocol 6.5.

Given [[x]] and [[y]], Protocol 6.5 depicts a simple, yet effective way to decide whether
x = y publicly. Parties, simply compute an encryption [[r]] of a uniformly random r
unknown to everyone. Then, using a multiplication gate compute [[(x − y)r]] which is
later decrypted. If the decrypted value equals 0, then it means that x = y. Otherwise,
x 6= y, and the decrypted value is random disclosing no information of x or y.

In the case of bit-wise inputs {[[xk]]}
m−1
k=0 and {[[yk]]}

m−1
k=0 getting public result of an

equality comparison is achieved by simply computing [[x]] and [[y]] using homomorphic
properties and apply Protocol 6.5

Obtaining the encryption [[r]] where r in an unknown random element is simple. We
let the i-th party give an encryption [[ri]] of a private value ri selected at random. The
encryption [[r]] = [[∑i ri]] can be computed with no further interaction. Note that r may
equal 0 in which case, Protocol 6.5 may give a false response (i.e., when x 6= y). The
protocol is invoked as many independent times in parallel as to make the probability
that all picked values r are 0 as small as needed.

109



Chapter 6. Integer Comparison

Protocol 6.6 Bit-decomposition

Input: [[x]], 0 ≤ x < 2m.
Output: {[[xk]]}

m−1
k=0 such that x = ∑

m−1
i=0 2ixi.

for k = m− 1 down-to 0 do
[[xk]] = [[[x > 2k − 1]]]  Note that [x > 2k − 1] = [x ≥ 2k]
[[x]]← [[x− 2kxk]]

end for
return {[[xk]]}

m−1
k=0

If the bit of information telling if x = y is required to be in an encryption, we need
to apply a more elaborated protocol, as for instance shown in [DFK+06] and later im-
proved in [NO07]. This protocol is the result of the evaluation of an arithmetic circuit
that requires the execution of many multiplication gates.

The same holds for bit-wise inputs. In fact, the circuits in Section 6.1 require at least
2mmultiplications. Damgård et al. [DFK+06] present an arithmetic constant depth circuit
via the computation of an unbounded fan-in AND. The equality comparison is obtained

by computing bits fk = xkyk for all 0 ≤ k < n. Then [x = y] = ∏
m−1
k=0 fk.

6.3.4 Bit-decomposition Problems

Bit-decomposition protocols take as input an encrypted value [[x]] with x < 2m and pro-

duce encryptions {[[xk]]}
m−1
k=0 where {xk}

m−1
k=0 is the bit representation of a non-negative

integer x. See [ACS02, DFK+06, ST06, NO07, Tof09a] for examples of protocols solving
this kind of problems. Bit-decomposition is an important primitive in secure arithmetic
since it bridges the gap between problems that are inherently bit-oriented but the inputs
are available in integer form.

A typical example is greater-than comparison. Suppose [[x]] and [[y]] be given as inputs
with x and y being non-negative integers. A natural approach for circuits and protocols
is to compute [x > y] (or eventually [[[x > y]]]) relying on a bit-decomposition protocol.

Namely, inputs [[x]] and [[y]] are converted into {[[xk]]}
m−1
k=0 and {[[yk ]]}

m−1
k=0 . Then, a bit-

wise greater-than comparison is performed, like the ones presented in this thesis. This is
the overall approach that is used in [DFK+06] where they get constant depth circuit for
greater-than comparison with encrypted integer input. This is acquired by using special
tricks to get both bit-decomposition and bit-wise greater-than in constant depth. How-
ever, the size of the resulting circuit is very large and hence unsatisfactory for practical
applications.

The bits of an m-bit integer x can be computed using greater-than comparisons as
follows. First, note that xk, the k-th bit of x, can be extracted by xk = [x ≥ 2k]. Protocol 6.6
iteratively extract all bits.

A related primitive to bit-decomposition is the computation of the least significant
bit of an encrypted integer. That is, given an encryption [[x]] compute [[x0]], where x0
is the least significant bit of x, denoted with LSB(x). Protocols for this task have been
investigated by Schoenmakers and Tuyls [ST06] and Nishide and Otha [NO07].

The following proposition relates greater-than comparison and the least significant
bit.

Proposition 6.5 Let q be an odd integer. x > (q− 1)/2 if and only if LSB(2x mod q) = 1.
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In fact, if x > (q− 1)/2 then 2x ≥ q, and thus 2x mod q = 2x− q wraps around. Then,
2x mod q is odd.

This equivalence is used by Nishide and Otha [NO07] to construct a general greater-
than comparison circuit based only on comparisons with the public value (q − 1)/2,
solving it via a protocol for the least significant bit. Interestingly, computing the least
significant bit reduces to computing bit-wise greater-than comparisons. Nishide and
Otha [NO07] thus avoid the use of a bit-decomposition protocol to compute greater-than
comparison on encrypted integer inputs.

6.4 A Cost Model for Arithmetic Circuits

Circuit complexity is a branch of theoretical computer science in which a circuit is de-
fined as a directed acyclic graph where nodes are gates, there are sources (input gates)
and sinks (output gates). The complexity parameters are usually the size (number of
gates) and the depth (longest path in the graph). The analysis of the size and the depth
of circuits is necessary in some practical scenarios, such as designing circuits for micro-
processors, where minimizing the size and/or depth of circuits is important. More fun-
damentally, circuit complexity provides a model in which one can prove lower bounds
on the depth or size of those circuits. In fact, a number of lower bounds for circuits are
known nowadays, and there is a still-growing range of techniques to prove these lower
bounds. We refer the reader to [Vol99, Chapter 3] and references therein for an overview
of these techniques.

Wewould like to answer similar questions about the arithmetic circuits we consider in
this chapter. In particular, since we are interested in computational efficiency, one could
be interested to know a lower bound on the size of arithmetic circuits solving integer
comparison. Remember that the size in our context just takes into account multiplication
gates only. Therefore one should define an appropriate cost model to bound the com-
plexity. In most of cases, however, the lower bound is computed in a model where every
gate is equally expensive, so one must count all gates.

In the following, we sketch a model that considers arithmetic circuits with an appro-
priate cost model. LetM be a ring, and let {x1, . . . , xn} be a set of input variables. An
arithmetic circuit with inputs x1, . . . , xn is a directed acyclic graph where input gates are
the nodes with in-degree zero and output gates are the nodes with out-degree zero. In-
put gates are labelled with the input variables, and we assume a number of gates labelled
with constants inM. Non-input gates have in-degree two and are labelled with either
‘+’, ‘·’ or ‘×’ (in the first case the node is an addition gate, in the second case a multi-
plication by a constant, and in the third case a multiplication gate). Addition gates may
be reached by any gate, while multiplication by a constant is restricted to be reached by
exactly one constant input gate, and multiplication gates are not allowed to be reached
by constant input gates. Non-output gates may have out-degree larger than one.

Every node computes a polynomial in the ringM[x1, . . . , xn] in the following way.
An input node just computes the input variable, or the constant it is labelled with. An
addition gate computes the sum of the polynomials of all gates that reach it, while a
multiplication by a contant and a multiplication gate compute the product of the two
polynomial of the gates that reach it. The polynomial g ∈ M[x1, . . . , xn] is said to be
computed by the arithmetic circuit if one of the output gates of the circuit computes g.

We define the size of the circuit as the number of multiplication gates while the depth
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is the largest number of multiplication gates in any directed path going from any input
gate to any output gate. This definition of size and depth is motivated by the fact that
the secure evaluation of an arithmetic circuit only multiplications require interaction.
Additions and multiplication by a constant, however, are considered costless since they
are computed directly using homomorphic properties, and thus they do not affect the
computation of the protocol. This model provides a framework where we can answer
questions like what is the minimal size of an arithmetic circuit for certain functionality.

Several lower bounds of circuits with different bases, cost models and restrictions can
be found across the literature. It is possible to prove the minimal size of a circuit for a
given (fixed) depth, or assuming a specific set of gates that circuits are allowed to use.
As in our case, some gates may have assigned some cost which makes the problem of
calculating lower bounds more challenging. In some cases, the most natural solution
is proved to be the best. An example is the boolean circuit for the addition of two m-
bit integers. Red’kin [Red81] has shown that for this problem in particular, the folklore
circuit is the smallest one. More concretely, he has shown that 5m− 3 boolean gates is a
lower bound for a circuit computing that problem.

We turn the attention to integer comparison circuits. We have analyzed the complex-
ity of various circuits in Table 6.1. We have seen that the most efficient circuit is that
in [ST04] which requires 2m− 1 multiplication gates for m-bit inputs. One may wonder
if it is possible to get any better, and thus obtaining a more efficient solution. We believe
that cost model for directed acyclic graphs representing arithmetic circuits as the one de-
scribed above will help to find concrete answers to this kind of questions. In fact, we
state the following conjecture.

Conjecture 1 Any arithmetic circuit (using the model described above) for integer comparison
on m-bit inputs has size at least 2m− 1.

In other words, we believe that the solution of [ST04] uses the minimal number of
multiplication gates. We do note, however, that we do not claim that this is the most
efficient solution. As seen in Table 6.2 one can get more efficient solutions using different
approaches. This conjecture suggests that no other protocol that limits itself to the evalu-
ation of an arithmetic circuit for integer comparison (using additions and multiplications
only) can be better in a computational sense.
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Conclusions

In this thesis, we have presented solutions to two important primitives of secure multi-
party computation: special verifiable shuffles and integer comparison. We have consid-
ered three types of special shuffles, namely rotations, affine transformations, andMöbius
transformations. The protocols presented in this thesis for these verifiable special shuf-
fles are the most efficient to date. We have also studied efficient protocols for integer
comparison in the setting where multiple parties do secure computations using a thresh-
old homomorphic cryptosystem. Our solutions are competitive compared to the existing
solutions in the literature, especially regarding computational performance.

We have seen that verifiable rotation can be used in a variety of problems, like fragile-
mixes [RW04], specific electronic voting protocols [RS06], and integer comparison pro-
tocols [BK04, ABFL06, GSV07, DGK07, RT09]. Moreover, rotations are fundamental in
some settings, for example in protocols for secure function evaluation based on mix-and-
match [JJ00] or tallying protocols for preferential elections [WB09]. We believe that there
are many other cryptographic scenarios where we can apply rotations and multiple frag-
ile permutations.

We have presented zero-knowledge proofs of knowledge for rotations for which we
can prove witness-extended emulation. This property implies computationally convinc-
ing proof of knowledge [DF02], a widely accepted notion that shows that a possibly
cheating prover who knows some trapdoor information of the public key of the sur-
rounding cryptosystem does not gain any advantage to cheat in the protocol. Even
though this property is less general than general knowledge soundness, witness-extended
emulation has the advantage of providing a simple and compact analysis. As an ex-
tra advantage, witness extended-emulation simplifies the construction of a simulator for
zero-knowledge proofs used in higher-level protocols.

For integer comparison we have studied two types of solutions. On the one hand,
we have presented a protocol that is the result of the secure evaluation of an arithmetic
circuit. On the other hand, we have used a more direct approach that combines basic
cryptographic building blocks to construct the solutions. These two types of solutions
have pros and cons which we briefly summarize in the following.

The circuit approach abstracts away all details of the implementation of the gates. It
suffices to construct an arithmetic circuit for the desired functionality. The arithmetic cir-
cuit is compiled into a secure protocol following the guidelines of the underlying frame-
work (e.g., [CDN01, ST04]). The performance of the resulting protocol is determined by
the size and the depth of the arithmetic circuit. A circuit for the desired functionality may
be chosen trading off performance needs: a circuit with few multiplication gates yields
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Chapter 7. Conclusions

an efficient protocol, whereas with a shallow circuit one gets low round complexity.
The direct approach, in contrast, lacks the simplicity of the circuit approach. Instead,

one has to craft the protocols almost from scratch and prove their security formally. How-
ever, since one has more freedom to look at the intrinsic properties of the problem, we
may be able to optimize the performance of the resulting protocols. In fact, this is the
lesson learned for integer comparison protocols: the use of a direct approach has given
rise to protocols with improved performance.

We have worked with a security model that assumes the execution of our protocols in
isolation (i.e., in a stand-alone model). More general security frameworks are considered
today, in which several instances of a protocol may be running simultaneously (e.g., the
universal composability (UC) model of Canetti [Can01, Can05]). We believe that our
protocols can be adapted to stronger models using standard techniques.

Due to the recent work by Terelius and Wikström [TW10] one can prove in zero-
knowledge that a shuffle uses a permutation from a restricted set, more specifically, the
automorphism group of a hypergraph. The hypergraph can be set up to have as automor-
phism group the set of all rotations, fragile permutations, or other sets of permutations
such as all permutations that keep a rooted tree intact. This opens the door to the study of
shuffles using other families of permutations together with potential applications where
the properties of these special families of permutations can be exploited.

One may wonder if it is possible to further improve the performance of the existing
circuit-based solutions for integer comparison. As stated above, the performance of a
protocol based on an arithmetic circuit is improved by optimizing the size and/or the
depth. A natural question is: what is the best size and/or depth that one can achieve
for any integer comparison circuit? This kind of question may be addressed using some
techniques from circuit complexity.

Arithmetic circuits are directed acyclic graphs where nodes are gates and edges are
wires. There are input gates (sources) and output gates (sinks) and the other gates can
be either addition gates or multiplication gates (see Section 6.4). This provides a model
to ask questions like what is the minimal number of multiplication gates required for
any integer comparison protocol. The smallest known arithmetic circuit for integer com-
parison is the msb-to-lsb solution of [ST04], requiring 2m − 1 multiplication gates. We
conjecture that this is the best one can get, and leave as an open problem proving that
this is indeed the case.
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Summary

In modern cryptography, the problem of secure multiparty computation is about the co-
operation between mutually distrusting parties computing a given function. Each party
holds some private information that should remain secret as much as possible through-
out the computation. A large body of research initiated in the early 1980’s has shown that
any computable function can be evaluated using secure multiparty computation. Though
these feasibility results are general, their applicability in practical situations is rather un-
satisfactory. This thesis concerns the study of two particular cryptographic primitives
with focus on efficiency.

The first primitive studied is a generalization of verifiable shuffles of homomorphic
encryptions, where the shuffler is only allowed to apply a permutation from a restricted
set of permutations. In this thesis, we consider shuffles using permutations from a k-
fragile set, meaning that any k input-output correspondences uniquely identify a permu-
tation within the set. We provide verifiable shuffles restricted to the set of all rotations (1-
fragile), affine transformations (2-fragile), andMöbius transformations (3-fragile). Appli-
cations of these special shuffles include fragile mixing, electronic elections, secure func-
tion evaluation using scrambled circuits, and secure integer comparison.

Two approaches for verifiable rotations are presented. On the one hand, we use prop-
erties of the Discrete Fourier Transform (DFT) to express in a compact way that a rotation
is applied in a shuffle. The solution is efficient, but imposes some mild restrictions on the
parameters to allow DFT to work. On the other hand, we present a general solution that
does not impose any parameter constraint and works on any homomorphic cryptosys-
tem. These protocols for rotations are used to build efficient shuffling protocols for affine
and Möbius transformations.

The second primitive is secure integer comparison. In a general scenario, parties are
given homomorphic encryptions of the bits of two integers and, after running a protocol,
an encryption of a bit is produced, telling the result of the greater-than comparison of the
two integers. This is a useful building block for higher-level protocols such as electronic
voting, biometrics authentication or electronic auctions. A study of the relationship of
other problems to integer comparison is given as well.

We present two types of solutions for integer comparison. Firstly, we consider an
arithmetic circuit yielding secure protocols within the framework for multiparty com-
putation based on threshold homomorphic cryptosystems. Our circuit achieves a good
balance between round and computational complexities, when compared to the similar
solutions in the literature. The second type of solutions uses a intricate approach where
different building blocks are used. A full analysis ismade for the two-party casewhere ef-
ficiency of the resulting protocols compares favorably to other solutions and approaches.
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Samenvatting

Binnen de moderne cryptografie bestaat het onderzoeksgebied secure multiparty com-
putation. In dit gebied onderzoekt men de samenwerking van elkaar wantrouwende
personen om via een protocol een gegeven functie uit te rekenen. Elke persoon heeft
een persoonlijke invoer voor de functie en wil deze gedurende de berekening zoveel mo-
gelijk geheim houden. Een grote hoeveelheid onderzoek uit begin jaren ’80 toont aan dat
elke berekenbare functie op een dergelijke veilige manier berekend kan worden. Hoewel
deze resultaten veelbelovend zijn, blijken de gebruikte technieken niet erg efficiënt te
zijn. Dit proefschrift behandelt twee specifieke primitieven en concentreert daarbij op de
efficiëntie.

De eerste primitieve is een generalisatie van het verifieerbaar herverdelen van homo-
morfe encrypties, waarbij de verdeler slechts gebruik mag maken van een beperkt aantal
permutaties. Dit proefschrift gaat in op herverdelingen die gebruikmaken van k-fragiele
permutaties, wat inhoudt dat de permutatie vastgelegd wordt door elk k-tupel van in-
en uitvoer. We geven constructies voor het gebruik met rotaties (1-fragiel), affiene trans-
formaties (2-fragiel) en Möbius-transformaties (3-fragiel). Deze specifieke constructies
hebben toepassingen in fragiele mixnetwerken, elektronische verkiezingen en secure in-
teger comparison.

We presenteren twee aanpakken voor verifieerbare rotaties. De eerste aanpak maakt
gebruik van de eigenschappen van de discrete Fouriertransformatie (DFT) om de rotatie
op een compacte manier vast te leggen. Dit levert een efficiënt protocol op, maar legt
ook enkele beperkingen op aan het gebruikte scenario. De tweede aanpak geeft een al-
gemene oplossing die geen beperkingen oplegt en met ieder homomorf cryptosysteem te
gebruiken is. De op deze wijze verkregen constructies worden vervolgens gebruikt om
efficiënte protocollen voor affiene en Möbius-transformaties te verkrijgen.

De tweede primitieve in dit proefschrift is het zogenaamde secure integer compari-
son. In dit protocol hebben de verschillende deelnemers toegang tot een encryptie van
de bits van twee gehele. Ze willen graag de encryptie van een enkel bit berekenen dat
aangeeft welk van de twee gehele getallen groter is. Dit is een handige bouwsteen voor
uitgebreidere protocollen voor bijvoorbeeld elektronisch stemmen, elektronische veilin-
gen en authenticatie met biometrieën. We bestuderen onder andere de relatie tussen
integer comparison en andere problemen.

We geven twee soorten oplossingen. In de eerste plaats bekijken we aritmetische cir-
cuits. Dit levert protocollen op die passen binnen de multiparty compution gebaseerd
op threshold homomorfic encryption. De gevonden circuits geven – in vergelijking met
bestaande oplossingen – een goede balans tussen de rondecomplexiteit en de computa-
tionele complexiteit. De tweede oplossing is een complexe aanpak, waarbij een samen-
stelling van diverse cryptografische primitieven als bouwblok worden gebruikt. We
maken een uitgebreide analyse in het geval van twee deelnemers; hier blijkt de efficiëntie
van de resulterende protocollen beter blijkt te zijn dan bij bestaande oplossingen.
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Peter van Liesdonk and Tomas Toft for the many club sessions spent on my research
problems. They helped to improve this work a lot! On top of this, Sebastiaan proof-read
some chapters, and Peter helped me with a translation of the summary. I thank Dan
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at the Salta National University in March 2000.

Starting with his second year in software engineering, he followed extra-curricular
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