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Abstract

The image Fourier transform is widely used for defocus and astigmatism correction in
electron microscopy. The shape of a power spectrum (the square of a modulus of image
Fourier transform) is directly related to the three microscope’s controls, namely defocus and
two-fold (two-parameter) astigmatism. In this paper the new method for power spectrum
orientation identification is proposed. The method is based on the three measures which
are related to the microscope’s controls. The measures are derived from the mathematical
moments of the power spectrum. The method is tested with the help of a Gaussian
benchmark, as well as with the scanning electron microscopy experimental images. The
method can be used as an assisting tool for increasing the capabilities of defocus and
astigmatism correction a of non-experienced scanning electron microscopy user, as well as
a basis for automated application.

1 Introduction

For many practical applications in electron microscopy, both the defocus and the two-
fold (two-parameter) astigmatism have to be adjusted regularly during continuous image
acquiring process. Possible reasons for change in defocus and two-fold astigmatism are
for instance the instabilities of the electron microscope and environment, as well as the
magnetic nature of some samples. Nowadays electron microscope still requires an expert
operator to trigger recording of in-focus and astigmatism-free images using a visual feed-
back, which is a tedious task. In future the manual operation has to be automated to
improve the speed, the quality and the repeatability of the measurements.

There are different ways of automated defocus and astigmatism correction in electron
microscopy. One of them is optimization of an image quality measure as a function of
defocus and two-fold astigmatism (two-parameter astigmatism, which can be adjusted
with x-stigmator and y-stigmator controls in SEM), i.e. three-parameter optimization
[20, 24]. Overview of different image quality measures can be found in [11, 12, 22, 25, 30].
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In general it requires more image recordings than alternative group of methods, i.e., Fourier
transform-based methods.

The image Fourier transform is important for image quality improvement in electron
microscopy, as well as in other types of optical devices, such as telescopes, ophthalmoscopes
and endoscopes [8]. To this end, one needs on one hand a thorough analysis of the Fourier
transform, on the other hand the analysis must be fast. The image’s power spectrum - i.e.,
the square of a modulus of its Fourier transform - is widely used for blind deconvolution
procedures [4, 28], for defocus and astigmatism correction in Scanning Electron Microscopy
(SEM) [17, 18, 29], as well as in other types of electron microscopes [2, 7, 10, 26, 31, 32].
Power spectrum is used for automated defocus and astigmatism correction, as well as
a visual support for a non-automated correction performed by a human operator. Un-
fortunately it is still hard for a non-experienced human operator to correct defocus and
astigmatism within the reasonable time even with power spectrum visualization.

In this paper we discuss a new method for power spectrum orientation identification.
The power spectrum model suggested in [4] is extended to a non-symmetrical case and is
used for analytical derivations. Three functions corresponding to the three SEM param-
eters (defocus function, x-stigmator function, y-stigmator function) are introduced. The
functions are related to the power spectrum mathematical moments and are chosen to sim-
plify defocus and astigmatism correction for a non-experienced human operator. The three
real-valued measures derived from the functions could be used as a basis for an automated
application.

Section 2 of this paper describes the image formation model, defocus and astigmatism.
Section 3 introduces power spectrum model and its discretization (Subsection 3.1). Subsec-
tion 3.2 discusses relation of a power spectrum orientation with defocus and astigmatism
for the particular case of a Gaussian point spread function. Section 4 explains the method
of orientation identification, which involves 1) computing defocus/stigmator functions; 2)
computing defocus/stigmator measures. Subsection 4.1 discusses the particular case of
power spectrum modelled as a Gaussian function. Section 5 illustrates results of numerical
experiments with Gaussian benchmarks and SEM experimental images. Section 6 provides
discussion and conclusions.

2 Image formation, defocus and astigmatism

According to a linear image formation model [9, 16] the microscope image is

f(u,p) = (f0(u) ∗ h(u,p))(u) :=

∫∫ +∞

−∞

h(u′,p)f0(u − u′)du′. (1)

where u := [u, v]T ∈ R
2 is a vector of spatial coordinates, f0(u) ≥ 0 is the object function

that describes a specimen’s geometry, h is the point spread function, and p := [d, σx, σy]
T ∈

R
3 is a vector of the microscope’s parameters (controls), which correspond to defocus and

two-fold astigmatism.
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(a) (b)

Figure 1: 1(a) Ray diagram for a lens without astigmatism, the lens has one focal point;
1(b) ray diagram for a lens with astigmatism, the lens has two focal points.

Astigmatism is a lens abberation, caused by asymmetry of the lens. Figure 1(a) shows
a ray diagram for the astigmatism-free situation. The lens has one focal point F. The
only adjustable parameter is the current through magnetic lens; it changes the lens focal
length and focuses the magnetic beam on the image plane [17]. The current is adjusted
with defocus control d. Astigmatism implies that the rays traveling through a horizontal
plane will be focussed at a different focal point than the rays traveling through a vertical
plane (Figure 1(b)). Thus, the lens has two different focal points F1 and F2 and the image
can not be totally sharp. Due to the presence of astigmatism, the electron beam becomes
elliptic.

In SEM the point spread function can be approximated by a composition of Gaussian
functions [14] or in the simplest case by one Gaussian function [5], as well as in light
microscopy [15]

h(u,p) = Ḡ(u) :=
1

2πâ2
exp(−(

u2

2â2
+

v2

2â2
)), â > 0. (2)

In (2) the Gaussian standard deviation (or the point spread function width) â is related
to the defocus control d. The smaller â is the better the image f describes the object f0.
Ideally, if we assume â = 0, Gaussian point spread function becomes a delta function, and
f = f0. However, in practice the point spread function width is bounded by microscope’s
physical limits â = âmin > 0. Due to the presence of astigmatism point spread function
becomes elliptic

h(u,p) = G(u) :=
1

2πâb̂
exp(−(

(u cos α̂ − v sin α̂)2

2â2
+

(u sin α̂ + v cos α̂)2

2b̂2
)), (3)

â > 0, b̂ > 0, 0 ≤ α̂ <
π

2
.

Figure 2(a) visualizes the roles of parameters â, b̂, α̂. When â = b̂ the value of α̂ does not
play a role.
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(a) (b)

Figure 2: 2(a) Roles of parameters in elliptic function; 2(b) typical for SEM configuration
of electrostatic stigmators [17].

For astigmatism correction in SEM, electrostatic or electromagnetic stigmators are used.
They produce electromagnetic field for correction of the ellipticity of the electron beam
[19]. A typical configuration of electrostatic stigmators for SEM is shown in Figure 2(b).
The elliptic electron beam is depicted in the middle of the scheme. Currents of the same
magnitude go through coils A1, A2, C1, and C2, while currents of a different magnitude go
through coils B1, B2, D1, and D2. The field generated by A1, A2, C1, C2 influences the
stretching of the electron beam along two orthogonal axes A and C. Similarly, the field
generated by coils B1, B2, D1, D2 influences the stretching along two orthogonal axes C
and D [17]. The angle between axes A and B is always π

4
. The magnitude and direction of

the current through coils A1, A2, C1, C2 are controlled by the stigmator control variable σx,
and the magnitude and direction of the current through coils B1, B2, D1, D2 are controlled
by the stigmator control variable σy. Thus, by adjusting stigmator controls σx and σy

astigmatism is corrected.
For defocus and astigmatism correction problem, we consider a vector of three mi-

croscope’s control variables p := [d, σx, σy]
T with the ideal parameter values (the ideal

parameter values correspond to the image of the highest possible quality) denoted as
p0 := [d0, σx0, σy0

]T .

3 Power spectrum theory

For the vector of frequency coordinates x := [x, y]T , an image f(u), its power spectrum
p(x) is a square of a modulus of the image’s Fourier transform

p(x) := |F[f ]|2.
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The image f is real-valued. Hence, one finds

p(x) = p(−x). (4)

In Fourier space convolution becomes multiplication, thus (1) can be rewritten as

F[f ] = F[f0]F[h]

or
p(x) = |F[f0]|

2|F[h]|2. (5)

According to [3, 4] a rotationally symmetric power spectrum can be modelled as a
function

p(x) = ḡ(x) := A exp(−(
x2

2a2
+

y2

2a2
)β), 0 < β ≤ 1, a > 0, A > 0. (6)

This is a consequence of the fact that in a variety of optical systems point spread function h
can be often approximated by a Lévy stable density with parameter β, which is a property
of an optical device (in our case, SEM). For β = 1 one obtains the Gaussian function and
for β = 1

2
- Lorentzian (or Cauchy) function. When β = 1, h has slim tails and finite

variance. When 0 < β < 1, h has fat tails and infinite variance [4].
Due to the presence of astigmatism power spectrum might loose its rotational symmetry.

Therefore we extend (6) to a non-symmetric case

p(x) = g(x) := A exp(−(
(x cos α − y sin α)2

2a2
+

(x sin α + y cos α)2

2b2
)β), (7)

a > 0, b > 0, 0 ≤ α <
π

2
.

For polar coordinates

r := [r, ϕ]T ∈ {R
+ × [0, 2π)}, x = r cos ϕ, y = r sin ϕ,

it becomes

g(x) = A exp(−r2β(
cos2(ϕ + α)

2a2
+

sin2(ϕ + α)

2b2
)β). (8)

3.1 Discretization

We assume that the continuous power spectrum p(x) has a compact support inside

X := [−X, X] × [−X, X],

which means
p(x) = 0, ∀x /∈ X.
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(a) Non-windowed (b) Windowed

(c) power spectrum non-windowed (d) power spectrum windowed

Figure 3: 3(a) A SEM experimental image of Gold-on-Carbon (a non-windowed image);
3(b) the experimental image multiplied by the window function (a windowed image); 3(c)
power spectrum of the experimental non-windowed image; 3(d) power spectrum of the
experimental windowed image.
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In practice images are always discrete and can be represented by matrixes

F ∈ R
(2n+1)×(2n+1), n ∈ N.

A corresponding discrete power spectrum P := (Pi,j)
2n+1
i,j=1 can be computed with the Fast

Fourier Transform method [6, 13].
We define frequency mesh points xi := i∆x, yj := j∆x, i, j = −n, . . . , n, where

∆x :=
2X

(2n + 1) − 1
=

X

n
. (9)

Then we define
Pi,j := p(xi, yj). (10)

The power spectrum P has a high dynamic range: low frequencies (pixels with indices
close to (i, j) = (0, 0)) have much higher values than high frequencies. A normal output
graphic device does not have a sufficient dynamic range to display it simultaneously. It is
suggested to use logarithmic scale for power spectrum vizualization [9]

P
(C)
i,j = log(C + Pi,j), (11)

where C is a scaling constant for the contrast adjustments. In this paper, as well as in [4],
we use C = 0 for power spectrum visualization.

Fast Fourier Transform method is based on the assumption of function periodicity [13],
which is usually not the case for the real-world images. Before the discrete power spectrum
computations it is important to multiply the image by a Window function, for instance
with

W (x, xmax) :=

{

(1 + cos( π|x|
xmax

))/2, if |x| ≤ xmax,

0, elsewise,
(12)

in order to avoid discontinuities on the boundary. For the discrete image we make a choice of
xmax = xn−1. Figure 3 shows the difference between power spectrums of the non-windowed
image and the windowed image. The non-windowed power spectrum (Figure 3(c)) has two
orthogonal lines crossing in the origin, while the windowed power spectrum (Figure 3(d))
shows only elliptic distribution. The lines in the non-widowed power spectrum (Figure
3(c)) are results of discontinuity and can result in the errors during the further power
spectrum analysis.

3.2 Power spectrum orientation in relation to defocus and astig-

matism

The power spectrum of a Gaussian point spread function (3) is a Gaussian function

|F[G]|2 = Â exp(−(â2(x cos α̂ − y sin α̂)2 + b̂2(x sin α̂ + y cos α̂)2)), (13)
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Figure 4: The upper row represents real space (spatial coordinates u := [u, v]T ); from
left to right: Experimental SEM image, which is considered to be the object function f0,
Gaussian point spread function h (â = b̂ = 1, α̂ = 0), numerical result of their convolution
f . The lower row represents the three mentioned quantities in the Fourier space (frequency
coordinates x := [x, y]T ). PS denotes the Power Spectrum. PSF denotes the point spread
function.
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Figure 5: Similar to Figure 4 numerical computation, but with the Gaussian point spread
function parameters â = b̂ = 5, α̂ = 0. PS denotes the Power Spectrum. PSF denotes the
point spread function.
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Figure 6: Similar to Figure 4 numerical computation, but with the Gaussian point spread
function parameters â = 5, b̂ = 3, α̂ = 0. PS denotes the Power Spectrum. PSF denotes
the point spread function.

where Â > 0 is a constant. The rotation angle of the Gaussian power spectrum is equal to
the rotational angle in real space, and the widths are inversely proportional to the width
in real space.

We illustrate relation of power spectrum orientation to defocus and astigmatism with
the help of three numerical examples. Left columns of figures 4-6 show the same exper-
imental image of tin balls obtained with SEM and its power spectrum. For numerical
experiment we consider this image to be an ideal image, i.e. the object function of a spec-
imen f0. The power spectrum is nearly rotationally symmetric. The image is convolved
sequentially with a Gaussian point spread functions with parameters â = b̂ = 1, α̂ = 0
(Figure 4), â = b̂ = 5, α̂ = 0 (Figure 5), â = 5, b̂ = 3, α̂ = 0 (Figure 6). The upper row of
each figure represents real space, and the low row represents Fourier space, where convo-
lution becomes multiplication. The influence of the point spread function’s parameters is
visible in the result of the convolution in real space (image f - the top right of each of the
figures), as well as in the Fourier space.

When consider a rotationally symmetric point spread function with a relatively small
width (Figure 4) the final image f does not deviate a lot from original f0. Its power
spectrum is rotationally symmetric and has, as well as the power spectrum of the point
spread function, relatively large width. When consider a rotationally symmetric point
spread function with a larger width (Figure 5), its power spectrum has a smaller width, as
well as the power spectrum of f (power spectrum’s intensity decreases), and the image f
itself looks more blurred than in Figure 4. Further, when consider a non-symmetric point
spread function, the power spectrum of f becomes non-symmetric as well (Figure 6).

The knowledge of the described above power spectrum behavior is used by a human
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operator during the defocus and astigmatism correction, when adjusting the controls p.
For the amorphous object with rotationally symmetric power spectrum, operator tries to
obtain an image with power spectrum as intense as possible without stretching in any
direction. The difficult situation is when the power spectrum of the object f0 is not
rotationally symmetric (the object has a strong preferential direction). In this case it is
important to compare the difference between power spectrums obtained for different p and
to find a center of symmetry [17].

It is often difficult for a non-experienced human operator to understand, which of the
controls p and in which directions are to be adjusted just from observing elliptic power
spectrum. In the next section we provide a methodology to simplify the correction for
a human. Also, this methodology can be used as a basis for automated defocus and
astigmatism correction method.

4 Orientation identification method

With the power spectrum p(x) = p(r cos ϕ, r sin ϕ), we associate the three functions

h0(r) :=

∮ 2π

0

p(r cos ϕ, r sin ϕ)dϕ, (14)

h1(r) :=

∮ 2π

0

p(r cos ϕ, r sin ϕ) cos 2ϕdϕ, (15)

h2(r) :=

∮ 2π

0

p(r cos ϕ, r sin ϕ) sin 2ϕdϕ. (16)

The function h0 (defocus function) is related to the defocus d. It is clear that h0(r) ≥ 0
(p(x) ≥ 0 by definition). The functions h1 (x-stigmator function) and h2 (y-stigmator
function) are related to the stigmators σx, σy respectively. In (15) and (16) cos 2ϕ and
sin 2ϕ play the roles of the weight functions. Below it will be shown for particular examples
how they help to obtain information about the signs of the stigmators σx and σy. Due to
the power spectrum symmetry (4)

h0(r) = 2

∮ π

0

p(r cos ϕ, r sin ϕ)dϕ, (17)

h1(r) = 2

∮ π

0

p(r cos ϕ, r sin ϕ) cos 2ϕdϕ, (18)

h2(r) = 2

∮ π

0

p(r cos ϕ, r sin ϕ) sin 2ϕdϕ. (19)

The representation (17)-(19) makes further numerical computations faster.
The defocus and stigmator functions (14)-(16) are related to the mathematical moments

of the power spectrum

mk,l :=

∫∫ +∞

−∞

xkylp(x)dx =

∫ ∞

0

rk+l+1

∮ 2π

0

p(r cos ϕ, r sin ϕ) cosk ϕ sinl ϕdϕdr,
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which are widely used in different applications for orientation identification and other
purposes [27, 33, 34]. The 0-moment is

m0,0 =

∫ ∞

0

rh0(r)dr. (20)

The symmetry of the power spectrum (4) leads to the fact the 1st moments are equal to
zero

m1,0 =

∫ ∞

0

r2

∮ 2π

0

p(r cos ϕ, r sin ϕ) cosϕdϕdr = 0,

m0,1 =

∫ ∞

0

r2

∮ 2π

0

p(r cos ϕ, r sin ϕ) sin ϕdϕdr = 0.

The 2nd moments are:

m2,0 =

∫ ∞

0

r3

∮ 2π

0

p(r cos ϕ, r sin ϕ) cos2 ϕdϕdr =
cos2 ϕ= 1

2
+ 1

2
cos 2ϕ

1

2

∫ ∞

0

r3(h0(r) + h1(r))dr,

(21)

m0,2 =

∫ ∞

0

r3

∮ 2π

0

p(r cos ϕ, r sin ϕ) sin2 ϕdϕdr =
sin2 ϕ= 1

2
− 1

2
cos 2ϕ

1

2

∫ ∞

0

r3(h0(r) − h1(r))dr,

(22)

m1,1 =

∫ ∞

0

r3

∮ 2π

0

p(r cos ϕ, r sin ϕ) cos ϕ sin ϕdϕdr =
1

2

∫ ∞

0

r3h2(r)dϕdr. (23)

Based on (21)-(23) we introduce the three measures

sq :=

∫ ∞

0

r3hq(r)dr, q = 0, 1, 2, (24)

related to the second mathematical moments as follows from (22)-(23)

m2,0 =
1

2
(s0 + s1),

m0,2 =
1

2
(s0 − s1),

m1,1 =
1

2
s2.

For the particular case of the function (8), it follows that

s0 = AπabΓ(1 +
2

β
)(b2 + a2), (25)

s1 = AπabΓ(1 +
2

β
)(b2 − a2) cos 2α, (26)

s2 = AπabΓ(1 +
2

β
)(b2 − a2) sin 2α, (27)
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Figure 7: Bessel functions of the first kind and modified Bessel functions of the first kind
for k = 0, 1.

where Γ is the Gamma function

Γ(z) :=

∫ +∞

0

tz−1e−tdt, z > 0.

For the particular case of a Gaussian function Γ(3) = 2. Consider the power spectrum
function (8). Then parameter α can be directly estimated from numerically computed
values of s1 and s2

α =







1
2
arctan( s2

s1
), if s1 6= 0,

π
4
, if s1 = 0, s2 6= 0,

∀, if s1 = 0, s2 = 0.
(28)

4.1 Gaussian power spectrum

Consider the power spectrum modelled as a Gaussian function (β = 1 in (7)). Then one
can rewrite the expressions for defocus and stigmator functions (14) - (16) as follows

h0(r) =

∮ 2π

0

e−r2( cos2(ϕ+α)

2a2 + sin2(ϕ+α)

2b2
)dϕ = 2e−

(a2+b2)r2

4a2b2 πI0(
1

4
(
1

b2
−

1

a2
)r2),

h1(r) =

∮ 2π

0

e−r2(
cos2(ϕ+α)

2a2 +
sin2(ϕ+α)

2b2
) cos 2ϕdϕ = 2e−

(a2+b2)r2

4a2b2 πI1(
1

4
(
1

b2
−

1

a2
)r2) cos 2α,

h2(r) =

∮ 2π

0

e−r2(
cos2(ϕ+α)

2a2 +
sin2(ϕ+α)

2b2
) sin 2ϕdϕ = 2e−

(a2+b2)r2

4a2b2 πI1(
1

4
(
1

b2
−

1

a2
)r2) sin 2α,

where Ik(z) is the Modified Bessel Function of the first kind, that can be expressed as [1]

Ik(z) :=
1

π

∫ π

0

er cos ϕ cos kϕdϕ,

which is related to the Bessel Function of the first kind as [1]

Ik(z) := i−kJk(iz).
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Figure 7 shows Bessel functions of the first kind and modified Bessel functions of the first
kind for k = 0, 1.

From these observations it is clear for the particular case of a Gaussian function that







h1 < 0, if a < b and α 6= π
4
,

h1 = 0, if a = b or α = π
4
,

h1 > 0, if a > b and α 6= π
4
.

(29)

and






h2 < 0, if a < b and α 6= 0,
h2 = 0, if a = b or α = 0,
h2 > 0, if a > b and α 6= 0.

(30)

It means that the directions of stigmator controls variables can be easily identified from
the stigmator functions







σx < σx0
, if h1 < 0,

σx = σx0 , if h1 = 0,
σx > σx0 , if h1 > 0,

(31)

and






σy < σy0
, if h2 < 0,

σy = σy0
, if h2 = 0,

σy > σy0
, if h2 > 0.

(32)

4.2 Discretization

We define the radial mesh points rk = k∆r + ∆r
2

, k = 1, . . . , N , where ∆r := X
N

, and the

angular mesh points ϕl = l∆ϕ + ∆ϕ

2
, l = 1, . . . , M , where ∆ϕ := π

M
. Further we fill in the

matrix values P̃ ∈ R
N×M

x(k,l) := rk cos ϕl, y(k,l) := rk sin ϕl. (33)

Each point (x(k,l), y(k,l)) is bounded

xi−1 ≤ x(k,l) ≤ xi, yj−1 ≤ y(k,l) ≤ yj, i ∈ {−n + 1, . . . , n}, j ∈ {−n + 1, . . . , n}.

We compute values of P̃k,l with a linear interpolation (see Figure 8)

P̃k,l = ((1 −
δx

∆x
)pi−1,j−1 +

δx

∆x
pi,j−1)(1 −

δy

∆x
) + ((1 −

δx

∆x
)pi−1,j +

δx

∆x
pi,j)

δy

∆x
,

where
δx := x(k,l) − xi−1, δy := y(k,l) − yi−1.
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Figure 8: Linear interpolation of power spectrum values.

For k ∈ {1, . . . , N} we approximate the values of h0(rk), h1(rk), h2(rk) with the midpoint
numerical integration rule

h0(rk)
.
= 2∆ϕ

M
∑

l=1

P̃k,l, (34)

h1(rk)
.
= 2∆ϕ

M
∑

l=1

P̃k,l cos 2ϕl, (35)

h2(rk)
.
= 2∆ϕ

M
∑

l=1

P̃k,l sin 2ϕl. (36)

Then the measures are approximated with the midpoint rule too

sq
.
= ∆r

N
∑

k=1

r3
khq(rk), q = 1, 2, 3. (37)

5 Numerical experiments

5.1 Numerical experiments for a Gaussian function

We consider a discrete Gaussian function with dimensions (2n + 1)× (2n + 1) = 101× 101
pixels. For further numerical computations of defocus and stigmator functions h0, h1, h2,
the number of data points for discretization of polar radius r is chosen N = n = 50 and for
discretization of polar angle ϕ is chosen M = 2(2n+1) = 202. We consider ∆x = 1 in (9),
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Figure 9: Numerical computations for a Gaussian benchmark.
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thus X = n. Each row of Figure 9 shows a Gaussian functions with particular parameters
values a, b, α and corresponding h0, h1, h2 functions. The rotation angle α is numerically
estimated according to (28) and indicated by two orthogonal lines plotted above each of
the Gaussian functions.

Below we provide an overview of illustrated numerical experiments:

1. Figures 9(a)-9(d): Gaussian is rotationally symmetric (a = b = 20). For this reason
the computed values of h1 and h2 are equal to zero.

2. Figures 9(e)-9(h): Gaussian is rotationally symmetric (a = b = 10). The values of
h1 and h2 are equal to zero. The value of Gaussian width is smaller than in Figures
9(a). The integral of the function h0 in Figure 9(f) decreases in comparison with the
previous experiment (Figure 9(b)). The goal of a human operator in this case is to
find the SEM parameters such that the Gaussian width and as a consequence the
integral of h0 is as large as possible. In order to estimate h0 intensity and to minimize
the defocus in automated applications the measure based on the zero mathematical
moment (20) is often used in electron microscopy [21, 22]

s0,0 :=

∫ rmax

rmin

r

∫ 2π

0

p(r cos ϕ, r sin ϕ)dϕdr,

where rmin and rmax are the low frequency band and high frequency band, parameters
given as an input by a user.

3. Figures 9(i)-9(l): Elliptic Gaussian. The widths a > b and as a consequence all the
values of h1 are smaller than zero. The values of h2 are equal to zero, because α = 0.

4. Figures 9(m)-9(p): Elliptic Gaussian. The widths b > a and as a consequence all the
values of h1 are larger than zero. The values of h2 are equal to zero, because α = 0.

5. Figures 9(q)-9(t): Elliptic Gaussian with a > b, α = π
4
. As a consequence h1 =

0, h2 < 0.

6. Figures 9(u)-9(x): Elliptic Gaussian with a > b, α = −π
6
. As a consequence h1 <

0, h2 > 0.

The numerical results correspond to the analytical observations (29)-(30) and can guide an
unexperienced human operator, giving visual suggestion about a proper choice of stigmator
control and its sign (31)-(32).

5.2 Numerical experiments for SEM images

In this section the functions h0, h1, h2 are computed for power spectrums of SEM exper-
imental images. The rotation angle α is numerically estimated using (28). Each of the
figures 10-14 show
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Figure 10: From left to right, from top to bottom: SEM experimental image, logarithmic
scale of its power spectrum, numerically computed functions h0(r), h1(r), h2(r).
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Figure 11: From left to right, from top to bottom: SEM experimental image, logarithmic
scale of its power spectrum, numerically computed functions h0(r), h1(r), h2(r).

17



(a) (b)

50 100 150 200

180

200

220

240

260

r

h
0

(c)

50 100 150 200

−5

0

5

r

h
1

(d)

50 100 150 200

−5

0

5

r

h
2

(e)

Figure 12: From left to right, from top to bottom: SEM experimental image, logarithmic
scale of its power spectrum, numerically computed functions h0(r), h1(r), h2(r).
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Figure 13: From left to right, from top to bottom: SEM experimental image, logarithmic
scale of its power spectrum, numerically computed functions h0(r), h1(r), h2(r).

18



(a) (b)

50 100 150 200

160

180

200

220

240

r

h
0

(c)

50 100 150 200

−5

0

5

r

h
1

(d)

50 100 150 200

−5

0

5

r

h
2

(e)

Figure 14: From left to right, from top to bottom: SEM experimental image, logarithmic
scale of its power spectrum, numerically computed functions h0(r), h1(r), h2(r).

• SEM experimental image;

• Logarithmic scale of its power spectrum;

• Functions h0, h1, h2 computed with (34)-(36).

The size of each experimental image is (2n + 1) × (2n + 1) = 441 × 441 pixels. For each
function h0, h1, h2 the measures s0, s1, s2 are computed with (37), and the following values
chosen ∆x = 1, N = n = 220, M = 2(2n + 1) = 882. Further, the angle α is identified
using (28). Two orthogonal lines above each power spectrum visualize the observed value
of α. The functions h0, h1, h2 shown in the figures are computed for the logarithmic scale
of power spectrum for the reason of convenience of visualization. However, the angle α
displayed by the two orthogonal lines is found from defocus and stigmator functions before
the logarithmic scale.

Figure 10 shows the experiment for Gold-on-Carbon stigmatic image. Changing both
σx and σy is needed to improve the quality. The signs of the curves h1 and h2 indicate the
direction of change. Figure 11 shows in-focus astigmatism-free image of tin balls. Both
h1 and h2 are numerical noise around zero. Figure 12 shows defocused stigmatic image
of the same sample. We can see how the image quality decreases and power spectrum
shape changes. The y-stigmator function suggests the change of σy, while adjustment of
σx does not seem to be necessary. Figure 13 shows a magnified image of tin balls. The
image does not have a lot of details and as a consequence its power spectrum has only a
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few values of low frequencies different from noise. Because of the lack of information in
Fourier space of the image, it is difficult to analyse this power spectrum and to draw the
conclusions about the presence of astigmatism in the image. In the case of this type of
samples the method of orientation identification as well as other Fourier transform-based
methods might fail. Figure 14 shows one more defocused and stigmatic image. We can
clearly see that correction of both σx and σy is needed.

6 Discussion and conclusions

The method for power spectrum orientation identification was proposed and tested on
Gaussian benchmarks and on SEM experimental images. The method involves computing
of defocus/stigmator functions and defocus/stigmator real-valued measures. For power
spectrum modelled as a Lévy stable density, the defocus/stigmator measures are expressed
via the Gamma function. For power spectrum modelled as a Gaussian function (the par-
ticular case of a Lévy stable density), the defocus/stigmator functions are expressed via
the Modified Bessel functions of the first kind. The method can be used for increasing
the capabilities of defocus and astigmatism correction for non-experienced SEM users (via
defocus/stigmator functions). The method could be used as a basis for automated de-
focus and astigmatism correction in SEM if defocus/stigmator measures are applied and
compared for images of the same sample obtained with different microscope settings.

The alternative approach to extracting power spectrum parameters could be simply fit-
ting it with a continuous model [4] by minimizing least square difference of continuous and
experimental data with the help of an iterative method (for instance, Newton method). In
[4] this is done for one-dimensional case under the assumption that power spectrum is rota-
tionally symmetric. For one-dimensional case this would take much longer computational
time than computing of defocus/stigmator functions, which is non-iterative.

Another approach for extracting defocus/stigmator information from power spectrum
could be based on a non-iterative fitting of discrete power spectrum with a set of basis func-
tions, for instance, via projection method [23]. In this case the defocus/stigmator function
could be pre-computed analytically for the given set of basis functions. However, for the
set of basis function explored so far, the approach is still slower than direct computation
of focus/stigmatic function described in this paper.
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